Merge commit 'v2.6.27-rc1' into for-linus
[deliverable/linux.git] / mm / rmap.c
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004
18 */
19
20 /*
21 * Lock ordering in mm:
22 *
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * inode->i_alloc_sem (vmtruncate_range)
25 * mm->mmap_sem
26 * page->flags PG_locked (lock_page)
27 * mapping->i_mmap_lock
28 * anon_vma->lock
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * inode_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within inode_lock in __sync_single_inode)
39 */
40
41 #include <linux/mm.h>
42 #include <linux/pagemap.h>
43 #include <linux/swap.h>
44 #include <linux/swapops.h>
45 #include <linux/slab.h>
46 #include <linux/init.h>
47 #include <linux/rmap.h>
48 #include <linux/rcupdate.h>
49 #include <linux/module.h>
50 #include <linux/kallsyms.h>
51 #include <linux/memcontrol.h>
52 #include <linux/mmu_notifier.h>
53
54 #include <asm/tlbflush.h>
55
56 struct kmem_cache *anon_vma_cachep;
57
58 /* This must be called under the mmap_sem. */
59 int anon_vma_prepare(struct vm_area_struct *vma)
60 {
61 struct anon_vma *anon_vma = vma->anon_vma;
62
63 might_sleep();
64 if (unlikely(!anon_vma)) {
65 struct mm_struct *mm = vma->vm_mm;
66 struct anon_vma *allocated, *locked;
67
68 anon_vma = find_mergeable_anon_vma(vma);
69 if (anon_vma) {
70 allocated = NULL;
71 locked = anon_vma;
72 spin_lock(&locked->lock);
73 } else {
74 anon_vma = anon_vma_alloc();
75 if (unlikely(!anon_vma))
76 return -ENOMEM;
77 allocated = anon_vma;
78 locked = NULL;
79 }
80
81 /* page_table_lock to protect against threads */
82 spin_lock(&mm->page_table_lock);
83 if (likely(!vma->anon_vma)) {
84 vma->anon_vma = anon_vma;
85 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
86 allocated = NULL;
87 }
88 spin_unlock(&mm->page_table_lock);
89
90 if (locked)
91 spin_unlock(&locked->lock);
92 if (unlikely(allocated))
93 anon_vma_free(allocated);
94 }
95 return 0;
96 }
97
98 void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
99 {
100 BUG_ON(vma->anon_vma != next->anon_vma);
101 list_del(&next->anon_vma_node);
102 }
103
104 void __anon_vma_link(struct vm_area_struct *vma)
105 {
106 struct anon_vma *anon_vma = vma->anon_vma;
107
108 if (anon_vma)
109 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
110 }
111
112 void anon_vma_link(struct vm_area_struct *vma)
113 {
114 struct anon_vma *anon_vma = vma->anon_vma;
115
116 if (anon_vma) {
117 spin_lock(&anon_vma->lock);
118 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
119 spin_unlock(&anon_vma->lock);
120 }
121 }
122
123 void anon_vma_unlink(struct vm_area_struct *vma)
124 {
125 struct anon_vma *anon_vma = vma->anon_vma;
126 int empty;
127
128 if (!anon_vma)
129 return;
130
131 spin_lock(&anon_vma->lock);
132 list_del(&vma->anon_vma_node);
133
134 /* We must garbage collect the anon_vma if it's empty */
135 empty = list_empty(&anon_vma->head);
136 spin_unlock(&anon_vma->lock);
137
138 if (empty)
139 anon_vma_free(anon_vma);
140 }
141
142 static void anon_vma_ctor(void *data)
143 {
144 struct anon_vma *anon_vma = data;
145
146 spin_lock_init(&anon_vma->lock);
147 INIT_LIST_HEAD(&anon_vma->head);
148 }
149
150 void __init anon_vma_init(void)
151 {
152 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
153 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
154 }
155
156 /*
157 * Getting a lock on a stable anon_vma from a page off the LRU is
158 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
159 */
160 static struct anon_vma *page_lock_anon_vma(struct page *page)
161 {
162 struct anon_vma *anon_vma;
163 unsigned long anon_mapping;
164
165 rcu_read_lock();
166 anon_mapping = (unsigned long) page->mapping;
167 if (!(anon_mapping & PAGE_MAPPING_ANON))
168 goto out;
169 if (!page_mapped(page))
170 goto out;
171
172 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
173 spin_lock(&anon_vma->lock);
174 return anon_vma;
175 out:
176 rcu_read_unlock();
177 return NULL;
178 }
179
180 static void page_unlock_anon_vma(struct anon_vma *anon_vma)
181 {
182 spin_unlock(&anon_vma->lock);
183 rcu_read_unlock();
184 }
185
186 /*
187 * At what user virtual address is page expected in @vma?
