mm: add page_check_address_transhuge() helper
[deliverable/linux.git] / mm / rmap.c
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20 /*
21 * Lock ordering in mm:
22 *
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
26 * mapping->i_mmap_rwsem
27 * anon_vma->rwsem
28 * mm->page_table_lock or pte_lock
29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30 * swap_lock (in swap_duplicate, swap_info_get)
31 * mmlist_lock (in mmput, drain_mmlist and others)
32 * mapping->private_lock (in __set_page_dirty_buffers)
33 * mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
34 * mapping->tree_lock (widely used)
35 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
36 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
37 * sb_lock (within inode_lock in fs/fs-writeback.c)
38 * mapping->tree_lock (widely used, in set_page_dirty,
39 * in arch-dependent flush_dcache_mmap_lock,
40 * within bdi.wb->list_lock in __sync_single_inode)
41 *
42 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
43 * ->tasklist_lock
44 * pte map lock
45 */
46
47 #include <linux/mm.h>
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/swapops.h>
51 #include <linux/slab.h>
52 #include <linux/init.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/rcupdate.h>
56 #include <linux/export.h>
57 #include <linux/memcontrol.h>
58 #include <linux/mmu_notifier.h>
59 #include <linux/migrate.h>
60 #include <linux/hugetlb.h>
61 #include <linux/backing-dev.h>
62 #include <linux/page_idle.h>
63
64 #include <asm/tlbflush.h>
65
66 #include <trace/events/tlb.h>
67
68 #include "internal.h"
69
70 static struct kmem_cache *anon_vma_cachep;
71 static struct kmem_cache *anon_vma_chain_cachep;
72
73 static inline struct anon_vma *anon_vma_alloc(void)
74 {
75 struct anon_vma *anon_vma;
76
77 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
78 if (anon_vma) {
79 atomic_set(&anon_vma->refcount, 1);
80 anon_vma->degree = 1; /* Reference for first vma */
81 anon_vma->parent = anon_vma;
82 /*
83 * Initialise the anon_vma root to point to itself. If called
84 * from fork, the root will be reset to the parents anon_vma.
85 */
86 anon_vma->root = anon_vma;
87 }
88
89 return anon_vma;
90 }
91
92 static inline void anon_vma_free(struct anon_vma *anon_vma)
93 {
94 VM_BUG_ON(atomic_read(&anon_vma->refcount));
95
96 /*
97 * Synchronize against page_lock_anon_vma_read() such that
98 * we can safely hold the lock without the anon_vma getting
99 * freed.
100 *
101 * Relies on the full mb implied by the atomic_dec_and_test() from
102 * put_anon_vma() against the acquire barrier implied by
103 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
104 *
105 * page_lock_anon_vma_read() VS put_anon_vma()
106 * down_read_trylock() atomic_dec_and_test()
107 * LOCK MB
108 * atomic_read() rwsem_is_locked()
109 *
110 * LOCK should suffice since the actual taking of the lock must
111 * happen _before_ what follows.
112 */
113 might_sleep();
114 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
115 anon_vma_lock_write(anon_vma);
116 anon_vma_unlock_write(anon_vma);
117 }
118
119 kmem_cache_free(anon_vma_cachep, anon_vma);
120 }
121
122 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
123 {
124 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
125 }
126
127 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
128 {
129 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
130 }
131
132 static void anon_vma_chain_link(struct vm_area_struct *vma,
133 struct anon_vma_chain *avc,
134 struct anon_vma *anon_vma)
135 {
136 avc->vma = vma;
137 avc->anon_vma = anon_vma;
138 list_add(&avc->same_vma, &vma->anon_vma_chain);
139 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
140 }
141
142 /**
143 * anon_vma_prepare - attach an anon_vma to a memory region
144 * @vma: the memory region in question
145 *
146 * This makes sure the memory mapping described by 'vma' has
147 * an 'anon_vma' attached to it, so that we can associate the
148 * anonymous pages mapped into it with that anon_vma.
149 *
150 * The common case will be that we already have one, but if
151 * not we either need to find an adjacent mapping that we
152 * can re-use the anon_vma from (very common when the only
153 * reason for splitting a vma has been mprotect()), or we
154 * allocate a new one.
155 *
156 * Anon-vma allocations are very subtle, because we may have
157 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
158 * and that may actually touch the spinlock even in the newly
159 * allocated vma (it depends on RCU to make sure that the
160 * anon_vma isn't actually destroyed).
161 *
162 * As a result, we need to do proper anon_vma locking even
163 * for the new allocation. At the same time, we do not want
164 * to do any locking for the common case of already having
165 * an anon_vma.
166 *
167 * This must be called with the mmap_sem held for reading.
168 */
169 int anon_vma_prepare(struct vm_area_struct *vma)
170 {
171 struct anon_vma *anon_vma = vma->anon_vma;
172 struct anon_vma_chain *avc;
173
174 might_sleep();
175 if (unlikely(!anon_vma)) {
176 struct mm_struct *mm = vma->vm_mm;
177 struct anon_vma *allocated;
178
179 avc = anon_vma_chain_alloc(GFP_KERNEL);
180 if (!avc)
181 goto out_enomem;
182
183 anon_vma = find_mergeable_anon_vma(vma);
184 allocated = NULL;
185 if (!anon_vma) {
186 anon_vma = anon_vma_alloc();
187 if (unlikely(!anon_vma))
188 goto out_enomem_free_avc;
189 allocated = anon_vma;
190 }
191
192 anon_vma_lock_write(anon_vma);
193 /* page_table_lock to protect against threads */
194 spin_lock(&mm->page_table_lock);
195 if (likely(!vma->anon_vma)) {
196 vma->anon_vma = anon_vma;
197 anon_vma_chain_link(vma, avc, anon_vma);
198 /* vma reference or self-parent link for new root */
199 anon_vma->degree++;
200 allocated = NULL;
201 avc = NULL;
202 }
203 spin_unlock(&mm->page_table_lock);
204 anon_vma_unlock_write(anon_vma);
205
206 if (unlikely(allocated))
207 put_anon_vma(allocated);
208 if (unlikely(avc))
209 anon_vma_chain_free(avc);
210 }
211 return 0;
212
213 out_enomem_free_avc:
214 anon_vma_chain_free(avc);
215 out_enomem:
216 return -ENOMEM;
217 }
218
219 /*
220 * This is a useful helper function for locking the anon_vma root as
221 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
222 * have the same vma.
223 *
224 * Such anon_vma's should have the same root, so you'd expect to see
225 * just a single mutex_lock for the whole traversal.
226 */
227 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
228 {
229 struct anon_vma *new_root = anon_vma->root;
230 if (new_root != root) {
231 if (WARN_ON_ONCE(root))
232 up_write(&root->rwsem);
233 root = new_root;
234 down_write(&root->rwsem);
235 }
236 return root;
237 }
238
239 static inline void unlock_anon_vma_root(struct anon_vma *root)
240 {
241 if (root)
242 up_write(&root->rwsem);
243 }
244
245 /*
246 * Attach the anon_vmas from src to dst.
247 * Returns 0 on success, -ENOMEM on failure.
