ab02b5bb5553694464449395ff6bf436c0c1040b
[deliverable/linux.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/uio.h>
35
36 static struct vfsmount *shm_mnt;
37
38 #ifdef CONFIG_SHMEM
39 /*
40 * This virtual memory filesystem is heavily based on the ramfs. It
41 * extends ramfs by the ability to use swap and honor resource limits
42 * which makes it a completely usable filesystem.
43 */
44
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/posix_acl_xattr.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
69 #include <linux/syscalls.h>
70 #include <linux/fcntl.h>
71 #include <uapi/linux/memfd.h>
72
73 #include <asm/uaccess.h>
74 #include <asm/pgtable.h>
75
76 #include "internal.h"
77
78 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
79 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
80
81 /* Pretend that each entry is of this size in directory's i_size */
82 #define BOGO_DIRENT_SIZE 20
83
84 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
85 #define SHORT_SYMLINK_LEN 128
86
87 /*
88 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
89 * inode->i_private (with i_mutex making sure that it has only one user at
90 * a time): we would prefer not to enlarge the shmem inode just for that.
91 */
92 struct shmem_falloc {
93 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
94 pgoff_t start; /* start of range currently being fallocated */
95 pgoff_t next; /* the next page offset to be fallocated */
96 pgoff_t nr_falloced; /* how many new pages have been fallocated */
97 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
98 };
99
100 /* Flag allocation requirements to shmem_getpage */
101 enum sgp_type {
102 SGP_READ, /* don't exceed i_size, don't allocate page */
103 SGP_CACHE, /* don't exceed i_size, may allocate page */
104 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */
105 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */
106 };
107
108 #ifdef CONFIG_TMPFS
109 static unsigned long shmem_default_max_blocks(void)
110 {
111 return totalram_pages / 2;
112 }
113
114 static unsigned long shmem_default_max_inodes(void)
115 {
116 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
117 }
118 #endif
119
120 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
121 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
122 struct shmem_inode_info *info, pgoff_t index);
123 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
124 struct page **pagep, enum sgp_type sgp,
125 gfp_t gfp, struct mm_struct *fault_mm, int *fault_type);
126
127 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
128 struct page **pagep, enum sgp_type sgp)
129 {
130 return shmem_getpage_gfp(inode, index, pagep, sgp,
131 mapping_gfp_mask(inode->i_mapping), NULL, NULL);
132 }
133
134 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
135 {
136 return sb->s_fs_info;
137 }
138
139 /*
140 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
141 * for shared memory and for shared anonymous (/dev/zero) mappings
142 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
143 * consistent with the pre-accounting of private mappings ...
144 */
145 static inline int shmem_acct_size(unsigned long flags, loff_t size)
146 {
147 return (flags & VM_NORESERVE) ?
148 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
149 }
150
151 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
152 {
153 if (!(flags & VM_NORESERVE))
154 vm_unacct_memory(VM_ACCT(size));
155 }
156
157 static inline int shmem_reacct_size(unsigned long flags,
158 loff_t oldsize, loff_t newsize)
159 {
160 if (!(flags & VM_NORESERVE)) {
161 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
162 return security_vm_enough_memory_mm(current->mm,
163 VM_ACCT(newsize) - VM_ACCT(oldsize));
164 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
165 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
166 }
167 return 0;
168 }
169
170 /*
171 * ... whereas tmpfs objects are accounted incrementally as
172 * pages are allocated, in order to allow large sparse files.
173 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
174 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
175 */
176 static inline int shmem_acct_block(unsigned long flags)
177 {
178 return (flags & VM_NORESERVE) ?
179 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_SIZE)) : 0;
180 }
181
182 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
183 {
184 if (flags & VM_NORESERVE)
185 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
186 }
187
188 static const struct super_operations shmem_ops;
189 static const struct address_space_operations shmem_aops;
190 static const struct file_operations shmem_file_operations;
191 static const struct inode_operations shmem_inode_operations;
192 static const struct inode_operations shmem_dir_inode_operations;
193 static const struct inode_operations shmem_special_inode_operations;
194 static const struct vm_operations_struct shmem_vm_ops;
195
196 static LIST_HEAD(shmem_swaplist);
197 static DEFINE_MUTEX(shmem_swaplist_mutex);
198
199 static int shmem_reserve_inode(struct super_block *sb)
200 {
201 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
202 if (sbinfo->max_inodes) {
203 spin_lock(&sbinfo->stat_lock);
204 if (!sbinfo->free_inodes) {
205 spin_unlock(&sbinfo->stat_lock);
206 return -ENOSPC;
207 }
208 sbinfo->free_inodes--;
209 spin_unlock(&sbinfo->stat_lock);
210 }
211 return 0;
212 }
213
214 static void shmem_free_inode(struct super_block *sb)
215 {
216 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
217 if (sbinfo->max_inodes) {
218 spin_lock(&sbinfo->stat_lock);
219 sbinfo->free_inodes++;
220 spin_unlock(&sbinfo->stat_lock);
221 }
222 }
223
224 /**
225 * shmem_recalc_inode - recalculate the block usage of an inode
226 * @inode: inode to recalc
227 *
228 * We have to calculate the free blocks since the mm can drop
229 * undirtied hole pages behind our back.
230 *
231 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
232 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
233 *
234 * It has to be called with the spinlock held.
235 */
236 static void shmem_recalc_inode(struct inode *inode)
237 {
238 struct shmem_inode_info *info = SHMEM_I(inode);
239 long freed;
240
241 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
242 if (freed > 0) {
243 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
244 if (sbinfo->max_blocks)
245 percpu_counter_add(&sbinfo->used_blocks, -freed);
246 info->alloced -= freed;
247 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
248 shmem_unacct_blocks(info->flags, freed);
249 }
250 }
251
252 /*
253 * Replace item expected in radix tree by a new item, while holding tree lock.
254 */
255 static int shmem_radix_tree_replace(struct address_space *mapping,
256 pgoff_t index, void *expected, void *replacement)
257 {
258 void **pslot;
259 void *item;
260
261 VM_BUG_ON(!expected);
262 VM_BUG_ON(!replacement);
263 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
264 if (!pslot)
265 return -ENOENT;
266 item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
267 if (item != expected)
268 return -ENOENT;
269 radix_tree_replace_slot(pslot, replacement);
270 return 0;
271 }
272
273 /*
274 * Sometimes, before we decide whether to proceed or to fail, we must check
275 * that an entry was not already brought back from swap by a racing thread.
276 *
277 * Checking page is not enough: by the time a SwapCache page is locked, it
278 * might be reused, and again be SwapCache, using the same swap as before.
279 */
280 static bool shmem_confirm_swap(struct address_space *mapping,
281 pgoff_t index, swp_entry_t swap)
282 {
283 void *item;
284
285 rcu_read_lock();
286 item = radix_tree_lookup(&mapping->page_tree, index);
287 rcu_read_unlock();
288 return item == swp_to_radix_entry(swap);
289 }
290
291 /*
292 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
293 *
294 * SHMEM_HUGE_NEVER:
295 * disables huge pages for the mount;
296 * SHMEM_HUGE_ALWAYS:
297 * enables huge pages for the mount;
298 * SHMEM_HUGE_WITHIN_SIZE:
299 * only allocate huge pages if the page will be fully within i_size,
300 * also respect fadvise()/madvise() hints;
301 * SHMEM_HUGE_ADVISE:
302 * only allocate huge pages if requested with fadvise()/madvise();
303 */
304
305 #define SHMEM_HUGE_NEVER 0
306 #define SHMEM_HUGE_ALWAYS 1
307 #define SHMEM_HUGE_WITHIN_SIZE 2
308 #define SHMEM_HUGE_ADVISE 3
309
310 /*
311 * Special values.
312 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
313 *
314 * SHMEM_HUGE_DENY:
315 * disables huge on shm_mnt and all mounts, for emergency use;
316 * SHMEM_HUGE_FORCE:
317 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
318 *
319 */
320 #define SHMEM_HUGE_DENY (-1)
321 #define SHMEM_HUGE_FORCE (-2)
322
323 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
324 /* ifdef here to avoid bloating shmem.o when not necessary */
325
326 int shmem_huge __read_mostly;
327
328 static int shmem_parse_huge(const char *str)
329 {
330 if (!strcmp(str, "never"))
331 return SHMEM_HUGE_NEVER;
332 if (!strcmp(str, "always"))
333 return SHMEM_HUGE_ALWAYS;
334 if (!strcmp(str, "within_size"))
335 return SHMEM_HUGE_WITHIN_SIZE;
336 if (!strcmp(str, "advise"))
337 return SHMEM_HUGE_ADVISE;
338 if (!strcmp(str, "deny"))
339 return SHMEM_HUGE_DENY;
340 if (!strcmp(str, "force"))
341 return SHMEM_HUGE_FORCE;
342 return -EINVAL;
343 }
344
345 static const char *shmem_format_huge(int huge)
346 {
347 switch (huge) {
348 case SHMEM_HUGE_NEVER:
349 return "never";
350 case SHMEM_HUGE_ALWAYS:
351 return "always";
352 case SHMEM_HUGE_WITHIN_SIZE:
353 return "within_size";
354 case SHMEM_HUGE_ADVISE:
355 return "advise";
356 case SHMEM_HUGE_DENY:
357 return "deny";
358 case SHMEM_HUGE_FORCE:
359 return "force";
360 default:
361 VM_BUG_ON(1);
362 return "bad_val";
363 }
364 }
365
366 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
367
368 #define shmem_huge SHMEM_HUGE_DENY
369
370 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
371
372 /*
373 * Like add_to_page_cache_locked, but error if expected item has gone.
374 */
375 static int shmem_add_to_page_cache(struct page *page,
376 struct address_space *mapping,
377 pgoff_t index, void *expected)
378 {
379 int error;
380
381 VM_BUG_ON_PAGE(!PageLocked(page), page);
382 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
383
384 get_page(page);
385 page->mapping = mapping;
386 page->index = index;
387
388 spin_lock_irq(&mapping->tree_lock);
389 if (!expected)
390 error = radix_tree_insert(&mapping->page_tree, index, page);
391 else
392 error = shmem_radix_tree_replace(mapping, index, expected,
393 page);
394 if (!error) {
395 mapping->nrpages++;
396 __inc_zone_page_state(page, NR_FILE_PAGES);
397 __inc_zone_page_state(page, NR_SHMEM);
398 spin_unlock_irq(&mapping->tree_lock);
399 } else {
400 page->mapping = NULL;
401 spin_unlock_irq(&mapping->tree_lock);
402 put_page(page);
403 }
404 return error;
405 }
406
407 /*
408 * Like delete_from_page_cache, but substitutes swap for page.
409 */
410 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
411 {
412 struct address_space *mapping = page->mapping;
413 int error;
414
415 spin_lock_irq(&mapping->tree_lock);
416 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
417 page->mapping = NULL;
418 mapping->nrpages--;
419 __dec_zone_page_state(page, NR_FILE_PAGES);
420 __dec_zone_page_state(page, NR_SHMEM);
421 spin_unlock_irq(&mapping->tree_lock);
422 put_page(page);
423 BUG_ON(error);
424 }
425
426 /*
427 * Remove swap entry from radix tree, free the swap and its page cache.
428 */
429 static int shmem_free_swap(struct address_space *mapping,
430 pgoff_t index, void *radswap)
431 {
432 void *old;
433
434 spin_lock_irq(&mapping->tree_lock);
435 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
436 spin_unlock_irq(&mapping->tree_lock);
437 if (old != radswap)
438 return -ENOENT;
439 free_swap_and_cache(radix_to_swp_entry(radswap));
440 return 0;
441 }
442
443 /*
444 * Determine (in bytes) how many of the shmem object's pages mapped by the
445 * given offsets are swapped out.
446 *
447 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
448 * as long as the inode doesn't go away and racy results are not a problem.
449 */
450 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
451 pgoff_t start, pgoff_t end)
452 {
453 struct radix_tree_iter iter;
454 void **slot;
455 struct page *page;
456 unsigned long swapped = 0;
457
458 rcu_read_lock();
459
460 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
461 if (iter.index >= end)
462 break;
463
464 page = radix_tree_deref_slot(slot);
465
466 if (radix_tree_deref_retry(page)) {
467 slot = radix_tree_iter_retry(&iter);
468 continue;
469 }
470
471 if (radix_tree_exceptional_entry(page))
472 swapped++;
473
474 if (need_resched()) {
475 cond_resched_rcu();
476 slot = radix_tree_iter_next(&iter);
477 }
478 }
479
480 rcu_read_unlock();
481
482 return swapped << PAGE_SHIFT;
483 }
484
485 /*
486 * Determine (in bytes) how many of the shmem object's pages mapped by the
487 * given vma is swapped out.
488 *
489 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
490 * as long as the inode doesn't go away and racy results are not a problem.
491 */
492 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
493 {
494 struct inode *inode = file_inode(vma->vm_file);
495 struct shmem_inode_info *info = SHMEM_I(inode);
496 struct address_space *mapping = inode->i_mapping;
497 unsigned long swapped;
498
499 /* Be careful as we don't hold info->lock */
500 swapped = READ_ONCE(info->swapped);
501
502 /*
503 * The easier cases are when the shmem object has nothing in swap, or
504 * the vma maps it whole. Then we can simply use the stats that we
505 * already track.
506 */
507 if (!swapped)
508 return 0;
509
510 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
511 return swapped << PAGE_SHIFT;
512
513 /* Here comes the more involved part */
514 return shmem_partial_swap_usage(mapping,
515 linear_page_index(vma, vma->vm_start),
516 linear_page_index(vma, vma->vm_end));
517 }
518
519 /*
520 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
521 */
522 void shmem_unlock_mapping(struct address_space *mapping)
523 {
524 struct pagevec pvec;
525 pgoff_t indices[PAGEVEC_SIZE];
526 pgoff_t index = 0;
527
528 pagevec_init(&pvec, 0);
529 /*
530 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
531 */
532 while (!mapping_unevictable(mapping)) {
533 /*
534 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
535 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
536 */
537 pvec.nr = find_get_entries(mapping, index,
538 PAGEVEC_SIZE, pvec.pages, indices);
539 if (!pvec.nr)
540 break;
541 index = indices[pvec.nr - 1] + 1;
542 pagevec_remove_exceptionals(&pvec);
543 check_move_unevictable_pages(pvec.pages, pvec.nr);
544 pagevec_release(&pvec);
545 cond_resched();
546 }
547 }
548
549 /*
550 * Remove range of pages and swap entries from radix tree, and free them.
