90b576cbc06e40fb0f43d06f37f5ef24deee9f13
[deliverable/linux.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
12 *
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16 *
17 * This file is released under the GPL.
18 */
19
20 /*
21 * This virtual memory filesystem is heavily based on the ramfs. It
22 * extends ramfs by the ability to use swap and honor resource limits
23 * which makes it a completely usable filesystem.
24 */
25
26 #include <linux/module.h>
27 #include <linux/init.h>
28 #include <linux/fs.h>
29 #include <linux/xattr.h>
30 #include <linux/exportfs.h>
31 #include <linux/generic_acl.h>
32 #include <linux/mm.h>
33 #include <linux/mman.h>
34 #include <linux/file.h>
35 #include <linux/swap.h>
36 #include <linux/pagemap.h>
37 #include <linux/string.h>
38 #include <linux/slab.h>
39 #include <linux/backing-dev.h>
40 #include <linux/shmem_fs.h>
41 #include <linux/mount.h>
42 #include <linux/writeback.h>
43 #include <linux/vfs.h>
44 #include <linux/blkdev.h>
45 #include <linux/security.h>
46 #include <linux/swapops.h>
47 #include <linux/mempolicy.h>
48 #include <linux/namei.h>
49 #include <linux/ctype.h>
50 #include <linux/migrate.h>
51 #include <linux/highmem.h>
52 #include <linux/seq_file.h>
53
54 #include <asm/uaccess.h>
55 #include <asm/div64.h>
56 #include <asm/pgtable.h>
57
58 /* This magic number is used in glibc for posix shared memory */
59 #define TMPFS_MAGIC 0x01021994
60
61 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
62 #define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
63 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
64
65 #define SHMEM_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
66 #define SHMEM_MAX_BYTES ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT)
67
68 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
69
70 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */
71 #define SHMEM_PAGEIN VM_READ
72 #define SHMEM_TRUNCATE VM_WRITE
73
74 /* Definition to limit shmem_truncate's steps between cond_rescheds */
75 #define LATENCY_LIMIT 64
76
77 /* Pretend that each entry is of this size in directory's i_size */
78 #define BOGO_DIRENT_SIZE 20
79
80 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
81 enum sgp_type {
82 SGP_READ, /* don't exceed i_size, don't allocate page */
83 SGP_CACHE, /* don't exceed i_size, may allocate page */
84 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
85 SGP_WRITE, /* may exceed i_size, may allocate page */
86 };
87
88 #ifdef CONFIG_TMPFS
89 static unsigned long shmem_default_max_blocks(void)
90 {
91 return totalram_pages / 2;
92 }
93
94 static unsigned long shmem_default_max_inodes(void)
95 {
96 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
97 }
98 #endif
99
100 static int shmem_getpage(struct inode *inode, unsigned long idx,
101 struct page **pagep, enum sgp_type sgp, int *type);
102
103 static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
104 {
105 /*
106 * The above definition of ENTRIES_PER_PAGE, and the use of
107 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
108 * might be reconsidered if it ever diverges from PAGE_SIZE.
109 *
110 * Mobility flags are masked out as swap vectors cannot move
111 */
112 return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
113 PAGE_CACHE_SHIFT-PAGE_SHIFT);
114 }
115
116 static inline void shmem_dir_free(struct page *page)
117 {
118 __free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
119 }
120
121 static struct page **shmem_dir_map(struct page *page)
122 {
123 return (struct page **)kmap_atomic(page, KM_USER0);
124 }
125
126 static inline void shmem_dir_unmap(struct page **dir)
127 {
128 kunmap_atomic(dir, KM_USER0);
129 }
130
131 static swp_entry_t *shmem_swp_map(struct page *page)
132 {
133 return (swp_entry_t *)kmap_atomic(page, KM_USER1);
134 }
135
136 static inline void shmem_swp_balance_unmap(void)
137 {
138 /*
139 * When passing a pointer to an i_direct entry, to code which
140 * also handles indirect entries and so will shmem_swp_unmap,
141 * we must arrange for the preempt count to remain in balance.
142 * What kmap_atomic of a lowmem page does depends on config
143 * and architecture, so pretend to kmap_atomic some lowmem page.
144 */
145 (void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
146 }
147
148 static inline void shmem_swp_unmap(swp_entry_t *entry)
149 {
150 kunmap_atomic(entry, KM_USER1);
151 }
152
153 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
154 {
155 return sb->s_fs_info;
156 }
157
158 /*
159 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
160 * for shared memory and for shared anonymous (/dev/zero) mappings
161 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
162 * consistent with the pre-accounting of private mappings ...
163 */
164 static inline int shmem_acct_size(unsigned long flags, loff_t size)
165 {
166 return (flags & VM_ACCOUNT)?
167 security_vm_enough_memory(VM_ACCT(size)): 0;
168 }
169
170 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
171 {
172 if (flags & VM_ACCOUNT)
173 vm_unacct_memory(VM_ACCT(size));
174 }
175
176 /*
177 * ... whereas tmpfs objects are accounted incrementally as
178 * pages are allocated, in order to allow huge sparse files.
179 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
180 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
181 */
182 static inline int shmem_acct_block(unsigned long flags)
183 {
184 return (flags & VM_ACCOUNT)?
185 0: security_vm_enough_memory(VM_ACCT(PAGE_CACHE_SIZE));
186 }
187
188 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
189 {
190 if (!(flags & VM_ACCOUNT))
191 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
192 }
193
194 static const struct super_operations shmem_ops;
195 static const struct address_space_operations shmem_aops;
196 static const struct file_operations shmem_file_operations;
197 static const struct inode_operations shmem_inode_operations;
198 static const struct inode_operations shmem_dir_inode_operations;
199 static const struct inode_operations shmem_special_inode_operations;
200 static struct vm_operations_struct shmem_vm_ops;
201
202 static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
203 .ra_pages = 0, /* No readahead */
204 .capabilities = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
205 .unplug_io_fn = default_unplug_io_fn,
206 };
207
208 static LIST_HEAD(shmem_swaplist);
209 static DEFINE_MUTEX(shmem_swaplist_mutex);
210
211 static void shmem_free_blocks(struct inode *inode, long pages)
212 {
213 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
214 if (sbinfo->max_blocks) {
215 spin_lock(&sbinfo->stat_lock);
216 sbinfo->free_blocks += pages;
217 inode->i_blocks -= pages*BLOCKS_PER_PAGE;
218 spin_unlock(&sbinfo->stat_lock);
219 }
220 }
221
222 static int shmem_reserve_inode(struct super_block *sb)
223 {
224 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
225 if (sbinfo->max_inodes) {
226 spin_lock(&sbinfo->stat_lock);
227 if (!sbinfo->free_inodes) {
228 spin_unlock(&sbinfo->stat_lock);
229 return -ENOSPC;
230 }
231 sbinfo->free_inodes--;
232 spin_unlock(&sbinfo->stat_lock);
233 }
234 return 0;
235 }
236
237 static void shmem_free_inode(struct super_block *sb)
238 {
239 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
240 if (sbinfo->max_inodes) {
241 spin_lock(&sbinfo->stat_lock);
242 sbinfo->free_inodes++;
243 spin_unlock(&sbinfo->stat_lock);
244 }
245 }
246
247 /*
248 * shmem_recalc_inode - recalculate the size of an inode
249 *
250 * @inode: inode to recalc
251 *
252 * We have to calculate the free blocks since the mm can drop
253 * undirtied hole pages behind our back.
254 *
255 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
256 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
257 *
258 * It has to be called with the spinlock held.
259 */
260 static void shmem_recalc_inode(struct inode *inode)
261 {
262 struct shmem_inode_info *info = SHMEM_I(inode);
263 long freed;
264
265 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
266 if (freed > 0) {
267 info->alloced -= freed;
268 shmem_unacct_blocks(info->flags, freed);
269 shmem_free_blocks(inode, freed);
270 }
271 }
272
273 /*
274 * shmem_swp_entry - find the swap vector position in the info structure
275 *
276 * @info: info structure for the inode
277 * @index: index of the page to find
278 * @page: optional page to add to the structure. Has to be preset to
279 * all zeros
280 *
281 * If there is no space allocated yet it will return NULL when
282 * page is NULL, else it will use the page for the needed block,
283 * setting it to NULL on return to indicate that it has been used.
284 *
285 * The swap vector is organized the following way:
286 *
287 * There are SHMEM_NR_DIRECT entries directly stored in the
288 * shmem_inode_info structure. So small files do not need an addional
289 * allocation.
290 *
291 * For pages with index > SHMEM_NR_DIRECT there is the pointer
292 * i_indirect which points to a page which holds in the first half
293 * doubly indirect blocks, in the second half triple indirect blocks:
294 *
295 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
296 * following layout (for SHMEM_NR_DIRECT == 16):
297 *
298 * i_indirect -> dir --> 16-19
299 * | +-> 20-23
300 * |
301 * +-->dir2 --> 24-27
302 * | +-> 28-31
303 * | +-> 32-35
304 * | +-> 36-39
305 * |
306 * +-->dir3 --> 40-43
307 * +-> 44-47
308 * +-> 48-51
309 * +-> 52-55
310 */
311 static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
312 {
313 unsigned long offset;
314 struct page **dir;
315 struct page *subdir;
316
317 if (index < SHMEM_NR_DIRECT) {
318 shmem_swp_balance_unmap();
319 return info->i_direct+index;
320 }
321 if (!info->i_indirect) {
322 if (page) {
323 info->i_indirect = *page;
324 *page = NULL;
325 }
326 return NULL; /* need another page */
327 }
328
329 index -= SHMEM_NR_DIRECT;
330 offset = index % ENTRIES_PER_PAGE;
331 index /= ENTRIES_PER_PAGE;
332 dir = shmem_dir_map(info->i_indirect);
333
334 if (index >= ENTRIES_PER_PAGE/2) {
335 index -= ENTRIES_PER_PAGE/2;
336 dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
337 index %= ENTRIES_PER_PAGE;
338 subdir = *dir;
339 if (!subdir) {
340 if (page) {
341 *dir = *page;
342 *page = NULL;
343 }
344 shmem_dir_unmap(dir);
345 return NULL; /* need another page */
346 }
347 shmem_dir_unmap(dir);
348 dir = shmem_dir_map(subdir);
349 }
350
351 dir += index;
352 subdir = *dir;
353 if (!subdir) {
354 if (!page || !(subdir = *page)) {
355 shmem_dir_unmap(dir);
356 return NULL; /* need a page */
357 }
358 *dir = subdir;
359 *page = NULL;
360 }
361 shmem_dir_unmap(dir);
362 return shmem_swp_map(subdir) + offset;
363 }
364
365 static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
366 {
367 long incdec = value? 1: -1;
368
369 entry->val = value;
370 info->swapped += incdec;
371 if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
372 struct page *page = kmap_atomic_to_page(entry);
373 set_page_private(page, page_private(page) + incdec);
374 }
375 }
376
377 /*
378 * shmem_swp_alloc - get the position of the swap entry for the page.
