s390: KVM preparation: host memory management changes for s390 kvm
[deliverable/linux.git] / mm / rmap.c
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004
18 */
19
20 /*
21 * Lock ordering in mm:
22 *
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * inode->i_alloc_sem (vmtruncate_range)
25 * mm->mmap_sem
26 * page->flags PG_locked (lock_page)
27 * mapping->i_mmap_lock
28 * anon_vma->lock
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * inode_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within inode_lock in __sync_single_inode)
39 */
40
41 #include <linux/mm.h>
42 #include <linux/pagemap.h>
43 #include <linux/swap.h>
44 #include <linux/swapops.h>
45 #include <linux/slab.h>
46 #include <linux/init.h>
47 #include <linux/rmap.h>
48 #include <linux/rcupdate.h>
49 #include <linux/module.h>
50 #include <linux/kallsyms.h>
51 #include <linux/memcontrol.h>
52
53 #include <asm/tlbflush.h>
54
55 struct kmem_cache *anon_vma_cachep;
56
57 /* This must be called under the mmap_sem. */
58 int anon_vma_prepare(struct vm_area_struct *vma)
59 {
60 struct anon_vma *anon_vma = vma->anon_vma;
61
62 might_sleep();
63 if (unlikely(!anon_vma)) {
64 struct mm_struct *mm = vma->vm_mm;
65 struct anon_vma *allocated, *locked;
66
67 anon_vma = find_mergeable_anon_vma(vma);
68 if (anon_vma) {
69 allocated = NULL;
70 locked = anon_vma;
71 spin_lock(&locked->lock);
72 } else {
73 anon_vma = anon_vma_alloc();
74 if (unlikely(!anon_vma))
75 return -ENOMEM;
76 allocated = anon_vma;
77 locked = NULL;
78 }
79
80 /* page_table_lock to protect against threads */
81 spin_lock(&mm->page_table_lock);
82 if (likely(!vma->anon_vma)) {
83 vma->anon_vma = anon_vma;
84 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
85 allocated = NULL;
86 }
87 spin_unlock(&mm->page_table_lock);
88
89 if (locked)
90 spin_unlock(&locked->lock);
91 if (unlikely(allocated))
92 anon_vma_free(allocated);
93 }
94 return 0;
95 }
96
97 void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
98 {
99 BUG_ON(vma->anon_vma != next->anon_vma);
100 list_del(&next->anon_vma_node);
101 }
102
103 void __anon_vma_link(struct vm_area_struct *vma)
104 {
105 struct anon_vma *anon_vma = vma->anon_vma;
106
107 if (anon_vma)
108 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
109 }
110
111 void anon_vma_link(struct vm_area_struct *vma)
112 {
113 struct anon_vma *anon_vma = vma->anon_vma;
114
115 if (anon_vma) {
116 spin_lock(&anon_vma->lock);
117 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
118 spin_unlock(&anon_vma->lock);
119 }
120 }
121
122 void anon_vma_unlink(struct vm_area_struct *vma)
123 {
124 struct anon_vma *anon_vma = vma->anon_vma;
125 int empty;
126
127 if (!anon_vma)
128 return;
129
130 spin_lock(&anon_vma->lock);
131 list_del(&vma->anon_vma_node);
132
133 /* We must garbage collect the anon_vma if it's empty */
134 empty = list_empty(&anon_vma->head);
135 spin_unlock(&anon_vma->lock);
136
137 if (empty)
138 anon_vma_free(anon_vma);
139 }
140
141 static void anon_vma_ctor(struct kmem_cache *cachep, void *data)
142 {
143 struct anon_vma *anon_vma = data;
144
145 spin_lock_init(&anon_vma->lock);
146 INIT_LIST_HEAD(&anon_vma->head);
147 }
148
149 void __init anon_vma_init(void)
150 {
151 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
152 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
153 }
154
155 /*
156 * Getting a lock on a stable anon_vma from a page off the LRU is
157 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
158 */
159 static struct anon_vma *page_lock_anon_vma(struct page *page)
160 {
161 struct anon_vma *anon_vma;
162 unsigned long anon_mapping;
163
164 rcu_read_lock();
165 anon_mapping = (unsigned long) page->mapping;
166 if (!(anon_mapping & PAGE_MAPPING_ANON))
167 goto out;
168 if (!page_mapped(page))
169 goto out;
170
171 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
172 spin_lock(&anon_vma->lock);
173 return anon_vma;
174 out:
175 rcu_read_unlock();
176 return NULL;
177 }
178
179 static void page_unlock_anon_vma(struct anon_vma *anon_vma)
180 {
181 spin_unlock(&anon_vma->lock);
182 rcu_read_unlock();
183 }
184
185 /*
186 * At what user virtual address is page expected in @vma?
