mm: catch memory commitment underflow
[deliverable/linux.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/aio.h>
35
36 static struct vfsmount *shm_mnt;
37
38 #ifdef CONFIG_SHMEM
39 /*
40 * This virtual memory filesystem is heavily based on the ramfs. It
41 * extends ramfs by the ability to use swap and honor resource limits
42 * which makes it a completely usable filesystem.
43 */
44
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/posix_acl_xattr.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
69
70 #include <asm/uaccess.h>
71 #include <asm/pgtable.h>
72
73 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
74 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
75
76 /* Pretend that each entry is of this size in directory's i_size */
77 #define BOGO_DIRENT_SIZE 20
78
79 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
80 #define SHORT_SYMLINK_LEN 128
81
82 /*
83 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
84 * inode->i_private (with i_mutex making sure that it has only one user at
85 * a time): we would prefer not to enlarge the shmem inode just for that.
86 */
87 struct shmem_falloc {
88 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
89 pgoff_t start; /* start of range currently being fallocated */
90 pgoff_t next; /* the next page offset to be fallocated */
91 pgoff_t nr_falloced; /* how many new pages have been fallocated */
92 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
93 };
94
95 /* Flag allocation requirements to shmem_getpage */
96 enum sgp_type {
97 SGP_READ, /* don't exceed i_size, don't allocate page */
98 SGP_CACHE, /* don't exceed i_size, may allocate page */
99 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
100 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */
101 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */
102 };
103
104 #ifdef CONFIG_TMPFS
105 static unsigned long shmem_default_max_blocks(void)
106 {
107 return totalram_pages / 2;
108 }
109
110 static unsigned long shmem_default_max_inodes(void)
111 {
112 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
113 }
114 #endif
115
116 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
117 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
118 struct shmem_inode_info *info, pgoff_t index);
119 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
120 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
121
122 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
123 struct page **pagep, enum sgp_type sgp, int *fault_type)
124 {
125 return shmem_getpage_gfp(inode, index, pagep, sgp,
126 mapping_gfp_mask(inode->i_mapping), fault_type);
127 }
128
129 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
130 {
131 return sb->s_fs_info;
132 }
133
134 /*
135 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
136 * for shared memory and for shared anonymous (/dev/zero) mappings
137 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
138 * consistent with the pre-accounting of private mappings ...
139 */
140 static inline int shmem_acct_size(unsigned long flags, loff_t size)
141 {
142 return (flags & VM_NORESERVE) ?
143 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
144 }
145
146 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
147 {
148 if (!(flags & VM_NORESERVE))
149 vm_unacct_memory(VM_ACCT(size));
150 }
151
152 static inline int shmem_reacct_size(unsigned long flags,
153 loff_t oldsize, loff_t newsize)
154 {
155 if (!(flags & VM_NORESERVE)) {
156 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
157 return security_vm_enough_memory_mm(current->mm,
158 VM_ACCT(newsize) - VM_ACCT(oldsize));
159 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
160 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
161 }
162 return 0;
163 }
164
165 /*
166 * ... whereas tmpfs objects are accounted incrementally as
167 * pages are allocated, in order to allow huge sparse files.
168 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
169 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
170 */
171 static inline int shmem_acct_block(unsigned long flags)
172 {
173 return (flags & VM_NORESERVE) ?
174 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
175 }
176
177 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
178 {
179 if (flags & VM_NORESERVE)
180 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
181 }
182
183 static const struct super_operations shmem_ops;
184 static const struct address_space_operations shmem_aops;
185 static const struct file_operations shmem_file_operations;
186 static const struct inode_operations shmem_inode_operations;
187 static const struct inode_operations shmem_dir_inode_operations;
188 static const struct inode_operations shmem_special_inode_operations;
189 static const struct vm_operations_struct shmem_vm_ops;
190
191 static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
192 .ra_pages = 0, /* No readahead */
193 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
194 };
195
196 static LIST_HEAD(shmem_swaplist);
197 static DEFINE_MUTEX(shmem_swaplist_mutex);
198
199 static int shmem_reserve_inode(struct super_block *sb)
200 {
201 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
202 if (sbinfo->max_inodes) {
203 spin_lock(&sbinfo->stat_lock);
204 if (!sbinfo->free_inodes) {
205 spin_unlock(&sbinfo->stat_lock);
206 return -ENOSPC;
207 }
208 sbinfo->free_inodes--;
209 spin_unlock(&sbinfo->stat_lock);
210 }
211 return 0;
212 }
213
214 static void shmem_free_inode(struct super_block *sb)
215 {
216 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
217 if (sbinfo->max_inodes) {
218 spin_lock(&sbinfo->stat_lock);
219 sbinfo->free_inodes++;
220 spin_unlock(&sbinfo->stat_lock);
221 }
222 }
223
224 /**
225 * shmem_recalc_inode - recalculate the block usage of an inode
226 * @inode: inode to recalc
227 *
228 * We have to calculate the free blocks since the mm can drop
229 * undirtied hole pages behind our back.
230 *
231 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
232 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
233 *
234 * It has to be called with the spinlock held.
235 */
236 static void shmem_recalc_inode(struct inode *inode)
237 {
238 struct shmem_inode_info *info = SHMEM_I(inode);
239 long freed;
240
241 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
242 if (freed > 0) {
243 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
244 if (sbinfo->max_blocks)
245 percpu_counter_add(&sbinfo->used_blocks, -freed);
246 info->alloced -= freed;
247 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
248 shmem_unacct_blocks(info->flags, freed);
249 }
250 }
251
252 /*
253 * Replace item expected in radix tree by a new item, while holding tree lock.
254 */
255 static int shmem_radix_tree_replace(struct address_space *mapping,
256 pgoff_t index, void *expected, void *replacement)
257 {
258 void **pslot;
259 void *item;
260
261 VM_BUG_ON(!expected);
262 VM_BUG_ON(!replacement);
263 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
264 if (!pslot)
265 return -ENOENT;
266 item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
267 if (item != expected)
268 return -ENOENT;
269 radix_tree_replace_slot(pslot, replacement);
270 return 0;
271 }
272
273 /*
274 * Sometimes, before we decide whether to proceed or to fail, we must check
275 * that an entry was not already brought back from swap by a racing thread.
276 *
277 * Checking page is not enough: by the time a SwapCache page is locked, it
278 * might be reused, and again be SwapCache, using the same swap as before.
279 */
280 static bool shmem_confirm_swap(struct address_space *mapping,
281 pgoff_t index, swp_entry_t swap)
282 {
283 void *item;
284
285 rcu_read_lock();
286 item = radix_tree_lookup(&mapping->page_tree, index);
287 rcu_read_unlock();
288 return item == swp_to_radix_entry(swap);
289 }
290
291 /*
292 * Like add_to_page_cache_locked, but error if expected item has gone.
293 */
294 static int shmem_add_to_page_cache(struct page *page,
295 struct address_space *mapping,
296 pgoff_t index, gfp_t gfp, void *expected)
297 {
298 int error;
299
300 VM_BUG_ON_PAGE(!PageLocked(page), page);
301 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
302
303 page_cache_get(page);
304 page->mapping = mapping;
305 page->index = index;
306
307 spin_lock_irq(&mapping->tree_lock);
308 if (!expected)
309 error = radix_tree_insert(&mapping->page_tree, index, page);
310 else
311 error = shmem_radix_tree_replace(mapping, index, expected,
312 page);
313 if (!error) {
314 mapping->nrpages++;
315 __inc_zone_page_state(page, NR_FILE_PAGES);
316 __inc_zone_page_state(page, NR_SHMEM);
317 spin_unlock_irq(&mapping->tree_lock);
318 } else {
319 page->mapping = NULL;
320 spin_unlock_irq(&mapping->tree_lock);
321 page_cache_release(page);
322 }
323 return error;
324 }
325
326 /*
327 * Like delete_from_page_cache, but substitutes swap for page.
328 */
329 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
330 {
331 struct address_space *mapping = page->mapping;
332 int error;
333
334 spin_lock_irq(&mapping->tree_lock);
335 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
336 page->mapping = NULL;
337 mapping->nrpages--;
338 __dec_zone_page_state(page, NR_FILE_PAGES);
339 __dec_zone_page_state(page, NR_SHMEM);
340 spin_unlock_irq(&mapping->tree_lock);
341 page_cache_release(page);
342 BUG_ON(error);
343 }
344
345 /*
346 * Remove swap entry from radix tree, free the swap and its page cache.
347 */
348 static int shmem_free_swap(struct address_space *mapping,
349 pgoff_t index, void *radswap)
350 {
351 void *old;
352
353 spin_lock_irq(&mapping->tree_lock);
354 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
355 spin_unlock_irq(&mapping->tree_lock);
356 if (old != radswap)
357 return -ENOENT;
358 free_swap_and_cache(radix_to_swp_entry(radswap));
359 return 0;
360 }
361
362 /*
363 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
364 */
365 void shmem_unlock_mapping(struct address_space *mapping)
366 {
367 struct pagevec pvec;
368 pgoff_t indices[PAGEVEC_SIZE];
369 pgoff_t index = 0;
370
371 pagevec_init(&pvec, 0);
372 /*
373 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
374 */
375 while (!mapping_unevictable(mapping)) {
376 /*
377 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
378 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
379 */
380 pvec.nr = find_get_entries(mapping, index,
381 PAGEVEC_SIZE, pvec.pages, indices);
382 if (!pvec.nr)
383 break;
384 index = indices[pvec.nr - 1] + 1;
385 pagevec_remove_exceptionals(&pvec);
386 check_move_unevictable_pages(pvec.pages, pvec.nr);
387 pagevec_release(&pvec);
388 cond_resched();
389 }
390 }
391
392 /*
393 * Remove range of pages and swap entries from radix tree, and free them.