551 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
552 */
553 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
554 bool unfalloc)
555 {
556 struct address_space *mapping = inode->i_mapping;
557 struct shmem_inode_info *info = SHMEM_I(inode);
558 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
559 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
560 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
561 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
562 struct pagevec pvec;
563 pgoff_t indices[PAGEVEC_SIZE];
564 long nr_swaps_freed = 0;
565 pgoff_t index;
566 int i;
567
568 if (lend == -1)
569 end = -1; /* unsigned, so actually very big */
570
571 pagevec_init(&pvec, 0);
572 index = start;
573 while (index < end) {
574 pvec.nr = find_get_entries(mapping, index,
575 min(end - index, (pgoff_t)PAGEVEC_SIZE),
576 pvec.pages, indices);
577 if (!pvec.nr)
578 break;
579 for (i = 0; i < pagevec_count(&pvec); i++) {
580 struct page *page = pvec.pages[i];
581
582 index = indices[i];
583 if (index >= end)
584 break;
585
586 if (radix_tree_exceptional_entry(page)) {
587 if (unfalloc)
588 continue;
589 nr_swaps_freed += !shmem_free_swap(mapping,
590 index, page);
591 continue;
592 }
593
594 if (!trylock_page(page))
595 continue;
596 if (!unfalloc || !PageUptodate(page)) {
597 if (page->mapping == mapping) {
598 VM_BUG_ON_PAGE(PageWriteback(page), page);
599 truncate_inode_page(mapping, page);
600 }
601 }
602 unlock_page(page);
603 }
604 pagevec_remove_exceptionals(&pvec);
605 pagevec_release(&pvec);
606 cond_resched();
607 index++;
608 }
609
610 if (partial_start) {
611 struct page *page = NULL;
612 shmem_getpage(inode, start - 1, &page, SGP_READ);
613 if (page) {
614 unsigned int top = PAGE_SIZE;
615 if (start > end) {
616 top = partial_end;
617 partial_end = 0;
618 }
619 zero_user_segment(page, partial_start, top);
620 set_page_dirty(page);
621 unlock_page(page);
622 put_page(page);
623 }
624 }
625 if (partial_end) {
626 struct page *page = NULL;
627 shmem_getpage(inode, end, &page, SGP_READ);
628 if (page) {
629 zero_user_segment(page, 0, partial_end);
630 set_page_dirty(page);
631 unlock_page(page);
632 put_page(page);
633 }
634 }
635 if (start >= end)
636 return;
637
638 index = start;
639 while (index < end) {
640 cond_resched();
641
642 pvec.nr = find_get_entries(mapping, index,
643 min(end - index, (pgoff_t)PAGEVEC_SIZE),
644 pvec.pages, indices);
645 if (!pvec.nr) {
646 /* If all gone or hole-punch or unfalloc, we're done */
647 if (index == start || end != -1)
648 break;
649 /* But if truncating, restart to make sure all gone */
650 index = start;
651 continue;
652 }
653 for (i = 0; i < pagevec_count(&pvec); i++) {
654 struct page *page = pvec.pages[i];
655
656 index = indices[i];
657 if (index >= end)
658 break;
659
660 if (radix_tree_exceptional_entry(page)) {
661 if (unfalloc)
662 continue;
663 if (shmem_free_swap(mapping, index, page)) {
664 /* Swap was replaced by page: retry */
665 index--;
666 break;
667 }
668 nr_swaps_freed++;
669 continue;
670 }
671
672 lock_page(page);
673 if (!unfalloc || !PageUptodate(page)) {
674 if (page->mapping == mapping) {
675 VM_BUG_ON_PAGE(PageWriteback(page), page);
676 truncate_inode_page(mapping, page);
677 } else {
678 /* Page was replaced by swap: retry */
679 unlock_page(page);
680 index--;
681 break;
682 }
683 }
684 unlock_page(page);
685 }
686 pagevec_remove_exceptionals(&pvec);
687 pagevec_release(&pvec);
688 index++;
689 }
690
691 spin_lock(&info->lock);
692 info->swapped -= nr_swaps_freed;
693 shmem_recalc_inode(inode);
694 spin_unlock(&info->lock);
695 }
696
697 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
698 {
699 shmem_undo_range(inode, lstart, lend, false);
700 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
701 }
702 EXPORT_SYMBOL_GPL(shmem_truncate_range);
703
704 static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry,
705 struct kstat *stat)
706 {
707 struct inode *inode = dentry->d_inode;
708 struct shmem_inode_info *info = SHMEM_I(inode);
709
710 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
711 spin_lock(&info->lock);
712 shmem_recalc_inode(inode);
713 spin_unlock(&info->lock);
714 }
715 generic_fillattr(inode, stat);
716 return 0;
717 }
718
719 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
720 {
721 struct inode *inode = d_inode(dentry);
722 struct shmem_inode_info *info = SHMEM_I(inode);
723 int error;
724
725 error = inode_change_ok(inode, attr);
726 if (error)
727 return error;
728
729 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
730 loff_t oldsize = inode->i_size;
731 loff_t newsize = attr->ia_size;
732
733 /* protected by i_mutex */
734 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
735 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
736 return -EPERM;
737
738 if (newsize != oldsize) {
739 error = shmem_reacct_size(SHMEM_I(inode)->flags,
740 oldsize, newsize);
741 if (error)
742 return error;
743 i_size_write(inode, newsize);
744 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
745 }
746 if (newsize <= oldsize) {
747 loff_t holebegin = round_up(newsize, PAGE_SIZE);
748 if (oldsize > holebegin)
749 unmap_mapping_range(inode->i_mapping,
750 holebegin, 0, 1);
751 if (info->alloced)
752 shmem_truncate_range(inode,
753 newsize, (loff_t)-1);
754 /* unmap again to remove racily COWed private pages */
755 if (oldsize > holebegin)
756 unmap_mapping_range(inode->i_mapping,
757 holebegin, 0, 1);
758 }
759 }
760
761 setattr_copy(inode, attr);
762 if (attr->ia_valid & ATTR_MODE)
763 error = posix_acl_chmod(inode, inode->i_mode);
764 return error;
765 }
766
767 static void shmem_evict_inode(struct inode *inode)
768 {
769 struct shmem_inode_info *info = SHMEM_I(inode);
770
771 if (inode->i_mapping->a_ops == &shmem_aops) {
772 shmem_unacct_size(info->flags, inode->i_size);
773 inode->i_size = 0;
774 shmem_truncate_range(inode, 0, (loff_t)-1);
775 if (!list_empty(&info->swaplist)) {
776 mutex_lock(&shmem_swaplist_mutex);
777 list_del_init(&info->swaplist);
778 mutex_unlock(&shmem_swaplist_mutex);
779 }
780 }
781
782 simple_xattrs_free(&info->xattrs);
783 WARN_ON(inode->i_blocks);
784 shmem_free_inode(inode->i_sb);
785 clear_inode(inode);
786 }
787
788 /*
789 * If swap found in inode, free it and move page from swapcache to filecache.
790 */
791 static int shmem_unuse_inode(struct shmem_inode_info *info,
792 swp_entry_t swap, struct page **pagep)
793 {
794 struct address_space *mapping = info->vfs_inode.i_mapping;
795 void *radswap;
796 pgoff_t index;
797 gfp_t gfp;
798 int error = 0;
799
800 radswap = swp_to_radix_entry(swap);
801 index = radix_tree_locate_item(&mapping->page_tree, radswap);
802 if (index == -1)
803 return -EAGAIN; /* tell shmem_unuse we found nothing */
804
805 /*
806 * Move _head_ to start search for next from here.
807 * But be careful: shmem_evict_inode checks list_empty without taking
808 * mutex, and there's an instant in list_move_tail when info->swaplist
809 * would appear empty, if it were the only one on shmem_swaplist.
810 */
811 if (shmem_swaplist.next != &info->swaplist)
812 list_move_tail(&shmem_swaplist, &info->swaplist);
813
814 gfp = mapping_gfp_mask(mapping);
815 if (shmem_should_replace_page(*pagep, gfp)) {
816 mutex_unlock(&shmem_swaplist_mutex);
817 error = shmem_replace_page(pagep, gfp, info, index);
818 mutex_lock(&shmem_swaplist_mutex);
819 /*
820 * We needed to drop mutex to make that restrictive page
821 * allocation, but the inode might have been freed while we
822 * dropped it: although a racing shmem_evict_inode() cannot
823 * complete without emptying the radix_tree, our page lock
824 * on this swapcache page is not enough to prevent that -
825 * free_swap_and_cache() of our swap entry will only
826 * trylock_page(), removing swap from radix_tree whatever.
827 *
828 * We must not proceed to shmem_add_to_page_cache() if the
829 * inode has been freed, but of course we cannot rely on
830 * inode or mapping or info to check that. However, we can
831 * safely check if our swap entry is still in use (and here
832 * it can't have got reused for another page): if it's still
833 * in use, then the inode cannot have been freed yet, and we
834 * can safely proceed (if it's no longer in use, that tells
835 * nothing about the inode, but we don't need to unuse swap).
836 */
837 if (!page_swapcount(*pagep))
838 error = -ENOENT;
839 }
840
841 /*
842 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
843 * but also to hold up shmem_evict_inode(): so inode cannot be freed
844 * beneath us (pagelock doesn't help until the page is in pagecache).
845 */
846 if (!error)
847 error = shmem_add_to_page_cache(*pagep, mapping, index,
848 radswap);
849 if (error != -ENOMEM) {
850 /*
851 * Truncation and eviction use free_swap_and_cache(), which
852 * only does trylock page: if we raced, best clean up here.
853 */
854 delete_from_swap_cache(*pagep);
855 set_page_dirty(*pagep);
856 if (!error) {
857 spin_lock(&info->lock);
858 info->swapped--;
859 spin_unlock(&info->lock);
860 swap_free(swap);
861 }
862 }
863 return error;
864 }
865
866 /*
867 * Search through swapped inodes to find and replace swap by page.
868 */
869 int shmem_unuse(swp_entry_t swap, struct page *page)
870 {
871 struct list_head *this, *next;
872 struct shmem_inode_info *info;
873 struct mem_cgroup *memcg;
874 int error = 0;
875
876 /*
877 * There's a faint possibility that swap page was replaced before
878 * caller locked it: caller will come back later with the right page.
879 */
880 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
881 goto out;
882
883 /*
884 * Charge page using GFP_KERNEL while we can wait, before taking
885 * the shmem_swaplist_mutex which might hold up shmem_writepage().
886 * Charged back to the user (not to caller) when swap account is used.
887 */
888 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
889 false);
890 if (error)
891 goto out;
892 /* No radix_tree_preload: swap entry keeps a place for page in tree */
893 error = -EAGAIN;
894
895 mutex_lock(&shmem_swaplist_mutex);
896 list_for_each_safe(this, next, &shmem_swaplist) {
897 info = list_entry(this, struct shmem_inode_info, swaplist);
898 if (info->swapped)
899 error = shmem_unuse_inode(info, swap, &page);
900 else
901 list_del_init(&info->swaplist);
902 cond_resched();
903 if (error != -EAGAIN)
904 break;
905 /* found nothing in this: move on to search the next */
906 }
907 mutex_unlock(&shmem_swaplist_mutex);
908
909 if (error) {
910 if (error != -ENOMEM)
911 error = 0;
912 mem_cgroup_cancel_charge(page, memcg, false);
913 } else
914 mem_cgroup_commit_charge(page, memcg, true, false);
915 out:
916 unlock_page(page);
917 put_page(page);
918 return error;
919 }
920
921 /*
922 * Move the page from the page cache to the swap cache.
923 */
924 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
925 {
926 struct shmem_inode_info *info;
927 struct address_space *mapping;
928 struct inode *inode;
929 swp_entry_t swap;
930 pgoff_t index;
931
932 BUG_ON(!PageLocked(page));
933 mapping = page->mapping;
934 index = page->index;
935 inode = mapping->host;
936 info = SHMEM_I(inode);
937 if (info->flags & VM_LOCKED)
938 goto redirty;
939 if (!total_swap_pages)
940 goto redirty;
941
942 /*
943 * Our capabilities prevent regular writeback or sync from ever calling
944 * shmem_writepage; but a stacking filesystem might use ->writepage of
945 * its underlying filesystem, in which case tmpfs should write out to
946 * swap only in response to memory pressure, and not for the writeback
947 * threads or sync.
948 */
949 if (!wbc->for_reclaim) {
950 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
951 goto redirty;
952 }
953
954 /*
955 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
956 * value into swapfile.c, the only way we can correctly account for a
957 * fallocated page arriving here is now to initialize it and write it.
958 *
959 * That's okay for a page already fallocated earlier, but if we have
960 * not yet completed the fallocation, then (a) we want to keep track
961 * of this page in case we have to undo it, and (b) it may not be a
962 * good idea to continue anyway, once we're pushing into swap. So
963 * reactivate the page, and let shmem_fallocate() quit when too many.
964 */
965 if (!PageUptodate(page)) {
966 if (inode->i_private) {
967 struct shmem_falloc *shmem_falloc;
968 spin_lock(&inode->i_lock);
969 shmem_falloc = inode->i_private;
970 if (shmem_falloc &&
971 !shmem_falloc->waitq &&
972 index >= shmem_falloc->start &&
973 index < shmem_falloc->next)
974 shmem_falloc->nr_unswapped++;
975 else
976 shmem_falloc = NULL;
977 spin_unlock(&inode->i_lock);
978 if (shmem_falloc)
979 goto redirty;
980 }
981 clear_highpage(page);
982 flush_dcache_page(page);
983 SetPageUptodate(page);
984 }
985
986 swap = get_swap_page();
987 if (!swap.val)
988 goto redirty;
989
990 if (mem_cgroup_try_charge_swap(page, swap))
991 goto free_swap;
992
993 /*
994 * Add inode to shmem_unuse()'s list of swapped-out inodes,
995 * if it's not already there. Do it now before the page is
996 * moved to swap cache, when its pagelock no longer protects
997 * the inode from eviction. But don't unlock the mutex until
998 * we've incremented swapped, because shmem_unuse_inode() will
999 * prune a !swapped inode from the swaplist under this mutex.