188 * Returns virtual address or -EFAULT if page's index/offset is not
189 * within the range mapped the @vma.
190 */
191 static inline unsigned long
192 vma_address(struct page *page, struct vm_area_struct *vma)
193 {
194 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
195 unsigned long address;
196
197 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
198 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
199 /* page should be within @vma mapping range */
200 return -EFAULT;
201 }
202 return address;
203 }
204
205 /*
206 * At what user virtual address is page expected in vma? checking that the
207 * page matches the vma: currently only used on anon pages, by unuse_vma;
208 */
209 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
210 {
211 if (PageAnon(page)) {
212 if ((void *)vma->anon_vma !=
213 (void *)page->mapping - PAGE_MAPPING_ANON)
214 return -EFAULT;
215 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
216 if (!vma->vm_file ||
217 vma->vm_file->f_mapping != page->mapping)
218 return -EFAULT;
219 } else
220 return -EFAULT;
221 return vma_address(page, vma);
222 }
223
224 /*
225 * Check that @page is mapped at @address into @mm.
226 *
227 * On success returns with pte mapped and locked.
228 */
229 pte_t *page_check_address(struct page *page, struct mm_struct *mm,
230 unsigned long address, spinlock_t **ptlp)
231 {
232 pgd_t *pgd;
233 pud_t *pud;
234 pmd_t *pmd;
235 pte_t *pte;
236 spinlock_t *ptl;
237
238 pgd = pgd_offset(mm, address);
239 if (!pgd_present(*pgd))
240 return NULL;
241
242 pud = pud_offset(pgd, address);
243 if (!pud_present(*pud))
244 return NULL;
245
246 pmd = pmd_offset(pud, address);
247 if (!pmd_present(*pmd))
248 return NULL;
249
250 pte = pte_offset_map(pmd, address);
251 /* Make a quick check before getting the lock */
252 if (!pte_present(*pte)) {
253 pte_unmap(pte);
254 return NULL;
255 }
256
257 ptl = pte_lockptr(mm, pmd);
258 spin_lock(ptl);
259 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
260 *ptlp = ptl;
261 return pte;
262 }
263 pte_unmap_unlock(pte, ptl);
264 return NULL;
265 }
266
267 /*
268 * Subfunctions of page_referenced: page_referenced_one called
269 * repeatedly from either page_referenced_anon or page_referenced_file.
