Merge tag 'fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/arm...
[deliverable/linux.git] / mm / rmap.c
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20 /*
21 * Lock ordering in mm:
22 *
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
26 * mapping->i_mmap_mutex
27 * anon_vma->rwsem
28 * mm->page_table_lock or pte_lock
29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30 * swap_lock (in swap_duplicate, swap_info_get)
31 * mmlist_lock (in mmput, drain_mmlist and others)
32 * mapping->private_lock (in __set_page_dirty_buffers)
33 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
34 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within bdi.wb->list_lock in __sync_single_inode)
39 *
40 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
41 * ->tasklist_lock
42 * pte map lock
43 */
44
45 #include <linux/mm.h>
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/slab.h>
50 #include <linux/init.h>
51 #include <linux/ksm.h>
52 #include <linux/rmap.h>
53 #include <linux/rcupdate.h>
54 #include <linux/export.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/migrate.h>
58 #include <linux/hugetlb.h>
59 #include <linux/backing-dev.h>
60
61 #include <asm/tlbflush.h>
62
63 #include "internal.h"
64
65 static struct kmem_cache *anon_vma_cachep;
66 static struct kmem_cache *anon_vma_chain_cachep;
67
68 static inline struct anon_vma *anon_vma_alloc(void)
69 {
70 struct anon_vma *anon_vma;
71
72 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
73 if (anon_vma) {
74 atomic_set(&anon_vma->refcount, 1);
75 /*
76 * Initialise the anon_vma root to point to itself. If called
77 * from fork, the root will be reset to the parents anon_vma.
78 */
79 anon_vma->root = anon_vma;
80 }
81
82 return anon_vma;
83 }
84
85 static inline void anon_vma_free(struct anon_vma *anon_vma)
86 {
87 VM_BUG_ON(atomic_read(&anon_vma->refcount));
88
89 /*
90 * Synchronize against page_lock_anon_vma_read() such that
91 * we can safely hold the lock without the anon_vma getting
92 * freed.
93 *
94 * Relies on the full mb implied by the atomic_dec_and_test() from
95 * put_anon_vma() against the acquire barrier implied by
96 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
97 *
98 * page_lock_anon_vma_read() VS put_anon_vma()
99 * down_read_trylock() atomic_dec_and_test()
100 * LOCK MB
101 * atomic_read() rwsem_is_locked()
102 *
103 * LOCK should suffice since the actual taking of the lock must
104 * happen _before_ what follows.
105 */
106 might_sleep();
107 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
108 anon_vma_lock_write(anon_vma);
109 anon_vma_unlock_write(anon_vma);
110 }
111
112 kmem_cache_free(anon_vma_cachep, anon_vma);
113 }
114
115 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
116 {
117 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
118 }
119
120 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
121 {
122 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
123 }
124
125 static void anon_vma_chain_link(struct vm_area_struct *vma,
126 struct anon_vma_chain *avc,
127 struct anon_vma *anon_vma)
128 {
129 avc->vma = vma;
130 avc->anon_vma = anon_vma;
131 list_add(&avc->same_vma, &vma->anon_vma_chain);
132 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
133 }
134
135 /**
136 * anon_vma_prepare - attach an anon_vma to a memory region
137 * @vma: the memory region in question
138 *
139 * This makes sure the memory mapping described by 'vma' has
140 * an 'anon_vma' attached to it, so that we can associate the
141 * anonymous pages mapped into it with that anon_vma.
142 *
143 * The common case will be that we already have one, but if
144 * not we either need to find an adjacent mapping that we
145 * can re-use the anon_vma from (very common when the only
146 * reason for splitting a vma has been mprotect()), or we
147 * allocate a new one.
148 *
149 * Anon-vma allocations are very subtle, because we may have
150 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
151 * and that may actually touch the spinlock even in the newly
152 * allocated vma (it depends on RCU to make sure that the
153 * anon_vma isn't actually destroyed).
154 *
155 * As a result, we need to do proper anon_vma locking even
156 * for the new allocation. At the same time, we do not want
157 * to do any locking for the common case of already having
158 * an anon_vma.
159 *
160 * This must be called with the mmap_sem held for reading.
161 */
162 int anon_vma_prepare(struct vm_area_struct *vma)
163 {
164 struct anon_vma *anon_vma = vma->anon_vma;
165 struct anon_vma_chain *avc;
166
167 might_sleep();
168 if (unlikely(!anon_vma)) {
169 struct mm_struct *mm = vma->vm_mm;
170 struct anon_vma *allocated;
171
172 avc = anon_vma_chain_alloc(GFP_KERNEL);
173 if (!avc)
174 goto out_enomem;
175
176 anon_vma = find_mergeable_anon_vma(vma);
177 allocated = NULL;
178 if (!anon_vma) {
179 anon_vma = anon_vma_alloc();
180 if (unlikely(!anon_vma))
181 goto out_enomem_free_avc;
182 allocated = anon_vma;
183 }
184
185 anon_vma_lock_write(anon_vma);
186 /* page_table_lock to protect against threads */
187 spin_lock(&mm->page_table_lock);
188 if (likely(!vma->anon_vma)) {
189 vma->anon_vma = anon_vma;
190 anon_vma_chain_link(vma, avc, anon_vma);
191 allocated = NULL;
192 avc = NULL;
193 }
194 spin_unlock(&mm->page_table_lock);
195 anon_vma_unlock_write(anon_vma);
196
197 if (unlikely(allocated))
198 put_anon_vma(allocated);
199 if (unlikely(avc))
200 anon_vma_chain_free(avc);
201 }
202 return 0;
203
204 out_enomem_free_avc:
205 anon_vma_chain_free(avc);
206 out_enomem:
207 return -ENOMEM;
208 }
209
210 /*
211 * This is a useful helper function for locking the anon_vma root as
212 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
213 * have the same vma.
214 *
215 * Such anon_vma's should have the same root, so you'd expect to see
216 * just a single mutex_lock for the whole traversal.
217 */
218 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
219 {
220 struct anon_vma *new_root = anon_vma->root;
221 if (new_root != root) {
222 if (WARN_ON_ONCE(root))
223 up_write(&root->rwsem);
224 root = new_root;
225 down_write(&root->rwsem);
226 }
227 return root;
228 }
229
230 static inline void unlock_anon_vma_root(struct anon_vma *root)
231 {
232 if (root)
233 up_write(&root->rwsem);
234 }
235
236 /*
237 * Attach the anon_vmas from src to dst.
238 * Returns 0 on success, -ENOMEM on failure.
239 */
240 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
241 {
242 struct anon_vma_chain *avc, *pavc;
243 struct anon_vma *root = NULL;
244
245 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
246 struct anon_vma *anon_vma;
247
248 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
249 if (unlikely(!avc)) {
250 unlock_anon_vma_root(root);
251 root = NULL;
252 avc = anon_vma_chain_alloc(GFP_KERNEL);
253 if (!avc)
254 goto enomem_failure;
255 }
256 anon_vma = pavc->anon_vma;
257 root = lock_anon_vma_root(root, anon_vma);
258 anon_vma_chain_link(dst, avc, anon_vma);
259 }
260 unlock_anon_vma_root(root);
261 return 0;
262
263 enomem_failure:
264 unlink_anon_vmas(dst);
265 return -ENOMEM;
266 }
267
268 /*
269 * Attach vma to its own anon_vma, as well as to the anon_vmas that
270 * the corresponding VMA in the parent process is attached to.
