Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound-2.6
[deliverable/linux.git] / mm / rmap.c
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20 /*
21 * Lock ordering in mm:
22 *
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * inode->i_alloc_sem (vmtruncate_range)
25 * mm->mmap_sem
26 * page->flags PG_locked (lock_page)
27 * mapping->i_mmap_lock
28 * anon_vma->lock
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * inode_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within inode_lock in __sync_single_inode)
39 *
40 * (code doesn't rely on that order so it could be switched around)
41 * ->tasklist_lock
42 * anon_vma->lock (memory_failure, collect_procs_anon)
43 * pte map lock
44 */
45
46 #include <linux/mm.h>
47 #include <linux/pagemap.h>
48 #include <linux/swap.h>
49 #include <linux/swapops.h>
50 #include <linux/slab.h>
51 #include <linux/init.h>
52 #include <linux/ksm.h>
53 #include <linux/rmap.h>
54 #include <linux/rcupdate.h>
55 #include <linux/module.h>
56 #include <linux/memcontrol.h>
57 #include <linux/mmu_notifier.h>
58 #include <linux/migrate.h>
59 #include <linux/hugetlb.h>
60
61 #include <asm/tlbflush.h>
62
63 #include "internal.h"
64
65 static struct kmem_cache *anon_vma_cachep;
66 static struct kmem_cache *anon_vma_chain_cachep;
67
68 static inline struct anon_vma *anon_vma_alloc(void)
69 {
70 struct anon_vma *anon_vma;
71
72 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
73 if (anon_vma) {
74 atomic_set(&anon_vma->refcount, 1);
75 /*
76 * Initialise the anon_vma root to point to itself. If called
77 * from fork, the root will be reset to the parents anon_vma.
78 */
79 anon_vma->root = anon_vma;
80 }
81
82 return anon_vma;
83 }
84
85 static inline void anon_vma_free(struct anon_vma *anon_vma)
86 {
87 VM_BUG_ON(atomic_read(&anon_vma->refcount));
88 kmem_cache_free(anon_vma_cachep, anon_vma);
89 }
90
91 static inline struct anon_vma_chain *anon_vma_chain_alloc(void)
92 {
93 return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL);
94 }
95
96 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
97 {
98 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
99 }
100
101 /**
102 * anon_vma_prepare - attach an anon_vma to a memory region
103 * @vma: the memory region in question
104 *
105 * This makes sure the memory mapping described by 'vma' has
106 * an 'anon_vma' attached to it, so that we can associate the
107 * anonymous pages mapped into it with that anon_vma.
108 *
109 * The common case will be that we already have one, but if
110 * not we either need to find an adjacent mapping that we
111 * can re-use the anon_vma from (very common when the only
112 * reason for splitting a vma has been mprotect()), or we
113 * allocate a new one.
114 *
115 * Anon-vma allocations are very subtle, because we may have
116 * optimistically looked up an anon_vma in page_lock_anon_vma()
117 * and that may actually touch the spinlock even in the newly
118 * allocated vma (it depends on RCU to make sure that the
119 * anon_vma isn't actually destroyed).
120 *
121 * As a result, we need to do proper anon_vma locking even
122 * for the new allocation. At the same time, we do not want
123 * to do any locking for the common case of already having
124 * an anon_vma.
125 *
126 * This must be called with the mmap_sem held for reading.
127 */
128 int anon_vma_prepare(struct vm_area_struct *vma)
129 {
130 struct anon_vma *anon_vma = vma->anon_vma;
131 struct anon_vma_chain *avc;
132
133 might_sleep();
134 if (unlikely(!anon_vma)) {
135 struct mm_struct *mm = vma->vm_mm;
136 struct anon_vma *allocated;
137
138 avc = anon_vma_chain_alloc();
139 if (!avc)
140 goto out_enomem;
141
142 anon_vma = find_mergeable_anon_vma(vma);
143 allocated = NULL;
144 if (!anon_vma) {
145 anon_vma = anon_vma_alloc();
146 if (unlikely(!anon_vma))
147 goto out_enomem_free_avc;
148 allocated = anon_vma;
149 }
150
151 anon_vma_lock(anon_vma);
152 /* page_table_lock to protect against threads */
153 spin_lock(&mm->page_table_lock);
154 if (likely(!vma->anon_vma)) {
155 vma->anon_vma = anon_vma;
156 avc->anon_vma = anon_vma;
157 avc->vma = vma;
158 list_add(&avc->same_vma, &vma->anon_vma_chain);
159 list_add_tail(&avc->same_anon_vma, &anon_vma->head);
160 allocated = NULL;
161 avc = NULL;
162 }
163 spin_unlock(&mm->page_table_lock);
164 anon_vma_unlock(anon_vma);
165
166 if (unlikely(allocated))
167 put_anon_vma(allocated);
168 if (unlikely(avc))
169 anon_vma_chain_free(avc);
170 }
171 return 0;
172
173 out_enomem_free_avc:
174 anon_vma_chain_free(avc);
175 out_enomem:
176 return -ENOMEM;
177 }
178
179 static void anon_vma_chain_link(struct vm_area_struct *vma,
180 struct anon_vma_chain *avc,
181 struct anon_vma *anon_vma)
182 {
183 avc->vma = vma;
184 avc->anon_vma = anon_vma;
185 list_add(&avc->same_vma, &vma->anon_vma_chain);
186
187 anon_vma_lock(anon_vma);
188 /*
189 * It's critical to add new vmas to the tail of the anon_vma,
190 * see comment in huge_memory.c:__split_huge_page().
191 */
192 list_add_tail(&avc->same_anon_vma, &anon_vma->head);
193 anon_vma_unlock(anon_vma);
194 }
195
196 /*
197 * Attach the anon_vmas from src to dst.
198 * Returns 0 on success, -ENOMEM on failure.
199 */
200 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
201 {
202 struct anon_vma_chain *avc, *pavc;
203
204 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
205 avc = anon_vma_chain_alloc();
206 if (!avc)
207 goto enomem_failure;
208 anon_vma_chain_link(dst, avc, pavc->anon_vma);
209 }
210 return 0;
211
212 enomem_failure:
213 unlink_anon_vmas(dst);
214 return -ENOMEM;
215 }
216
217 /*
218 * Attach vma to its own anon_vma, as well as to the anon_vmas that
219 * the corresponding VMA in the parent process is attached to.
220 * Returns 0 on success, non-zero on failure.