1000 */
1001 mutex_lock(&shmem_swaplist_mutex);
1002 if (list_empty(&info->swaplist))
1003 list_add_tail(&info->swaplist, &shmem_swaplist);
1004
1005 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1006 spin_lock(&info->lock);
1007 shmem_recalc_inode(inode);
1008 info->swapped++;
1009 spin_unlock(&info->lock);
1010
1011 swap_shmem_alloc(swap);
1012 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1013
1014 mutex_unlock(&shmem_swaplist_mutex);
1015 BUG_ON(page_mapped(page));
1016 swap_writepage(page, wbc);
1017 return 0;
1018 }
1019
1020 mutex_unlock(&shmem_swaplist_mutex);
1021 free_swap:
1022 swapcache_free(swap);
1023 redirty:
1024 set_page_dirty(page);
1025 if (wbc->for_reclaim)
1026 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1027 unlock_page(page);
1028 return 0;
1029 }
1030
1031 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1032 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1033 {
1034 char buffer[64];
1035
1036 if (!mpol || mpol->mode == MPOL_DEFAULT)
1037 return; /* show nothing */
1038
1039 mpol_to_str(buffer, sizeof(buffer), mpol);
1040
1041 seq_printf(seq, ",mpol=%s", buffer);
1042 }
1043
1044 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1045 {
1046 struct mempolicy *mpol = NULL;
1047 if (sbinfo->mpol) {
1048 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1049 mpol = sbinfo->mpol;
1050 mpol_get(mpol);
1051 spin_unlock(&sbinfo->stat_lock);
1052 }
1053 return mpol;
1054 }
1055 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1056 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1057 {
1058 }
1059 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1060 {
1061 return NULL;
1062 }
1063 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1064 #ifndef CONFIG_NUMA
1065 #define vm_policy vm_private_data
1066 #endif
1067
1068 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1069 struct shmem_inode_info *info, pgoff_t index)
1070 {
1071 struct vm_area_struct pvma;
1072 struct page *page;
1073
1074 /* Create a pseudo vma that just contains the policy */
1075 pvma.vm_start = 0;
1076 /* Bias interleave by inode number to distribute better across nodes */
1077 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
1078 pvma.vm_ops = NULL;
1079 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1080
1081 page = swapin_readahead(swap, gfp, &pvma, 0);
1082
1083 /* Drop reference taken by mpol_shared_policy_lookup() */
1084 mpol_cond_put(pvma.vm_policy);
1085
1086 return page;
1087 }
1088
1089 static struct page *shmem_alloc_page(gfp_t gfp,
1090 struct shmem_inode_info *info, pgoff_t index)
1091 {
1092 struct vm_area_struct pvma;
1093 struct page *page;
1094
1095 /* Create a pseudo vma that just contains the policy */
1096 pvma.vm_start = 0;
1097 /* Bias interleave by inode number to distribute better across nodes */
1098 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
1099 pvma.vm_ops = NULL;
1100 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1101
1102 page = alloc_pages_vma(gfp, 0, &pvma, 0, numa_node_id(), false);
1103 if (page) {
1104 __SetPageLocked(page);
1105 __SetPageSwapBacked(page);
1106 }
1107
1108 /* Drop reference taken by mpol_shared_policy_lookup() */
1109 mpol_cond_put(pvma.vm_policy);
1110
1111 return page;
1112 }
1113
1114 /*
1115 * When a page is moved from swapcache to shmem filecache (either by the
1116 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1117 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1118 * ignorance of the mapping it belongs to. If that mapping has special
1119 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1120 * we may need to copy to a suitable page before moving to filecache.
1121 *
1122 * In a future release, this may well be extended to respect cpuset and
1123 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1124 * but for now it is a simple matter of zone.
1125 */
1126 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1127 {
1128 return page_zonenum(page) > gfp_zone(gfp);
1129 }
1130
1131 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1132 struct shmem_inode_info *info, pgoff_t index)
1133 {
1134 struct page *oldpage, *newpage;
1135 struct address_space *swap_mapping;
1136 pgoff_t swap_index;
1137 int error;
1138
1139 oldpage = *pagep;
1140 swap_index = page_private(oldpage);
1141 swap_mapping = page_mapping(oldpage);
1142
1143 /*
1144 * We have arrived here because our zones are constrained, so don't
1145 * limit chance of success by further cpuset and node constraints.
1146 */
1147 gfp &= ~GFP_CONSTRAINT_MASK;
1148 newpage = shmem_alloc_page(gfp, info, index);
1149 if (!newpage)
1150 return -ENOMEM;
1151
1152 get_page(newpage);
1153 copy_highpage(newpage, oldpage);
1154 flush_dcache_page(newpage);
1155
1156 SetPageUptodate(newpage);
1157 set_page_private(newpage, swap_index);
1158 SetPageSwapCache(newpage);
1159
1160 /*
1161 * Our caller will very soon move newpage out of swapcache, but it's
1162 * a nice clean interface for us to replace oldpage by newpage there.
1163 */
1164 spin_lock_irq(&swap_mapping->tree_lock);
1165 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1166 newpage);
1167 if (!error) {
1168 __inc_zone_page_state(newpage, NR_FILE_PAGES);
1169 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1170 }
1171 spin_unlock_irq(&swap_mapping->tree_lock);
1172
1173 if (unlikely(error)) {
1174 /*
1175 * Is this possible? I think not, now that our callers check
1176 * both PageSwapCache and page_private after getting page lock;
1177 * but be defensive. Reverse old to newpage for clear and free.
1178 */
1179 oldpage = newpage;
1180 } else {
1181 mem_cgroup_migrate(oldpage, newpage);
1182 lru_cache_add_anon(newpage);
1183 *pagep = newpage;
1184 }
1185
1186 ClearPageSwapCache(oldpage);
1187 set_page_private(oldpage, 0);
1188
1189 unlock_page(oldpage);
1190 put_page(oldpage);
1191 put_page(oldpage);
1192 return error;
1193 }
1194
1195 /*
1196 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1197 *
1198 * If we allocate a new one we do not mark it dirty. That's up to the
1199 * vm. If we swap it in we mark it dirty since we also free the swap
1200 * entry since a page cannot live in both the swap and page cache.
1201 *
1202 * fault_mm and fault_type are only supplied by shmem_fault:
1203 * otherwise they are NULL.
1204 */
1205 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1206 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1207 struct mm_struct *fault_mm, int *fault_type)
1208 {
1209 struct address_space *mapping = inode->i_mapping;
1210 struct shmem_inode_info *info;
1211 struct shmem_sb_info *sbinfo;
1212 struct mm_struct *charge_mm;
1213 struct mem_cgroup *memcg;
1214 struct page *page;
1215 swp_entry_t swap;
1216 int error;
1217 int once = 0;
1218 int alloced = 0;
1219
1220 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1221 return -EFBIG;
1222 repeat:
1223 swap.val = 0;
1224 page = find_lock_entry(mapping, index);
1225 if (radix_tree_exceptional_entry(page)) {
1226 swap = radix_to_swp_entry(page);
1227 page = NULL;
1228 }
1229
1230 if (sgp <= SGP_CACHE &&
1231 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1232 error = -EINVAL;
1233 goto unlock;
1234 }
1235
1236 if (page && sgp == SGP_WRITE)
1237 mark_page_accessed(page);
1238
1239 /* fallocated page? */
1240 if (page && !PageUptodate(page)) {
1241 if (sgp != SGP_READ)
1242 goto clear;
1243 unlock_page(page);
1244 put_page(page);
1245 page = NULL;
1246 }
1247 if (page || (sgp == SGP_READ && !swap.val)) {
1248 *pagep = page;
1249 return 0;
1250 }
1251
1252 /*
1253 * Fast cache lookup did not find it:
1254 * bring it back from swap or allocate.
1255 */
1256 info = SHMEM_I(inode);
1257 sbinfo = SHMEM_SB(inode->i_sb);
1258 charge_mm = fault_mm ? : current->mm;
1259
1260 if (swap.val) {
1261 /* Look it up and read it in.. */
1262 page = lookup_swap_cache(swap);
1263 if (!page) {
1264 /* Or update major stats only when swapin succeeds?? */
1265 if (fault_type) {
1266 *fault_type |= VM_FAULT_MAJOR;
1267 count_vm_event(PGMAJFAULT);
1268 mem_cgroup_count_vm_event(fault_mm, PGMAJFAULT);
1269 }
1270 /* Here we actually start the io */
1271 page = shmem_swapin(swap, gfp, info, index);
1272 if (!page) {
1273 error = -ENOMEM;
1274 goto failed;
1275 }
1276 }
1277
1278 /* We have to do this with page locked to prevent races */
1279 lock_page(page);
1280 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1281 !shmem_confirm_swap(mapping, index, swap)) {
1282 error = -EEXIST; /* try again */
1283 goto unlock;
1284 }
1285 if (!PageUptodate(page)) {
1286 error = -EIO;
1287 goto failed;
1288 }
1289 wait_on_page_writeback(page);
1290
1291 if (shmem_should_replace_page(page, gfp)) {
1292 error = shmem_replace_page(&page, gfp, info, index);
1293 if (error)
1294 goto failed;
1295 }
1296
1297 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1298 false);
1299 if (!error) {
1300 error = shmem_add_to_page_cache(page, mapping, index,
1301 swp_to_radix_entry(swap));
1302 /*
1303 * We already confirmed swap under page lock, and make
1304 * no memory allocation here, so usually no possibility
1305 * of error; but free_swap_and_cache() only trylocks a
1306 * page, so it is just possible that the entry has been
1307 * truncated or holepunched since swap was confirmed.
1308 * shmem_undo_range() will have done some of the
1309 * unaccounting, now delete_from_swap_cache() will do
1310 * the rest.
1311 * Reset swap.val? No, leave it so "failed" goes back to
1312 * "repeat": reading a hole and writing should succeed.
1313 */
1314 if (error) {
1315 mem_cgroup_cancel_charge(page, memcg, false);
1316 delete_from_swap_cache(page);
1317 }
1318 }
1319 if (error)
1320 goto failed;
1321
1322 mem_cgroup_commit_charge(page, memcg, true, false);
1323
1324 spin_lock(&info->lock);
1325 info->swapped--;
1326 shmem_recalc_inode(inode);
1327 spin_unlock(&info->lock);
1328
1329 if (sgp == SGP_WRITE)
1330 mark_page_accessed(page);
1331
1332 delete_from_swap_cache(page);
1333 set_page_dirty(page);
1334 swap_free(swap);
1335
1336 } else {
1337 if (shmem_acct_block(info->flags)) {
1338 error = -ENOSPC;
1339 goto failed;
1340 }
1341 if (sbinfo->max_blocks) {
1342 if (percpu_counter_compare(&sbinfo->used_blocks,
1343 sbinfo->max_blocks) >= 0) {
1344 error = -ENOSPC;
1345 goto unacct;
1346 }
1347 percpu_counter_inc(&sbinfo->used_blocks);
1348 }
1349
1350 page = shmem_alloc_page(gfp, info, index);
1351 if (!page) {
1352 error = -ENOMEM;
1353 goto decused;
1354 }
1355 if (sgp == SGP_WRITE)
1356 __SetPageReferenced(page);
1357
1358 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1359 false);
1360 if (error)
1361 goto decused;
1362 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1363 if (!error) {
1364 error = shmem_add_to_page_cache(page, mapping, index,
1365 NULL);
1366 radix_tree_preload_end();
1367 }
1368 if (error) {
1369 mem_cgroup_cancel_charge(page, memcg, false);
1370 goto decused;
1371 }
1372 mem_cgroup_commit_charge(page, memcg, false, false);
1373 lru_cache_add_anon(page);
1374
1375 spin_lock(&info->lock);
1376 info->alloced++;
1377 inode->i_blocks += BLOCKS_PER_PAGE;
1378 shmem_recalc_inode(inode);
1379 spin_unlock(&info->lock);
1380 alloced = true;
1381
1382 /*
1383 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1384 */
1385 if (sgp == SGP_FALLOC)
1386 sgp = SGP_WRITE;
1387 clear:
1388 /*
1389 * Let SGP_WRITE caller clear ends if write does not fill page;
1390 * but SGP_FALLOC on a page fallocated earlier must initialize
1391 * it now, lest undo on failure cancel our earlier guarantee.
1392 */
1393 if (sgp != SGP_WRITE) {
1394 clear_highpage(page);
1395 flush_dcache_page(page);
1396 SetPageUptodate(page);
1397 }
1398 }
1399
1400 /* Perhaps the file has been truncated since we checked */
1401 if (sgp <= SGP_CACHE &&
1402 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1403 if (alloced) {
1404 ClearPageDirty(page);
1405 delete_from_page_cache(page);
1406 spin_lock(&info->lock);
1407 shmem_recalc_inode(inode);
1408 spin_unlock(&info->lock);
1409 }
1410 error = -EINVAL;
1411 goto unlock;
1412 }
1413 *pagep = page;
1414 return 0;
1415
1416 /*
1417 * Error recovery.
1418 */
1419 decused:
1420 if (sbinfo->max_blocks)
1421 percpu_counter_add(&sbinfo->used_blocks, -1);
1422 unacct:
1423 shmem_unacct_blocks(info->flags, 1);
1424 failed:
1425 if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1426 error = -EEXIST;
1427 unlock:
1428 if (page) {
1429 unlock_page(page);
1430 put_page(page);
1431 }
1432 if (error == -ENOSPC && !once++) {
1433 info = SHMEM_I(inode);
1434 spin_lock(&info->lock);
1435 shmem_recalc_inode(inode);
1436 spin_unlock(&info->lock);
1437 goto repeat;
1438 }
1439 if (error == -EEXIST) /* from above or from radix_tree_insert */
1440 goto repeat;
1441 return error;
1442 }
1443
1444 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1445 {
1446 struct inode *inode = file_inode(vma->vm_file);
1447 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1448 int error;
1449 int ret = VM_FAULT_LOCKED;
1450
1451 /*
1452 * Trinity finds that probing a hole which tmpfs is punching can
1453 * prevent the hole-punch from ever completing: which in turn
1454 * locks writers out with its hold on i_mutex. So refrain from
1455 * faulting pages into the hole while it's being punched. Although
1456 * shmem_undo_range() does remove the additions, it may be unable to
1457 * keep up, as each new page needs its own unmap_mapping_range() call,
1458 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1459 *
1460 * It does not matter if we sometimes reach this check just before the
1461 * hole-punch begins, so that one fault then races with the punch:
1462 * we just need to make racing faults a rare case.
1463 *
1464 * The implementation below would be much simpler if we just used a
1465 * standard mutex or completion: but we cannot take i_mutex in fault,
1466 * and bloating every shmem inode for this unlikely case would be sad.