394 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
395 */
396 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
397 bool unfalloc)
398 {
399 struct address_space *mapping = inode->i_mapping;
400 struct shmem_inode_info *info = SHMEM_I(inode);
401 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
402 pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
403 unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
404 unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
405 struct pagevec pvec;
406 pgoff_t indices[PAGEVEC_SIZE];
407 long nr_swaps_freed = 0;
408 pgoff_t index;
409 int i;
410
411 if (lend == -1)
412 end = -1; /* unsigned, so actually very big */
413
414 pagevec_init(&pvec, 0);
415 index = start;
416 while (index < end) {
417 pvec.nr = find_get_entries(mapping, index,
418 min(end - index, (pgoff_t)PAGEVEC_SIZE),
419 pvec.pages, indices);
420 if (!pvec.nr)
421 break;
422 mem_cgroup_uncharge_start();
423 for (i = 0; i < pagevec_count(&pvec); i++) {
424 struct page *page = pvec.pages[i];
425
426 index = indices[i];
427 if (index >= end)
428 break;
429
430 if (radix_tree_exceptional_entry(page)) {
431 if (unfalloc)
432 continue;
433 nr_swaps_freed += !shmem_free_swap(mapping,
434 index, page);
435 continue;
436 }
437
438 if (!trylock_page(page))
439 continue;
440 if (!unfalloc || !PageUptodate(page)) {
441 if (page->mapping == mapping) {
442 VM_BUG_ON_PAGE(PageWriteback(page), page);
443 truncate_inode_page(mapping, page);
444 }
445 }
446 unlock_page(page);
447 }
448 pagevec_remove_exceptionals(&pvec);
449 pagevec_release(&pvec);
450 mem_cgroup_uncharge_end();
451 cond_resched();
452 index++;
453 }
454
455 if (partial_start) {
456 struct page *page = NULL;
457 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
458 if (page) {
459 unsigned int top = PAGE_CACHE_SIZE;
460 if (start > end) {
461 top = partial_end;
462 partial_end = 0;
463 }
464 zero_user_segment(page, partial_start, top);
465 set_page_dirty(page);
466 unlock_page(page);
467 page_cache_release(page);
468 }
469 }
470 if (partial_end) {
471 struct page *page = NULL;
472 shmem_getpage(inode, end, &page, SGP_READ, NULL);
473 if (page) {
474 zero_user_segment(page, 0, partial_end);
475 set_page_dirty(page);
476 unlock_page(page);
477 page_cache_release(page);
478 }
479 }
480 if (start >= end)
481 return;
482
483 index = start;
484 while (index < end) {
485 cond_resched();
486
487 pvec.nr = find_get_entries(mapping, index,
488 min(end - index, (pgoff_t)PAGEVEC_SIZE),
489 pvec.pages, indices);
490 if (!pvec.nr) {
491 /* If all gone or hole-punch or unfalloc, we're done */
492 if (index == start || end != -1)
493 break;
494 /* But if truncating, restart to make sure all gone */
495 index = start;
496 continue;
497 }
498 mem_cgroup_uncharge_start();
499 for (i = 0; i < pagevec_count(&pvec); i++) {
500 struct page *page = pvec.pages[i];
501
502 index = indices[i];
503 if (index >= end)
504 break;
505
506 if (radix_tree_exceptional_entry(page)) {
507 if (unfalloc)
508 continue;
509 if (shmem_free_swap(mapping, index, page)) {
510 /* Swap was replaced by page: retry */
511 index--;
512 break;
513 }
514 nr_swaps_freed++;
515 continue;
516 }
517
518 lock_page(page);
519 if (!unfalloc || !PageUptodate(page)) {
520 if (page->mapping == mapping) {
521 VM_BUG_ON_PAGE(PageWriteback(page), page);
522 truncate_inode_page(mapping, page);
523 } else {
524 /* Page was replaced by swap: retry */
525 unlock_page(page);
526 index--;
527 break;
528 }
529 }
530 unlock_page(page);
531 }
532 pagevec_remove_exceptionals(&pvec);
533 pagevec_release(&pvec);
534 mem_cgroup_uncharge_end();
535 index++;
536 }
537
538 spin_lock(&info->lock);
539 info->swapped -= nr_swaps_freed;
540 shmem_recalc_inode(inode);
541 spin_unlock(&info->lock);
542 }
543
544 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
545 {
546 shmem_undo_range(inode, lstart, lend, false);
547 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
548 }
549 EXPORT_SYMBOL_GPL(shmem_truncate_range);
550
551 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
552 {
553 struct inode *inode = dentry->d_inode;
554 int error;
555
556 error = inode_change_ok(inode, attr);
557 if (error)
558 return error;
559
560 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
561 loff_t oldsize = inode->i_size;
562 loff_t newsize = attr->ia_size;
563
564 if (newsize != oldsize) {
565 error = shmem_reacct_size(SHMEM_I(inode)->flags,
566 oldsize, newsize);
567 if (error)
568 return error;
569 i_size_write(inode, newsize);
570 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
571 }
572 if (newsize < oldsize) {
573 loff_t holebegin = round_up(newsize, PAGE_SIZE);
574 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
575 shmem_truncate_range(inode, newsize, (loff_t)-1);
576 /* unmap again to remove racily COWed private pages */
577 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
578 }
579 }
580
581 setattr_copy(inode, attr);
582 if (attr->ia_valid & ATTR_MODE)
583 error = posix_acl_chmod(inode, inode->i_mode);
584 return error;
585 }
586
587 static void shmem_evict_inode(struct inode *inode)
588 {
589 struct shmem_inode_info *info = SHMEM_I(inode);
590
591 if (inode->i_mapping->a_ops == &shmem_aops) {
592 shmem_unacct_size(info->flags, inode->i_size);
593 inode->i_size = 0;
594 shmem_truncate_range(inode, 0, (loff_t)-1);
595 if (!list_empty(&info->swaplist)) {
596 mutex_lock(&shmem_swaplist_mutex);
597 list_del_init(&info->swaplist);
598 mutex_unlock(&shmem_swaplist_mutex);
599 }
600 } else
601 kfree(info->symlink);
602
603 simple_xattrs_free(&info->xattrs);
604 WARN_ON(inode->i_blocks);
605 shmem_free_inode(inode->i_sb);
606 clear_inode(inode);
607 }
608
609 /*
610 * If swap found in inode, free it and move page from swapcache to filecache.
611 */
612 static int shmem_unuse_inode(struct shmem_inode_info *info,
613 swp_entry_t swap, struct page **pagep)
614 {
615 struct address_space *mapping = info->vfs_inode.i_mapping;
616 void *radswap;
617 pgoff_t index;
618 gfp_t gfp;
619 int error = 0;
620
621 radswap = swp_to_radix_entry(swap);
622 index = radix_tree_locate_item(&mapping->page_tree, radswap);
623 if (index == -1)
624 return 0;
625
626 /*
627 * Move _head_ to start search for next from here.
628 * But be careful: shmem_evict_inode checks list_empty without taking
629 * mutex, and there's an instant in list_move_tail when info->swaplist
630 * would appear empty, if it were the only one on shmem_swaplist.
631 */
632 if (shmem_swaplist.next != &info->swaplist)
633 list_move_tail(&shmem_swaplist, &info->swaplist);
634
635 gfp = mapping_gfp_mask(mapping);
636 if (shmem_should_replace_page(*pagep, gfp)) {
637 mutex_unlock(&shmem_swaplist_mutex);
638 error = shmem_replace_page(pagep, gfp, info, index);
639 mutex_lock(&shmem_swaplist_mutex);
640 /*
641 * We needed to drop mutex to make that restrictive page
642 * allocation, but the inode might have been freed while we
643 * dropped it: although a racing shmem_evict_inode() cannot
644 * complete without emptying the radix_tree, our page lock
645 * on this swapcache page is not enough to prevent that -
646 * free_swap_and_cache() of our swap entry will only
647 * trylock_page(), removing swap from radix_tree whatever.
648 *
649 * We must not proceed to shmem_add_to_page_cache() if the
650 * inode has been freed, but of course we cannot rely on
651 * inode or mapping or info to check that. However, we can
652 * safely check if our swap entry is still in use (and here
653 * it can't have got reused for another page): if it's still
654 * in use, then the inode cannot have been freed yet, and we
655 * can safely proceed (if it's no longer in use, that tells
656 * nothing about the inode, but we don't need to unuse swap).
657 */
658 if (!page_swapcount(*pagep))
659 error = -ENOENT;
660 }
661
662 /*
663 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
664 * but also to hold up shmem_evict_inode(): so inode cannot be freed
665 * beneath us (pagelock doesn't help until the page is in pagecache).
666 */
667 if (!error)
668 error = shmem_add_to_page_cache(*pagep, mapping, index,
669 GFP_NOWAIT, radswap);
670 if (error != -ENOMEM) {
671 /*
672 * Truncation and eviction use free_swap_and_cache(), which
673 * only does trylock page: if we raced, best clean up here.
674 */
675 delete_from_swap_cache(*pagep);
676 set_page_dirty(*pagep);
677 if (!error) {
678 spin_lock(&info->lock);
679 info->swapped--;
680 spin_unlock(&info->lock);
681 swap_free(swap);
682 }
683 error = 1; /* not an error, but entry was found */
684 }
685 return error;
686 }
687
688 /*
689 * Search through swapped inodes to find and replace swap by page.
690 */
691 int shmem_unuse(swp_entry_t swap, struct page *page)
692 {
693 struct list_head *this, *next;
694 struct shmem_inode_info *info;
695 int found = 0;
696 int error = 0;
697
698 /*
699 * There's a faint possibility that swap page was replaced before
700 * caller locked it: caller will come back later with the right page.
701 */
702 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
703 goto out;
704
705 /*
706 * Charge page using GFP_KERNEL while we can wait, before taking
707 * the shmem_swaplist_mutex which might hold up shmem_writepage().
708 * Charged back to the user (not to caller) when swap account is used.
709 */
710 error = mem_cgroup_charge_file(page, current->mm, GFP_KERNEL);
711 if (error)
712 goto out;
713 /* No radix_tree_preload: swap entry keeps a place for page in tree */
714
715 mutex_lock(&shmem_swaplist_mutex);
716 list_for_each_safe(this, next, &shmem_swaplist) {
717 info = list_entry(this, struct shmem_inode_info, swaplist);
718 if (info->swapped)
719 found = shmem_unuse_inode(info, swap, &page);
720 else
721 list_del_init(&info->swaplist);
722 cond_resched();
723 if (found)
724 break;
725 }
726 mutex_unlock(&shmem_swaplist_mutex);
727
728 if (found < 0)
729 error = found;
730 out:
731 unlock_page(page);
732 page_cache_release(page);
733 return error;
734 }
735
736 /*
737 * Move the page from the page cache to the swap cache.
738 */
739 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
740 {
741 struct shmem_inode_info *info;
742 struct address_space *mapping;
743 struct inode *inode;
744 swp_entry_t swap;
745 pgoff_t index;
746
747 BUG_ON(!PageLocked(page));
748 mapping = page->mapping;
749 index = page->index;
750 inode = mapping->host;
751 info = SHMEM_I(inode);
752 if (info->flags & VM_LOCKED)
753 goto redirty;
754 if (!total_swap_pages)
755 goto redirty;
756
757 /*
758 * shmem_backing_dev_info's capabilities prevent regular writeback or
759 * sync from ever calling shmem_writepage; but a stacking filesystem
760 * might use ->writepage of its underlying filesystem, in which case
761 * tmpfs should write out to swap only in response to memory pressure,
762 * and not for the writeback threads or sync.
763 */
764 if (!wbc->for_reclaim) {
765 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
766 goto redirty;
767 }
768
769 /*
770 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
771 * value into swapfile.c, the only way we can correctly account for a
772 * fallocated page arriving here is now to initialize it and write it.
773 *
774 * That's okay for a page already fallocated earlier, but if we have
775 * not yet completed the fallocation, then (a) we want to keep track
776 * of this page in case we have to undo it, and (b) it may not be a
777 * good idea to continue anyway, once we're pushing into swap. So
778 * reactivate the page, and let shmem_fallocate() quit when too many.
779 */
780 if (!PageUptodate(page)) {
781 if (inode->i_private) {
782 struct shmem_falloc *shmem_falloc;
783 spin_lock(&inode->i_lock);
784 shmem_falloc = inode->i_private;
785 if (shmem_falloc &&
786 !shmem_falloc->waitq &&
787 index >= shmem_falloc->start &&
788 index < shmem_falloc->next)
789 shmem_falloc->nr_unswapped++;
790 else
791 shmem_falloc = NULL;
792 spin_unlock(&inode->i_lock);
793 if (shmem_falloc)
794 goto redirty;
795 }
796 clear_highpage(page);
797 flush_dcache_page(page);
798 SetPageUptodate(page);
799 }
800
801 swap = get_swap_page();
802 if (!swap.val)
803 goto redirty;
804
805 /*
806 * Add inode to shmem_unuse()'s list of swapped-out inodes,
807 * if it's not already there. Do it now before the page is
808 * moved to swap cache, when its pagelock no longer protects
809 * the inode from eviction. But don't unlock the mutex until
810 * we've incremented swapped, because shmem_unuse_inode() will
811 * prune a !swapped inode from the swaplist under this mutex.