221 */
222 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
223 {
224 struct anon_vma_chain *avc;
225 struct anon_vma *anon_vma;
226
227 /* Don't bother if the parent process has no anon_vma here. */
228 if (!pvma->anon_vma)
229 return 0;
230
231 /*
232 * First, attach the new VMA to the parent VMA's anon_vmas,
233 * so rmap can find non-COWed pages in child processes.
234 */
235 if (anon_vma_clone(vma, pvma))
236 return -ENOMEM;
237
238 /* Then add our own anon_vma. */
239 anon_vma = anon_vma_alloc();
240 if (!anon_vma)
241 goto out_error;
242 avc = anon_vma_chain_alloc();
243 if (!avc)
244 goto out_error_free_anon_vma;
245
246 /*
247 * The root anon_vma's spinlock is the lock actually used when we
248 * lock any of the anon_vmas in this anon_vma tree.
249 */
250 anon_vma->root = pvma->anon_vma->root;
251 /*
252 * With refcounts, an anon_vma can stay around longer than the
253 * process it belongs to. The root anon_vma needs to be pinned until
254 * this anon_vma is freed, because the lock lives in the root.
255 */
256 get_anon_vma(anon_vma->root);
257 /* Mark this anon_vma as the one where our new (COWed) pages go. */
258 vma->anon_vma = anon_vma;
259 anon_vma_chain_link(vma, avc, anon_vma);
260
261 return 0;
262
263 out_error_free_anon_vma:
264 put_anon_vma(anon_vma);
265 out_error:
266 unlink_anon_vmas(vma);
267 return -ENOMEM;
268 }
269
270 static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain)
271 {
272 struct anon_vma *anon_vma = anon_vma_chain->anon_vma;
273 int empty;
274
275 /* If anon_vma_fork fails, we can get an empty anon_vma_chain. */
276 if (!anon_vma)
277 return;
278
279 anon_vma_lock(anon_vma);
280 list_del(&anon_vma_chain->same_anon_vma);
281
282 /* We must garbage collect the anon_vma if it's empty */
283 empty = list_empty(&anon_vma->head);
284 anon_vma_unlock(anon_vma);
285
286 if (empty)
287 put_anon_vma(anon_vma);
288 }
289
290 void unlink_anon_vmas(struct vm_area_struct *vma)
291 {
292 struct anon_vma_chain *avc, *next;
293
294 /*
295 * Unlink each anon_vma chained to the VMA. This list is ordered
296 * from newest to oldest, ensuring the root anon_vma gets freed last.
297 */
298 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
299 anon_vma_unlink(avc);
300 list_del(&avc->same_vma);
301 anon_vma_chain_free(avc);
302 }
303 }
304
305 static void anon_vma_ctor(void *data)
306 {
307 struct anon_vma *anon_vma = data;
308
309 spin_lock_init(&anon_vma->lock);
310 atomic_set(&anon_vma->refcount, 0);
311 INIT_LIST_HEAD(&anon_vma->head);
312 }
313
314 void __init anon_vma_init(void)
315 {
316 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
317 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
318 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
319 }
320
321 /*
322 * Getting a lock on a stable anon_vma from a page off the LRU is
323 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
324 */
325 struct anon_vma *__page_lock_anon_vma(struct page *page)
326 {
327 struct anon_vma *anon_vma, *root_anon_vma;
328 unsigned long anon_mapping;
329
330 rcu_read_lock();
331 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
332 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
333 goto out;
334 if (!page_mapped(page))
335 goto out;
336
337 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
338 root_anon_vma = ACCESS_ONCE(anon_vma->root);
339 spin_lock(&root_anon_vma->lock);
340
341 /*
342 * If this page is still mapped, then its anon_vma cannot have been
343 * freed. But if it has been unmapped, we have no security against
344 * the anon_vma structure being freed and reused (for another anon_vma:
345 * SLAB_DESTROY_BY_RCU guarantees that - so the spin_lock above cannot
346 * corrupt): with anon_vma_prepare() or anon_vma_fork() redirecting
347 * anon_vma->root before page_unlock_anon_vma() is called to unlock.
348 */
349 if (page_mapped(page))
350 return anon_vma;
351
352 spin_unlock(&root_anon_vma->lock);
353 out:
354 rcu_read_unlock();
355 return NULL;
356 }
357
358 void page_unlock_anon_vma(struct anon_vma *anon_vma)
359 __releases(&anon_vma->root->lock)
360 __releases(RCU)
361 {
362 anon_vma_unlock(anon_vma);
363 rcu_read_unlock();
364 }
365
366 /*
367 * At what user virtual address is page expected in @vma?
368 * Returns virtual address or -EFAULT if page's index/offset is not
369 * within the range mapped the @vma.
370 */
371 inline unsigned long
372 vma_address(struct page *page, struct vm_area_struct *vma)
373 {
374 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
375 unsigned long address;
376
377 if (unlikely(is_vm_hugetlb_page(vma)))
378 pgoff = page->index << huge_page_order(page_hstate(page));
379 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
380 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
381 /* page should be within @vma mapping range */
382 return -EFAULT;
383 }
384 return address;
385 }
386
387 /*
388 * At what user virtual address is page expected in vma?
389 * Caller should check the page is actually part of the vma.
390 */
391 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
392 {
393 if (PageAnon(page)) {
394 struct anon_vma *page__anon_vma = page_anon_vma(page);
395 /*
396 * Note: swapoff's unuse_vma() is more efficient with this
397 * check, and needs it to match anon_vma when KSM is active.
398 */
399 if (!vma->anon_vma || !page__anon_vma ||
400 vma->anon_vma->root != page__anon_vma->root)
401 return -EFAULT;
402 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
403 if (!vma->vm_file ||
404 vma->vm_file->f_mapping != page->mapping)
405 return -EFAULT;
406 } else
407 return -EFAULT;
408 return vma_address(page, vma);
409 }
410
411 /*
412 * Check that @page is mapped at @address into @mm.
413 *
414 * If @sync is false, page_check_address may perform a racy check to avoid
415 * the page table lock when the pte is not present (helpful when reclaiming
416 * highly shared pages).
417 *
418 * On success returns with pte mapped and locked.