270 */
271 static int page_referenced_one(struct page *page,
272 struct vm_area_struct *vma, unsigned int *mapcount)
273 {
274 struct mm_struct *mm = vma->vm_mm;
275 unsigned long address;
276 pte_t *pte;
277 spinlock_t *ptl;
278 int referenced = 0;
279
280 address = vma_address(page, vma);
281 if (address == -EFAULT)
282 goto out;
283
284 pte = page_check_address(page, mm, address, &ptl);
285 if (!pte)
286 goto out;
287
288 if (vma->vm_flags & VM_LOCKED) {
289 referenced++;
290 *mapcount = 1; /* break early from loop */
291 } else if (ptep_clear_flush_young_notify(vma, address, pte))
292 referenced++;
293
294 /* Pretend the page is referenced if the task has the
295 swap token and is in the middle of a page fault. */
296 if (mm != current->mm && has_swap_token(mm) &&
297 rwsem_is_locked(&mm->mmap_sem))
298 referenced++;
299
300 (*mapcount)--;
301 pte_unmap_unlock(pte, ptl);
302 out:
303 return referenced;
304 }
305
306 static int page_referenced_anon(struct page *page,
307 struct mem_cgroup *mem_cont)
308 {
309 unsigned int mapcount;
310 struct anon_vma *anon_vma;
311 struct vm_area_struct *vma;
312 int referenced = 0;
313
314 anon_vma = page_lock_anon_vma(page);
315 if (!anon_vma)
316 return referenced;
317
318 mapcount = page_mapcount(page);
319 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
320 /*
321 * If we are reclaiming on behalf of a cgroup, skip
322 * counting on behalf of references from different
323 * cgroups
324 */
325 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
326 continue;
327 referenced += page_referenced_one(page, vma, &mapcount);
328 if (!mapcount)
329 break;
330 }
331
332 page_unlock_anon_vma(anon_vma);
333 return referenced;
334 }
335
336 /**
337 * page_referenced_file - referenced check for object-based rmap
338 * @page: the page we're checking references on.
339 * @mem_cont: target memory controller
340 *
341 * For an object-based mapped page, find all the places it is mapped and
342 * check/clear the referenced flag. This is done by following the page->mapping
343 * pointer, then walking the chain of vmas it holds. It returns the number
344 * of references it found.
345 *
346 * This function is only called from page_referenced for object-based pages.
347 */
348 static int page_referenced_file(struct page *page,
349 struct mem_cgroup *mem_cont)
350 {
351 unsigned int mapcount;
352 struct address_space *mapping = page->mapping;
353 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
354 struct vm_area_struct *vma;
355 struct prio_tree_iter iter;
356 int referenced = 0;
357
358 /*
359 * The caller's checks on page->mapping and !PageAnon have made
360 * sure that this is a file page: the check for page->mapping
361 * excludes the case just before it gets set on an anon page.
362 */
363 BUG_ON(PageAnon(page));
364
365 /*
366 * The page lock not only makes sure that page->mapping cannot
367 * suddenly be NULLified by truncation, it makes sure that the
368 * structure at mapping cannot be freed and reused yet,
369 * so we can safely take mapping->i_mmap_lock.
370 */
371 BUG_ON(!PageLocked(page));
372
373 spin_lock(&mapping->i_mmap_lock);
374
375 /*
376 * i_mmap_lock does not stabilize mapcount at all, but mapcount
377 * is more likely to be accurate if we note it after spinning.
378 */
379 mapcount = page_mapcount(page);
380
381 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
382 /*
383 * If we are reclaiming on behalf of a cgroup, skip
384 * counting on behalf of references from different
385 * cgroups
386 */
387 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
388 continue;
389 if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE))
390 == (VM_LOCKED|VM_MAYSHARE)) {
391 referenced++;
392 break;
393 }
394 referenced += page_referenced_one(page, vma, &mapcount);
395 if (!mapcount)
396 break;
397 }
398
399 spin_unlock(&mapping->i_mmap_lock);
400 return referenced;
401 }
402
403 /**
404 * page_referenced - test if the page was referenced
405 * @page: the page to test
406 * @is_locked: caller holds lock on the page
407 * @mem_cont: target memory controller
408 *
409 * Quick test_and_clear_referenced for all mappings to a page,
410 * returns the number of ptes which referenced the page.