248 *
249 * If dst->anon_vma is NULL this function tries to find and reuse existing
250 * anon_vma which has no vmas and only one child anon_vma. This prevents
251 * degradation of anon_vma hierarchy to endless linear chain in case of
252 * constantly forking task. On the other hand, an anon_vma with more than one
253 * child isn't reused even if there was no alive vma, thus rmap walker has a
254 * good chance of avoiding scanning the whole hierarchy when it searches where
255 * page is mapped.
256 */
257 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
258 {
259 struct anon_vma_chain *avc, *pavc;
260 struct anon_vma *root = NULL;
261
262 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
263 struct anon_vma *anon_vma;
264
265 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
266 if (unlikely(!avc)) {
267 unlock_anon_vma_root(root);
268 root = NULL;
269 avc = anon_vma_chain_alloc(GFP_KERNEL);
270 if (!avc)
271 goto enomem_failure;
272 }
273 anon_vma = pavc->anon_vma;
274 root = lock_anon_vma_root(root, anon_vma);
275 anon_vma_chain_link(dst, avc, anon_vma);
276
277 /*
278 * Reuse existing anon_vma if its degree lower than two,
279 * that means it has no vma and only one anon_vma child.
280 *
281 * Do not chose parent anon_vma, otherwise first child
282 * will always reuse it. Root anon_vma is never reused:
283 * it has self-parent reference and at least one child.
284 */
285 if (!dst->anon_vma && anon_vma != src->anon_vma &&
286 anon_vma->degree < 2)
287 dst->anon_vma = anon_vma;
288 }
289 if (dst->anon_vma)
290 dst->anon_vma->degree++;
291 unlock_anon_vma_root(root);
292 return 0;
293
294 enomem_failure:
295 /*
296 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
297 * decremented in unlink_anon_vmas().
298 * We can safely do this because callers of anon_vma_clone() don't care
299 * about dst->anon_vma if anon_vma_clone() failed.
300 */
301 dst->anon_vma = NULL;
302 unlink_anon_vmas(dst);
303 return -ENOMEM;
304 }
305
306 /*
307 * Attach vma to its own anon_vma, as well as to the anon_vmas that
308 * the corresponding VMA in the parent process is attached to.
309 * Returns 0 on success, non-zero on failure.
310 */
311 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
312 {
313 struct anon_vma_chain *avc;
314 struct anon_vma *anon_vma;
315 int error;
316
317 /* Don't bother if the parent process has no anon_vma here. */
318 if (!pvma->anon_vma)
319 return 0;
320
321 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
322 vma->anon_vma = NULL;
323
324 /*
325 * First, attach the new VMA to the parent VMA's anon_vmas,
326 * so rmap can find non-COWed pages in child processes.
327 */
328 error = anon_vma_clone(vma, pvma);
329 if (error)
330 return error;
331
332 /* An existing anon_vma has been reused, all done then. */
333 if (vma->anon_vma)
334 return 0;
335
336 /* Then add our own anon_vma. */
337 anon_vma = anon_vma_alloc();
338 if (!anon_vma)
339 goto out_error;
340 avc = anon_vma_chain_alloc(GFP_KERNEL);
341 if (!avc)
342 goto out_error_free_anon_vma;
343
344 /*
345 * The root anon_vma's spinlock is the lock actually used when we
346 * lock any of the anon_vmas in this anon_vma tree.
347 */
348 anon_vma->root = pvma->anon_vma->root;
349 anon_vma->parent = pvma->anon_vma;
350 /*
351 * With refcounts, an anon_vma can stay around longer than the
352 * process it belongs to. The root anon_vma needs to be pinned until
353 * this anon_vma is freed, because the lock lives in the root.
354 */
355 get_anon_vma(anon_vma->root);
356 /* Mark this anon_vma as the one where our new (COWed) pages go. */
357 vma->anon_vma = anon_vma;
358 anon_vma_lock_write(anon_vma);
359 anon_vma_chain_link(vma, avc, anon_vma);
360 anon_vma->parent->degree++;
361 anon_vma_unlock_write(anon_vma);
362
363 return 0;
364
365 out_error_free_anon_vma:
366 put_anon_vma(anon_vma);
367 out_error:
368 unlink_anon_vmas(vma);
369 return -ENOMEM;
370 }
371
372 void unlink_anon_vmas(struct vm_area_struct *vma)
373 {
374 struct anon_vma_chain *avc, *next;
375 struct anon_vma *root = NULL;
376
377 /*
378 * Unlink each anon_vma chained to the VMA. This list is ordered
379 * from newest to oldest, ensuring the root anon_vma gets freed last.
380 */
381 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
382 struct anon_vma *anon_vma = avc->anon_vma;
383
384 root = lock_anon_vma_root(root, anon_vma);
385 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
386
387 /*
388 * Leave empty anon_vmas on the list - we'll need
389 * to free them outside the lock.
390 */
391 if (RB_EMPTY_ROOT(&anon_vma->rb_root)) {
392 anon_vma->parent->degree--;
393 continue;
394 }
395
396 list_del(&avc->same_vma);
397 anon_vma_chain_free(avc);
398 }
399 if (vma->anon_vma)
400 vma->anon_vma->degree--;
401 unlock_anon_vma_root(root);
402
403 /*
404 * Iterate the list once more, it now only contains empty and unlinked
405 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
406 * needing to write-acquire the anon_vma->root->rwsem.
407 */
408 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
409 struct anon_vma *anon_vma = avc->anon_vma;
410
411 BUG_ON(anon_vma->degree);
412 put_anon_vma(anon_vma);
413
414 list_del(&avc->same_vma);
415 anon_vma_chain_free(avc);
416 }
417 }
418
419 static void anon_vma_ctor(void *data)
420 {
421 struct anon_vma *anon_vma = data;
422
423 init_rwsem(&anon_vma->rwsem);
424 atomic_set(&anon_vma->refcount, 0);
425 anon_vma->rb_root = RB_ROOT;
426 }
427
428 void __init anon_vma_init(void)
429 {
430 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
431 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
432 anon_vma_ctor);
433 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
434 SLAB_PANIC|SLAB_ACCOUNT);
435 }
436
437 /*
438 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
439 *
440 * Since there is no serialization what so ever against page_remove_rmap()
441 * the best this function can do is return a locked anon_vma that might
442 * have been relevant to this page.
443 *
444 * The page might have been remapped to a different anon_vma or the anon_vma
445 * returned may already be freed (and even reused).
446 *
447 * In case it was remapped to a different anon_vma, the new anon_vma will be a
448 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
449 * ensure that any anon_vma obtained from the page will still be valid for as
450 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
451 *
452 * All users of this function must be very careful when walking the anon_vma
453 * chain and verify that the page in question is indeed mapped in it
454 * [ something equivalent to page_mapped_in_vma() ].
455 *
456 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
457 * that the anon_vma pointer from page->mapping is valid if there is a
458 * mapcount, we can dereference the anon_vma after observing those.