419 */
420 pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
421 unsigned long address, spinlock_t **ptlp, int sync)
422 {
423 pgd_t *pgd;
424 pud_t *pud;
425 pmd_t *pmd;
426 pte_t *pte;
427 spinlock_t *ptl;
428
429 if (unlikely(PageHuge(page))) {
430 pte = huge_pte_offset(mm, address);
431 ptl = &mm->page_table_lock;
432 goto check;
433 }
434
435 pgd = pgd_offset(mm, address);
436 if (!pgd_present(*pgd))
437 return NULL;
438
439 pud = pud_offset(pgd, address);
440 if (!pud_present(*pud))
441 return NULL;
442
443 pmd = pmd_offset(pud, address);
444 if (!pmd_present(*pmd))
445 return NULL;
446 if (pmd_trans_huge(*pmd))
447 return NULL;
448
449 pte = pte_offset_map(pmd, address);
450 /* Make a quick check before getting the lock */
451 if (!sync && !pte_present(*pte)) {
452 pte_unmap(pte);
453 return NULL;
454 }
455
456 ptl = pte_lockptr(mm, pmd);
457 check:
458 spin_lock(ptl);
459 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
460 *ptlp = ptl;
461 return pte;
462 }
463 pte_unmap_unlock(pte, ptl);
464 return NULL;
465 }
466
467 /**
468 * page_mapped_in_vma - check whether a page is really mapped in a VMA
469 * @page: the page to test
470 * @vma: the VMA to test
471 *
472 * Returns 1 if the page is mapped into the page tables of the VMA, 0
473 * if the page is not mapped into the page tables of this VMA. Only
474 * valid for normal file or anonymous VMAs.
475 */
476 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
477 {
478 unsigned long address;
479 pte_t *pte;
480 spinlock_t *ptl;
481
482 address = vma_address(page, vma);
483 if (address == -EFAULT) /* out of vma range */
484 return 0;
485 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
486 if (!pte) /* the page is not in this mm */
487 return 0;
488 pte_unmap_unlock(pte, ptl);
489
490 return 1;
491 }
492
493 /*
494 * Subfunctions of page_referenced: page_referenced_one called
495 * repeatedly from either page_referenced_anon or page_referenced_file.
496 */
497 int page_referenced_one(struct page *page, struct vm_area_struct *vma,
498 unsigned long address, unsigned int *mapcount,
499 unsigned long *vm_flags)
500 {
501 struct mm_struct *mm = vma->vm_mm;
502 int referenced = 0;
503
504 if (unlikely(PageTransHuge(page))) {
505 pmd_t *pmd;
506
507 spin_lock(&mm->page_table_lock);
508 /*
509 * rmap might return false positives; we must filter
510 * these out using page_check_address_pmd().
511 */
512 pmd = page_check_address_pmd(page, mm, address,
513 PAGE_CHECK_ADDRESS_PMD_FLAG);
514 if (!pmd) {
515 spin_unlock(&mm->page_table_lock);
516 goto out;
517 }
518
519 if (vma->vm_flags & VM_LOCKED) {
520 spin_unlock(&mm->page_table_lock);
521 *mapcount = 0; /* break early from loop */
522 *vm_flags |= VM_LOCKED;
523 goto out;
524 }
525
526 /* go ahead even if the pmd is pmd_trans_splitting() */
527 if (pmdp_clear_flush_young_notify(vma, address, pmd))
528 referenced++;
529 spin_unlock(&mm->page_table_lock);
530 } else {
531 pte_t *pte;
532 spinlock_t *ptl;
533
534 /*
535 * rmap might return false positives; we must filter
536 * these out using page_check_address().
537 */
538 pte = page_check_address(page, mm, address, &ptl, 0);
539 if (!pte)
540 goto out;
541
542 if (vma->vm_flags & VM_LOCKED) {
543 pte_unmap_unlock(pte, ptl);
544 *mapcount = 0; /* break early from loop */
545 *vm_flags |= VM_LOCKED;
546 goto out;
547 }
548
549 if (ptep_clear_flush_young_notify(vma, address, pte)) {
550 /*
551 * Don't treat a reference through a sequentially read
552 * mapping as such. If the page has been used in
553 * another mapping, we will catch it; if this other
554 * mapping is already gone, the unmap path will have
555 * set PG_referenced or activated the page.
556 */
557 if (likely(!VM_SequentialReadHint(vma)))
558 referenced++;
559 }
560 pte_unmap_unlock(pte, ptl);
561 }
562
563 /* Pretend the page is referenced if the task has the
564 swap token and is in the middle of a page fault. */
565 if (mm != current->mm && has_swap_token(mm) &&
566 rwsem_is_locked(&mm->mmap_sem))
567 referenced++;
568
569 (*mapcount)--;
570
571 if (referenced)
572 *vm_flags |= vma->vm_flags;
573 out:
574 return referenced;
575 }
576
577 static int page_referenced_anon(struct page *page,
578 struct mem_cgroup *mem_cont,
579 unsigned long *vm_flags)
580 {
581 unsigned int mapcount;
582 struct anon_vma *anon_vma;
583 struct anon_vma_chain *avc;
584 int referenced = 0;
585
586 anon_vma = page_lock_anon_vma(page);
587 if (!anon_vma)
588 return referenced;
589
590 mapcount = page_mapcount(page);
591 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
592 struct vm_area_struct *vma = avc->vma;
593 unsigned long address = vma_address(page, vma);
594 if (address == -EFAULT)
595 continue;
596 /*
597 * If we are reclaiming on behalf of a cgroup, skip
598 * counting on behalf of references from different
599 * cgroups
600 */
601 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
602 continue;
603 referenced += page_referenced_one(page, vma, address,
604 &mapcount, vm_flags);
605 if (!mapcount)
606 break;
607 }
608
609 page_unlock_anon_vma(anon_vma);
610 return referenced;
611 }
612
613 /**
614 * page_referenced_file - referenced check for object-based rmap
615 * @page: the page we're checking references on.
616 * @mem_cont: target memory controller
617 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
618 *
619 * For an object-based mapped page, find all the places it is mapped and
620 * check/clear the referenced flag. This is done by following the page->mapping
621 * pointer, then walking the chain of vmas it holds. It returns the number
622 * of references it found.
623 *
624 * This function is only called from page_referenced for object-based pages.
625 */
626 static int page_referenced_file(struct page *page,
627 struct mem_cgroup *mem_cont,
628 unsigned long *vm_flags)
629 {
630 unsigned int mapcount;
631 struct address_space *mapping = page->mapping;
632 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
633 struct vm_area_struct *vma;
634 struct prio_tree_iter iter;
635 int referenced = 0;
636
637 /*
638 * The caller's checks on page->mapping and !PageAnon have made
639 * sure that this is a file page: the check for page->mapping
640 * excludes the case just before it gets set on an anon page.
641 */
642 BUG_ON(PageAnon(page));
643
644 /*
645 * The page lock not only makes sure that page->mapping cannot
646 * suddenly be NULLified by truncation, it makes sure that the
647 * structure at mapping cannot be freed and reused yet,
648 * so we can safely take mapping->i_mmap_lock.