812 */
813 mutex_lock(&shmem_swaplist_mutex);
814 if (list_empty(&info->swaplist))
815 list_add_tail(&info->swaplist, &shmem_swaplist);
816
817 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
818 swap_shmem_alloc(swap);
819 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
820
821 spin_lock(&info->lock);
822 info->swapped++;
823 shmem_recalc_inode(inode);
824 spin_unlock(&info->lock);
825
826 mutex_unlock(&shmem_swaplist_mutex);
827 BUG_ON(page_mapped(page));
828 swap_writepage(page, wbc);
829 return 0;
830 }
831
832 mutex_unlock(&shmem_swaplist_mutex);
833 swapcache_free(swap, NULL);
834 redirty:
835 set_page_dirty(page);
836 if (wbc->for_reclaim)
837 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
838 unlock_page(page);
839 return 0;
840 }
841
842 #ifdef CONFIG_NUMA
843 #ifdef CONFIG_TMPFS
844 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
845 {
846 char buffer[64];
847
848 if (!mpol || mpol->mode == MPOL_DEFAULT)
849 return; /* show nothing */
850
851 mpol_to_str(buffer, sizeof(buffer), mpol);
852
853 seq_printf(seq, ",mpol=%s", buffer);
854 }
855
856 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
857 {
858 struct mempolicy *mpol = NULL;
859 if (sbinfo->mpol) {
860 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
861 mpol = sbinfo->mpol;
862 mpol_get(mpol);
863 spin_unlock(&sbinfo->stat_lock);
864 }
865 return mpol;
866 }
867 #endif /* CONFIG_TMPFS */
868
869 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
870 struct shmem_inode_info *info, pgoff_t index)
871 {
872 struct vm_area_struct pvma;
873 struct page *page;
874
875 /* Create a pseudo vma that just contains the policy */
876 pvma.vm_start = 0;
877 /* Bias interleave by inode number to distribute better across nodes */
878 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
879 pvma.vm_ops = NULL;
880 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
881
882 page = swapin_readahead(swap, gfp, &pvma, 0);
883
884 /* Drop reference taken by mpol_shared_policy_lookup() */
885 mpol_cond_put(pvma.vm_policy);
886
887 return page;
888 }
889
890 static struct page *shmem_alloc_page(gfp_t gfp,
891 struct shmem_inode_info *info, pgoff_t index)
892 {
893 struct vm_area_struct pvma;
894 struct page *page;
895
896 /* Create a pseudo vma that just contains the policy */
897 pvma.vm_start = 0;
898 /* Bias interleave by inode number to distribute better across nodes */
899 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
900 pvma.vm_ops = NULL;
901 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
902
903 page = alloc_page_vma(gfp, &pvma, 0);
904
905 /* Drop reference taken by mpol_shared_policy_lookup() */
906 mpol_cond_put(pvma.vm_policy);
907
908 return page;
909 }
910 #else /* !CONFIG_NUMA */
911 #ifdef CONFIG_TMPFS
912 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
913 {
914 }
915 #endif /* CONFIG_TMPFS */
916
917 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
918 struct shmem_inode_info *info, pgoff_t index)
919 {
920 return swapin_readahead(swap, gfp, NULL, 0);
921 }
922
923 static inline struct page *shmem_alloc_page(gfp_t gfp,
924 struct shmem_inode_info *info, pgoff_t index)
925 {
926 return alloc_page(gfp);
927 }
928 #endif /* CONFIG_NUMA */
929
930 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
931 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
932 {
933 return NULL;
934 }
935 #endif
936
937 /*
938 * When a page is moved from swapcache to shmem filecache (either by the
939 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
940 * shmem_unuse_inode()), it may have been read in earlier from swap, in
941 * ignorance of the mapping it belongs to. If that mapping has special
942 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
943 * we may need to copy to a suitable page before moving to filecache.
944 *
945 * In a future release, this may well be extended to respect cpuset and
946 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
947 * but for now it is a simple matter of zone.
948 */
949 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
950 {
951 return page_zonenum(page) > gfp_zone(gfp);
952 }
953
954 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
955 struct shmem_inode_info *info, pgoff_t index)
956 {
957 struct page *oldpage, *newpage;
958 struct address_space *swap_mapping;
959 pgoff_t swap_index;
960 int error;
961
962 oldpage = *pagep;
963 swap_index = page_private(oldpage);
964 swap_mapping = page_mapping(oldpage);
965
966 /*
967 * We have arrived here because our zones are constrained, so don't
968 * limit chance of success by further cpuset and node constraints.
969 */
970 gfp &= ~GFP_CONSTRAINT_MASK;
971 newpage = shmem_alloc_page(gfp, info, index);
972 if (!newpage)
973 return -ENOMEM;
974
975 page_cache_get(newpage);
976 copy_highpage(newpage, oldpage);
977 flush_dcache_page(newpage);
978
979 __set_page_locked(newpage);
980 SetPageUptodate(newpage);
981 SetPageSwapBacked(newpage);
982 set_page_private(newpage, swap_index);
983 SetPageSwapCache(newpage);
984
985 /*
986 * Our caller will very soon move newpage out of swapcache, but it's
987 * a nice clean interface for us to replace oldpage by newpage there.
988 */
989 spin_lock_irq(&swap_mapping->tree_lock);
990 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
991 newpage);
992 if (!error) {
993 __inc_zone_page_state(newpage, NR_FILE_PAGES);
994 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
995 }
996 spin_unlock_irq(&swap_mapping->tree_lock);
997
998 if (unlikely(error)) {
999 /*
1000 * Is this possible? I think not, now that our callers check
1001 * both PageSwapCache and page_private after getting page lock;
1002 * but be defensive. Reverse old to newpage for clear and free.
1003 */
1004 oldpage = newpage;
1005 } else {
1006 mem_cgroup_replace_page_cache(oldpage, newpage);
1007 lru_cache_add_anon(newpage);
1008 *pagep = newpage;
1009 }
1010
1011 ClearPageSwapCache(oldpage);
1012 set_page_private(oldpage, 0);
1013
1014 unlock_page(oldpage);
1015 page_cache_release(oldpage);
1016 page_cache_release(oldpage);
1017 return error;
1018 }
1019
1020 /*
1021 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1022 *
1023 * If we allocate a new one we do not mark it dirty. That's up to the
1024 * vm. If we swap it in we mark it dirty since we also free the swap
1025 * entry since a page cannot live in both the swap and page cache
1026 */
1027 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1028 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1029 {
1030 struct address_space *mapping = inode->i_mapping;
1031 struct shmem_inode_info *info;
1032 struct shmem_sb_info *sbinfo;
1033 struct page *page;
1034 swp_entry_t swap;
1035 int error;
1036 int once = 0;
1037 int alloced = 0;
1038
1039 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1040 return -EFBIG;
1041 repeat:
1042 swap.val = 0;
1043 page = find_lock_entry(mapping, index);
1044 if (radix_tree_exceptional_entry(page)) {
1045 swap = radix_to_swp_entry(page);
1046 page = NULL;
1047 }
1048
1049 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1050 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1051 error = -EINVAL;
1052 goto failed;
1053 }
1054
1055 if (page && sgp == SGP_WRITE)
1056 mark_page_accessed(page);
1057
1058 /* fallocated page? */
1059 if (page && !PageUptodate(page)) {
1060 if (sgp != SGP_READ)
1061 goto clear;
1062 unlock_page(page);
1063 page_cache_release(page);
1064 page = NULL;
1065 }
1066 if (page || (sgp == SGP_READ && !swap.val)) {
1067 *pagep = page;
1068 return 0;
1069 }
1070
1071 /*
1072 * Fast cache lookup did not find it:
1073 * bring it back from swap or allocate.
1074 */
1075 info = SHMEM_I(inode);
1076 sbinfo = SHMEM_SB(inode->i_sb);
1077
1078 if (swap.val) {
1079 /* Look it up and read it in.. */
1080 page = lookup_swap_cache(swap);
1081 if (!page) {
1082 /* here we actually do the io */
1083 if (fault_type)
1084 *fault_type |= VM_FAULT_MAJOR;
1085 page = shmem_swapin(swap, gfp, info, index);
1086 if (!page) {
1087 error = -ENOMEM;
1088 goto failed;
1089 }
1090 }
1091
1092 /* We have to do this with page locked to prevent races */
1093 lock_page(page);
1094 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1095 !shmem_confirm_swap(mapping, index, swap)) {
1096 error = -EEXIST; /* try again */
1097 goto unlock;
1098 }
1099 if (!PageUptodate(page)) {
1100 error = -EIO;
1101 goto failed;
1102 }
1103 wait_on_page_writeback(page);
1104
1105 if (shmem_should_replace_page(page, gfp)) {
1106 error = shmem_replace_page(&page, gfp, info, index);
1107 if (error)
1108 goto failed;
1109 }
1110
1111 error = mem_cgroup_charge_file(page, current->mm,
1112 gfp & GFP_RECLAIM_MASK);
1113 if (!error) {
1114 error = shmem_add_to_page_cache(page, mapping, index,
1115 gfp, swp_to_radix_entry(swap));
1116 /*
1117 * We already confirmed swap under page lock, and make
1118 * no memory allocation here, so usually no possibility
1119 * of error; but free_swap_and_cache() only trylocks a
1120 * page, so it is just possible that the entry has been
1121 * truncated or holepunched since swap was confirmed.
1122 * shmem_undo_range() will have done some of the
1123 * unaccounting, now delete_from_swap_cache() will do
1124 * the rest (including mem_cgroup_uncharge_swapcache).
1125 * Reset swap.val? No, leave it so "failed" goes back to
1126 * "repeat": reading a hole and writing should succeed.
1127 */
1128 if (error)
1129 delete_from_swap_cache(page);
1130 }
1131 if (error)
1132 goto failed;
1133
1134 spin_lock(&info->lock);
1135 info->swapped--;
1136 shmem_recalc_inode(inode);
1137 spin_unlock(&info->lock);
1138
1139 if (sgp == SGP_WRITE)
1140 mark_page_accessed(page);
1141
1142 delete_from_swap_cache(page);
1143 set_page_dirty(page);
1144 swap_free(swap);
1145
1146 } else {
1147 if (shmem_acct_block(info->flags)) {
1148 error = -ENOSPC;
1149 goto failed;
1150 }
1151 if (sbinfo->max_blocks) {
1152 if (percpu_counter_compare(&sbinfo->used_blocks,
1153 sbinfo->max_blocks) >= 0) {
1154 error = -ENOSPC;
1155 goto unacct;
1156 }
1157 percpu_counter_inc(&sbinfo->used_blocks);
1158 }
1159
1160 page = shmem_alloc_page(gfp, info, index);
1161 if (!page) {
1162 error = -ENOMEM;
1163 goto decused;
1164 }
1165
1166 __SetPageSwapBacked(page);
1167 __set_page_locked(page);
1168 if (sgp == SGP_WRITE)
1169 init_page_accessed(page);
1170
1171 error = mem_cgroup_charge_file(page, current->mm,
1172 gfp & GFP_RECLAIM_MASK);
1173 if (error)
1174 goto decused;
1175 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1176 if (!error) {
1177 error = shmem_add_to_page_cache(page, mapping, index,
1178 gfp, NULL);
1179 radix_tree_preload_end();
1180 }
1181 if (error) {
1182 mem_cgroup_uncharge_cache_page(page);
1183 goto decused;
1184 }
1185 lru_cache_add_anon(page);
1186
1187 spin_lock(&info->lock);
1188 info->alloced++;
1189 inode->i_blocks += BLOCKS_PER_PAGE;
1190 shmem_recalc_inode(inode);
1191 spin_unlock(&info->lock);
1192 alloced = true;
1193
1194 /*
1195 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1196 */
1197 if (sgp == SGP_FALLOC)
1198 sgp = SGP_WRITE;
1199 clear:
1200 /*
1201 * Let SGP_WRITE caller clear ends if write does not fill page;
1202 * but SGP_FALLOC on a page fallocated earlier must initialize
1203 * it now, lest undo on failure cancel our earlier guarantee.