411 */
412 int page_referenced(struct page *page, int is_locked,
413 struct mem_cgroup *mem_cont)
414 {
415 int referenced = 0;
416
417 if (TestClearPageReferenced(page))
418 referenced++;
419
420 if (page_mapped(page) && page->mapping) {
421 if (PageAnon(page))
422 referenced += page_referenced_anon(page, mem_cont);
423 else if (is_locked)
424 referenced += page_referenced_file(page, mem_cont);
425 else if (TestSetPageLocked(page))
426 referenced++;
427 else {
428 if (page->mapping)
429 referenced +=
430 page_referenced_file(page, mem_cont);
431 unlock_page(page);
432 }
433 }
434
435 if (page_test_and_clear_young(page))
436 referenced++;
437
438 return referenced;
439 }
440
441 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma)
442 {
443 struct mm_struct *mm = vma->vm_mm;
444 unsigned long address;
445 pte_t *pte;
446 spinlock_t *ptl;
447 int ret = 0;
448
449 address = vma_address(page, vma);
450 if (address == -EFAULT)
451 goto out;
452
453 pte = page_check_address(page, mm, address, &ptl);
454 if (!pte)
455 goto out;
456
457 if (pte_dirty(*pte) || pte_write(*pte)) {
458 pte_t entry;
459
460 flush_cache_page(vma, address, pte_pfn(*pte));
461 entry = ptep_clear_flush_notify(vma, address, pte);
462 entry = pte_wrprotect(entry);
463 entry = pte_mkclean(entry);
464 set_pte_at(mm, address, pte, entry);
465 ret = 1;
466 }
467
468 pte_unmap_unlock(pte, ptl);
469 out:
470 return ret;
471 }
472
473 static int page_mkclean_file(struct address_space *mapping, struct page *page)
474 {
475 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
476 struct vm_area_struct *vma;
477 struct prio_tree_iter iter;
478 int ret = 0;
479
480 BUG_ON(PageAnon(page));
481
482 spin_lock(&mapping->i_mmap_lock);
483 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
484 if (vma->vm_flags & VM_SHARED)
485 ret += page_mkclean_one(page, vma);
486 }
487 spin_unlock(&mapping->i_mmap_lock);
488 return ret;
489 }
490
491 int page_mkclean(struct page *page)
492 {
493 int ret = 0;
494
495 BUG_ON(!PageLocked(page));
496
497 if (page_mapped(page)) {
498 struct address_space *mapping = page_mapping(page);
499 if (mapping) {
500 ret = page_mkclean_file(mapping, page);
501 if (page_test_dirty(page)) {
502 page_clear_dirty(page);
503 ret = 1;
504 }
505 }
506 }
507
508 return ret;
509 }
510 EXPORT_SYMBOL_GPL(page_mkclean);
511
512 /**
513 * __page_set_anon_rmap - setup new anonymous rmap
514 * @page: the page to add the mapping to
515 * @vma: the vm area in which the mapping is added
516 * @address: the user virtual address mapped
517 */
518 static void __page_set_anon_rmap(struct page *page,
519 struct vm_area_struct *vma, unsigned long address)
520 {
521 struct anon_vma *anon_vma = vma->anon_vma;
522
523 BUG_ON(!anon_vma);
524 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
525 page->mapping = (struct address_space *) anon_vma;
526
527 page->index = linear_page_index(vma, address);
528
529 /*
530 * nr_mapped state can be updated without turning off
531 * interrupts because it is not modified via interrupt.
532 */
533 __inc_zone_page_state(page, NR_ANON_PAGES);
534 }
535
536 /**
537 * __page_check_anon_rmap - sanity check anonymous rmap addition
538 * @page: the page to add the mapping to
539 * @vma: the vm area in which the mapping is added
540 * @address: the user virtual address mapped
541 */
542 static void __page_check_anon_rmap(struct page *page,
543 struct vm_area_struct *vma, unsigned long address)
544 {
545 #ifdef CONFIG_DEBUG_VM
546 /*
547 * The page's anon-rmap details (mapping and index) are guaranteed to
548 * be set up correctly at this point.
549 *
550 * We have exclusion against page_add_anon_rmap because the caller
551 * always holds the page locked, except if called from page_dup_rmap,
552 * in which case the page is already known to be setup.
553 *
554 * We have exclusion against page_add_new_anon_rmap because those pages
555 * are initially only visible via the pagetables, and the pte is locked
556 * over the call to page_add_new_anon_rmap.
