Slab API: remove useless ctor parameter and reorder parameters
[deliverable/linux.git] / mm / rmap.c
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004
18 */
19
20 /*
21 * Lock ordering in mm:
22 *
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * inode->i_alloc_sem (vmtruncate_range)
25 * mm->mmap_sem
26 * page->flags PG_locked (lock_page)
27 * mapping->i_mmap_lock
28 * anon_vma->lock
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * inode_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within inode_lock in __sync_single_inode)
39 */
40
41 #include <linux/mm.h>
42 #include <linux/pagemap.h>
43 #include <linux/swap.h>
44 #include <linux/swapops.h>
45 #include <linux/slab.h>
46 #include <linux/init.h>
47 #include <linux/rmap.h>
48 #include <linux/rcupdate.h>
49 #include <linux/module.h>
50 #include <linux/kallsyms.h>
51
52 #include <asm/tlbflush.h>
53
54 struct kmem_cache *anon_vma_cachep;
55
56 /* This must be called under the mmap_sem. */
57 int anon_vma_prepare(struct vm_area_struct *vma)
58 {
59 struct anon_vma *anon_vma = vma->anon_vma;
60
61 might_sleep();
62 if (unlikely(!anon_vma)) {
63 struct mm_struct *mm = vma->vm_mm;
64 struct anon_vma *allocated, *locked;
65
66 anon_vma = find_mergeable_anon_vma(vma);
67 if (anon_vma) {
68 allocated = NULL;
69 locked = anon_vma;
70 spin_lock(&locked->lock);
71 } else {
72 anon_vma = anon_vma_alloc();
73 if (unlikely(!anon_vma))
74 return -ENOMEM;
75 allocated = anon_vma;
76 locked = NULL;
77 }
78
79 /* page_table_lock to protect against threads */
80 spin_lock(&mm->page_table_lock);
81 if (likely(!vma->anon_vma)) {
82 vma->anon_vma = anon_vma;
83 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
84 allocated = NULL;
85 }
86 spin_unlock(&mm->page_table_lock);
87
88 if (locked)
89 spin_unlock(&locked->lock);
90 if (unlikely(allocated))
91 anon_vma_free(allocated);
92 }
93 return 0;
94 }
95
96 void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
97 {
98 BUG_ON(vma->anon_vma != next->anon_vma);
99 list_del(&next->anon_vma_node);
100 }
101
102 void __anon_vma_link(struct vm_area_struct *vma)
103 {
104 struct anon_vma *anon_vma = vma->anon_vma;
105
106 if (anon_vma)
107 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
108 }
109
110 void anon_vma_link(struct vm_area_struct *vma)
111 {
112 struct anon_vma *anon_vma = vma->anon_vma;
113
114 if (anon_vma) {
115 spin_lock(&anon_vma->lock);
116 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
117 spin_unlock(&anon_vma->lock);
118 }
119 }
120
121 void anon_vma_unlink(struct vm_area_struct *vma)
122 {
123 struct anon_vma *anon_vma = vma->anon_vma;
124 int empty;
125
126 if (!anon_vma)
127 return;
128
129 spin_lock(&anon_vma->lock);
130 list_del(&vma->anon_vma_node);
131
132 /* We must garbage collect the anon_vma if it's empty */
133 empty = list_empty(&anon_vma->head);
134 spin_unlock(&anon_vma->lock);
135
136 if (empty)
137 anon_vma_free(anon_vma);
138 }
139
140 static void anon_vma_ctor(struct kmem_cache *cachep, void *data)
141 {
142 struct anon_vma *anon_vma = data;
143
144 spin_lock_init(&anon_vma->lock);
145 INIT_LIST_HEAD(&anon_vma->head);
146 }
147
148 void __init anon_vma_init(void)
149 {
150 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
151 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
152 }
153
154 /*
155 * Getting a lock on a stable anon_vma from a page off the LRU is
156 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
157 */
158 static struct anon_vma *page_lock_anon_vma(struct page *page)
159 {
160 struct anon_vma *anon_vma;
161 unsigned long anon_mapping;
162
163 rcu_read_lock();
164 anon_mapping = (unsigned long) page->mapping;
165 if (!(anon_mapping & PAGE_MAPPING_ANON))
166 goto out;
167 if (!page_mapped(page))
168 goto out;
169
170 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
171 spin_lock(&anon_vma->lock);
172 return anon_vma;
173 out:
174 rcu_read_unlock();
175 return NULL;
176 }
177
178 static void page_unlock_anon_vma(struct anon_vma *anon_vma)
179 {
180 spin_unlock(&anon_vma->lock);
181 rcu_read_unlock();
182 }
183
184 /*
185 * At what user virtual address is page expected in vma?
