[PATCH] mm: more rmap debugging
[deliverable/linux.git] / mm / rmap.c
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004
18 */
19
20 /*
21 * Lock ordering in mm:
22 *
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * inode->i_alloc_sem (vmtruncate_range)
25 * mm->mmap_sem
26 * page->flags PG_locked (lock_page)
27 * mapping->i_mmap_lock
28 * anon_vma->lock
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * inode_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within inode_lock in __sync_single_inode)
39 */
40
41 #include <linux/mm.h>
42 #include <linux/pagemap.h>
43 #include <linux/swap.h>
44 #include <linux/swapops.h>
45 #include <linux/slab.h>
46 #include <linux/init.h>
47 #include <linux/rmap.h>
48 #include <linux/rcupdate.h>
49 #include <linux/module.h>
50 #include <linux/kallsyms.h>
51
52 #include <asm/tlbflush.h>
53
54 struct kmem_cache *anon_vma_cachep;
55
56 static inline void validate_anon_vma(struct vm_area_struct *find_vma)
57 {
58 #ifdef CONFIG_DEBUG_VM
59 struct anon_vma *anon_vma = find_vma->anon_vma;
60 struct vm_area_struct *vma;
61 unsigned int mapcount = 0;
62 int found = 0;
63
64 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
65 mapcount++;
66 BUG_ON(mapcount > 100000);
67 if (vma == find_vma)
68 found = 1;
69 }
70 BUG_ON(!found);
71 #endif
72 }
73
74 /* This must be called under the mmap_sem. */
75 int anon_vma_prepare(struct vm_area_struct *vma)
76 {
77 struct anon_vma *anon_vma = vma->anon_vma;
78
79 might_sleep();
80 if (unlikely(!anon_vma)) {
81 struct mm_struct *mm = vma->vm_mm;
82 struct anon_vma *allocated, *locked;
83
84 anon_vma = find_mergeable_anon_vma(vma);
85 if (anon_vma) {
86 allocated = NULL;
87 locked = anon_vma;
88 spin_lock(&locked->lock);
89 } else {
90 anon_vma = anon_vma_alloc();
91 if (unlikely(!anon_vma))
92 return -ENOMEM;
93 allocated = anon_vma;
94 locked = NULL;
95 }
96
97 /* page_table_lock to protect against threads */
98 spin_lock(&mm->page_table_lock);
99 if (likely(!vma->anon_vma)) {
100 vma->anon_vma = anon_vma;
101 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
102 allocated = NULL;
103 }
104 spin_unlock(&mm->page_table_lock);
105
106 if (locked)
107 spin_unlock(&locked->lock);
108 if (unlikely(allocated))
109 anon_vma_free(allocated);
110 }
111 return 0;
112 }
113
114 void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
115 {
116 BUG_ON(vma->anon_vma != next->anon_vma);
117 list_del(&next->anon_vma_node);
118 }
119
120 void __anon_vma_link(struct vm_area_struct *vma)
121 {
122 struct anon_vma *anon_vma = vma->anon_vma;
123
124 if (anon_vma) {
125 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
126 validate_anon_vma(vma);
127 }
128 }
129
130 void anon_vma_link(struct vm_area_struct *vma)
131 {
132 struct anon_vma *anon_vma = vma->anon_vma;
133
134 if (anon_vma) {
135 spin_lock(&anon_vma->lock);
136 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
137 validate_anon_vma(vma);
138 spin_unlock(&anon_vma->lock);
139 }
140 }
141
142 void anon_vma_unlink(struct vm_area_struct *vma)
143 {
144 struct anon_vma *anon_vma = vma->anon_vma;
145 int empty;
146
147 if (!anon_vma)
148 return;
149
150 spin_lock(&anon_vma->lock);
151 validate_anon_vma(vma);
152 list_del(&vma->anon_vma_node);
153
154 /* We must garbage collect the anon_vma if it's empty */
155 empty = list_empty(&anon_vma->head);
156 spin_unlock(&anon_vma->lock);
157
158 if (empty)
159 anon_vma_free(anon_vma);
160 }
161
162 static void anon_vma_ctor(void *data, struct kmem_cache *cachep,
163 unsigned long flags)
164 {
165 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
166 SLAB_CTOR_CONSTRUCTOR) {
167 struct anon_vma *anon_vma = data;
168
169 spin_lock_init(&anon_vma->lock);
170 INIT_LIST_HEAD(&anon_vma->head);
171 }
172 }
173
174 void __init anon_vma_init(void)
175 {
176 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
177 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor, NULL);
178 }
179
180 /*
181 * Getting a lock on a stable anon_vma from a page off the LRU is
182 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
183 */
184 static struct anon_vma *page_lock_anon_vma(struct page *page)
185 {
186 struct anon_vma *anon_vma = NULL;
187 unsigned long anon_mapping;
188
189 rcu_read_lock();
190 anon_mapping = (unsigned long) page->mapping;
191 if (!(anon_mapping & PAGE_MAPPING_ANON))
192 goto out;
193 if (!page_mapped(page))
194 goto out;
195
196 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
197 spin_lock(&anon_vma->lock);
198 out:
199 rcu_read_unlock();
200 return anon_vma;
201 }
202
203 /*
204 * At what user virtual address is page expected in vma?