1204 */
1205 if (sgp != SGP_WRITE) {
1206 clear_highpage(page);
1207 flush_dcache_page(page);
1208 SetPageUptodate(page);
1209 }
1210 if (sgp == SGP_DIRTY)
1211 set_page_dirty(page);
1212 }
1213
1214 /* Perhaps the file has been truncated since we checked */
1215 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1216 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1217 error = -EINVAL;
1218 if (alloced)
1219 goto trunc;
1220 else
1221 goto failed;
1222 }
1223 *pagep = page;
1224 return 0;
1225
1226 /*
1227 * Error recovery.
1228 */
1229 trunc:
1230 info = SHMEM_I(inode);
1231 ClearPageDirty(page);
1232 delete_from_page_cache(page);
1233 spin_lock(&info->lock);
1234 info->alloced--;
1235 inode->i_blocks -= BLOCKS_PER_PAGE;
1236 spin_unlock(&info->lock);
1237 decused:
1238 sbinfo = SHMEM_SB(inode->i_sb);
1239 if (sbinfo->max_blocks)
1240 percpu_counter_add(&sbinfo->used_blocks, -1);
1241 unacct:
1242 shmem_unacct_blocks(info->flags, 1);
1243 failed:
1244 if (swap.val && error != -EINVAL &&
1245 !shmem_confirm_swap(mapping, index, swap))
1246 error = -EEXIST;
1247 unlock:
1248 if (page) {
1249 unlock_page(page);
1250 page_cache_release(page);
1251 }
1252 if (error == -ENOSPC && !once++) {
1253 info = SHMEM_I(inode);
1254 spin_lock(&info->lock);
1255 shmem_recalc_inode(inode);
1256 spin_unlock(&info->lock);
1257 goto repeat;
1258 }
1259 if (error == -EEXIST) /* from above or from radix_tree_insert */
1260 goto repeat;
1261 return error;
1262 }
1263
1264 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1265 {
1266 struct inode *inode = file_inode(vma->vm_file);
1267 int error;
1268 int ret = VM_FAULT_LOCKED;
1269
1270 /*
1271 * Trinity finds that probing a hole which tmpfs is punching can
1272 * prevent the hole-punch from ever completing: which in turn
1273 * locks writers out with its hold on i_mutex. So refrain from
1274 * faulting pages into the hole while it's being punched. Although
1275 * shmem_undo_range() does remove the additions, it may be unable to
1276 * keep up, as each new page needs its own unmap_mapping_range() call,
1277 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1278 *
1279 * It does not matter if we sometimes reach this check just before the
1280 * hole-punch begins, so that one fault then races with the punch:
1281 * we just need to make racing faults a rare case.
1282 *
1283 * The implementation below would be much simpler if we just used a
1284 * standard mutex or completion: but we cannot take i_mutex in fault,
1285 * and bloating every shmem inode for this unlikely case would be sad.
1286 */
1287 if (unlikely(inode->i_private)) {
1288 struct shmem_falloc *shmem_falloc;
1289
1290 spin_lock(&inode->i_lock);
1291 shmem_falloc = inode->i_private;
1292 if (shmem_falloc &&
1293 shmem_falloc->waitq &&
1294 vmf->pgoff >= shmem_falloc->start &&
1295 vmf->pgoff < shmem_falloc->next) {
1296 wait_queue_head_t *shmem_falloc_waitq;
1297 DEFINE_WAIT(shmem_fault_wait);
1298
1299 ret = VM_FAULT_NOPAGE;
1300 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1301 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1302 /* It's polite to up mmap_sem if we can */
1303 up_read(&vma->vm_mm->mmap_sem);
1304 ret = VM_FAULT_RETRY;
1305 }
1306
1307 shmem_falloc_waitq = shmem_falloc->waitq;
1308 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1309 TASK_UNINTERRUPTIBLE);
1310 spin_unlock(&inode->i_lock);
1311 schedule();
1312
1313 /*
1314 * shmem_falloc_waitq points into the shmem_fallocate()
1315 * stack of the hole-punching task: shmem_falloc_waitq
1316 * is usually invalid by the time we reach here, but
1317 * finish_wait() does not dereference it in that case;
1318 * though i_lock needed lest racing with wake_up_all().
1319 */
1320 spin_lock(&inode->i_lock);
1321 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1322 spin_unlock(&inode->i_lock);
1323 return ret;
1324 }
1325 spin_unlock(&inode->i_lock);
1326 }
1327
1328 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1329 if (error)
1330 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1331
1332 if (ret & VM_FAULT_MAJOR) {
1333 count_vm_event(PGMAJFAULT);
1334 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1335 }
1336 return ret;
1337 }
1338
1339 #ifdef CONFIG_NUMA
1340 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1341 {
1342 struct inode *inode = file_inode(vma->vm_file);
1343 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1344 }
1345
1346 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1347 unsigned long addr)
1348 {
1349 struct inode *inode = file_inode(vma->vm_file);
1350 pgoff_t index;
1351
1352 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1353 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1354 }
1355 #endif
1356
1357 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1358 {
1359 struct inode *inode = file_inode(file);
1360 struct shmem_inode_info *info = SHMEM_I(inode);
1361 int retval = -ENOMEM;
1362
1363 spin_lock(&info->lock);
1364 if (lock && !(info->flags & VM_LOCKED)) {
1365 if (!user_shm_lock(inode->i_size, user))
1366 goto out_nomem;
1367 info->flags |= VM_LOCKED;
1368 mapping_set_unevictable(file->f_mapping);
1369 }
1370 if (!lock && (info->flags & VM_LOCKED) && user) {
1371 user_shm_unlock(inode->i_size, user);
1372 info->flags &= ~VM_LOCKED;
1373 mapping_clear_unevictable(file->f_mapping);
1374 }
1375 retval = 0;
1376
1377 out_nomem:
1378 spin_unlock(&info->lock);
1379 return retval;
1380 }
1381
1382 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1383 {
1384 file_accessed(file);
1385 vma->vm_ops = &shmem_vm_ops;
1386 return 0;
1387 }
1388
1389 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1390 umode_t mode, dev_t dev, unsigned long flags)
1391 {
1392 struct inode *inode;
1393 struct shmem_inode_info *info;
1394 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1395
1396 if (shmem_reserve_inode(sb))
1397 return NULL;
1398
1399 inode = new_inode(sb);
1400 if (inode) {
1401 inode->i_ino = get_next_ino();
1402 inode_init_owner(inode, dir, mode);
1403 inode->i_blocks = 0;
1404 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1405 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1406 inode->i_generation = get_seconds();
1407 info = SHMEM_I(inode);
1408 memset(info, 0, (char *)inode - (char *)info);
1409 spin_lock_init(&info->lock);
1410 info->flags = flags & VM_NORESERVE;
1411 INIT_LIST_HEAD(&info->swaplist);
1412 simple_xattrs_init(&info->xattrs);
1413 cache_no_acl(inode);
1414
1415 switch (mode & S_IFMT) {
1416 default:
1417 inode->i_op = &shmem_special_inode_operations;
1418 init_special_inode(inode, mode, dev);
1419 break;
1420 case S_IFREG:
1421 inode->i_mapping->a_ops = &shmem_aops;
1422 inode->i_op = &shmem_inode_operations;
1423 inode->i_fop = &shmem_file_operations;
1424 mpol_shared_policy_init(&info->policy,
1425 shmem_get_sbmpol(sbinfo));
1426 break;
1427 case S_IFDIR:
1428 inc_nlink(inode);
1429 /* Some things misbehave if size == 0 on a directory */
1430 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1431 inode->i_op = &shmem_dir_inode_operations;
1432 inode->i_fop = &simple_dir_operations;
1433 break;
1434 case S_IFLNK:
1435 /*
1436 * Must not load anything in the rbtree,
1437 * mpol_free_shared_policy will not be called.
1438 */
1439 mpol_shared_policy_init(&info->policy, NULL);
1440 break;
1441 }
1442 } else
1443 shmem_free_inode(sb);
1444 return inode;
1445 }
1446
1447 bool shmem_mapping(struct address_space *mapping)
1448 {
1449 return mapping->backing_dev_info == &shmem_backing_dev_info;
1450 }
1451
1452 #ifdef CONFIG_TMPFS
1453 static const struct inode_operations shmem_symlink_inode_operations;
1454 static const struct inode_operations shmem_short_symlink_operations;
1455
1456 #ifdef CONFIG_TMPFS_XATTR
1457 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1458 #else
1459 #define shmem_initxattrs NULL
1460 #endif
1461
1462 static int
1463 shmem_write_begin(struct file *file, struct address_space *mapping,
1464 loff_t pos, unsigned len, unsigned flags,
1465 struct page **pagep, void **fsdata)
1466 {
1467 struct inode *inode = mapping->host;
1468 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1469 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1470 }
1471
1472 static int
1473 shmem_write_end(struct file *file, struct address_space *mapping,
1474 loff_t pos, unsigned len, unsigned copied,
1475 struct page *page, void *fsdata)
1476 {
1477 struct inode *inode = mapping->host;
1478
1479 if (pos + copied > inode->i_size)
1480 i_size_write(inode, pos + copied);
1481
1482 if (!PageUptodate(page)) {
1483 if (copied < PAGE_CACHE_SIZE) {
1484 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1485 zero_user_segments(page, 0, from,
1486 from + copied, PAGE_CACHE_SIZE);
1487 }
1488 SetPageUptodate(page);
1489 }
1490 set_page_dirty(page);
1491 unlock_page(page);
1492 page_cache_release(page);
1493
1494 return copied;
1495 }
1496
1497 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1498 {
1499 struct file *file = iocb->ki_filp;
1500 struct inode *inode = file_inode(file);
1501 struct address_space *mapping = inode->i_mapping;
1502 pgoff_t index;
1503 unsigned long offset;
1504 enum sgp_type sgp = SGP_READ;
1505 int error = 0;
1506 ssize_t retval = 0;
1507 loff_t *ppos = &iocb->ki_pos;
1508
1509 /*
1510 * Might this read be for a stacking filesystem? Then when reading
1511 * holes of a sparse file, we actually need to allocate those pages,
1512 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1513 */
1514 if (segment_eq(get_fs(), KERNEL_DS))
1515 sgp = SGP_DIRTY;
1516
1517 index = *ppos >> PAGE_CACHE_SHIFT;
1518 offset = *ppos & ~PAGE_CACHE_MASK;
1519
1520 for (;;) {
1521 struct page *page = NULL;
1522 pgoff_t end_index;
1523 unsigned long nr, ret;
1524 loff_t i_size = i_size_read(inode);
1525
1526 end_index = i_size >> PAGE_CACHE_SHIFT;
1527 if (index > end_index)
1528 break;
1529 if (index == end_index) {
1530 nr = i_size & ~PAGE_CACHE_MASK;
1531 if (nr <= offset)
1532 break;
1533 }
1534
1535 error = shmem_getpage(inode, index, &page, sgp, NULL);
1536 if (error) {
1537 if (error == -EINVAL)
1538 error = 0;
1539 break;
1540 }
1541 if (page)
1542 unlock_page(page);
1543
1544 /*
1545 * We must evaluate after, since reads (unlike writes)
1546 * are called without i_mutex protection against truncate
1547 */
1548 nr = PAGE_CACHE_SIZE;
1549 i_size = i_size_read(inode);
1550 end_index = i_size >> PAGE_CACHE_SHIFT;
1551 if (index == end_index) {
1552 nr = i_size & ~PAGE_CACHE_MASK;
1553 if (nr <= offset) {
1554 if (page)
1555 page_cache_release(page);
1556 break;
1557 }
1558 }
1559 nr -= offset;
1560
1561 if (page) {
1562 /*
1563 * If users can be writing to this page using arbitrary
1564 * virtual addresses, take care about potential aliasing
1565 * before reading the page on the kernel side.