271 * Returns 0 on success, non-zero on failure.
272 */
273 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
274 {
275 struct anon_vma_chain *avc;
276 struct anon_vma *anon_vma;
277
278 /* Don't bother if the parent process has no anon_vma here. */
279 if (!pvma->anon_vma)
280 return 0;
281
282 /*
283 * First, attach the new VMA to the parent VMA's anon_vmas,
284 * so rmap can find non-COWed pages in child processes.
285 */
286 if (anon_vma_clone(vma, pvma))
287 return -ENOMEM;
288
289 /* Then add our own anon_vma. */
290 anon_vma = anon_vma_alloc();
291 if (!anon_vma)
292 goto out_error;
293 avc = anon_vma_chain_alloc(GFP_KERNEL);
294 if (!avc)
295 goto out_error_free_anon_vma;
296
297 /*
298 * The root anon_vma's spinlock is the lock actually used when we
299 * lock any of the anon_vmas in this anon_vma tree.
300 */
301 anon_vma->root = pvma->anon_vma->root;
302 /*
303 * With refcounts, an anon_vma can stay around longer than the
304 * process it belongs to. The root anon_vma needs to be pinned until
305 * this anon_vma is freed, because the lock lives in the root.
306 */
307 get_anon_vma(anon_vma->root);
308 /* Mark this anon_vma as the one where our new (COWed) pages go. */
309 vma->anon_vma = anon_vma;
310 anon_vma_lock_write(anon_vma);
311 anon_vma_chain_link(vma, avc, anon_vma);
312 anon_vma_unlock_write(anon_vma);
313
314 return 0;
315
316 out_error_free_anon_vma:
317 put_anon_vma(anon_vma);
318 out_error:
319 unlink_anon_vmas(vma);
320 return -ENOMEM;
321 }
322
323 void unlink_anon_vmas(struct vm_area_struct *vma)
324 {
325 struct anon_vma_chain *avc, *next;
326 struct anon_vma *root = NULL;
327
328 /*
329 * Unlink each anon_vma chained to the VMA. This list is ordered
330 * from newest to oldest, ensuring the root anon_vma gets freed last.
331 */
332 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
333 struct anon_vma *anon_vma = avc->anon_vma;
334
335 root = lock_anon_vma_root(root, anon_vma);
336 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
337
338 /*
339 * Leave empty anon_vmas on the list - we'll need
340 * to free them outside the lock.
341 */
342 if (RB_EMPTY_ROOT(&anon_vma->rb_root))
343 continue;
344
345 list_del(&avc->same_vma);
346 anon_vma_chain_free(avc);
347 }
348 unlock_anon_vma_root(root);
349
350 /*
351 * Iterate the list once more, it now only contains empty and unlinked
352 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
353 * needing to write-acquire the anon_vma->root->rwsem.
354 */
355 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
356 struct anon_vma *anon_vma = avc->anon_vma;
357
358 put_anon_vma(anon_vma);
359
360 list_del(&avc->same_vma);
361 anon_vma_chain_free(avc);
362 }
363 }
364
365 static void anon_vma_ctor(void *data)
366 {
367 struct anon_vma *anon_vma = data;
368
369 init_rwsem(&anon_vma->rwsem);
370 atomic_set(&anon_vma->refcount, 0);
371 anon_vma->rb_root = RB_ROOT;
372 }
373
374 void __init anon_vma_init(void)
375 {
376 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
377 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
378 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
379 }
380
381 /*
382 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
383 *
384 * Since there is no serialization what so ever against page_remove_rmap()
385 * the best this function can do is return a locked anon_vma that might
386 * have been relevant to this page.
387 *
388 * The page might have been remapped to a different anon_vma or the anon_vma
389 * returned may already be freed (and even reused).
390 *
391 * In case it was remapped to a different anon_vma, the new anon_vma will be a
392 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
393 * ensure that any anon_vma obtained from the page will still be valid for as
394 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
395 *
396 * All users of this function must be very careful when walking the anon_vma
397 * chain and verify that the page in question is indeed mapped in it
398 * [ something equivalent to page_mapped_in_vma() ].
399 *
400 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
401 * that the anon_vma pointer from page->mapping is valid if there is a
402 * mapcount, we can dereference the anon_vma after observing those.
403 */
404 struct anon_vma *page_get_anon_vma(struct page *page)
405 {
406 struct anon_vma *anon_vma = NULL;
407 unsigned long anon_mapping;
408
409 rcu_read_lock();
410 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
411 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
412 goto out;
413 if (!page_mapped(page))
414 goto out;
415
416 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
417 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
418 anon_vma = NULL;
419 goto out;
420 }
421
422 /*
423 * If this page is still mapped, then its anon_vma cannot have been
424 * freed. But if it has been unmapped, we have no security against the
425 * anon_vma structure being freed and reused (for another anon_vma:
426 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
427 * above cannot corrupt).
428 */
429 if (!page_mapped(page)) {
430 rcu_read_unlock();
431 put_anon_vma(anon_vma);
432 return NULL;
433 }
434 out:
435 rcu_read_unlock();
436
437 return anon_vma;
438 }
439
440 /*
441 * Similar to page_get_anon_vma() except it locks the anon_vma.
442 *
443 * Its a little more complex as it tries to keep the fast path to a single
444 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
445 * reference like with page_get_anon_vma() and then block on the mutex.
446 */
447 struct anon_vma *page_lock_anon_vma_read(struct page *page)
448 {
449 struct anon_vma *anon_vma = NULL;
450 struct anon_vma *root_anon_vma;
451 unsigned long anon_mapping;
452
453 rcu_read_lock();
454 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
455 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
456 goto out;
457 if (!page_mapped(page))
458 goto out;
459
460 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
461 root_anon_vma = ACCESS_ONCE(anon_vma->root);
462 if (down_read_trylock(&root_anon_vma->rwsem)) {
463 /*
464 * If the page is still mapped, then this anon_vma is still
465 * its anon_vma, and holding the mutex ensures that it will
466 * not go away, see anon_vma_free().
467 */
468 if (!page_mapped(page)) {
469 up_read(&root_anon_vma->rwsem);
470 anon_vma = NULL;
471 }
472 goto out;
473 }
474
475 /* trylock failed, we got to sleep */
476 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
477 anon_vma = NULL;
478 goto out;
479 }
480
481 if (!page_mapped(page)) {
482 rcu_read_unlock();
483 put_anon_vma(anon_vma);
484 return NULL;
485 }
486
487 /* we pinned the anon_vma, its safe to sleep */
488 rcu_read_unlock();
489 anon_vma_lock_read(anon_vma);
490
491 if (atomic_dec_and_test(&anon_vma->refcount)) {
492 /*
493 * Oops, we held the last refcount, release the lock
494 * and bail -- can't simply use put_anon_vma() because
495 * we'll deadlock on the anon_vma_lock_write() recursion.