379 * If it does not exist allocate the entry.
380 *
381 * @info: info structure for the inode
382 * @index: index of the page to find
383 * @sgp: check and recheck i_size? skip allocation?
384 */
385 static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
386 {
387 struct inode *inode = &info->vfs_inode;
388 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
389 struct page *page = NULL;
390 swp_entry_t *entry;
391
392 if (sgp != SGP_WRITE &&
393 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
394 return ERR_PTR(-EINVAL);
395
396 while (!(entry = shmem_swp_entry(info, index, &page))) {
397 if (sgp == SGP_READ)
398 return shmem_swp_map(ZERO_PAGE(0));
399 /*
400 * Test free_blocks against 1 not 0, since we have 1 data
401 * page (and perhaps indirect index pages) yet to allocate:
402 * a waste to allocate index if we cannot allocate data.
403 */
404 if (sbinfo->max_blocks) {
405 spin_lock(&sbinfo->stat_lock);
406 if (sbinfo->free_blocks <= 1) {
407 spin_unlock(&sbinfo->stat_lock);
408 return ERR_PTR(-ENOSPC);
409 }
410 sbinfo->free_blocks--;
411 inode->i_blocks += BLOCKS_PER_PAGE;
412 spin_unlock(&sbinfo->stat_lock);
413 }
414
415 spin_unlock(&info->lock);
416 page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
417 if (page)
418 set_page_private(page, 0);
419 spin_lock(&info->lock);
420
421 if (!page) {
422 shmem_free_blocks(inode, 1);
423 return ERR_PTR(-ENOMEM);
424 }
425 if (sgp != SGP_WRITE &&
426 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
427 entry = ERR_PTR(-EINVAL);
428 break;
429 }
430 if (info->next_index <= index)
431 info->next_index = index + 1;
432 }
433 if (page) {
434 /* another task gave its page, or truncated the file */
435 shmem_free_blocks(inode, 1);
436 shmem_dir_free(page);
437 }
438 if (info->next_index <= index && !IS_ERR(entry))
439 info->next_index = index + 1;
440 return entry;
441 }
442
443 /*
444 * shmem_free_swp - free some swap entries in a directory
445 *
446 * @dir: pointer to the directory
447 * @edir: pointer after last entry of the directory
448 * @punch_lock: pointer to spinlock when needed for the holepunch case
449 */
450 static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
451 spinlock_t *punch_lock)
452 {
453 spinlock_t *punch_unlock = NULL;
454 swp_entry_t *ptr;
455 int freed = 0;
456
457 for (ptr = dir; ptr < edir; ptr++) {
458 if (ptr->val) {
459 if (unlikely(punch_lock)) {
460 punch_unlock = punch_lock;
461 punch_lock = NULL;
462 spin_lock(punch_unlock);
463 if (!ptr->val)
464 continue;
465 }
466 free_swap_and_cache(*ptr);
467 *ptr = (swp_entry_t){0};
468 freed++;
469 }
470 }
471 if (punch_unlock)
472 spin_unlock(punch_unlock);
473 return freed;
474 }
475
476 static int shmem_map_and_free_swp(struct page *subdir, int offset,
477 int limit, struct page ***dir, spinlock_t *punch_lock)
478 {
479 swp_entry_t *ptr;
480 int freed = 0;
481
482 ptr = shmem_swp_map(subdir);
483 for (; offset < limit; offset += LATENCY_LIMIT) {
484 int size = limit - offset;
485 if (size > LATENCY_LIMIT)
486 size = LATENCY_LIMIT;
487 freed += shmem_free_swp(ptr+offset, ptr+offset+size,
488 punch_lock);
489 if (need_resched()) {
490 shmem_swp_unmap(ptr);
491 if (*dir) {
492 shmem_dir_unmap(*dir);
493 *dir = NULL;
494 }
495 cond_resched();
496 ptr = shmem_swp_map(subdir);
497 }
498 }
499 shmem_swp_unmap(ptr);
500 return freed;
501 }
502
503 static void shmem_free_pages(struct list_head *next)
504 {
505 struct page *page;
506 int freed = 0;
507
508 do {
509 page = container_of(next, struct page, lru);
510 next = next->next;
511 shmem_dir_free(page);
512 freed++;
513 if (freed >= LATENCY_LIMIT) {
514 cond_resched();
515 freed = 0;
516 }
517 } while (next);
518 }
519
520 static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
521 {
522 struct shmem_inode_info *info = SHMEM_I(inode);
523 unsigned long idx;
524 unsigned long size;
525 unsigned long limit;
526 unsigned long stage;
527 unsigned long diroff;
528 struct page **dir;
529 struct page *topdir;
530 struct page *middir;
531 struct page *subdir;
532 swp_entry_t *ptr;
533 LIST_HEAD(pages_to_free);
534 long nr_pages_to_free = 0;
535 long nr_swaps_freed = 0;
536 int offset;
537 int freed;
538 int punch_hole;
539 spinlock_t *needs_lock;
540 spinlock_t *punch_lock;
541 unsigned long upper_limit;
542
543 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
544 idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
545 if (idx >= info->next_index)
546 return;
547
548 spin_lock(&info->lock);
549 info->flags |= SHMEM_TRUNCATE;
550 if (likely(end == (loff_t) -1)) {
551 limit = info->next_index;
552 upper_limit = SHMEM_MAX_INDEX;
553 info->next_index = idx;
554 needs_lock = NULL;
555 punch_hole = 0;
556 } else {
557 if (end + 1 >= inode->i_size) { /* we may free a little more */
558 limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
559 PAGE_CACHE_SHIFT;
560 upper_limit = SHMEM_MAX_INDEX;
561 } else {
562 limit = (end + 1) >> PAGE_CACHE_SHIFT;
563 upper_limit = limit;
564 }
565 needs_lock = &info->lock;
566 punch_hole = 1;
567 }
568
569 topdir = info->i_indirect;
570 if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
571 info->i_indirect = NULL;
572 nr_pages_to_free++;
573 list_add(&topdir->lru, &pages_to_free);
574 }
575 spin_unlock(&info->lock);
576
577 if (info->swapped && idx < SHMEM_NR_DIRECT) {
578 ptr = info->i_direct;
579 size = limit;
580 if (size > SHMEM_NR_DIRECT)
581 size = SHMEM_NR_DIRECT;
582 nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
583 }
584
585 /*
586 * If there are no indirect blocks or we are punching a hole
587 * below indirect blocks, nothing to be done.
588 */
589 if (!topdir || limit <= SHMEM_NR_DIRECT)
590 goto done2;
591
592 /*
593 * The truncation case has already dropped info->lock, and we're safe
594 * because i_size and next_index have already been lowered, preventing
595 * access beyond. But in the punch_hole case, we still need to take
596 * the lock when updating the swap directory, because there might be
597 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
598 * shmem_writepage. However, whenever we find we can remove a whole
599 * directory page (not at the misaligned start or end of the range),
600 * we first NULLify its pointer in the level above, and then have no
601 * need to take the lock when updating its contents: needs_lock and
602 * punch_lock (either pointing to info->lock or NULL) manage this.
603 */
604
605 upper_limit -= SHMEM_NR_DIRECT;
606 limit -= SHMEM_NR_DIRECT;
607 idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
608 offset = idx % ENTRIES_PER_PAGE;
609 idx -= offset;
610
611 dir = shmem_dir_map(topdir);
612 stage = ENTRIES_PER_PAGEPAGE/2;
613 if (idx < ENTRIES_PER_PAGEPAGE/2) {
614 middir = topdir;
615 diroff = idx/ENTRIES_PER_PAGE;
616 } else {
617 dir += ENTRIES_PER_PAGE/2;
618 dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
619 while (stage <= idx)
620 stage += ENTRIES_PER_PAGEPAGE;
621 middir = *dir;
622 if (*dir) {
623 diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
624 ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
625 if (!diroff && !offset && upper_limit >= stage) {
626 if (needs_lock) {
627 spin_lock(needs_lock);
628 *dir = NULL;
629 spin_unlock(needs_lock);
630 needs_lock = NULL;
631 } else
632 *dir = NULL;
633 nr_pages_to_free++;
634 list_add(&middir->lru, &pages_to_free);
635 }
636 shmem_dir_unmap(dir);
637 dir = shmem_dir_map(middir);
638 } else {
639 diroff = 0;
640 offset = 0;
641 idx = stage;
642 }
643 }
644
645 for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
646 if (unlikely(idx == stage)) {
647 shmem_dir_unmap(dir);
648 dir = shmem_dir_map(topdir) +
649 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
650 while (!*dir) {
651 dir++;
652 idx += ENTRIES_PER_PAGEPAGE;
653 if (idx >= limit)
654 goto done1;
655 }
656 stage = idx + ENTRIES_PER_PAGEPAGE;
657 middir = *dir;
658 if (punch_hole)
659 needs_lock = &info->lock;
660 if (upper_limit >= stage) {
661 if (needs_lock) {
662 spin_lock(needs_lock);
663 *dir = NULL;
664 spin_unlock(needs_lock);
665 needs_lock = NULL;
666 } else
667 *dir = NULL;
668 nr_pages_to_free++;
669 list_add(&middir->lru, &pages_to_free);
670 }
671 shmem_dir_unmap(dir);
672 cond_resched();
673 dir = shmem_dir_map(middir);
674 diroff = 0;
675 }
676 punch_lock = needs_lock;
677 subdir = dir[diroff];
678 if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
679 if (needs_lock) {
680 spin_lock(needs_lock);
681 dir[diroff] = NULL;
682 spin_unlock(needs_lock);
683 punch_lock = NULL;
684 } else
685 dir[diroff] = NULL;
686 nr_pages_to_free++;
687 list_add(&subdir->lru, &pages_to_free);
688 }
689 if (subdir && page_private(subdir) /* has swap entries */) {
690 size = limit - idx;
691 if (size > ENTRIES_PER_PAGE)
692 size = ENTRIES_PER_PAGE;
693 freed = shmem_map_and_free_swp(subdir,
694 offset, size, &dir, punch_lock);
695 if (!dir)
696 dir = shmem_dir_map(middir);
697 nr_swaps_freed += freed;
698 if (offset || punch_lock) {
699 spin_lock(&info->lock);
700 set_page_private(subdir,
701 page_private(subdir) - freed);
702 spin_unlock(&info->lock);
703 } else
704 BUG_ON(page_private(subdir) != freed);
705 }
706 offset = 0;
707 }
708 done1:
709 shmem_dir_unmap(dir);
710 done2:
711 if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
712 /*
713 * Call truncate_inode_pages again: racing shmem_unuse_inode
714 * may have swizzled a page in from swap since vmtruncate or
715 * generic_delete_inode did it, before we lowered next_index.