187 * Returns virtual address or -EFAULT if page's index/offset is not
188 * within the range mapped the @vma.
189 */
190 static inline unsigned long
191 vma_address(struct page *page, struct vm_area_struct *vma)
192 {
193 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
194 unsigned long address;
195
196 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
197 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
198 /* page should be within @vma mapping range */
199 return -EFAULT;
200 }
201 return address;
202 }
203
204 /*
205 * At what user virtual address is page expected in vma? checking that the
206 * page matches the vma: currently only used on anon pages, by unuse_vma;
207 */
208 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
209 {
210 if (PageAnon(page)) {
211 if ((void *)vma->anon_vma !=
212 (void *)page->mapping - PAGE_MAPPING_ANON)
213 return -EFAULT;
214 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
215 if (!vma->vm_file ||
216 vma->vm_file->f_mapping != page->mapping)
217 return -EFAULT;
218 } else
219 return -EFAULT;
220 return vma_address(page, vma);
221 }
222
223 /*
224 * Check that @page is mapped at @address into @mm.
225 *
226 * On success returns with pte mapped and locked.
227 */
228 pte_t *page_check_address(struct page *page, struct mm_struct *mm,
229 unsigned long address, spinlock_t **ptlp)
230 {
231 pgd_t *pgd;
232 pud_t *pud;
233 pmd_t *pmd;
234 pte_t *pte;
235 spinlock_t *ptl;
236
237 pgd = pgd_offset(mm, address);
238 if (!pgd_present(*pgd))
239 return NULL;
240
241 pud = pud_offset(pgd, address);
242 if (!pud_present(*pud))
243 return NULL;
244
245 pmd = pmd_offset(pud, address);
246 if (!pmd_present(*pmd))
247 return NULL;
248
249 pte = pte_offset_map(pmd, address);
250 /* Make a quick check before getting the lock */
251 if (!pte_present(*pte)) {
252 pte_unmap(pte);
253 return NULL;
254 }
255
256 ptl = pte_lockptr(mm, pmd);
257 spin_lock(ptl);
258 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
259 *ptlp = ptl;
260 return pte;
261 }
262 pte_unmap_unlock(pte, ptl);
263 return NULL;
264 }
265
266 /*
267 * Subfunctions of page_referenced: page_referenced_one called
268 * repeatedly from either page_referenced_anon or page_referenced_file.
