badpage: replace page_remove_rmap Eeek and BUG
[deliverable/linux.git] / mm / rmap.c
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004
18 */
19
20 /*
21 * Lock ordering in mm:
22 *
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * inode->i_alloc_sem (vmtruncate_range)
25 * mm->mmap_sem
26 * page->flags PG_locked (lock_page)
27 * mapping->i_mmap_lock
28 * anon_vma->lock
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * inode_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within inode_lock in __sync_single_inode)
39 */
40
41 #include <linux/mm.h>
42 #include <linux/pagemap.h>
43 #include <linux/swap.h>
44 #include <linux/swapops.h>
45 #include <linux/slab.h>
46 #include <linux/init.h>
47 #include <linux/rmap.h>
48 #include <linux/rcupdate.h>
49 #include <linux/module.h>
50 #include <linux/memcontrol.h>
51 #include <linux/mmu_notifier.h>
52 #include <linux/migrate.h>
53
54 #include <asm/tlbflush.h>
55
56 #include "internal.h"
57
58 static struct kmem_cache *anon_vma_cachep;
59
60 static inline struct anon_vma *anon_vma_alloc(void)
61 {
62 return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
63 }
64
65 static inline void anon_vma_free(struct anon_vma *anon_vma)
66 {
67 kmem_cache_free(anon_vma_cachep, anon_vma);
68 }
69
70 /**
71 * anon_vma_prepare - attach an anon_vma to a memory region
72 * @vma: the memory region in question
73 *
74 * This makes sure the memory mapping described by 'vma' has
75 * an 'anon_vma' attached to it, so that we can associate the
76 * anonymous pages mapped into it with that anon_vma.
77 *
78 * The common case will be that we already have one, but if
79 * if not we either need to find an adjacent mapping that we
80 * can re-use the anon_vma from (very common when the only
81 * reason for splitting a vma has been mprotect()), or we
82 * allocate a new one.
83 *
84 * Anon-vma allocations are very subtle, because we may have
85 * optimistically looked up an anon_vma in page_lock_anon_vma()
86 * and that may actually touch the spinlock even in the newly
87 * allocated vma (it depends on RCU to make sure that the
88 * anon_vma isn't actually destroyed).
89 *
90 * As a result, we need to do proper anon_vma locking even
91 * for the new allocation. At the same time, we do not want
92 * to do any locking for the common case of already having
93 * an anon_vma.
94 *
95 * This must be called with the mmap_sem held for reading.
96 */
97 int anon_vma_prepare(struct vm_area_struct *vma)
98 {
99 struct anon_vma *anon_vma = vma->anon_vma;
100
101 might_sleep();
102 if (unlikely(!anon_vma)) {
103 struct mm_struct *mm = vma->vm_mm;
104 struct anon_vma *allocated;
105
106 anon_vma = find_mergeable_anon_vma(vma);
107 allocated = NULL;
108 if (!anon_vma) {
109 anon_vma = anon_vma_alloc();
110 if (unlikely(!anon_vma))
111 return -ENOMEM;
112 allocated = anon_vma;
113 }
114 spin_lock(&anon_vma->lock);
115
116 /* page_table_lock to protect against threads */
117 spin_lock(&mm->page_table_lock);
118 if (likely(!vma->anon_vma)) {
119 vma->anon_vma = anon_vma;
120 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
121 allocated = NULL;
122 }
123 spin_unlock(&mm->page_table_lock);
124
125 spin_unlock(&anon_vma->lock);
126 if (unlikely(allocated))
127 anon_vma_free(allocated);
128 }
129 return 0;
130 }
131
132 void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
133 {
134 BUG_ON(vma->anon_vma != next->anon_vma);
135 list_del(&next->anon_vma_node);
136 }
137
138 void __anon_vma_link(struct vm_area_struct *vma)
139 {
140 struct anon_vma *anon_vma = vma->anon_vma;
141
142 if (anon_vma)
143 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
144 }
145
146 void anon_vma_link(struct vm_area_struct *vma)
147 {
148 struct anon_vma *anon_vma = vma->anon_vma;
149
150 if (anon_vma) {
151 spin_lock(&anon_vma->lock);
152 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
153 spin_unlock(&anon_vma->lock);
154 }
155 }
156
157 void anon_vma_unlink(struct vm_area_struct *vma)
158 {
159 struct anon_vma *anon_vma = vma->anon_vma;
160 int empty;
161
162 if (!anon_vma)
163 return;
164
165 spin_lock(&anon_vma->lock);
166 list_del(&vma->anon_vma_node);
167
168 /* We must garbage collect the anon_vma if it's empty */
169 empty = list_empty(&anon_vma->head);
170 spin_unlock(&anon_vma->lock);
171
172 if (empty)
173 anon_vma_free(anon_vma);
174 }
175
176 static void anon_vma_ctor(void *data)
177 {
178 struct anon_vma *anon_vma = data;
179
180 spin_lock_init(&anon_vma->lock);
181 INIT_LIST_HEAD(&anon_vma->head);
182 }
183
184 void __init anon_vma_init(void)
185 {
186 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
187 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
188 }
189
190 /*
191 * Getting a lock on a stable anon_vma from a page off the LRU is
192 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
193 */
194 static struct anon_vma *page_lock_anon_vma(struct page *page)
195 {
196 struct anon_vma *anon_vma;
197 unsigned long anon_mapping;
198
199 rcu_read_lock();
200 anon_mapping = (unsigned long) page->mapping;
201 if (!(anon_mapping & PAGE_MAPPING_ANON))
202 goto out;
203 if (!page_mapped(page))
204 goto out;
205
206 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
207 spin_lock(&anon_vma->lock);
208 return anon_vma;
209 out:
210 rcu_read_unlock();
211 return NULL;
212 }
213
214 static void page_unlock_anon_vma(struct anon_vma *anon_vma)
215 {
216 spin_unlock(&anon_vma->lock);
217 rcu_read_unlock();
218 }
219
220 /*
221 * At what user virtual address is page expected in @vma?