205 */
206 static inline unsigned long
207 vma_address(struct page *page, struct vm_area_struct *vma)
208 {
209 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
210 unsigned long address;
211
212 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
213 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
214 /* page should be within any vma from prio_tree_next */
215 BUG_ON(!PageAnon(page));
216 return -EFAULT;
217 }
218 return address;
219 }
220
221 /*
222 * At what user virtual address is page expected in vma? checking that the
223 * page matches the vma: currently only used on anon pages, by unuse_vma;
224 */
225 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
226 {
227 if (PageAnon(page)) {
228 if ((void *)vma->anon_vma !=
229 (void *)page->mapping - PAGE_MAPPING_ANON)
230 return -EFAULT;
231 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
232 if (!vma->vm_file ||
233 vma->vm_file->f_mapping != page->mapping)
234 return -EFAULT;
235 } else
236 return -EFAULT;
237 return vma_address(page, vma);
238 }
239
240 /*
241 * Check that @page is mapped at @address into @mm.
242 *
243 * On success returns with pte mapped and locked.
244 */
245 pte_t *page_check_address(struct page *page, struct mm_struct *mm,
246 unsigned long address, spinlock_t **ptlp)
247 {
248 pgd_t *pgd;
249 pud_t *pud;
250 pmd_t *pmd;
251 pte_t *pte;
252 spinlock_t *ptl;
253
254 pgd = pgd_offset(mm, address);
255 if (!pgd_present(*pgd))
256 return NULL;
257
258 pud = pud_offset(pgd, address);
259 if (!pud_present(*pud))
260 return NULL;
261
262 pmd = pmd_offset(pud, address);
263 if (!pmd_present(*pmd))
264 return NULL;
265
266 pte = pte_offset_map(pmd, address);
267 /* Make a quick check before getting the lock */
268 if (!pte_present(*pte)) {
269 pte_unmap(pte);
270 return NULL;
271 }
272
273 ptl = pte_lockptr(mm, pmd);
274 spin_lock(ptl);
275 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
276 *ptlp = ptl;
277 return pte;
278 }
279 pte_unmap_unlock(pte, ptl);
280 return NULL;
281 }
282
283 /*
284 * Subfunctions of page_referenced: page_referenced_one called
285 * repeatedly from either page_referenced_anon or page_referenced_file.