1467 */
1468 if (unlikely(inode->i_private)) {
1469 struct shmem_falloc *shmem_falloc;
1470
1471 spin_lock(&inode->i_lock);
1472 shmem_falloc = inode->i_private;
1473 if (shmem_falloc &&
1474 shmem_falloc->waitq &&
1475 vmf->pgoff >= shmem_falloc->start &&
1476 vmf->pgoff < shmem_falloc->next) {
1477 wait_queue_head_t *shmem_falloc_waitq;
1478 DEFINE_WAIT(shmem_fault_wait);
1479
1480 ret = VM_FAULT_NOPAGE;
1481 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1482 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1483 /* It's polite to up mmap_sem if we can */
1484 up_read(&vma->vm_mm->mmap_sem);
1485 ret = VM_FAULT_RETRY;
1486 }
1487
1488 shmem_falloc_waitq = shmem_falloc->waitq;
1489 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1490 TASK_UNINTERRUPTIBLE);
1491 spin_unlock(&inode->i_lock);
1492 schedule();
1493
1494 /*
1495 * shmem_falloc_waitq points into the shmem_fallocate()
1496 * stack of the hole-punching task: shmem_falloc_waitq
1497 * is usually invalid by the time we reach here, but
1498 * finish_wait() does not dereference it in that case;
1499 * though i_lock needed lest racing with wake_up_all().
1500 */
1501 spin_lock(&inode->i_lock);
1502 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1503 spin_unlock(&inode->i_lock);
1504 return ret;
1505 }
1506 spin_unlock(&inode->i_lock);
1507 }
1508
1509 error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, SGP_CACHE,
1510 gfp, vma->vm_mm, &ret);
1511 if (error)
1512 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1513 return ret;
1514 }
1515
1516 unsigned long shmem_get_unmapped_area(struct file *file,
1517 unsigned long uaddr, unsigned long len,
1518 unsigned long pgoff, unsigned long flags)
1519 {
1520 unsigned long (*get_area)(struct file *,
1521 unsigned long, unsigned long, unsigned long, unsigned long);
1522 unsigned long addr;
1523 unsigned long offset;
1524 unsigned long inflated_len;
1525 unsigned long inflated_addr;
1526 unsigned long inflated_offset;
1527
1528 if (len > TASK_SIZE)
1529 return -ENOMEM;
1530
1531 get_area = current->mm->get_unmapped_area;
1532 addr = get_area(file, uaddr, len, pgoff, flags);
1533
1534 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1535 return addr;
1536 if (IS_ERR_VALUE(addr))
1537 return addr;
1538 if (addr & ~PAGE_MASK)
1539 return addr;
1540 if (addr > TASK_SIZE - len)
1541 return addr;
1542
1543 if (shmem_huge == SHMEM_HUGE_DENY)
1544 return addr;
1545 if (len < HPAGE_PMD_SIZE)
1546 return addr;
1547 if (flags & MAP_FIXED)
1548 return addr;
1549 /*
1550 * Our priority is to support MAP_SHARED mapped hugely;
1551 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
1552 * But if caller specified an address hint, respect that as before.
1553 */
1554 if (uaddr)
1555 return addr;
1556
1557 if (shmem_huge != SHMEM_HUGE_FORCE) {
1558 struct super_block *sb;
1559
1560 if (file) {
1561 VM_BUG_ON(file->f_op != &shmem_file_operations);
1562 sb = file_inode(file)->i_sb;
1563 } else {
1564 /*
1565 * Called directly from mm/mmap.c, or drivers/char/mem.c
1566 * for "/dev/zero", to create a shared anonymous object.
1567 */
1568 if (IS_ERR(shm_mnt))
1569 return addr;
1570 sb = shm_mnt->mnt_sb;
1571 }
1572 if (SHMEM_SB(sb)->huge != SHMEM_HUGE_NEVER)
1573 return addr;
1574 }
1575
1576 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
1577 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
1578 return addr;
1579 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
1580 return addr;
1581
1582 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
1583 if (inflated_len > TASK_SIZE)
1584 return addr;
1585 if (inflated_len < len)
1586 return addr;
1587
1588 inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
1589 if (IS_ERR_VALUE(inflated_addr))
1590 return addr;
1591 if (inflated_addr & ~PAGE_MASK)
1592 return addr;
1593
1594 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
1595 inflated_addr += offset - inflated_offset;
1596 if (inflated_offset > offset)
1597 inflated_addr += HPAGE_PMD_SIZE;
1598
1599 if (inflated_addr > TASK_SIZE - len)
1600 return addr;
1601 return inflated_addr;
1602 }
1603
1604 #ifdef CONFIG_NUMA
1605 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1606 {
1607 struct inode *inode = file_inode(vma->vm_file);
1608 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1609 }
1610
1611 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1612 unsigned long addr)
1613 {
1614 struct inode *inode = file_inode(vma->vm_file);
1615 pgoff_t index;
1616
1617 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1618 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1619 }
1620 #endif
1621
1622 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1623 {
1624 struct inode *inode = file_inode(file);
1625 struct shmem_inode_info *info = SHMEM_I(inode);
1626 int retval = -ENOMEM;
1627
1628 spin_lock(&info->lock);
1629 if (lock && !(info->flags & VM_LOCKED)) {
1630 if (!user_shm_lock(inode->i_size, user))
1631 goto out_nomem;
1632 info->flags |= VM_LOCKED;
1633 mapping_set_unevictable(file->f_mapping);
1634 }
1635 if (!lock && (info->flags & VM_LOCKED) && user) {
1636 user_shm_unlock(inode->i_size, user);
1637 info->flags &= ~VM_LOCKED;
1638 mapping_clear_unevictable(file->f_mapping);
1639 }
1640 retval = 0;
1641
1642 out_nomem:
1643 spin_unlock(&info->lock);
1644 return retval;
1645 }
1646
1647 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1648 {
1649 file_accessed(file);
1650 vma->vm_ops = &shmem_vm_ops;
1651 return 0;
1652 }
1653
1654 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1655 umode_t mode, dev_t dev, unsigned long flags)
1656 {
1657 struct inode *inode;
1658 struct shmem_inode_info *info;
1659 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1660
1661 if (shmem_reserve_inode(sb))
1662 return NULL;
1663
1664 inode = new_inode(sb);
1665 if (inode) {
1666 inode->i_ino = get_next_ino();
1667 inode_init_owner(inode, dir, mode);
1668 inode->i_blocks = 0;
1669 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1670 inode->i_generation = get_seconds();
1671 info = SHMEM_I(inode);
1672 memset(info, 0, (char *)inode - (char *)info);
1673 spin_lock_init(&info->lock);
1674 info->seals = F_SEAL_SEAL;
1675 info->flags = flags & VM_NORESERVE;
1676 INIT_LIST_HEAD(&info->swaplist);
1677 simple_xattrs_init(&info->xattrs);
1678 cache_no_acl(inode);
1679
1680 switch (mode & S_IFMT) {
1681 default:
1682 inode->i_op = &shmem_special_inode_operations;
1683 init_special_inode(inode, mode, dev);
1684 break;
1685 case S_IFREG:
1686 inode->i_mapping->a_ops = &shmem_aops;
1687 inode->i_op = &shmem_inode_operations;
1688 inode->i_fop = &shmem_file_operations;
1689 mpol_shared_policy_init(&info->policy,
1690 shmem_get_sbmpol(sbinfo));
1691 break;
1692 case S_IFDIR:
1693 inc_nlink(inode);
1694 /* Some things misbehave if size == 0 on a directory */
1695 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1696 inode->i_op = &shmem_dir_inode_operations;
1697 inode->i_fop = &simple_dir_operations;
1698 break;
1699 case S_IFLNK:
1700 /*
1701 * Must not load anything in the rbtree,
1702 * mpol_free_shared_policy will not be called.
1703 */
1704 mpol_shared_policy_init(&info->policy, NULL);
1705 break;
1706 }
1707 } else
1708 shmem_free_inode(sb);
1709 return inode;
1710 }
1711
1712 bool shmem_mapping(struct address_space *mapping)
1713 {
1714 if (!mapping->host)
1715 return false;
1716
1717 return mapping->host->i_sb->s_op == &shmem_ops;
1718 }
1719
1720 #ifdef CONFIG_TMPFS
1721 static const struct inode_operations shmem_symlink_inode_operations;
1722 static const struct inode_operations shmem_short_symlink_operations;
1723
1724 #ifdef CONFIG_TMPFS_XATTR
1725 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1726 #else
1727 #define shmem_initxattrs NULL
1728 #endif
1729
1730 static int
1731 shmem_write_begin(struct file *file, struct address_space *mapping,
1732 loff_t pos, unsigned len, unsigned flags,
1733 struct page **pagep, void **fsdata)
1734 {
1735 struct inode *inode = mapping->host;
1736 struct shmem_inode_info *info = SHMEM_I(inode);
1737 pgoff_t index = pos >> PAGE_SHIFT;
1738
1739 /* i_mutex is held by caller */
1740 if (unlikely(info->seals)) {
1741 if (info->seals & F_SEAL_WRITE)
1742 return -EPERM;
1743 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
1744 return -EPERM;
1745 }
1746
1747 return shmem_getpage(inode, index, pagep, SGP_WRITE);
1748 }
1749
1750 static int
1751 shmem_write_end(struct file *file, struct address_space *mapping,
1752 loff_t pos, unsigned len, unsigned copied,
1753 struct page *page, void *fsdata)
1754 {
1755 struct inode *inode = mapping->host;
1756
1757 if (pos + copied > inode->i_size)
1758 i_size_write(inode, pos + copied);
1759
1760 if (!PageUptodate(page)) {
1761 if (copied < PAGE_SIZE) {
1762 unsigned from = pos & (PAGE_SIZE - 1);
1763 zero_user_segments(page, 0, from,
1764 from + copied, PAGE_SIZE);
1765 }
1766 SetPageUptodate(page);
1767 }
1768 set_page_dirty(page);
1769 unlock_page(page);
1770 put_page(page);
1771
1772 return copied;
1773 }
1774
1775 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1776 {
1777 struct file *file = iocb->ki_filp;
1778 struct inode *inode = file_inode(file);
1779 struct address_space *mapping = inode->i_mapping;
1780 pgoff_t index;
1781 unsigned long offset;
1782 enum sgp_type sgp = SGP_READ;
1783 int error = 0;
1784 ssize_t retval = 0;
1785 loff_t *ppos = &iocb->ki_pos;
1786
1787 /*
1788 * Might this read be for a stacking filesystem? Then when reading
1789 * holes of a sparse file, we actually need to allocate those pages,
1790 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1791 */
1792 if (!iter_is_iovec(to))
1793 sgp = SGP_CACHE;
1794
1795 index = *ppos >> PAGE_SHIFT;
1796 offset = *ppos & ~PAGE_MASK;
1797
1798 for (;;) {
1799 struct page *page = NULL;
1800 pgoff_t end_index;
1801 unsigned long nr, ret;
1802 loff_t i_size = i_size_read(inode);
1803
1804 end_index = i_size >> PAGE_SHIFT;
1805 if (index > end_index)
1806 break;
1807 if (index == end_index) {
1808 nr = i_size & ~PAGE_MASK;
1809 if (nr <= offset)
1810 break;
1811 }
1812
1813 error = shmem_getpage(inode, index, &page, sgp);
1814 if (error) {
1815 if (error == -EINVAL)
1816 error = 0;
1817 break;
1818 }
1819 if (page) {
1820 if (sgp == SGP_CACHE)
1821 set_page_dirty(page);
1822 unlock_page(page);
1823 }
1824
1825 /*
1826 * We must evaluate after, since reads (unlike writes)
1827 * are called without i_mutex protection against truncate
1828 */
1829 nr = PAGE_SIZE;
1830 i_size = i_size_read(inode);
1831 end_index = i_size >> PAGE_SHIFT;
1832 if (index == end_index) {
1833 nr = i_size & ~PAGE_MASK;
1834 if (nr <= offset) {
1835 if (page)
1836 put_page(page);
1837 break;
1838 }
1839 }
1840 nr -= offset;
1841
1842 if (page) {
1843 /*
1844 * If users can be writing to this page using arbitrary
1845 * virtual addresses, take care about potential aliasing
1846 * before reading the page on the kernel side.
1847 */
1848 if (mapping_writably_mapped(mapping))
1849 flush_dcache_page(page);
1850 /*
1851 * Mark the page accessed if we read the beginning.
1852 */
1853 if (!offset)
1854 mark_page_accessed(page);
1855 } else {
1856 page = ZERO_PAGE(0);
1857 get_page(page);
1858 }
1859
1860 /*
1861 * Ok, we have the page, and it's up-to-date, so
1862 * now we can copy it to user space...