716 * Also, though shmem_getpage checks i_size before adding to
717 * cache, no recheck after: so fix the narrow window there too.
718 *
719 * Recalling truncate_inode_pages_range and unmap_mapping_range
720 * every time for punch_hole (which never got a chance to clear
721 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
722 * yet hardly ever necessary: try to optimize them out later.
723 */
724 truncate_inode_pages_range(inode->i_mapping, start, end);
725 if (punch_hole)
726 unmap_mapping_range(inode->i_mapping, start,
727 end - start, 1);
728 }
729
730 spin_lock(&info->lock);
731 info->flags &= ~SHMEM_TRUNCATE;
732 info->swapped -= nr_swaps_freed;
733 if (nr_pages_to_free)
734 shmem_free_blocks(inode, nr_pages_to_free);
735 shmem_recalc_inode(inode);
736 spin_unlock(&info->lock);
737
738 /*
739 * Empty swap vector directory pages to be freed?
740 */
741 if (!list_empty(&pages_to_free)) {
742 pages_to_free.prev->next = NULL;
743 shmem_free_pages(pages_to_free.next);
744 }
745 }
746
747 static void shmem_truncate(struct inode *inode)
748 {
749 shmem_truncate_range(inode, inode->i_size, (loff_t)-1);
750 }
751
752 static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
753 {
754 struct inode *inode = dentry->d_inode;
755 struct page *page = NULL;
756 int error;
757
758 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
759 if (attr->ia_size < inode->i_size) {
760 /*
761 * If truncating down to a partial page, then
762 * if that page is already allocated, hold it
763 * in memory until the truncation is over, so
764 * truncate_partial_page cannnot miss it were
765 * it assigned to swap.
766 */
767 if (attr->ia_size & (PAGE_CACHE_SIZE-1)) {
768 (void) shmem_getpage(inode,
769 attr->ia_size>>PAGE_CACHE_SHIFT,
770 &page, SGP_READ, NULL);
771 if (page)
772 unlock_page(page);
773 }
774 /*
775 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
776 * detect if any pages might have been added to cache
777 * after truncate_inode_pages. But we needn't bother
778 * if it's being fully truncated to zero-length: the
779 * nrpages check is efficient enough in that case.
780 */
781 if (attr->ia_size) {
782 struct shmem_inode_info *info = SHMEM_I(inode);
783 spin_lock(&info->lock);
784 info->flags &= ~SHMEM_PAGEIN;
785 spin_unlock(&info->lock);
786 }
787 }
788 }
789
790 error = inode_change_ok(inode, attr);
791 if (!error)
792 error = inode_setattr(inode, attr);
793 #ifdef CONFIG_TMPFS_POSIX_ACL
794 if (!error && (attr->ia_valid & ATTR_MODE))
795 error = generic_acl_chmod(inode, &shmem_acl_ops);
796 #endif
797 if (page)
798 page_cache_release(page);
799 return error;
800 }
801
802 static void shmem_delete_inode(struct inode *inode)
803 {
804 struct shmem_inode_info *info = SHMEM_I(inode);
805
806 if (inode->i_op->truncate == shmem_truncate) {
807 truncate_inode_pages(inode->i_mapping, 0);
808 shmem_unacct_size(info->flags, inode->i_size);
809 inode->i_size = 0;
810 shmem_truncate(inode);
811 if (!list_empty(&info->swaplist)) {
812 mutex_lock(&shmem_swaplist_mutex);
813 list_del_init(&info->swaplist);
814 mutex_unlock(&shmem_swaplist_mutex);
815 }
816 }
817 BUG_ON(inode->i_blocks);
818 shmem_free_inode(inode->i_sb);
819 clear_inode(inode);
820 }
821
822 static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
823 {
824 swp_entry_t *ptr;
825
826 for (ptr = dir; ptr < edir; ptr++) {
827 if (ptr->val == entry.val)
828 return ptr - dir;
829 }
830 return -1;
831 }
832
833 static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
834 {
835 struct inode *inode;
836 unsigned long idx;
837 unsigned long size;
838 unsigned long limit;
839 unsigned long stage;
840 struct page **dir;
841 struct page *subdir;
842 swp_entry_t *ptr;
843 int offset;
844 int error;
845
846 idx = 0;
847 ptr = info->i_direct;
848 spin_lock(&info->lock);
849 if (!info->swapped) {
850 list_del_init(&info->swaplist);
851 goto lost2;
852 }
853 limit = info->next_index;
854 size = limit;
855 if (size > SHMEM_NR_DIRECT)
856 size = SHMEM_NR_DIRECT;
857 offset = shmem_find_swp(entry, ptr, ptr+size);
858 if (offset >= 0)
859 goto found;
860 if (!info->i_indirect)
861 goto lost2;
862
863 dir = shmem_dir_map(info->i_indirect);
864 stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
865
866 for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
867 if (unlikely(idx == stage)) {
868 shmem_dir_unmap(dir-1);
869 if (cond_resched_lock(&info->lock)) {
870 /* check it has not been truncated */
871 if (limit > info->next_index) {
872 limit = info->next_index;
873 if (idx >= limit)
874 goto lost2;
875 }
876 }
877 dir = shmem_dir_map(info->i_indirect) +
878 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
879 while (!*dir) {
880 dir++;
881 idx += ENTRIES_PER_PAGEPAGE;
882 if (idx >= limit)
883 goto lost1;
884 }
885 stage = idx + ENTRIES_PER_PAGEPAGE;
886 subdir = *dir;
887 shmem_dir_unmap(dir);
888 dir = shmem_dir_map(subdir);
889 }
890 subdir = *dir;
891 if (subdir && page_private(subdir)) {
892 ptr = shmem_swp_map(subdir);
893 size = limit - idx;
894 if (size > ENTRIES_PER_PAGE)
895 size = ENTRIES_PER_PAGE;
896 offset = shmem_find_swp(entry, ptr, ptr+size);
897 shmem_swp_unmap(ptr);
898 if (offset >= 0) {
899 shmem_dir_unmap(dir);
900 goto found;
901 }
902 }
903 }
904 lost1:
905 shmem_dir_unmap(dir-1);
906 lost2:
907 spin_unlock(&info->lock);
908 return 0;
909 found:
910 idx += offset;
911 inode = igrab(&info->vfs_inode);
912 spin_unlock(&info->lock);
913
914 /*
915 * Move _head_ to start search for next from here.
916 * But be careful: shmem_delete_inode checks list_empty without taking
917 * mutex, and there's an instant in list_move_tail when info->swaplist
918 * would appear empty, if it were the only one on shmem_swaplist. We
919 * could avoid doing it if inode NULL; or use this minor optimization.
920 */
921 if (shmem_swaplist.next != &info->swaplist)
922 list_move_tail(&shmem_swaplist, &info->swaplist);
923 mutex_unlock(&shmem_swaplist_mutex);
924
925 error = 1;
926 if (!inode)
927 goto out;
928 /* Precharge page while we can wait, compensate afterwards */
929 error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
930 if (error)
931 goto out;
932 error = radix_tree_preload(GFP_KERNEL);
933 if (error)
934 goto uncharge;
935 error = 1;
936
937 spin_lock(&info->lock);
938 ptr = shmem_swp_entry(info, idx, NULL);
939 if (ptr && ptr->val == entry.val)
940 error = add_to_page_cache(page, inode->i_mapping,
941 idx, GFP_NOWAIT);
942 if (error == -EEXIST) {
943 struct page *filepage = find_get_page(inode->i_mapping, idx);
944 error = 1;
945 if (filepage) {
946 /*
947 * There might be a more uptodate page coming down
948 * from a stacked writepage: forget our swappage if so.
949 */
950 if (PageUptodate(filepage))
951 error = 0;
952 page_cache_release(filepage);
953 }
954 }
955 if (!error) {
956 delete_from_swap_cache(page);
957 set_page_dirty(page);
958 info->flags |= SHMEM_PAGEIN;
959 shmem_swp_set(info, ptr, 0);
960 swap_free(entry);
961 error = 1; /* not an error, but entry was found */
962 }
963 if (ptr)
964 shmem_swp_unmap(ptr);
965 spin_unlock(&info->lock);
966 radix_tree_preload_end();
967 uncharge:
968 mem_cgroup_uncharge_page(page);
969 out:
970 unlock_page(page);
971 page_cache_release(page);
972 iput(inode); /* allows for NULL */
973 return error;
974 }
975
976 /*
977 * shmem_unuse() search for an eventually swapped out shmem page.
978 */
979 int shmem_unuse(swp_entry_t entry, struct page *page)
980 {
981 struct list_head *p, *next;
982 struct shmem_inode_info *info;
983 int found = 0;
984
985 mutex_lock(&shmem_swaplist_mutex);
986 list_for_each_safe(p, next, &shmem_swaplist) {
987 info = list_entry(p, struct shmem_inode_info, swaplist);
988 found = shmem_unuse_inode(info, entry, page);
989 cond_resched();
990 if (found)
991 goto out;
992 }
993 mutex_unlock(&shmem_swaplist_mutex);
994 out: return found; /* 0 or 1 or -ENOMEM */
995 }
996
997 /*
998 * Move the page from the page cache to the swap cache.
999 */
1000 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1001 {
1002 struct shmem_inode_info *info;
1003 swp_entry_t *entry, swap;
1004 struct address_space *mapping;
1005 unsigned long index;
1006 struct inode *inode;
1007
1008 BUG_ON(!PageLocked(page));
1009 mapping = page->mapping;
1010 index = page->index;
1011 inode = mapping->host;
1012 info = SHMEM_I(inode);
1013 if (info->flags & VM_LOCKED)
1014 goto redirty;
1015 if (!total_swap_pages)
1016 goto redirty;
1017
1018 /*
1019 * shmem_backing_dev_info's capabilities prevent regular writeback or
1020 * sync from ever calling shmem_writepage; but a stacking filesystem
1021 * may use the ->writepage of its underlying filesystem, in which case
1022 * tmpfs should write out to swap only in response to memory pressure,
1023 * and not for pdflush or sync. However, in those cases, we do still
1024 * want to check if there's a redundant swappage to be discarded.