222 * Returns virtual address or -EFAULT if page's index/offset is not
223 * within the range mapped the @vma.
224 */
225 static inline unsigned long
226 vma_address(struct page *page, struct vm_area_struct *vma)
227 {
228 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
229 unsigned long address;
230
231 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
232 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
233 /* page should be within @vma mapping range */
234 return -EFAULT;
235 }
236 return address;
237 }
238
239 /*
240 * At what user virtual address is page expected in vma? checking that the
241 * page matches the vma: currently only used on anon pages, by unuse_vma;
242 */
243 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
244 {
245 if (PageAnon(page)) {
246 if ((void *)vma->anon_vma !=
247 (void *)page->mapping - PAGE_MAPPING_ANON)
248 return -EFAULT;
249 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
250 if (!vma->vm_file ||
251 vma->vm_file->f_mapping != page->mapping)
252 return -EFAULT;
253 } else
254 return -EFAULT;
255 return vma_address(page, vma);
256 }
257
258 /*
259 * Check that @page is mapped at @address into @mm.
260 *
261 * If @sync is false, page_check_address may perform a racy check to avoid
262 * the page table lock when the pte is not present (helpful when reclaiming
263 * highly shared pages).
264 *
265 * On success returns with pte mapped and locked.
266 */
267 pte_t *page_check_address(struct page *page, struct mm_struct *mm,
268 unsigned long address, spinlock_t **ptlp, int sync)
269 {
270 pgd_t *pgd;
271 pud_t *pud;
272 pmd_t *pmd;
273 pte_t *pte;
274 spinlock_t *ptl;
275
276 pgd = pgd_offset(mm, address);
277 if (!pgd_present(*pgd))
278 return NULL;
279
280 pud = pud_offset(pgd, address);
281 if (!pud_present(*pud))
282 return NULL;
283
284 pmd = pmd_offset(pud, address);
285 if (!pmd_present(*pmd))
286 return NULL;
287
288 pte = pte_offset_map(pmd, address);
289 /* Make a quick check before getting the lock */
290 if (!sync && !pte_present(*pte)) {
291 pte_unmap(pte);
292 return NULL;
293 }
294
295 ptl = pte_lockptr(mm, pmd);
296 spin_lock(ptl);
297 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
298 *ptlp = ptl;
299 return pte;
300 }
301 pte_unmap_unlock(pte, ptl);
302 return NULL;
303 }
304
305 /**
306 * page_mapped_in_vma - check whether a page is really mapped in a VMA
307 * @page: the page to test
308 * @vma: the VMA to test
309 *
310 * Returns 1 if the page is mapped into the page tables of the VMA, 0
311 * if the page is not mapped into the page tables of this VMA. Only
312 * valid for normal file or anonymous VMAs.
313 */
314 static int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
315 {
316 unsigned long address;
317 pte_t *pte;
318 spinlock_t *ptl;
319
320 address = vma_address(page, vma);
321 if (address == -EFAULT) /* out of vma range */
322 return 0;
323 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
324 if (!pte) /* the page is not in this mm */
325 return 0;
326 pte_unmap_unlock(pte, ptl);
327
328 return 1;
329 }
330
331 /*
332 * Subfunctions of page_referenced: page_referenced_one called
333 * repeatedly from either page_referenced_anon or page_referenced_file.
334 */
335 static int page_referenced_one(struct page *page,
336 struct vm_area_struct *vma, unsigned int *mapcount)
337 {
338 struct mm_struct *mm = vma->vm_mm;
339 unsigned long address;
340 pte_t *pte;
341 spinlock_t *ptl;
342 int referenced = 0;
343
344 address = vma_address(page, vma);
345 if (address == -EFAULT)
346 goto out;
347
348 pte = page_check_address(page, mm, address, &ptl, 0);
349 if (!pte)
350 goto out;
351
352 /*
353 * Don't want to elevate referenced for mlocked page that gets this far,
354 * in order that it progresses to try_to_unmap and is moved to the
355 * unevictable list.