269 */
270 static int page_referenced_one(struct page *page,
271 struct vm_area_struct *vma, unsigned int *mapcount)
272 {
273 struct mm_struct *mm = vma->vm_mm;
274 unsigned long address;
275 pte_t *pte;
276 spinlock_t *ptl;
277 int referenced = 0;
278
279 address = vma_address(page, vma);
280 if (address == -EFAULT)
281 goto out;
282
283 pte = page_check_address(page, mm, address, &ptl);
284 if (!pte)
285 goto out;
286
287 if (vma->vm_flags & VM_LOCKED) {
288 referenced++;
289 *mapcount = 1; /* break early from loop */
290 } else if (ptep_clear_flush_young(vma, address, pte))
291 referenced++;
292
293 /* Pretend the page is referenced if the task has the
294 swap token and is in the middle of a page fault. */
295 if (mm != current->mm && has_swap_token(mm) &&
296 rwsem_is_locked(&mm->mmap_sem))
297 referenced++;
298
299 (*mapcount)--;
300 pte_unmap_unlock(pte, ptl);
301 out:
302 return referenced;
303 }
304
305 static int page_referenced_anon(struct page *page,
306 struct mem_cgroup *mem_cont)
307 {
308 unsigned int mapcount;
309 struct anon_vma *anon_vma;
310 struct vm_area_struct *vma;
311 int referenced = 0;
312
313 anon_vma = page_lock_anon_vma(page);
314 if (!anon_vma)
315 return referenced;
316
317 mapcount = page_mapcount(page);
318 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
319 /*
320 * If we are reclaiming on behalf of a cgroup, skip
321 * counting on behalf of references from different
322 * cgroups
323 */
324 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
325 continue;
326 referenced += page_referenced_one(page, vma, &mapcount);
327 if (!mapcount)
328 break;
329 }
330
331 page_unlock_anon_vma(anon_vma);
332 return referenced;
333 }
334
335 /**
336 * page_referenced_file - referenced check for object-based rmap
337 * @page: the page we're checking references on.
338 * @mem_cont: target memory controller
339 *
340 * For an object-based mapped page, find all the places it is mapped and
341 * check/clear the referenced flag. This is done by following the page->mapping
342 * pointer, then walking the chain of vmas it holds. It returns the number
343 * of references it found.
344 *
345 * This function is only called from page_referenced for object-based pages.
346 */
347 static int page_referenced_file(struct page *page,
348 struct mem_cgroup *mem_cont)
349 {
350 unsigned int mapcount;
351 struct address_space *mapping = page->mapping;
352 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
353 struct vm_area_struct *vma;
354 struct prio_tree_iter iter;
355 int referenced = 0;
356
357 /*
358 * The caller's checks on page->mapping and !PageAnon have made
359 * sure that this is a file page: the check for page->mapping
360 * excludes the case just before it gets set on an anon page.
361 */
362 BUG_ON(PageAnon(page));
363
364 /*
365 * The page lock not only makes sure that page->mapping cannot
366 * suddenly be NULLified by truncation, it makes sure that the
367 * structure at mapping cannot be freed and reused yet,
368 * so we can safely take mapping->i_mmap_lock.
369 */
370 BUG_ON(!PageLocked(page));
371
372 spin_lock(&mapping->i_mmap_lock);
373
374 /*
375 * i_mmap_lock does not stabilize mapcount at all, but mapcount
376 * is more likely to be accurate if we note it after spinning.
377 */
378 mapcount = page_mapcount(page);
379
380 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
381 /*
382 * If we are reclaiming on behalf of a cgroup, skip
383 * counting on behalf of references from different
384 * cgroups
385 */
386 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
387 continue;
388 if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE))
389 == (VM_LOCKED|VM_MAYSHARE)) {
390 referenced++;
391 break;
392 }
393 referenced += page_referenced_one(page, vma, &mapcount);
394 if (!mapcount)
395 break;
396 }
397
398 spin_unlock(&mapping->i_mmap_lock);
399 return referenced;
400 }
401
402 /**
403 * page_referenced - test if the page was referenced
404 * @page: the page to test
405 * @is_locked: caller holds lock on the page
406 * @mem_cont: target memory controller
407 *
408 * Quick test_and_clear_referenced for all mappings to a page,
409 * returns the number of ptes which referenced the page.