186 */
187 static inline unsigned long
188 vma_address(struct page *page, struct vm_area_struct *vma)
189 {
190 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
191 unsigned long address;
192
193 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
194 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
195 /* page should be within any vma from prio_tree_next */
196 BUG_ON(!PageAnon(page));
197 return -EFAULT;
198 }
199 return address;
200 }
201
202 /*
203 * At what user virtual address is page expected in vma? checking that the
204 * page matches the vma: currently only used on anon pages, by unuse_vma;
205 */
206 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
207 {
208 if (PageAnon(page)) {
209 if ((void *)vma->anon_vma !=
210 (void *)page->mapping - PAGE_MAPPING_ANON)
211 return -EFAULT;
212 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
213 if (!vma->vm_file ||
214 vma->vm_file->f_mapping != page->mapping)
215 return -EFAULT;
216 } else
217 return -EFAULT;
218 return vma_address(page, vma);
219 }
220
221 /*
222 * Check that @page is mapped at @address into @mm.
223 *
224 * On success returns with pte mapped and locked.
225 */
226 pte_t *page_check_address(struct page *page, struct mm_struct *mm,
227 unsigned long address, spinlock_t **ptlp)
228 {
229 pgd_t *pgd;
230 pud_t *pud;
231 pmd_t *pmd;
232 pte_t *pte;
233 spinlock_t *ptl;
234
235 pgd = pgd_offset(mm, address);
236 if (!pgd_present(*pgd))
237 return NULL;
238
239 pud = pud_offset(pgd, address);
240 if (!pud_present(*pud))
241 return NULL;
242
243 pmd = pmd_offset(pud, address);
244 if (!pmd_present(*pmd))
245 return NULL;
246
247 pte = pte_offset_map(pmd, address);
248 /* Make a quick check before getting the lock */
249 if (!pte_present(*pte)) {
250 pte_unmap(pte);
251 return NULL;
252 }
253
254 ptl = pte_lockptr(mm, pmd);
255 spin_lock(ptl);
256 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
257 *ptlp = ptl;
258 return pte;
259 }
260 pte_unmap_unlock(pte, ptl);
261 return NULL;
262 }
263
264 /*
265 * Subfunctions of page_referenced: page_referenced_one called
266 * repeatedly from either page_referenced_anon or page_referenced_file.
267 */
268 static int page_referenced_one(struct page *page,
269 struct vm_area_struct *vma, unsigned int *mapcount)
270 {
271 struct mm_struct *mm = vma->vm_mm;
272 unsigned long address;
273 pte_t *pte;
274 spinlock_t *ptl;
275 int referenced = 0;
276
277 address = vma_address(page, vma);
278 if (address == -EFAULT)
279 goto out;
280
281 pte = page_check_address(page, mm, address, &ptl);
282 if (!pte)
283 goto out;
284
285 if (ptep_clear_flush_young(vma, address, pte))
286 referenced++;
287
288 /* Pretend the page is referenced if the task has the
289 swap token and is in the middle of a page fault. */
290 if (mm != current->mm && has_swap_token(mm) &&
291 rwsem_is_locked(&mm->mmap_sem))
292 referenced++;
293
294 (*mapcount)--;
295 pte_unmap_unlock(pte, ptl);
296 out:
297 return referenced;
298 }
299
300 static int page_referenced_anon(struct page *page)
301 {
302 unsigned int mapcount;
303 struct anon_vma *anon_vma;
304 struct vm_area_struct *vma;
305 int referenced = 0;
306
307 anon_vma = page_lock_anon_vma(page);
308 if (!anon_vma)
309 return referenced;
310
311 mapcount = page_mapcount(page);
312 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
313 referenced += page_referenced_one(page, vma, &mapcount);
314 if (!mapcount)
315 break;
316 }
317
318 page_unlock_anon_vma(anon_vma);
319 return referenced;
320 }
321
322 /**
323 * page_referenced_file - referenced check for object-based rmap
324 * @page: the page we're checking references on.
325 *
326 * For an object-based mapped page, find all the places it is mapped and
327 * check/clear the referenced flag. This is done by following the page->mapping
328 * pointer, then walking the chain of vmas it holds. It returns the number
329 * of references it found.