1863 */
1864 ret = copy_page_to_iter(page, offset, nr, to);
1865 retval += ret;
1866 offset += ret;
1867 index += offset >> PAGE_SHIFT;
1868 offset &= ~PAGE_MASK;
1869
1870 put_page(page);
1871 if (!iov_iter_count(to))
1872 break;
1873 if (ret < nr) {
1874 error = -EFAULT;
1875 break;
1876 }
1877 cond_resched();
1878 }
1879
1880 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
1881 file_accessed(file);
1882 return retval ? retval : error;
1883 }
1884
1885 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1886 struct pipe_inode_info *pipe, size_t len,
1887 unsigned int flags)
1888 {
1889 struct address_space *mapping = in->f_mapping;
1890 struct inode *inode = mapping->host;
1891 unsigned int loff, nr_pages, req_pages;
1892 struct page *pages[PIPE_DEF_BUFFERS];
1893 struct partial_page partial[PIPE_DEF_BUFFERS];
1894 struct page *page;
1895 pgoff_t index, end_index;
1896 loff_t isize, left;
1897 int error, page_nr;
1898 struct splice_pipe_desc spd = {
1899 .pages = pages,
1900 .partial = partial,
1901 .nr_pages_max = PIPE_DEF_BUFFERS,
1902 .flags = flags,
1903 .ops = &page_cache_pipe_buf_ops,
1904 .spd_release = spd_release_page,
1905 };
1906
1907 isize = i_size_read(inode);
1908 if (unlikely(*ppos >= isize))
1909 return 0;
1910
1911 left = isize - *ppos;
1912 if (unlikely(left < len))
1913 len = left;
1914
1915 if (splice_grow_spd(pipe, &spd))
1916 return -ENOMEM;
1917
1918 index = *ppos >> PAGE_SHIFT;
1919 loff = *ppos & ~PAGE_MASK;
1920 req_pages = (len + loff + PAGE_SIZE - 1) >> PAGE_SHIFT;
1921 nr_pages = min(req_pages, spd.nr_pages_max);
1922
1923 spd.nr_pages = find_get_pages_contig(mapping, index,
1924 nr_pages, spd.pages);
1925 index += spd.nr_pages;
1926 error = 0;
1927
1928 while (spd.nr_pages < nr_pages) {
1929 error = shmem_getpage(inode, index, &page, SGP_CACHE);
1930 if (error)
1931 break;
1932 unlock_page(page);
1933 spd.pages[spd.nr_pages++] = page;
1934 index++;
1935 }
1936
1937 index = *ppos >> PAGE_SHIFT;
1938 nr_pages = spd.nr_pages;
1939 spd.nr_pages = 0;
1940
1941 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1942 unsigned int this_len;
1943
1944 if (!len)
1945 break;
1946
1947 this_len = min_t(unsigned long, len, PAGE_SIZE - loff);
1948 page = spd.pages[page_nr];
1949
1950 if (!PageUptodate(page) || page->mapping != mapping) {
1951 error = shmem_getpage(inode, index, &page, SGP_CACHE);
1952 if (error)
1953 break;
1954 unlock_page(page);
1955 put_page(spd.pages[page_nr]);
1956 spd.pages[page_nr] = page;
1957 }
1958
1959 isize = i_size_read(inode);
1960 end_index = (isize - 1) >> PAGE_SHIFT;
1961 if (unlikely(!isize || index > end_index))
1962 break;
1963
1964 if (end_index == index) {
1965 unsigned int plen;
1966
1967 plen = ((isize - 1) & ~PAGE_MASK) + 1;
1968 if (plen <= loff)
1969 break;
1970
1971 this_len = min(this_len, plen - loff);
1972 len = this_len;
1973 }
1974
1975 spd.partial[page_nr].offset = loff;
1976 spd.partial[page_nr].len = this_len;
1977 len -= this_len;
1978 loff = 0;
1979 spd.nr_pages++;
1980 index++;
1981 }
1982
1983 while (page_nr < nr_pages)
1984 put_page(spd.pages[page_nr++]);
1985
1986 if (spd.nr_pages)
1987 error = splice_to_pipe(pipe, &spd);
1988
1989 splice_shrink_spd(&spd);
1990
1991 if (error > 0) {
1992 *ppos += error;
1993 file_accessed(in);
1994 }
1995 return error;
1996 }
1997
1998 /*
1999 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2000 */
2001 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2002 pgoff_t index, pgoff_t end, int whence)
2003 {
2004 struct page *page;
2005 struct pagevec pvec;
2006 pgoff_t indices[PAGEVEC_SIZE];
2007 bool done = false;
2008 int i;
2009
2010 pagevec_init(&pvec, 0);
2011 pvec.nr = 1; /* start small: we may be there already */
2012 while (!done) {
2013 pvec.nr = find_get_entries(mapping, index,
2014 pvec.nr, pvec.pages, indices);
2015 if (!pvec.nr) {
2016 if (whence == SEEK_DATA)
2017 index = end;
2018 break;
2019 }
2020 for (i = 0; i < pvec.nr; i++, index++) {
2021 if (index < indices[i]) {
2022 if (whence == SEEK_HOLE) {
2023 done = true;
2024 break;
2025 }
2026 index = indices[i];
2027 }
2028 page = pvec.pages[i];
2029 if (page && !radix_tree_exceptional_entry(page)) {
2030 if (!PageUptodate(page))
2031 page = NULL;
2032 }
2033 if (index >= end ||
2034 (page && whence == SEEK_DATA) ||
2035 (!page && whence == SEEK_HOLE)) {
2036 done = true;
2037 break;
2038 }
2039 }
2040 pagevec_remove_exceptionals(&pvec);
2041 pagevec_release(&pvec);
2042 pvec.nr = PAGEVEC_SIZE;
2043 cond_resched();
2044 }
2045 return index;
2046 }
2047
2048 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2049 {
2050 struct address_space *mapping = file->f_mapping;
2051 struct inode *inode = mapping->host;
2052 pgoff_t start, end;
2053 loff_t new_offset;
2054
2055 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2056 return generic_file_llseek_size(file, offset, whence,
2057 MAX_LFS_FILESIZE, i_size_read(inode));
2058 inode_lock(inode);
2059 /* We're holding i_mutex so we can access i_size directly */
2060
2061 if (offset < 0)
2062 offset = -EINVAL;
2063 else if (offset >= inode->i_size)
2064 offset = -ENXIO;
2065 else {
2066 start = offset >> PAGE_SHIFT;
2067 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2068 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2069 new_offset <<= PAGE_SHIFT;
2070 if (new_offset > offset) {
2071 if (new_offset < inode->i_size)
2072 offset = new_offset;
2073 else if (whence == SEEK_DATA)
2074 offset = -ENXIO;
2075 else
2076 offset = inode->i_size;
2077 }
2078 }
2079
2080 if (offset >= 0)
2081 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2082 inode_unlock(inode);
2083 return offset;
2084 }
2085
2086 /*
2087 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2088 * so reuse a tag which we firmly believe is never set or cleared on shmem.
2089 */
2090 #define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
2091 #define LAST_SCAN 4 /* about 150ms max */
2092
2093 static void shmem_tag_pins(struct address_space *mapping)
2094 {
2095 struct radix_tree_iter iter;
2096 void **slot;
2097 pgoff_t start;
2098 struct page *page;
2099
2100 lru_add_drain();
2101 start = 0;
2102 rcu_read_lock();
2103
2104 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
2105 page = radix_tree_deref_slot(slot);
2106 if (!page || radix_tree_exception(page)) {
2107 if (radix_tree_deref_retry(page)) {
2108 slot = radix_tree_iter_retry(&iter);
2109 continue;
2110 }
2111 } else if (page_count(page) - page_mapcount(page) > 1) {
2112 spin_lock_irq(&mapping->tree_lock);
2113 radix_tree_tag_set(&mapping->page_tree, iter.index,
2114 SHMEM_TAG_PINNED);
2115 spin_unlock_irq(&mapping->tree_lock);
2116 }
2117
2118 if (need_resched()) {
2119 cond_resched_rcu();
2120 slot = radix_tree_iter_next(&iter);
2121 }
2122 }
2123 rcu_read_unlock();
2124 }
2125
2126 /*
2127 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2128 * via get_user_pages(), drivers might have some pending I/O without any active
2129 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2130 * and see whether it has an elevated ref-count. If so, we tag them and wait for
2131 * them to be dropped.
2132 * The caller must guarantee that no new user will acquire writable references
2133 * to those pages to avoid races.
2134 */
2135 static int shmem_wait_for_pins(struct address_space *mapping)
2136 {
2137 struct radix_tree_iter iter;
2138 void **slot;
2139 pgoff_t start;
2140 struct page *page;
2141 int error, scan;
2142
2143 shmem_tag_pins(mapping);
2144
2145 error = 0;
2146 for (scan = 0; scan <= LAST_SCAN; scan++) {
2147 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
2148 break;
2149
2150 if (!scan)
2151 lru_add_drain_all();
2152 else if (schedule_timeout_killable((HZ << scan) / 200))
2153 scan = LAST_SCAN;
2154
2155 start = 0;
2156 rcu_read_lock();
2157 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
2158 start, SHMEM_TAG_PINNED) {
2159
2160 page = radix_tree_deref_slot(slot);
2161 if (radix_tree_exception(page)) {
2162 if (radix_tree_deref_retry(page)) {
2163 slot = radix_tree_iter_retry(&iter);
2164 continue;
2165 }
2166
2167 page = NULL;
2168 }
2169
2170 if (page &&
2171 page_count(page) - page_mapcount(page) != 1) {
2172 if (scan < LAST_SCAN)
2173 goto continue_resched;
2174
2175 /*
2176 * On the last scan, we clean up all those tags
2177 * we inserted; but make a note that we still
2178 * found pages pinned.
2179 */
2180 error = -EBUSY;
2181 }
2182
2183 spin_lock_irq(&mapping->tree_lock);
2184 radix_tree_tag_clear(&mapping->page_tree,
2185 iter.index, SHMEM_TAG_PINNED);
2186 spin_unlock_irq(&mapping->tree_lock);
2187 continue_resched:
2188 if (need_resched()) {
2189 cond_resched_rcu();
2190 slot = radix_tree_iter_next(&iter);
2191 }
2192 }
2193 rcu_read_unlock();
2194 }
2195
2196 return error;
2197 }
2198
2199 #define F_ALL_SEALS (F_SEAL_SEAL | \
2200 F_SEAL_SHRINK | \
2201 F_SEAL_GROW | \
2202 F_SEAL_WRITE)
2203
2204 int shmem_add_seals(struct file *file, unsigned int seals)
2205 {
2206 struct inode *inode = file_inode(file);
2207 struct shmem_inode_info *info = SHMEM_I(inode);
2208 int error;
2209
2210 /*
2211 * SEALING
2212 * Sealing allows multiple parties to share a shmem-file but restrict
2213 * access to a specific subset of file operations. Seals can only be
2214 * added, but never removed. This way, mutually untrusted parties can
2215 * share common memory regions with a well-defined policy. A malicious
2216 * peer can thus never perform unwanted operations on a shared object.
2217 *
2218 * Seals are only supported on special shmem-files and always affect
2219 * the whole underlying inode. Once a seal is set, it may prevent some
2220 * kinds of access to the file. Currently, the following seals are
2221 * defined:
2222 * SEAL_SEAL: Prevent further seals from being set on this file
2223 * SEAL_SHRINK: Prevent the file from shrinking
2224 * SEAL_GROW: Prevent the file from growing
2225 * SEAL_WRITE: Prevent write access to the file
2226 *
2227 * As we don't require any trust relationship between two parties, we
2228 * must prevent seals from being removed. Therefore, sealing a file
2229 * only adds a given set of seals to the file, it never touches
2230 * existing seals. Furthermore, the "setting seals"-operation can be
2231 * sealed itself, which basically prevents any further seal from being
2232 * added.
2233 *
2234 * Semantics of sealing are only defined on volatile files. Only
2235 * anonymous shmem files support sealing. More importantly, seals are
2236 * never written to disk. Therefore, there's no plan to support it on
2237 * other file types.
2238 */
2239
2240 if (file->f_op != &shmem_file_operations)
2241 return -EINVAL;
2242 if (!(file->f_mode & FMODE_WRITE))
2243 return -EPERM;
2244 if (seals & ~(unsigned int)F_ALL_SEALS)
2245 return -EINVAL;
2246
2247 inode_lock(inode);
2248
2249 if (info->seals & F_SEAL_SEAL) {
2250 error = -EPERM;
2251 goto unlock;
2252 }
2253
2254 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2255 error = mapping_deny_writable(file->f_mapping);
2256 if (error)
2257 goto unlock;
2258
2259 error = shmem_wait_for_pins(file->f_mapping);
2260 if (error) {
2261 mapping_allow_writable(file->f_mapping);
2262 goto unlock;
2263 }
2264 }
2265
2266 info->seals |= seals;
2267 error = 0;
2268
2269 unlock:
2270 inode_unlock(inode);
2271 return error;
2272 }
2273 EXPORT_SYMBOL_GPL(shmem_add_seals);
2274
2275 int shmem_get_seals(struct file *file)
2276 {
2277 if (file->f_op != &shmem_file_operations)
2278 return -EINVAL;
2279
2280 return SHMEM_I(file_inode(file))->seals;
2281 }
2282 EXPORT_SYMBOL_GPL(shmem_get_seals);
2283
2284 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2285 {
2286 long error;
2287
2288 switch (cmd) {
2289 case F_ADD_SEALS:
2290 /* disallow upper 32bit */
2291 if (arg > UINT_MAX)
2292 return -EINVAL;
2293
2294 error = shmem_add_seals(file, arg);
2295 break;
2296 case F_GET_SEALS:
2297 error = shmem_get_seals(file);
2298 break;
2299 default:
2300 error = -EINVAL;
2301 break;
2302 }
2303
2304 return error;
2305 }
2306
2307 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2308 loff_t len)
2309 {
2310 struct inode *inode = file_inode(file);
2311 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2312 struct shmem_inode_info *info = SHMEM_I(inode);
2313 struct shmem_falloc shmem_falloc;
2314 pgoff_t start, index, end;
2315 int error;
2316
2317 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2318 return -EOPNOTSUPP;
2319
2320 inode_lock(inode);
2321
2322 if (mode & FALLOC_FL_PUNCH_HOLE) {
2323 struct address_space *mapping = file->f_mapping;
2324 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2325 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2326 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2327
2328 /* protected by i_mutex */
2329 if (info->seals & F_SEAL_WRITE) {
2330 error = -EPERM;
2331 goto out;
2332 }
2333
2334 shmem_falloc.waitq = &shmem_falloc_waitq;
2335 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2336 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2337 spin_lock(&inode->i_lock);
2338 inode->i_private = &shmem_falloc;
2339 spin_unlock(&inode->i_lock);
2340
2341 if ((u64)unmap_end > (u64)unmap_start)
2342 unmap_mapping_range(mapping, unmap_start,
2343 1 + unmap_end - unmap_start, 0);
2344 shmem_truncate_range(inode, offset, offset + len - 1);
2345 /* No need to unmap again: hole-punching leaves COWed pages */
2346
2347 spin_lock(&inode->i_lock);
2348 inode->i_private = NULL;
2349 wake_up_all(&shmem_falloc_waitq);
2350 spin_unlock(&inode->i_lock);
2351 error = 0;
2352 goto out;
2353 }
2354
2355 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2356 error = inode_newsize_ok(inode, offset + len);
2357 if (error)
2358 goto out;
2359
2360 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2361 error = -EPERM;
2362 goto out;
2363 }
2364
2365 start = offset >> PAGE_SHIFT;
2366 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2367 /* Try to avoid a swapstorm if len is impossible to satisfy */
2368 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2369 error = -ENOSPC;
2370 goto out;
2371 }
2372
2373 shmem_falloc.waitq = NULL;
2374 shmem_falloc.start = start;
2375 shmem_falloc.next = start;
2376 shmem_falloc.nr_falloced = 0;
2377 shmem_falloc.nr_unswapped = 0;
2378 spin_lock(&inode->i_lock);
2379 inode->i_private = &shmem_falloc;
2380 spin_unlock(&inode->i_lock);
2381
2382 for (index = start; index < end; index++) {
2383 struct page *page;
2384
2385 /*
2386 * Good, the fallocate(2) manpage permits EINTR: we may have
2387 * been interrupted because we are using up too much memory.
