mm: add_active_or_unevictable into rmap
[deliverable/linux.git] / mm / rmap.c
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004
18 */
19
20 /*
21 * Lock ordering in mm:
22 *
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * inode->i_alloc_sem (vmtruncate_range)
25 * mm->mmap_sem
26 * page->flags PG_locked (lock_page)
27 * mapping->i_mmap_lock
28 * anon_vma->lock
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * inode_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within inode_lock in __sync_single_inode)
39 */
40
41 #include <linux/mm.h>
42 #include <linux/pagemap.h>
43 #include <linux/swap.h>
44 #include <linux/swapops.h>
45 #include <linux/slab.h>
46 #include <linux/init.h>
47 #include <linux/rmap.h>
48 #include <linux/rcupdate.h>
49 #include <linux/module.h>
50 #include <linux/mm_inline.h>
51 #include <linux/kallsyms.h>
52 #include <linux/memcontrol.h>
53 #include <linux/mmu_notifier.h>
54 #include <linux/migrate.h>
55
56 #include <asm/tlbflush.h>
57
58 #include "internal.h"
59
60 static struct kmem_cache *anon_vma_cachep;
61
62 static inline struct anon_vma *anon_vma_alloc(void)
63 {
64 return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
65 }
66
67 static inline void anon_vma_free(struct anon_vma *anon_vma)
68 {
69 kmem_cache_free(anon_vma_cachep, anon_vma);
70 }
71
72 /**
73 * anon_vma_prepare - attach an anon_vma to a memory region
74 * @vma: the memory region in question
75 *
76 * This makes sure the memory mapping described by 'vma' has
77 * an 'anon_vma' attached to it, so that we can associate the
78 * anonymous pages mapped into it with that anon_vma.
79 *
80 * The common case will be that we already have one, but if
81 * if not we either need to find an adjacent mapping that we
82 * can re-use the anon_vma from (very common when the only
83 * reason for splitting a vma has been mprotect()), or we
84 * allocate a new one.
85 *
86 * Anon-vma allocations are very subtle, because we may have
87 * optimistically looked up an anon_vma in page_lock_anon_vma()
88 * and that may actually touch the spinlock even in the newly
89 * allocated vma (it depends on RCU to make sure that the
90 * anon_vma isn't actually destroyed).
91 *
92 * As a result, we need to do proper anon_vma locking even
93 * for the new allocation. At the same time, we do not want
94 * to do any locking for the common case of already having
95 * an anon_vma.
96 *
97 * This must be called with the mmap_sem held for reading.
98 */
99 int anon_vma_prepare(struct vm_area_struct *vma)
100 {
101 struct anon_vma *anon_vma = vma->anon_vma;
102
103 might_sleep();
104 if (unlikely(!anon_vma)) {
105 struct mm_struct *mm = vma->vm_mm;
106 struct anon_vma *allocated;
107
108 anon_vma = find_mergeable_anon_vma(vma);
109 allocated = NULL;
110 if (!anon_vma) {
111 anon_vma = anon_vma_alloc();
112 if (unlikely(!anon_vma))
113 return -ENOMEM;
114 allocated = anon_vma;
115 }
116 spin_lock(&anon_vma->lock);
117
118 /* page_table_lock to protect against threads */
119 spin_lock(&mm->page_table_lock);
120 if (likely(!vma->anon_vma)) {
121 vma->anon_vma = anon_vma;
122 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
123 allocated = NULL;
124 }
125 spin_unlock(&mm->page_table_lock);
126
127 spin_unlock(&anon_vma->lock);
128 if (unlikely(allocated))
129 anon_vma_free(allocated);
130 }
131 return 0;
132 }
133
134 void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
135 {
136 BUG_ON(vma->anon_vma != next->anon_vma);
137 list_del(&next->anon_vma_node);
138 }
139
140 void __anon_vma_link(struct vm_area_struct *vma)
141 {
142 struct anon_vma *anon_vma = vma->anon_vma;
143
144 if (anon_vma)
145 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
146 }
147
148 void anon_vma_link(struct vm_area_struct *vma)
149 {
150 struct anon_vma *anon_vma = vma->anon_vma;
151
152 if (anon_vma) {
153 spin_lock(&anon_vma->lock);
154 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
155 spin_unlock(&anon_vma->lock);
156 }
157 }
158
159 void anon_vma_unlink(struct vm_area_struct *vma)
160 {
161 struct anon_vma *anon_vma = vma->anon_vma;
162 int empty;
163
164 if (!anon_vma)
165 return;
166
167 spin_lock(&anon_vma->lock);
168 list_del(&vma->anon_vma_node);
169
170 /* We must garbage collect the anon_vma if it's empty */
171 empty = list_empty(&anon_vma->head);
172 spin_unlock(&anon_vma->lock);
173
174 if (empty)
175 anon_vma_free(anon_vma);
176 }
177
178 static void anon_vma_ctor(void *data)
179 {
180 struct anon_vma *anon_vma = data;
181
182 spin_lock_init(&anon_vma->lock);
183 INIT_LIST_HEAD(&anon_vma->head);
184 }
185
186 void __init anon_vma_init(void)
187 {
188 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
189 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
190 }
191
192 /*
193 * Getting a lock on a stable anon_vma from a page off the LRU is
194 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
195 */
196 struct anon_vma *page_lock_anon_vma(struct page *page)
197 {
198 struct anon_vma *anon_vma;
199 unsigned long anon_mapping;
200
201 rcu_read_lock();
202 anon_mapping = (unsigned long) page->mapping;
203 if (!(anon_mapping & PAGE_MAPPING_ANON))
204 goto out;
205 if (!page_mapped(page))
206 goto out;
207
208 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
209 spin_lock(&anon_vma->lock);
210 return anon_vma;
211 out:
212 rcu_read_unlock();
213 return NULL;
214 }
215
216 void page_unlock_anon_vma(struct anon_vma *anon_vma)
217 {
218 spin_unlock(&anon_vma->lock);
219 rcu_read_unlock();
220 }
221
222 /*
223 * At what user virtual address is page expected in @vma?