1025 */
1026 if (wbc->for_reclaim)
1027 swap = get_swap_page();
1028 else
1029 swap.val = 0;
1030
1031 spin_lock(&info->lock);
1032 if (index >= info->next_index) {
1033 BUG_ON(!(info->flags & SHMEM_TRUNCATE));
1034 goto unlock;
1035 }
1036 entry = shmem_swp_entry(info, index, NULL);
1037 if (entry->val) {
1038 /*
1039 * The more uptodate page coming down from a stacked
1040 * writepage should replace our old swappage.
1041 */
1042 free_swap_and_cache(*entry);
1043 shmem_swp_set(info, entry, 0);
1044 }
1045 shmem_recalc_inode(inode);
1046
1047 if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1048 remove_from_page_cache(page);
1049 shmem_swp_set(info, entry, swap.val);
1050 shmem_swp_unmap(entry);
1051 if (list_empty(&info->swaplist))
1052 inode = igrab(inode);
1053 else
1054 inode = NULL;
1055 spin_unlock(&info->lock);
1056 swap_duplicate(swap);
1057 BUG_ON(page_mapped(page));
1058 page_cache_release(page); /* pagecache ref */
1059 set_page_dirty(page);
1060 unlock_page(page);
1061 if (inode) {
1062 mutex_lock(&shmem_swaplist_mutex);
1063 /* move instead of add in case we're racing */
1064 list_move_tail(&info->swaplist, &shmem_swaplist);
1065 mutex_unlock(&shmem_swaplist_mutex);
1066 iput(inode);
1067 }
1068 return 0;
1069 }
1070
1071 shmem_swp_unmap(entry);
1072 unlock:
1073 spin_unlock(&info->lock);
1074 swap_free(swap);
1075 redirty:
1076 set_page_dirty(page);
1077 if (wbc->for_reclaim)
1078 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1079 unlock_page(page);
1080 return 0;
1081 }
1082
1083 #ifdef CONFIG_NUMA
1084 #ifdef CONFIG_TMPFS
1085 static int shmem_parse_mpol(char *value, int *policy, nodemask_t *policy_nodes)
1086 {
1087 char *nodelist = strchr(value, ':');
1088 int err = 1;
1089
1090 if (nodelist) {
1091 /* NUL-terminate policy string */
1092 *nodelist++ = '\0';
1093 if (nodelist_parse(nodelist, *policy_nodes))
1094 goto out;
1095 if (!nodes_subset(*policy_nodes, node_states[N_HIGH_MEMORY]))
1096 goto out;
1097 }
1098 if (!strcmp(value, "default")) {
1099 *policy = MPOL_DEFAULT;
1100 /* Don't allow a nodelist */
1101 if (!nodelist)
1102 err = 0;
1103 } else if (!strcmp(value, "prefer")) {
1104 *policy = MPOL_PREFERRED;
1105 /* Insist on a nodelist of one node only */
1106 if (nodelist) {
1107 char *rest = nodelist;
1108 while (isdigit(*rest))
1109 rest++;
1110 if (!*rest)
1111 err = 0;
1112 }
1113 } else if (!strcmp(value, "bind")) {
1114 *policy = MPOL_BIND;
1115 /* Insist on a nodelist */
1116 if (nodelist)
1117 err = 0;
1118 } else if (!strcmp(value, "interleave")) {
1119 *policy = MPOL_INTERLEAVE;
1120 /*
1121 * Default to online nodes with memory if no nodelist
1122 */
1123 if (!nodelist)
1124 *policy_nodes = node_states[N_HIGH_MEMORY];
1125 err = 0;
1126 }
1127 out:
1128 /* Restore string for error message */
1129 if (nodelist)
1130 *--nodelist = ':';
1131 return err;
1132 }
1133
1134 static void shmem_show_mpol(struct seq_file *seq, int policy,
1135 const nodemask_t policy_nodes)
1136 {
1137 char *policy_string;
1138
1139 switch (policy) {
1140 case MPOL_PREFERRED:
1141 policy_string = "prefer";
1142 break;
1143 case MPOL_BIND:
1144 policy_string = "bind";
1145 break;
1146 case MPOL_INTERLEAVE:
1147 policy_string = "interleave";
1148 break;
1149 default:
1150 /* MPOL_DEFAULT */
1151 return;
1152 }
1153
1154 seq_printf(seq, ",mpol=%s", policy_string);
1155
1156 if (policy != MPOL_INTERLEAVE ||
1157 !nodes_equal(policy_nodes, node_states[N_HIGH_MEMORY])) {
1158 char buffer[64];
1159 int len;
1160
1161 len = nodelist_scnprintf(buffer, sizeof(buffer), policy_nodes);
1162 if (len < sizeof(buffer))
1163 seq_printf(seq, ":%s", buffer);
1164 else
1165 seq_printf(seq, ":?");
1166 }
1167 }
1168 #endif /* CONFIG_TMPFS */
1169
1170 static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1171 struct shmem_inode_info *info, unsigned long idx)
1172 {
1173 struct vm_area_struct pvma;
1174 struct page *page;
1175
1176 /* Create a pseudo vma that just contains the policy */
1177 pvma.vm_start = 0;
1178 pvma.vm_pgoff = idx;
1179 pvma.vm_ops = NULL;
1180 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1181 page = swapin_readahead(entry, gfp, &pvma, 0);
1182 mpol_free(pvma.vm_policy);
1183 return page;
1184 }
1185
1186 static struct page *shmem_alloc_page(gfp_t gfp,
1187 struct shmem_inode_info *info, unsigned long idx)
1188 {
1189 struct vm_area_struct pvma;
1190 struct page *page;
1191
1192 /* Create a pseudo vma that just contains the policy */
1193 pvma.vm_start = 0;
1194 pvma.vm_pgoff = idx;
1195 pvma.vm_ops = NULL;
1196 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1197 page = alloc_page_vma(gfp, &pvma, 0);
1198 mpol_free(pvma.vm_policy);
1199 return page;
1200 }
1201 #else /* !CONFIG_NUMA */
1202 #ifdef CONFIG_TMPFS
1203 static inline int shmem_parse_mpol(char *value, int *policy,
1204 nodemask_t *policy_nodes)
1205 {
1206 return 1;
1207 }
1208
1209 static inline void shmem_show_mpol(struct seq_file *seq, int policy,
1210 const nodemask_t policy_nodes)
1211 {
1212 }
1213 #endif /* CONFIG_TMPFS */
1214
1215 static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1216 struct shmem_inode_info *info, unsigned long idx)
1217 {
1218 return swapin_readahead(entry, gfp, NULL, 0);
1219 }
1220
1221 static inline struct page *shmem_alloc_page(gfp_t gfp,
1222 struct shmem_inode_info *info, unsigned long idx)
1223 {
1224 return alloc_page(gfp);
1225 }
1226 #endif /* CONFIG_NUMA */
1227
1228 /*
1229 * shmem_getpage - either get the page from swap or allocate a new one
1230 *
1231 * If we allocate a new one we do not mark it dirty. That's up to the
1232 * vm. If we swap it in we mark it dirty since we also free the swap
1233 * entry since a page cannot live in both the swap and page cache
1234 */
1235 static int shmem_getpage(struct inode *inode, unsigned long idx,
1236 struct page **pagep, enum sgp_type sgp, int *type)
1237 {
1238 struct address_space *mapping = inode->i_mapping;
1239 struct shmem_inode_info *info = SHMEM_I(inode);
1240 struct shmem_sb_info *sbinfo;
1241 struct page *filepage = *pagep;
1242 struct page *swappage;
1243 swp_entry_t *entry;
1244 swp_entry_t swap;
1245 gfp_t gfp;
1246 int error;
1247
1248 if (idx >= SHMEM_MAX_INDEX)
1249 return -EFBIG;
1250
1251 if (type)
1252 *type = 0;
1253
1254 /*
1255 * Normally, filepage is NULL on entry, and either found
1256 * uptodate immediately, or allocated and zeroed, or read
1257 * in under swappage, which is then assigned to filepage.
1258 * But shmem_readpage (required for splice) passes in a locked
1259 * filepage, which may be found not uptodate by other callers
1260 * too, and may need to be copied from the swappage read in.
1261 */
1262 repeat:
1263 if (!filepage)
1264 filepage = find_lock_page(mapping, idx);
1265 if (filepage && PageUptodate(filepage))
1266 goto done;
1267 error = 0;
1268 gfp = mapping_gfp_mask(mapping);
1269 if (!filepage) {
1270 /*
1271 * Try to preload while we can wait, to not make a habit of
1272 * draining atomic reserves; but don't latch on to this cpu.