649 */
650 BUG_ON(!PageLocked(page));
651
652 spin_lock(&mapping->i_mmap_lock);
653
654 /*
655 * i_mmap_lock does not stabilize mapcount at all, but mapcount
656 * is more likely to be accurate if we note it after spinning.
657 */
658 mapcount = page_mapcount(page);
659
660 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
661 unsigned long address = vma_address(page, vma);
662 if (address == -EFAULT)
663 continue;
664 /*
665 * If we are reclaiming on behalf of a cgroup, skip
666 * counting on behalf of references from different
667 * cgroups
668 */
669 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
670 continue;
671 referenced += page_referenced_one(page, vma, address,
672 &mapcount, vm_flags);
673 if (!mapcount)
674 break;
675 }
676
677 spin_unlock(&mapping->i_mmap_lock);
678 return referenced;
679 }
680
681 /**
682 * page_referenced - test if the page was referenced
683 * @page: the page to test
684 * @is_locked: caller holds lock on the page
685 * @mem_cont: target memory controller
686 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
687 *
688 * Quick test_and_clear_referenced for all mappings to a page,
689 * returns the number of ptes which referenced the page.
690 */
691 int page_referenced(struct page *page,
692 int is_locked,
693 struct mem_cgroup *mem_cont,
694 unsigned long *vm_flags)
695 {
696 int referenced = 0;
697 int we_locked = 0;
698
699 *vm_flags = 0;
700 if (page_mapped(page) && page_rmapping(page)) {
701 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
702 we_locked = trylock_page(page);
703 if (!we_locked) {
704 referenced++;
705 goto out;
706 }
707 }
708 if (unlikely(PageKsm(page)))
709 referenced += page_referenced_ksm(page, mem_cont,
710 vm_flags);
711 else if (PageAnon(page))
712 referenced += page_referenced_anon(page, mem_cont,
713 vm_flags);
714 else if (page->mapping)
715 referenced += page_referenced_file(page, mem_cont,
716 vm_flags);
717 if (we_locked)
718 unlock_page(page);
719 }
720 out:
721 if (page_test_and_clear_young(page))
722 referenced++;
723
724 return referenced;
725 }
726
727 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
728 unsigned long address)
729 {
730 struct mm_struct *mm = vma->vm_mm;
731 pte_t *pte;
732 spinlock_t *ptl;
733 int ret = 0;
734
735 pte = page_check_address(page, mm, address, &ptl, 1);
736 if (!pte)
737 goto out;
738
739 if (pte_dirty(*pte) || pte_write(*pte)) {
740 pte_t entry;
741
742 flush_cache_page(vma, address, pte_pfn(*pte));
743 entry = ptep_clear_flush_notify(vma, address, pte);
744 entry = pte_wrprotect(entry);
745 entry = pte_mkclean(entry);
746 set_pte_at(mm, address, pte, entry);
747 ret = 1;
748 }
749
750 pte_unmap_unlock(pte, ptl);
751 out:
752 return ret;
753 }
754
755 static int page_mkclean_file(struct address_space *mapping, struct page *page)
756 {
757 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
758 struct vm_area_struct *vma;
759 struct prio_tree_iter iter;
760 int ret = 0;
761
762 BUG_ON(PageAnon(page));
763
764 spin_lock(&mapping->i_mmap_lock);
765 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
766 if (vma->vm_flags & VM_SHARED) {
767 unsigned long address = vma_address(page, vma);
768 if (address == -EFAULT)
769 continue;
770 ret += page_mkclean_one(page, vma, address);
771 }
772 }
773 spin_unlock(&mapping->i_mmap_lock);
774 return ret;
775 }
776
777 int page_mkclean(struct page *page)
778 {
779 int ret = 0;
780
781 BUG_ON(!PageLocked(page));
782
783 if (page_mapped(page)) {
784 struct address_space *mapping = page_mapping(page);
785 if (mapping) {
786 ret = page_mkclean_file(mapping, page);
787 if (page_test_dirty(page)) {
788 page_clear_dirty(page, 1);
789 ret = 1;
790 }
791 }
792 }
793
794 return ret;
795 }
796 EXPORT_SYMBOL_GPL(page_mkclean);
797
798 /**
799 * page_move_anon_rmap - move a page to our anon_vma
800 * @page: the page to move to our anon_vma
801 * @vma: the vma the page belongs to
802 * @address: the user virtual address mapped
803 *
804 * When a page belongs exclusively to one process after a COW event,
805 * that page can be moved into the anon_vma that belongs to just that
806 * process, so the rmap code will not search the parent or sibling
807 * processes.
808 */
809 void page_move_anon_rmap(struct page *page,
810 struct vm_area_struct *vma, unsigned long address)
811 {
812 struct anon_vma *anon_vma = vma->anon_vma;
813
814 VM_BUG_ON(!PageLocked(page));
815 VM_BUG_ON(!anon_vma);
816 VM_BUG_ON(page->index != linear_page_index(vma, address));
817
818 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
819 page->mapping = (struct address_space *) anon_vma;
820 }
821
822 /**
823 * __page_set_anon_rmap - set up new anonymous rmap
824 * @page: Page to add to rmap
825 * @vma: VM area to add page to.
826 * @address: User virtual address of the mapping
827 * @exclusive: the page is exclusively owned by the current process
828 */
829 static void __page_set_anon_rmap(struct page *page,
830 struct vm_area_struct *vma, unsigned long address, int exclusive)
831 {
832 struct anon_vma *anon_vma = vma->anon_vma;
833
834 BUG_ON(!anon_vma);
835
836 if (PageAnon(page))
837 return;
838
839 /*
840 * If the page isn't exclusively mapped into this vma,
841 * we must use the _oldest_ possible anon_vma for the
842 * page mapping!
843 */
844 if (!exclusive)
845 anon_vma = anon_vma->root;
846
847 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
848 page->mapping = (struct address_space *) anon_vma;
849 page->index = linear_page_index(vma, address);
850 }
851
852 /**
853 * __page_check_anon_rmap - sanity check anonymous rmap addition
854 * @page: the page to add the mapping to
855 * @vma: the vm area in which the mapping is added
856 * @address: the user virtual address mapped
857 */
858 static void __page_check_anon_rmap(struct page *page,
859 struct vm_area_struct *vma, unsigned long address)
860 {
861 #ifdef CONFIG_DEBUG_VM
862 /*
863 * The page's anon-rmap details (mapping and index) are guaranteed to
864 * be set up correctly at this point.