459 */
460 struct anon_vma *page_get_anon_vma(struct page *page)
461 {
462 struct anon_vma *anon_vma = NULL;
463 unsigned long anon_mapping;
464
465 rcu_read_lock();
466 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
467 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
468 goto out;
469 if (!page_mapped(page))
470 goto out;
471
472 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
473 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
474 anon_vma = NULL;
475 goto out;
476 }
477
478 /*
479 * If this page is still mapped, then its anon_vma cannot have been
480 * freed. But if it has been unmapped, we have no security against the
481 * anon_vma structure being freed and reused (for another anon_vma:
482 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
483 * above cannot corrupt).
484 */
485 if (!page_mapped(page)) {
486 rcu_read_unlock();
487 put_anon_vma(anon_vma);
488 return NULL;
489 }
490 out:
491 rcu_read_unlock();
492
493 return anon_vma;
494 }
495
496 /*
497 * Similar to page_get_anon_vma() except it locks the anon_vma.
498 *
499 * Its a little more complex as it tries to keep the fast path to a single
500 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
501 * reference like with page_get_anon_vma() and then block on the mutex.
502 */
503 struct anon_vma *page_lock_anon_vma_read(struct page *page)
504 {
505 struct anon_vma *anon_vma = NULL;
506 struct anon_vma *root_anon_vma;
507 unsigned long anon_mapping;
508
509 rcu_read_lock();
510 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
511 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
512 goto out;
513 if (!page_mapped(page))
514 goto out;
515
516 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
517 root_anon_vma = READ_ONCE(anon_vma->root);
518 if (down_read_trylock(&root_anon_vma->rwsem)) {
519 /*
520 * If the page is still mapped, then this anon_vma is still
521 * its anon_vma, and holding the mutex ensures that it will
522 * not go away, see anon_vma_free().
523 */
524 if (!page_mapped(page)) {
525 up_read(&root_anon_vma->rwsem);
526 anon_vma = NULL;
527 }
528 goto out;
529 }
530
531 /* trylock failed, we got to sleep */
532 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
533 anon_vma = NULL;
534 goto out;
535 }
536
537 if (!page_mapped(page)) {
538 rcu_read_unlock();
539 put_anon_vma(anon_vma);
540 return NULL;
541 }
542
543 /* we pinned the anon_vma, its safe to sleep */
544 rcu_read_unlock();
545 anon_vma_lock_read(anon_vma);
546
547 if (atomic_dec_and_test(&anon_vma->refcount)) {
548 /*
549 * Oops, we held the last refcount, release the lock
550 * and bail -- can't simply use put_anon_vma() because
551 * we'll deadlock on the anon_vma_lock_write() recursion.
552 */
553 anon_vma_unlock_read(anon_vma);
554 __put_anon_vma(anon_vma);
555 anon_vma = NULL;
556 }
557
558 return anon_vma;
559
560 out:
561 rcu_read_unlock();
562 return anon_vma;
563 }
564
565 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
566 {
567 anon_vma_unlock_read(anon_vma);
568 }
569
570 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
571 static void percpu_flush_tlb_batch_pages(void *data)
572 {
573 /*
574 * All TLB entries are flushed on the assumption that it is
575 * cheaper to flush all TLBs and let them be refilled than
576 * flushing individual PFNs. Note that we do not track mm's
577 * to flush as that might simply be multiple full TLB flushes
578 * for no gain.
579 */
580 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
581 flush_tlb_local();
582 }
583
584 /*
585 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
586 * important if a PTE was dirty when it was unmapped that it's flushed
587 * before any IO is initiated on the page to prevent lost writes. Similarly,
588 * it must be flushed before freeing to prevent data leakage.
589 */
590 void try_to_unmap_flush(void)
591 {
592 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
593 int cpu;
594
595 if (!tlb_ubc->flush_required)
596 return;
597
598 cpu = get_cpu();
599
600 trace_tlb_flush(TLB_REMOTE_SHOOTDOWN, -1UL);
601
602 if (cpumask_test_cpu(cpu, &tlb_ubc->cpumask))
603 percpu_flush_tlb_batch_pages(&tlb_ubc->cpumask);
604
605 if (cpumask_any_but(&tlb_ubc->cpumask, cpu) < nr_cpu_ids) {
606 smp_call_function_many(&tlb_ubc->cpumask,
607 percpu_flush_tlb_batch_pages, (void *)tlb_ubc, true);
608 }
609 cpumask_clear(&tlb_ubc->cpumask);
610 tlb_ubc->flush_required = false;
611 tlb_ubc->writable = false;
612 put_cpu();
613 }
614
615 /* Flush iff there are potentially writable TLB entries that can race with IO */
616 void try_to_unmap_flush_dirty(void)
617 {
618 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
619
620 if (tlb_ubc->writable)
621 try_to_unmap_flush();
622 }
623
624 static void set_tlb_ubc_flush_pending(struct mm_struct *mm,
625 struct page *page, bool writable)
626 {
627 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
628
629 cpumask_or(&tlb_ubc->cpumask, &tlb_ubc->cpumask, mm_cpumask(mm));
630 tlb_ubc->flush_required = true;
631
632 /*
633 * If the PTE was dirty then it's best to assume it's writable. The
634 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
635 * before the page is queued for IO.
636 */
637 if (writable)
638 tlb_ubc->writable = true;
639 }
640
641 /*
642 * Returns true if the TLB flush should be deferred to the end of a batch of
643 * unmap operations to reduce IPIs.
644 */
645 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
646 {
647 bool should_defer = false;
648
649 if (!(flags & TTU_BATCH_FLUSH))
650 return false;
651
652 /* If remote CPUs need to be flushed then defer batch the flush */
653 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
654 should_defer = true;
655 put_cpu();
656
657 return should_defer;
658 }
659 #else
660 static void set_tlb_ubc_flush_pending(struct mm_struct *mm,
661 struct page *page, bool writable)
662 {
663 }
664
665 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
666 {
667 return false;
668 }
669 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
670
671 /*
672 * At what user virtual address is page expected in vma?
673 * Caller should check the page is actually part of the vma.
674 */
675 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
676 {
677 unsigned long address;
678 if (PageAnon(page)) {
679 struct anon_vma *page__anon_vma = page_anon_vma(page);
680 /*
681 * Note: swapoff's unuse_vma() is more efficient with this
682 * check, and needs it to match anon_vma when KSM is active.
683 */
684 if (!vma->anon_vma || !page__anon_vma ||
685 vma->anon_vma->root != page__anon_vma->root)
686 return -EFAULT;
687 } else if (page->mapping) {
688 if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
689 return -EFAULT;
690 } else
691 return -EFAULT;
692 address = __vma_address(page, vma);
693 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
694 return -EFAULT;
695 return address;
696 }
697
698 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
699 {
700 pgd_t *pgd;
701 pud_t *pud;
702 pmd_t *pmd = NULL;
703 pmd_t pmde;
704
705 pgd = pgd_offset(mm, address);
706 if (!pgd_present(*pgd))
707 goto out;
708
709 pud = pud_offset(pgd, address);
710 if (!pud_present(*pud))
711 goto out;
712
713 pmd = pmd_offset(pud, address);
714 /*
715 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
716 * without holding anon_vma lock for write. So when looking for a
717 * genuine pmde (in which to find pte), test present and !THP together.