286 */
287 static int page_referenced_one(struct page *page,
288 struct vm_area_struct *vma, unsigned int *mapcount)
289 {
290 struct mm_struct *mm = vma->vm_mm;
291 unsigned long address;
292 pte_t *pte;
293 spinlock_t *ptl;
294 int referenced = 0;
295
296 address = vma_address(page, vma);
297 if (address == -EFAULT)
298 goto out;
299
300 pte = page_check_address(page, mm, address, &ptl);
301 if (!pte)
302 goto out;
303
304 if (ptep_clear_flush_young(vma, address, pte))
305 referenced++;
306
307 /* Pretend the page is referenced if the task has the
308 swap token and is in the middle of a page fault. */
309 if (mm != current->mm && has_swap_token(mm) &&
310 rwsem_is_locked(&mm->mmap_sem))
311 referenced++;
312
313 (*mapcount)--;
314 pte_unmap_unlock(pte, ptl);
315 out:
316 return referenced;
317 }
318
319 static int page_referenced_anon(struct page *page)
320 {
321 unsigned int mapcount;
322 struct anon_vma *anon_vma;
323 struct vm_area_struct *vma;
324 int referenced = 0;
325
326 anon_vma = page_lock_anon_vma(page);
327 if (!anon_vma)
328 return referenced;
329
330 mapcount = page_mapcount(page);
331 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
332 referenced += page_referenced_one(page, vma, &mapcount);
333 if (!mapcount)
334 break;
335 }
336 spin_unlock(&anon_vma->lock);
337 return referenced;
338 }
339
340 /**
341 * page_referenced_file - referenced check for object-based rmap
342 * @page: the page we're checking references on.
343 *
344 * For an object-based mapped page, find all the places it is mapped and
345 * check/clear the referenced flag. This is done by following the page->mapping
346 * pointer, then walking the chain of vmas it holds. It returns the number
347 * of references it found.
348 *
349 * This function is only called from page_referenced for object-based pages.
350 */
351 static int page_referenced_file(struct page *page)
352 {
353 unsigned int mapcount;
354 struct address_space *mapping = page->mapping;
355 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
356 struct vm_area_struct *vma;
357 struct prio_tree_iter iter;
358 int referenced = 0;
359
360 /*
361 * The caller's checks on page->mapping and !PageAnon have made
362 * sure that this is a file page: the check for page->mapping
363 * excludes the case just before it gets set on an anon page.
364 */
365 BUG_ON(PageAnon(page));
366
367 /*
368 * The page lock not only makes sure that page->mapping cannot
369 * suddenly be NULLified by truncation, it makes sure that the
370 * structure at mapping cannot be freed and reused yet,
371 * so we can safely take mapping->i_mmap_lock.
372 */
373 BUG_ON(!PageLocked(page));
374
375 spin_lock(&mapping->i_mmap_lock);
376
377 /*
378 * i_mmap_lock does not stabilize mapcount at all, but mapcount
379 * is more likely to be accurate if we note it after spinning.
380 */
381 mapcount = page_mapcount(page);
382
383 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
384 if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE))
385 == (VM_LOCKED|VM_MAYSHARE)) {
386 referenced++;
387 break;
388 }
389 referenced += page_referenced_one(page, vma, &mapcount);
390 if (!mapcount)
391 break;
392 }
393
394 spin_unlock(&mapping->i_mmap_lock);
395 return referenced;
396 }
397
398 /**
399 * page_referenced - test if the page was referenced
400 * @page: the page to test
401 * @is_locked: caller holds lock on the page
402 *
403 * Quick test_and_clear_referenced for all mappings to a page,
404 * returns the number of ptes which referenced the page.