356 */
357 if (vma->vm_flags & VM_LOCKED) {
358 *mapcount = 1; /* break early from loop */
359 goto out_unmap;
360 }
361
362 if (ptep_clear_flush_young_notify(vma, address, pte)) {
363 /*
364 * Don't treat a reference through a sequentially read
365 * mapping as such. If the page has been used in
366 * another mapping, we will catch it; if this other
367 * mapping is already gone, the unmap path will have
368 * set PG_referenced or activated the page.
369 */
370 if (likely(!VM_SequentialReadHint(vma)))
371 referenced++;
372 }
373
374 /* Pretend the page is referenced if the task has the
375 swap token and is in the middle of a page fault. */
376 if (mm != current->mm && has_swap_token(mm) &&
377 rwsem_is_locked(&mm->mmap_sem))
378 referenced++;
379
380 out_unmap:
381 (*mapcount)--;
382 pte_unmap_unlock(pte, ptl);
383 out:
384 return referenced;
385 }
386
387 static int page_referenced_anon(struct page *page,
388 struct mem_cgroup *mem_cont)
389 {
390 unsigned int mapcount;
391 struct anon_vma *anon_vma;
392 struct vm_area_struct *vma;
393 int referenced = 0;
394
395 anon_vma = page_lock_anon_vma(page);
396 if (!anon_vma)
397 return referenced;
398
399 mapcount = page_mapcount(page);
400 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
401 /*
402 * If we are reclaiming on behalf of a cgroup, skip
403 * counting on behalf of references from different
404 * cgroups
405 */
406 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
407 continue;
408 referenced += page_referenced_one(page, vma, &mapcount);
409 if (!mapcount)
410 break;
411 }
412
413 page_unlock_anon_vma(anon_vma);
414 return referenced;
415 }
416
417 /**
418 * page_referenced_file - referenced check for object-based rmap
419 * @page: the page we're checking references on.
420 * @mem_cont: target memory controller
421 *
422 * For an object-based mapped page, find all the places it is mapped and
423 * check/clear the referenced flag. This is done by following the page->mapping
424 * pointer, then walking the chain of vmas it holds. It returns the number
425 * of references it found.
426 *
427 * This function is only called from page_referenced for object-based pages.
428 */
429 static int page_referenced_file(struct page *page,
430 struct mem_cgroup *mem_cont)
431 {
432 unsigned int mapcount;
433 struct address_space *mapping = page->mapping;
434 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
435 struct vm_area_struct *vma;
436 struct prio_tree_iter iter;
437 int referenced = 0;
438
439 /*
440 * The caller's checks on page->mapping and !PageAnon have made
441 * sure that this is a file page: the check for page->mapping
442 * excludes the case just before it gets set on an anon page.
443 */
444 BUG_ON(PageAnon(page));
445
446 /*
447 * The page lock not only makes sure that page->mapping cannot
448 * suddenly be NULLified by truncation, it makes sure that the
449 * structure at mapping cannot be freed and reused yet,
450 * so we can safely take mapping->i_mmap_lock.
451 */
452 BUG_ON(!PageLocked(page));
453
454 spin_lock(&mapping->i_mmap_lock);
455
456 /*
457 * i_mmap_lock does not stabilize mapcount at all, but mapcount
458 * is more likely to be accurate if we note it after spinning.
459 */
460 mapcount = page_mapcount(page);
461
462 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
463 /*
464 * If we are reclaiming on behalf of a cgroup, skip
465 * counting on behalf of references from different
466 * cgroups
467 */
468 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
469 continue;
470 referenced += page_referenced_one(page, vma, &mapcount);
471 if (!mapcount)
472 break;
473 }
474
475 spin_unlock(&mapping->i_mmap_lock);
476 return referenced;
477 }
478
479 /**
480 * page_referenced - test if the page was referenced
481 * @page: the page to test
482 * @is_locked: caller holds lock on the page
483 * @mem_cont: target memory controller
484 *
485 * Quick test_and_clear_referenced for all mappings to a page,
486 * returns the number of ptes which referenced the page.