1566 */
1567 if (mapping_writably_mapped(mapping))
1568 flush_dcache_page(page);
1569 /*
1570 * Mark the page accessed if we read the beginning.
1571 */
1572 if (!offset)
1573 mark_page_accessed(page);
1574 } else {
1575 page = ZERO_PAGE(0);
1576 page_cache_get(page);
1577 }
1578
1579 /*
1580 * Ok, we have the page, and it's up-to-date, so
1581 * now we can copy it to user space...
1582 */
1583 ret = copy_page_to_iter(page, offset, nr, to);
1584 retval += ret;
1585 offset += ret;
1586 index += offset >> PAGE_CACHE_SHIFT;
1587 offset &= ~PAGE_CACHE_MASK;
1588
1589 page_cache_release(page);
1590 if (!iov_iter_count(to))
1591 break;
1592 if (ret < nr) {
1593 error = -EFAULT;
1594 break;
1595 }
1596 cond_resched();
1597 }
1598
1599 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1600 file_accessed(file);
1601 return retval ? retval : error;
1602 }
1603
1604 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1605 struct pipe_inode_info *pipe, size_t len,
1606 unsigned int flags)
1607 {
1608 struct address_space *mapping = in->f_mapping;
1609 struct inode *inode = mapping->host;
1610 unsigned int loff, nr_pages, req_pages;
1611 struct page *pages[PIPE_DEF_BUFFERS];
1612 struct partial_page partial[PIPE_DEF_BUFFERS];
1613 struct page *page;
1614 pgoff_t index, end_index;
1615 loff_t isize, left;
1616 int error, page_nr;
1617 struct splice_pipe_desc spd = {
1618 .pages = pages,
1619 .partial = partial,
1620 .nr_pages_max = PIPE_DEF_BUFFERS,
1621 .flags = flags,
1622 .ops = &page_cache_pipe_buf_ops,
1623 .spd_release = spd_release_page,
1624 };
1625
1626 isize = i_size_read(inode);
1627 if (unlikely(*ppos >= isize))
1628 return 0;
1629
1630 left = isize - *ppos;
1631 if (unlikely(left < len))
1632 len = left;
1633
1634 if (splice_grow_spd(pipe, &spd))
1635 return -ENOMEM;
1636
1637 index = *ppos >> PAGE_CACHE_SHIFT;
1638 loff = *ppos & ~PAGE_CACHE_MASK;
1639 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1640 nr_pages = min(req_pages, spd.nr_pages_max);
1641
1642 spd.nr_pages = find_get_pages_contig(mapping, index,
1643 nr_pages, spd.pages);
1644 index += spd.nr_pages;
1645 error = 0;
1646
1647 while (spd.nr_pages < nr_pages) {
1648 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1649 if (error)
1650 break;
1651 unlock_page(page);
1652 spd.pages[spd.nr_pages++] = page;
1653 index++;
1654 }
1655
1656 index = *ppos >> PAGE_CACHE_SHIFT;
1657 nr_pages = spd.nr_pages;
1658 spd.nr_pages = 0;
1659
1660 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1661 unsigned int this_len;
1662
1663 if (!len)
1664 break;
1665
1666 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1667 page = spd.pages[page_nr];
1668
1669 if (!PageUptodate(page) || page->mapping != mapping) {
1670 error = shmem_getpage(inode, index, &page,
1671 SGP_CACHE, NULL);
1672 if (error)
1673 break;
1674 unlock_page(page);
1675 page_cache_release(spd.pages[page_nr]);
1676 spd.pages[page_nr] = page;
1677 }
1678
1679 isize = i_size_read(inode);
1680 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1681 if (unlikely(!isize || index > end_index))
1682 break;
1683
1684 if (end_index == index) {
1685 unsigned int plen;
1686
1687 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1688 if (plen <= loff)
1689 break;
1690
1691 this_len = min(this_len, plen - loff);
1692 len = this_len;
1693 }
1694
1695 spd.partial[page_nr].offset = loff;
1696 spd.partial[page_nr].len = this_len;
1697 len -= this_len;
1698 loff = 0;
1699 spd.nr_pages++;
1700 index++;
1701 }
1702
1703 while (page_nr < nr_pages)
1704 page_cache_release(spd.pages[page_nr++]);
1705
1706 if (spd.nr_pages)
1707 error = splice_to_pipe(pipe, &spd);
1708
1709 splice_shrink_spd(&spd);
1710
1711 if (error > 0) {
1712 *ppos += error;
1713 file_accessed(in);
1714 }
1715 return error;
1716 }
1717
1718 /*
1719 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1720 */
1721 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1722 pgoff_t index, pgoff_t end, int whence)
1723 {
1724 struct page *page;
1725 struct pagevec pvec;
1726 pgoff_t indices[PAGEVEC_SIZE];
1727 bool done = false;
1728 int i;
1729
1730 pagevec_init(&pvec, 0);
1731 pvec.nr = 1; /* start small: we may be there already */
1732 while (!done) {
1733 pvec.nr = find_get_entries(mapping, index,
1734 pvec.nr, pvec.pages, indices);
1735 if (!pvec.nr) {
1736 if (whence == SEEK_DATA)
1737 index = end;
1738 break;
1739 }
1740 for (i = 0; i < pvec.nr; i++, index++) {
1741 if (index < indices[i]) {
1742 if (whence == SEEK_HOLE) {
1743 done = true;
1744 break;
1745 }
1746 index = indices[i];
1747 }
1748 page = pvec.pages[i];
1749 if (page && !radix_tree_exceptional_entry(page)) {
1750 if (!PageUptodate(page))
1751 page = NULL;
1752 }
1753 if (index >= end ||
1754 (page && whence == SEEK_DATA) ||
1755 (!page && whence == SEEK_HOLE)) {
1756 done = true;
1757 break;
1758 }
1759 }
1760 pagevec_remove_exceptionals(&pvec);
1761 pagevec_release(&pvec);
1762 pvec.nr = PAGEVEC_SIZE;
1763 cond_resched();
1764 }
1765 return index;
1766 }
1767
1768 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1769 {
1770 struct address_space *mapping = file->f_mapping;
1771 struct inode *inode = mapping->host;
1772 pgoff_t start, end;
1773 loff_t new_offset;
1774
1775 if (whence != SEEK_DATA && whence != SEEK_HOLE)
1776 return generic_file_llseek_size(file, offset, whence,
1777 MAX_LFS_FILESIZE, i_size_read(inode));
1778 mutex_lock(&inode->i_mutex);
1779 /* We're holding i_mutex so we can access i_size directly */
1780
1781 if (offset < 0)
1782 offset = -EINVAL;
1783 else if (offset >= inode->i_size)
1784 offset = -ENXIO;
1785 else {
1786 start = offset >> PAGE_CACHE_SHIFT;
1787 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1788 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1789 new_offset <<= PAGE_CACHE_SHIFT;
1790 if (new_offset > offset) {
1791 if (new_offset < inode->i_size)
1792 offset = new_offset;
1793 else if (whence == SEEK_DATA)
1794 offset = -ENXIO;
1795 else
1796 offset = inode->i_size;
1797 }
1798 }
1799
1800 if (offset >= 0)
1801 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1802 mutex_unlock(&inode->i_mutex);
1803 return offset;
1804 }
1805
1806 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1807 loff_t len)
1808 {
1809 struct inode *inode = file_inode(file);
1810 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1811 struct shmem_falloc shmem_falloc;
1812 pgoff_t start, index, end;
1813 int error;
1814
1815 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
1816 return -EOPNOTSUPP;
1817
1818 mutex_lock(&inode->i_mutex);
1819
1820 if (mode & FALLOC_FL_PUNCH_HOLE) {
1821 struct address_space *mapping = file->f_mapping;
1822 loff_t unmap_start = round_up(offset, PAGE_SIZE);
1823 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1824 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
1825
1826 shmem_falloc.waitq = &shmem_falloc_waitq;
1827 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
1828 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
1829 spin_lock(&inode->i_lock);
1830 inode->i_private = &shmem_falloc;
1831 spin_unlock(&inode->i_lock);
1832
1833 if ((u64)unmap_end > (u64)unmap_start)
1834 unmap_mapping_range(mapping, unmap_start,
1835 1 + unmap_end - unmap_start, 0);
1836 shmem_truncate_range(inode, offset, offset + len - 1);
1837 /* No need to unmap again: hole-punching leaves COWed pages */
1838
1839 spin_lock(&inode->i_lock);
1840 inode->i_private = NULL;
1841 wake_up_all(&shmem_falloc_waitq);
1842 spin_unlock(&inode->i_lock);
1843 error = 0;
1844 goto out;
1845 }
1846
1847 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1848 error = inode_newsize_ok(inode, offset + len);
1849 if (error)
1850 goto out;
1851
1852 start = offset >> PAGE_CACHE_SHIFT;
1853 end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1854 /* Try to avoid a swapstorm if len is impossible to satisfy */
1855 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1856 error = -ENOSPC;
1857 goto out;
1858 }
1859
1860 shmem_falloc.waitq = NULL;
1861 shmem_falloc.start = start;
1862 shmem_falloc.next = start;
1863 shmem_falloc.nr_falloced = 0;
1864 shmem_falloc.nr_unswapped = 0;
1865 spin_lock(&inode->i_lock);
1866 inode->i_private = &shmem_falloc;
1867 spin_unlock(&inode->i_lock);
1868
1869 for (index = start; index < end; index++) {
1870 struct page *page;
1871
1872 /*
1873 * Good, the fallocate(2) manpage permits EINTR: we may have
1874 * been interrupted because we are using up too much memory.
1875 */
1876 if (signal_pending(current))
1877 error = -EINTR;
1878 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1879 error = -ENOMEM;
1880 else
1881 error = shmem_getpage(inode, index, &page, SGP_FALLOC,
1882 NULL);
1883 if (error) {
1884 /* Remove the !PageUptodate pages we added */
1885 shmem_undo_range(inode,
1886 (loff_t)start << PAGE_CACHE_SHIFT,
1887 (loff_t)index << PAGE_CACHE_SHIFT, true);
1888 goto undone;
1889 }
1890
1891 /*
1892 * Inform shmem_writepage() how far we have reached.
1893 * No need for lock or barrier: we have the page lock.
1894 */
1895 shmem_falloc.next++;
1896 if (!PageUptodate(page))
1897 shmem_falloc.nr_falloced++;
1898
1899 /*
1900 * If !PageUptodate, leave it that way so that freeable pages
1901 * can be recognized if we need to rollback on error later.
1902 * But set_page_dirty so that memory pressure will swap rather
1903 * than free the pages we are allocating (and SGP_CACHE pages
1904 * might still be clean: we now need to mark those dirty too).
1905 */
1906 set_page_dirty(page);
1907 unlock_page(page);
1908 page_cache_release(page);
1909 cond_resched();
1910 }
1911
1912 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1913 i_size_write(inode, offset + len);
1914 inode->i_ctime = CURRENT_TIME;
1915 undone:
1916 spin_lock(&inode->i_lock);
1917 inode->i_private = NULL;
1918 spin_unlock(&inode->i_lock);
1919 out:
1920 mutex_unlock(&inode->i_mutex);
1921 return error;
1922 }
1923
1924 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1925 {
1926 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1927
1928 buf->f_type = TMPFS_MAGIC;
1929 buf->f_bsize = PAGE_CACHE_SIZE;
1930 buf->f_namelen = NAME_MAX;
1931 if (sbinfo->max_blocks) {
1932 buf->f_blocks = sbinfo->max_blocks;
1933 buf->f_bavail =
1934 buf->f_bfree = sbinfo->max_blocks -
1935 percpu_counter_sum(&sbinfo->used_blocks);
1936 }
1937 if (sbinfo->max_inodes) {
1938 buf->f_files = sbinfo->max_inodes;
1939 buf->f_ffree = sbinfo->free_inodes;
1940 }
1941 /* else leave those fields 0 like simple_statfs */
1942 return 0;
1943 }
1944
1945 /*
1946 * File creation. Allocate an inode, and we're done..