865 *
866 * We have exclusion against page_add_anon_rmap because the caller
867 * always holds the page locked, except if called from page_dup_rmap,
868 * in which case the page is already known to be setup.
869 *
870 * We have exclusion against page_add_new_anon_rmap because those pages
871 * are initially only visible via the pagetables, and the pte is locked
872 * over the call to page_add_new_anon_rmap.
873 */
874 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
875 BUG_ON(page->index != linear_page_index(vma, address));
876 #endif
877 }
878
879 /**
880 * page_add_anon_rmap - add pte mapping to an anonymous page
881 * @page: the page to add the mapping to
882 * @vma: the vm area in which the mapping is added
883 * @address: the user virtual address mapped
884 *
885 * The caller needs to hold the pte lock, and the page must be locked in
886 * the anon_vma case: to serialize mapping,index checking after setting,
887 * and to ensure that PageAnon is not being upgraded racily to PageKsm
888 * (but PageKsm is never downgraded to PageAnon).
889 */
890 void page_add_anon_rmap(struct page *page,
891 struct vm_area_struct *vma, unsigned long address)
892 {
893 do_page_add_anon_rmap(page, vma, address, 0);
894 }
895
896 /*
897 * Special version of the above for do_swap_page, which often runs
898 * into pages that are exclusively owned by the current process.
899 * Everybody else should continue to use page_add_anon_rmap above.
900 */
901 void do_page_add_anon_rmap(struct page *page,
902 struct vm_area_struct *vma, unsigned long address, int exclusive)
903 {
904 int first = atomic_inc_and_test(&page->_mapcount);
905 if (first) {
906 if (!PageTransHuge(page))
907 __inc_zone_page_state(page, NR_ANON_PAGES);
908 else
909 __inc_zone_page_state(page,
910 NR_ANON_TRANSPARENT_HUGEPAGES);
911 }
912 if (unlikely(PageKsm(page)))
913 return;
914
915 VM_BUG_ON(!PageLocked(page));
916 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
917 if (first)
918 __page_set_anon_rmap(page, vma, address, exclusive);
919 else
920 __page_check_anon_rmap(page, vma, address);
921 }
922
923 /**
924 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
925 * @page: the page to add the mapping to
926 * @vma: the vm area in which the mapping is added
927 * @address: the user virtual address mapped
928 *
929 * Same as page_add_anon_rmap but must only be called on *new* pages.
930 * This means the inc-and-test can be bypassed.
931 * Page does not have to be locked.
932 */
933 void page_add_new_anon_rmap(struct page *page,
934 struct vm_area_struct *vma, unsigned long address)
935 {
936 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
937 SetPageSwapBacked(page);
938 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
939 if (!PageTransHuge(page))
940 __inc_zone_page_state(page, NR_ANON_PAGES);
941 else
942 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
943 __page_set_anon_rmap(page, vma, address, 1);
944 if (page_evictable(page, vma))
945 lru_cache_add_lru(page, LRU_ACTIVE_ANON);
946 else
947 add_page_to_unevictable_list(page);
948 }
949
950 /**
951 * page_add_file_rmap - add pte mapping to a file page
952 * @page: the page to add the mapping to
953 *
954 * The caller needs to hold the pte lock.
955 */
956 void page_add_file_rmap(struct page *page)
957 {
958 if (atomic_inc_and_test(&page->_mapcount)) {
959 __inc_zone_page_state(page, NR_FILE_MAPPED);
960 mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED);
961 }
962 }
963
964 /**
965 * page_remove_rmap - take down pte mapping from a page
966 * @page: page to remove mapping from
967 *
968 * The caller needs to hold the pte lock.
969 */
970 void page_remove_rmap(struct page *page)
971 {
972 /* page still mapped by someone else? */
973 if (!atomic_add_negative(-1, &page->_mapcount))
974 return;
975
976 /*
977 * Now that the last pte has gone, s390 must transfer dirty
978 * flag from storage key to struct page. We can usually skip
979 * this if the page is anon, so about to be freed; but perhaps
980 * not if it's in swapcache - there might be another pte slot
981 * containing the swap entry, but page not yet written to swap.
982 */
983 if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) {
984 page_clear_dirty(page, 1);
985 set_page_dirty(page);
986 }
987 /*
988 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
989 * and not charged by memcg for now.
990 */
991 if (unlikely(PageHuge(page)))
992 return;
993 if (PageAnon(page)) {
994 mem_cgroup_uncharge_page(page);
995 if (!PageTransHuge(page))
996 __dec_zone_page_state(page, NR_ANON_PAGES);
997 else
998 __dec_zone_page_state(page,
999 NR_ANON_TRANSPARENT_HUGEPAGES);
1000 } else {
1001 __dec_zone_page_state(page, NR_FILE_MAPPED);
1002 mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED);
1003 }
1004 /*
1005 * It would be tidy to reset the PageAnon mapping here,
1006 * but that might overwrite a racing page_add_anon_rmap
1007 * which increments mapcount after us but sets mapping
1008 * before us: so leave the reset to free_hot_cold_page,
1009 * and remember that it's only reliable while mapped.
1010 * Leaving it set also helps swapoff to reinstate ptes
1011 * faster for those pages still in swapcache.
1012 */
1013 }
1014
1015 /*
1016 * Subfunctions of try_to_unmap: try_to_unmap_one called
1017 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
1018 */
1019 int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1020 unsigned long address, enum ttu_flags flags)
1021 {
1022 struct mm_struct *mm = vma->vm_mm;
1023 pte_t *pte;
1024 pte_t pteval;
1025 spinlock_t *ptl;
1026 int ret = SWAP_AGAIN;
1027
1028 pte = page_check_address(page, mm, address, &ptl, 0);
1029 if (!pte)
1030 goto out;
1031
1032 /*
1033 * If the page is mlock()d, we cannot swap it out.
1034 * If it's recently referenced (perhaps page_referenced
1035 * skipped over this mm) then we should reactivate it.