2388 */
2389 if (signal_pending(current))
2390 error = -EINTR;
2391 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2392 error = -ENOMEM;
2393 else
2394 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2395 if (error) {
2396 /* Remove the !PageUptodate pages we added */
2397 if (index > start) {
2398 shmem_undo_range(inode,
2399 (loff_t)start << PAGE_SHIFT,
2400 ((loff_t)index << PAGE_SHIFT) - 1, true);
2401 }
2402 goto undone;
2403 }
2404
2405 /*
2406 * Inform shmem_writepage() how far we have reached.
2407 * No need for lock or barrier: we have the page lock.
2408 */
2409 shmem_falloc.next++;
2410 if (!PageUptodate(page))
2411 shmem_falloc.nr_falloced++;
2412
2413 /*
2414 * If !PageUptodate, leave it that way so that freeable pages
2415 * can be recognized if we need to rollback on error later.
2416 * But set_page_dirty so that memory pressure will swap rather
2417 * than free the pages we are allocating (and SGP_CACHE pages
2418 * might still be clean: we now need to mark those dirty too).
2419 */
2420 set_page_dirty(page);
2421 unlock_page(page);
2422 put_page(page);
2423 cond_resched();
2424 }
2425
2426 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2427 i_size_write(inode, offset + len);
2428 inode->i_ctime = CURRENT_TIME;
2429 undone:
2430 spin_lock(&inode->i_lock);
2431 inode->i_private = NULL;
2432 spin_unlock(&inode->i_lock);
2433 out:
2434 inode_unlock(inode);
2435 return error;
2436 }
2437
2438 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2439 {
2440 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2441
2442 buf->f_type = TMPFS_MAGIC;
2443 buf->f_bsize = PAGE_SIZE;
2444 buf->f_namelen = NAME_MAX;
2445 if (sbinfo->max_blocks) {
2446 buf->f_blocks = sbinfo->max_blocks;
2447 buf->f_bavail =
2448 buf->f_bfree = sbinfo->max_blocks -
2449 percpu_counter_sum(&sbinfo->used_blocks);
2450 }
2451 if (sbinfo->max_inodes) {
2452 buf->f_files = sbinfo->max_inodes;
2453 buf->f_ffree = sbinfo->free_inodes;
2454 }
2455 /* else leave those fields 0 like simple_statfs */
2456 return 0;
2457 }
2458
2459 /*
2460 * File creation. Allocate an inode, and we're done..
2461 */
2462 static int
2463 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2464 {
2465 struct inode *inode;
2466 int error = -ENOSPC;
2467
2468 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2469 if (inode) {
2470 error = simple_acl_create(dir, inode);
2471 if (error)
2472 goto out_iput;
2473 error = security_inode_init_security(inode, dir,
2474 &dentry->d_name,
2475 shmem_initxattrs, NULL);
2476 if (error && error != -EOPNOTSUPP)
2477 goto out_iput;
2478
2479 error = 0;
2480 dir->i_size += BOGO_DIRENT_SIZE;
2481 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2482 d_instantiate(dentry, inode);
2483 dget(dentry); /* Extra count - pin the dentry in core */
2484 }
2485 return error;
2486 out_iput:
2487 iput(inode);
2488 return error;
2489 }
2490
2491 static int
2492 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2493 {
2494 struct inode *inode;
2495 int error = -ENOSPC;
2496
2497 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2498 if (inode) {
2499 error = security_inode_init_security(inode, dir,
2500 NULL,
2501 shmem_initxattrs, NULL);
2502 if (error && error != -EOPNOTSUPP)
2503 goto out_iput;
2504 error = simple_acl_create(dir, inode);
2505 if (error)
2506 goto out_iput;
2507 d_tmpfile(dentry, inode);
2508 }
2509 return error;
2510 out_iput:
2511 iput(inode);
2512 return error;
2513 }
2514
2515 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2516 {
2517 int error;
2518
2519 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2520 return error;
2521 inc_nlink(dir);
2522 return 0;
2523 }
2524
2525 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2526 bool excl)
2527 {
2528 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2529 }
2530
2531 /*
2532 * Link a file..
2533 */
2534 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2535 {
2536 struct inode *inode = d_inode(old_dentry);
2537 int ret;
2538
2539 /*
2540 * No ordinary (disk based) filesystem counts links as inodes;
2541 * but each new link needs a new dentry, pinning lowmem, and
2542 * tmpfs dentries cannot be pruned until they are unlinked.
2543 */
2544 ret = shmem_reserve_inode(inode->i_sb);
2545 if (ret)
2546 goto out;
2547
2548 dir->i_size += BOGO_DIRENT_SIZE;
2549 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2550 inc_nlink(inode);
2551 ihold(inode); /* New dentry reference */
2552 dget(dentry); /* Extra pinning count for the created dentry */
2553 d_instantiate(dentry, inode);
2554 out:
2555 return ret;
2556 }
2557
2558 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2559 {
2560 struct inode *inode = d_inode(dentry);
2561
2562 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2563 shmem_free_inode(inode->i_sb);
2564
2565 dir->i_size -= BOGO_DIRENT_SIZE;
2566 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2567 drop_nlink(inode);
2568 dput(dentry); /* Undo the count from "create" - this does all the work */
2569 return 0;
2570 }
2571
2572 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2573 {
2574 if (!simple_empty(dentry))
2575 return -ENOTEMPTY;
2576
2577 drop_nlink(d_inode(dentry));
2578 drop_nlink(dir);
2579 return shmem_unlink(dir, dentry);
2580 }
2581
2582 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2583 {
2584 bool old_is_dir = d_is_dir(old_dentry);
2585 bool new_is_dir = d_is_dir(new_dentry);
2586
2587 if (old_dir != new_dir && old_is_dir != new_is_dir) {
2588 if (old_is_dir) {
2589 drop_nlink(old_dir);
2590 inc_nlink(new_dir);
2591 } else {
2592 drop_nlink(new_dir);
2593 inc_nlink(old_dir);
2594 }
2595 }
2596 old_dir->i_ctime = old_dir->i_mtime =
2597 new_dir->i_ctime = new_dir->i_mtime =
2598 d_inode(old_dentry)->i_ctime =
2599 d_inode(new_dentry)->i_ctime = CURRENT_TIME;
2600
2601 return 0;
2602 }
2603
2604 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2605 {
2606 struct dentry *whiteout;
2607 int error;
2608
2609 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2610 if (!whiteout)
2611 return -ENOMEM;
2612
2613 error = shmem_mknod(old_dir, whiteout,
2614 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2615 dput(whiteout);
2616 if (error)
2617 return error;
2618
2619 /*
2620 * Cheat and hash the whiteout while the old dentry is still in
2621 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2622 *
2623 * d_lookup() will consistently find one of them at this point,
2624 * not sure which one, but that isn't even important.
2625 */
2626 d_rehash(whiteout);
2627 return 0;
2628 }
2629
2630 /*
2631 * The VFS layer already does all the dentry stuff for rename,
2632 * we just have to decrement the usage count for the target if
2633 * it exists so that the VFS layer correctly free's it when it
2634 * gets overwritten.
2635 */
2636 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
2637 {
2638 struct inode *inode = d_inode(old_dentry);
2639 int they_are_dirs = S_ISDIR(inode->i_mode);
2640
2641 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2642 return -EINVAL;
2643
2644 if (flags & RENAME_EXCHANGE)
2645 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2646
2647 if (!simple_empty(new_dentry))
2648 return -ENOTEMPTY;
2649
2650 if (flags & RENAME_WHITEOUT) {
2651 int error;
2652
2653 error = shmem_whiteout(old_dir, old_dentry);
2654 if (error)
2655 return error;
2656 }
2657
2658 if (d_really_is_positive(new_dentry)) {
2659 (void) shmem_unlink(new_dir, new_dentry);
2660 if (they_are_dirs) {
2661 drop_nlink(d_inode(new_dentry));
2662 drop_nlink(old_dir);
2663 }
2664 } else if (they_are_dirs) {
2665 drop_nlink(old_dir);
2666 inc_nlink(new_dir);
2667 }
2668
2669 old_dir->i_size -= BOGO_DIRENT_SIZE;
2670 new_dir->i_size += BOGO_DIRENT_SIZE;
2671 old_dir->i_ctime = old_dir->i_mtime =
2672 new_dir->i_ctime = new_dir->i_mtime =
2673 inode->i_ctime = CURRENT_TIME;
2674 return 0;
2675 }
2676
2677 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2678 {
2679 int error;
2680 int len;
2681 struct inode *inode;
2682 struct page *page;
2683 struct shmem_inode_info *info;
2684
2685 len = strlen(symname) + 1;
2686 if (len > PAGE_SIZE)
2687 return -ENAMETOOLONG;
2688
2689 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2690 if (!inode)
2691 return -ENOSPC;
2692
2693 error = security_inode_init_security(inode, dir, &dentry->d_name,
2694 shmem_initxattrs, NULL);
2695 if (error) {
2696 if (error != -EOPNOTSUPP) {
2697 iput(inode);
2698 return error;
2699 }
2700 error = 0;
2701 }
2702
2703 info = SHMEM_I(inode);
2704 inode->i_size = len-1;
2705 if (len <= SHORT_SYMLINK_LEN) {
2706 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
2707 if (!inode->i_link) {
2708 iput(inode);
2709 return -ENOMEM;
2710 }
2711 inode->i_op = &shmem_short_symlink_operations;
2712 } else {
2713 inode_nohighmem(inode);
2714 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
2715 if (error) {
2716 iput(inode);
2717 return error;
2718 }
2719 inode->i_mapping->a_ops = &shmem_aops;
2720 inode->i_op = &shmem_symlink_inode_operations;
2721 memcpy(page_address(page), symname, len);
2722 SetPageUptodate(page);
2723 set_page_dirty(page);
2724 unlock_page(page);
2725 put_page(page);
2726 }
2727 dir->i_size += BOGO_DIRENT_SIZE;
2728 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2729 d_instantiate(dentry, inode);
2730 dget(dentry);
2731 return 0;
2732 }
2733
2734 static void shmem_put_link(void *arg)
2735 {
2736 mark_page_accessed(arg);
2737 put_page(arg);
2738 }
2739
2740 static const char *shmem_get_link(struct dentry *dentry,
2741 struct inode *inode,
2742 struct delayed_call *done)
2743 {
2744 struct page *page = NULL;
2745 int error;
2746 if (!dentry) {
2747 page = find_get_page(inode->i_mapping, 0);
2748 if (!page)
2749 return ERR_PTR(-ECHILD);
2750 if (!PageUptodate(page)) {
2751 put_page(page);
2752 return ERR_PTR(-ECHILD);
2753 }
2754 } else {
2755 error = shmem_getpage(inode, 0, &page, SGP_READ);
2756 if (error)
2757 return ERR_PTR(error);
2758 unlock_page(page);
2759 }
2760 set_delayed_call(done, shmem_put_link, page);
2761 return page_address(page);
2762 }
2763
2764 #ifdef CONFIG_TMPFS_XATTR
2765 /*
2766 * Superblocks without xattr inode operations may get some security.* xattr
2767 * support from the LSM "for free". As soon as we have any other xattrs
2768 * like ACLs, we also need to implement the security.* handlers at
2769 * filesystem level, though.
2770 */
2771
2772 /*
2773 * Callback for security_inode_init_security() for acquiring xattrs.