487 */
488 int page_referenced(struct page *page, int is_locked,
489 struct mem_cgroup *mem_cont)
490 {
491 int referenced = 0;
492
493 if (TestClearPageReferenced(page))
494 referenced++;
495
496 if (page_mapped(page) && page->mapping) {
497 if (PageAnon(page))
498 referenced += page_referenced_anon(page, mem_cont);
499 else if (is_locked)
500 referenced += page_referenced_file(page, mem_cont);
501 else if (!trylock_page(page))
502 referenced++;
503 else {
504 if (page->mapping)
505 referenced +=
506 page_referenced_file(page, mem_cont);
507 unlock_page(page);
508 }
509 }
510
511 if (page_test_and_clear_young(page))
512 referenced++;
513
514 return referenced;
515 }
516
517 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma)
518 {
519 struct mm_struct *mm = vma->vm_mm;
520 unsigned long address;
521 pte_t *pte;
522 spinlock_t *ptl;
523 int ret = 0;
524
525 address = vma_address(page, vma);
526 if (address == -EFAULT)
527 goto out;
528
529 pte = page_check_address(page, mm, address, &ptl, 1);
530 if (!pte)
531 goto out;
532
533 if (pte_dirty(*pte) || pte_write(*pte)) {
534 pte_t entry;
535
536 flush_cache_page(vma, address, pte_pfn(*pte));
537 entry = ptep_clear_flush_notify(vma, address, pte);
538 entry = pte_wrprotect(entry);
539 entry = pte_mkclean(entry);
540 set_pte_at(mm, address, pte, entry);
541 ret = 1;
542 }
543
544 pte_unmap_unlock(pte, ptl);
545 out:
546 return ret;
547 }
548
549 static int page_mkclean_file(struct address_space *mapping, struct page *page)
550 {
551 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
552 struct vm_area_struct *vma;
553 struct prio_tree_iter iter;
554 int ret = 0;
555
556 BUG_ON(PageAnon(page));
557
558 spin_lock(&mapping->i_mmap_lock);
559 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
560 if (vma->vm_flags & VM_SHARED)
561 ret += page_mkclean_one(page, vma);
562 }
563 spin_unlock(&mapping->i_mmap_lock);
564 return ret;
565 }
566
567 int page_mkclean(struct page *page)
568 {
569 int ret = 0;
570
571 BUG_ON(!PageLocked(page));
572
573 if (page_mapped(page)) {
574 struct address_space *mapping = page_mapping(page);
575 if (mapping) {
576 ret = page_mkclean_file(mapping, page);
577 if (page_test_dirty(page)) {
578 page_clear_dirty(page);
579 ret = 1;
580 }
581 }
582 }
583
584 return ret;
585 }
586 EXPORT_SYMBOL_GPL(page_mkclean);
587
588 /**
589 * __page_set_anon_rmap - setup new anonymous rmap
590 * @page: the page to add the mapping to
591 * @vma: the vm area in which the mapping is added
592 * @address: the user virtual address mapped
593 */
594 static void __page_set_anon_rmap(struct page *page,
595 struct vm_area_struct *vma, unsigned long address)
596 {
597 struct anon_vma *anon_vma = vma->anon_vma;
598
599 BUG_ON(!anon_vma);
600 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
601 page->mapping = (struct address_space *) anon_vma;
602
603 page->index = linear_page_index(vma, address);
604
605 /*
606 * nr_mapped state can be updated without turning off
607 * interrupts because it is not modified via interrupt.
608 */
609 __inc_zone_page_state(page, NR_ANON_PAGES);
610 }
611
612 /**
613 * __page_check_anon_rmap - sanity check anonymous rmap addition
614 * @page: the page to add the mapping to
615 * @vma: the vm area in which the mapping is added
616 * @address: the user virtual address mapped
617 */
618 static void __page_check_anon_rmap(struct page *page,
619 struct vm_area_struct *vma, unsigned long address)
620 {
621 #ifdef CONFIG_DEBUG_VM
622 /*
623 * The page's anon-rmap details (mapping and index) are guaranteed to
624 * be set up correctly at this point.
625 *
626 * We have exclusion against page_add_anon_rmap because the caller
627 * always holds the page locked, except if called from page_dup_rmap,
628 * in which case the page is already known to be setup.
629 *
630 * We have exclusion against page_add_new_anon_rmap because those pages
631 * are initially only visible via the pagetables, and the pte is locked
632 * over the call to page_add_new_anon_rmap.
633 */
634 struct anon_vma *anon_vma = vma->anon_vma;
635 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
636 BUG_ON(page->mapping != (struct address_space *)anon_vma);
637 BUG_ON(page->index != linear_page_index(vma, address));
638 #endif
639 }
640
641 /**
642 * page_add_anon_rmap - add pte mapping to an anonymous page
643 * @page: the page to add the mapping to
644 * @vma: the vm area in which the mapping is added
645 * @address: the user virtual address mapped
646 *
647 * The caller needs to hold the pte lock and the page must be locked.
648 */
649 void page_add_anon_rmap(struct page *page,
650 struct vm_area_struct *vma, unsigned long address)
651 {
652 VM_BUG_ON(!PageLocked(page));
653 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
654 if (atomic_inc_and_test(&page->_mapcount))
655 __page_set_anon_rmap(page, vma, address);
656 else
657 __page_check_anon_rmap(page, vma, address);
658 }
659
660 /**
661 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
662 * @page: the page to add the mapping to
663 * @vma: the vm area in which the mapping is added
664 * @address: the user virtual address mapped
665 *
666 * Same as page_add_anon_rmap but must only be called on *new* pages.
667 * This means the inc-and-test can be bypassed.
668 * Page does not have to be locked.