405 */
406 int page_referenced(struct page *page, int is_locked)
407 {
408 int referenced = 0;
409
410 if (page_test_and_clear_young(page))
411 referenced++;
412
413 if (TestClearPageReferenced(page))
414 referenced++;
415
416 if (page_mapped(page) && page->mapping) {
417 if (PageAnon(page))
418 referenced += page_referenced_anon(page);
419 else if (is_locked)
420 referenced += page_referenced_file(page);
421 else if (TestSetPageLocked(page))
422 referenced++;
423 else {
424 if (page->mapping)
425 referenced += page_referenced_file(page);
426 unlock_page(page);
427 }
428 }
429 return referenced;
430 }
431
432 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma)
433 {
434 struct mm_struct *mm = vma->vm_mm;
435 unsigned long address;
436 pte_t *pte, entry;
437 spinlock_t *ptl;
438 int ret = 0;
439
440 address = vma_address(page, vma);
441 if (address == -EFAULT)
442 goto out;
443
444 pte = page_check_address(page, mm, address, &ptl);
445 if (!pte)
446 goto out;
447
448 if (!pte_dirty(*pte) && !pte_write(*pte))
449 goto unlock;
450
451 entry = ptep_get_and_clear(mm, address, pte);
452 entry = pte_mkclean(entry);
453 entry = pte_wrprotect(entry);
454 ptep_establish(vma, address, pte, entry);
455 lazy_mmu_prot_update(entry);
456 ret = 1;
457
458 unlock:
459 pte_unmap_unlock(pte, ptl);
460 out:
461 return ret;
462 }
463
464 static int page_mkclean_file(struct address_space *mapping, struct page *page)
465 {
466 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
467 struct vm_area_struct *vma;
468 struct prio_tree_iter iter;
469 int ret = 0;
470
471 BUG_ON(PageAnon(page));
472
473 spin_lock(&mapping->i_mmap_lock);
474 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
475 if (vma->vm_flags & VM_SHARED)
476 ret += page_mkclean_one(page, vma);
477 }
478 spin_unlock(&mapping->i_mmap_lock);
479 return ret;
480 }
481
482 int page_mkclean(struct page *page)
483 {
484 int ret = 0;
485
486 BUG_ON(!PageLocked(page));
487
488 if (page_mapped(page)) {
489 struct address_space *mapping = page_mapping(page);
490 if (mapping)
491 ret = page_mkclean_file(mapping, page);
492 }
493
494 return ret;
495 }
496
497 /**
498 * page_set_anon_rmap - setup new anonymous rmap
499 * @page: the page to add the mapping to
500 * @vma: the vm area in which the mapping is added
501 * @address: the user virtual address mapped
502 */
503 static void __page_set_anon_rmap(struct page *page,
504 struct vm_area_struct *vma, unsigned long address)
505 {
506 struct anon_vma *anon_vma = vma->anon_vma;
507
508 BUG_ON(!anon_vma);
509 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
510 page->mapping = (struct address_space *) anon_vma;
511
512 page->index = linear_page_index(vma, address);
513
514 /*
515 * nr_mapped state can be updated without turning off
516 * interrupts because it is not modified via interrupt.
517 */
518 __inc_zone_page_state(page, NR_ANON_PAGES);
519 }
520
521 /**
522 * page_add_anon_rmap - add pte mapping to an anonymous page
523 * @page: the page to add the mapping to
524 * @vma: the vm area in which the mapping is added
525 * @address: the user virtual address mapped
526 *
527 * The caller needs to hold the pte lock.
528 */
529 void page_add_anon_rmap(struct page *page,
530 struct vm_area_struct *vma, unsigned long address)
531 {
532 if (atomic_inc_and_test(&page->_mapcount))
533 __page_set_anon_rmap(page, vma, address);
534 /* else checking page index and mapping is racy */
535 }
536
537 /*
538 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
539 * @page: the page to add the mapping to
540 * @vma: the vm area in which the mapping is added
541 * @address: the user virtual address mapped
542 *
543 * Same as page_add_anon_rmap but must only be called on *new* pages.
544 * This means the inc-and-test can be bypassed.
545 */
546 void page_add_new_anon_rmap(struct page *page,
547 struct vm_area_struct *vma, unsigned long address)
548 {
549 atomic_set(&page->_mapcount, 0); /* elevate count by 1 (starts at -1) */
550 __page_set_anon_rmap(page, vma, address);
551 }
552
553 /**
554 * page_add_file_rmap - add pte mapping to a file page
555 * @page: the page to add the mapping to
556 *
557 * The caller needs to hold the pte lock.
558 */
559 void page_add_file_rmap(struct page *page)
560 {
561 if (atomic_inc_and_test(&page->_mapcount))
562 __inc_zone_page_state(page, NR_FILE_MAPPED);
563 }
564
565 /**
566 * page_remove_rmap - take down pte mapping from a page
567 * @page: page to remove mapping from
568 *
569 * The caller needs to hold the pte lock.