224 * Returns virtual address or -EFAULT if page's index/offset is not
225 * within the range mapped the @vma.
226 */
227 static inline unsigned long
228 vma_address(struct page *page, struct vm_area_struct *vma)
229 {
230 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
231 unsigned long address;
232
233 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
234 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
235 /* page should be within @vma mapping range */
236 return -EFAULT;
237 }
238 return address;
239 }
240
241 /*
242 * At what user virtual address is page expected in vma? checking that the
243 * page matches the vma: currently only used on anon pages, by unuse_vma;
244 */
245 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
246 {
247 if (PageAnon(page)) {
248 if ((void *)vma->anon_vma !=
249 (void *)page->mapping - PAGE_MAPPING_ANON)
250 return -EFAULT;
251 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
252 if (!vma->vm_file ||
253 vma->vm_file->f_mapping != page->mapping)
254 return -EFAULT;
255 } else
256 return -EFAULT;
257 return vma_address(page, vma);
258 }
259
260 /*
261 * Check that @page is mapped at @address into @mm.
262 *
263 * If @sync is false, page_check_address may perform a racy check to avoid
264 * the page table lock when the pte is not present (helpful when reclaiming
265 * highly shared pages).
266 *
267 * On success returns with pte mapped and locked.
268 */
269 pte_t *page_check_address(struct page *page, struct mm_struct *mm,
270 unsigned long address, spinlock_t **ptlp, int sync)
271 {
272 pgd_t *pgd;
273 pud_t *pud;
274 pmd_t *pmd;
275 pte_t *pte;
276 spinlock_t *ptl;
277
278 pgd = pgd_offset(mm, address);
279 if (!pgd_present(*pgd))
280 return NULL;
281
282 pud = pud_offset(pgd, address);
283 if (!pud_present(*pud))
284 return NULL;
285
286 pmd = pmd_offset(pud, address);
287 if (!pmd_present(*pmd))
288 return NULL;
289
290 pte = pte_offset_map(pmd, address);
291 /* Make a quick check before getting the lock */
292 if (!sync && !pte_present(*pte)) {
293 pte_unmap(pte);
294 return NULL;
295 }
296
297 ptl = pte_lockptr(mm, pmd);
298 spin_lock(ptl);
299 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
300 *ptlp = ptl;
301 return pte;
302 }
303 pte_unmap_unlock(pte, ptl);
304 return NULL;
305 }
306
307 /**
308 * page_mapped_in_vma - check whether a page is really mapped in a VMA
309 * @page: the page to test
310 * @vma: the VMA to test
311 *
312 * Returns 1 if the page is mapped into the page tables of the VMA, 0
313 * if the page is not mapped into the page tables of this VMA. Only
314 * valid for normal file or anonymous VMAs.
315 */
316 static int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
317 {
318 unsigned long address;
319 pte_t *pte;
320 spinlock_t *ptl;
321
322 address = vma_address(page, vma);
323 if (address == -EFAULT) /* out of vma range */
324 return 0;
325 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
326 if (!pte) /* the page is not in this mm */
327 return 0;
328 pte_unmap_unlock(pte, ptl);
329
330 return 1;
331 }
332
333 /*
334 * Subfunctions of page_referenced: page_referenced_one called
335 * repeatedly from either page_referenced_anon or page_referenced_file.
336 */
337 static int page_referenced_one(struct page *page,
338 struct vm_area_struct *vma, unsigned int *mapcount)
339 {
340 struct mm_struct *mm = vma->vm_mm;
341 unsigned long address;
342 pte_t *pte;
343 spinlock_t *ptl;
344 int referenced = 0;
345
346 address = vma_address(page, vma);
347 if (address == -EFAULT)
348 goto out;
349
350 pte = page_check_address(page, mm, address, &ptl, 0);
351 if (!pte)
352 goto out;
353
354 /*
355 * Don't want to elevate referenced for mlocked page that gets this far,
356 * in order that it progresses to try_to_unmap and is moved to the
357 * unevictable list.