669 */
670 void page_add_new_anon_rmap(struct page *page,
671 struct vm_area_struct *vma, unsigned long address)
672 {
673 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
674 SetPageSwapBacked(page);
675 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
676 __page_set_anon_rmap(page, vma, address);
677 if (page_evictable(page, vma))
678 lru_cache_add_lru(page, LRU_ACTIVE_ANON);
679 else
680 add_page_to_unevictable_list(page);
681 }
682
683 /**
684 * page_add_file_rmap - add pte mapping to a file page
685 * @page: the page to add the mapping to
686 *
687 * The caller needs to hold the pte lock.
688 */
689 void page_add_file_rmap(struct page *page)
690 {
691 if (atomic_inc_and_test(&page->_mapcount))
692 __inc_zone_page_state(page, NR_FILE_MAPPED);
693 }
694
695 #ifdef CONFIG_DEBUG_VM
696 /**
697 * page_dup_rmap - duplicate pte mapping to a page
698 * @page: the page to add the mapping to
699 * @vma: the vm area being duplicated
700 * @address: the user virtual address mapped
701 *
702 * For copy_page_range only: minimal extract from page_add_file_rmap /
703 * page_add_anon_rmap, avoiding unnecessary tests (already checked) so it's
704 * quicker.
705 *
706 * The caller needs to hold the pte lock.
707 */
708 void page_dup_rmap(struct page *page, struct vm_area_struct *vma, unsigned long address)
709 {
710 BUG_ON(page_mapcount(page) == 0);
711 if (PageAnon(page))
712 __page_check_anon_rmap(page, vma, address);
713 atomic_inc(&page->_mapcount);
714 }
715 #endif
716
717 /**
718 * page_remove_rmap - take down pte mapping from a page
719 * @page: page to remove mapping from
720 * @vma: the vm area in which the mapping is removed
721 *
722 * The caller needs to hold the pte lock.
723 */
724 void page_remove_rmap(struct page *page, struct vm_area_struct *vma)
725 {
726 if (atomic_add_negative(-1, &page->_mapcount)) {
727 /*
728 * Now that the last pte has gone, s390 must transfer dirty
729 * flag from storage key to struct page. We can usually skip
730 * this if the page is anon, so about to be freed; but perhaps
731 * not if it's in swapcache - there might be another pte slot
732 * containing the swap entry, but page not yet written to swap.
733 */
734 if ((!PageAnon(page) || PageSwapCache(page)) &&
735 page_test_dirty(page)) {
736 page_clear_dirty(page);
737 set_page_dirty(page);
738 }
739 if (PageAnon(page))
740 mem_cgroup_uncharge_page(page);
741 __dec_zone_page_state(page,
742 PageAnon(page) ? NR_ANON_PAGES : NR_FILE_MAPPED);
743 /*
744 * It would be tidy to reset the PageAnon mapping here,
745 * but that might overwrite a racing page_add_anon_rmap
746 * which increments mapcount after us but sets mapping
747 * before us: so leave the reset to free_hot_cold_page,
748 * and remember that it's only reliable while mapped.
749 * Leaving it set also helps swapoff to reinstate ptes
750 * faster for those pages still in swapcache.
751 */
752 }
753 }
754
755 /*
756 * Subfunctions of try_to_unmap: try_to_unmap_one called
757 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
758 */
759 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
760 int migration)
761 {
762 struct mm_struct *mm = vma->vm_mm;
763 unsigned long address;
764 pte_t *pte;
765 pte_t pteval;
766 spinlock_t *ptl;
767 int ret = SWAP_AGAIN;
768
769 address = vma_address(page, vma);
770 if (address == -EFAULT)
771 goto out;
772
773 pte = page_check_address(page, mm, address, &ptl, 0);
774 if (!pte)
775 goto out;
776
777 /*
778 * If the page is mlock()d, we cannot swap it out.
779 * If it's recently referenced (perhaps page_referenced
780 * skipped over this mm) then we should reactivate it.
781 */
782 if (!migration) {
783 if (vma->vm_flags & VM_LOCKED) {
784 ret = SWAP_MLOCK;
785 goto out_unmap;
786 }
787 if (ptep_clear_flush_young_notify(vma, address, pte)) {
788 ret = SWAP_FAIL;
789 goto out_unmap;
790 }
791 }
792
793 /* Nuke the page table entry. */
794 flush_cache_page(vma, address, page_to_pfn(page));
795 pteval = ptep_clear_flush_notify(vma, address, pte);
796
797 /* Move the dirty bit to the physical page now the pte is gone. */
798 if (pte_dirty(pteval))
799 set_page_dirty(page);
800
801 /* Update high watermark before we lower rss */
802 update_hiwater_rss(mm);
803
804 if (PageAnon(page)) {
805 swp_entry_t entry = { .val = page_private(page) };
806
807 if (PageSwapCache(page)) {
808 /*
809 * Store the swap location in the pte.
810 * See handle_pte_fault() ...