330 *
331 * This function is only called from page_referenced for object-based pages.
332 */
333 static int page_referenced_file(struct page *page)
334 {
335 unsigned int mapcount;
336 struct address_space *mapping = page->mapping;
337 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
338 struct vm_area_struct *vma;
339 struct prio_tree_iter iter;
340 int referenced = 0;
341
342 /*
343 * The caller's checks on page->mapping and !PageAnon have made
344 * sure that this is a file page: the check for page->mapping
345 * excludes the case just before it gets set on an anon page.
346 */
347 BUG_ON(PageAnon(page));
348
349 /*
350 * The page lock not only makes sure that page->mapping cannot
351 * suddenly be NULLified by truncation, it makes sure that the
352 * structure at mapping cannot be freed and reused yet,
353 * so we can safely take mapping->i_mmap_lock.
354 */
355 BUG_ON(!PageLocked(page));
356
357 spin_lock(&mapping->i_mmap_lock);
358
359 /*
360 * i_mmap_lock does not stabilize mapcount at all, but mapcount
361 * is more likely to be accurate if we note it after spinning.
362 */
363 mapcount = page_mapcount(page);
364
365 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
366 if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE))
367 == (VM_LOCKED|VM_MAYSHARE)) {
368 referenced++;
369 break;
370 }
371 referenced += page_referenced_one(page, vma, &mapcount);
372 if (!mapcount)
373 break;
374 }
375
376 spin_unlock(&mapping->i_mmap_lock);
377 return referenced;
378 }
379
380 /**
381 * page_referenced - test if the page was referenced
382 * @page: the page to test
383 * @is_locked: caller holds lock on the page
384 *
385 * Quick test_and_clear_referenced for all mappings to a page,
386 * returns the number of ptes which referenced the page.
387 */
388 int page_referenced(struct page *page, int is_locked)
389 {
390 int referenced = 0;
391
392 if (page_test_and_clear_young(page))
393 referenced++;
394
395 if (TestClearPageReferenced(page))
396 referenced++;
397
398 if (page_mapped(page) && page->mapping) {
399 if (PageAnon(page))
400 referenced += page_referenced_anon(page);
401 else if (is_locked)
402 referenced += page_referenced_file(page);
403 else if (TestSetPageLocked(page))
404 referenced++;
405 else {
406 if (page->mapping)
407 referenced += page_referenced_file(page);
408 unlock_page(page);
409 }
410 }
411 return referenced;
412 }
413
414 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma)
415 {
416 struct mm_struct *mm = vma->vm_mm;
417 unsigned long address;
418 pte_t *pte;
419 spinlock_t *ptl;
420 int ret = 0;
421
422 address = vma_address(page, vma);
423 if (address == -EFAULT)
424 goto out;
425
426 pte = page_check_address(page, mm, address, &ptl);
427 if (!pte)
428 goto out;
429
430 if (pte_dirty(*pte) || pte_write(*pte)) {
431 pte_t entry;
432
433 flush_cache_page(vma, address, pte_pfn(*pte));
434 entry = ptep_clear_flush(vma, address, pte);
435 entry = pte_wrprotect(entry);
436 entry = pte_mkclean(entry);
437 set_pte_at(mm, address, pte, entry);
438 ret = 1;
439 }
440
441 pte_unmap_unlock(pte, ptl);
442 out:
443 return ret;
444 }
445
446 static int page_mkclean_file(struct address_space *mapping, struct page *page)
447 {
448 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
449 struct vm_area_struct *vma;
450 struct prio_tree_iter iter;
451 int ret = 0;
452
453 BUG_ON(PageAnon(page));
454
455 spin_lock(&mapping->i_mmap_lock);
456 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
457 if (vma->vm_flags & VM_SHARED)
458 ret += page_mkclean_one(page, vma);
459 }
460 spin_unlock(&mapping->i_mmap_lock);
461 return ret;
462 }
463
464 int page_mkclean(struct page *page)
465 {
466 int ret = 0;
467
468 BUG_ON(!PageLocked(page));
469
470 if (page_mapped(page)) {
471 struct address_space *mapping = page_mapping(page);
472 if (mapping)
473 ret = page_mkclean_file(mapping, page);
474 if (page_test_dirty(page)) {
475 page_clear_dirty(page);
476 ret = 1;
477 }
478 }
479
480 return ret;
481 }
482 EXPORT_SYMBOL_GPL(page_mkclean);
483
484 /**
485 * page_set_anon_rmap - setup new anonymous rmap
486 * @page: the page to add the mapping to
487 * @vma: the vm area in which the mapping is added
488 * @address: the user virtual address mapped
489 */
490 static void __page_set_anon_rmap(struct page *page,
491 struct vm_area_struct *vma, unsigned long address)
492 {
493 struct anon_vma *anon_vma = vma->anon_vma;
494
495 BUG_ON(!anon_vma);
496 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
497 page->mapping = (struct address_space *) anon_vma;
498
499 page->index = linear_page_index(vma, address);
500
501 /*
502 * nr_mapped state can be updated without turning off
503 * interrupts because it is not modified via interrupt.