570 */
571 void page_remove_rmap(struct page *page, struct vm_area_struct *vma)
572 {
573 if (atomic_add_negative(-1, &page->_mapcount)) {
574 if (unlikely(page_mapcount(page) < 0)) {
575 printk (KERN_EMERG "Eeek! page_mapcount(page) went negative! (%d)\n", page_mapcount(page));
576 printk (KERN_EMERG " page pfn = %lx\n", page_to_pfn(page));
577 printk (KERN_EMERG " page->flags = %lx\n", page->flags);
578 printk (KERN_EMERG " page->count = %x\n", page_count(page));
579 printk (KERN_EMERG " page->mapping = %p\n", page->mapping);
580 print_symbol (KERN_EMERG " vma->vm_ops = %s\n", (unsigned long)vma->vm_ops);
581 if (vma->vm_ops)
582 print_symbol (KERN_EMERG " vma->vm_ops->nopage = %s\n", (unsigned long)vma->vm_ops->nopage);
583 if (vma->vm_file && vma->vm_file->f_op)
584 print_symbol (KERN_EMERG " vma->vm_file->f_op->mmap = %s\n", (unsigned long)vma->vm_file->f_op->mmap);
585 BUG();
586 }
587
588 /*
589 * It would be tidy to reset the PageAnon mapping here,
590 * but that might overwrite a racing page_add_anon_rmap
591 * which increments mapcount after us but sets mapping
592 * before us: so leave the reset to free_hot_cold_page,
593 * and remember that it's only reliable while mapped.
594 * Leaving it set also helps swapoff to reinstate ptes
595 * faster for those pages still in swapcache.
596 */
597 if (page_test_and_clear_dirty(page))
598 set_page_dirty(page);
599 __dec_zone_page_state(page,
600 PageAnon(page) ? NR_ANON_PAGES : NR_FILE_MAPPED);
601 }
602 }
603
604 /*
605 * Subfunctions of try_to_unmap: try_to_unmap_one called
606 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
607 */
608 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
609 int migration)
610 {
611 struct mm_struct *mm = vma->vm_mm;
612 unsigned long address;
613 pte_t *pte;
614 pte_t pteval;
615 spinlock_t *ptl;
616 int ret = SWAP_AGAIN;
617
618 address = vma_address(page, vma);
619 if (address == -EFAULT)
620 goto out;
621
622 pte = page_check_address(page, mm, address, &ptl);
623 if (!pte)
624 goto out;
625
626 /*
627 * If the page is mlock()d, we cannot swap it out.
628 * If it's recently referenced (perhaps page_referenced
629 * skipped over this mm) then we should reactivate it.
630 */
631 if (!migration && ((vma->vm_flags & VM_LOCKED) ||
632 (ptep_clear_flush_young(vma, address, pte)))) {
633 ret = SWAP_FAIL;
634 goto out_unmap;
635 }
636
637 /* Nuke the page table entry. */
638 flush_cache_page(vma, address, page_to_pfn(page));
639 pteval = ptep_clear_flush(vma, address, pte);
640
641 /* Move the dirty bit to the physical page now the pte is gone. */
642 if (pte_dirty(pteval))
643 set_page_dirty(page);
644
645 /* Update high watermark before we lower rss */
646 update_hiwater_rss(mm);
647
648 if (PageAnon(page)) {
649 swp_entry_t entry = { .val = page_private(page) };
650
651 if (PageSwapCache(page)) {
652 /*
653 * Store the swap location in the pte.
654 * See handle_pte_fault() ...
655 */
656 swap_duplicate(entry);
657 if (list_empty(&mm->mmlist)) {
658 spin_lock(&mmlist_lock);
659 if (list_empty(&mm->mmlist))
660 list_add(&mm->mmlist, &init_mm.mmlist);
661 spin_unlock(&mmlist_lock);
662 }
663 dec_mm_counter(mm, anon_rss);
664 #ifdef CONFIG_MIGRATION
665 } else {
666 /*
667 * Store the pfn of the page in a special migration
668 * pte. do_swap_page() will wait until the migration
669 * pte is removed and then restart fault handling.