1947 */
1948 static int
1949 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1950 {
1951 struct inode *inode;
1952 int error = -ENOSPC;
1953
1954 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1955 if (inode) {
1956 error = simple_acl_create(dir, inode);
1957 if (error)
1958 goto out_iput;
1959 error = security_inode_init_security(inode, dir,
1960 &dentry->d_name,
1961 shmem_initxattrs, NULL);
1962 if (error && error != -EOPNOTSUPP)
1963 goto out_iput;
1964
1965 error = 0;
1966 dir->i_size += BOGO_DIRENT_SIZE;
1967 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1968 d_instantiate(dentry, inode);
1969 dget(dentry); /* Extra count - pin the dentry in core */
1970 }
1971 return error;
1972 out_iput:
1973 iput(inode);
1974 return error;
1975 }
1976
1977 static int
1978 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
1979 {
1980 struct inode *inode;
1981 int error = -ENOSPC;
1982
1983 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
1984 if (inode) {
1985 error = security_inode_init_security(inode, dir,
1986 NULL,
1987 shmem_initxattrs, NULL);
1988 if (error && error != -EOPNOTSUPP)
1989 goto out_iput;
1990 error = simple_acl_create(dir, inode);
1991 if (error)
1992 goto out_iput;
1993 d_tmpfile(dentry, inode);
1994 }
1995 return error;
1996 out_iput:
1997 iput(inode);
1998 return error;
1999 }
2000
2001 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2002 {
2003 int error;
2004
2005 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2006 return error;
2007 inc_nlink(dir);
2008 return 0;
2009 }
2010
2011 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2012 bool excl)
2013 {
2014 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2015 }
2016
2017 /*
2018 * Link a file..
2019 */
2020 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2021 {
2022 struct inode *inode = old_dentry->d_inode;
2023 int ret;
2024
2025 /*
2026 * No ordinary (disk based) filesystem counts links as inodes;
2027 * but each new link needs a new dentry, pinning lowmem, and
2028 * tmpfs dentries cannot be pruned until they are unlinked.
2029 */
2030 ret = shmem_reserve_inode(inode->i_sb);
2031 if (ret)
2032 goto out;
2033
2034 dir->i_size += BOGO_DIRENT_SIZE;
2035 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2036 inc_nlink(inode);
2037 ihold(inode); /* New dentry reference */
2038 dget(dentry); /* Extra pinning count for the created dentry */
2039 d_instantiate(dentry, inode);
2040 out:
2041 return ret;
2042 }
2043
2044 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2045 {
2046 struct inode *inode = dentry->d_inode;
2047
2048 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2049 shmem_free_inode(inode->i_sb);
2050
2051 dir->i_size -= BOGO_DIRENT_SIZE;
2052 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2053 drop_nlink(inode);
2054 dput(dentry); /* Undo the count from "create" - this does all the work */
2055 return 0;
2056 }
2057
2058 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2059 {
2060 if (!simple_empty(dentry))
2061 return -ENOTEMPTY;
2062
2063 drop_nlink(dentry->d_inode);
2064 drop_nlink(dir);
2065 return shmem_unlink(dir, dentry);
2066 }
2067
2068 /*
2069 * The VFS layer already does all the dentry stuff for rename,
2070 * we just have to decrement the usage count for the target if
2071 * it exists so that the VFS layer correctly free's it when it
2072 * gets overwritten.
2073 */
2074 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2075 {
2076 struct inode *inode = old_dentry->d_inode;
2077 int they_are_dirs = S_ISDIR(inode->i_mode);
2078
2079 if (!simple_empty(new_dentry))
2080 return -ENOTEMPTY;
2081
2082 if (new_dentry->d_inode) {
2083 (void) shmem_unlink(new_dir, new_dentry);
2084 if (they_are_dirs)
2085 drop_nlink(old_dir);
2086 } else if (they_are_dirs) {
2087 drop_nlink(old_dir);
2088 inc_nlink(new_dir);
2089 }
2090
2091 old_dir->i_size -= BOGO_DIRENT_SIZE;
2092 new_dir->i_size += BOGO_DIRENT_SIZE;
2093 old_dir->i_ctime = old_dir->i_mtime =
2094 new_dir->i_ctime = new_dir->i_mtime =
2095 inode->i_ctime = CURRENT_TIME;
2096 return 0;
2097 }
2098
2099 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2100 {
2101 int error;
2102 int len;
2103 struct inode *inode;
2104 struct page *page;
2105 char *kaddr;
2106 struct shmem_inode_info *info;
2107
2108 len = strlen(symname) + 1;
2109 if (len > PAGE_CACHE_SIZE)
2110 return -ENAMETOOLONG;
2111
2112 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2113 if (!inode)
2114 return -ENOSPC;
2115
2116 error = security_inode_init_security(inode, dir, &dentry->d_name,
2117 shmem_initxattrs, NULL);
2118 if (error) {
2119 if (error != -EOPNOTSUPP) {
2120 iput(inode);
2121 return error;
2122 }
2123 error = 0;
2124 }
2125
2126 info = SHMEM_I(inode);
2127 inode->i_size = len-1;
2128 if (len <= SHORT_SYMLINK_LEN) {
2129 info->symlink = kmemdup(symname, len, GFP_KERNEL);
2130 if (!info->symlink) {
2131 iput(inode);
2132 return -ENOMEM;
2133 }
2134 inode->i_op = &shmem_short_symlink_operations;
2135 } else {
2136 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2137 if (error) {
2138 iput(inode);
2139 return error;
2140 }
2141 inode->i_mapping->a_ops = &shmem_aops;
2142 inode->i_op = &shmem_symlink_inode_operations;
2143 kaddr = kmap_atomic(page);
2144 memcpy(kaddr, symname, len);
2145 kunmap_atomic(kaddr);
2146 SetPageUptodate(page);
2147 set_page_dirty(page);
2148 unlock_page(page);
2149 page_cache_release(page);
2150 }
2151 dir->i_size += BOGO_DIRENT_SIZE;
2152 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2153 d_instantiate(dentry, inode);
2154 dget(dentry);
2155 return 0;
2156 }
2157
2158 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2159 {
2160 nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2161 return NULL;
2162 }
2163
2164 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2165 {
2166 struct page *page = NULL;
2167 int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2168 nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2169 if (page)
2170 unlock_page(page);
2171 return page;
2172 }
2173
2174 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2175 {
2176 if (!IS_ERR(nd_get_link(nd))) {
2177 struct page *page = cookie;
2178 kunmap(page);
2179 mark_page_accessed(page);
2180 page_cache_release(page);
2181 }
2182 }
2183
2184 #ifdef CONFIG_TMPFS_XATTR
2185 /*
2186 * Superblocks without xattr inode operations may get some security.* xattr
2187 * support from the LSM "for free". As soon as we have any other xattrs
2188 * like ACLs, we also need to implement the security.* handlers at
2189 * filesystem level, though.
2190 */
2191
2192 /*
2193 * Callback for security_inode_init_security() for acquiring xattrs.
2194 */
2195 static int shmem_initxattrs(struct inode *inode,
2196 const struct xattr *xattr_array,
2197 void *fs_info)
2198 {
2199 struct shmem_inode_info *info = SHMEM_I(inode);
2200 const struct xattr *xattr;
2201 struct simple_xattr *new_xattr;
2202 size_t len;
2203
2204 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2205 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2206 if (!new_xattr)
2207 return -ENOMEM;
2208
2209 len = strlen(xattr->name) + 1;
2210 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2211 GFP_KERNEL);
2212 if (!new_xattr->name) {
2213 kfree(new_xattr);
2214 return -ENOMEM;
2215 }
2216
2217 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2218 XATTR_SECURITY_PREFIX_LEN);
2219 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2220 xattr->name, len);
2221
2222 simple_xattr_list_add(&info->xattrs, new_xattr);
2223 }
2224
2225 return 0;
2226 }
2227
2228 static const struct xattr_handler *shmem_xattr_handlers[] = {
2229 #ifdef CONFIG_TMPFS_POSIX_ACL
2230 &posix_acl_access_xattr_handler,
2231 &posix_acl_default_xattr_handler,
2232 #endif
2233 NULL
2234 };
2235
2236 static int shmem_xattr_validate(const char *name)
2237 {
2238 struct { const char *prefix; size_t len; } arr[] = {
2239 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2240 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2241 };
2242 int i;
2243
2244 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2245 size_t preflen = arr[i].len;
2246 if (strncmp(name, arr[i].prefix, preflen) == 0) {
2247 if (!name[preflen])
2248 return -EINVAL;
2249 return 0;
2250 }
2251 }
2252 return -EOPNOTSUPP;
2253 }
2254
2255 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2256 void *buffer, size_t size)
2257 {
2258 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2259 int err;
2260
2261 /*
2262 * If this is a request for a synthetic attribute in the system.*
2263 * namespace use the generic infrastructure to resolve a handler
2264 * for it via sb->s_xattr.
2265 */
2266 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2267 return generic_getxattr(dentry, name, buffer, size);
2268
2269 err = shmem_xattr_validate(name);
2270 if (err)
2271 return err;
2272
2273 return simple_xattr_get(&info->xattrs, name, buffer, size);
2274 }
2275
2276 static int shmem_setxattr(struct dentry *dentry, const char *name,
2277 const void *value, size_t size, int flags)
2278 {
2279 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2280 int err;
2281
2282 /*
2283 * If this is a request for a synthetic attribute in the system.*
2284 * namespace use the generic infrastructure to resolve a handler
2285 * for it via sb->s_xattr.
2286 */
2287 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2288 return generic_setxattr(dentry, name, value, size, flags);
2289
2290 err = shmem_xattr_validate(name);
2291 if (err)
2292 return err;
2293
2294 return simple_xattr_set(&info->xattrs, name, value, size, flags);
2295 }
2296
2297 static int shmem_removexattr(struct dentry *dentry, const char *name)
2298 {
2299 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2300 int err;
2301
2302 /*
2303 * If this is a request for a synthetic attribute in the system.*
2304 * namespace use the generic infrastructure to resolve a handler
2305 * for it via sb->s_xattr.