504 */
505 __inc_zone_page_state(page, NR_ANON_PAGES);
506 }
507
508 /**
509 * page_set_anon_rmap - sanity check anonymous rmap addition
510 * @page: the page to add the mapping to
511 * @vma: the vm area in which the mapping is added
512 * @address: the user virtual address mapped
513 */
514 static void __page_check_anon_rmap(struct page *page,
515 struct vm_area_struct *vma, unsigned long address)
516 {
517 #ifdef CONFIG_DEBUG_VM
518 /*
519 * The page's anon-rmap details (mapping and index) are guaranteed to
520 * be set up correctly at this point.
521 *
522 * We have exclusion against page_add_anon_rmap because the caller
523 * always holds the page locked, except if called from page_dup_rmap,
524 * in which case the page is already known to be setup.
525 *
526 * We have exclusion against page_add_new_anon_rmap because those pages
527 * are initially only visible via the pagetables, and the pte is locked
528 * over the call to page_add_new_anon_rmap.
529 */
530 struct anon_vma *anon_vma = vma->anon_vma;
531 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
532 BUG_ON(page->mapping != (struct address_space *)anon_vma);
533 BUG_ON(page->index != linear_page_index(vma, address));
534 #endif
535 }
536
537 /**
538 * page_add_anon_rmap - add pte mapping to an anonymous page
539 * @page: the page to add the mapping to
540 * @vma: the vm area in which the mapping is added
541 * @address: the user virtual address mapped
542 *
543 * The caller needs to hold the pte lock and the page must be locked.
544 */
545 void page_add_anon_rmap(struct page *page,
546 struct vm_area_struct *vma, unsigned long address)
547 {
548 VM_BUG_ON(!PageLocked(page));
549 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
550 if (atomic_inc_and_test(&page->_mapcount))
551 __page_set_anon_rmap(page, vma, address);
552 else
553 __page_check_anon_rmap(page, vma, address);
554 }
555
556 /*
557 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
558 * @page: the page to add the mapping to
559 * @vma: the vm area in which the mapping is added
560 * @address: the user virtual address mapped
561 *
562 * Same as page_add_anon_rmap but must only be called on *new* pages.
563 * This means the inc-and-test can be bypassed.
564 * Page does not have to be locked.
565 */
566 void page_add_new_anon_rmap(struct page *page,
567 struct vm_area_struct *vma, unsigned long address)
568 {
569 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
570 atomic_set(&page->_mapcount, 0); /* elevate count by 1 (starts at -1) */
571 __page_set_anon_rmap(page, vma, address);
572 }
573
574 /**
575 * page_add_file_rmap - add pte mapping to a file page
576 * @page: the page to add the mapping to
577 *
578 * The caller needs to hold the pte lock.
579 */
580 void page_add_file_rmap(struct page *page)
581 {
582 if (atomic_inc_and_test(&page->_mapcount))
583 __inc_zone_page_state(page, NR_FILE_MAPPED);
584 }
585
586 #ifdef CONFIG_DEBUG_VM
587 /**
588 * page_dup_rmap - duplicate pte mapping to a page
589 * @page: the page to add the mapping to
590 *
591 * For copy_page_range only: minimal extract from page_add_file_rmap /
592 * page_add_anon_rmap, avoiding unnecessary tests (already checked) so it's
593 * quicker.
594 *
595 * The caller needs to hold the pte lock.