496 */
497 anon_vma_unlock_read(anon_vma);
498 __put_anon_vma(anon_vma);
499 anon_vma = NULL;
500 }
501
502 return anon_vma;
503
504 out:
505 rcu_read_unlock();
506 return anon_vma;
507 }
508
509 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
510 {
511 anon_vma_unlock_read(anon_vma);
512 }
513
514 /*
515 * At what user virtual address is page expected in @vma?
516 */
517 static inline unsigned long
518 __vma_address(struct page *page, struct vm_area_struct *vma)
519 {
520 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
521
522 if (unlikely(is_vm_hugetlb_page(vma)))
523 pgoff = page->index << huge_page_order(page_hstate(page));
524
525 return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
526 }
527
528 inline unsigned long
529 vma_address(struct page *page, struct vm_area_struct *vma)
530 {
531 unsigned long address = __vma_address(page, vma);
532
533 /* page should be within @vma mapping range */
534 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
535
536 return address;
537 }
538
539 /*
540 * At what user virtual address is page expected in vma?
541 * Caller should check the page is actually part of the vma.
542 */
543 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
544 {
545 unsigned long address;
546 if (PageAnon(page)) {
547 struct anon_vma *page__anon_vma = page_anon_vma(page);
548 /*
549 * Note: swapoff's unuse_vma() is more efficient with this
550 * check, and needs it to match anon_vma when KSM is active.
551 */
552 if (!vma->anon_vma || !page__anon_vma ||
553 vma->anon_vma->root != page__anon_vma->root)
554 return -EFAULT;
555 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
556 if (!vma->vm_file ||
557 vma->vm_file->f_mapping != page->mapping)
558 return -EFAULT;
559 } else
560 return -EFAULT;
561 address = __vma_address(page, vma);
562 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
563 return -EFAULT;
564 return address;
565 }
566
567 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
568 {
569 pgd_t *pgd;
570 pud_t *pud;
571 pmd_t *pmd = NULL;
572 pmd_t pmde;
573
574 pgd = pgd_offset(mm, address);
575 if (!pgd_present(*pgd))
576 goto out;
577
578 pud = pud_offset(pgd, address);
579 if (!pud_present(*pud))
580 goto out;
581
582 pmd = pmd_offset(pud, address);
583 /*
584 * Some THP functions use the sequence pmdp_clear_flush(), set_pmd_at()
585 * without holding anon_vma lock for write. So when looking for a
586 * genuine pmde (in which to find pte), test present and !THP together.
587 */
588 pmde = ACCESS_ONCE(*pmd);
589 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
590 pmd = NULL;
591 out:
592 return pmd;
593 }
594
595 /*
596 * Check that @page is mapped at @address into @mm.
597 *
598 * If @sync is false, page_check_address may perform a racy check to avoid
599 * the page table lock when the pte is not present (helpful when reclaiming
600 * highly shared pages).
601 *
602 * On success returns with pte mapped and locked.
603 */
604 pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
605 unsigned long address, spinlock_t **ptlp, int sync)
606 {
607 pmd_t *pmd;
608 pte_t *pte;
609 spinlock_t *ptl;
610
611 if (unlikely(PageHuge(page))) {
612 /* when pud is not present, pte will be NULL */
613 pte = huge_pte_offset(mm, address);
614 if (!pte)
615 return NULL;
616
617 ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
618 goto check;
619 }
620
621 pmd = mm_find_pmd(mm, address);
622 if (!pmd)
623 return NULL;
624
625 pte = pte_offset_map(pmd, address);
626 /* Make a quick check before getting the lock */
627 if (!sync && !pte_present(*pte)) {
628 pte_unmap(pte);
629 return NULL;
630 }
631
632 ptl = pte_lockptr(mm, pmd);
633 check:
634 spin_lock(ptl);
635 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
636 *ptlp = ptl;
637 return pte;
638 }
639 pte_unmap_unlock(pte, ptl);
640 return NULL;
641 }
642
643 /**
644 * page_mapped_in_vma - check whether a page is really mapped in a VMA
645 * @page: the page to test
646 * @vma: the VMA to test
647 *
648 * Returns 1 if the page is mapped into the page tables of the VMA, 0
649 * if the page is not mapped into the page tables of this VMA. Only
650 * valid for normal file or anonymous VMAs.
651 */
652 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
653 {
654 unsigned long address;
655 pte_t *pte;
656 spinlock_t *ptl;
657
658 address = __vma_address(page, vma);
659 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
660 return 0;
661 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
662 if (!pte) /* the page is not in this mm */
663 return 0;
664 pte_unmap_unlock(pte, ptl);
665
666 return 1;
667 }
668
669 struct page_referenced_arg {
670 int mapcount;
671 int referenced;
672 unsigned long vm_flags;
673 struct mem_cgroup *memcg;
674 };
675 /*
676 * arg: page_referenced_arg will be passed
677 */
678 static int page_referenced_one(struct page *page, struct vm_area_struct *vma,
679 unsigned long address, void *arg)
680 {
681 struct mm_struct *mm = vma->vm_mm;
682 spinlock_t *ptl;
683 int referenced = 0;
684 struct page_referenced_arg *pra = arg;
685
686 if (unlikely(PageTransHuge(page))) {
687 pmd_t *pmd;
688
689 /*
690 * rmap might return false positives; we must filter
691 * these out using page_check_address_pmd().
692 */
693 pmd = page_check_address_pmd(page, mm, address,
694 PAGE_CHECK_ADDRESS_PMD_FLAG, &ptl);
695 if (!pmd)
696 return SWAP_AGAIN;
697
698 if (vma->vm_flags & VM_LOCKED) {
699 spin_unlock(ptl);
700 pra->vm_flags |= VM_LOCKED;
701 return SWAP_FAIL; /* To break the loop */
702 }
703
704 /* go ahead even if the pmd is pmd_trans_splitting() */
705 if (pmdp_clear_flush_young_notify(vma, address, pmd))
706 referenced++;
707 spin_unlock(ptl);
708 } else {
709 pte_t *pte;
710
711 /*
712 * rmap might return false positives; we must filter
713 * these out using page_check_address().
714 */
715 pte = page_check_address(page, mm, address, &ptl, 0);
716 if (!pte)
717 return SWAP_AGAIN;
718
719 if (vma->vm_flags & VM_LOCKED) {
720 pte_unmap_unlock(pte, ptl);
721 pra->vm_flags |= VM_LOCKED;
722 return SWAP_FAIL; /* To break the loop */
723 }
724
725 if (ptep_clear_flush_young_notify(vma, address, pte)) {
726 /*
727 * Don't treat a reference through a sequentially read
728 * mapping as such. If the page has been used in
729 * another mapping, we will catch it; if this other
730 * mapping is already gone, the unmap path will have
731 * set PG_referenced or activated the page.