1273 */
1274 error = radix_tree_preload(gfp & ~__GFP_HIGHMEM);
1275 if (error)
1276 goto failed;
1277 radix_tree_preload_end();
1278 }
1279
1280 spin_lock(&info->lock);
1281 shmem_recalc_inode(inode);
1282 entry = shmem_swp_alloc(info, idx, sgp);
1283 if (IS_ERR(entry)) {
1284 spin_unlock(&info->lock);
1285 error = PTR_ERR(entry);
1286 goto failed;
1287 }
1288 swap = *entry;
1289
1290 if (swap.val) {
1291 /* Look it up and read it in.. */
1292 swappage = lookup_swap_cache(swap);
1293 if (!swappage) {
1294 shmem_swp_unmap(entry);
1295 /* here we actually do the io */
1296 if (type && !(*type & VM_FAULT_MAJOR)) {
1297 __count_vm_event(PGMAJFAULT);
1298 *type |= VM_FAULT_MAJOR;
1299 }
1300 spin_unlock(&info->lock);
1301 swappage = shmem_swapin(swap, gfp, info, idx);
1302 if (!swappage) {
1303 spin_lock(&info->lock);
1304 entry = shmem_swp_alloc(info, idx, sgp);
1305 if (IS_ERR(entry))
1306 error = PTR_ERR(entry);
1307 else {
1308 if (entry->val == swap.val)
1309 error = -ENOMEM;
1310 shmem_swp_unmap(entry);
1311 }
1312 spin_unlock(&info->lock);
1313 if (error)
1314 goto failed;
1315 goto repeat;
1316 }
1317 wait_on_page_locked(swappage);
1318 page_cache_release(swappage);
1319 goto repeat;
1320 }
1321
1322 /* We have to do this with page locked to prevent races */
1323 if (TestSetPageLocked(swappage)) {
1324 shmem_swp_unmap(entry);
1325 spin_unlock(&info->lock);
1326 wait_on_page_locked(swappage);
1327 page_cache_release(swappage);
1328 goto repeat;
1329 }
1330 if (PageWriteback(swappage)) {
1331 shmem_swp_unmap(entry);
1332 spin_unlock(&info->lock);
1333 wait_on_page_writeback(swappage);
1334 unlock_page(swappage);
1335 page_cache_release(swappage);
1336 goto repeat;
1337 }
1338 if (!PageUptodate(swappage)) {
1339 shmem_swp_unmap(entry);
1340 spin_unlock(&info->lock);
1341 unlock_page(swappage);
1342 page_cache_release(swappage);
1343 error = -EIO;
1344 goto failed;
1345 }
1346
1347 if (filepage) {
1348 shmem_swp_set(info, entry, 0);
1349 shmem_swp_unmap(entry);
1350 delete_from_swap_cache(swappage);
1351 spin_unlock(&info->lock);
1352 copy_highpage(filepage, swappage);
1353 unlock_page(swappage);
1354 page_cache_release(swappage);
1355 flush_dcache_page(filepage);
1356 SetPageUptodate(filepage);
1357 set_page_dirty(filepage);
1358 swap_free(swap);
1359 } else if (!(error = add_to_page_cache(
1360 swappage, mapping, idx, GFP_NOWAIT))) {
1361 info->flags |= SHMEM_PAGEIN;
1362 shmem_swp_set(info, entry, 0);
1363 shmem_swp_unmap(entry);
1364 delete_from_swap_cache(swappage);
1365 spin_unlock(&info->lock);
1366 filepage = swappage;
1367 set_page_dirty(filepage);
1368 swap_free(swap);
1369 } else {
1370 shmem_swp_unmap(entry);
1371 spin_unlock(&info->lock);
1372 unlock_page(swappage);
1373 page_cache_release(swappage);
1374 if (error == -ENOMEM) {
1375 /* allow reclaim from this memory cgroup */
1376 error = mem_cgroup_cache_charge(NULL,
1377 current->mm, gfp & ~__GFP_HIGHMEM);
1378 if (error)
1379 goto failed;
1380 }
1381 goto repeat;
1382 }
1383 } else if (sgp == SGP_READ && !filepage) {
1384 shmem_swp_unmap(entry);
1385 filepage = find_get_page(mapping, idx);
1386 if (filepage &&
1387 (!PageUptodate(filepage) || TestSetPageLocked(filepage))) {
1388 spin_unlock(&info->lock);
1389 wait_on_page_locked(filepage);
1390 page_cache_release(filepage);
1391 filepage = NULL;
1392 goto repeat;
1393 }
1394 spin_unlock(&info->lock);
1395 } else {
1396 shmem_swp_unmap(entry);
1397 sbinfo = SHMEM_SB(inode->i_sb);
1398 if (sbinfo->max_blocks) {
1399 spin_lock(&sbinfo->stat_lock);
1400 if (sbinfo->free_blocks == 0 ||
1401 shmem_acct_block(info->flags)) {
1402 spin_unlock(&sbinfo->stat_lock);
1403 spin_unlock(&info->lock);
1404 error = -ENOSPC;
1405 goto failed;
1406 }
1407 sbinfo->free_blocks--;
1408 inode->i_blocks += BLOCKS_PER_PAGE;
1409 spin_unlock(&sbinfo->stat_lock);
1410 } else if (shmem_acct_block(info->flags)) {
1411 spin_unlock(&info->lock);
1412 error = -ENOSPC;
1413 goto failed;
1414 }
1415
1416 if (!filepage) {
1417 spin_unlock(&info->lock);
1418 filepage = shmem_alloc_page(gfp, info, idx);
1419 if (!filepage) {
1420 shmem_unacct_blocks(info->flags, 1);
1421 shmem_free_blocks(inode, 1);
1422 error = -ENOMEM;
1423 goto failed;
1424 }
1425
1426 /* Precharge page while we can wait, compensate after */
1427 error = mem_cgroup_cache_charge(filepage, current->mm,
1428 gfp & ~__GFP_HIGHMEM);
1429 if (error) {
1430 page_cache_release(filepage);
1431 shmem_unacct_blocks(info->flags, 1);
1432 shmem_free_blocks(inode, 1);
1433 filepage = NULL;
1434 goto failed;
1435 }
1436
1437 spin_lock(&info->lock);
1438 entry = shmem_swp_alloc(info, idx, sgp);
1439 if (IS_ERR(entry))
1440 error = PTR_ERR(entry);
1441 else {
1442 swap = *entry;
1443 shmem_swp_unmap(entry);
1444 }
1445 if (error || swap.val || 0 != add_to_page_cache_lru(
1446 filepage, mapping, idx, GFP_NOWAIT)) {
1447 spin_unlock(&info->lock);
1448 mem_cgroup_uncharge_page(filepage);
1449 page_cache_release(filepage);
1450 shmem_unacct_blocks(info->flags, 1);
1451 shmem_free_blocks(inode, 1);
1452 filepage = NULL;
1453 if (error)
1454 goto failed;
1455 goto repeat;
1456 }
1457 mem_cgroup_uncharge_page(filepage);
1458 info->flags |= SHMEM_PAGEIN;
1459 }
1460
1461 info->alloced++;
1462 spin_unlock(&info->lock);
1463 clear_highpage(filepage);
1464 flush_dcache_page(filepage);
1465 SetPageUptodate(filepage);
1466 if (sgp == SGP_DIRTY)
1467 set_page_dirty(filepage);
1468 }
1469 done:
1470 *pagep = filepage;
1471 return 0;
1472
1473 failed:
1474 if (*pagep != filepage) {
1475 unlock_page(filepage);
1476 page_cache_release(filepage);
1477 }
1478 return error;
1479 }
1480
1481 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1482 {
1483 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1484 int error;
1485 int ret;
1486
1487 if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1488 return VM_FAULT_SIGBUS;
1489
1490 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1491 if (error)
1492 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1493
1494 mark_page_accessed(vmf->page);
1495 return ret | VM_FAULT_LOCKED;
1496 }
1497
1498 #ifdef CONFIG_NUMA
1499 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1500 {
1501 struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1502 return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1503 }
1504
1505 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1506 unsigned long addr)
1507 {
1508 struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1509 unsigned long idx;
1510
1511 idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1512 return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1513 }
1514 #endif
1515
1516 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1517 {
1518 struct inode *inode = file->f_path.dentry->d_inode;
1519 struct shmem_inode_info *info = SHMEM_I(inode);
1520 int retval = -ENOMEM;
1521
1522 spin_lock(&info->lock);
1523 if (lock && !(info->flags & VM_LOCKED)) {
1524 if (!user_shm_lock(inode->i_size, user))
1525 goto out_nomem;
1526 info->flags |= VM_LOCKED;
1527 }
1528 if (!lock && (info->flags & VM_LOCKED) && user) {
1529 user_shm_unlock(inode->i_size, user);
1530 info->flags &= ~VM_LOCKED;
1531 }
1532 retval = 0;
1533 out_nomem:
1534 spin_unlock(&info->lock);
1535 return retval;
1536 }
1537
1538 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1539 {
1540 file_accessed(file);
1541 vma->vm_ops = &shmem_vm_ops;
1542 vma->vm_flags |= VM_CAN_NONLINEAR;
1543 return 0;
1544 }
1545
1546 static struct inode *
1547 shmem_get_inode(struct super_block *sb, int mode, dev_t dev)
1548 {
1549 struct inode *inode;
1550 struct shmem_inode_info *info;
1551 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1552
1553 if (shmem_reserve_inode(sb))
1554 return NULL;
1555
1556 inode = new_inode(sb);
1557 if (inode) {
1558 inode->i_mode = mode;
1559 inode->i_uid = current->fsuid;
1560 inode->i_gid = current->fsgid;
1561 inode->i_blocks = 0;
1562 inode->i_mapping->a_ops = &shmem_aops;
1563 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1564 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1565 inode->i_generation = get_seconds();
1566 info = SHMEM_I(inode);
1567 memset(info, 0, (char *)inode - (char *)info);
1568 spin_lock_init(&info->lock);
1569 INIT_LIST_HEAD(&info->swaplist);
1570
1571 switch (mode & S_IFMT) {
1572 default:
1573 inode->i_op = &shmem_special_inode_operations;
1574 init_special_inode(inode, mode, dev);
1575 break;
1576 case S_IFREG:
1577 inode->i_op = &shmem_inode_operations;
1578 inode->i_fop = &shmem_file_operations;
1579 mpol_shared_policy_init(&info->policy, sbinfo->policy,
1580 &sbinfo->policy_nodes);
1581 break;
1582 case S_IFDIR:
1583 inc_nlink(inode);
1584 /* Some things misbehave if size == 0 on a directory */
1585 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1586 inode->i_op = &shmem_dir_inode_operations;
1587 inode->i_fop = &simple_dir_operations;
1588 break;
1589 case S_IFLNK:
1590 /*
1591 * Must not load anything in the rbtree,
1592 * mpol_free_shared_policy will not be called.
1593 */
1594 mpol_shared_policy_init(&info->policy, MPOL_DEFAULT,
1595 NULL);
1596 break;
1597 }
1598 } else
1599 shmem_free_inode(sb);
1600 return inode;
1601 }
1602
1603 #ifdef CONFIG_TMPFS
1604 static const struct inode_operations shmem_symlink_inode_operations;
1605 static const struct inode_operations shmem_symlink_inline_operations;
1606
1607 /*
1608 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1609 * but providing them allows a tmpfs file to be used for splice, sendfile, and
1610 * below the loop driver, in the generic fashion that many filesystems support.