1036 */
1037 if (!(flags & TTU_IGNORE_MLOCK)) {
1038 if (vma->vm_flags & VM_LOCKED)
1039 goto out_mlock;
1040
1041 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1042 goto out_unmap;
1043 }
1044 if (!(flags & TTU_IGNORE_ACCESS)) {
1045 if (ptep_clear_flush_young_notify(vma, address, pte)) {
1046 ret = SWAP_FAIL;
1047 goto out_unmap;
1048 }
1049 }
1050
1051 /* Nuke the page table entry. */
1052 flush_cache_page(vma, address, page_to_pfn(page));
1053 pteval = ptep_clear_flush_notify(vma, address, pte);
1054
1055 /* Move the dirty bit to the physical page now the pte is gone. */
1056 if (pte_dirty(pteval))
1057 set_page_dirty(page);
1058
1059 /* Update high watermark before we lower rss */
1060 update_hiwater_rss(mm);
1061
1062 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1063 if (PageAnon(page))
1064 dec_mm_counter(mm, MM_ANONPAGES);
1065 else
1066 dec_mm_counter(mm, MM_FILEPAGES);
1067 set_pte_at(mm, address, pte,
1068 swp_entry_to_pte(make_hwpoison_entry(page)));
1069 } else if (PageAnon(page)) {
1070 swp_entry_t entry = { .val = page_private(page) };
1071
1072 if (PageSwapCache(page)) {
1073 /*
1074 * Store the swap location in the pte.
1075 * See handle_pte_fault() ...
1076 */
1077 if (swap_duplicate(entry) < 0) {
1078 set_pte_at(mm, address, pte, pteval);
1079 ret = SWAP_FAIL;
1080 goto out_unmap;
1081 }
1082 if (list_empty(&mm->mmlist)) {
1083 spin_lock(&mmlist_lock);
1084 if (list_empty(&mm->mmlist))
1085 list_add(&mm->mmlist, &init_mm.mmlist);
1086 spin_unlock(&mmlist_lock);
1087 }
1088 dec_mm_counter(mm, MM_ANONPAGES);
1089 inc_mm_counter(mm, MM_SWAPENTS);
1090 } else if (PAGE_MIGRATION) {
1091 /*
1092 * Store the pfn of the page in a special migration
1093 * pte. do_swap_page() will wait until the migration
1094 * pte is removed and then restart fault handling.
1095 */
1096 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
1097 entry = make_migration_entry(page, pte_write(pteval));
1098 }
1099 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1100 BUG_ON(pte_file(*pte));
1101 } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
1102 /* Establish migration entry for a file page */
1103 swp_entry_t entry;
1104 entry = make_migration_entry(page, pte_write(pteval));
1105 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1106 } else
1107 dec_mm_counter(mm, MM_FILEPAGES);
1108
1109 page_remove_rmap(page);
1110 page_cache_release(page);
1111
1112 out_unmap:
1113 pte_unmap_unlock(pte, ptl);
1114 out:
1115 return ret;
1116
1117 out_mlock:
1118 pte_unmap_unlock(pte, ptl);
1119
1120
1121 /*
1122 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1123 * unstable result and race. Plus, We can't wait here because
1124 * we now hold anon_vma->lock or mapping->i_mmap_lock.
1125 * if trylock failed, the page remain in evictable lru and later
1126 * vmscan could retry to move the page to unevictable lru if the
1127 * page is actually mlocked.
1128 */
1129 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1130 if (vma->vm_flags & VM_LOCKED) {
1131 mlock_vma_page(page);
1132 ret = SWAP_MLOCK;
1133 }
1134 up_read(&vma->vm_mm->mmap_sem);
1135 }
1136 return ret;
1137 }
1138
1139 /*
1140 * objrmap doesn't work for nonlinear VMAs because the assumption that
1141 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1142 * Consequently, given a particular page and its ->index, we cannot locate the
1143 * ptes which are mapping that page without an exhaustive linear search.
1144 *
1145 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1146 * maps the file to which the target page belongs. The ->vm_private_data field
1147 * holds the current cursor into that scan. Successive searches will circulate
1148 * around the vma's virtual address space.
1149 *
1150 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1151 * more scanning pressure is placed against them as well. Eventually pages
1152 * will become fully unmapped and are eligible for eviction.
1153 *
1154 * For very sparsely populated VMAs this is a little inefficient - chances are
1155 * there there won't be many ptes located within the scan cluster. In this case
1156 * maybe we could scan further - to the end of the pte page, perhaps.
1157 *
1158 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1159 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1160 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1161 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1162 */
1163 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1164 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1165
1166 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1167 struct vm_area_struct *vma, struct page *check_page)
1168 {
1169 struct mm_struct *mm = vma->vm_mm;
1170 pgd_t *pgd;
1171 pud_t *pud;
1172 pmd_t *pmd;
1173 pte_t *pte;
1174 pte_t pteval;
1175 spinlock_t *ptl;
1176 struct page *page;
1177 unsigned long address;
1178 unsigned long end;
1179 int ret = SWAP_AGAIN;
1180 int locked_vma = 0;
1181
1182 address = (vma->vm_start + cursor) & CLUSTER_MASK;
1183 end = address + CLUSTER_SIZE;
1184 if (address < vma->vm_start)
1185 address = vma->vm_start;
1186 if (end > vma->vm_end)
1187 end = vma->vm_end;
1188
1189 pgd = pgd_offset(mm, address);
1190 if (!pgd_present(*pgd))
1191 return ret;
1192
1193 pud = pud_offset(pgd, address);
1194 if (!pud_present(*pud))
1195 return ret;
1196
1197 pmd = pmd_offset(pud, address);
1198 if (!pmd_present(*pmd))
1199 return ret;
1200
1201 /*
1202 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1203 * keep the sem while scanning the cluster for mlocking pages.
1204 */
1205 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1206 locked_vma = (vma->vm_flags & VM_LOCKED);
1207 if (!locked_vma)
1208 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1209 }
1210
1211 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1212
1213 /* Update high watermark before we lower rss */
1214 update_hiwater_rss(mm);
1215
1216 for (; address < end; pte++, address += PAGE_SIZE) {
1217 if (!pte_present(*pte))
1218 continue;
1219 page = vm_normal_page(vma, address, *pte);
1220 BUG_ON(!page || PageAnon(page));
1221
1222 if (locked_vma) {
1223 mlock_vma_page(page); /* no-op if already mlocked */
1224 if (page == check_page)
1225 ret = SWAP_MLOCK;
1226 continue; /* don't unmap */
1227 }
1228
1229 if (ptep_clear_flush_young_notify(vma, address, pte))
1230 continue;
1231
1232 /* Nuke the page table entry. */
1233 flush_cache_page(vma, address, pte_pfn(*pte));
1234 pteval = ptep_clear_flush_notify(vma, address, pte);
1235
1236 /* If nonlinear, store the file page offset in the pte. */
1237 if (page->index != linear_page_index(vma, address))
1238 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1239
1240 /* Move the dirty bit to the physical page now the pte is gone. */
1241 if (pte_dirty(pteval))
1242 set_page_dirty(page);
1243
1244 page_remove_rmap(page);
1245 page_cache_release(page);
1246 dec_mm_counter(mm, MM_FILEPAGES);
1247 (*mapcount)--;
1248 }
1249 pte_unmap_unlock(pte - 1, ptl);
1250 if (locked_vma)
1251 up_read(&vma->vm_mm->mmap_sem);
1252 return ret;
1253 }
1254
1255 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1256 {
1257 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1258
1259 if (!maybe_stack)
1260 return false;
1261
1262 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1263 VM_STACK_INCOMPLETE_SETUP)
1264 return true;
1265
1266 return false;
1267 }
1268
1269 /**
1270 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1271 * rmap method
1272 * @page: the page to unmap/unlock
1273 * @flags: action and flags
1274 *
1275 * Find all the mappings of a page using the mapping pointer and the vma chains
1276 * contained in the anon_vma struct it points to.