732 */
733 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
734 referenced++;
735 }
736 pte_unmap_unlock(pte, ptl);
737 }
738
739 if (referenced) {
740 pra->referenced++;
741 pra->vm_flags |= vma->vm_flags;
742 }
743
744 pra->mapcount--;
745 if (!pra->mapcount)
746 return SWAP_SUCCESS; /* To break the loop */
747
748 return SWAP_AGAIN;
749 }
750
751 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
752 {
753 struct page_referenced_arg *pra = arg;
754 struct mem_cgroup *memcg = pra->memcg;
755
756 if (!mm_match_cgroup(vma->vm_mm, memcg))
757 return true;
758
759 return false;
760 }
761
762 /**
763 * page_referenced - test if the page was referenced
764 * @page: the page to test
765 * @is_locked: caller holds lock on the page
766 * @memcg: target memory cgroup
767 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
768 *
769 * Quick test_and_clear_referenced for all mappings to a page,
770 * returns the number of ptes which referenced the page.
771 */
772 int page_referenced(struct page *page,
773 int is_locked,
774 struct mem_cgroup *memcg,
775 unsigned long *vm_flags)
776 {
777 int ret;
778 int we_locked = 0;
779 struct page_referenced_arg pra = {
780 .mapcount = page_mapcount(page),
781 .memcg = memcg,
782 };
783 struct rmap_walk_control rwc = {
784 .rmap_one = page_referenced_one,
785 .arg = (void *)&pra,
786 .anon_lock = page_lock_anon_vma_read,
787 };
788
789 *vm_flags = 0;
790 if (!page_mapped(page))
791 return 0;
792
793 if (!page_rmapping(page))
794 return 0;
795
796 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
797 we_locked = trylock_page(page);
798 if (!we_locked)
799 return 1;
800 }
801
802 /*
803 * If we are reclaiming on behalf of a cgroup, skip
804 * counting on behalf of references from different
805 * cgroups
806 */
807 if (memcg) {
808 rwc.invalid_vma = invalid_page_referenced_vma;
809 }
810
811 ret = rmap_walk(page, &rwc);
812 *vm_flags = pra.vm_flags;
813
814 if (we_locked)
815 unlock_page(page);
816
817 return pra.referenced;
818 }
819
820 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
821 unsigned long address, void *arg)
822 {
823 struct mm_struct *mm = vma->vm_mm;
824 pte_t *pte;
825 spinlock_t *ptl;
826 int ret = 0;
827 int *cleaned = arg;
828
829 pte = page_check_address(page, mm, address, &ptl, 1);
830 if (!pte)
831 goto out;
832
833 if (pte_dirty(*pte) || pte_write(*pte)) {
834 pte_t entry;
835
836 flush_cache_page(vma, address, pte_pfn(*pte));
837 entry = ptep_clear_flush(vma, address, pte);
838 entry = pte_wrprotect(entry);
839 entry = pte_mkclean(entry);
840 set_pte_at(mm, address, pte, entry);
841 ret = 1;
842 }
843
844 pte_unmap_unlock(pte, ptl);
845
846 if (ret) {
847 mmu_notifier_invalidate_page(mm, address);
848 (*cleaned)++;
849 }
850 out:
851 return SWAP_AGAIN;
852 }
853
854 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
855 {
856 if (vma->vm_flags & VM_SHARED)
857 return false;
858
859 return true;
860 }
861
862 int page_mkclean(struct page *page)
863 {
864 int cleaned = 0;
865 struct address_space *mapping;
866 struct rmap_walk_control rwc = {
867 .arg = (void *)&cleaned,
868 .rmap_one = page_mkclean_one,
869 .invalid_vma = invalid_mkclean_vma,
870 };
871
872 BUG_ON(!PageLocked(page));
873
874 if (!page_mapped(page))
875 return 0;
876
877 mapping = page_mapping(page);
878 if (!mapping)
879 return 0;
880
881 rmap_walk(page, &rwc);
882
883 return cleaned;
884 }
885 EXPORT_SYMBOL_GPL(page_mkclean);
886
887 /**
888 * page_move_anon_rmap - move a page to our anon_vma
889 * @page: the page to move to our anon_vma
890 * @vma: the vma the page belongs to
891 * @address: the user virtual address mapped
892 *
893 * When a page belongs exclusively to one process after a COW event,
894 * that page can be moved into the anon_vma that belongs to just that
895 * process, so the rmap code will not search the parent or sibling
896 * processes.
897 */
898 void page_move_anon_rmap(struct page *page,
899 struct vm_area_struct *vma, unsigned long address)
900 {
901 struct anon_vma *anon_vma = vma->anon_vma;
902
903 VM_BUG_ON_PAGE(!PageLocked(page), page);
904 VM_BUG_ON(!anon_vma);
905 VM_BUG_ON_PAGE(page->index != linear_page_index(vma, address), page);
906
907 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
908 page->mapping = (struct address_space *) anon_vma;
909 }
910
911 /**
912 * __page_set_anon_rmap - set up new anonymous rmap
913 * @page: Page to add to rmap
914 * @vma: VM area to add page to.
915 * @address: User virtual address of the mapping
916 * @exclusive: the page is exclusively owned by the current process
917 */
918 static void __page_set_anon_rmap(struct page *page,
919 struct vm_area_struct *vma, unsigned long address, int exclusive)
920 {
921 struct anon_vma *anon_vma = vma->anon_vma;
922
923 BUG_ON(!anon_vma);
924
925 if (PageAnon(page))
926 return;
927
928 /*
929 * If the page isn't exclusively mapped into this vma,
930 * we must use the _oldest_ possible anon_vma for the
931 * page mapping!
932 */
933 if (!exclusive)
934 anon_vma = anon_vma->root;
935
936 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
937 page->mapping = (struct address_space *) anon_vma;
938 page->index = linear_page_index(vma, address);
939 }
940
941 /**
942 * __page_check_anon_rmap - sanity check anonymous rmap addition
943 * @page: the page to add the mapping to
944 * @vma: the vm area in which the mapping is added
945 * @address: the user virtual address mapped
946 */
947 static void __page_check_anon_rmap(struct page *page,
948 struct vm_area_struct *vma, unsigned long address)
949 {
950 #ifdef CONFIG_DEBUG_VM
951 /*
952 * The page's anon-rmap details (mapping and index) are guaranteed to
953 * be set up correctly at this point.
954 *
955 * We have exclusion against page_add_anon_rmap because the caller
956 * always holds the page locked, except if called from page_dup_rmap,
957 * in which case the page is already known to be setup.
958 *
959 * We have exclusion against page_add_new_anon_rmap because those pages
960 * are initially only visible via the pagetables, and the pte is locked
961 * over the call to page_add_new_anon_rmap.
962 */
963 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
964 BUG_ON(page->index != linear_page_index(vma, address));
965 #endif
966 }
967
968 /**
969 * page_add_anon_rmap - add pte mapping to an anonymous page
970 * @page: the page to add the mapping to
971 * @vma: the vm area in which the mapping is added
972 * @address: the user virtual address mapped
973 *
974 * The caller needs to hold the pte lock, and the page must be locked in
975 * the anon_vma case: to serialize mapping,index checking after setting,
976 * and to ensure that PageAnon is not being upgraded racily to PageKsm
977 * (but PageKsm is never downgraded to PageAnon).