1611 */
1612 static int shmem_readpage(struct file *file, struct page *page)
1613 {
1614 struct inode *inode = page->mapping->host;
1615 int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1616 unlock_page(page);
1617 return error;
1618 }
1619
1620 static int
1621 shmem_write_begin(struct file *file, struct address_space *mapping,
1622 loff_t pos, unsigned len, unsigned flags,
1623 struct page **pagep, void **fsdata)
1624 {
1625 struct inode *inode = mapping->host;
1626 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1627 *pagep = NULL;
1628 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1629 }
1630
1631 static int
1632 shmem_write_end(struct file *file, struct address_space *mapping,
1633 loff_t pos, unsigned len, unsigned copied,
1634 struct page *page, void *fsdata)
1635 {
1636 struct inode *inode = mapping->host;
1637
1638 if (pos + copied > inode->i_size)
1639 i_size_write(inode, pos + copied);
1640
1641 unlock_page(page);
1642 set_page_dirty(page);
1643 page_cache_release(page);
1644
1645 return copied;
1646 }
1647
1648 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1649 {
1650 struct inode *inode = filp->f_path.dentry->d_inode;
1651 struct address_space *mapping = inode->i_mapping;
1652 unsigned long index, offset;
1653 enum sgp_type sgp = SGP_READ;
1654
1655 /*
1656 * Might this read be for a stacking filesystem? Then when reading
1657 * holes of a sparse file, we actually need to allocate those pages,
1658 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1659 */
1660 if (segment_eq(get_fs(), KERNEL_DS))
1661 sgp = SGP_DIRTY;
1662
1663 index = *ppos >> PAGE_CACHE_SHIFT;
1664 offset = *ppos & ~PAGE_CACHE_MASK;
1665
1666 for (;;) {
1667 struct page *page = NULL;
1668 unsigned long end_index, nr, ret;
1669 loff_t i_size = i_size_read(inode);
1670
1671 end_index = i_size >> PAGE_CACHE_SHIFT;
1672 if (index > end_index)
1673 break;
1674 if (index == end_index) {
1675 nr = i_size & ~PAGE_CACHE_MASK;
1676 if (nr <= offset)
1677 break;
1678 }
1679
1680 desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1681 if (desc->error) {
1682 if (desc->error == -EINVAL)
1683 desc->error = 0;
1684 break;
1685 }
1686 if (page)
1687 unlock_page(page);
1688
1689 /*
1690 * We must evaluate after, since reads (unlike writes)
1691 * are called without i_mutex protection against truncate
1692 */
1693 nr = PAGE_CACHE_SIZE;
1694 i_size = i_size_read(inode);
1695 end_index = i_size >> PAGE_CACHE_SHIFT;
1696 if (index == end_index) {
1697 nr = i_size & ~PAGE_CACHE_MASK;
1698 if (nr <= offset) {
1699 if (page)
1700 page_cache_release(page);
1701 break;
1702 }
1703 }
1704 nr -= offset;
1705
1706 if (page) {
1707 /*
1708 * If users can be writing to this page using arbitrary
1709 * virtual addresses, take care about potential aliasing
1710 * before reading the page on the kernel side.
1711 */
1712 if (mapping_writably_mapped(mapping))
1713 flush_dcache_page(page);
1714 /*
1715 * Mark the page accessed if we read the beginning.
1716 */
1717 if (!offset)
1718 mark_page_accessed(page);
1719 } else {
1720 page = ZERO_PAGE(0);
1721 page_cache_get(page);
1722 }
1723
1724 /*
1725 * Ok, we have the page, and it's up-to-date, so
1726 * now we can copy it to user space...
1727 *
1728 * The actor routine returns how many bytes were actually used..
1729 * NOTE! This may not be the same as how much of a user buffer
1730 * we filled up (we may be padding etc), so we can only update
1731 * "pos" here (the actor routine has to update the user buffer
1732 * pointers and the remaining count).
1733 */
1734 ret = actor(desc, page, offset, nr);
1735 offset += ret;
1736 index += offset >> PAGE_CACHE_SHIFT;
1737 offset &= ~PAGE_CACHE_MASK;
1738
1739 page_cache_release(page);
1740 if (ret != nr || !desc->count)
1741 break;
1742
1743 cond_resched();
1744 }
1745
1746 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1747 file_accessed(filp);
1748 }
1749
1750 static ssize_t shmem_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1751 {
1752 read_descriptor_t desc;
1753
1754 if ((ssize_t) count < 0)
1755 return -EINVAL;
1756 if (!access_ok(VERIFY_WRITE, buf, count))
1757 return -EFAULT;
1758 if (!count)
1759 return 0;
1760
1761 desc.written = 0;
1762 desc.count = count;
1763 desc.arg.buf = buf;
1764 desc.error = 0;
1765
1766 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1767 if (desc.written)
1768 return desc.written;
1769 return desc.error;
1770 }
1771
1772 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1773 {
1774 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1775
1776 buf->f_type = TMPFS_MAGIC;
1777 buf->f_bsize = PAGE_CACHE_SIZE;
1778 buf->f_namelen = NAME_MAX;
1779 spin_lock(&sbinfo->stat_lock);
1780 if (sbinfo->max_blocks) {
1781 buf->f_blocks = sbinfo->max_blocks;
1782 buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
1783 }
1784 if (sbinfo->max_inodes) {
1785 buf->f_files = sbinfo->max_inodes;
1786 buf->f_ffree = sbinfo->free_inodes;
1787 }
1788 /* else leave those fields 0 like simple_statfs */
1789 spin_unlock(&sbinfo->stat_lock);
1790 return 0;
1791 }
1792
1793 /*
1794 * File creation. Allocate an inode, and we're done..
1795 */
1796 static int
1797 shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1798 {
1799 struct inode *inode = shmem_get_inode(dir->i_sb, mode, dev);
1800 int error = -ENOSPC;
1801
1802 if (inode) {
1803 error = security_inode_init_security(inode, dir, NULL, NULL,
1804 NULL);
1805 if (error) {
1806 if (error != -EOPNOTSUPP) {
1807 iput(inode);
1808 return error;
1809 }
1810 }
1811 error = shmem_acl_init(inode, dir);
1812 if (error) {
1813 iput(inode);
1814 return error;
1815 }
1816 if (dir->i_mode & S_ISGID) {
1817 inode->i_gid = dir->i_gid;
1818 if (S_ISDIR(mode))
1819 inode->i_mode |= S_ISGID;
1820 }
1821 dir->i_size += BOGO_DIRENT_SIZE;
1822 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1823 d_instantiate(dentry, inode);
1824 dget(dentry); /* Extra count - pin the dentry in core */
1825 }
1826 return error;
1827 }
1828
1829 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1830 {
1831 int error;
1832
1833 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1834 return error;
1835 inc_nlink(dir);
1836 return 0;
1837 }
1838
1839 static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1840 struct nameidata *nd)
1841 {
1842 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1843 }
1844
1845 /*
1846 * Link a file..
1847 */
1848 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1849 {
1850 struct inode *inode = old_dentry->d_inode;
1851 int ret;
1852
1853 /*
1854 * No ordinary (disk based) filesystem counts links as inodes;
1855 * but each new link needs a new dentry, pinning lowmem, and
1856 * tmpfs dentries cannot be pruned until they are unlinked.
1857 */
1858 ret = shmem_reserve_inode(inode->i_sb);
1859 if (ret)
1860 goto out;
1861
1862 dir->i_size += BOGO_DIRENT_SIZE;
1863 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1864 inc_nlink(inode);
1865 atomic_inc(&inode->i_count); /* New dentry reference */
1866 dget(dentry); /* Extra pinning count for the created dentry */
1867 d_instantiate(dentry, inode);
1868 out:
1869 return ret;
1870 }
1871
1872 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1873 {
1874 struct inode *inode = dentry->d_inode;
1875
1876 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1877 shmem_free_inode(inode->i_sb);
1878
1879 dir->i_size -= BOGO_DIRENT_SIZE;
1880 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1881 drop_nlink(inode);
1882 dput(dentry); /* Undo the count from "create" - this does all the work */
1883 return 0;
1884 }
1885
1886 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1887 {
1888 if (!simple_empty(dentry))
1889 return -ENOTEMPTY;
1890
1891 drop_nlink(dentry->d_inode);
1892 drop_nlink(dir);
1893 return shmem_unlink(dir, dentry);
1894 }
1895
1896 /*
1897 * The VFS layer already does all the dentry stuff for rename,
1898 * we just have to decrement the usage count for the target if
1899 * it exists so that the VFS layer correctly free's it when it
1900 * gets overwritten.
1901 */
1902 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1903 {
1904 struct inode *inode = old_dentry->d_inode;
1905 int they_are_dirs = S_ISDIR(inode->i_mode);
1906
1907 if (!simple_empty(new_dentry))
1908 return -ENOTEMPTY;
1909
1910 if (new_dentry->d_inode) {
1911 (void) shmem_unlink(new_dir, new_dentry);
1912 if (they_are_dirs)
1913 drop_nlink(old_dir);
1914 } else if (they_are_dirs) {
1915 drop_nlink(old_dir);
1916 inc_nlink(new_dir);
1917 }
1918
1919 old_dir->i_size -= BOGO_DIRENT_SIZE;
1920 new_dir->i_size += BOGO_DIRENT_SIZE;
1921 old_dir->i_ctime = old_dir->i_mtime =
1922 new_dir->i_ctime = new_dir->i_mtime =
1923 inode->i_ctime = CURRENT_TIME;
1924 return 0;
1925 }
1926
1927 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1928 {
1929 int error;
1930 int len;
1931 struct inode *inode;
1932 struct page *page = NULL;
1933 char *kaddr;
1934 struct shmem_inode_info *info;
1935
1936 len = strlen(symname) + 1;
1937 if (len > PAGE_CACHE_SIZE)
1938 return -ENAMETOOLONG;
1939
1940 inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0);
1941 if (!inode)
1942 return -ENOSPC;
1943
1944 error = security_inode_init_security(inode, dir, NULL, NULL,
1945 NULL);
1946 if (error) {
1947 if (error != -EOPNOTSUPP) {
1948 iput(inode);
1949 return error;
1950 }
1951 error = 0;
1952 }
1953
1954 info = SHMEM_I(inode);
1955 inode->i_size = len-1;
1956 if (len <= (char *)inode - (char *)info) {
1957 /* do it inline */
1958 memcpy(info, symname, len);
1959 inode->i_op = &shmem_symlink_inline_operations;
1960 } else {
1961 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1962 if (error) {
1963 iput(inode);
1964 return error;
1965 }
1966 unlock_page(page);
1967 inode->i_op = &shmem_symlink_inode_operations;
1968 kaddr = kmap_atomic(page, KM_USER0);
1969 memcpy(kaddr, symname, len);
1970 kunmap_atomic(kaddr, KM_USER0);
1971 set_page_dirty(page);
1972 page_cache_release(page);
1973 }
1974 if (dir->i_mode & S_ISGID)
1975 inode->i_gid = dir->i_gid;
1976 dir->i_size += BOGO_DIRENT_SIZE;
1977 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1978 d_instantiate(dentry, inode);
1979 dget(dentry);
1980 return 0;
1981 }
1982
1983 static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1984 {
1985 nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
1986 return NULL;
1987 }
1988
1989 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1990 {
1991 struct page *page = NULL;
1992 int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1993 nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
1994 if (page)
1995 unlock_page(page);
1996 return page;
1997 }
1998
1999 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2000 {
2001 if (!IS_ERR(nd_get_link(nd))) {
2002 struct page *page = cookie;
2003 kunmap(page);
2004 mark_page_accessed(page);
2005 page_cache_release(page);
2006 }
2007 }
2008
2009 static const struct inode_operations shmem_symlink_inline_operations = {
2010 .readlink = generic_readlink,
2011 .follow_link = shmem_follow_link_inline,
2012 };
2013
2014 static const struct inode_operations shmem_symlink_inode_operations = {
2015 .truncate = shmem_truncate,
2016 .readlink = generic_readlink,
2017 .follow_link = shmem_follow_link,
2018 .put_link = shmem_put_link,
2019 };
2020
2021 #ifdef CONFIG_TMPFS_POSIX_ACL
2022 /**
2023 * Superblocks without xattr inode operations will get security.* xattr
2024 * support from the VFS "for free". As soon as we have any other xattrs
2025 * like ACLs, we also need to implement the security.* handlers at
2026 * filesystem level, though.