358 */
359 if (vma->vm_flags & VM_LOCKED) {
360 *mapcount = 1; /* break early from loop */
361 goto out_unmap;
362 }
363
364 if (ptep_clear_flush_young_notify(vma, address, pte)) {
365 /*
366 * Don't treat a reference through a sequentially read
367 * mapping as such. If the page has been used in
368 * another mapping, we will catch it; if this other
369 * mapping is already gone, the unmap path will have
370 * set PG_referenced or activated the page.
371 */
372 if (likely(!VM_SequentialReadHint(vma)))
373 referenced++;
374 }
375
376 /* Pretend the page is referenced if the task has the
377 swap token and is in the middle of a page fault. */
378 if (mm != current->mm && has_swap_token(mm) &&
379 rwsem_is_locked(&mm->mmap_sem))
380 referenced++;
381
382 out_unmap:
383 (*mapcount)--;
384 pte_unmap_unlock(pte, ptl);
385 out:
386 return referenced;
387 }
388
389 static int page_referenced_anon(struct page *page,
390 struct mem_cgroup *mem_cont)
391 {
392 unsigned int mapcount;
393 struct anon_vma *anon_vma;
394 struct vm_area_struct *vma;
395 int referenced = 0;
396
397 anon_vma = page_lock_anon_vma(page);
398 if (!anon_vma)
399 return referenced;
400
401 mapcount = page_mapcount(page);
402 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
403 /*
404 * If we are reclaiming on behalf of a cgroup, skip
405 * counting on behalf of references from different
406 * cgroups
407 */
408 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
409 continue;
410 referenced += page_referenced_one(page, vma, &mapcount);
411 if (!mapcount)
412 break;
413 }
414
415 page_unlock_anon_vma(anon_vma);
416 return referenced;
417 }
418
419 /**
420 * page_referenced_file - referenced check for object-based rmap
421 * @page: the page we're checking references on.
422 * @mem_cont: target memory controller
423 *
424 * For an object-based mapped page, find all the places it is mapped and
425 * check/clear the referenced flag. This is done by following the page->mapping
426 * pointer, then walking the chain of vmas it holds. It returns the number
427 * of references it found.
428 *
429 * This function is only called from page_referenced for object-based pages.
430 */
431 static int page_referenced_file(struct page *page,
432 struct mem_cgroup *mem_cont)
433 {
434 unsigned int mapcount;
435 struct address_space *mapping = page->mapping;
436 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
437 struct vm_area_struct *vma;
438 struct prio_tree_iter iter;
439 int referenced = 0;
440
441 /*
442 * The caller's checks on page->mapping and !PageAnon have made
443 * sure that this is a file page: the check for page->mapping
444 * excludes the case just before it gets set on an anon page.
445 */
446 BUG_ON(PageAnon(page));
447
448 /*
449 * The page lock not only makes sure that page->mapping cannot
450 * suddenly be NULLified by truncation, it makes sure that the
451 * structure at mapping cannot be freed and reused yet,
452 * so we can safely take mapping->i_mmap_lock.
453 */
454 BUG_ON(!PageLocked(page));
455
456 spin_lock(&mapping->i_mmap_lock);
457
458 /*
459 * i_mmap_lock does not stabilize mapcount at all, but mapcount
460 * is more likely to be accurate if we note it after spinning.
461 */
462 mapcount = page_mapcount(page);
463
464 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
465 /*
466 * If we are reclaiming on behalf of a cgroup, skip
467 * counting on behalf of references from different
468 * cgroups
469 */
470 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
471 continue;
472 referenced += page_referenced_one(page, vma, &mapcount);
473 if (!mapcount)
474 break;
475 }
476
477 spin_unlock(&mapping->i_mmap_lock);
478 return referenced;
479 }
480
481 /**
482 * page_referenced - test if the page was referenced
483 * @page: the page to test
484 * @is_locked: caller holds lock on the page
485 * @mem_cont: target memory controller
486 *
487 * Quick test_and_clear_referenced for all mappings to a page,
488 * returns the number of ptes which referenced the page.