718 */
719 pmde = *pmd;
720 barrier();
721 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
722 pmd = NULL;
723 out:
724 return pmd;
725 }
726
727 /*
728 * Check that @page is mapped at @address into @mm.
729 *
730 * If @sync is false, page_check_address may perform a racy check to avoid
731 * the page table lock when the pte is not present (helpful when reclaiming
732 * highly shared pages).
733 *
734 * On success returns with pte mapped and locked.
735 */
736 pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
737 unsigned long address, spinlock_t **ptlp, int sync)
738 {
739 pmd_t *pmd;
740 pte_t *pte;
741 spinlock_t *ptl;
742
743 if (unlikely(PageHuge(page))) {
744 /* when pud is not present, pte will be NULL */
745 pte = huge_pte_offset(mm, address);
746 if (!pte)
747 return NULL;
748
749 ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
750 goto check;
751 }
752
753 pmd = mm_find_pmd(mm, address);
754 if (!pmd)
755 return NULL;
756
757 pte = pte_offset_map(pmd, address);
758 /* Make a quick check before getting the lock */
759 if (!sync && !pte_present(*pte)) {
760 pte_unmap(pte);
761 return NULL;
762 }
763
764 ptl = pte_lockptr(mm, pmd);
765 check:
766 spin_lock(ptl);
767 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
768 *ptlp = ptl;
769 return pte;
770 }
771 pte_unmap_unlock(pte, ptl);
772 return NULL;
773 }
774
775 /**
776 * page_mapped_in_vma - check whether a page is really mapped in a VMA
777 * @page: the page to test
778 * @vma: the VMA to test
779 *
780 * Returns 1 if the page is mapped into the page tables of the VMA, 0
781 * if the page is not mapped into the page tables of this VMA. Only
782 * valid for normal file or anonymous VMAs.
783 */
784 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
785 {
786 unsigned long address;
787 pte_t *pte;
788 spinlock_t *ptl;
789
790 address = __vma_address(page, vma);
791 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
792 return 0;
793 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
794 if (!pte) /* the page is not in this mm */
795 return 0;
796 pte_unmap_unlock(pte, ptl);
797
798 return 1;
799 }
800
801 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
802 /*
803 * Check that @page is mapped at @address into @mm. In contrast to
804 * page_check_address(), this function can handle transparent huge pages.
805 *
806 * On success returns true with pte mapped and locked. For PMD-mapped
807 * transparent huge pages *@ptep is set to NULL.
808 */
809 bool page_check_address_transhuge(struct page *page, struct mm_struct *mm,
810 unsigned long address, pmd_t **pmdp,
811 pte_t **ptep, spinlock_t **ptlp)
812 {
813 pgd_t *pgd;
814 pud_t *pud;
815 pmd_t *pmd;
816 pte_t *pte;
817 spinlock_t *ptl;
818
819 if (unlikely(PageHuge(page))) {
820 /* when pud is not present, pte will be NULL */
821 pte = huge_pte_offset(mm, address);
822 if (!pte)
823 return false;
824
825 ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
826 pmd = NULL;
827 goto check_pte;
828 }
829
830 pgd = pgd_offset(mm, address);
831 if (!pgd_present(*pgd))
832 return false;
833 pud = pud_offset(pgd, address);
834 if (!pud_present(*pud))
835 return false;
836 pmd = pmd_offset(pud, address);
837
838 if (pmd_trans_huge(*pmd)) {
839 ptl = pmd_lock(mm, pmd);
840 if (!pmd_present(*pmd))
841 goto unlock_pmd;
842 if (unlikely(!pmd_trans_huge(*pmd))) {
843 spin_unlock(ptl);
844 goto map_pte;
845 }
846
847 if (pmd_page(*pmd) != page)
848 goto unlock_pmd;
849
850 pte = NULL;
851 goto found;
852 unlock_pmd:
853 spin_unlock(ptl);
854 return false;
855 } else {
856 pmd_t pmde = *pmd;
857
858 barrier();
859 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
860 return false;
861 }
862 map_pte:
863 pte = pte_offset_map(pmd, address);
864 if (!pte_present(*pte)) {
865 pte_unmap(pte);
866 return false;
867 }
868
869 ptl = pte_lockptr(mm, pmd);
870 check_pte:
871 spin_lock(ptl);
872
873 if (!pte_present(*pte)) {
874 pte_unmap_unlock(pte, ptl);
875 return false;
876 }
877
878 /* THP can be referenced by any subpage */
879 if (pte_pfn(*pte) - page_to_pfn(page) >= hpage_nr_pages(page)) {
880 pte_unmap_unlock(pte, ptl);
881 return false;
882 }
883 found:
884 *ptep = pte;
885 *pmdp = pmd;
886 *ptlp = ptl;
887 return true;
888 }
889 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
890
891 struct page_referenced_arg {
892 int mapcount;
893 int referenced;
894 unsigned long vm_flags;
895 struct mem_cgroup *memcg;
896 };
897 /*
898 * arg: page_referenced_arg will be passed
899 */
900 static int page_referenced_one(struct page *page, struct vm_area_struct *vma,
901 unsigned long address, void *arg)
902 {
903 struct mm_struct *mm = vma->vm_mm;
904 struct page_referenced_arg *pra = arg;
905 pmd_t *pmd;
906 pte_t *pte;
907 spinlock_t *ptl;
908 int referenced = 0;
909
910 if (!page_check_address_transhuge(page, mm, address, &pmd, &pte, &ptl))
911 return SWAP_AGAIN;
912
913 if (vma->vm_flags & VM_LOCKED) {
914 if (pte)
915 pte_unmap(pte);
916 spin_unlock(ptl);
917 pra->vm_flags |= VM_LOCKED;
918 return SWAP_FAIL; /* To break the loop */
919 }
920
921 if (pte) {
922 if (ptep_clear_flush_young_notify(vma, address, pte)) {
923 /*
924 * Don't treat a reference through a sequentially read
925 * mapping as such. If the page has been used in
926 * another mapping, we will catch it; if this other
927 * mapping is already gone, the unmap path will have
928 * set PG_referenced or activated the page.
929 */
930 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
931 referenced++;
932 }
933 pte_unmap(pte);
934 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
935 if (pmdp_clear_flush_young_notify(vma, address, pmd))
936 referenced++;
937 } else {
938 /* unexpected pmd-mapped page? */
939 WARN_ON_ONCE(1);
940 }
941 spin_unlock(ptl);
942
943 if (referenced)
944 clear_page_idle(page);
945 if (test_and_clear_page_young(page))
946 referenced++;
947
948 if (referenced) {
949 pra->referenced++;
950 pra->vm_flags |= vma->vm_flags;
951 }
952
953 pra->mapcount--;
954 if (!pra->mapcount)
955 return SWAP_SUCCESS; /* To break the loop */
956
957 return SWAP_AGAIN;
958 }
959
960 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
961 {
962 struct page_referenced_arg *pra = arg;
963 struct mem_cgroup *memcg = pra->memcg;
964
965 if (!mm_match_cgroup(vma->vm_mm, memcg))
966 return true;
967
968 return false;
969 }
970
971 /**
972 * page_referenced - test if the page was referenced
973 * @page: the page to test
974 * @is_locked: caller holds lock on the page
975 * @memcg: target memory cgroup
976 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
977 *
978 * Quick test_and_clear_referenced for all mappings to a page,
979 * returns the number of ptes which referenced the page.