2306 */
2307 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2308 return generic_removexattr(dentry, name);
2309
2310 err = shmem_xattr_validate(name);
2311 if (err)
2312 return err;
2313
2314 return simple_xattr_remove(&info->xattrs, name);
2315 }
2316
2317 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2318 {
2319 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2320 return simple_xattr_list(&info->xattrs, buffer, size);
2321 }
2322 #endif /* CONFIG_TMPFS_XATTR */
2323
2324 static const struct inode_operations shmem_short_symlink_operations = {
2325 .readlink = generic_readlink,
2326 .follow_link = shmem_follow_short_symlink,
2327 #ifdef CONFIG_TMPFS_XATTR
2328 .setxattr = shmem_setxattr,
2329 .getxattr = shmem_getxattr,
2330 .listxattr = shmem_listxattr,
2331 .removexattr = shmem_removexattr,
2332 #endif
2333 };
2334
2335 static const struct inode_operations shmem_symlink_inode_operations = {
2336 .readlink = generic_readlink,
2337 .follow_link = shmem_follow_link,
2338 .put_link = shmem_put_link,
2339 #ifdef CONFIG_TMPFS_XATTR
2340 .setxattr = shmem_setxattr,
2341 .getxattr = shmem_getxattr,
2342 .listxattr = shmem_listxattr,
2343 .removexattr = shmem_removexattr,
2344 #endif
2345 };
2346
2347 static struct dentry *shmem_get_parent(struct dentry *child)
2348 {
2349 return ERR_PTR(-ESTALE);
2350 }
2351
2352 static int shmem_match(struct inode *ino, void *vfh)
2353 {
2354 __u32 *fh = vfh;
2355 __u64 inum = fh[2];
2356 inum = (inum << 32) | fh[1];
2357 return ino->i_ino == inum && fh[0] == ino->i_generation;
2358 }
2359
2360 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2361 struct fid *fid, int fh_len, int fh_type)
2362 {
2363 struct inode *inode;
2364 struct dentry *dentry = NULL;
2365 u64 inum;
2366
2367 if (fh_len < 3)
2368 return NULL;
2369
2370 inum = fid->raw[2];
2371 inum = (inum << 32) | fid->raw[1];
2372
2373 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2374 shmem_match, fid->raw);
2375 if (inode) {
2376 dentry = d_find_alias(inode);
2377 iput(inode);
2378 }
2379
2380 return dentry;
2381 }
2382
2383 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2384 struct inode *parent)
2385 {
2386 if (*len < 3) {
2387 *len = 3;
2388 return FILEID_INVALID;
2389 }
2390
2391 if (inode_unhashed(inode)) {
2392 /* Unfortunately insert_inode_hash is not idempotent,
2393 * so as we hash inodes here rather than at creation
2394 * time, we need a lock to ensure we only try
2395 * to do it once
2396 */
2397 static DEFINE_SPINLOCK(lock);
2398 spin_lock(&lock);
2399 if (inode_unhashed(inode))
2400 __insert_inode_hash(inode,
2401 inode->i_ino + inode->i_generation);
2402 spin_unlock(&lock);
2403 }
2404
2405 fh[0] = inode->i_generation;
2406 fh[1] = inode->i_ino;
2407 fh[2] = ((__u64)inode->i_ino) >> 32;
2408
2409 *len = 3;
2410 return 1;
2411 }
2412
2413 static const struct export_operations shmem_export_ops = {
2414 .get_parent = shmem_get_parent,
2415 .encode_fh = shmem_encode_fh,
2416 .fh_to_dentry = shmem_fh_to_dentry,
2417 };
2418
2419 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2420 bool remount)
2421 {
2422 char *this_char, *value, *rest;
2423 struct mempolicy *mpol = NULL;
2424 uid_t uid;
2425 gid_t gid;
2426
2427 while (options != NULL) {
2428 this_char = options;
2429 for (;;) {
2430 /*
2431 * NUL-terminate this option: unfortunately,
2432 * mount options form a comma-separated list,
2433 * but mpol's nodelist may also contain commas.
2434 */
2435 options = strchr(options, ',');
2436 if (options == NULL)
2437 break;
2438 options++;
2439 if (!isdigit(*options)) {
2440 options[-1] = '\0';
2441 break;
2442 }
2443 }
2444 if (!*this_char)
2445 continue;
2446 if ((value = strchr(this_char,'=')) != NULL) {
2447 *value++ = 0;
2448 } else {
2449 printk(KERN_ERR
2450 "tmpfs: No value for mount option '%s'\n",
2451 this_char);
2452 goto error;
2453 }
2454
2455 if (!strcmp(this_char,"size")) {
2456 unsigned long long size;
2457 size = memparse(value,&rest);
2458 if (*rest == '%') {
2459 size <<= PAGE_SHIFT;
2460 size *= totalram_pages;
2461 do_div(size, 100);
2462 rest++;
2463 }
2464 if (*rest)
2465 goto bad_val;
2466 sbinfo->max_blocks =
2467 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2468 } else if (!strcmp(this_char,"nr_blocks")) {
2469 sbinfo->max_blocks = memparse(value, &rest);
2470 if (*rest)
2471 goto bad_val;
2472 } else if (!strcmp(this_char,"nr_inodes")) {
2473 sbinfo->max_inodes = memparse(value, &rest);
2474 if (*rest)
2475 goto bad_val;
2476 } else if (!strcmp(this_char,"mode")) {
2477 if (remount)
2478 continue;
2479 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2480 if (*rest)
2481 goto bad_val;
2482 } else if (!strcmp(this_char,"uid")) {
2483 if (remount)
2484 continue;
2485 uid = simple_strtoul(value, &rest, 0);
2486 if (*rest)
2487 goto bad_val;
2488 sbinfo->uid = make_kuid(current_user_ns(), uid);
2489 if (!uid_valid(sbinfo->uid))
2490 goto bad_val;
2491 } else if (!strcmp(this_char,"gid")) {
2492 if (remount)
2493 continue;
2494 gid = simple_strtoul(value, &rest, 0);
2495 if (*rest)
2496 goto bad_val;
2497 sbinfo->gid = make_kgid(current_user_ns(), gid);
2498 if (!gid_valid(sbinfo->gid))
2499 goto bad_val;
2500 } else if (!strcmp(this_char,"mpol")) {
2501 mpol_put(mpol);
2502 mpol = NULL;
2503 if (mpol_parse_str(value, &mpol))
2504 goto bad_val;
2505 } else {
2506 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2507 this_char);
2508 goto error;
2509 }
2510 }
2511 sbinfo->mpol = mpol;
2512 return 0;
2513
2514 bad_val:
2515 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2516 value, this_char);
2517 error:
2518 mpol_put(mpol);
2519 return 1;
2520
2521 }
2522
2523 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2524 {
2525 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2526 struct shmem_sb_info config = *sbinfo;
2527 unsigned long inodes;
2528 int error = -EINVAL;
2529
2530 config.mpol = NULL;
2531 if (shmem_parse_options(data, &config, true))
2532 return error;
2533
2534 spin_lock(&sbinfo->stat_lock);
2535 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2536 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2537 goto out;
2538 if (config.max_inodes < inodes)
2539 goto out;
2540 /*
2541 * Those tests disallow limited->unlimited while any are in use;
2542 * but we must separately disallow unlimited->limited, because
2543 * in that case we have no record of how much is already in use.
2544 */
2545 if (config.max_blocks && !sbinfo->max_blocks)
2546 goto out;
2547 if (config.max_inodes && !sbinfo->max_inodes)
2548 goto out;
2549
2550 error = 0;
2551 sbinfo->max_blocks = config.max_blocks;
2552 sbinfo->max_inodes = config.max_inodes;
2553 sbinfo->free_inodes = config.max_inodes - inodes;
2554
2555 /*
2556 * Preserve previous mempolicy unless mpol remount option was specified.
2557 */
2558 if (config.mpol) {
2559 mpol_put(sbinfo->mpol);
2560 sbinfo->mpol = config.mpol; /* transfers initial ref */
2561 }
2562 out:
2563 spin_unlock(&sbinfo->stat_lock);
2564 return error;
2565 }
2566
2567 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2568 {
2569 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2570
2571 if (sbinfo->max_blocks != shmem_default_max_blocks())
2572 seq_printf(seq, ",size=%luk",
2573 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2574 if (sbinfo->max_inodes != shmem_default_max_inodes())
2575 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2576 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2577 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2578 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2579 seq_printf(seq, ",uid=%u",
2580 from_kuid_munged(&init_user_ns, sbinfo->uid));
2581 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2582 seq_printf(seq, ",gid=%u",
2583 from_kgid_munged(&init_user_ns, sbinfo->gid));
2584 shmem_show_mpol(seq, sbinfo->mpol);
2585 return 0;
2586 }
2587 #endif /* CONFIG_TMPFS */
2588
2589 static void shmem_put_super(struct super_block *sb)
2590 {
2591 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2592
2593 percpu_counter_destroy(&sbinfo->used_blocks);
2594 mpol_put(sbinfo->mpol);
2595 kfree(sbinfo);
2596 sb->s_fs_info = NULL;
2597 }
2598
2599 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2600 {
2601 struct inode *inode;
2602 struct shmem_sb_info *sbinfo;
2603 int err = -ENOMEM;
2604
2605 /* Round up to L1_CACHE_BYTES to resist false sharing */
2606 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2607 L1_CACHE_BYTES), GFP_KERNEL);
2608 if (!sbinfo)
2609 return -ENOMEM;
2610
2611 sbinfo->mode = S_IRWXUGO | S_ISVTX;
2612 sbinfo->uid = current_fsuid();
2613 sbinfo->gid = current_fsgid();
2614 sb->s_fs_info = sbinfo;
2615
2616 #ifdef CONFIG_TMPFS
2617 /*
2618 * Per default we only allow half of the physical ram per
2619 * tmpfs instance, limiting inodes to one per page of lowmem;
2620 * but the internal instance is left unlimited.