596 */
597 void page_dup_rmap(struct page *page, struct vm_area_struct *vma, unsigned long address)
598 {
599 BUG_ON(page_mapcount(page) == 0);
600 if (PageAnon(page))
601 __page_check_anon_rmap(page, vma, address);
602 atomic_inc(&page->_mapcount);
603 }
604 #endif
605
606 /**
607 * page_remove_rmap - take down pte mapping from a page
608 * @page: page to remove mapping from
609 *
610 * The caller needs to hold the pte lock.
611 */
612 void page_remove_rmap(struct page *page, struct vm_area_struct *vma)
613 {
614 if (atomic_add_negative(-1, &page->_mapcount)) {
615 if (unlikely(page_mapcount(page) < 0)) {
616 printk (KERN_EMERG "Eeek! page_mapcount(page) went negative! (%d)\n", page_mapcount(page));
617 printk (KERN_EMERG " page pfn = %lx\n", page_to_pfn(page));
618 printk (KERN_EMERG " page->flags = %lx\n", page->flags);
619 printk (KERN_EMERG " page->count = %x\n", page_count(page));
620 printk (KERN_EMERG " page->mapping = %p\n", page->mapping);
621 print_symbol (KERN_EMERG " vma->vm_ops = %s\n", (unsigned long)vma->vm_ops);
622 if (vma->vm_ops) {
623 print_symbol (KERN_EMERG " vma->vm_ops->nopage = %s\n", (unsigned long)vma->vm_ops->nopage);
624 print_symbol (KERN_EMERG " vma->vm_ops->fault = %s\n", (unsigned long)vma->vm_ops->fault);
625 }
626 if (vma->vm_file && vma->vm_file->f_op)
627 print_symbol (KERN_EMERG " vma->vm_file->f_op->mmap = %s\n", (unsigned long)vma->vm_file->f_op->mmap);
628 BUG();
629 }
630
631 /*
632 * It would be tidy to reset the PageAnon mapping here,
633 * but that might overwrite a racing page_add_anon_rmap
634 * which increments mapcount after us but sets mapping
635 * before us: so leave the reset to free_hot_cold_page,
636 * and remember that it's only reliable while mapped.
637 * Leaving it set also helps swapoff to reinstate ptes
638 * faster for those pages still in swapcache.
639 */
640 if (page_test_dirty(page)) {
641 page_clear_dirty(page);
642 set_page_dirty(page);
643 }
644 __dec_zone_page_state(page,
645 PageAnon(page) ? NR_ANON_PAGES : NR_FILE_MAPPED);
646 }
647 }
648
649 /*
650 * Subfunctions of try_to_unmap: try_to_unmap_one called
651 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
652 */
653 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
654 int migration)
655 {
656 struct mm_struct *mm = vma->vm_mm;
657 unsigned long address;
658 pte_t *pte;
659 pte_t pteval;
660 spinlock_t *ptl;
661 int ret = SWAP_AGAIN;
662
663 address = vma_address(page, vma);
664 if (address == -EFAULT)
665 goto out;
666
667 pte = page_check_address(page, mm, address, &ptl);
668 if (!pte)
669 goto out;
670
671 /*
672 * If the page is mlock()d, we cannot swap it out.
673 * If it's recently referenced (perhaps page_referenced
674 * skipped over this mm) then we should reactivate it.
675 */
676 if (!migration && ((vma->vm_flags & VM_LOCKED) ||
677 (ptep_clear_flush_young(vma, address, pte)))) {
678 ret = SWAP_FAIL;
679 goto out_unmap;
680 }
681
682 /* Nuke the page table entry. */
683 flush_cache_page(vma, address, page_to_pfn(page));
684 pteval = ptep_clear_flush(vma, address, pte);
685
686 /* Move the dirty bit to the physical page now the pte is gone. */
687 if (pte_dirty(pteval))
688 set_page_dirty(page);
689
690 /* Update high watermark before we lower rss */
691 update_hiwater_rss(mm);
692
693 if (PageAnon(page)) {
694 swp_entry_t entry = { .val = page_private(page) };
695
696 if (PageSwapCache(page)) {
697 /*
698 * Store the swap location in the pte.
699 * See handle_pte_fault() ...
700 */
701 swap_duplicate(entry);
702 if (list_empty(&mm->mmlist)) {
703 spin_lock(&mmlist_lock);
704 if (list_empty(&mm->mmlist))
705 list_add(&mm->mmlist, &init_mm.mmlist);
706 spin_unlock(&mmlist_lock);
707 }
708 dec_mm_counter(mm, anon_rss);
709 #ifdef CONFIG_MIGRATION
710 } else {
711 /*
712 * Store the pfn of the page in a special migration
713 * pte. do_swap_page() will wait until the migration
714 * pte is removed and then restart fault handling.