489 */
490 int page_referenced(struct page *page, int is_locked,
491 struct mem_cgroup *mem_cont)
492 {
493 int referenced = 0;
494
495 if (TestClearPageReferenced(page))
496 referenced++;
497
498 if (page_mapped(page) && page->mapping) {
499 if (PageAnon(page))
500 referenced += page_referenced_anon(page, mem_cont);
501 else if (is_locked)
502 referenced += page_referenced_file(page, mem_cont);
503 else if (!trylock_page(page))
504 referenced++;
505 else {
506 if (page->mapping)
507 referenced +=
508 page_referenced_file(page, mem_cont);
509 unlock_page(page);
510 }
511 }
512
513 if (page_test_and_clear_young(page))
514 referenced++;
515
516 return referenced;
517 }
518
519 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma)
520 {
521 struct mm_struct *mm = vma->vm_mm;
522 unsigned long address;
523 pte_t *pte;
524 spinlock_t *ptl;
525 int ret = 0;
526
527 address = vma_address(page, vma);
528 if (address == -EFAULT)
529 goto out;
530
531 pte = page_check_address(page, mm, address, &ptl, 1);
532 if (!pte)
533 goto out;
534
535 if (pte_dirty(*pte) || pte_write(*pte)) {
536 pte_t entry;
537
538 flush_cache_page(vma, address, pte_pfn(*pte));
539 entry = ptep_clear_flush_notify(vma, address, pte);
540 entry = pte_wrprotect(entry);
541 entry = pte_mkclean(entry);
542 set_pte_at(mm, address, pte, entry);
543 ret = 1;
544 }
545
546 pte_unmap_unlock(pte, ptl);
547 out:
548 return ret;
549 }
550
551 static int page_mkclean_file(struct address_space *mapping, struct page *page)
552 {
553 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
554 struct vm_area_struct *vma;
555 struct prio_tree_iter iter;
556 int ret = 0;
557
558 BUG_ON(PageAnon(page));
559
560 spin_lock(&mapping->i_mmap_lock);
561 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
562 if (vma->vm_flags & VM_SHARED)
563 ret += page_mkclean_one(page, vma);
564 }
565 spin_unlock(&mapping->i_mmap_lock);
566 return ret;
567 }
568
569 int page_mkclean(struct page *page)
570 {
571 int ret = 0;
572
573 BUG_ON(!PageLocked(page));
574
575 if (page_mapped(page)) {
576 struct address_space *mapping = page_mapping(page);
577 if (mapping) {
578 ret = page_mkclean_file(mapping, page);
579 if (page_test_dirty(page)) {
580 page_clear_dirty(page);
581 ret = 1;
582 }
583 }
584 }
585
586 return ret;
587 }
588 EXPORT_SYMBOL_GPL(page_mkclean);
589
590 /**
591 * __page_set_anon_rmap - setup new anonymous rmap
592 * @page: the page to add the mapping to
593 * @vma: the vm area in which the mapping is added
594 * @address: the user virtual address mapped
595 */
596 static void __page_set_anon_rmap(struct page *page,
597 struct vm_area_struct *vma, unsigned long address)
598 {
599 struct anon_vma *anon_vma = vma->anon_vma;
600
601 BUG_ON(!anon_vma);
602 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
603 page->mapping = (struct address_space *) anon_vma;
604
605 page->index = linear_page_index(vma, address);
606
607 /*
608 * nr_mapped state can be updated without turning off
609 * interrupts because it is not modified via interrupt.
610 */
611 __inc_zone_page_state(page, NR_ANON_PAGES);
612 }
613
614 /**
615 * __page_check_anon_rmap - sanity check anonymous rmap addition
616 * @page: the page to add the mapping to
617 * @vma: the vm area in which the mapping is added
618 * @address: the user virtual address mapped
619 */
620 static void __page_check_anon_rmap(struct page *page,
621 struct vm_area_struct *vma, unsigned long address)
622 {
623 #ifdef CONFIG_DEBUG_VM
624 /*
625 * The page's anon-rmap details (mapping and index) are guaranteed to
626 * be set up correctly at this point.
627 *
628 * We have exclusion against page_add_anon_rmap because the caller
629 * always holds the page locked, except if called from page_dup_rmap,
630 * in which case the page is already known to be setup.
631 *
632 * We have exclusion against page_add_new_anon_rmap because those pages
633 * are initially only visible via the pagetables, and the pte is locked
634 * over the call to page_add_new_anon_rmap.
635 */
636 struct anon_vma *anon_vma = vma->anon_vma;
637 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
638 BUG_ON(page->mapping != (struct address_space *)anon_vma);
639 BUG_ON(page->index != linear_page_index(vma, address));
640 #endif
641 }
642
643 /**
644 * page_add_anon_rmap - add pte mapping to an anonymous page
645 * @page: the page to add the mapping to
646 * @vma: the vm area in which the mapping is added
647 * @address: the user virtual address mapped
648 *
649 * The caller needs to hold the pte lock and the page must be locked.
650 */
651 void page_add_anon_rmap(struct page *page,
652 struct vm_area_struct *vma, unsigned long address)
653 {
654 VM_BUG_ON(!PageLocked(page));
655 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
656 if (atomic_inc_and_test(&page->_mapcount))
657 __page_set_anon_rmap(page, vma, address);
658 else
659 __page_check_anon_rmap(page, vma, address);
660 }
661
662 /**
663 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
664 * @page: the page to add the mapping to
665 * @vma: the vm area in which the mapping is added
666 * @address: the user virtual address mapped
667 *
668 * Same as page_add_anon_rmap but must only be called on *new* pages.
669 * This means the inc-and-test can be bypassed.
670 * Page does not have to be locked.
671 */
672 void page_add_new_anon_rmap(struct page *page,
673 struct vm_area_struct *vma, unsigned long address)
674 {
675 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
676 atomic_set(&page->_mapcount, 0); /* elevate count by 1 (starts at -1) */
677 __page_set_anon_rmap(page, vma, address);
678 if (page_evictable(page, vma))
679 lru_cache_add_lru(page, LRU_ACTIVE + page_is_file_cache(page));
680 else
681 add_page_to_unevictable_list(page);
682 }
683
684 /**
685 * page_add_file_rmap - add pte mapping to a file page
686 * @page: the page to add the mapping to
687 *
688 * The caller needs to hold the pte lock.