1277 *
1278 * This function is only called from try_to_unmap/try_to_munlock for
1279 * anonymous pages.
1280 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1281 * where the page was found will be held for write. So, we won't recheck
1282 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1283 * 'LOCKED.
1284 */
1285 static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1286 {
1287 struct anon_vma *anon_vma;
1288 struct anon_vma_chain *avc;
1289 int ret = SWAP_AGAIN;
1290
1291 anon_vma = page_lock_anon_vma(page);
1292 if (!anon_vma)
1293 return ret;
1294
1295 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1296 struct vm_area_struct *vma = avc->vma;
1297 unsigned long address;
1298
1299 /*
1300 * During exec, a temporary VMA is setup and later moved.
1301 * The VMA is moved under the anon_vma lock but not the
1302 * page tables leading to a race where migration cannot
1303 * find the migration ptes. Rather than increasing the
1304 * locking requirements of exec(), migration skips
1305 * temporary VMAs until after exec() completes.
1306 */
1307 if (PAGE_MIGRATION && (flags & TTU_MIGRATION) &&
1308 is_vma_temporary_stack(vma))
1309 continue;
1310
1311 address = vma_address(page, vma);
1312 if (address == -EFAULT)
1313 continue;
1314 ret = try_to_unmap_one(page, vma, address, flags);
1315 if (ret != SWAP_AGAIN || !page_mapped(page))
1316 break;
1317 }
1318
1319 page_unlock_anon_vma(anon_vma);
1320 return ret;
1321 }
1322
1323 /**
1324 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1325 * @page: the page to unmap/unlock
1326 * @flags: action and flags
1327 *
1328 * Find all the mappings of a page using the mapping pointer and the vma chains
1329 * contained in the address_space struct it points to.
1330 *
1331 * This function is only called from try_to_unmap/try_to_munlock for
1332 * object-based pages.
1333 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1334 * where the page was found will be held for write. So, we won't recheck
1335 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1336 * 'LOCKED.
1337 */
1338 static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1339 {
1340 struct address_space *mapping = page->mapping;
1341 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1342 struct vm_area_struct *vma;
1343 struct prio_tree_iter iter;
1344 int ret = SWAP_AGAIN;
1345 unsigned long cursor;
1346 unsigned long max_nl_cursor = 0;
1347 unsigned long max_nl_size = 0;
1348 unsigned int mapcount;
1349
1350 spin_lock(&mapping->i_mmap_lock);
1351 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1352 unsigned long address = vma_address(page, vma);
1353 if (address == -EFAULT)
1354 continue;
1355 ret = try_to_unmap_one(page, vma, address, flags);
1356 if (ret != SWAP_AGAIN || !page_mapped(page))
1357 goto out;
1358 }
1359
1360 if (list_empty(&mapping->i_mmap_nonlinear))
1361 goto out;
1362
1363 /*
1364 * We don't bother to try to find the munlocked page in nonlinears.
1365 * It's costly. Instead, later, page reclaim logic may call
1366 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1367 */
1368 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1369 goto out;
1370
1371 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1372 shared.vm_set.list) {
1373 cursor = (unsigned long) vma->vm_private_data;
1374 if (cursor > max_nl_cursor)
1375 max_nl_cursor = cursor;
1376 cursor = vma->vm_end - vma->vm_start;
1377 if (cursor > max_nl_size)
1378 max_nl_size = cursor;
1379 }
1380
1381 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1382 ret = SWAP_FAIL;
1383 goto out;
1384 }
1385
1386 /*
1387 * We don't try to search for this page in the nonlinear vmas,
1388 * and page_referenced wouldn't have found it anyway. Instead
1389 * just walk the nonlinear vmas trying to age and unmap some.
1390 * The mapcount of the page we came in with is irrelevant,
1391 * but even so use it as a guide to how hard we should try?
1392 */
1393 mapcount = page_mapcount(page);
1394 if (!mapcount)
1395 goto out;
1396 cond_resched_lock(&mapping->i_mmap_lock);
1397
1398 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1399 if (max_nl_cursor == 0)
1400 max_nl_cursor = CLUSTER_SIZE;
1401
1402 do {
1403 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1404 shared.vm_set.list) {
1405 cursor = (unsigned long) vma->vm_private_data;
1406 while ( cursor < max_nl_cursor &&
1407 cursor < vma->vm_end - vma->vm_start) {
1408 if (try_to_unmap_cluster(cursor, &mapcount,
1409 vma, page) == SWAP_MLOCK)
1410 ret = SWAP_MLOCK;
1411 cursor += CLUSTER_SIZE;
1412 vma->vm_private_data = (void *) cursor;
1413 if ((int)mapcount <= 0)
1414 goto out;
1415 }
1416 vma->vm_private_data = (void *) max_nl_cursor;
1417 }
1418 cond_resched_lock(&mapping->i_mmap_lock);
1419 max_nl_cursor += CLUSTER_SIZE;
1420 } while (max_nl_cursor <= max_nl_size);
1421
1422 /*
1423 * Don't loop forever (perhaps all the remaining pages are
1424 * in locked vmas). Reset cursor on all unreserved nonlinear
1425 * vmas, now forgetting on which ones it had fallen behind.
1426 */
1427 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1428 vma->vm_private_data = NULL;
1429 out:
1430 spin_unlock(&mapping->i_mmap_lock);
1431 return ret;
1432 }
1433
1434 /**
1435 * try_to_unmap - try to remove all page table mappings to a page
1436 * @page: the page to get unmapped
1437 * @flags: action and flags
1438 *
1439 * Tries to remove all the page table entries which are mapping this
1440 * page, used in the pageout path. Caller must hold the page lock.