410 */
411 int page_referenced(struct page *page, int is_locked,
412 struct mem_cgroup *mem_cont)
413 {
414 int referenced = 0;
415
416 if (TestClearPageReferenced(page))
417 referenced++;
418
419 if (page_mapped(page) && page->mapping) {
420 if (PageAnon(page))
421 referenced += page_referenced_anon(page, mem_cont);
422 else if (is_locked)
423 referenced += page_referenced_file(page, mem_cont);
424 else if (TestSetPageLocked(page))
425 referenced++;
426 else {
427 if (page->mapping)
428 referenced +=
429 page_referenced_file(page, mem_cont);
430 unlock_page(page);
431 }
432 }
433
434 if (page_test_and_clear_young(page))
435 referenced++;
436
437 return referenced;
438 }
439
440 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma)
441 {
442 struct mm_struct *mm = vma->vm_mm;
443 unsigned long address;
444 pte_t *pte;
445 spinlock_t *ptl;
446 int ret = 0;
447
448 address = vma_address(page, vma);
449 if (address == -EFAULT)
450 goto out;
451
452 pte = page_check_address(page, mm, address, &ptl);
453 if (!pte)
454 goto out;
455
456 if (pte_dirty(*pte) || pte_write(*pte)) {
457 pte_t entry;
458
459 flush_cache_page(vma, address, pte_pfn(*pte));
460 entry = ptep_clear_flush(vma, address, pte);
461 entry = pte_wrprotect(entry);
462 entry = pte_mkclean(entry);
463 set_pte_at(mm, address, pte, entry);
464 ret = 1;
465 }
466
467 pte_unmap_unlock(pte, ptl);
468 out:
469 return ret;
470 }
471
472 static int page_mkclean_file(struct address_space *mapping, struct page *page)
473 {
474 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
475 struct vm_area_struct *vma;
476 struct prio_tree_iter iter;
477 int ret = 0;
478
479 BUG_ON(PageAnon(page));
480
481 spin_lock(&mapping->i_mmap_lock);
482 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
483 if (vma->vm_flags & VM_SHARED)
484 ret += page_mkclean_one(page, vma);
485 }
486 spin_unlock(&mapping->i_mmap_lock);
487 return ret;
488 }
489
490 int page_mkclean(struct page *page)
491 {
492 int ret = 0;
493
494 BUG_ON(!PageLocked(page));
495
496 if (page_mapped(page)) {
497 struct address_space *mapping = page_mapping(page);
498 if (mapping) {
499 ret = page_mkclean_file(mapping, page);
500 if (page_test_dirty(page)) {
501 page_clear_dirty(page);
502 ret = 1;
503 }
504 }
505 }
506
507 return ret;
508 }
509 EXPORT_SYMBOL_GPL(page_mkclean);
510
511 /**
512 * __page_set_anon_rmap - setup new anonymous rmap
513 * @page: the page to add the mapping to
514 * @vma: the vm area in which the mapping is added
515 * @address: the user virtual address mapped
516 */
517 static void __page_set_anon_rmap(struct page *page,
518 struct vm_area_struct *vma, unsigned long address)
519 {
520 struct anon_vma *anon_vma = vma->anon_vma;
521
522 BUG_ON(!anon_vma);
523 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
524 page->mapping = (struct address_space *) anon_vma;
525
526 page->index = linear_page_index(vma, address);
527
528 /*
529 * nr_mapped state can be updated without turning off
530 * interrupts because it is not modified via interrupt.
531 */
532 __inc_zone_page_state(page, NR_ANON_PAGES);
533 }
534
535 /**
536 * __page_check_anon_rmap - sanity check anonymous rmap addition
537 * @page: the page to add the mapping to
538 * @vma: the vm area in which the mapping is added
539 * @address: the user virtual address mapped
540 */
541 static void __page_check_anon_rmap(struct page *page,
542 struct vm_area_struct *vma, unsigned long address)
543 {
544 #ifdef CONFIG_DEBUG_VM
545 /*
546 * The page's anon-rmap details (mapping and index) are guaranteed to
547 * be set up correctly at this point.
548 *
549 * We have exclusion against page_add_anon_rmap because the caller
550 * always holds the page locked, except if called from page_dup_rmap,
551 * in which case the page is already known to be setup.
552 *
553 * We have exclusion against page_add_new_anon_rmap because those pages
554 * are initially only visible via the pagetables, and the pte is locked
555 * over the call to page_add_new_anon_rmap.
556 */
557 struct anon_vma *anon_vma = vma->anon_vma;
558 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
559 BUG_ON(page->mapping != (struct address_space *)anon_vma);
560 BUG_ON(page->index != linear_page_index(vma, address));
561 #endif
562 }
563
564 /**
565 * page_add_anon_rmap - add pte mapping to an anonymous page
566 * @page: the page to add the mapping to
567 * @vma: the vm area in which the mapping is added
568 * @address: the user virtual address mapped
569 *
570 * The caller needs to hold the pte lock and the page must be locked.