980 */
981 int page_referenced(struct page *page,
982 int is_locked,
983 struct mem_cgroup *memcg,
984 unsigned long *vm_flags)
985 {
986 int ret;
987 int we_locked = 0;
988 struct page_referenced_arg pra = {
989 .mapcount = total_mapcount(page),
990 .memcg = memcg,
991 };
992 struct rmap_walk_control rwc = {
993 .rmap_one = page_referenced_one,
994 .arg = (void *)&pra,
995 .anon_lock = page_lock_anon_vma_read,
996 };
997
998 *vm_flags = 0;
999 if (!page_mapped(page))
1000 return 0;
1001
1002 if (!page_rmapping(page))
1003 return 0;
1004
1005 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
1006 we_locked = trylock_page(page);
1007 if (!we_locked)
1008 return 1;
1009 }
1010
1011 /*
1012 * If we are reclaiming on behalf of a cgroup, skip
1013 * counting on behalf of references from different
1014 * cgroups
1015 */
1016 if (memcg) {
1017 rwc.invalid_vma = invalid_page_referenced_vma;
1018 }
1019
1020 ret = rmap_walk(page, &rwc);
1021 *vm_flags = pra.vm_flags;
1022
1023 if (we_locked)
1024 unlock_page(page);
1025
1026 return pra.referenced;
1027 }
1028
1029 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
1030 unsigned long address, void *arg)
1031 {
1032 struct mm_struct *mm = vma->vm_mm;
1033 pte_t *pte;
1034 spinlock_t *ptl;
1035 int ret = 0;
1036 int *cleaned = arg;
1037
1038 pte = page_check_address(page, mm, address, &ptl, 1);
1039 if (!pte)
1040 goto out;
1041
1042 if (pte_dirty(*pte) || pte_write(*pte)) {
1043 pte_t entry;
1044
1045 flush_cache_page(vma, address, pte_pfn(*pte));
1046 entry = ptep_clear_flush(vma, address, pte);
1047 entry = pte_wrprotect(entry);
1048 entry = pte_mkclean(entry);
1049 set_pte_at(mm, address, pte, entry);
1050 ret = 1;
1051 }
1052
1053 pte_unmap_unlock(pte, ptl);
1054
1055 if (ret) {
1056 mmu_notifier_invalidate_page(mm, address);
1057 (*cleaned)++;
1058 }
1059 out:
1060 return SWAP_AGAIN;
1061 }
1062
1063 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
1064 {
1065 if (vma->vm_flags & VM_SHARED)
1066 return false;
1067
1068 return true;
1069 }
1070
1071 int page_mkclean(struct page *page)
1072 {
1073 int cleaned = 0;
1074 struct address_space *mapping;
1075 struct rmap_walk_control rwc = {
1076 .arg = (void *)&cleaned,
1077 .rmap_one = page_mkclean_one,
1078 .invalid_vma = invalid_mkclean_vma,
1079 };
1080
1081 BUG_ON(!PageLocked(page));
1082
1083 if (!page_mapped(page))
1084 return 0;
1085
1086 mapping = page_mapping(page);
1087 if (!mapping)
1088 return 0;
1089
1090 rmap_walk(page, &rwc);
1091
1092 return cleaned;
1093 }
1094 EXPORT_SYMBOL_GPL(page_mkclean);
1095
1096 /**
1097 * page_move_anon_rmap - move a page to our anon_vma
1098 * @page: the page to move to our anon_vma
1099 * @vma: the vma the page belongs to
1100 * @address: the user virtual address mapped
1101 *
1102 * When a page belongs exclusively to one process after a COW event,
1103 * that page can be moved into the anon_vma that belongs to just that
1104 * process, so the rmap code will not search the parent or sibling
1105 * processes.
1106 */
1107 void page_move_anon_rmap(struct page *page,
1108 struct vm_area_struct *vma, unsigned long address)
1109 {
1110 struct anon_vma *anon_vma = vma->anon_vma;
1111
1112 VM_BUG_ON_PAGE(!PageLocked(page), page);
1113 VM_BUG_ON_VMA(!anon_vma, vma);
1114 VM_BUG_ON_PAGE(page->index != linear_page_index(vma, address), page);
1115
1116 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1117 /*
1118 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1119 * simultaneously, so a concurrent reader (eg page_referenced()'s
1120 * PageAnon()) will not see one without the other.
1121 */
1122 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1123 }
1124
1125 /**
1126 * __page_set_anon_rmap - set up new anonymous rmap
1127 * @page: Page to add to rmap
1128 * @vma: VM area to add page to.
1129 * @address: User virtual address of the mapping
1130 * @exclusive: the page is exclusively owned by the current process
1131 */
1132 static void __page_set_anon_rmap(struct page *page,
1133 struct vm_area_struct *vma, unsigned long address, int exclusive)
1134 {
1135 struct anon_vma *anon_vma = vma->anon_vma;
1136
1137 BUG_ON(!anon_vma);
1138
1139 if (PageAnon(page))
1140 return;
1141
1142 /*
1143 * If the page isn't exclusively mapped into this vma,
1144 * we must use the _oldest_ possible anon_vma for the
1145 * page mapping!
1146 */
1147 if (!exclusive)
1148 anon_vma = anon_vma->root;
1149
1150 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1151 page->mapping = (struct address_space *) anon_vma;
1152 page->index = linear_page_index(vma, address);
1153 }
1154
1155 /**
1156 * __page_check_anon_rmap - sanity check anonymous rmap addition
1157 * @page: the page to add the mapping to
1158 * @vma: the vm area in which the mapping is added
1159 * @address: the user virtual address mapped
1160 */
1161 static void __page_check_anon_rmap(struct page *page,
1162 struct vm_area_struct *vma, unsigned long address)
1163 {
1164 #ifdef CONFIG_DEBUG_VM
1165 /*
1166 * The page's anon-rmap details (mapping and index) are guaranteed to
1167 * be set up correctly at this point.
1168 *
1169 * We have exclusion against page_add_anon_rmap because the caller
1170 * always holds the page locked, except if called from page_dup_rmap,
1171 * in which case the page is already known to be setup.
1172 *
1173 * We have exclusion against page_add_new_anon_rmap because those pages
1174 * are initially only visible via the pagetables, and the pte is locked
1175 * over the call to page_add_new_anon_rmap.
1176 */
1177 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1178 BUG_ON(page_to_pgoff(page) != linear_page_index(vma, address));
1179 #endif
1180 }
1181
1182 /**
1183 * page_add_anon_rmap - add pte mapping to an anonymous page
1184 * @page: the page to add the mapping to
1185 * @vma: the vm area in which the mapping is added
1186 * @address: the user virtual address mapped
1187 * @compound: charge the page as compound or small page
1188 *
1189 * The caller needs to hold the pte lock, and the page must be locked in
1190 * the anon_vma case: to serialize mapping,index checking after setting,
1191 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1192 * (but PageKsm is never downgraded to PageAnon).