689 */
690 void page_add_file_rmap(struct page *page)
691 {
692 if (atomic_inc_and_test(&page->_mapcount))
693 __inc_zone_page_state(page, NR_FILE_MAPPED);
694 }
695
696 #ifdef CONFIG_DEBUG_VM
697 /**
698 * page_dup_rmap - duplicate pte mapping to a page
699 * @page: the page to add the mapping to
700 * @vma: the vm area being duplicated
701 * @address: the user virtual address mapped
702 *
703 * For copy_page_range only: minimal extract from page_add_file_rmap /
704 * page_add_anon_rmap, avoiding unnecessary tests (already checked) so it's
705 * quicker.
706 *
707 * The caller needs to hold the pte lock.
708 */
709 void page_dup_rmap(struct page *page, struct vm_area_struct *vma, unsigned long address)
710 {
711 BUG_ON(page_mapcount(page) == 0);
712 if (PageAnon(page))
713 __page_check_anon_rmap(page, vma, address);
714 atomic_inc(&page->_mapcount);
715 }
716 #endif
717
718 /**
719 * page_remove_rmap - take down pte mapping from a page
720 * @page: page to remove mapping from
721 * @vma: the vm area in which the mapping is removed
722 *
723 * The caller needs to hold the pte lock.
724 */
725 void page_remove_rmap(struct page *page, struct vm_area_struct *vma)
726 {
727 if (atomic_add_negative(-1, &page->_mapcount)) {
728 if (unlikely(page_mapcount(page) < 0)) {
729 printk (KERN_EMERG "Eeek! page_mapcount(page) went negative! (%d)\n", page_mapcount(page));
730 printk (KERN_EMERG " page pfn = %lx\n", page_to_pfn(page));
731 printk (KERN_EMERG " page->flags = %lx\n", page->flags);
732 printk (KERN_EMERG " page->count = %x\n", page_count(page));
733 printk (KERN_EMERG " page->mapping = %p\n", page->mapping);
734 print_symbol (KERN_EMERG " vma->vm_ops = %s\n", (unsigned long)vma->vm_ops);
735 if (vma->vm_ops) {
736 print_symbol (KERN_EMERG " vma->vm_ops->fault = %s\n", (unsigned long)vma->vm_ops->fault);
737 }
738 if (vma->vm_file && vma->vm_file->f_op)
739 print_symbol (KERN_EMERG " vma->vm_file->f_op->mmap = %s\n", (unsigned long)vma->vm_file->f_op->mmap);
740 BUG();
741 }
742
743 /*
744 * Now that the last pte has gone, s390 must transfer dirty
745 * flag from storage key to struct page. We can usually skip
746 * this if the page is anon, so about to be freed; but perhaps
747 * not if it's in swapcache - there might be another pte slot
748 * containing the swap entry, but page not yet written to swap.
749 */
750 if ((!PageAnon(page) || PageSwapCache(page)) &&
751 page_test_dirty(page)) {
752 page_clear_dirty(page);
753 set_page_dirty(page);
754 }
755 if (PageAnon(page))
756 mem_cgroup_uncharge_page(page);
757 __dec_zone_page_state(page,
758 PageAnon(page) ? NR_ANON_PAGES : NR_FILE_MAPPED);
759 /*
760 * It would be tidy to reset the PageAnon mapping here,
761 * but that might overwrite a racing page_add_anon_rmap
762 * which increments mapcount after us but sets mapping
763 * before us: so leave the reset to free_hot_cold_page,
764 * and remember that it's only reliable while mapped.
765 * Leaving it set also helps swapoff to reinstate ptes
766 * faster for those pages still in swapcache.
767 */
768 }
769 }
770
771 /*
772 * Subfunctions of try_to_unmap: try_to_unmap_one called
773 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
774 */
775 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
776 int migration)
777 {
778 struct mm_struct *mm = vma->vm_mm;
779 unsigned long address;
780 pte_t *pte;
781 pte_t pteval;
782 spinlock_t *ptl;
783 int ret = SWAP_AGAIN;
784
785 address = vma_address(page, vma);
786 if (address == -EFAULT)
787 goto out;
788
789 pte = page_check_address(page, mm, address, &ptl, 0);
790 if (!pte)
791 goto out;
792
793 /*
794 * If the page is mlock()d, we cannot swap it out.
795 * If it's recently referenced (perhaps page_referenced
796 * skipped over this mm) then we should reactivate it.
797 */
798 if (!migration) {
799 if (vma->vm_flags & VM_LOCKED) {
800 ret = SWAP_MLOCK;
801 goto out_unmap;
802 }
803 if (ptep_clear_flush_young_notify(vma, address, pte)) {
804 ret = SWAP_FAIL;
805 goto out_unmap;
806 }
807 }
808
809 /* Nuke the page table entry. */
810 flush_cache_page(vma, address, page_to_pfn(page));
811 pteval = ptep_clear_flush_notify(vma, address, pte);
812
813 /* Move the dirty bit to the physical page now the pte is gone. */
814 if (pte_dirty(pteval))
815 set_page_dirty(page);
816
817 /* Update high watermark before we lower rss */
818 update_hiwater_rss(mm);
819
820 if (PageAnon(page)) {
821 swp_entry_t entry = { .val = page_private(page) };
822
823 if (PageSwapCache(page)) {
824 /*
825 * Store the swap location in the pte.