571 */
572 void page_add_anon_rmap(struct page *page,
573 struct vm_area_struct *vma, unsigned long address)
574 {
575 VM_BUG_ON(!PageLocked(page));
576 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
577 if (atomic_inc_and_test(&page->_mapcount))
578 __page_set_anon_rmap(page, vma, address);
579 else {
580 __page_check_anon_rmap(page, vma, address);
581 /*
582 * We unconditionally charged during prepare, we uncharge here
583 * This takes care of balancing the reference counts
584 */
585 mem_cgroup_uncharge_page(page);
586 }
587 }
588
589 /**
590 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
591 * @page: the page to add the mapping to
592 * @vma: the vm area in which the mapping is added
593 * @address: the user virtual address mapped
594 *
595 * Same as page_add_anon_rmap but must only be called on *new* pages.
596 * This means the inc-and-test can be bypassed.
597 * Page does not have to be locked.
598 */
599 void page_add_new_anon_rmap(struct page *page,
600 struct vm_area_struct *vma, unsigned long address)
601 {
602 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
603 atomic_set(&page->_mapcount, 0); /* elevate count by 1 (starts at -1) */
604 __page_set_anon_rmap(page, vma, address);
605 }
606
607 /**
608 * page_add_file_rmap - add pte mapping to a file page
609 * @page: the page to add the mapping to
610 *
611 * The caller needs to hold the pte lock.
612 */
613 void page_add_file_rmap(struct page *page)
614 {
615 if (atomic_inc_and_test(&page->_mapcount))
616 __inc_zone_page_state(page, NR_FILE_MAPPED);
617 else
618 /*
619 * We unconditionally charged during prepare, we uncharge here
620 * This takes care of balancing the reference counts
621 */
622 mem_cgroup_uncharge_page(page);
623 }
624
625 #ifdef CONFIG_DEBUG_VM
626 /**
627 * page_dup_rmap - duplicate pte mapping to a page
628 * @page: the page to add the mapping to
629 * @vma: the vm area being duplicated
630 * @address: the user virtual address mapped
631 *
632 * For copy_page_range only: minimal extract from page_add_file_rmap /
633 * page_add_anon_rmap, avoiding unnecessary tests (already checked) so it's
634 * quicker.
635 *
636 * The caller needs to hold the pte lock.
637 */
638 void page_dup_rmap(struct page *page, struct vm_area_struct *vma, unsigned long address)
639 {
640 BUG_ON(page_mapcount(page) == 0);
641 if (PageAnon(page))
642 __page_check_anon_rmap(page, vma, address);
643 atomic_inc(&page->_mapcount);
644 }
645 #endif
646
647 /**
648 * page_remove_rmap - take down pte mapping from a page
649 * @page: page to remove mapping from
650 * @vma: the vm area in which the mapping is removed
651 *
652 * The caller needs to hold the pte lock.
653 */
654 void page_remove_rmap(struct page *page, struct vm_area_struct *vma)
655 {
656 if (atomic_add_negative(-1, &page->_mapcount)) {
657 if (unlikely(page_mapcount(page) < 0)) {
658 printk (KERN_EMERG "Eeek! page_mapcount(page) went negative! (%d)\n", page_mapcount(page));
659 printk (KERN_EMERG " page pfn = %lx\n", page_to_pfn(page));
660 printk (KERN_EMERG " page->flags = %lx\n", page->flags);
661 printk (KERN_EMERG " page->count = %x\n", page_count(page));
662 printk (KERN_EMERG " page->mapping = %p\n", page->mapping);
663 print_symbol (KERN_EMERG " vma->vm_ops = %s\n", (unsigned long)vma->vm_ops);
664 if (vma->vm_ops) {
665 print_symbol (KERN_EMERG " vma->vm_ops->nopage = %s\n", (unsigned long)vma->vm_ops->nopage);
666 print_symbol (KERN_EMERG " vma->vm_ops->fault = %s\n", (unsigned long)vma->vm_ops->fault);
667 }
668 if (vma->vm_file && vma->vm_file->f_op)
669 print_symbol (KERN_EMERG " vma->vm_file->f_op->mmap = %s\n", (unsigned long)vma->vm_file->f_op->mmap);
670 BUG();
671 }
672
673 /*
674 * It would be tidy to reset the PageAnon mapping here,
675 * but that might overwrite a racing page_add_anon_rmap
676 * which increments mapcount after us but sets mapping
677 * before us: so leave the reset to free_hot_cold_page,
678 * and remember that it's only reliable while mapped.