670 */
671 BUG_ON(!migration);
672 entry = make_migration_entry(page, pte_write(pteval));
673 #endif
674 }
675 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
676 BUG_ON(pte_file(*pte));
677 } else
678 #ifdef CONFIG_MIGRATION
679 if (migration) {
680 /* Establish migration entry for a file page */
681 swp_entry_t entry;
682 entry = make_migration_entry(page, pte_write(pteval));
683 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
684 } else
685 #endif
686 dec_mm_counter(mm, file_rss);
687
688
689 page_remove_rmap(page, vma);
690 page_cache_release(page);
691
692 out_unmap:
693 pte_unmap_unlock(pte, ptl);
694 out:
695 return ret;
696 }
697
698 /*
699 * objrmap doesn't work for nonlinear VMAs because the assumption that
700 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
701 * Consequently, given a particular page and its ->index, we cannot locate the
702 * ptes which are mapping that page without an exhaustive linear search.
703 *
704 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
705 * maps the file to which the target page belongs. The ->vm_private_data field
706 * holds the current cursor into that scan. Successive searches will circulate
707 * around the vma's virtual address space.
708 *
709 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
710 * more scanning pressure is placed against them as well. Eventually pages
711 * will become fully unmapped and are eligible for eviction.
712 *
713 * For very sparsely populated VMAs this is a little inefficient - chances are
714 * there there won't be many ptes located within the scan cluster. In this case
715 * maybe we could scan further - to the end of the pte page, perhaps.
716 */
717 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
718 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
719
720 static void try_to_unmap_cluster(unsigned long cursor,
721 unsigned int *mapcount, struct vm_area_struct *vma)
722 {
723 struct mm_struct *mm = vma->vm_mm;
724 pgd_t *pgd;
725 pud_t *pud;
726 pmd_t *pmd;
727 pte_t *pte;
728 pte_t pteval;
729 spinlock_t *ptl;
730 struct page *page;
731 unsigned long address;
732 unsigned long end;
733
734 address = (vma->vm_start + cursor) & CLUSTER_MASK;
735 end = address + CLUSTER_SIZE;
736 if (address < vma->vm_start)
737 address = vma->vm_start;
738 if (end > vma->vm_end)
739 end = vma->vm_end;
740
741 pgd = pgd_offset(mm, address);
742 if (!pgd_present(*pgd))
743 return;
744
745 pud = pud_offset(pgd, address);
746 if (!pud_present(*pud))
747 return;
748
749 pmd = pmd_offset(pud, address);
750 if (!pmd_present(*pmd))
751 return;
752
753 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
754
755 /* Update high watermark before we lower rss */
756 update_hiwater_rss(mm);
757
758 for (; address < end; pte++, address += PAGE_SIZE) {
759 if (!pte_present(*pte))
760 continue;
761 page = vm_normal_page(vma, address, *pte);
762 BUG_ON(!page || PageAnon(page));
763
764 if (ptep_clear_flush_young(vma, address, pte))
765 continue;
766
767 /* Nuke the page table entry. */
768 flush_cache_page(vma, address, pte_pfn(*pte));
769 pteval = ptep_clear_flush(vma, address, pte);
770
771 /* If nonlinear, store the file page offset in the pte. */
772 if (page->index != linear_page_index(vma, address))
773 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
774
775 /* Move the dirty bit to the physical page now the pte is gone. */
776 if (pte_dirty(pteval))
777 set_page_dirty(page);
778
779 page_remove_rmap(page, vma);
780 page_cache_release(page);
781 dec_mm_counter(mm, file_rss);
782 (*mapcount)--;
783 }
784 pte_unmap_unlock(pte - 1, ptl);
785 }
786
787 static int try_to_unmap_anon(struct page *page, int migration)
788 {
789 struct anon_vma *anon_vma;
790 struct vm_area_struct *vma;
791 int ret = SWAP_AGAIN;
792
793 anon_vma = page_lock_anon_vma(page);
794 if (!anon_vma)
795 return ret;
796
797 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
798 ret = try_to_unmap_one(page, vma, migration);
799 if (ret == SWAP_FAIL || !page_mapped(page))
800 break;
801 }
802 spin_unlock(&anon_vma->lock);
803 return ret;
804 }
805
806 /**
807 * try_to_unmap_file - unmap file page using the object-based rmap method
808 * @page: the page to unmap
809 *
810 * Find all the mappings of a page using the mapping pointer and the vma chains
811 * contained in the address_space struct it points to.