826 * See handle_pte_fault() ...
827 */
828 swap_duplicate(entry);
829 if (list_empty(&mm->mmlist)) {
830 spin_lock(&mmlist_lock);
831 if (list_empty(&mm->mmlist))
832 list_add(&mm->mmlist, &init_mm.mmlist);
833 spin_unlock(&mmlist_lock);
834 }
835 dec_mm_counter(mm, anon_rss);
836 } else if (PAGE_MIGRATION) {
837 /*
838 * Store the pfn of the page in a special migration
839 * pte. do_swap_page() will wait until the migration
840 * pte is removed and then restart fault handling.
841 */
842 BUG_ON(!migration);
843 entry = make_migration_entry(page, pte_write(pteval));
844 }
845 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
846 BUG_ON(pte_file(*pte));
847 } else if (PAGE_MIGRATION && migration) {
848 /* Establish migration entry for a file page */
849 swp_entry_t entry;
850 entry = make_migration_entry(page, pte_write(pteval));
851 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
852 } else
853 dec_mm_counter(mm, file_rss);
854
855
856 page_remove_rmap(page, vma);
857 page_cache_release(page);
858
859 out_unmap:
860 pte_unmap_unlock(pte, ptl);
861 out:
862 return ret;
863 }
864
865 /*
866 * objrmap doesn't work for nonlinear VMAs because the assumption that
867 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
868 * Consequently, given a particular page and its ->index, we cannot locate the
869 * ptes which are mapping that page without an exhaustive linear search.
870 *
871 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
872 * maps the file to which the target page belongs. The ->vm_private_data field
873 * holds the current cursor into that scan. Successive searches will circulate
874 * around the vma's virtual address space.
875 *
876 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
877 * more scanning pressure is placed against them as well. Eventually pages
878 * will become fully unmapped and are eligible for eviction.
879 *
880 * For very sparsely populated VMAs this is a little inefficient - chances are
881 * there there won't be many ptes located within the scan cluster. In this case
882 * maybe we could scan further - to the end of the pte page, perhaps.
883 *
884 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
885 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
886 * rather than unmapping them. If we encounter the "check_page" that vmscan is
887 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
888 */
889 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
890 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
891
892 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
893 struct vm_area_struct *vma, struct page *check_page)
894 {
895 struct mm_struct *mm = vma->vm_mm;
896 pgd_t *pgd;
897 pud_t *pud;
898 pmd_t *pmd;
899 pte_t *pte;
900 pte_t pteval;
901 spinlock_t *ptl;
902 struct page *page;
903 unsigned long address;
904 unsigned long end;
905 int ret = SWAP_AGAIN;
906 int locked_vma = 0;
907
908 address = (vma->vm_start + cursor) & CLUSTER_MASK;
909 end = address + CLUSTER_SIZE;
910 if (address < vma->vm_start)
911 address = vma->vm_start;
912 if (end > vma->vm_end)
913 end = vma->vm_end;
914
915 pgd = pgd_offset(mm, address);
916 if (!pgd_present(*pgd))
917 return ret;
918
919 pud = pud_offset(pgd, address);
920 if (!pud_present(*pud))
921 return ret;
922
923 pmd = pmd_offset(pud, address);
924 if (!pmd_present(*pmd))
925 return ret;
926
927 /*
928 * MLOCK_PAGES => feature is configured.
929 * if we can acquire the mmap_sem for read, and vma is VM_LOCKED,
930 * keep the sem while scanning the cluster for mlocking pages.
931 */
932 if (MLOCK_PAGES && down_read_trylock(&vma->vm_mm->mmap_sem)) {
933 locked_vma = (vma->vm_flags & VM_LOCKED);
934 if (!locked_vma)
935 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
936 }
937
938 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
939
940 /* Update high watermark before we lower rss */
941 update_hiwater_rss(mm);
942
943 for (; address < end; pte++, address += PAGE_SIZE) {
944 if (!pte_present(*pte))
945 continue;
946 page = vm_normal_page(vma, address, *pte);
947 BUG_ON(!page || PageAnon(page));
948
949 if (locked_vma) {
950 mlock_vma_page(page); /* no-op if already mlocked */
951 if (page == check_page)
952 ret = SWAP_MLOCK;
953 continue; /* don't unmap */
954 }
955
956 if (ptep_clear_flush_young_notify(vma, address, pte))
957 continue;
958
959 /* Nuke the page table entry. */
960 flush_cache_page(vma, address, pte_pfn(*pte));
961 pteval = ptep_clear_flush_notify(vma, address, pte);
962
963 /* If nonlinear, store the file page offset in the pte. */
964 if (page->index != linear_page_index(vma, address))
965 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
966
967 /* Move the dirty bit to the physical page now the pte is gone. */
968 if (pte_dirty(pteval))
969 set_page_dirty(page);
970
971 page_remove_rmap(page, vma);
972 page_cache_release(page);
973 dec_mm_counter(mm, file_rss);
974 (*mapcount)--;
975 }
976 pte_unmap_unlock(pte - 1, ptl);
977 if (locked_vma)
978 up_read(&vma->vm_mm->mmap_sem);
979 return ret;
980 }
981
982 /*
983 * common handling for pages mapped in VM_LOCKED vmas
984 */
985 static int try_to_mlock_page(struct page *page, struct vm_area_struct *vma)
986 {
987 int mlocked = 0;
988
989 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
990 if (vma->vm_flags & VM_LOCKED) {
991 mlock_vma_page(page);
992 mlocked++; /* really mlocked the page */
993 }
994 up_read(&vma->vm_mm->mmap_sem);
995 }
996 return mlocked;
997 }
998
999 /**
1000 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1001 * rmap method
1002 * @page: the page to unmap/unlock
1003 * @unlock: request for unlock rather than unmap [unlikely]
1004 * @migration: unmapping for migration - ignored if @unlock
1005 *
1006 * Find all the mappings of a page using the mapping pointer and the vma chains
1007 * contained in the anon_vma struct it points to.