811 */
812 swap_duplicate(entry);
813 if (list_empty(&mm->mmlist)) {
814 spin_lock(&mmlist_lock);
815 if (list_empty(&mm->mmlist))
816 list_add(&mm->mmlist, &init_mm.mmlist);
817 spin_unlock(&mmlist_lock);
818 }
819 dec_mm_counter(mm, anon_rss);
820 } else if (PAGE_MIGRATION) {
821 /*
822 * Store the pfn of the page in a special migration
823 * pte. do_swap_page() will wait until the migration
824 * pte is removed and then restart fault handling.
825 */
826 BUG_ON(!migration);
827 entry = make_migration_entry(page, pte_write(pteval));
828 }
829 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
830 BUG_ON(pte_file(*pte));
831 } else if (PAGE_MIGRATION && migration) {
832 /* Establish migration entry for a file page */
833 swp_entry_t entry;
834 entry = make_migration_entry(page, pte_write(pteval));
835 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
836 } else
837 dec_mm_counter(mm, file_rss);
838
839
840 page_remove_rmap(page, vma);
841 page_cache_release(page);
842
843 out_unmap:
844 pte_unmap_unlock(pte, ptl);
845 out:
846 return ret;
847 }
848
849 /*
850 * objrmap doesn't work for nonlinear VMAs because the assumption that
851 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
852 * Consequently, given a particular page and its ->index, we cannot locate the
853 * ptes which are mapping that page without an exhaustive linear search.
854 *
855 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
856 * maps the file to which the target page belongs. The ->vm_private_data field
857 * holds the current cursor into that scan. Successive searches will circulate
858 * around the vma's virtual address space.
859 *
860 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
861 * more scanning pressure is placed against them as well. Eventually pages
862 * will become fully unmapped and are eligible for eviction.
863 *
864 * For very sparsely populated VMAs this is a little inefficient - chances are
865 * there there won't be many ptes located within the scan cluster. In this case
866 * maybe we could scan further - to the end of the pte page, perhaps.
867 *
868 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
869 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
870 * rather than unmapping them. If we encounter the "check_page" that vmscan is
871 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
872 */
873 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
874 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
875
876 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
877 struct vm_area_struct *vma, struct page *check_page)
878 {
879 struct mm_struct *mm = vma->vm_mm;
880 pgd_t *pgd;
881 pud_t *pud;
882 pmd_t *pmd;
883 pte_t *pte;
884 pte_t pteval;
885 spinlock_t *ptl;
886 struct page *page;
887 unsigned long address;
888 unsigned long end;
889 int ret = SWAP_AGAIN;
890 int locked_vma = 0;
891
892 address = (vma->vm_start + cursor) & CLUSTER_MASK;
893 end = address + CLUSTER_SIZE;
894 if (address < vma->vm_start)
895 address = vma->vm_start;
896 if (end > vma->vm_end)
897 end = vma->vm_end;
898
899 pgd = pgd_offset(mm, address);
900 if (!pgd_present(*pgd))
901 return ret;
902
903 pud = pud_offset(pgd, address);
904 if (!pud_present(*pud))
905 return ret;
906
907 pmd = pmd_offset(pud, address);
908 if (!pmd_present(*pmd))
909 return ret;
910
911 /*
912 * MLOCK_PAGES => feature is configured.
913 * if we can acquire the mmap_sem for read, and vma is VM_LOCKED,
914 * keep the sem while scanning the cluster for mlocking pages.
915 */
916 if (MLOCK_PAGES && down_read_trylock(&vma->vm_mm->mmap_sem)) {
917 locked_vma = (vma->vm_flags & VM_LOCKED);
918 if (!locked_vma)
919 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
920 }
921
922 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
923
924 /* Update high watermark before we lower rss */
925 update_hiwater_rss(mm);
926
927 for (; address < end; pte++, address += PAGE_SIZE) {
928 if (!pte_present(*pte))
929 continue;
930 page = vm_normal_page(vma, address, *pte);
931 BUG_ON(!page || PageAnon(page));
932
933 if (locked_vma) {
934 mlock_vma_page(page); /* no-op if already mlocked */
935 if (page == check_page)
936 ret = SWAP_MLOCK;
937 continue; /* don't unmap */
938 }
939
940 if (ptep_clear_flush_young_notify(vma, address, pte))
941 continue;
942
943 /* Nuke the page table entry. */
944 flush_cache_page(vma, address, pte_pfn(*pte));
945 pteval = ptep_clear_flush_notify(vma, address, pte);
946
947 /* If nonlinear, store the file page offset in the pte. */
948 if (page->index != linear_page_index(vma, address))
949 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
950
951 /* Move the dirty bit to the physical page now the pte is gone. */
952 if (pte_dirty(pteval))
953 set_page_dirty(page);
954
955 page_remove_rmap(page, vma);
956 page_cache_release(page);
957 dec_mm_counter(mm, file_rss);
958 (*mapcount)--;
959 }
960 pte_unmap_unlock(pte - 1, ptl);
961 if (locked_vma)
962 up_read(&vma->vm_mm->mmap_sem);
963 return ret;
964 }
965
966 /*
967 * common handling for pages mapped in VM_LOCKED vmas
968 */
969 static int try_to_mlock_page(struct page *page, struct vm_area_struct *vma)
970 {
971 int mlocked = 0;
972
973 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
974 if (vma->vm_flags & VM_LOCKED) {
975 mlock_vma_page(page);
976 mlocked++; /* really mlocked the page */
977 }
978 up_read(&vma->vm_mm->mmap_sem);
979 }
980 return mlocked;
981 }
982
983 /**
984 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
985 * rmap method
986 * @page: the page to unmap/unlock
987 * @unlock: request for unlock rather than unmap [unlikely]
988 * @migration: unmapping for migration - ignored if @unlock
989 *
990 * Find all the mappings of a page using the mapping pointer and the vma chains
991 * contained in the anon_vma struct it points to.