1193 */
1194 void page_add_anon_rmap(struct page *page,
1195 struct vm_area_struct *vma, unsigned long address, bool compound)
1196 {
1197 do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
1198 }
1199
1200 /*
1201 * Special version of the above for do_swap_page, which often runs
1202 * into pages that are exclusively owned by the current process.
1203 * Everybody else should continue to use page_add_anon_rmap above.
1204 */
1205 void do_page_add_anon_rmap(struct page *page,
1206 struct vm_area_struct *vma, unsigned long address, int flags)
1207 {
1208 bool compound = flags & RMAP_COMPOUND;
1209 bool first;
1210
1211 if (compound) {
1212 atomic_t *mapcount;
1213 VM_BUG_ON_PAGE(!PageLocked(page), page);
1214 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1215 mapcount = compound_mapcount_ptr(page);
1216 first = atomic_inc_and_test(mapcount);
1217 } else {
1218 first = atomic_inc_and_test(&page->_mapcount);
1219 }
1220
1221 if (first) {
1222 int nr = compound ? hpage_nr_pages(page) : 1;
1223 /*
1224 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1225 * these counters are not modified in interrupt context, and
1226 * pte lock(a spinlock) is held, which implies preemption
1227 * disabled.
1228 */
1229 if (compound) {
1230 __inc_zone_page_state(page,
1231 NR_ANON_TRANSPARENT_HUGEPAGES);
1232 }
1233 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, nr);
1234 }
1235 if (unlikely(PageKsm(page)))
1236 return;
1237
1238 VM_BUG_ON_PAGE(!PageLocked(page), page);
1239
1240 /* address might be in next vma when migration races vma_adjust */
1241 if (first)
1242 __page_set_anon_rmap(page, vma, address,
1243 flags & RMAP_EXCLUSIVE);
1244 else
1245 __page_check_anon_rmap(page, vma, address);
1246 }
1247
1248 /**
1249 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1250 * @page: the page to add the mapping to
1251 * @vma: the vm area in which the mapping is added
1252 * @address: the user virtual address mapped
1253 * @compound: charge the page as compound or small page
1254 *
1255 * Same as page_add_anon_rmap but must only be called on *new* pages.
1256 * This means the inc-and-test can be bypassed.
1257 * Page does not have to be locked.
1258 */
1259 void page_add_new_anon_rmap(struct page *page,
1260 struct vm_area_struct *vma, unsigned long address, bool compound)
1261 {
1262 int nr = compound ? hpage_nr_pages(page) : 1;
1263
1264 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1265 SetPageSwapBacked(page);
1266 if (compound) {
1267 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1268 /* increment count (starts at -1) */
1269 atomic_set(compound_mapcount_ptr(page), 0);
1270 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1271 } else {
1272 /* Anon THP always mapped first with PMD */
1273 VM_BUG_ON_PAGE(PageTransCompound(page), page);
1274 /* increment count (starts at -1) */
1275 atomic_set(&page->_mapcount, 0);
1276 }
1277 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, nr);
1278 __page_set_anon_rmap(page, vma, address, 1);
1279 }
1280
1281 /**
1282 * page_add_file_rmap - add pte mapping to a file page
1283 * @page: the page to add the mapping to
1284 *
1285 * The caller needs to hold the pte lock.
1286 */
1287 void page_add_file_rmap(struct page *page)
1288 {
1289 struct mem_cgroup *memcg;
1290
1291 memcg = mem_cgroup_begin_page_stat(page);
1292 if (atomic_inc_and_test(&page->_mapcount)) {
1293 __inc_zone_page_state(page, NR_FILE_MAPPED);
1294 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
1295 }
1296 mem_cgroup_end_page_stat(memcg);
1297 }
1298
1299 static void page_remove_file_rmap(struct page *page)
1300 {
1301 struct mem_cgroup *memcg;
1302
1303 memcg = mem_cgroup_begin_page_stat(page);
1304
1305 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1306 if (unlikely(PageHuge(page))) {
1307 /* hugetlb pages are always mapped with pmds */
1308 atomic_dec(compound_mapcount_ptr(page));
1309 goto out;
1310 }
1311
1312 /* page still mapped by someone else? */
1313 if (!atomic_add_negative(-1, &page->_mapcount))
1314 goto out;
1315
1316 /*
1317 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1318 * these counters are not modified in interrupt context, and
1319 * pte lock(a spinlock) is held, which implies preemption disabled.
1320 */
1321 __dec_zone_page_state(page, NR_FILE_MAPPED);
1322 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
1323
1324 if (unlikely(PageMlocked(page)))
1325 clear_page_mlock(page);
1326 out:
1327 mem_cgroup_end_page_stat(memcg);
1328 }
1329
1330 static void page_remove_anon_compound_rmap(struct page *page)
1331 {
1332 int i, nr;
1333
1334 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1335 return;
1336
1337 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1338 if (unlikely(PageHuge(page)))
1339 return;
1340
1341 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1342 return;
1343
1344 __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1345
1346 if (TestClearPageDoubleMap(page)) {
1347 /*
1348 * Subpages can be mapped with PTEs too. Check how many of
1349 * themi are still mapped.
1350 */
1351 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1352 if (atomic_add_negative(-1, &page[i]._mapcount))
1353 nr++;
1354 }
1355 } else {
1356 nr = HPAGE_PMD_NR;
1357 }
1358
1359 if (unlikely(PageMlocked(page)))
1360 clear_page_mlock(page);
1361
1362 if (nr) {
1363 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, -nr);
1364 deferred_split_huge_page(page);
1365 }
1366 }
1367
1368 /**
1369 * page_remove_rmap - take down pte mapping from a page
1370 * @page: page to remove mapping from
1371 * @compound: uncharge the page as compound or small page
1372 *
1373 * The caller needs to hold the pte lock.
1374 */
1375 void page_remove_rmap(struct page *page, bool compound)
1376 {
1377 if (!PageAnon(page)) {
1378 VM_BUG_ON_PAGE(compound && !PageHuge(page), page);
1379 page_remove_file_rmap(page);
1380 return;
1381 }
1382
1383 if (compound)
1384 return page_remove_anon_compound_rmap(page);
1385
1386 /* page still mapped by someone else? */
1387 if (!atomic_add_negative(-1, &page->_mapcount))
1388 return;
1389
1390 /*
1391 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1392 * these counters are not modified in interrupt context, and
1393 * pte lock(a spinlock) is held, which implies preemption disabled.
1394 */
1395 __dec_zone_page_state(page, NR_ANON_PAGES);
1396
1397 if (unlikely(PageMlocked(page)))
1398 clear_page_mlock(page);
1399
1400 if (PageTransCompound(page))
1401 deferred_split_huge_page(compound_head(page));
1402
1403 /*
1404 * It would be tidy to reset the PageAnon mapping here,
1405 * but that might overwrite a racing page_add_anon_rmap
1406 * which increments mapcount after us but sets mapping
1407 * before us: so leave the reset to free_hot_cold_page,
1408 * and remember that it's only reliable while mapped.
1409 * Leaving it set also helps swapoff to reinstate ptes
1410 * faster for those pages still in swapcache.