2621 */
2622 if (!(sb->s_flags & MS_KERNMOUNT)) {
2623 sbinfo->max_blocks = shmem_default_max_blocks();
2624 sbinfo->max_inodes = shmem_default_max_inodes();
2625 if (shmem_parse_options(data, sbinfo, false)) {
2626 err = -EINVAL;
2627 goto failed;
2628 }
2629 } else {
2630 sb->s_flags |= MS_NOUSER;
2631 }
2632 sb->s_export_op = &shmem_export_ops;
2633 sb->s_flags |= MS_NOSEC;
2634 #else
2635 sb->s_flags |= MS_NOUSER;
2636 #endif
2637
2638 spin_lock_init(&sbinfo->stat_lock);
2639 if (percpu_counter_init(&sbinfo->used_blocks, 0))
2640 goto failed;
2641 sbinfo->free_inodes = sbinfo->max_inodes;
2642
2643 sb->s_maxbytes = MAX_LFS_FILESIZE;
2644 sb->s_blocksize = PAGE_CACHE_SIZE;
2645 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2646 sb->s_magic = TMPFS_MAGIC;
2647 sb->s_op = &shmem_ops;
2648 sb->s_time_gran = 1;
2649 #ifdef CONFIG_TMPFS_XATTR
2650 sb->s_xattr = shmem_xattr_handlers;
2651 #endif
2652 #ifdef CONFIG_TMPFS_POSIX_ACL
2653 sb->s_flags |= MS_POSIXACL;
2654 #endif
2655
2656 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2657 if (!inode)
2658 goto failed;
2659 inode->i_uid = sbinfo->uid;
2660 inode->i_gid = sbinfo->gid;
2661 sb->s_root = d_make_root(inode);
2662 if (!sb->s_root)
2663 goto failed;
2664 return 0;
2665
2666 failed:
2667 shmem_put_super(sb);
2668 return err;
2669 }
2670
2671 static struct kmem_cache *shmem_inode_cachep;
2672
2673 static struct inode *shmem_alloc_inode(struct super_block *sb)
2674 {
2675 struct shmem_inode_info *info;
2676 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2677 if (!info)
2678 return NULL;
2679 return &info->vfs_inode;
2680 }
2681
2682 static void shmem_destroy_callback(struct rcu_head *head)
2683 {
2684 struct inode *inode = container_of(head, struct inode, i_rcu);
2685 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2686 }
2687
2688 static void shmem_destroy_inode(struct inode *inode)
2689 {
2690 if (S_ISREG(inode->i_mode))
2691 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2692 call_rcu(&inode->i_rcu, shmem_destroy_callback);
2693 }
2694
2695 static void shmem_init_inode(void *foo)
2696 {
2697 struct shmem_inode_info *info = foo;
2698 inode_init_once(&info->vfs_inode);
2699 }
2700
2701 static int shmem_init_inodecache(void)
2702 {
2703 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2704 sizeof(struct shmem_inode_info),
2705 0, SLAB_PANIC, shmem_init_inode);
2706 return 0;
2707 }
2708
2709 static void shmem_destroy_inodecache(void)
2710 {
2711 kmem_cache_destroy(shmem_inode_cachep);
2712 }
2713
2714 static const struct address_space_operations shmem_aops = {
2715 .writepage = shmem_writepage,
2716 .set_page_dirty = __set_page_dirty_no_writeback,
2717 #ifdef CONFIG_TMPFS
2718 .write_begin = shmem_write_begin,
2719 .write_end = shmem_write_end,
2720 #endif
2721 .migratepage = migrate_page,
2722 .error_remove_page = generic_error_remove_page,
2723 };
2724
2725 static const struct file_operations shmem_file_operations = {
2726 .mmap = shmem_mmap,
2727 #ifdef CONFIG_TMPFS
2728 .llseek = shmem_file_llseek,
2729 .read = new_sync_read,
2730 .write = new_sync_write,
2731 .read_iter = shmem_file_read_iter,
2732 .write_iter = generic_file_write_iter,
2733 .fsync = noop_fsync,
2734 .splice_read = shmem_file_splice_read,
2735 .splice_write = iter_file_splice_write,
2736 .fallocate = shmem_fallocate,
2737 #endif
2738 };
2739
2740 static const struct inode_operations shmem_inode_operations = {
2741 .setattr = shmem_setattr,
2742 #ifdef CONFIG_TMPFS_XATTR
2743 .setxattr = shmem_setxattr,
2744 .getxattr = shmem_getxattr,
2745 .listxattr = shmem_listxattr,
2746 .removexattr = shmem_removexattr,
2747 .set_acl = simple_set_acl,
2748 #endif
2749 };
2750
2751 static const struct inode_operations shmem_dir_inode_operations = {
2752 #ifdef CONFIG_TMPFS
2753 .create = shmem_create,
2754 .lookup = simple_lookup,
2755 .link = shmem_link,
2756 .unlink = shmem_unlink,
2757 .symlink = shmem_symlink,
2758 .mkdir = shmem_mkdir,
2759 .rmdir = shmem_rmdir,
2760 .mknod = shmem_mknod,
2761 .rename = shmem_rename,
2762 .tmpfile = shmem_tmpfile,
2763 #endif
2764 #ifdef CONFIG_TMPFS_XATTR
2765 .setxattr = shmem_setxattr,
2766 .getxattr = shmem_getxattr,
2767 .listxattr = shmem_listxattr,
2768 .removexattr = shmem_removexattr,
2769 #endif
2770 #ifdef CONFIG_TMPFS_POSIX_ACL
2771 .setattr = shmem_setattr,
2772 .set_acl = simple_set_acl,
2773 #endif
2774 };
2775
2776 static const struct inode_operations shmem_special_inode_operations = {
2777 #ifdef CONFIG_TMPFS_XATTR
2778 .setxattr = shmem_setxattr,
2779 .getxattr = shmem_getxattr,
2780 .listxattr = shmem_listxattr,
2781 .removexattr = shmem_removexattr,
2782 #endif
2783 #ifdef CONFIG_TMPFS_POSIX_ACL
2784 .setattr = shmem_setattr,
2785 .set_acl = simple_set_acl,
2786 #endif
2787 };
2788
2789 static const struct super_operations shmem_ops = {
2790 .alloc_inode = shmem_alloc_inode,
2791 .destroy_inode = shmem_destroy_inode,
2792 #ifdef CONFIG_TMPFS
2793 .statfs = shmem_statfs,
2794 .remount_fs = shmem_remount_fs,
2795 .show_options = shmem_show_options,
2796 #endif
2797 .evict_inode = shmem_evict_inode,
2798 .drop_inode = generic_delete_inode,
2799 .put_super = shmem_put_super,
2800 };
2801
2802 static const struct vm_operations_struct shmem_vm_ops = {
2803 .fault = shmem_fault,
2804 .map_pages = filemap_map_pages,
2805 #ifdef CONFIG_NUMA
2806 .set_policy = shmem_set_policy,
2807 .get_policy = shmem_get_policy,
2808 #endif
2809 .remap_pages = generic_file_remap_pages,
2810 };
2811
2812 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2813 int flags, const char *dev_name, void *data)
2814 {
2815 return mount_nodev(fs_type, flags, data, shmem_fill_super);
2816 }
2817
2818 static struct file_system_type shmem_fs_type = {
2819 .owner = THIS_MODULE,
2820 .name = "tmpfs",
2821 .mount = shmem_mount,
2822 .kill_sb = kill_litter_super,
2823 .fs_flags = FS_USERNS_MOUNT,
2824 };
2825
2826 int __init shmem_init(void)
2827 {
2828 int error;
2829
2830 /* If rootfs called this, don't re-init */
2831 if (shmem_inode_cachep)
2832 return 0;
2833
2834 error = bdi_init(&shmem_backing_dev_info);
2835 if (error)
2836 goto out4;
2837
2838 error = shmem_init_inodecache();
2839 if (error)
2840 goto out3;
2841
2842 error = register_filesystem(&shmem_fs_type);
2843 if (error) {
2844 printk(KERN_ERR "Could not register tmpfs\n");
2845 goto out2;
2846 }
2847
2848 shm_mnt = kern_mount(&shmem_fs_type);
2849 if (IS_ERR(shm_mnt)) {
2850 error = PTR_ERR(shm_mnt);
2851 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2852 goto out1;
2853 }
2854 return 0;
2855
2856 out1:
2857 unregister_filesystem(&shmem_fs_type);
2858 out2:
2859 shmem_destroy_inodecache();
2860 out3:
2861 bdi_destroy(&shmem_backing_dev_info);
2862 out4:
2863 shm_mnt = ERR_PTR(error);
2864 return error;
2865 }
2866
2867 #else /* !CONFIG_SHMEM */
2868
2869 /*
2870 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2871 *
2872 * This is intended for small system where the benefits of the full
2873 * shmem code (swap-backed and resource-limited) are outweighed by
2874 * their complexity. On systems without swap this code should be
2875 * effectively equivalent, but much lighter weight.
2876 */
2877
2878 static struct file_system_type shmem_fs_type = {
2879 .name = "tmpfs",
2880 .mount = ramfs_mount,
2881 .kill_sb = kill_litter_super,
2882 .fs_flags = FS_USERNS_MOUNT,
2883 };
2884
2885 int __init shmem_init(void)
2886 {
2887 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2888
2889 shm_mnt = kern_mount(&shmem_fs_type);
2890 BUG_ON(IS_ERR(shm_mnt));
2891
2892 return 0;
2893 }
2894
2895 int shmem_unuse(swp_entry_t swap, struct page *page)
2896 {
2897 return 0;
2898 }
2899
2900 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2901 {
2902 return 0;
2903 }
2904
2905 void shmem_unlock_mapping(struct address_space *mapping)
2906 {
2907 }
2908
2909 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2910 {
2911 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2912 }
2913 EXPORT_SYMBOL_GPL(shmem_truncate_range);
2914
2915 #define shmem_vm_ops generic_file_vm_ops
2916 #define shmem_file_operations ramfs_file_operations
2917 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
2918 #define shmem_acct_size(flags, size) 0
2919 #define shmem_unacct_size(flags, size) do {} while (0)
2920
2921 #endif /* CONFIG_SHMEM */
2922
2923 /* common code */
2924
2925 static struct dentry_operations anon_ops = {
2926 .d_dname = simple_dname
2927 };
2928
2929 static struct file *__shmem_file_setup(const char *name, loff_t size,
2930 unsigned long flags, unsigned int i_flags)
2931 {
2932 struct file *res;
2933 struct inode *inode;
2934 struct path path;
2935 struct super_block *sb;
2936 struct qstr this;
2937
2938 if (IS_ERR(shm_mnt))
2939 return ERR_CAST(shm_mnt);
2940
2941 if (size < 0 || size > MAX_LFS_FILESIZE)
2942 return ERR_PTR(-EINVAL);
2943
2944 if (shmem_acct_size(flags, size))
2945 return ERR_PTR(-ENOMEM);
2946
2947 res = ERR_PTR(-ENOMEM);
2948 this.name = name;
2949 this.len = strlen(name);
2950 this.hash = 0; /* will go */
2951 sb = shm_mnt->mnt_sb;
2952 path.mnt = mntget(shm_mnt);
2953 path.dentry = d_alloc_pseudo(sb, &this);
2954 if (!path.dentry)
2955 goto put_memory;
2956 d_set_d_op(path.dentry, &anon_ops);
2957
2958 res = ERR_PTR(-ENOSPC);
2959 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2960 if (!inode)
2961 goto put_memory;
2962
2963 inode->i_flags |= i_flags;
2964 d_instantiate(path.dentry, inode);
2965 inode->i_size = size;
2966 clear_nlink(inode); /* It is unlinked */
2967 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
2968 if (IS_ERR(res))
2969 goto put_path;
2970
2971 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2972 &shmem_file_operations);
2973 if (IS_ERR(res))
2974 goto put_path;
2975
2976 return res;
2977
2978 put_memory:
2979 shmem_unacct_size(flags, size);
2980 put_path:
2981 path_put(&path);
2982 return res;
2983 }
2984
2985 /**
2986 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
2987 * kernel internal. There will be NO LSM permission checks against the
2988 * underlying inode. So users of this interface must do LSM checks at a
2989 * higher layer. The one user is the big_key implementation. LSM checks
2990 * are provided at the key level rather than the inode level.
2991 * @name: name for dentry (to be seen in /proc/<pid>/maps
2992 * @size: size to be set for the file
2993 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2994 */
2995 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
2996 {
2997 return __shmem_file_setup(name, size, flags, S_PRIVATE);
2998 }
2999
3000 /**
3001 * shmem_file_setup - get an unlinked file living in tmpfs
3002 * @name: name for dentry (to be seen in /proc/<pid>/maps
3003 * @size: size to be set for the file
3004 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3005 */
3006 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3007 {
3008 return __shmem_file_setup(name, size, flags, 0);
3009 }
3010 EXPORT_SYMBOL_GPL(shmem_file_setup);
3011
3012 /**
3013 * shmem_zero_setup - setup a shared anonymous mapping
3014 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3015 */
3016 int shmem_zero_setup(struct vm_area_struct *vma)
3017 {
3018 struct file *file;
3019 loff_t size = vma->vm_end - vma->vm_start;
3020
3021 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
3022 if (IS_ERR(file))
3023 return PTR_ERR(file);
3024
3025 if (vma->vm_file)
3026 fput(vma->vm_file);
3027 vma->vm_file = file;
3028 vma->vm_ops = &shmem_vm_ops;
3029 return 0;
3030 }
3031
3032 /**
3033 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3034 * @mapping: the page's address_space
3035 * @index: the page index
3036 * @gfp: the page allocator flags to use if allocating
3037 *
3038 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3039 * with any new page allocations done using the specified allocation flags.
3040 * But read_cache_page_gfp() uses the ->readpage() method: which does not
3041 * suit tmpfs, since it may have pages in swapcache, and needs to find those
3042 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3043 *
3044 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3045 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3046 */
3047 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3048 pgoff_t index, gfp_t gfp)
3049 {
3050 #ifdef CONFIG_SHMEM
3051 struct inode *inode = mapping->host;
3052 struct page *page;
3053 int error;
3054
3055 BUG_ON(mapping->a_ops != &shmem_aops);
3056 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3057 if (error)
3058 page = ERR_PTR(error);
3059 else
3060 unlock_page(page);
3061 return page;
3062 #else
3063 /*
3064 * The tiny !SHMEM case uses ramfs without swap
3065 */
3066 return read_cache_page_gfp(mapping, index, gfp);
3067 #endif
3068 }
3069 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
This page took 0.187822 seconds and 5 git commands to generate.