978 */
979 void page_add_anon_rmap(struct page *page,
980 struct vm_area_struct *vma, unsigned long address)
981 {
982 do_page_add_anon_rmap(page, vma, address, 0);
983 }
984
985 /*
986 * Special version of the above for do_swap_page, which often runs
987 * into pages that are exclusively owned by the current process.
988 * Everybody else should continue to use page_add_anon_rmap above.
989 */
990 void do_page_add_anon_rmap(struct page *page,
991 struct vm_area_struct *vma, unsigned long address, int exclusive)
992 {
993 int first = atomic_inc_and_test(&page->_mapcount);
994 if (first) {
995 /*
996 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
997 * these counters are not modified in interrupt context, and
998 * pte lock(a spinlock) is held, which implies preemption
999 * disabled.
1000 */
1001 if (PageTransHuge(page))
1002 __inc_zone_page_state(page,
1003 NR_ANON_TRANSPARENT_HUGEPAGES);
1004 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1005 hpage_nr_pages(page));
1006 }
1007 if (unlikely(PageKsm(page)))
1008 return;
1009
1010 VM_BUG_ON_PAGE(!PageLocked(page), page);
1011 /* address might be in next vma when migration races vma_adjust */
1012 if (first)
1013 __page_set_anon_rmap(page, vma, address, exclusive);
1014 else
1015 __page_check_anon_rmap(page, vma, address);
1016 }
1017
1018 /**
1019 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1020 * @page: the page to add the mapping to
1021 * @vma: the vm area in which the mapping is added
1022 * @address: the user virtual address mapped
1023 *
1024 * Same as page_add_anon_rmap but must only be called on *new* pages.
1025 * This means the inc-and-test can be bypassed.
1026 * Page does not have to be locked.
1027 */
1028 void page_add_new_anon_rmap(struct page *page,
1029 struct vm_area_struct *vma, unsigned long address)
1030 {
1031 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1032 SetPageSwapBacked(page);
1033 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
1034 if (PageTransHuge(page))
1035 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1036 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1037 hpage_nr_pages(page));
1038 __page_set_anon_rmap(page, vma, address, 1);
1039
1040 VM_BUG_ON_PAGE(PageLRU(page), page);
1041 if (likely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) != VM_LOCKED)) {
1042 SetPageActive(page);
1043 lru_cache_add(page);
1044 return;
1045 }
1046
1047 if (!TestSetPageMlocked(page)) {
1048 /*
1049 * We use the irq-unsafe __mod_zone_page_stat because this
1050 * counter is not modified from interrupt context, and the pte
1051 * lock is held(spinlock), which implies preemption disabled.
1052 */
1053 __mod_zone_page_state(page_zone(page), NR_MLOCK,
1054 hpage_nr_pages(page));
1055 count_vm_event(UNEVICTABLE_PGMLOCKED);
1056 }
1057 add_page_to_unevictable_list(page);
1058 }
1059
1060 /**
1061 * page_add_file_rmap - add pte mapping to a file page
1062 * @page: the page to add the mapping to
1063 *
1064 * The caller needs to hold the pte lock.
1065 */
1066 void page_add_file_rmap(struct page *page)
1067 {
1068 bool locked;
1069 unsigned long flags;
1070
1071 mem_cgroup_begin_update_page_stat(page, &locked, &flags);
1072 if (atomic_inc_and_test(&page->_mapcount)) {
1073 __inc_zone_page_state(page, NR_FILE_MAPPED);
1074 mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED);
1075 }
1076 mem_cgroup_end_update_page_stat(page, &locked, &flags);
1077 }
1078
1079 /**
1080 * page_remove_rmap - take down pte mapping from a page
1081 * @page: page to remove mapping from
1082 *
1083 * The caller needs to hold the pte lock.
1084 */
1085 void page_remove_rmap(struct page *page)
1086 {
1087 bool anon = PageAnon(page);
1088 bool locked;
1089 unsigned long flags;
1090
1091 /*
1092 * The anon case has no mem_cgroup page_stat to update; but may
1093 * uncharge_page() below, where the lock ordering can deadlock if
1094 * we hold the lock against page_stat move: so avoid it on anon.
1095 */
1096 if (!anon)
1097 mem_cgroup_begin_update_page_stat(page, &locked, &flags);
1098
1099 /* page still mapped by someone else? */
1100 if (!atomic_add_negative(-1, &page->_mapcount))
1101 goto out;
1102
1103 /*
1104 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
1105 * and not charged by memcg for now.
1106 *
1107 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1108 * these counters are not modified in interrupt context, and
1109 * these counters are not modified in interrupt context, and
1110 * pte lock(a spinlock) is held, which implies preemption disabled.
1111 */
1112 if (unlikely(PageHuge(page)))
1113 goto out;
1114 if (anon) {
1115 mem_cgroup_uncharge_page(page);
1116 if (PageTransHuge(page))
1117 __dec_zone_page_state(page,
1118 NR_ANON_TRANSPARENT_HUGEPAGES);
1119 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1120 -hpage_nr_pages(page));
1121 } else {
1122 __dec_zone_page_state(page, NR_FILE_MAPPED);
1123 mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED);
1124 mem_cgroup_end_update_page_stat(page, &locked, &flags);
1125 }
1126 if (unlikely(PageMlocked(page)))
1127 clear_page_mlock(page);
1128 /*
1129 * It would be tidy to reset the PageAnon mapping here,
1130 * but that might overwrite a racing page_add_anon_rmap
1131 * which increments mapcount after us but sets mapping
1132 * before us: so leave the reset to free_hot_cold_page,
1133 * and remember that it's only reliable while mapped.
1134 * Leaving it set also helps swapoff to reinstate ptes
1135 * faster for those pages still in swapcache.
1136 */
1137 return;
1138 out:
1139 if (!anon)
1140 mem_cgroup_end_update_page_stat(page, &locked, &flags);
1141 }
1142
1143 /*
1144 * @arg: enum ttu_flags will be passed to this argument
1145 */
1146 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1147 unsigned long address, void *arg)
1148 {
1149 struct mm_struct *mm = vma->vm_mm;
1150 pte_t *pte;
1151 pte_t pteval;
1152 spinlock_t *ptl;
1153 int ret = SWAP_AGAIN;
1154 enum ttu_flags flags = (enum ttu_flags)arg;
1155
1156 pte = page_check_address(page, mm, address, &ptl, 0);
1157 if (!pte)
1158 goto out;
1159
1160 /*
1161 * If the page is mlock()d, we cannot swap it out.
1162 * If it's recently referenced (perhaps page_referenced
1163 * skipped over this mm) then we should reactivate it.