2774 */
2775 static int shmem_initxattrs(struct inode *inode,
2776 const struct xattr *xattr_array,
2777 void *fs_info)
2778 {
2779 struct shmem_inode_info *info = SHMEM_I(inode);
2780 const struct xattr *xattr;
2781 struct simple_xattr *new_xattr;
2782 size_t len;
2783
2784 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2785 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2786 if (!new_xattr)
2787 return -ENOMEM;
2788
2789 len = strlen(xattr->name) + 1;
2790 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2791 GFP_KERNEL);
2792 if (!new_xattr->name) {
2793 kfree(new_xattr);
2794 return -ENOMEM;
2795 }
2796
2797 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2798 XATTR_SECURITY_PREFIX_LEN);
2799 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2800 xattr->name, len);
2801
2802 simple_xattr_list_add(&info->xattrs, new_xattr);
2803 }
2804
2805 return 0;
2806 }
2807
2808 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
2809 struct dentry *unused, struct inode *inode,
2810 const char *name, void *buffer, size_t size)
2811 {
2812 struct shmem_inode_info *info = SHMEM_I(inode);
2813
2814 name = xattr_full_name(handler, name);
2815 return simple_xattr_get(&info->xattrs, name, buffer, size);
2816 }
2817
2818 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
2819 struct dentry *unused, struct inode *inode,
2820 const char *name, const void *value,
2821 size_t size, int flags)
2822 {
2823 struct shmem_inode_info *info = SHMEM_I(inode);
2824
2825 name = xattr_full_name(handler, name);
2826 return simple_xattr_set(&info->xattrs, name, value, size, flags);
2827 }
2828
2829 static const struct xattr_handler shmem_security_xattr_handler = {
2830 .prefix = XATTR_SECURITY_PREFIX,
2831 .get = shmem_xattr_handler_get,
2832 .set = shmem_xattr_handler_set,
2833 };
2834
2835 static const struct xattr_handler shmem_trusted_xattr_handler = {
2836 .prefix = XATTR_TRUSTED_PREFIX,
2837 .get = shmem_xattr_handler_get,
2838 .set = shmem_xattr_handler_set,
2839 };
2840
2841 static const struct xattr_handler *shmem_xattr_handlers[] = {
2842 #ifdef CONFIG_TMPFS_POSIX_ACL
2843 &posix_acl_access_xattr_handler,
2844 &posix_acl_default_xattr_handler,
2845 #endif
2846 &shmem_security_xattr_handler,
2847 &shmem_trusted_xattr_handler,
2848 NULL
2849 };
2850
2851 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2852 {
2853 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2854 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
2855 }
2856 #endif /* CONFIG_TMPFS_XATTR */
2857
2858 static const struct inode_operations shmem_short_symlink_operations = {
2859 .readlink = generic_readlink,
2860 .get_link = simple_get_link,
2861 #ifdef CONFIG_TMPFS_XATTR
2862 .setxattr = generic_setxattr,
2863 .getxattr = generic_getxattr,
2864 .listxattr = shmem_listxattr,
2865 .removexattr = generic_removexattr,
2866 #endif
2867 };
2868
2869 static const struct inode_operations shmem_symlink_inode_operations = {
2870 .readlink = generic_readlink,
2871 .get_link = shmem_get_link,
2872 #ifdef CONFIG_TMPFS_XATTR
2873 .setxattr = generic_setxattr,
2874 .getxattr = generic_getxattr,
2875 .listxattr = shmem_listxattr,
2876 .removexattr = generic_removexattr,
2877 #endif
2878 };
2879
2880 static struct dentry *shmem_get_parent(struct dentry *child)
2881 {
2882 return ERR_PTR(-ESTALE);
2883 }
2884
2885 static int shmem_match(struct inode *ino, void *vfh)
2886 {
2887 __u32 *fh = vfh;
2888 __u64 inum = fh[2];
2889 inum = (inum << 32) | fh[1];
2890 return ino->i_ino == inum && fh[0] == ino->i_generation;
2891 }
2892
2893 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2894 struct fid *fid, int fh_len, int fh_type)
2895 {
2896 struct inode *inode;
2897 struct dentry *dentry = NULL;
2898 u64 inum;
2899
2900 if (fh_len < 3)
2901 return NULL;
2902
2903 inum = fid->raw[2];
2904 inum = (inum << 32) | fid->raw[1];
2905
2906 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2907 shmem_match, fid->raw);
2908 if (inode) {
2909 dentry = d_find_alias(inode);
2910 iput(inode);
2911 }
2912
2913 return dentry;
2914 }
2915
2916 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2917 struct inode *parent)
2918 {
2919 if (*len < 3) {
2920 *len = 3;
2921 return FILEID_INVALID;
2922 }
2923
2924 if (inode_unhashed(inode)) {
2925 /* Unfortunately insert_inode_hash is not idempotent,
2926 * so as we hash inodes here rather than at creation
2927 * time, we need a lock to ensure we only try
2928 * to do it once
2929 */
2930 static DEFINE_SPINLOCK(lock);
2931 spin_lock(&lock);
2932 if (inode_unhashed(inode))
2933 __insert_inode_hash(inode,
2934 inode->i_ino + inode->i_generation);
2935 spin_unlock(&lock);
2936 }
2937
2938 fh[0] = inode->i_generation;
2939 fh[1] = inode->i_ino;
2940 fh[2] = ((__u64)inode->i_ino) >> 32;
2941
2942 *len = 3;
2943 return 1;
2944 }
2945
2946 static const struct export_operations shmem_export_ops = {
2947 .get_parent = shmem_get_parent,
2948 .encode_fh = shmem_encode_fh,
2949 .fh_to_dentry = shmem_fh_to_dentry,
2950 };
2951
2952 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2953 bool remount)
2954 {
2955 char *this_char, *value, *rest;
2956 struct mempolicy *mpol = NULL;
2957 uid_t uid;
2958 gid_t gid;
2959
2960 while (options != NULL) {
2961 this_char = options;
2962 for (;;) {
2963 /*
2964 * NUL-terminate this option: unfortunately,
2965 * mount options form a comma-separated list,
2966 * but mpol's nodelist may also contain commas.
2967 */
2968 options = strchr(options, ',');
2969 if (options == NULL)
2970 break;
2971 options++;
2972 if (!isdigit(*options)) {
2973 options[-1] = '\0';
2974 break;
2975 }
2976 }
2977 if (!*this_char)
2978 continue;
2979 if ((value = strchr(this_char,'=')) != NULL) {
2980 *value++ = 0;
2981 } else {
2982 pr_err("tmpfs: No value for mount option '%s'\n",
2983 this_char);
2984 goto error;
2985 }
2986
2987 if (!strcmp(this_char,"size")) {
2988 unsigned long long size;
2989 size = memparse(value,&rest);
2990 if (*rest == '%') {
2991 size <<= PAGE_SHIFT;
2992 size *= totalram_pages;
2993 do_div(size, 100);
2994 rest++;
2995 }
2996 if (*rest)
2997 goto bad_val;
2998 sbinfo->max_blocks =
2999 DIV_ROUND_UP(size, PAGE_SIZE);
3000 } else if (!strcmp(this_char,"nr_blocks")) {
3001 sbinfo->max_blocks = memparse(value, &rest);
3002 if (*rest)
3003 goto bad_val;
3004 } else if (!strcmp(this_char,"nr_inodes")) {
3005 sbinfo->max_inodes = memparse(value, &rest);
3006 if (*rest)
3007 goto bad_val;
3008 } else if (!strcmp(this_char,"mode")) {
3009 if (remount)
3010 continue;
3011 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3012 if (*rest)
3013 goto bad_val;
3014 } else if (!strcmp(this_char,"uid")) {
3015 if (remount)
3016 continue;
3017 uid = simple_strtoul(value, &rest, 0);
3018 if (*rest)
3019 goto bad_val;
3020 sbinfo->uid = make_kuid(current_user_ns(), uid);
3021 if (!uid_valid(sbinfo->uid))
3022 goto bad_val;
3023 } else if (!strcmp(this_char,"gid")) {
3024 if (remount)
3025 continue;
3026 gid = simple_strtoul(value, &rest, 0);
3027 if (*rest)
3028 goto bad_val;
3029 sbinfo->gid = make_kgid(current_user_ns(), gid);
3030 if (!gid_valid(sbinfo->gid))
3031 goto bad_val;
3032 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3033 } else if (!strcmp(this_char, "huge")) {
3034 int huge;
3035 huge = shmem_parse_huge(value);
3036 if (huge < 0)
3037 goto bad_val;
3038 if (!has_transparent_hugepage() &&
3039 huge != SHMEM_HUGE_NEVER)
3040 goto bad_val;
3041 sbinfo->huge = huge;
3042 #endif
3043 #ifdef CONFIG_NUMA
3044 } else if (!strcmp(this_char,"mpol")) {
3045 mpol_put(mpol);
3046 mpol = NULL;
3047 if (mpol_parse_str(value, &mpol))
3048 goto bad_val;
3049 #endif
3050 } else {
3051 pr_err("tmpfs: Bad mount option %s\n", this_char);
3052 goto error;
3053 }
3054 }
3055 sbinfo->mpol = mpol;
3056 return 0;
3057
3058 bad_val:
3059 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3060 value, this_char);
3061 error:
3062 mpol_put(mpol);
3063 return 1;
3064
3065 }
3066
3067 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3068 {
3069 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3070 struct shmem_sb_info config = *sbinfo;
3071 unsigned long inodes;
3072 int error = -EINVAL;
3073
3074 config.mpol = NULL;
3075 if (shmem_parse_options(data, &config, true))
3076 return error;
3077
3078 spin_lock(&sbinfo->stat_lock);
3079 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3080 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3081 goto out;
3082 if (config.max_inodes < inodes)
3083 goto out;
3084 /*
3085 * Those tests disallow limited->unlimited while any are in use;
3086 * but we must separately disallow unlimited->limited, because
3087 * in that case we have no record of how much is already in use.
3088 */
3089 if (config.max_blocks && !sbinfo->max_blocks)
3090 goto out;
3091 if (config.max_inodes && !sbinfo->max_inodes)
3092 goto out;
3093
3094 error = 0;
3095 sbinfo->huge = config.huge;
3096 sbinfo->max_blocks = config.max_blocks;
3097 sbinfo->max_inodes = config.max_inodes;
3098 sbinfo->free_inodes = config.max_inodes - inodes;
3099
3100 /*
3101 * Preserve previous mempolicy unless mpol remount option was specified.
3102 */
3103 if (config.mpol) {
3104 mpol_put(sbinfo->mpol);
3105 sbinfo->mpol = config.mpol; /* transfers initial ref */
3106 }
3107 out:
3108 spin_unlock(&sbinfo->stat_lock);
3109 return error;
3110 }
3111
3112 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3113 {
3114 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3115
3116 if (sbinfo->max_blocks != shmem_default_max_blocks())
3117 seq_printf(seq, ",size=%luk",
3118 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3119 if (sbinfo->max_inodes != shmem_default_max_inodes())
3120 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3121 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
3122 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3123 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3124 seq_printf(seq, ",uid=%u",
3125 from_kuid_munged(&init_user_ns, sbinfo->uid));
3126 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3127 seq_printf(seq, ",gid=%u",
3128 from_kgid_munged(&init_user_ns, sbinfo->gid));
3129 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3130 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3131 if (sbinfo->huge)
3132 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3133 #endif
3134 shmem_show_mpol(seq, sbinfo->mpol);
3135 return 0;
3136 }
3137
3138 #define MFD_NAME_PREFIX "memfd:"
3139 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3140 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3141
3142 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
3143
3144 SYSCALL_DEFINE2(memfd_create,
3145 const char __user *, uname,
3146 unsigned int, flags)
3147 {
3148 struct shmem_inode_info *info;
3149 struct file *file;
3150 int fd, error;
3151 char *name;
3152 long len;
3153
3154 if (flags & ~(unsigned int)MFD_ALL_FLAGS)
3155 return -EINVAL;
3156
3157 /* length includes terminating zero */
3158 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
3159 if (len <= 0)
3160 return -EFAULT;
3161 if (len > MFD_NAME_MAX_LEN + 1)
3162 return -EINVAL;
3163
3164 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
3165 if (!name)
3166 return -ENOMEM;
3167
3168 strcpy(name, MFD_NAME_PREFIX);
3169 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
3170 error = -EFAULT;
3171 goto err_name;
3172 }
3173
3174 /* terminating-zero may have changed after strnlen_user() returned */
3175 if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3176 error = -EFAULT;
3177 goto err_name;
3178 }
3179
3180 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3181 if (fd < 0) {
3182 error = fd;
3183 goto err_name;
3184 }
3185
3186 file = shmem_file_setup(name, 0, VM_NORESERVE);
3187 if (IS_ERR(file)) {
3188 error = PTR_ERR(file);
3189 goto err_fd;
3190 }
3191 info = SHMEM_I(file_inode(file));
3192 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3193 file->f_flags |= O_RDWR | O_LARGEFILE;
3194 if (flags & MFD_ALLOW_SEALING)
3195 info->seals &= ~F_SEAL_SEAL;
3196
3197 fd_install(fd, file);
3198 kfree(name);
3199 return fd;
3200
3201 err_fd:
3202 put_unused_fd(fd);
3203 err_name:
3204 kfree(name);
3205 return error;
3206 }
3207
3208 #endif /* CONFIG_TMPFS */
3209
3210 static void shmem_put_super(struct super_block *sb)
3211 {
3212 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3213
3214 percpu_counter_destroy(&sbinfo->used_blocks);
3215 mpol_put(sbinfo->mpol);
3216 kfree(sbinfo);
3217 sb->s_fs_info = NULL;
3218 }
3219
3220 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3221 {
3222 struct inode *inode;
3223 struct shmem_sb_info *sbinfo;
3224 int err = -ENOMEM;
3225
3226 /* Round up to L1_CACHE_BYTES to resist false sharing */
3227 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3228 L1_CACHE_BYTES), GFP_KERNEL);
3229 if (!sbinfo)
3230 return -ENOMEM;
3231
3232 sbinfo->mode = S_IRWXUGO | S_ISVTX;
3233 sbinfo->uid = current_fsuid();
3234 sbinfo->gid = current_fsgid();
3235 sb->s_fs_info = sbinfo;
3236
3237 #ifdef CONFIG_TMPFS
3238 /*
3239 * Per default we only allow half of the physical ram per
3240 * tmpfs instance, limiting inodes to one per page of lowmem;
3241 * but the internal instance is left unlimited.