1008 *
1009 * This function is only called from try_to_unmap/try_to_munlock for
1010 * anonymous pages.
1011 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1012 * where the page was found will be held for write. So, we won't recheck
1013 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1014 * 'LOCKED.
1015 */
1016 static int try_to_unmap_anon(struct page *page, int unlock, int migration)
1017 {
1018 struct anon_vma *anon_vma;
1019 struct vm_area_struct *vma;
1020 unsigned int mlocked = 0;
1021 int ret = SWAP_AGAIN;
1022
1023 if (MLOCK_PAGES && unlikely(unlock))
1024 ret = SWAP_SUCCESS; /* default for try_to_munlock() */
1025
1026 anon_vma = page_lock_anon_vma(page);
1027 if (!anon_vma)
1028 return ret;
1029
1030 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
1031 if (MLOCK_PAGES && unlikely(unlock)) {
1032 if (!((vma->vm_flags & VM_LOCKED) &&
1033 page_mapped_in_vma(page, vma)))
1034 continue; /* must visit all unlocked vmas */
1035 ret = SWAP_MLOCK; /* saw at least one mlocked vma */
1036 } else {
1037 ret = try_to_unmap_one(page, vma, migration);
1038 if (ret == SWAP_FAIL || !page_mapped(page))
1039 break;
1040 }
1041 if (ret == SWAP_MLOCK) {
1042 mlocked = try_to_mlock_page(page, vma);
1043 if (mlocked)
1044 break; /* stop if actually mlocked page */
1045 }
1046 }
1047
1048 page_unlock_anon_vma(anon_vma);
1049
1050 if (mlocked)
1051 ret = SWAP_MLOCK; /* actually mlocked the page */
1052 else if (ret == SWAP_MLOCK)
1053 ret = SWAP_AGAIN; /* saw VM_LOCKED vma */
1054
1055 return ret;
1056 }
1057
1058 /**
1059 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1060 * @page: the page to unmap/unlock
1061 * @unlock: request for unlock rather than unmap [unlikely]
1062 * @migration: unmapping for migration - ignored if @unlock
1063 *
1064 * Find all the mappings of a page using the mapping pointer and the vma chains
1065 * contained in the address_space struct it points to.
1066 *
1067 * This function is only called from try_to_unmap/try_to_munlock for
1068 * object-based pages.
1069 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1070 * where the page was found will be held for write. So, we won't recheck
1071 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1072 * 'LOCKED.
1073 */
1074 static int try_to_unmap_file(struct page *page, int unlock, int migration)
1075 {
1076 struct address_space *mapping = page->mapping;
1077 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1078 struct vm_area_struct *vma;
1079 struct prio_tree_iter iter;
1080 int ret = SWAP_AGAIN;
1081 unsigned long cursor;
1082 unsigned long max_nl_cursor = 0;
1083 unsigned long max_nl_size = 0;
1084 unsigned int mapcount;
1085 unsigned int mlocked = 0;
1086
1087 if (MLOCK_PAGES && unlikely(unlock))
1088 ret = SWAP_SUCCESS; /* default for try_to_munlock() */
1089
1090 spin_lock(&mapping->i_mmap_lock);
1091 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1092 if (MLOCK_PAGES && unlikely(unlock)) {
1093 if (!(vma->vm_flags & VM_LOCKED))
1094 continue; /* must visit all vmas */
1095 ret = SWAP_MLOCK;
1096 } else {
1097 ret = try_to_unmap_one(page, vma, migration);
1098 if (ret == SWAP_FAIL || !page_mapped(page))
1099 goto out;
1100 }
1101 if (ret == SWAP_MLOCK) {
1102 mlocked = try_to_mlock_page(page, vma);
1103 if (mlocked)
1104 break; /* stop if actually mlocked page */
1105 }
1106 }
1107
1108 if (mlocked)
1109 goto out;
1110
1111 if (list_empty(&mapping->i_mmap_nonlinear))
1112 goto out;
1113
1114 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1115 shared.vm_set.list) {
1116 if (MLOCK_PAGES && unlikely(unlock)) {
1117 if (!(vma->vm_flags & VM_LOCKED))
1118 continue; /* must visit all vmas */
1119 ret = SWAP_MLOCK; /* leave mlocked == 0 */
1120 goto out; /* no need to look further */
1121 }
1122 if (!MLOCK_PAGES && !migration && (vma->vm_flags & VM_LOCKED))
1123 continue;
1124 cursor = (unsigned long) vma->vm_private_data;
1125 if (cursor > max_nl_cursor)
1126 max_nl_cursor = cursor;
1127 cursor = vma->vm_end - vma->vm_start;
1128 if (cursor > max_nl_size)
1129 max_nl_size = cursor;
1130 }
1131
1132 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1133 ret = SWAP_FAIL;
1134 goto out;
1135 }
1136
1137 /*
1138 * We don't try to search for this page in the nonlinear vmas,
1139 * and page_referenced wouldn't have found it anyway. Instead
1140 * just walk the nonlinear vmas trying to age and unmap some.