679 * Leaving it set also helps swapoff to reinstate ptes
680 * faster for those pages still in swapcache.
681 */
682 if (page_test_dirty(page)) {
683 page_clear_dirty(page);
684 set_page_dirty(page);
685 }
686 mem_cgroup_uncharge_page(page);
687
688 __dec_zone_page_state(page,
689 PageAnon(page) ? NR_ANON_PAGES : NR_FILE_MAPPED);
690 }
691 }
692
693 /*
694 * Subfunctions of try_to_unmap: try_to_unmap_one called
695 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
696 */
697 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
698 int migration)
699 {
700 struct mm_struct *mm = vma->vm_mm;
701 unsigned long address;
702 pte_t *pte;
703 pte_t pteval;
704 spinlock_t *ptl;
705 int ret = SWAP_AGAIN;
706
707 address = vma_address(page, vma);
708 if (address == -EFAULT)
709 goto out;
710
711 pte = page_check_address(page, mm, address, &ptl);
712 if (!pte)
713 goto out;
714
715 /*
716 * If the page is mlock()d, we cannot swap it out.
717 * If it's recently referenced (perhaps page_referenced
718 * skipped over this mm) then we should reactivate it.
719 */
720 if (!migration && ((vma->vm_flags & VM_LOCKED) ||
721 (ptep_clear_flush_young(vma, address, pte)))) {
722 ret = SWAP_FAIL;
723 goto out_unmap;
724 }
725
726 /* Nuke the page table entry. */
727 flush_cache_page(vma, address, page_to_pfn(page));
728 pteval = ptep_clear_flush(vma, address, pte);
729
730 /* Move the dirty bit to the physical page now the pte is gone. */
731 if (pte_dirty(pteval))
732 set_page_dirty(page);
733
734 /* Update high watermark before we lower rss */
735 update_hiwater_rss(mm);
736
737 if (PageAnon(page)) {
738 swp_entry_t entry = { .val = page_private(page) };
739
740 if (PageSwapCache(page)) {
741 /*
742 * Store the swap location in the pte.
743 * See handle_pte_fault() ...
744 */
745 swap_duplicate(entry);
746 if (list_empty(&mm->mmlist)) {
747 spin_lock(&mmlist_lock);
748 if (list_empty(&mm->mmlist))
749 list_add(&mm->mmlist, &init_mm.mmlist);
750 spin_unlock(&mmlist_lock);
751 }
752 dec_mm_counter(mm, anon_rss);
753 #ifdef CONFIG_MIGRATION
754 } else {
755 /*
756 * Store the pfn of the page in a special migration
757 * pte. do_swap_page() will wait until the migration
758 * pte is removed and then restart fault handling.
759 */
760 BUG_ON(!migration);
761 entry = make_migration_entry(page, pte_write(pteval));
762 #endif
763 }
764 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
765 BUG_ON(pte_file(*pte));
766 } else
767 #ifdef CONFIG_MIGRATION
768 if (migration) {
769 /* Establish migration entry for a file page */
770 swp_entry_t entry;
771 entry = make_migration_entry(page, pte_write(pteval));
772 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
773 } else
774 #endif
775 dec_mm_counter(mm, file_rss);
776
777
778 page_remove_rmap(page, vma);
779 page_cache_release(page);
780
781 out_unmap:
782 pte_unmap_unlock(pte, ptl);
783 out:
784 return ret;
785 }
786
787 /*
788 * objrmap doesn't work for nonlinear VMAs because the assumption that
789 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
790 * Consequently, given a particular page and its ->index, we cannot locate the
791 * ptes which are mapping that page without an exhaustive linear search.