557 */
558 struct anon_vma *anon_vma = vma->anon_vma;
559 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
560 BUG_ON(page->mapping != (struct address_space *)anon_vma);
561 BUG_ON(page->index != linear_page_index(vma, address));
562 #endif
563 }
564
565 /**
566 * page_add_anon_rmap - add pte mapping to an anonymous page
567 * @page: the page to add the mapping to
568 * @vma: the vm area in which the mapping is added
569 * @address: the user virtual address mapped
570 *
571 * The caller needs to hold the pte lock and the page must be locked.
572 */
573 void page_add_anon_rmap(struct page *page,
574 struct vm_area_struct *vma, unsigned long address)
575 {
576 VM_BUG_ON(!PageLocked(page));
577 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
578 if (atomic_inc_and_test(&page->_mapcount))
579 __page_set_anon_rmap(page, vma, address);
580 else
581 __page_check_anon_rmap(page, vma, address);
582 }
583
584 /**
585 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
586 * @page: the page to add the mapping to
587 * @vma: the vm area in which the mapping is added
588 * @address: the user virtual address mapped
589 *
590 * Same as page_add_anon_rmap but must only be called on *new* pages.
591 * This means the inc-and-test can be bypassed.
592 * Page does not have to be locked.
593 */
594 void page_add_new_anon_rmap(struct page *page,
595 struct vm_area_struct *vma, unsigned long address)
596 {
597 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
598 atomic_set(&page->_mapcount, 0); /* elevate count by 1 (starts at -1) */
599 __page_set_anon_rmap(page, vma, address);
600 }
601
602 /**
603 * page_add_file_rmap - add pte mapping to a file page
604 * @page: the page to add the mapping to
605 *
606 * The caller needs to hold the pte lock.
607 */
608 void page_add_file_rmap(struct page *page)
609 {
610 if (atomic_inc_and_test(&page->_mapcount))
611 __inc_zone_page_state(page, NR_FILE_MAPPED);
612 }
613
614 #ifdef CONFIG_DEBUG_VM
615 /**
616 * page_dup_rmap - duplicate pte mapping to a page
617 * @page: the page to add the mapping to
618 * @vma: the vm area being duplicated
619 * @address: the user virtual address mapped
620 *
621 * For copy_page_range only: minimal extract from page_add_file_rmap /
622 * page_add_anon_rmap, avoiding unnecessary tests (already checked) so it's
623 * quicker.
624 *
625 * The caller needs to hold the pte lock.
626 */
627 void page_dup_rmap(struct page *page, struct vm_area_struct *vma, unsigned long address)
628 {
629 BUG_ON(page_mapcount(page) == 0);
630 if (PageAnon(page))
631 __page_check_anon_rmap(page, vma, address);
632 atomic_inc(&page->_mapcount);
633 }
634 #endif
635
636 /**
637 * page_remove_rmap - take down pte mapping from a page
638 * @page: page to remove mapping from
639 * @vma: the vm area in which the mapping is removed
640 *
641 * The caller needs to hold the pte lock.
642 */
643 void page_remove_rmap(struct page *page, struct vm_area_struct *vma)
644 {
645 if (atomic_add_negative(-1, &page->_mapcount)) {
646 if (unlikely(page_mapcount(page) < 0)) {
647 printk (KERN_EMERG "Eeek! page_mapcount(page) went negative! (%d)\n", page_mapcount(page));
648 printk (KERN_EMERG " page pfn = %lx\n", page_to_pfn(page));
649 printk (KERN_EMERG " page->flags = %lx\n", page->flags);
650 printk (KERN_EMERG " page->count = %x\n", page_count(page));
651 printk (KERN_EMERG " page->mapping = %p\n", page->mapping);
652 print_symbol (KERN_EMERG " vma->vm_ops = %s\n", (unsigned long)vma->vm_ops);
653 if (vma->vm_ops) {
654 print_symbol (KERN_EMERG " vma->vm_ops->fault = %s\n", (unsigned long)vma->vm_ops->fault);
655 }
656 if (vma->vm_file && vma->vm_file->f_op)
657 print_symbol (KERN_EMERG " vma->vm_file->f_op->mmap = %s\n", (unsigned long)vma->vm_file->f_op->mmap);
658 BUG();
659 }
660
661 /*
662 * It would be tidy to reset the PageAnon mapping here,
663 * but that might overwrite a racing page_add_anon_rmap
664 * which increments mapcount after us but sets mapping
665 * before us: so leave the reset to free_hot_cold_page,
666 * and remember that it's only reliable while mapped.