992 *
993 * This function is only called from try_to_unmap/try_to_munlock for
994 * anonymous pages.
995 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
996 * where the page was found will be held for write. So, we won't recheck
997 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
998 * 'LOCKED.
999 */
1000 static int try_to_unmap_anon(struct page *page, int unlock, int migration)
1001 {
1002 struct anon_vma *anon_vma;
1003 struct vm_area_struct *vma;
1004 unsigned int mlocked = 0;
1005 int ret = SWAP_AGAIN;
1006
1007 if (MLOCK_PAGES && unlikely(unlock))
1008 ret = SWAP_SUCCESS; /* default for try_to_munlock() */
1009
1010 anon_vma = page_lock_anon_vma(page);
1011 if (!anon_vma)
1012 return ret;
1013
1014 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
1015 if (MLOCK_PAGES && unlikely(unlock)) {
1016 if (!((vma->vm_flags & VM_LOCKED) &&
1017 page_mapped_in_vma(page, vma)))
1018 continue; /* must visit all unlocked vmas */
1019 ret = SWAP_MLOCK; /* saw at least one mlocked vma */
1020 } else {
1021 ret = try_to_unmap_one(page, vma, migration);
1022 if (ret == SWAP_FAIL || !page_mapped(page))
1023 break;
1024 }
1025 if (ret == SWAP_MLOCK) {
1026 mlocked = try_to_mlock_page(page, vma);
1027 if (mlocked)
1028 break; /* stop if actually mlocked page */
1029 }
1030 }
1031
1032 page_unlock_anon_vma(anon_vma);
1033
1034 if (mlocked)
1035 ret = SWAP_MLOCK; /* actually mlocked the page */
1036 else if (ret == SWAP_MLOCK)
1037 ret = SWAP_AGAIN; /* saw VM_LOCKED vma */
1038
1039 return ret;
1040 }
1041
1042 /**
1043 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1044 * @page: the page to unmap/unlock
1045 * @unlock: request for unlock rather than unmap [unlikely]
1046 * @migration: unmapping for migration - ignored if @unlock
1047 *
1048 * Find all the mappings of a page using the mapping pointer and the vma chains
1049 * contained in the address_space struct it points to.
1050 *
1051 * This function is only called from try_to_unmap/try_to_munlock for
1052 * object-based pages.
1053 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1054 * where the page was found will be held for write. So, we won't recheck
1055 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1056 * 'LOCKED.
1057 */
1058 static int try_to_unmap_file(struct page *page, int unlock, int migration)
1059 {
1060 struct address_space *mapping = page->mapping;
1061 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1062 struct vm_area_struct *vma;
1063 struct prio_tree_iter iter;
1064 int ret = SWAP_AGAIN;
1065 unsigned long cursor;
1066 unsigned long max_nl_cursor = 0;
1067 unsigned long max_nl_size = 0;
1068 unsigned int mapcount;
1069 unsigned int mlocked = 0;
1070
1071 if (MLOCK_PAGES && unlikely(unlock))
1072 ret = SWAP_SUCCESS; /* default for try_to_munlock() */
1073
1074 spin_lock(&mapping->i_mmap_lock);
1075 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1076 if (MLOCK_PAGES && unlikely(unlock)) {
1077 if (!(vma->vm_flags & VM_LOCKED))
1078 continue; /* must visit all vmas */
1079 ret = SWAP_MLOCK;
1080 } else {
1081 ret = try_to_unmap_one(page, vma, migration);
1082 if (ret == SWAP_FAIL || !page_mapped(page))
1083 goto out;
1084 }
1085 if (ret == SWAP_MLOCK) {
1086 mlocked = try_to_mlock_page(page, vma);
1087 if (mlocked)
1088 break; /* stop if actually mlocked page */
1089 }
1090 }
1091
1092 if (mlocked)
1093 goto out;
1094
1095 if (list_empty(&mapping->i_mmap_nonlinear))
1096 goto out;
1097
1098 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1099 shared.vm_set.list) {
1100 if (MLOCK_PAGES && unlikely(unlock)) {
1101 if (!(vma->vm_flags & VM_LOCKED))
1102 continue; /* must visit all vmas */
1103 ret = SWAP_MLOCK; /* leave mlocked == 0 */
1104 goto out; /* no need to look further */
1105 }
1106 if (!MLOCK_PAGES && !migration && (vma->vm_flags & VM_LOCKED))
1107 continue;
1108 cursor = (unsigned long) vma->vm_private_data;
1109 if (cursor > max_nl_cursor)
1110 max_nl_cursor = cursor;
1111 cursor = vma->vm_end - vma->vm_start;
1112 if (cursor > max_nl_size)
1113 max_nl_size = cursor;
1114 }
1115
1116 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1117 ret = SWAP_FAIL;
1118 goto out;
1119 }
1120
1121 /*
1122 * We don't try to search for this page in the nonlinear vmas,
1123 * and page_referenced wouldn't have found it anyway. Instead
1124 * just walk the nonlinear vmas trying to age and unmap some.