1164 */
1165 if (!(flags & TTU_IGNORE_MLOCK)) {
1166 if (vma->vm_flags & VM_LOCKED)
1167 goto out_mlock;
1168
1169 if (flags & TTU_MUNLOCK)
1170 goto out_unmap;
1171 }
1172 if (!(flags & TTU_IGNORE_ACCESS)) {
1173 if (ptep_clear_flush_young_notify(vma, address, pte)) {
1174 ret = SWAP_FAIL;
1175 goto out_unmap;
1176 }
1177 }
1178
1179 /* Nuke the page table entry. */
1180 flush_cache_page(vma, address, page_to_pfn(page));
1181 pteval = ptep_clear_flush(vma, address, pte);
1182
1183 /* Move the dirty bit to the physical page now the pte is gone. */
1184 if (pte_dirty(pteval))
1185 set_page_dirty(page);
1186
1187 /* Update high watermark before we lower rss */
1188 update_hiwater_rss(mm);
1189
1190 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1191 if (!PageHuge(page)) {
1192 if (PageAnon(page))
1193 dec_mm_counter(mm, MM_ANONPAGES);
1194 else
1195 dec_mm_counter(mm, MM_FILEPAGES);
1196 }
1197 set_pte_at(mm, address, pte,
1198 swp_entry_to_pte(make_hwpoison_entry(page)));
1199 } else if (pte_unused(pteval)) {
1200 /*
1201 * The guest indicated that the page content is of no
1202 * interest anymore. Simply discard the pte, vmscan
1203 * will take care of the rest.
1204 */
1205 if (PageAnon(page))
1206 dec_mm_counter(mm, MM_ANONPAGES);
1207 else
1208 dec_mm_counter(mm, MM_FILEPAGES);
1209 } else if (PageAnon(page)) {
1210 swp_entry_t entry = { .val = page_private(page) };
1211 pte_t swp_pte;
1212
1213 if (PageSwapCache(page)) {
1214 /*
1215 * Store the swap location in the pte.
1216 * See handle_pte_fault() ...
1217 */
1218 if (swap_duplicate(entry) < 0) {
1219 set_pte_at(mm, address, pte, pteval);
1220 ret = SWAP_FAIL;
1221 goto out_unmap;
1222 }
1223 if (list_empty(&mm->mmlist)) {
1224 spin_lock(&mmlist_lock);
1225 if (list_empty(&mm->mmlist))
1226 list_add(&mm->mmlist, &init_mm.mmlist);
1227 spin_unlock(&mmlist_lock);
1228 }
1229 dec_mm_counter(mm, MM_ANONPAGES);
1230 inc_mm_counter(mm, MM_SWAPENTS);
1231 } else if (IS_ENABLED(CONFIG_MIGRATION)) {
1232 /*
1233 * Store the pfn of the page in a special migration
1234 * pte. do_swap_page() will wait until the migration
1235 * pte is removed and then restart fault handling.
1236 */
1237 BUG_ON(!(flags & TTU_MIGRATION));
1238 entry = make_migration_entry(page, pte_write(pteval));
1239 }
1240 swp_pte = swp_entry_to_pte(entry);
1241 if (pte_soft_dirty(pteval))
1242 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1243 set_pte_at(mm, address, pte, swp_pte);
1244 BUG_ON(pte_file(*pte));
1245 } else if (IS_ENABLED(CONFIG_MIGRATION) &&
1246 (flags & TTU_MIGRATION)) {
1247 /* Establish migration entry for a file page */
1248 swp_entry_t entry;
1249 entry = make_migration_entry(page, pte_write(pteval));
1250 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1251 } else
1252 dec_mm_counter(mm, MM_FILEPAGES);
1253
1254 page_remove_rmap(page);
1255 page_cache_release(page);
1256
1257 out_unmap:
1258 pte_unmap_unlock(pte, ptl);
1259 if (ret != SWAP_FAIL && !(flags & TTU_MUNLOCK))
1260 mmu_notifier_invalidate_page(mm, address);
1261 out:
1262 return ret;
1263
1264 out_mlock:
1265 pte_unmap_unlock(pte, ptl);
1266
1267
1268 /*
1269 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1270 * unstable result and race. Plus, We can't wait here because
1271 * we now hold anon_vma->rwsem or mapping->i_mmap_mutex.
1272 * if trylock failed, the page remain in evictable lru and later
1273 * vmscan could retry to move the page to unevictable lru if the
1274 * page is actually mlocked.
1275 */
1276 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1277 if (vma->vm_flags & VM_LOCKED) {
1278 mlock_vma_page(page);
1279 ret = SWAP_MLOCK;
1280 }
1281 up_read(&vma->vm_mm->mmap_sem);
1282 }
1283 return ret;
1284 }
1285
1286 /*
1287 * objrmap doesn't work for nonlinear VMAs because the assumption that
1288 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1289 * Consequently, given a particular page and its ->index, we cannot locate the
1290 * ptes which are mapping that page without an exhaustive linear search.
1291 *
1292 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1293 * maps the file to which the target page belongs. The ->vm_private_data field
1294 * holds the current cursor into that scan. Successive searches will circulate
1295 * around the vma's virtual address space.
1296 *
1297 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1298 * more scanning pressure is placed against them as well. Eventually pages
1299 * will become fully unmapped and are eligible for eviction.
1300 *
1301 * For very sparsely populated VMAs this is a little inefficient - chances are
1302 * there there won't be many ptes located within the scan cluster. In this case
1303 * maybe we could scan further - to the end of the pte page, perhaps.
1304 *
1305 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1306 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1307 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1308 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1309 */
1310 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1311 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1312
1313 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1314 struct vm_area_struct *vma, struct page *check_page)
1315 {
1316 struct mm_struct *mm = vma->vm_mm;
1317 pmd_t *pmd;
1318 pte_t *pte;
1319 pte_t pteval;
1320 spinlock_t *ptl;
1321 struct page *page;
1322 unsigned long address;
1323 unsigned long mmun_start; /* For mmu_notifiers */
1324 unsigned long mmun_end; /* For mmu_notifiers */
1325 unsigned long end;
1326 int ret = SWAP_AGAIN;
1327 int locked_vma = 0;
1328
1329 address = (vma->vm_start + cursor) & CLUSTER_MASK;
1330 end = address + CLUSTER_SIZE;
1331 if (address < vma->vm_start)
1332 address = vma->vm_start;
1333 if (end > vma->vm_end)
1334 end = vma->vm_end;
1335
1336 pmd = mm_find_pmd(mm, address);
1337 if (!pmd)
1338 return ret;
1339
1340 mmun_start = address;
1341 mmun_end = end;
1342 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1343
1344 /*
1345 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1346 * keep the sem while scanning the cluster for mlocking pages.
1347 */
1348 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1349 locked_vma = (vma->vm_flags & VM_LOCKED);
1350 if (!locked_vma)
1351 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1352 }
1353
1354 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1355
1356 /* Update high watermark before we lower rss */
1357 update_hiwater_rss(mm);
1358
1359 for (; address < end; pte++, address += PAGE_SIZE) {
1360 if (!pte_present(*pte))
1361 continue;
1362 page = vm_normal_page(vma, address, *pte);
1363 BUG_ON(!page || PageAnon(page));
1364
1365 if (locked_vma) {
1366 if (page == check_page) {
1367 /* we know we have check_page locked */
1368 mlock_vma_page(page);
1369 ret = SWAP_MLOCK;
1370 } else if (trylock_page(page)) {
1371 /*
1372 * If we can lock the page, perform mlock.