667 * Leaving it set also helps swapoff to reinstate ptes
668 * faster for those pages still in swapcache.
669 */
670 if (page_test_dirty(page)) {
671 page_clear_dirty(page);
672 set_page_dirty(page);
673 }
674 mem_cgroup_uncharge_page(page);
675
676 __dec_zone_page_state(page,
677 PageAnon(page) ? NR_ANON_PAGES : NR_FILE_MAPPED);
678 }
679 }
680
681 /*
682 * Subfunctions of try_to_unmap: try_to_unmap_one called
683 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
684 */
685 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
686 int migration)
687 {
688 struct mm_struct *mm = vma->vm_mm;
689 unsigned long address;
690 pte_t *pte;
691 pte_t pteval;
692 spinlock_t *ptl;
693 int ret = SWAP_AGAIN;
694
695 address = vma_address(page, vma);
696 if (address == -EFAULT)
697 goto out;
698
699 pte = page_check_address(page, mm, address, &ptl);
700 if (!pte)
701 goto out;
702
703 /*
704 * If the page is mlock()d, we cannot swap it out.
705 * If it's recently referenced (perhaps page_referenced
706 * skipped over this mm) then we should reactivate it.
707 */
708 if (!migration && ((vma->vm_flags & VM_LOCKED) ||
709 (ptep_clear_flush_young_notify(vma, address, pte)))) {
710 ret = SWAP_FAIL;
711 goto out_unmap;
712 }
713
714 /* Nuke the page table entry. */
715 flush_cache_page(vma, address, page_to_pfn(page));
716 pteval = ptep_clear_flush_notify(vma, address, pte);
717
718 /* Move the dirty bit to the physical page now the pte is gone. */
719 if (pte_dirty(pteval))
720 set_page_dirty(page);
721
722 /* Update high watermark before we lower rss */
723 update_hiwater_rss(mm);
724
725 if (PageAnon(page)) {
726 swp_entry_t entry = { .val = page_private(page) };
727
728 if (PageSwapCache(page)) {
729 /*
730 * Store the swap location in the pte.
731 * See handle_pte_fault() ...
732 */
733 swap_duplicate(entry);
734 if (list_empty(&mm->mmlist)) {
735 spin_lock(&mmlist_lock);
736 if (list_empty(&mm->mmlist))
737 list_add(&mm->mmlist, &init_mm.mmlist);
738 spin_unlock(&mmlist_lock);
739 }
740 dec_mm_counter(mm, anon_rss);
741 #ifdef CONFIG_MIGRATION
742 } else {
743 /*
744 * Store the pfn of the page in a special migration
745 * pte. do_swap_page() will wait until the migration
746 * pte is removed and then restart fault handling.
747 */
748 BUG_ON(!migration);
749 entry = make_migration_entry(page, pte_write(pteval));
750 #endif
751 }
752 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
753 BUG_ON(pte_file(*pte));
754 } else
755 #ifdef CONFIG_MIGRATION
756 if (migration) {
757 /* Establish migration entry for a file page */
758 swp_entry_t entry;
759 entry = make_migration_entry(page, pte_write(pteval));
760 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
761 } else
762 #endif
763 dec_mm_counter(mm, file_rss);
764
765
766 page_remove_rmap(page, vma);
767 page_cache_release(page);
768
769 out_unmap:
770 pte_unmap_unlock(pte, ptl);
771 out:
772 return ret;
773 }
774
775 /*
776 * objrmap doesn't work for nonlinear VMAs because the assumption that
777 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
778 * Consequently, given a particular page and its ->index, we cannot locate the
779 * ptes which are mapping that page without an exhaustive linear search.