3242 */
3243 if (!(sb->s_flags & MS_KERNMOUNT)) {
3244 sbinfo->max_blocks = shmem_default_max_blocks();
3245 sbinfo->max_inodes = shmem_default_max_inodes();
3246 if (shmem_parse_options(data, sbinfo, false)) {
3247 err = -EINVAL;
3248 goto failed;
3249 }
3250 } else {
3251 sb->s_flags |= MS_NOUSER;
3252 }
3253 sb->s_export_op = &shmem_export_ops;
3254 sb->s_flags |= MS_NOSEC;
3255 #else
3256 sb->s_flags |= MS_NOUSER;
3257 #endif
3258
3259 spin_lock_init(&sbinfo->stat_lock);
3260 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3261 goto failed;
3262 sbinfo->free_inodes = sbinfo->max_inodes;
3263
3264 sb->s_maxbytes = MAX_LFS_FILESIZE;
3265 sb->s_blocksize = PAGE_SIZE;
3266 sb->s_blocksize_bits = PAGE_SHIFT;
3267 sb->s_magic = TMPFS_MAGIC;
3268 sb->s_op = &shmem_ops;
3269 sb->s_time_gran = 1;
3270 #ifdef CONFIG_TMPFS_XATTR
3271 sb->s_xattr = shmem_xattr_handlers;
3272 #endif
3273 #ifdef CONFIG_TMPFS_POSIX_ACL
3274 sb->s_flags |= MS_POSIXACL;
3275 #endif
3276
3277 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3278 if (!inode)
3279 goto failed;
3280 inode->i_uid = sbinfo->uid;
3281 inode->i_gid = sbinfo->gid;
3282 sb->s_root = d_make_root(inode);
3283 if (!sb->s_root)
3284 goto failed;
3285 return 0;
3286
3287 failed:
3288 shmem_put_super(sb);
3289 return err;
3290 }
3291
3292 static struct kmem_cache *shmem_inode_cachep;
3293
3294 static struct inode *shmem_alloc_inode(struct super_block *sb)
3295 {
3296 struct shmem_inode_info *info;
3297 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3298 if (!info)
3299 return NULL;
3300 return &info->vfs_inode;
3301 }
3302
3303 static void shmem_destroy_callback(struct rcu_head *head)
3304 {
3305 struct inode *inode = container_of(head, struct inode, i_rcu);
3306 if (S_ISLNK(inode->i_mode))
3307 kfree(inode->i_link);
3308 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3309 }
3310
3311 static void shmem_destroy_inode(struct inode *inode)
3312 {
3313 if (S_ISREG(inode->i_mode))
3314 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3315 call_rcu(&inode->i_rcu, shmem_destroy_callback);
3316 }
3317
3318 static void shmem_init_inode(void *foo)
3319 {
3320 struct shmem_inode_info *info = foo;
3321 inode_init_once(&info->vfs_inode);
3322 }
3323
3324 static int shmem_init_inodecache(void)
3325 {
3326 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3327 sizeof(struct shmem_inode_info),
3328 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3329 return 0;
3330 }
3331
3332 static void shmem_destroy_inodecache(void)
3333 {
3334 kmem_cache_destroy(shmem_inode_cachep);
3335 }
3336
3337 static const struct address_space_operations shmem_aops = {
3338 .writepage = shmem_writepage,
3339 .set_page_dirty = __set_page_dirty_no_writeback,
3340 #ifdef CONFIG_TMPFS
3341 .write_begin = shmem_write_begin,
3342 .write_end = shmem_write_end,
3343 #endif
3344 #ifdef CONFIG_MIGRATION
3345 .migratepage = migrate_page,
3346 #endif
3347 .error_remove_page = generic_error_remove_page,
3348 };
3349
3350 static const struct file_operations shmem_file_operations = {
3351 .mmap = shmem_mmap,
3352 .get_unmapped_area = shmem_get_unmapped_area,
3353 #ifdef CONFIG_TMPFS
3354 .llseek = shmem_file_llseek,
3355 .read_iter = shmem_file_read_iter,
3356 .write_iter = generic_file_write_iter,
3357 .fsync = noop_fsync,
3358 .splice_read = shmem_file_splice_read,
3359 .splice_write = iter_file_splice_write,
3360 .fallocate = shmem_fallocate,
3361 #endif
3362 };
3363
3364 static const struct inode_operations shmem_inode_operations = {
3365 .getattr = shmem_getattr,
3366 .setattr = shmem_setattr,
3367 #ifdef CONFIG_TMPFS_XATTR
3368 .setxattr = generic_setxattr,
3369 .getxattr = generic_getxattr,
3370 .listxattr = shmem_listxattr,
3371 .removexattr = generic_removexattr,
3372 .set_acl = simple_set_acl,
3373 #endif
3374 };
3375
3376 static const struct inode_operations shmem_dir_inode_operations = {
3377 #ifdef CONFIG_TMPFS
3378 .create = shmem_create,
3379 .lookup = simple_lookup,
3380 .link = shmem_link,
3381 .unlink = shmem_unlink,
3382 .symlink = shmem_symlink,
3383 .mkdir = shmem_mkdir,
3384 .rmdir = shmem_rmdir,
3385 .mknod = shmem_mknod,
3386 .rename2 = shmem_rename2,
3387 .tmpfile = shmem_tmpfile,
3388 #endif
3389 #ifdef CONFIG_TMPFS_XATTR
3390 .setxattr = generic_setxattr,
3391 .getxattr = generic_getxattr,
3392 .listxattr = shmem_listxattr,
3393 .removexattr = generic_removexattr,
3394 #endif
3395 #ifdef CONFIG_TMPFS_POSIX_ACL
3396 .setattr = shmem_setattr,
3397 .set_acl = simple_set_acl,
3398 #endif
3399 };
3400
3401 static const struct inode_operations shmem_special_inode_operations = {
3402 #ifdef CONFIG_TMPFS_XATTR
3403 .setxattr = generic_setxattr,
3404 .getxattr = generic_getxattr,
3405 .listxattr = shmem_listxattr,
3406 .removexattr = generic_removexattr,
3407 #endif
3408 #ifdef CONFIG_TMPFS_POSIX_ACL
3409 .setattr = shmem_setattr,
3410 .set_acl = simple_set_acl,
3411 #endif
3412 };
3413
3414 static const struct super_operations shmem_ops = {
3415 .alloc_inode = shmem_alloc_inode,
3416 .destroy_inode = shmem_destroy_inode,
3417 #ifdef CONFIG_TMPFS
3418 .statfs = shmem_statfs,
3419 .remount_fs = shmem_remount_fs,
3420 .show_options = shmem_show_options,
3421 #endif
3422 .evict_inode = shmem_evict_inode,
3423 .drop_inode = generic_delete_inode,
3424 .put_super = shmem_put_super,
3425 };
3426
3427 static const struct vm_operations_struct shmem_vm_ops = {
3428 .fault = shmem_fault,
3429 .map_pages = filemap_map_pages,
3430 #ifdef CONFIG_NUMA
3431 .set_policy = shmem_set_policy,
3432 .get_policy = shmem_get_policy,
3433 #endif
3434 };
3435
3436 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3437 int flags, const char *dev_name, void *data)
3438 {
3439 return mount_nodev(fs_type, flags, data, shmem_fill_super);
3440 }
3441
3442 static struct file_system_type shmem_fs_type = {
3443 .owner = THIS_MODULE,
3444 .name = "tmpfs",
3445 .mount = shmem_mount,
3446 .kill_sb = kill_litter_super,
3447 .fs_flags = FS_USERNS_MOUNT,
3448 };
3449
3450 int __init shmem_init(void)
3451 {
3452 int error;
3453
3454 /* If rootfs called this, don't re-init */
3455 if (shmem_inode_cachep)
3456 return 0;
3457
3458 error = shmem_init_inodecache();
3459 if (error)
3460 goto out3;
3461
3462 error = register_filesystem(&shmem_fs_type);
3463 if (error) {
3464 pr_err("Could not register tmpfs\n");
3465 goto out2;
3466 }
3467
3468 shm_mnt = kern_mount(&shmem_fs_type);
3469 if (IS_ERR(shm_mnt)) {
3470 error = PTR_ERR(shm_mnt);
3471 pr_err("Could not kern_mount tmpfs\n");
3472 goto out1;
3473 }
3474
3475 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3476 if (has_transparent_hugepage() && shmem_huge < SHMEM_HUGE_DENY)
3477 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3478 else
3479 shmem_huge = 0; /* just in case it was patched */
3480 #endif
3481 return 0;
3482
3483 out1:
3484 unregister_filesystem(&shmem_fs_type);
3485 out2:
3486 shmem_destroy_inodecache();
3487 out3:
3488 shm_mnt = ERR_PTR(error);
3489 return error;
3490 }
3491
3492 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
3493 static ssize_t shmem_enabled_show(struct kobject *kobj,
3494 struct kobj_attribute *attr, char *buf)
3495 {
3496 int values[] = {
3497 SHMEM_HUGE_ALWAYS,
3498 SHMEM_HUGE_WITHIN_SIZE,
3499 SHMEM_HUGE_ADVISE,
3500 SHMEM_HUGE_NEVER,
3501 SHMEM_HUGE_DENY,
3502 SHMEM_HUGE_FORCE,
3503 };
3504 int i, count;
3505
3506 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3507 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3508
3509 count += sprintf(buf + count, fmt,
3510 shmem_format_huge(values[i]));
3511 }
3512 buf[count - 1] = '\n';
3513 return count;
3514 }
3515
3516 static ssize_t shmem_enabled_store(struct kobject *kobj,
3517 struct kobj_attribute *attr, const char *buf, size_t count)
3518 {
3519 char tmp[16];
3520 int huge;
3521
3522 if (count + 1 > sizeof(tmp))
3523 return -EINVAL;
3524 memcpy(tmp, buf, count);
3525 tmp[count] = '\0';
3526 if (count && tmp[count - 1] == '\n')
3527 tmp[count - 1] = '\0';
3528
3529 huge = shmem_parse_huge(tmp);
3530 if (huge == -EINVAL)
3531 return -EINVAL;
3532 if (!has_transparent_hugepage() &&
3533 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3534 return -EINVAL;
3535
3536 shmem_huge = huge;
3537 if (shmem_huge < SHMEM_HUGE_DENY)
3538 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3539 return count;
3540 }
3541
3542 struct kobj_attribute shmem_enabled_attr =
3543 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3544 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
3545
3546 #else /* !CONFIG_SHMEM */
3547
3548 /*
3549 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3550 *
3551 * This is intended for small system where the benefits of the full
3552 * shmem code (swap-backed and resource-limited) are outweighed by
3553 * their complexity. On systems without swap this code should be
3554 * effectively equivalent, but much lighter weight.
3555 */
3556
3557 static struct file_system_type shmem_fs_type = {
3558 .name = "tmpfs",
3559 .mount = ramfs_mount,
3560 .kill_sb = kill_litter_super,
3561 .fs_flags = FS_USERNS_MOUNT,
3562 };
3563
3564 int __init shmem_init(void)
3565 {
3566 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3567
3568 shm_mnt = kern_mount(&shmem_fs_type);
3569 BUG_ON(IS_ERR(shm_mnt));
3570
3571 return 0;
3572 }
3573
3574 int shmem_unuse(swp_entry_t swap, struct page *page)
3575 {
3576 return 0;
3577 }
3578
3579 int shmem_lock(struct file *file, int lock, struct user_struct *user)
3580 {
3581 return 0;
3582 }
3583
3584 void shmem_unlock_mapping(struct address_space *mapping)
3585 {
3586 }
3587
3588 #ifdef CONFIG_MMU
3589 unsigned long shmem_get_unmapped_area(struct file *file,
3590 unsigned long addr, unsigned long len,
3591 unsigned long pgoff, unsigned long flags)
3592 {
3593 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
3594 }
3595 #endif
3596
3597 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3598 {
3599 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3600 }
3601 EXPORT_SYMBOL_GPL(shmem_truncate_range);
3602
3603 #define shmem_vm_ops generic_file_vm_ops
3604 #define shmem_file_operations ramfs_file_operations
3605 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
3606 #define shmem_acct_size(flags, size) 0
3607 #define shmem_unacct_size(flags, size) do {} while (0)
3608
3609 #endif /* CONFIG_SHMEM */
3610
3611 /* common code */
3612
3613 static struct dentry_operations anon_ops = {
3614 .d_dname = simple_dname
3615 };
3616
3617 static struct file *__shmem_file_setup(const char *name, loff_t size,
3618 unsigned long flags, unsigned int i_flags)
3619 {
3620 struct file *res;
3621 struct inode *inode;
3622 struct path path;
3623 struct super_block *sb;
3624 struct qstr this;
3625
3626 if (IS_ERR(shm_mnt))
3627 return ERR_CAST(shm_mnt);
3628
3629 if (size < 0 || size > MAX_LFS_FILESIZE)
3630 return ERR_PTR(-EINVAL);
3631
3632 if (shmem_acct_size(flags, size))
3633 return ERR_PTR(-ENOMEM);
3634
3635 res = ERR_PTR(-ENOMEM);
3636 this.name = name;
3637 this.len = strlen(name);
3638 this.hash = 0; /* will go */
3639 sb = shm_mnt->mnt_sb;
3640 path.mnt = mntget(shm_mnt);
3641 path.dentry = d_alloc_pseudo(sb, &this);
3642 if (!path.dentry)
3643 goto put_memory;
3644 d_set_d_op(path.dentry, &anon_ops);
3645
3646 res = ERR_PTR(-ENOSPC);
3647 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
3648 if (!inode)
3649 goto put_memory;
3650
3651 inode->i_flags |= i_flags;
3652 d_instantiate(path.dentry, inode);
3653 inode->i_size = size;
3654 clear_nlink(inode); /* It is unlinked */
3655 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3656 if (IS_ERR(res))
3657 goto put_path;
3658
3659 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3660 &shmem_file_operations);
3661 if (IS_ERR(res))
3662 goto put_path;
3663
3664 return res;
3665
3666 put_memory:
3667 shmem_unacct_size(flags, size);
3668 put_path:
3669 path_put(&path);
3670 return res;
3671 }
3672
3673 /**
3674 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3675 * kernel internal. There will be NO LSM permission checks against the
3676 * underlying inode. So users of this interface must do LSM checks at a
3677 * higher layer. The users are the big_key and shm implementations. LSM
3678 * checks are provided at the key or shm level rather than the inode.
3679 * @name: name for dentry (to be seen in /proc/<pid>/maps
3680 * @size: size to be set for the file
3681 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3682 */
3683 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3684 {
3685 return __shmem_file_setup(name, size, flags, S_PRIVATE);
3686 }
3687
3688 /**
3689 * shmem_file_setup - get an unlinked file living in tmpfs
3690 * @name: name for dentry (to be seen in /proc/<pid>/maps
3691 * @size: size to be set for the file
3692 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3693 */
3694 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3695 {
3696 return __shmem_file_setup(name, size, flags, 0);
3697 }
3698 EXPORT_SYMBOL_GPL(shmem_file_setup);
3699
3700 /**
3701 * shmem_zero_setup - setup a shared anonymous mapping
3702 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3703 */
3704 int shmem_zero_setup(struct vm_area_struct *vma)
3705 {
3706 struct file *file;
3707 loff_t size = vma->vm_end - vma->vm_start;
3708
3709 /*
3710 * Cloning a new file under mmap_sem leads to a lock ordering conflict
3711 * between XFS directory reading and selinux: since this file is only
3712 * accessible to the user through its mapping, use S_PRIVATE flag to
3713 * bypass file security, in the same way as shmem_kernel_file_setup().
3714 */
3715 file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
3716 if (IS_ERR(file))
3717 return PTR_ERR(file);
3718
3719 if (vma->vm_file)
3720 fput(vma->vm_file);
3721 vma->vm_file = file;
3722 vma->vm_ops = &shmem_vm_ops;
3723 return 0;
3724 }
3725
3726 /**
3727 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3728 * @mapping: the page's address_space
3729 * @index: the page index
3730 * @gfp: the page allocator flags to use if allocating
3731 *
3732 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3733 * with any new page allocations done using the specified allocation flags.
3734 * But read_cache_page_gfp() uses the ->readpage() method: which does not
3735 * suit tmpfs, since it may have pages in swapcache, and needs to find those
3736 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3737 *
3738 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3739 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3740 */
3741 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3742 pgoff_t index, gfp_t gfp)
3743 {
3744 #ifdef CONFIG_SHMEM
3745 struct inode *inode = mapping->host;
3746 struct page *page;
3747 int error;
3748
3749 BUG_ON(mapping->a_ops != &shmem_aops);
3750 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
3751 gfp, NULL, NULL);
3752 if (error)
3753 page = ERR_PTR(error);
3754 else
3755 unlock_page(page);
3756 return page;
3757 #else
3758 /*
3759 * The tiny !SHMEM case uses ramfs without swap
3760 */
3761 return read_cache_page_gfp(mapping, index, gfp);
3762 #endif
3763 }
3764 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
This page took 0.105307 seconds and 5 git commands to generate.