1411 */
1412 }
1413
1414 /*
1415 * @arg: enum ttu_flags will be passed to this argument
1416 */
1417 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1418 unsigned long address, void *arg)
1419 {
1420 struct mm_struct *mm = vma->vm_mm;
1421 pte_t *pte;
1422 pte_t pteval;
1423 spinlock_t *ptl;
1424 int ret = SWAP_AGAIN;
1425 enum ttu_flags flags = (enum ttu_flags)arg;
1426
1427 /* munlock has nothing to gain from examining un-locked vmas */
1428 if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED))
1429 goto out;
1430
1431 pte = page_check_address(page, mm, address, &ptl, 0);
1432 if (!pte)
1433 goto out;
1434
1435 /*
1436 * If the page is mlock()d, we cannot swap it out.
1437 * If it's recently referenced (perhaps page_referenced
1438 * skipped over this mm) then we should reactivate it.
1439 */
1440 if (!(flags & TTU_IGNORE_MLOCK)) {
1441 if (vma->vm_flags & VM_LOCKED) {
1442 /* Holding pte lock, we do *not* need mmap_sem here */
1443 mlock_vma_page(page);
1444 ret = SWAP_MLOCK;
1445 goto out_unmap;
1446 }
1447 if (flags & TTU_MUNLOCK)
1448 goto out_unmap;
1449 }
1450 if (!(flags & TTU_IGNORE_ACCESS)) {
1451 if (ptep_clear_flush_young_notify(vma, address, pte)) {
1452 ret = SWAP_FAIL;
1453 goto out_unmap;
1454 }
1455 }
1456
1457 /* Nuke the page table entry. */
1458 flush_cache_page(vma, address, page_to_pfn(page));
1459 if (should_defer_flush(mm, flags)) {
1460 /*
1461 * We clear the PTE but do not flush so potentially a remote
1462 * CPU could still be writing to the page. If the entry was
1463 * previously clean then the architecture must guarantee that
1464 * a clear->dirty transition on a cached TLB entry is written
1465 * through and traps if the PTE is unmapped.
1466 */
1467 pteval = ptep_get_and_clear(mm, address, pte);
1468
1469 set_tlb_ubc_flush_pending(mm, page, pte_dirty(pteval));
1470 } else {
1471 pteval = ptep_clear_flush(vma, address, pte);
1472 }
1473
1474 /* Move the dirty bit to the physical page now the pte is gone. */
1475 if (pte_dirty(pteval))
1476 set_page_dirty(page);
1477
1478 /* Update high watermark before we lower rss */
1479 update_hiwater_rss(mm);
1480
1481 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1482 if (PageHuge(page)) {
1483 hugetlb_count_sub(1 << compound_order(page), mm);
1484 } else {
1485 dec_mm_counter(mm, mm_counter(page));
1486 }
1487 set_pte_at(mm, address, pte,
1488 swp_entry_to_pte(make_hwpoison_entry(page)));
1489 } else if (pte_unused(pteval)) {
1490 /*
1491 * The guest indicated that the page content is of no
1492 * interest anymore. Simply discard the pte, vmscan
1493 * will take care of the rest.
1494 */
1495 dec_mm_counter(mm, mm_counter(page));
1496 } else if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION)) {
1497 swp_entry_t entry;
1498 pte_t swp_pte;
1499 /*
1500 * Store the pfn of the page in a special migration
1501 * pte. do_swap_page() will wait until the migration
1502 * pte is removed and then restart fault handling.
1503 */
1504 entry = make_migration_entry(page, pte_write(pteval));
1505 swp_pte = swp_entry_to_pte(entry);
1506 if (pte_soft_dirty(pteval))
1507 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1508 set_pte_at(mm, address, pte, swp_pte);
1509 } else if (PageAnon(page)) {
1510 swp_entry_t entry = { .val = page_private(page) };
1511 pte_t swp_pte;
1512 /*
1513 * Store the swap location in the pte.
1514 * See handle_pte_fault() ...
1515 */
1516 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
1517 if (swap_duplicate(entry) < 0) {
1518 set_pte_at(mm, address, pte, pteval);
1519 ret = SWAP_FAIL;
1520 goto out_unmap;
1521 }
1522 if (list_empty(&mm->mmlist)) {
1523 spin_lock(&mmlist_lock);
1524 if (list_empty(&mm->mmlist))
1525 list_add(&mm->mmlist, &init_mm.mmlist);
1526 spin_unlock(&mmlist_lock);
1527 }
1528 dec_mm_counter(mm, MM_ANONPAGES);
1529 inc_mm_counter(mm, MM_SWAPENTS);
1530 swp_pte = swp_entry_to_pte(entry);
1531 if (pte_soft_dirty(pteval))
1532 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1533 set_pte_at(mm, address, pte, swp_pte);
1534 } else
1535 dec_mm_counter(mm, mm_counter_file(page));
1536
1537 page_remove_rmap(page, PageHuge(page));
1538 page_cache_release(page);
1539
1540 out_unmap:
1541 pte_unmap_unlock(pte, ptl);
1542 if (ret != SWAP_FAIL && ret != SWAP_MLOCK && !(flags & TTU_MUNLOCK))
1543 mmu_notifier_invalidate_page(mm, address);
1544 out:
1545 return ret;
1546 }
1547
1548 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1549 {
1550 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1551
1552 if (!maybe_stack)
1553 return false;
1554
1555 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1556 VM_STACK_INCOMPLETE_SETUP)
1557 return true;
1558
1559 return false;
1560 }
1561
1562 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1563 {
1564 return is_vma_temporary_stack(vma);
1565 }
1566
1567 static int page_not_mapped(struct page *page)
1568 {
1569 return !page_mapped(page);
1570 };
1571
1572 /**
1573 * try_to_unmap - try to remove all page table mappings to a page
1574 * @page: the page to get unmapped
1575 * @flags: action and flags
1576 *
1577 * Tries to remove all the page table entries which are mapping this
1578 * page, used in the pageout path. Caller must hold the page lock.
1579 * Return values are:
1580 *
1581 * SWAP_SUCCESS - we succeeded in removing all mappings
1582 * SWAP_AGAIN - we missed a mapping, try again later
1583 * SWAP_FAIL - the page is unswappable
1584 * SWAP_MLOCK - page is mlocked.
1585 */
1586 int try_to_unmap(struct page *page, enum ttu_flags flags)
1587 {
1588 int ret;
1589 struct rmap_walk_control rwc = {
1590 .rmap_one = try_to_unmap_one,
1591 .arg = (void *)flags,
1592 .done = page_not_mapped,
1593 .anon_lock = page_lock_anon_vma_read,
1594 };
1595
1596 VM_BUG_ON_PAGE(!PageHuge(page) && PageTransHuge(page), page);
1597
1598 /*
1599 * During exec, a temporary VMA is setup and later moved.
1600 * The VMA is moved under the anon_vma lock but not the
1601 * page tables leading to a race where migration cannot
1602 * find the migration ptes. Rather than increasing the
1603 * locking requirements of exec(), migration skips
1604 * temporary VMAs until after exec() completes.