2027 */
2028
2029 static size_t shmem_xattr_security_list(struct inode *inode, char *list,
2030 size_t list_len, const char *name,
2031 size_t name_len)
2032 {
2033 return security_inode_listsecurity(inode, list, list_len);
2034 }
2035
2036 static int shmem_xattr_security_get(struct inode *inode, const char *name,
2037 void *buffer, size_t size)
2038 {
2039 if (strcmp(name, "") == 0)
2040 return -EINVAL;
2041 return xattr_getsecurity(inode, name, buffer, size);
2042 }
2043
2044 static int shmem_xattr_security_set(struct inode *inode, const char *name,
2045 const void *value, size_t size, int flags)
2046 {
2047 if (strcmp(name, "") == 0)
2048 return -EINVAL;
2049 return security_inode_setsecurity(inode, name, value, size, flags);
2050 }
2051
2052 static struct xattr_handler shmem_xattr_security_handler = {
2053 .prefix = XATTR_SECURITY_PREFIX,
2054 .list = shmem_xattr_security_list,
2055 .get = shmem_xattr_security_get,
2056 .set = shmem_xattr_security_set,
2057 };
2058
2059 static struct xattr_handler *shmem_xattr_handlers[] = {
2060 &shmem_xattr_acl_access_handler,
2061 &shmem_xattr_acl_default_handler,
2062 &shmem_xattr_security_handler,
2063 NULL
2064 };
2065 #endif
2066
2067 static struct dentry *shmem_get_parent(struct dentry *child)
2068 {
2069 return ERR_PTR(-ESTALE);
2070 }
2071
2072 static int shmem_match(struct inode *ino, void *vfh)
2073 {
2074 __u32 *fh = vfh;
2075 __u64 inum = fh[2];
2076 inum = (inum << 32) | fh[1];
2077 return ino->i_ino == inum && fh[0] == ino->i_generation;
2078 }
2079
2080 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2081 struct fid *fid, int fh_len, int fh_type)
2082 {
2083 struct inode *inode;
2084 struct dentry *dentry = NULL;
2085 u64 inum = fid->raw[2];
2086 inum = (inum << 32) | fid->raw[1];
2087
2088 if (fh_len < 3)
2089 return NULL;
2090
2091 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2092 shmem_match, fid->raw);
2093 if (inode) {
2094 dentry = d_find_alias(inode);
2095 iput(inode);
2096 }
2097
2098 return dentry;
2099 }
2100
2101 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2102 int connectable)
2103 {
2104 struct inode *inode = dentry->d_inode;
2105
2106 if (*len < 3)
2107 return 255;
2108
2109 if (hlist_unhashed(&inode->i_hash)) {
2110 /* Unfortunately insert_inode_hash is not idempotent,
2111 * so as we hash inodes here rather than at creation
2112 * time, we need a lock to ensure we only try
2113 * to do it once
2114 */
2115 static DEFINE_SPINLOCK(lock);
2116 spin_lock(&lock);
2117 if (hlist_unhashed(&inode->i_hash))
2118 __insert_inode_hash(inode,
2119 inode->i_ino + inode->i_generation);
2120 spin_unlock(&lock);
2121 }
2122
2123 fh[0] = inode->i_generation;
2124 fh[1] = inode->i_ino;
2125 fh[2] = ((__u64)inode->i_ino) >> 32;
2126
2127 *len = 3;
2128 return 1;
2129 }
2130
2131 static const struct export_operations shmem_export_ops = {
2132 .get_parent = shmem_get_parent,
2133 .encode_fh = shmem_encode_fh,
2134 .fh_to_dentry = shmem_fh_to_dentry,
2135 };
2136
2137 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2138 bool remount)
2139 {
2140 char *this_char, *value, *rest;
2141
2142 while (options != NULL) {
2143 this_char = options;
2144 for (;;) {
2145 /*
2146 * NUL-terminate this option: unfortunately,
2147 * mount options form a comma-separated list,
2148 * but mpol's nodelist may also contain commas.
2149 */
2150 options = strchr(options, ',');
2151 if (options == NULL)
2152 break;
2153 options++;
2154 if (!isdigit(*options)) {
2155 options[-1] = '\0';
2156 break;
2157 }
2158 }
2159 if (!*this_char)
2160 continue;
2161 if ((value = strchr(this_char,'=')) != NULL) {
2162 *value++ = 0;
2163 } else {
2164 printk(KERN_ERR
2165 "tmpfs: No value for mount option '%s'\n",
2166 this_char);
2167 return 1;
2168 }
2169
2170 if (!strcmp(this_char,"size")) {
2171 unsigned long long size;
2172 size = memparse(value,&rest);
2173 if (*rest == '%') {
2174 size <<= PAGE_SHIFT;
2175 size *= totalram_pages;
2176 do_div(size, 100);
2177 rest++;
2178 }
2179 if (*rest)
2180 goto bad_val;
2181 sbinfo->max_blocks =
2182 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2183 } else if (!strcmp(this_char,"nr_blocks")) {
2184 sbinfo->max_blocks = memparse(value, &rest);
2185 if (*rest)
2186 goto bad_val;
2187 } else if (!strcmp(this_char,"nr_inodes")) {
2188 sbinfo->max_inodes = memparse(value, &rest);
2189 if (*rest)
2190 goto bad_val;
2191 } else if (!strcmp(this_char,"mode")) {
2192 if (remount)
2193 continue;
2194 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2195 if (*rest)
2196 goto bad_val;
2197 } else if (!strcmp(this_char,"uid")) {
2198 if (remount)
2199 continue;
2200 sbinfo->uid = simple_strtoul(value, &rest, 0);
2201 if (*rest)
2202 goto bad_val;
2203 } else if (!strcmp(this_char,"gid")) {
2204 if (remount)
2205 continue;
2206 sbinfo->gid = simple_strtoul(value, &rest, 0);
2207 if (*rest)
2208 goto bad_val;
2209 } else if (!strcmp(this_char,"mpol")) {
2210 if (shmem_parse_mpol(value, &sbinfo->policy,
2211 &sbinfo->policy_nodes))
2212 goto bad_val;
2213 } else {
2214 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2215 this_char);
2216 return 1;
2217 }
2218 }
2219 return 0;
2220
2221 bad_val:
2222 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2223 value, this_char);
2224 return 1;
2225
2226 }
2227
2228 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2229 {
2230 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2231 struct shmem_sb_info config = *sbinfo;
2232 unsigned long blocks;
2233 unsigned long inodes;
2234 int error = -EINVAL;
2235
2236 if (shmem_parse_options(data, &config, true))
2237 return error;
2238
2239 spin_lock(&sbinfo->stat_lock);
2240 blocks = sbinfo->max_blocks - sbinfo->free_blocks;
2241 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2242 if (config.max_blocks < blocks)
2243 goto out;
2244 if (config.max_inodes < inodes)
2245 goto out;
2246 /*
2247 * Those tests also disallow limited->unlimited while any are in
2248 * use, so i_blocks will always be zero when max_blocks is zero;
2249 * but we must separately disallow unlimited->limited, because
2250 * in that case we have no record of how much is already in use.
2251 */
2252 if (config.max_blocks && !sbinfo->max_blocks)
2253 goto out;
2254 if (config.max_inodes && !sbinfo->max_inodes)
2255 goto out;
2256
2257 error = 0;
2258 sbinfo->max_blocks = config.max_blocks;
2259 sbinfo->free_blocks = config.max_blocks - blocks;
2260 sbinfo->max_inodes = config.max_inodes;
2261 sbinfo->free_inodes = config.max_inodes - inodes;
2262 sbinfo->policy = config.policy;
2263 sbinfo->policy_nodes = config.policy_nodes;
2264 out:
2265 spin_unlock(&sbinfo->stat_lock);
2266 return error;
2267 }
2268
2269 static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs)
2270 {
2271 struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb);
2272
2273 if (sbinfo->max_blocks != shmem_default_max_blocks())
2274 seq_printf(seq, ",size=%luk",
2275 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2276 if (sbinfo->max_inodes != shmem_default_max_inodes())
2277 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2278 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2279 seq_printf(seq, ",mode=%03o", sbinfo->mode);
2280 if (sbinfo->uid != 0)
2281 seq_printf(seq, ",uid=%u", sbinfo->uid);
2282 if (sbinfo->gid != 0)
2283 seq_printf(seq, ",gid=%u", sbinfo->gid);
2284 shmem_show_mpol(seq, sbinfo->policy, sbinfo->policy_nodes);
2285 return 0;
2286 }
2287 #endif /* CONFIG_TMPFS */
2288
2289 static void shmem_put_super(struct super_block *sb)
2290 {
2291 kfree(sb->s_fs_info);
2292 sb->s_fs_info = NULL;
2293 }
2294
2295 static int shmem_fill_super(struct super_block *sb,
2296 void *data, int silent)
2297 {
2298 struct inode *inode;
2299 struct dentry *root;
2300 struct shmem_sb_info *sbinfo;
2301 int err = -ENOMEM;
2302
2303 /* Round up to L1_CACHE_BYTES to resist false sharing */
2304 sbinfo = kmalloc(max((int)sizeof(struct shmem_sb_info),
2305 L1_CACHE_BYTES), GFP_KERNEL);
2306 if (!sbinfo)
2307 return -ENOMEM;
2308
2309 sbinfo->max_blocks = 0;
2310 sbinfo->max_inodes = 0;
2311 sbinfo->mode = S_IRWXUGO | S_ISVTX;
2312 sbinfo->uid = current->fsuid;
2313 sbinfo->gid = current->fsgid;
2314 sbinfo->policy = MPOL_DEFAULT;
2315 sbinfo->policy_nodes = node_states[N_HIGH_MEMORY];
2316 sb->s_fs_info = sbinfo;
2317
2318 #ifdef CONFIG_TMPFS
2319 /*
2320 * Per default we only allow half of the physical ram per
2321 * tmpfs instance, limiting inodes to one per page of lowmem;
2322 * but the internal instance is left unlimited.