715 */
716 BUG_ON(!migration);
717 entry = make_migration_entry(page, pte_write(pteval));
718 #endif
719 }
720 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
721 BUG_ON(pte_file(*pte));
722 } else
723 #ifdef CONFIG_MIGRATION
724 if (migration) {
725 /* Establish migration entry for a file page */
726 swp_entry_t entry;
727 entry = make_migration_entry(page, pte_write(pteval));
728 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
729 } else
730 #endif
731 dec_mm_counter(mm, file_rss);
732
733
734 page_remove_rmap(page, vma);
735 page_cache_release(page);
736
737 out_unmap:
738 pte_unmap_unlock(pte, ptl);
739 out:
740 return ret;
741 }
742
743 /*
744 * objrmap doesn't work for nonlinear VMAs because the assumption that
745 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
746 * Consequently, given a particular page and its ->index, we cannot locate the
747 * ptes which are mapping that page without an exhaustive linear search.
748 *
749 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
750 * maps the file to which the target page belongs. The ->vm_private_data field
751 * holds the current cursor into that scan. Successive searches will circulate
752 * around the vma's virtual address space.
753 *
754 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
755 * more scanning pressure is placed against them as well. Eventually pages
756 * will become fully unmapped and are eligible for eviction.
757 *
758 * For very sparsely populated VMAs this is a little inefficient - chances are
759 * there there won't be many ptes located within the scan cluster. In this case
760 * maybe we could scan further - to the end of the pte page, perhaps.
761 */
762 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
763 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
764
765 static void try_to_unmap_cluster(unsigned long cursor,
766 unsigned int *mapcount, struct vm_area_struct *vma)
767 {
768 struct mm_struct *mm = vma->vm_mm;
769 pgd_t *pgd;
770 pud_t *pud;
771 pmd_t *pmd;
772 pte_t *pte;
773 pte_t pteval;
774 spinlock_t *ptl;
775 struct page *page;
776 unsigned long address;
777 unsigned long end;
778
779 address = (vma->vm_start + cursor) & CLUSTER_MASK;
780 end = address + CLUSTER_SIZE;
781 if (address < vma->vm_start)
782 address = vma->vm_start;
783 if (end > vma->vm_end)
784 end = vma->vm_end;
785
786 pgd = pgd_offset(mm, address);
787 if (!pgd_present(*pgd))
788 return;
789
790 pud = pud_offset(pgd, address);
791 if (!pud_present(*pud))
792 return;
793
794 pmd = pmd_offset(pud, address);
795 if (!pmd_present(*pmd))
796 return;
797
798 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
799
800 /* Update high watermark before we lower rss */
801 update_hiwater_rss(mm);
802
803 for (; address < end; pte++, address += PAGE_SIZE) {
804 if (!pte_present(*pte))
805 continue;
806 page = vm_normal_page(vma, address, *pte);
807 BUG_ON(!page || PageAnon(page));
808
809 if (ptep_clear_flush_young(vma, address, pte))
810 continue;
811
812 /* Nuke the page table entry. */
813 flush_cache_page(vma, address, pte_pfn(*pte));
814 pteval = ptep_clear_flush(vma, address, pte);
815
816 /* If nonlinear, store the file page offset in the pte. */
817 if (page->index != linear_page_index(vma, address))
818 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
819
820 /* Move the dirty bit to the physical page now the pte is gone. */
821 if (pte_dirty(pteval))
822 set_page_dirty(page);
823
824 page_remove_rmap(page, vma);
825 page_cache_release(page);
826 dec_mm_counter(mm, file_rss);
827 (*mapcount)--;
828 }
829 pte_unmap_unlock(pte - 1, ptl);
830 }
831
832 static int try_to_unmap_anon(struct page *page, int migration)
833 {
834 struct anon_vma *anon_vma;
835 struct vm_area_struct *vma;
836 int ret = SWAP_AGAIN;
837
838 anon_vma = page_lock_anon_vma(page);
839 if (!anon_vma)
840 return ret;
841
842 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
843 ret = try_to_unmap_one(page, vma, migration);
844 if (ret == SWAP_FAIL || !page_mapped(page))
845 break;
846 }
847
848 page_unlock_anon_vma(anon_vma);
849 return ret;
850 }
851
852 /**
853 * try_to_unmap_file - unmap file page using the object-based rmap method
854 * @page: the page to unmap
855 *
856 * Find all the mappings of a page using the mapping pointer and the vma chains
857 * contained in the address_space struct it points to.