1605 */
1606 if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page))
1607 rwc.invalid_vma = invalid_migration_vma;
1608
1609 ret = rmap_walk(page, &rwc);
1610
1611 if (ret != SWAP_MLOCK && !page_mapped(page))
1612 ret = SWAP_SUCCESS;
1613 return ret;
1614 }
1615
1616 /**
1617 * try_to_munlock - try to munlock a page
1618 * @page: the page to be munlocked
1619 *
1620 * Called from munlock code. Checks all of the VMAs mapping the page
1621 * to make sure nobody else has this page mlocked. The page will be
1622 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1623 *
1624 * Return values are:
1625 *
1626 * SWAP_AGAIN - no vma is holding page mlocked, or,
1627 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1628 * SWAP_FAIL - page cannot be located at present
1629 * SWAP_MLOCK - page is now mlocked.
1630 */
1631 int try_to_munlock(struct page *page)
1632 {
1633 int ret;
1634 struct rmap_walk_control rwc = {
1635 .rmap_one = try_to_unmap_one,
1636 .arg = (void *)TTU_MUNLOCK,
1637 .done = page_not_mapped,
1638 .anon_lock = page_lock_anon_vma_read,
1639
1640 };
1641
1642 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1643
1644 ret = rmap_walk(page, &rwc);
1645 return ret;
1646 }
1647
1648 void __put_anon_vma(struct anon_vma *anon_vma)
1649 {
1650 struct anon_vma *root = anon_vma->root;
1651
1652 anon_vma_free(anon_vma);
1653 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1654 anon_vma_free(root);
1655 }
1656
1657 static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1658 struct rmap_walk_control *rwc)
1659 {
1660 struct anon_vma *anon_vma;
1661
1662 if (rwc->anon_lock)
1663 return rwc->anon_lock(page);
1664
1665 /*
1666 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1667 * because that depends on page_mapped(); but not all its usages
1668 * are holding mmap_sem. Users without mmap_sem are required to
1669 * take a reference count to prevent the anon_vma disappearing
1670 */
1671 anon_vma = page_anon_vma(page);
1672 if (!anon_vma)
1673 return NULL;
1674
1675 anon_vma_lock_read(anon_vma);
1676 return anon_vma;
1677 }
1678
1679 /*
1680 * rmap_walk_anon - do something to anonymous page using the object-based
1681 * rmap method
1682 * @page: the page to be handled
1683 * @rwc: control variable according to each walk type
1684 *
1685 * Find all the mappings of a page using the mapping pointer and the vma chains
1686 * contained in the anon_vma struct it points to.
1687 *
1688 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1689 * where the page was found will be held for write. So, we won't recheck
1690 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1691 * LOCKED.
1692 */
1693 static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc)
1694 {
1695 struct anon_vma *anon_vma;
1696 pgoff_t pgoff;
1697 struct anon_vma_chain *avc;
1698 int ret = SWAP_AGAIN;
1699
1700 anon_vma = rmap_walk_anon_lock(page, rwc);
1701 if (!anon_vma)
1702 return ret;
1703
1704 pgoff = page_to_pgoff(page);
1705 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1706 struct vm_area_struct *vma = avc->vma;
1707 unsigned long address = vma_address(page, vma);
1708
1709 cond_resched();
1710
1711 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1712 continue;
1713
1714 ret = rwc->rmap_one(page, vma, address, rwc->arg);
1715 if (ret != SWAP_AGAIN)
1716 break;
1717 if (rwc->done && rwc->done(page))
1718 break;
1719 }
1720 anon_vma_unlock_read(anon_vma);
1721 return ret;
1722 }
1723
1724 /*
1725 * rmap_walk_file - do something to file page using the object-based rmap method
1726 * @page: the page to be handled
1727 * @rwc: control variable according to each walk type
1728 *
1729 * Find all the mappings of a page using the mapping pointer and the vma chains
1730 * contained in the address_space struct it points to.
1731 *
1732 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1733 * where the page was found will be held for write. So, we won't recheck
1734 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1735 * LOCKED.
1736 */
1737 static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc)
1738 {
1739 struct address_space *mapping = page->mapping;
1740 pgoff_t pgoff;
1741 struct vm_area_struct *vma;
1742 int ret = SWAP_AGAIN;
1743
1744 /*
1745 * The page lock not only makes sure that page->mapping cannot
1746 * suddenly be NULLified by truncation, it makes sure that the
1747 * structure at mapping cannot be freed and reused yet,
1748 * so we can safely take mapping->i_mmap_rwsem.
1749 */
1750 VM_BUG_ON_PAGE(!PageLocked(page), page);
1751
1752 if (!mapping)
1753 return ret;
1754
1755 pgoff = page_to_pgoff(page);
1756 i_mmap_lock_read(mapping);
1757 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1758 unsigned long address = vma_address(page, vma);
1759
1760 cond_resched();
1761
1762 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1763 continue;
1764
1765 ret = rwc->rmap_one(page, vma, address, rwc->arg);
1766 if (ret != SWAP_AGAIN)
1767 goto done;
1768 if (rwc->done && rwc->done(page))
1769 goto done;
1770 }
1771
1772 done:
1773 i_mmap_unlock_read(mapping);
1774 return ret;
1775 }
1776
1777 int rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1778 {
1779 if (unlikely(PageKsm(page)))
1780 return rmap_walk_ksm(page, rwc);
1781 else if (PageAnon(page))
1782 return rmap_walk_anon(page, rwc);
1783 else
1784 return rmap_walk_file(page, rwc);
1785 }
1786
1787 #ifdef CONFIG_HUGETLB_PAGE
1788 /*
1789 * The following three functions are for anonymous (private mapped) hugepages.
1790 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1791 * and no lru code, because we handle hugepages differently from common pages.
1792 */
1793 static void __hugepage_set_anon_rmap(struct page *page,
1794 struct vm_area_struct *vma, unsigned long address, int exclusive)
1795 {
1796 struct anon_vma *anon_vma = vma->anon_vma;
1797
1798 BUG_ON(!anon_vma);
1799
1800 if (PageAnon(page))
1801 return;
1802 if (!exclusive)
1803 anon_vma = anon_vma->root;
1804
1805 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1806 page->mapping = (struct address_space *) anon_vma;
1807 page->index = linear_page_index(vma, address);
1808 }
1809
1810 void hugepage_add_anon_rmap(struct page *page,
1811 struct vm_area_struct *vma, unsigned long address)
1812 {
1813 struct anon_vma *anon_vma = vma->anon_vma;
1814 int first;
1815
1816 BUG_ON(!PageLocked(page));
1817 BUG_ON(!anon_vma);
1818 /* address might be in next vma when migration races vma_adjust */
1819 first = atomic_inc_and_test(compound_mapcount_ptr(page));
1820 if (first)
1821 __hugepage_set_anon_rmap(page, vma, address, 0);
1822 }
1823
1824 void hugepage_add_new_anon_rmap(struct page *page,
1825 struct vm_area_struct *vma, unsigned long address)
1826 {
1827 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1828 atomic_set(compound_mapcount_ptr(page), 0);
1829 __hugepage_set_anon_rmap(page, vma, address, 1);
1830 }
1831 #endif /* CONFIG_HUGETLB_PAGE */
This page took 0.066516 seconds and 6 git commands to generate.