812 *
813 * This function is only called from try_to_unmap for object-based pages.
814 */
815 static int try_to_unmap_file(struct page *page, int migration)
816 {
817 struct address_space *mapping = page->mapping;
818 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
819 struct vm_area_struct *vma;
820 struct prio_tree_iter iter;
821 int ret = SWAP_AGAIN;
822 unsigned long cursor;
823 unsigned long max_nl_cursor = 0;
824 unsigned long max_nl_size = 0;
825 unsigned int mapcount;
826
827 spin_lock(&mapping->i_mmap_lock);
828 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
829 ret = try_to_unmap_one(page, vma, migration);
830 if (ret == SWAP_FAIL || !page_mapped(page))
831 goto out;
832 }
833
834 if (list_empty(&mapping->i_mmap_nonlinear))
835 goto out;
836
837 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
838 shared.vm_set.list) {
839 if ((vma->vm_flags & VM_LOCKED) && !migration)
840 continue;
841 cursor = (unsigned long) vma->vm_private_data;
842 if (cursor > max_nl_cursor)
843 max_nl_cursor = cursor;
844 cursor = vma->vm_end - vma->vm_start;
845 if (cursor > max_nl_size)
846 max_nl_size = cursor;
847 }
848
849 if (max_nl_size == 0) { /* any nonlinears locked or reserved */
850 ret = SWAP_FAIL;
851 goto out;
852 }
853
854 /*
855 * We don't try to search for this page in the nonlinear vmas,
856 * and page_referenced wouldn't have found it anyway. Instead
857 * just walk the nonlinear vmas trying to age and unmap some.
858 * The mapcount of the page we came in with is irrelevant,
859 * but even so use it as a guide to how hard we should try?
860 */
861 mapcount = page_mapcount(page);
862 if (!mapcount)
863 goto out;
864 cond_resched_lock(&mapping->i_mmap_lock);
865
866 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
867 if (max_nl_cursor == 0)
868 max_nl_cursor = CLUSTER_SIZE;
869
870 do {
871 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
872 shared.vm_set.list) {
873 if ((vma->vm_flags & VM_LOCKED) && !migration)
874 continue;
875 cursor = (unsigned long) vma->vm_private_data;
876 while ( cursor < max_nl_cursor &&
877 cursor < vma->vm_end - vma->vm_start) {
878 try_to_unmap_cluster(cursor, &mapcount, vma);
879 cursor += CLUSTER_SIZE;
880 vma->vm_private_data = (void *) cursor;
881 if ((int)mapcount <= 0)
882 goto out;
883 }
884 vma->vm_private_data = (void *) max_nl_cursor;
885 }
886 cond_resched_lock(&mapping->i_mmap_lock);
887 max_nl_cursor += CLUSTER_SIZE;
888 } while (max_nl_cursor <= max_nl_size);
889
890 /*
891 * Don't loop forever (perhaps all the remaining pages are
892 * in locked vmas). Reset cursor on all unreserved nonlinear
893 * vmas, now forgetting on which ones it had fallen behind.
894 */
895 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
896 vma->vm_private_data = NULL;
897 out:
898 spin_unlock(&mapping->i_mmap_lock);
899 return ret;
900 }
901
902 /**
903 * try_to_unmap - try to remove all page table mappings to a page
904 * @page: the page to get unmapped
905 *
906 * Tries to remove all the page table entries which are mapping this
907 * page, used in the pageout path. Caller must hold the page lock.
908 * Return values are:
909 *
910 * SWAP_SUCCESS - we succeeded in removing all mappings
911 * SWAP_AGAIN - we missed a mapping, try again later
912 * SWAP_FAIL - the page is unswappable
913 */
914 int try_to_unmap(struct page *page, int migration)
915 {
916 int ret;
917
918 BUG_ON(!PageLocked(page));
919
920 if (PageAnon(page))
921 ret = try_to_unmap_anon(page, migration);
922 else
923 ret = try_to_unmap_file(page, migration);
924
925 if (!page_mapped(page))
926 ret = SWAP_SUCCESS;
927 return ret;
928 }
929
This page took 0.069915 seconds and 6 git commands to generate.