1373 * Otherwise leave the page alone, it will be
1374 * eventually encountered again later.
1375 */
1376 mlock_vma_page(page);
1377 unlock_page(page);
1378 }
1379 continue; /* don't unmap */
1380 }
1381
1382 if (ptep_clear_flush_young_notify(vma, address, pte))
1383 continue;
1384
1385 /* Nuke the page table entry. */
1386 flush_cache_page(vma, address, pte_pfn(*pte));
1387 pteval = ptep_clear_flush(vma, address, pte);
1388
1389 /* If nonlinear, store the file page offset in the pte. */
1390 if (page->index != linear_page_index(vma, address)) {
1391 pte_t ptfile = pgoff_to_pte(page->index);
1392 if (pte_soft_dirty(pteval))
1393 ptfile = pte_file_mksoft_dirty(ptfile);
1394 set_pte_at(mm, address, pte, ptfile);
1395 }
1396
1397 /* Move the dirty bit to the physical page now the pte is gone. */
1398 if (pte_dirty(pteval))
1399 set_page_dirty(page);
1400
1401 page_remove_rmap(page);
1402 page_cache_release(page);
1403 dec_mm_counter(mm, MM_FILEPAGES);
1404 (*mapcount)--;
1405 }
1406 pte_unmap_unlock(pte - 1, ptl);
1407 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1408 if (locked_vma)
1409 up_read(&vma->vm_mm->mmap_sem);
1410 return ret;
1411 }
1412
1413 static int try_to_unmap_nonlinear(struct page *page,
1414 struct address_space *mapping, void *arg)
1415 {
1416 struct vm_area_struct *vma;
1417 int ret = SWAP_AGAIN;
1418 unsigned long cursor;
1419 unsigned long max_nl_cursor = 0;
1420 unsigned long max_nl_size = 0;
1421 unsigned int mapcount;
1422
1423 list_for_each_entry(vma,
1424 &mapping->i_mmap_nonlinear, shared.nonlinear) {
1425
1426 cursor = (unsigned long) vma->vm_private_data;
1427 if (cursor > max_nl_cursor)
1428 max_nl_cursor = cursor;
1429 cursor = vma->vm_end - vma->vm_start;
1430 if (cursor > max_nl_size)
1431 max_nl_size = cursor;
1432 }
1433
1434 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1435 return SWAP_FAIL;
1436 }
1437
1438 /*
1439 * We don't try to search for this page in the nonlinear vmas,
1440 * and page_referenced wouldn't have found it anyway. Instead
1441 * just walk the nonlinear vmas trying to age and unmap some.
1442 * The mapcount of the page we came in with is irrelevant,
1443 * but even so use it as a guide to how hard we should try?
1444 */
1445 mapcount = page_mapcount(page);
1446 if (!mapcount)
1447 return ret;
1448
1449 cond_resched();
1450
1451 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1452 if (max_nl_cursor == 0)
1453 max_nl_cursor = CLUSTER_SIZE;
1454
1455 do {
1456 list_for_each_entry(vma,
1457 &mapping->i_mmap_nonlinear, shared.nonlinear) {
1458
1459 cursor = (unsigned long) vma->vm_private_data;
1460 while (cursor < max_nl_cursor &&
1461 cursor < vma->vm_end - vma->vm_start) {
1462 if (try_to_unmap_cluster(cursor, &mapcount,
1463 vma, page) == SWAP_MLOCK)
1464 ret = SWAP_MLOCK;
1465 cursor += CLUSTER_SIZE;
1466 vma->vm_private_data = (void *) cursor;
1467 if ((int)mapcount <= 0)
1468 return ret;
1469 }
1470 vma->vm_private_data = (void *) max_nl_cursor;
1471 }
1472 cond_resched();
1473 max_nl_cursor += CLUSTER_SIZE;
1474 } while (max_nl_cursor <= max_nl_size);
1475
1476 /*
1477 * Don't loop forever (perhaps all the remaining pages are
1478 * in locked vmas). Reset cursor on all unreserved nonlinear
1479 * vmas, now forgetting on which ones it had fallen behind.
1480 */
1481 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.nonlinear)
1482 vma->vm_private_data = NULL;
1483
1484 return ret;
1485 }
1486
1487 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1488 {
1489 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1490
1491 if (!maybe_stack)
1492 return false;
1493
1494 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1495 VM_STACK_INCOMPLETE_SETUP)
1496 return true;
1497
1498 return false;
1499 }
1500
1501 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1502 {
1503 return is_vma_temporary_stack(vma);
1504 }
1505
1506 static int page_not_mapped(struct page *page)
1507 {
1508 return !page_mapped(page);
1509 };
1510
1511 /**
1512 * try_to_unmap - try to remove all page table mappings to a page
1513 * @page: the page to get unmapped
1514 * @flags: action and flags
1515 *
1516 * Tries to remove all the page table entries which are mapping this
1517 * page, used in the pageout path. Caller must hold the page lock.
1518 * Return values are:
1519 *
1520 * SWAP_SUCCESS - we succeeded in removing all mappings
1521 * SWAP_AGAIN - we missed a mapping, try again later
1522 * SWAP_FAIL - the page is unswappable
1523 * SWAP_MLOCK - page is mlocked.
1524 */
1525 int try_to_unmap(struct page *page, enum ttu_flags flags)
1526 {
1527 int ret;
1528 struct rmap_walk_control rwc = {
1529 .rmap_one = try_to_unmap_one,
1530 .arg = (void *)flags,
1531 .done = page_not_mapped,
1532 .file_nonlinear = try_to_unmap_nonlinear,
1533 .anon_lock = page_lock_anon_vma_read,
1534 };
1535
1536 VM_BUG_ON_PAGE(!PageHuge(page) && PageTransHuge(page), page);
1537
1538 /*
1539 * During exec, a temporary VMA is setup and later moved.
1540 * The VMA is moved under the anon_vma lock but not the
1541 * page tables leading to a race where migration cannot
1542 * find the migration ptes. Rather than increasing the
1543 * locking requirements of exec(), migration skips
1544 * temporary VMAs until after exec() completes.
1545 */
1546 if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page))
1547 rwc.invalid_vma = invalid_migration_vma;
1548
1549 ret = rmap_walk(page, &rwc);
1550
1551 if (ret != SWAP_MLOCK && !page_mapped(page))
1552 ret = SWAP_SUCCESS;
1553 return ret;
1554 }
1555
1556 /**
1557 * try_to_munlock - try to munlock a page
1558 * @page: the page to be munlocked
1559 *
1560 * Called from munlock code. Checks all of the VMAs mapping the page
1561 * to make sure nobody else has this page mlocked. The page will be
1562 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1563 *
1564 * Return values are:
1565 *
1566 * SWAP_AGAIN - no vma is holding page mlocked, or,
1567 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1568 * SWAP_FAIL - page cannot be located at present
1569 * SWAP_MLOCK - page is now mlocked.