780 *
781 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
782 * maps the file to which the target page belongs. The ->vm_private_data field
783 * holds the current cursor into that scan. Successive searches will circulate
784 * around the vma's virtual address space.
785 *
786 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
787 * more scanning pressure is placed against them as well. Eventually pages
788 * will become fully unmapped and are eligible for eviction.
789 *
790 * For very sparsely populated VMAs this is a little inefficient - chances are
791 * there there won't be many ptes located within the scan cluster. In this case
792 * maybe we could scan further - to the end of the pte page, perhaps.
793 */
794 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
795 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
796
797 static void try_to_unmap_cluster(unsigned long cursor,
798 unsigned int *mapcount, struct vm_area_struct *vma)
799 {
800 struct mm_struct *mm = vma->vm_mm;
801 pgd_t *pgd;
802 pud_t *pud;
803 pmd_t *pmd;
804 pte_t *pte;
805 pte_t pteval;
806 spinlock_t *ptl;
807 struct page *page;
808 unsigned long address;
809 unsigned long end;
810
811 address = (vma->vm_start + cursor) & CLUSTER_MASK;
812 end = address + CLUSTER_SIZE;
813 if (address < vma->vm_start)
814 address = vma->vm_start;
815 if (end > vma->vm_end)
816 end = vma->vm_end;
817
818 pgd = pgd_offset(mm, address);
819 if (!pgd_present(*pgd))
820 return;
821
822 pud = pud_offset(pgd, address);
823 if (!pud_present(*pud))
824 return;
825
826 pmd = pmd_offset(pud, address);
827 if (!pmd_present(*pmd))
828 return;
829
830 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
831
832 /* Update high watermark before we lower rss */
833 update_hiwater_rss(mm);
834
835 for (; address < end; pte++, address += PAGE_SIZE) {
836 if (!pte_present(*pte))
837 continue;
838 page = vm_normal_page(vma, address, *pte);
839 BUG_ON(!page || PageAnon(page));
840
841 if (ptep_clear_flush_young_notify(vma, address, pte))
842 continue;
843
844 /* Nuke the page table entry. */
845 flush_cache_page(vma, address, pte_pfn(*pte));
846 pteval = ptep_clear_flush_notify(vma, address, pte);
847
848 /* If nonlinear, store the file page offset in the pte. */
849 if (page->index != linear_page_index(vma, address))
850 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
851
852 /* Move the dirty bit to the physical page now the pte is gone. */
853 if (pte_dirty(pteval))
854 set_page_dirty(page);
855
856 page_remove_rmap(page, vma);
857 page_cache_release(page);
858 dec_mm_counter(mm, file_rss);
859 (*mapcount)--;
860 }
861 pte_unmap_unlock(pte - 1, ptl);
862 }
863
864 static int try_to_unmap_anon(struct page *page, int migration)
865 {
866 struct anon_vma *anon_vma;
867 struct vm_area_struct *vma;
868 int ret = SWAP_AGAIN;
869
870 anon_vma = page_lock_anon_vma(page);
871 if (!anon_vma)
872 return ret;
873
874 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
875 ret = try_to_unmap_one(page, vma, migration);
876 if (ret == SWAP_FAIL || !page_mapped(page))
877 break;
878 }
879
880 page_unlock_anon_vma(anon_vma);
881 return ret;
882 }
883
884 /**
885 * try_to_unmap_file - unmap file page using the object-based rmap method
886 * @page: the page to unmap
887 * @migration: migration flag
888 *
889 * Find all the mappings of a page using the mapping pointer and the vma chains
890 * contained in the address_space struct it points to.
891 *
892 * This function is only called from try_to_unmap for object-based pages.