1125 * The mapcount of the page we came in with is irrelevant,
1126 * but even so use it as a guide to how hard we should try?
1127 */
1128 mapcount = page_mapcount(page);
1129 if (!mapcount)
1130 goto out;
1131 cond_resched_lock(&mapping->i_mmap_lock);
1132
1133 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1134 if (max_nl_cursor == 0)
1135 max_nl_cursor = CLUSTER_SIZE;
1136
1137 do {
1138 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1139 shared.vm_set.list) {
1140 if (!MLOCK_PAGES && !migration &&
1141 (vma->vm_flags & VM_LOCKED))
1142 continue;
1143 cursor = (unsigned long) vma->vm_private_data;
1144 while ( cursor < max_nl_cursor &&
1145 cursor < vma->vm_end - vma->vm_start) {
1146 ret = try_to_unmap_cluster(cursor, &mapcount,
1147 vma, page);
1148 if (ret == SWAP_MLOCK)
1149 mlocked = 2; /* to return below */
1150 cursor += CLUSTER_SIZE;
1151 vma->vm_private_data = (void *) cursor;
1152 if ((int)mapcount <= 0)
1153 goto out;
1154 }
1155 vma->vm_private_data = (void *) max_nl_cursor;
1156 }
1157 cond_resched_lock(&mapping->i_mmap_lock);
1158 max_nl_cursor += CLUSTER_SIZE;
1159 } while (max_nl_cursor <= max_nl_size);
1160
1161 /*
1162 * Don't loop forever (perhaps all the remaining pages are
1163 * in locked vmas). Reset cursor on all unreserved nonlinear
1164 * vmas, now forgetting on which ones it had fallen behind.
1165 */
1166 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1167 vma->vm_private_data = NULL;
1168 out:
1169 spin_unlock(&mapping->i_mmap_lock);
1170 if (mlocked)
1171 ret = SWAP_MLOCK; /* actually mlocked the page */
1172 else if (ret == SWAP_MLOCK)
1173 ret = SWAP_AGAIN; /* saw VM_LOCKED vma */
1174 return ret;
1175 }
1176
1177 /**
1178 * try_to_unmap - try to remove all page table mappings to a page
1179 * @page: the page to get unmapped
1180 * @migration: migration flag
1181 *
1182 * Tries to remove all the page table entries which are mapping this
1183 * page, used in the pageout path. Caller must hold the page lock.
1184 * Return values are:
1185 *
1186 * SWAP_SUCCESS - we succeeded in removing all mappings
1187 * SWAP_AGAIN - we missed a mapping, try again later
1188 * SWAP_FAIL - the page is unswappable
1189 * SWAP_MLOCK - page is mlocked.
1190 */
1191 int try_to_unmap(struct page *page, int migration)
1192 {
1193 int ret;
1194
1195 BUG_ON(!PageLocked(page));
1196
1197 if (PageAnon(page))
1198 ret = try_to_unmap_anon(page, 0, migration);
1199 else
1200 ret = try_to_unmap_file(page, 0, migration);
1201 if (ret != SWAP_MLOCK && !page_mapped(page))
1202 ret = SWAP_SUCCESS;
1203 return ret;
1204 }
1205
1206 #ifdef CONFIG_UNEVICTABLE_LRU
1207 /**
1208 * try_to_munlock - try to munlock a page
1209 * @page: the page to be munlocked
1210 *
1211 * Called from munlock code. Checks all of the VMAs mapping the page
1212 * to make sure nobody else has this page mlocked. The page will be
1213 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1214 *
1215 * Return values are:
1216 *
1217 * SWAP_SUCCESS - no vma's holding page mlocked.
1218 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1219 * SWAP_MLOCK - page is now mlocked.
1220 */
1221 int try_to_munlock(struct page *page)
1222 {
1223 VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1224
1225 if (PageAnon(page))
1226 return try_to_unmap_anon(page, 1, 0);
1227 else
1228 return try_to_unmap_file(page, 1, 0);
1229 }
1230 #endif
This page took 0.057162 seconds and 6 git commands to generate.