792 *
793 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
794 * maps the file to which the target page belongs. The ->vm_private_data field
795 * holds the current cursor into that scan. Successive searches will circulate
796 * around the vma's virtual address space.
797 *
798 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
799 * more scanning pressure is placed against them as well. Eventually pages
800 * will become fully unmapped and are eligible for eviction.
801 *
802 * For very sparsely populated VMAs this is a little inefficient - chances are
803 * there there won't be many ptes located within the scan cluster. In this case
804 * maybe we could scan further - to the end of the pte page, perhaps.
805 */
806 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
807 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
808
809 static void try_to_unmap_cluster(unsigned long cursor,
810 unsigned int *mapcount, struct vm_area_struct *vma)
811 {
812 struct mm_struct *mm = vma->vm_mm;
813 pgd_t *pgd;
814 pud_t *pud;
815 pmd_t *pmd;
816 pte_t *pte;
817 pte_t pteval;
818 spinlock_t *ptl;
819 struct page *page;
820 unsigned long address;
821 unsigned long end;
822
823 address = (vma->vm_start + cursor) & CLUSTER_MASK;
824 end = address + CLUSTER_SIZE;
825 if (address < vma->vm_start)
826 address = vma->vm_start;
827 if (end > vma->vm_end)
828 end = vma->vm_end;
829
830 pgd = pgd_offset(mm, address);
831 if (!pgd_present(*pgd))
832 return;
833
834 pud = pud_offset(pgd, address);
835 if (!pud_present(*pud))
836 return;
837
838 pmd = pmd_offset(pud, address);
839 if (!pmd_present(*pmd))
840 return;
841
842 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
843
844 /* Update high watermark before we lower rss */
845 update_hiwater_rss(mm);
846
847 for (; address < end; pte++, address += PAGE_SIZE) {
848 if (!pte_present(*pte))
849 continue;
850 page = vm_normal_page(vma, address, *pte);
851 BUG_ON(!page || PageAnon(page));
852
853 if (ptep_clear_flush_young(vma, address, pte))
854 continue;
855
856 /* Nuke the page table entry. */
857 flush_cache_page(vma, address, pte_pfn(*pte));
858 pteval = ptep_clear_flush(vma, address, pte);
859
860 /* If nonlinear, store the file page offset in the pte. */
861 if (page->index != linear_page_index(vma, address))
862 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
863
864 /* Move the dirty bit to the physical page now the pte is gone. */
865 if (pte_dirty(pteval))
866 set_page_dirty(page);
867
868 page_remove_rmap(page, vma);
869 page_cache_release(page);
870 dec_mm_counter(mm, file_rss);
871 (*mapcount)--;
872 }
873 pte_unmap_unlock(pte - 1, ptl);
874 }
875
876 static int try_to_unmap_anon(struct page *page, int migration)
877 {
878 struct anon_vma *anon_vma;
879 struct vm_area_struct *vma;
880 int ret = SWAP_AGAIN;
881
882 anon_vma = page_lock_anon_vma(page);
883 if (!anon_vma)
884 return ret;
885
886 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
887 ret = try_to_unmap_one(page, vma, migration);
888 if (ret == SWAP_FAIL || !page_mapped(page))
889 break;
890 }
891
892 page_unlock_anon_vma(anon_vma);
893 return ret;
894 }
895
896 /**
897 * try_to_unmap_file - unmap file page using the object-based rmap method
898 * @page: the page to unmap
899 * @migration: migration flag
900 *
901 * Find all the mappings of a page using the mapping pointer and the vma chains
902 * contained in the address_space struct it points to.
903 *
904 * This function is only called from try_to_unmap for object-based pages.