1141 * The mapcount of the page we came in with is irrelevant,
1142 * but even so use it as a guide to how hard we should try?
1143 */
1144 mapcount = page_mapcount(page);
1145 if (!mapcount)
1146 goto out;
1147 cond_resched_lock(&mapping->i_mmap_lock);
1148
1149 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1150 if (max_nl_cursor == 0)
1151 max_nl_cursor = CLUSTER_SIZE;
1152
1153 do {
1154 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1155 shared.vm_set.list) {
1156 if (!MLOCK_PAGES && !migration &&
1157 (vma->vm_flags & VM_LOCKED))
1158 continue;
1159 cursor = (unsigned long) vma->vm_private_data;
1160 while ( cursor < max_nl_cursor &&
1161 cursor < vma->vm_end - vma->vm_start) {
1162 ret = try_to_unmap_cluster(cursor, &mapcount,
1163 vma, page);
1164 if (ret == SWAP_MLOCK)
1165 mlocked = 2; /* to return below */
1166 cursor += CLUSTER_SIZE;
1167 vma->vm_private_data = (void *) cursor;
1168 if ((int)mapcount <= 0)
1169 goto out;
1170 }
1171 vma->vm_private_data = (void *) max_nl_cursor;
1172 }
1173 cond_resched_lock(&mapping->i_mmap_lock);
1174 max_nl_cursor += CLUSTER_SIZE;
1175 } while (max_nl_cursor <= max_nl_size);
1176
1177 /*
1178 * Don't loop forever (perhaps all the remaining pages are
1179 * in locked vmas). Reset cursor on all unreserved nonlinear
1180 * vmas, now forgetting on which ones it had fallen behind.
1181 */
1182 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1183 vma->vm_private_data = NULL;
1184 out:
1185 spin_unlock(&mapping->i_mmap_lock);
1186 if (mlocked)
1187 ret = SWAP_MLOCK; /* actually mlocked the page */
1188 else if (ret == SWAP_MLOCK)
1189 ret = SWAP_AGAIN; /* saw VM_LOCKED vma */
1190 return ret;
1191 }
1192
1193 /**
1194 * try_to_unmap - try to remove all page table mappings to a page
1195 * @page: the page to get unmapped
1196 * @migration: migration flag
1197 *
1198 * Tries to remove all the page table entries which are mapping this
1199 * page, used in the pageout path. Caller must hold the page lock.
1200 * Return values are:
1201 *
1202 * SWAP_SUCCESS - we succeeded in removing all mappings
1203 * SWAP_AGAIN - we missed a mapping, try again later
1204 * SWAP_FAIL - the page is unswappable
1205 * SWAP_MLOCK - page is mlocked.
1206 */
1207 int try_to_unmap(struct page *page, int migration)
1208 {
1209 int ret;
1210
1211 BUG_ON(!PageLocked(page));
1212
1213 if (PageAnon(page))
1214 ret = try_to_unmap_anon(page, 0, migration);
1215 else
1216 ret = try_to_unmap_file(page, 0, migration);
1217 if (ret != SWAP_MLOCK && !page_mapped(page))
1218 ret = SWAP_SUCCESS;
1219 return ret;
1220 }
1221
1222 #ifdef CONFIG_UNEVICTABLE_LRU
1223 /**
1224 * try_to_munlock - try to munlock a page
1225 * @page: the page to be munlocked
1226 *
1227 * Called from munlock code. Checks all of the VMAs mapping the page
1228 * to make sure nobody else has this page mlocked. The page will be
1229 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1230 *
1231 * Return values are:
1232 *
1233 * SWAP_SUCCESS - no vma's holding page mlocked.
1234 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1235 * SWAP_MLOCK - page is now mlocked.
1236 */
1237 int try_to_munlock(struct page *page)
1238 {
1239 VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1240
1241 if (PageAnon(page))
1242 return try_to_unmap_anon(page, 1, 0);
1243 else
1244 return try_to_unmap_file(page, 1, 0);
1245 }
1246 #endif
This page took 0.077332 seconds and 6 git commands to generate.