893 */
894 static int try_to_unmap_file(struct page *page, int migration)
895 {
896 struct address_space *mapping = page->mapping;
897 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
898 struct vm_area_struct *vma;
899 struct prio_tree_iter iter;
900 int ret = SWAP_AGAIN;
901 unsigned long cursor;
902 unsigned long max_nl_cursor = 0;
903 unsigned long max_nl_size = 0;
904 unsigned int mapcount;
905
906 spin_lock(&mapping->i_mmap_lock);
907 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
908 ret = try_to_unmap_one(page, vma, migration);
909 if (ret == SWAP_FAIL || !page_mapped(page))
910 goto out;
911 }
912
913 if (list_empty(&mapping->i_mmap_nonlinear))
914 goto out;
915
916 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
917 shared.vm_set.list) {
918 if ((vma->vm_flags & VM_LOCKED) && !migration)
919 continue;
920 cursor = (unsigned long) vma->vm_private_data;
921 if (cursor > max_nl_cursor)
922 max_nl_cursor = cursor;
923 cursor = vma->vm_end - vma->vm_start;
924 if (cursor > max_nl_size)
925 max_nl_size = cursor;
926 }
927
928 if (max_nl_size == 0) { /* any nonlinears locked or reserved */
929 ret = SWAP_FAIL;
930 goto out;
931 }
932
933 /*
934 * We don't try to search for this page in the nonlinear vmas,
935 * and page_referenced wouldn't have found it anyway. Instead
936 * just walk the nonlinear vmas trying to age and unmap some.
937 * The mapcount of the page we came in with is irrelevant,
938 * but even so use it as a guide to how hard we should try?
939 */
940 mapcount = page_mapcount(page);
941 if (!mapcount)
942 goto out;
943 cond_resched_lock(&mapping->i_mmap_lock);
944
945 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
946 if (max_nl_cursor == 0)
947 max_nl_cursor = CLUSTER_SIZE;
948
949 do {
950 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
951 shared.vm_set.list) {
952 if ((vma->vm_flags & VM_LOCKED) && !migration)
953 continue;
954 cursor = (unsigned long) vma->vm_private_data;
955 while ( cursor < max_nl_cursor &&
956 cursor < vma->vm_end - vma->vm_start) {
957 try_to_unmap_cluster(cursor, &mapcount, vma);
958 cursor += CLUSTER_SIZE;
959 vma->vm_private_data = (void *) cursor;
960 if ((int)mapcount <= 0)
961 goto out;
962 }
963 vma->vm_private_data = (void *) max_nl_cursor;
964 }
965 cond_resched_lock(&mapping->i_mmap_lock);
966 max_nl_cursor += CLUSTER_SIZE;
967 } while (max_nl_cursor <= max_nl_size);
968
969 /*
970 * Don't loop forever (perhaps all the remaining pages are
971 * in locked vmas). Reset cursor on all unreserved nonlinear
972 * vmas, now forgetting on which ones it had fallen behind.
973 */
974 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
975 vma->vm_private_data = NULL;
976 out:
977 spin_unlock(&mapping->i_mmap_lock);
978 return ret;
979 }
980
981 /**
982 * try_to_unmap - try to remove all page table mappings to a page
983 * @page: the page to get unmapped
984 * @migration: migration flag
985 *
986 * Tries to remove all the page table entries which are mapping this
987 * page, used in the pageout path. Caller must hold the page lock.
988 * Return values are:
989 *
990 * SWAP_SUCCESS - we succeeded in removing all mappings
991 * SWAP_AGAIN - we missed a mapping, try again later
992 * SWAP_FAIL - the page is unswappable
993 */
994 int try_to_unmap(struct page *page, int migration)
995 {
996 int ret;
997
998 BUG_ON(!PageLocked(page));
999
1000 if (PageAnon(page))
1001 ret = try_to_unmap_anon(page, migration);
1002 else
1003 ret = try_to_unmap_file(page, migration);
1004
1005 if (!page_mapped(page))
1006 ret = SWAP_SUCCESS;
1007 return ret;
1008 }
1009
This page took 0.157597 seconds and 6 git commands to generate.