858 *
859 * This function is only called from try_to_unmap for object-based pages.
860 */
861 static int try_to_unmap_file(struct page *page, int migration)
862 {
863 struct address_space *mapping = page->mapping;
864 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
865 struct vm_area_struct *vma;
866 struct prio_tree_iter iter;
867 int ret = SWAP_AGAIN;
868 unsigned long cursor;
869 unsigned long max_nl_cursor = 0;
870 unsigned long max_nl_size = 0;
871 unsigned int mapcount;
872
873 spin_lock(&mapping->i_mmap_lock);
874 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
875 ret = try_to_unmap_one(page, vma, migration);
876 if (ret == SWAP_FAIL || !page_mapped(page))
877 goto out;
878 }
879
880 if (list_empty(&mapping->i_mmap_nonlinear))
881 goto out;
882
883 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
884 shared.vm_set.list) {
885 if ((vma->vm_flags & VM_LOCKED) && !migration)
886 continue;
887 cursor = (unsigned long) vma->vm_private_data;
888 if (cursor > max_nl_cursor)
889 max_nl_cursor = cursor;
890 cursor = vma->vm_end - vma->vm_start;
891 if (cursor > max_nl_size)
892 max_nl_size = cursor;
893 }
894
895 if (max_nl_size == 0) { /* any nonlinears locked or reserved */
896 ret = SWAP_FAIL;
897 goto out;
898 }
899
900 /*
901 * We don't try to search for this page in the nonlinear vmas,
902 * and page_referenced wouldn't have found it anyway. Instead
903 * just walk the nonlinear vmas trying to age and unmap some.
904 * The mapcount of the page we came in with is irrelevant,
905 * but even so use it as a guide to how hard we should try?
906 */
907 mapcount = page_mapcount(page);
908 if (!mapcount)
909 goto out;
910 cond_resched_lock(&mapping->i_mmap_lock);
911
912 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
913 if (max_nl_cursor == 0)
914 max_nl_cursor = CLUSTER_SIZE;
915
916 do {
917 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
918 shared.vm_set.list) {
919 if ((vma->vm_flags & VM_LOCKED) && !migration)
920 continue;
921 cursor = (unsigned long) vma->vm_private_data;
922 while ( cursor < max_nl_cursor &&
923 cursor < vma->vm_end - vma->vm_start) {
924 try_to_unmap_cluster(cursor, &mapcount, vma);
925 cursor += CLUSTER_SIZE;
926 vma->vm_private_data = (void *) cursor;
927 if ((int)mapcount <= 0)
928 goto out;
929 }
930 vma->vm_private_data = (void *) max_nl_cursor;
931 }
932 cond_resched_lock(&mapping->i_mmap_lock);
933 max_nl_cursor += CLUSTER_SIZE;
934 } while (max_nl_cursor <= max_nl_size);
935
936 /*
937 * Don't loop forever (perhaps all the remaining pages are
938 * in locked vmas). Reset cursor on all unreserved nonlinear
939 * vmas, now forgetting on which ones it had fallen behind.
940 */
941 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
942 vma->vm_private_data = NULL;
943 out:
944 spin_unlock(&mapping->i_mmap_lock);
945 return ret;
946 }
947
948 /**
949 * try_to_unmap - try to remove all page table mappings to a page
950 * @page: the page to get unmapped
951 *
952 * Tries to remove all the page table entries which are mapping this
953 * page, used in the pageout path. Caller must hold the page lock.
954 * Return values are:
955 *
956 * SWAP_SUCCESS - we succeeded in removing all mappings
957 * SWAP_AGAIN - we missed a mapping, try again later
958 * SWAP_FAIL - the page is unswappable
959 */
960 int try_to_unmap(struct page *page, int migration)
961 {
962 int ret;
963
964 BUG_ON(!PageLocked(page));
965
966 if (PageAnon(page))
967 ret = try_to_unmap_anon(page, migration);
968 else
969 ret = try_to_unmap_file(page, migration);
970
971 if (!page_mapped(page))
972 ret = SWAP_SUCCESS;
973 return ret;
974 }
975
This page took 0.052632 seconds and 5 git commands to generate.