2323 */
2324 if (!(sb->s_flags & MS_NOUSER)) {
2325 sbinfo->max_blocks = shmem_default_max_blocks();
2326 sbinfo->max_inodes = shmem_default_max_inodes();
2327 if (shmem_parse_options(data, sbinfo, false)) {
2328 err = -EINVAL;
2329 goto failed;
2330 }
2331 }
2332 sb->s_export_op = &shmem_export_ops;
2333 #else
2334 sb->s_flags |= MS_NOUSER;
2335 #endif
2336
2337 spin_lock_init(&sbinfo->stat_lock);
2338 sbinfo->free_blocks = sbinfo->max_blocks;
2339 sbinfo->free_inodes = sbinfo->max_inodes;
2340
2341 sb->s_maxbytes = SHMEM_MAX_BYTES;
2342 sb->s_blocksize = PAGE_CACHE_SIZE;
2343 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2344 sb->s_magic = TMPFS_MAGIC;
2345 sb->s_op = &shmem_ops;
2346 sb->s_time_gran = 1;
2347 #ifdef CONFIG_TMPFS_POSIX_ACL
2348 sb->s_xattr = shmem_xattr_handlers;
2349 sb->s_flags |= MS_POSIXACL;
2350 #endif
2351
2352 inode = shmem_get_inode(sb, S_IFDIR | sbinfo->mode, 0);
2353 if (!inode)
2354 goto failed;
2355 inode->i_uid = sbinfo->uid;
2356 inode->i_gid = sbinfo->gid;
2357 root = d_alloc_root(inode);
2358 if (!root)
2359 goto failed_iput;
2360 sb->s_root = root;
2361 return 0;
2362
2363 failed_iput:
2364 iput(inode);
2365 failed:
2366 shmem_put_super(sb);
2367 return err;
2368 }
2369
2370 static struct kmem_cache *shmem_inode_cachep;
2371
2372 static struct inode *shmem_alloc_inode(struct super_block *sb)
2373 {
2374 struct shmem_inode_info *p;
2375 p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2376 if (!p)
2377 return NULL;
2378 return &p->vfs_inode;
2379 }
2380
2381 static void shmem_destroy_inode(struct inode *inode)
2382 {
2383 if ((inode->i_mode & S_IFMT) == S_IFREG) {
2384 /* only struct inode is valid if it's an inline symlink */
2385 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2386 }
2387 shmem_acl_destroy_inode(inode);
2388 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2389 }
2390
2391 static void init_once(struct kmem_cache *cachep, void *foo)
2392 {
2393 struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2394
2395 inode_init_once(&p->vfs_inode);
2396 #ifdef CONFIG_TMPFS_POSIX_ACL
2397 p->i_acl = NULL;
2398 p->i_default_acl = NULL;
2399 #endif
2400 }
2401
2402 static int init_inodecache(void)
2403 {
2404 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2405 sizeof(struct shmem_inode_info),
2406 0, SLAB_PANIC, init_once);
2407 return 0;
2408 }
2409
2410 static void destroy_inodecache(void)
2411 {
2412 kmem_cache_destroy(shmem_inode_cachep);
2413 }
2414
2415 static const struct address_space_operations shmem_aops = {
2416 .writepage = shmem_writepage,
2417 .set_page_dirty = __set_page_dirty_no_writeback,
2418 #ifdef CONFIG_TMPFS
2419 .readpage = shmem_readpage,
2420 .write_begin = shmem_write_begin,
2421 .write_end = shmem_write_end,
2422 #endif
2423 .migratepage = migrate_page,
2424 };
2425
2426 static const struct file_operations shmem_file_operations = {
2427 .mmap = shmem_mmap,
2428 #ifdef CONFIG_TMPFS
2429 .llseek = generic_file_llseek,
2430 .read = shmem_file_read,
2431 .write = do_sync_write,
2432 .aio_write = generic_file_aio_write,
2433 .fsync = simple_sync_file,
2434 .splice_read = generic_file_splice_read,
2435 .splice_write = generic_file_splice_write,
2436 #endif
2437 };
2438
2439 static const struct inode_operations shmem_inode_operations = {
2440 .truncate = shmem_truncate,
2441 .setattr = shmem_notify_change,
2442 .truncate_range = shmem_truncate_range,
2443 #ifdef CONFIG_TMPFS_POSIX_ACL
2444 .setxattr = generic_setxattr,
2445 .getxattr = generic_getxattr,
2446 .listxattr = generic_listxattr,
2447 .removexattr = generic_removexattr,
2448 .permission = shmem_permission,
2449 #endif
2450
2451 };
2452
2453 static const struct inode_operations shmem_dir_inode_operations = {
2454 #ifdef CONFIG_TMPFS
2455 .create = shmem_create,
2456 .lookup = simple_lookup,
2457 .link = shmem_link,
2458 .unlink = shmem_unlink,
2459 .symlink = shmem_symlink,
2460 .mkdir = shmem_mkdir,
2461 .rmdir = shmem_rmdir,
2462 .mknod = shmem_mknod,
2463 .rename = shmem_rename,
2464 #endif
2465 #ifdef CONFIG_TMPFS_POSIX_ACL
2466 .setattr = shmem_notify_change,
2467 .setxattr = generic_setxattr,
2468 .getxattr = generic_getxattr,
2469 .listxattr = generic_listxattr,
2470 .removexattr = generic_removexattr,
2471 .permission = shmem_permission,
2472 #endif
2473 };
2474
2475 static const struct inode_operations shmem_special_inode_operations = {
2476 #ifdef CONFIG_TMPFS_POSIX_ACL
2477 .setattr = shmem_notify_change,
2478 .setxattr = generic_setxattr,
2479 .getxattr = generic_getxattr,
2480 .listxattr = generic_listxattr,
2481 .removexattr = generic_removexattr,
2482 .permission = shmem_permission,
2483 #endif
2484 };
2485
2486 static const struct super_operations shmem_ops = {
2487 .alloc_inode = shmem_alloc_inode,
2488 .destroy_inode = shmem_destroy_inode,
2489 #ifdef CONFIG_TMPFS
2490 .statfs = shmem_statfs,
2491 .remount_fs = shmem_remount_fs,
2492 .show_options = shmem_show_options,
2493 #endif
2494 .delete_inode = shmem_delete_inode,
2495 .drop_inode = generic_delete_inode,
2496 .put_super = shmem_put_super,
2497 };
2498
2499 static struct vm_operations_struct shmem_vm_ops = {
2500 .fault = shmem_fault,
2501 #ifdef CONFIG_NUMA
2502 .set_policy = shmem_set_policy,
2503 .get_policy = shmem_get_policy,
2504 #endif
2505 };
2506
2507
2508 static int shmem_get_sb(struct file_system_type *fs_type,
2509 int flags, const char *dev_name, void *data, struct vfsmount *mnt)
2510 {
2511 return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt);
2512 }
2513
2514 static struct file_system_type tmpfs_fs_type = {
2515 .owner = THIS_MODULE,
2516 .name = "tmpfs",
2517 .get_sb = shmem_get_sb,
2518 .kill_sb = kill_litter_super,
2519 };
2520 static struct vfsmount *shm_mnt;
2521
2522 static int __init init_tmpfs(void)
2523 {
2524 int error;
2525
2526 error = bdi_init(&shmem_backing_dev_info);
2527 if (error)
2528 goto out4;
2529
2530 error = init_inodecache();
2531 if (error)
2532 goto out3;
2533
2534 error = register_filesystem(&tmpfs_fs_type);
2535 if (error) {
2536 printk(KERN_ERR "Could not register tmpfs\n");
2537 goto out2;
2538 }
2539
2540 shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2541 tmpfs_fs_type.name, NULL);
2542 if (IS_ERR(shm_mnt)) {
2543 error = PTR_ERR(shm_mnt);
2544 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2545 goto out1;
2546 }
2547 return 0;
2548
2549 out1:
2550 unregister_filesystem(&tmpfs_fs_type);
2551 out2:
2552 destroy_inodecache();
2553 out3:
2554 bdi_destroy(&shmem_backing_dev_info);
2555 out4:
2556 shm_mnt = ERR_PTR(error);
2557 return error;
2558 }
2559 module_init(init_tmpfs)
2560
2561 /*
2562 * shmem_file_setup - get an unlinked file living in tmpfs
2563 *
2564 * @name: name for dentry (to be seen in /proc/<pid>/maps
2565 * @size: size to be set for the file
2566 *
2567 */
2568 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags)
2569 {
2570 int error;
2571 struct file *file;
2572 struct inode *inode;
2573 struct dentry *dentry, *root;
2574 struct qstr this;
2575
2576 if (IS_ERR(shm_mnt))
2577 return (void *)shm_mnt;
2578
2579 if (size < 0 || size > SHMEM_MAX_BYTES)
2580 return ERR_PTR(-EINVAL);
2581
2582 if (shmem_acct_size(flags, size))
2583 return ERR_PTR(-ENOMEM);
2584
2585 error = -ENOMEM;
2586 this.name = name;
2587 this.len = strlen(name);
2588 this.hash = 0; /* will go */
2589 root = shm_mnt->mnt_root;
2590 dentry = d_alloc(root, &this);
2591 if (!dentry)
2592 goto put_memory;
2593
2594 error = -ENFILE;
2595 file = get_empty_filp();
2596 if (!file)
2597 goto put_dentry;
2598
2599 error = -ENOSPC;
2600 inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0);
2601 if (!inode)
2602 goto close_file;
2603
2604 SHMEM_I(inode)->flags = flags & VM_ACCOUNT;
2605 d_instantiate(dentry, inode);
2606 inode->i_size = size;
2607 inode->i_nlink = 0; /* It is unlinked */
2608 init_file(file, shm_mnt, dentry, FMODE_WRITE | FMODE_READ,
2609 &shmem_file_operations);
2610 return file;
2611
2612 close_file:
2613 put_filp(file);
2614 put_dentry:
2615 dput(dentry);
2616 put_memory:
2617 shmem_unacct_size(flags, size);
2618 return ERR_PTR(error);
2619 }
2620
2621 /*
2622 * shmem_zero_setup - setup a shared anonymous mapping
2623 *
2624 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2625 */
2626 int shmem_zero_setup(struct vm_area_struct *vma)
2627 {
2628 struct file *file;
2629 loff_t size = vma->vm_end - vma->vm_start;
2630
2631 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2632 if (IS_ERR(file))
2633 return PTR_ERR(file);
2634
2635 if (vma->vm_file)
2636 fput(vma->vm_file);
2637 vma->vm_file = file;
2638 vma->vm_ops = &shmem_vm_ops;
2639 return 0;
2640 }
This page took 0.115408 seconds and 4 git commands to generate.