905 */
906 static int try_to_unmap_file(struct page *page, int migration)
907 {
908 struct address_space *mapping = page->mapping;
909 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
910 struct vm_area_struct *vma;
911 struct prio_tree_iter iter;
912 int ret = SWAP_AGAIN;
913 unsigned long cursor;
914 unsigned long max_nl_cursor = 0;
915 unsigned long max_nl_size = 0;
916 unsigned int mapcount;
917
918 spin_lock(&mapping->i_mmap_lock);
919 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
920 ret = try_to_unmap_one(page, vma, migration);
921 if (ret == SWAP_FAIL || !page_mapped(page))
922 goto out;
923 }
924
925 if (list_empty(&mapping->i_mmap_nonlinear))
926 goto out;
927
928 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
929 shared.vm_set.list) {
930 if ((vma->vm_flags & VM_LOCKED) && !migration)
931 continue;
932 cursor = (unsigned long) vma->vm_private_data;
933 if (cursor > max_nl_cursor)
934 max_nl_cursor = cursor;
935 cursor = vma->vm_end - vma->vm_start;
936 if (cursor > max_nl_size)
937 max_nl_size = cursor;
938 }
939
940 if (max_nl_size == 0) { /* any nonlinears locked or reserved */
941 ret = SWAP_FAIL;
942 goto out;
943 }
944
945 /*
946 * We don't try to search for this page in the nonlinear vmas,
947 * and page_referenced wouldn't have found it anyway. Instead
948 * just walk the nonlinear vmas trying to age and unmap some.
949 * The mapcount of the page we came in with is irrelevant,
950 * but even so use it as a guide to how hard we should try?
951 */
952 mapcount = page_mapcount(page);
953 if (!mapcount)
954 goto out;
955 cond_resched_lock(&mapping->i_mmap_lock);
956
957 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
958 if (max_nl_cursor == 0)
959 max_nl_cursor = CLUSTER_SIZE;
960
961 do {
962 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
963 shared.vm_set.list) {
964 if ((vma->vm_flags & VM_LOCKED) && !migration)
965 continue;
966 cursor = (unsigned long) vma->vm_private_data;
967 while ( cursor < max_nl_cursor &&
968 cursor < vma->vm_end - vma->vm_start) {
969 try_to_unmap_cluster(cursor, &mapcount, vma);
970 cursor += CLUSTER_SIZE;
971 vma->vm_private_data = (void *) cursor;
972 if ((int)mapcount <= 0)
973 goto out;
974 }
975 vma->vm_private_data = (void *) max_nl_cursor;
976 }
977 cond_resched_lock(&mapping->i_mmap_lock);
978 max_nl_cursor += CLUSTER_SIZE;
979 } while (max_nl_cursor <= max_nl_size);
980
981 /*
982 * Don't loop forever (perhaps all the remaining pages are
983 * in locked vmas). Reset cursor on all unreserved nonlinear
984 * vmas, now forgetting on which ones it had fallen behind.
985 */
986 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
987 vma->vm_private_data = NULL;
988 out:
989 spin_unlock(&mapping->i_mmap_lock);
990 return ret;
991 }
992
993 /**
994 * try_to_unmap - try to remove all page table mappings to a page
995 * @page: the page to get unmapped
996 * @migration: migration flag
997 *
998 * Tries to remove all the page table entries which are mapping this
999 * page, used in the pageout path. Caller must hold the page lock.
1000 * Return values are:
1001 *
1002 * SWAP_SUCCESS - we succeeded in removing all mappings
1003 * SWAP_AGAIN - we missed a mapping, try again later
1004 * SWAP_FAIL - the page is unswappable
1005 */
1006 int try_to_unmap(struct page *page, int migration)
1007 {
1008 int ret;
1009
1010 BUG_ON(!PageLocked(page));
1011
1012 if (PageAnon(page))
1013 ret = try_to_unmap_anon(page, migration);
1014 else
1015 ret = try_to_unmap_file(page, migration);
1016
1017 if (!page_mapped(page))
1018 ret = SWAP_SUCCESS;
1019 return ret;
1020 }
1021
This page took 0.05753 seconds and 6 git commands to generate.