1441 * Return values are:
1442 *
1443 * SWAP_SUCCESS - we succeeded in removing all mappings
1444 * SWAP_AGAIN - we missed a mapping, try again later
1445 * SWAP_FAIL - the page is unswappable
1446 * SWAP_MLOCK - page is mlocked.
1447 */
1448 int try_to_unmap(struct page *page, enum ttu_flags flags)
1449 {
1450 int ret;
1451
1452 BUG_ON(!PageLocked(page));
1453 VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
1454
1455 if (unlikely(PageKsm(page)))
1456 ret = try_to_unmap_ksm(page, flags);
1457 else if (PageAnon(page))
1458 ret = try_to_unmap_anon(page, flags);
1459 else
1460 ret = try_to_unmap_file(page, flags);
1461 if (ret != SWAP_MLOCK && !page_mapped(page))
1462 ret = SWAP_SUCCESS;
1463 return ret;
1464 }
1465
1466 /**
1467 * try_to_munlock - try to munlock a page
1468 * @page: the page to be munlocked
1469 *
1470 * Called from munlock code. Checks all of the VMAs mapping the page
1471 * to make sure nobody else has this page mlocked. The page will be
1472 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1473 *
1474 * Return values are:
1475 *
1476 * SWAP_AGAIN - no vma is holding page mlocked, or,
1477 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1478 * SWAP_FAIL - page cannot be located at present
1479 * SWAP_MLOCK - page is now mlocked.
1480 */
1481 int try_to_munlock(struct page *page)
1482 {
1483 VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1484
1485 if (unlikely(PageKsm(page)))
1486 return try_to_unmap_ksm(page, TTU_MUNLOCK);
1487 else if (PageAnon(page))
1488 return try_to_unmap_anon(page, TTU_MUNLOCK);
1489 else
1490 return try_to_unmap_file(page, TTU_MUNLOCK);
1491 }
1492
1493 void __put_anon_vma(struct anon_vma *anon_vma)
1494 {
1495 struct anon_vma *root = anon_vma->root;
1496
1497 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1498 anon_vma_free(root);
1499
1500 anon_vma_free(anon_vma);
1501 }
1502
1503 #ifdef CONFIG_MIGRATION
1504 /*
1505 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1506 * Called by migrate.c to remove migration ptes, but might be used more later.
1507 */
1508 static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1509 struct vm_area_struct *, unsigned long, void *), void *arg)
1510 {
1511 struct anon_vma *anon_vma;
1512 struct anon_vma_chain *avc;
1513 int ret = SWAP_AGAIN;
1514
1515 /*
1516 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1517 * because that depends on page_mapped(); but not all its usages
1518 * are holding mmap_sem. Users without mmap_sem are required to
1519 * take a reference count to prevent the anon_vma disappearing
1520 */
1521 anon_vma = page_anon_vma(page);
1522 if (!anon_vma)
1523 return ret;
1524 anon_vma_lock(anon_vma);
1525 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1526 struct vm_area_struct *vma = avc->vma;
1527 unsigned long address = vma_address(page, vma);
1528 if (address == -EFAULT)
1529 continue;
1530 ret = rmap_one(page, vma, address, arg);
1531 if (ret != SWAP_AGAIN)
1532 break;
1533 }
1534 anon_vma_unlock(anon_vma);
1535 return ret;
1536 }
1537
1538 static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1539 struct vm_area_struct *, unsigned long, void *), void *arg)
1540 {
1541 struct address_space *mapping = page->mapping;
1542 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1543 struct vm_area_struct *vma;
1544 struct prio_tree_iter iter;
1545 int ret = SWAP_AGAIN;
1546
1547 if (!mapping)
1548 return ret;
1549 spin_lock(&mapping->i_mmap_lock);
1550 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1551 unsigned long address = vma_address(page, vma);
1552 if (address == -EFAULT)
1553 continue;
1554 ret = rmap_one(page, vma, address, arg);
1555 if (ret != SWAP_AGAIN)
1556 break;
1557 }
1558 /*
1559 * No nonlinear handling: being always shared, nonlinear vmas
1560 * never contain migration ptes. Decide what to do about this
1561 * limitation to linear when we need rmap_walk() on nonlinear.
1562 */
1563 spin_unlock(&mapping->i_mmap_lock);
1564 return ret;
1565 }
1566
1567 int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1568 struct vm_area_struct *, unsigned long, void *), void *arg)
1569 {
1570 VM_BUG_ON(!PageLocked(page));
1571
1572 if (unlikely(PageKsm(page)))
1573 return rmap_walk_ksm(page, rmap_one, arg);
1574 else if (PageAnon(page))
1575 return rmap_walk_anon(page, rmap_one, arg);
1576 else
1577 return rmap_walk_file(page, rmap_one, arg);
1578 }
1579 #endif /* CONFIG_MIGRATION */
1580
1581 #ifdef CONFIG_HUGETLB_PAGE
1582 /*
1583 * The following three functions are for anonymous (private mapped) hugepages.
1584 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1585 * and no lru code, because we handle hugepages differently from common pages.
1586 */
1587 static void __hugepage_set_anon_rmap(struct page *page,
1588 struct vm_area_struct *vma, unsigned long address, int exclusive)
1589 {
1590 struct anon_vma *anon_vma = vma->anon_vma;
1591
1592 BUG_ON(!anon_vma);
1593
1594 if (PageAnon(page))
1595 return;
1596 if (!exclusive)
1597 anon_vma = anon_vma->root;
1598
1599 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1600 page->mapping = (struct address_space *) anon_vma;
1601 page->index = linear_page_index(vma, address);
1602 }
1603
1604 void hugepage_add_anon_rmap(struct page *page,
1605 struct vm_area_struct *vma, unsigned long address)
1606 {
1607 struct anon_vma *anon_vma = vma->anon_vma;
1608 int first;
1609
1610 BUG_ON(!PageLocked(page));
1611 BUG_ON(!anon_vma);
1612 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1613 first = atomic_inc_and_test(&page->_mapcount);
1614 if (first)
1615 __hugepage_set_anon_rmap(page, vma, address, 0);
1616 }
1617
1618 void hugepage_add_new_anon_rmap(struct page *page,
1619 struct vm_area_struct *vma, unsigned long address)
1620 {
1621 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1622 atomic_set(&page->_mapcount, 0);
1623 __hugepage_set_anon_rmap(page, vma, address, 1);
1624 }
1625 #endif /* CONFIG_HUGETLB_PAGE */
This page took 0.100363 seconds and 6 git commands to generate.