1570 */
1571 int try_to_munlock(struct page *page)
1572 {
1573 int ret;
1574 struct rmap_walk_control rwc = {
1575 .rmap_one = try_to_unmap_one,
1576 .arg = (void *)TTU_MUNLOCK,
1577 .done = page_not_mapped,
1578 /*
1579 * We don't bother to try to find the munlocked page in
1580 * nonlinears. It's costly. Instead, later, page reclaim logic
1581 * may call try_to_unmap() and recover PG_mlocked lazily.
1582 */
1583 .file_nonlinear = NULL,
1584 .anon_lock = page_lock_anon_vma_read,
1585
1586 };
1587
1588 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1589
1590 ret = rmap_walk(page, &rwc);
1591 return ret;
1592 }
1593
1594 void __put_anon_vma(struct anon_vma *anon_vma)
1595 {
1596 struct anon_vma *root = anon_vma->root;
1597
1598 anon_vma_free(anon_vma);
1599 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1600 anon_vma_free(root);
1601 }
1602
1603 static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1604 struct rmap_walk_control *rwc)
1605 {
1606 struct anon_vma *anon_vma;
1607
1608 if (rwc->anon_lock)
1609 return rwc->anon_lock(page);
1610
1611 /*
1612 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1613 * because that depends on page_mapped(); but not all its usages
1614 * are holding mmap_sem. Users without mmap_sem are required to
1615 * take a reference count to prevent the anon_vma disappearing
1616 */
1617 anon_vma = page_anon_vma(page);
1618 if (!anon_vma)
1619 return NULL;
1620
1621 anon_vma_lock_read(anon_vma);
1622 return anon_vma;
1623 }
1624
1625 /*
1626 * rmap_walk_anon - do something to anonymous page using the object-based
1627 * rmap method
1628 * @page: the page to be handled
1629 * @rwc: control variable according to each walk type
1630 *
1631 * Find all the mappings of a page using the mapping pointer and the vma chains
1632 * contained in the anon_vma struct it points to.
1633 *
1634 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1635 * where the page was found will be held for write. So, we won't recheck
1636 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1637 * LOCKED.
1638 */
1639 static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc)
1640 {
1641 struct anon_vma *anon_vma;
1642 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1643 struct anon_vma_chain *avc;
1644 int ret = SWAP_AGAIN;
1645
1646 anon_vma = rmap_walk_anon_lock(page, rwc);
1647 if (!anon_vma)
1648 return ret;
1649
1650 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1651 struct vm_area_struct *vma = avc->vma;
1652 unsigned long address = vma_address(page, vma);
1653
1654 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1655 continue;
1656
1657 ret = rwc->rmap_one(page, vma, address, rwc->arg);
1658 if (ret != SWAP_AGAIN)
1659 break;
1660 if (rwc->done && rwc->done(page))
1661 break;
1662 }
1663 anon_vma_unlock_read(anon_vma);
1664 return ret;
1665 }
1666
1667 /*
1668 * rmap_walk_file - do something to file page using the object-based rmap method
1669 * @page: the page to be handled
1670 * @rwc: control variable according to each walk type
1671 *
1672 * Find all the mappings of a page using the mapping pointer and the vma chains
1673 * contained in the address_space struct it points to.
1674 *
1675 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1676 * where the page was found will be held for write. So, we won't recheck
1677 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1678 * LOCKED.
1679 */
1680 static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc)
1681 {
1682 struct address_space *mapping = page->mapping;
1683 pgoff_t pgoff = page->index << compound_order(page);
1684 struct vm_area_struct *vma;
1685 int ret = SWAP_AGAIN;
1686
1687 /*
1688 * The page lock not only makes sure that page->mapping cannot
1689 * suddenly be NULLified by truncation, it makes sure that the
1690 * structure at mapping cannot be freed and reused yet,
1691 * so we can safely take mapping->i_mmap_mutex.
1692 */
1693 VM_BUG_ON(!PageLocked(page));
1694
1695 if (!mapping)
1696 return ret;
1697 mutex_lock(&mapping->i_mmap_mutex);
1698 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1699 unsigned long address = vma_address(page, vma);
1700
1701 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1702 continue;
1703
1704 ret = rwc->rmap_one(page, vma, address, rwc->arg);
1705 if (ret != SWAP_AGAIN)
1706 goto done;
1707 if (rwc->done && rwc->done(page))
1708 goto done;
1709 }
1710
1711 if (!rwc->file_nonlinear)
1712 goto done;
1713
1714 if (list_empty(&mapping->i_mmap_nonlinear))
1715 goto done;
1716
1717 ret = rwc->file_nonlinear(page, mapping, rwc->arg);
1718
1719 done:
1720 mutex_unlock(&mapping->i_mmap_mutex);
1721 return ret;
1722 }
1723
1724 int rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1725 {
1726 if (unlikely(PageKsm(page)))
1727 return rmap_walk_ksm(page, rwc);
1728 else if (PageAnon(page))
1729 return rmap_walk_anon(page, rwc);
1730 else
1731 return rmap_walk_file(page, rwc);
1732 }
1733
1734 #ifdef CONFIG_HUGETLB_PAGE
1735 /*
1736 * The following three functions are for anonymous (private mapped) hugepages.
1737 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1738 * and no lru code, because we handle hugepages differently from common pages.
1739 */
1740 static void __hugepage_set_anon_rmap(struct page *page,
1741 struct vm_area_struct *vma, unsigned long address, int exclusive)
1742 {
1743 struct anon_vma *anon_vma = vma->anon_vma;
1744
1745 BUG_ON(!anon_vma);
1746
1747 if (PageAnon(page))
1748 return;
1749 if (!exclusive)
1750 anon_vma = anon_vma->root;
1751
1752 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1753 page->mapping = (struct address_space *) anon_vma;
1754 page->index = linear_page_index(vma, address);
1755 }
1756
1757 void hugepage_add_anon_rmap(struct page *page,
1758 struct vm_area_struct *vma, unsigned long address)
1759 {
1760 struct anon_vma *anon_vma = vma->anon_vma;
1761 int first;
1762
1763 BUG_ON(!PageLocked(page));
1764 BUG_ON(!anon_vma);
1765 /* address might be in next vma when migration races vma_adjust */
1766 first = atomic_inc_and_test(&page->_mapcount);
1767 if (first)
1768 __hugepage_set_anon_rmap(page, vma, address, 0);
1769 }
1770
1771 void hugepage_add_new_anon_rmap(struct page *page,
1772 struct vm_area_struct *vma, unsigned long address)
1773 {
1774 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1775 atomic_set(&page->_mapcount, 0);
1776 __hugepage_set_anon_rmap(page, vma, address, 1);
1777 }
1778 #endif /* CONFIG_HUGETLB_PAGE */
This page took 0.10352 seconds and 5 git commands to generate.