Merge branch 'x86-debug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/file.h>
30 #include <linux/mm.h>
31 #include <linux/export.h>
32 #include <linux/swap.h>
33
34 static struct vfsmount *shm_mnt;
35
36 #ifdef CONFIG_SHMEM
37 /*
38 * This virtual memory filesystem is heavily based on the ramfs. It
39 * extends ramfs by the ability to use swap and honor resource limits
40 * which makes it a completely usable filesystem.
41 */
42
43 #include <linux/xattr.h>
44 #include <linux/exportfs.h>
45 #include <linux/posix_acl.h>
46 #include <linux/generic_acl.h>
47 #include <linux/mman.h>
48 #include <linux/string.h>
49 #include <linux/slab.h>
50 #include <linux/backing-dev.h>
51 #include <linux/shmem_fs.h>
52 #include <linux/writeback.h>
53 #include <linux/blkdev.h>
54 #include <linux/pagevec.h>
55 #include <linux/percpu_counter.h>
56 #include <linux/falloc.h>
57 #include <linux/splice.h>
58 #include <linux/security.h>
59 #include <linux/swapops.h>
60 #include <linux/mempolicy.h>
61 #include <linux/namei.h>
62 #include <linux/ctype.h>
63 #include <linux/migrate.h>
64 #include <linux/highmem.h>
65 #include <linux/seq_file.h>
66 #include <linux/magic.h>
67
68 #include <asm/uaccess.h>
69 #include <asm/pgtable.h>
70
71 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
72 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
73
74 /* Pretend that each entry is of this size in directory's i_size */
75 #define BOGO_DIRENT_SIZE 20
76
77 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
78 #define SHORT_SYMLINK_LEN 128
79
80 struct shmem_xattr {
81 struct list_head list; /* anchored by shmem_inode_info->xattr_list */
82 char *name; /* xattr name */
83 size_t size;
84 char value[0];
85 };
86
87 /*
88 * shmem_fallocate and shmem_writepage communicate via inode->i_private
89 * (with i_mutex making sure that it has only one user at a time):
90 * we would prefer not to enlarge the shmem inode just for that.
91 */
92 struct shmem_falloc {
93 pgoff_t start; /* start of range currently being fallocated */
94 pgoff_t next; /* the next page offset to be fallocated */
95 pgoff_t nr_falloced; /* how many new pages have been fallocated */
96 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
97 };
98
99 /* Flag allocation requirements to shmem_getpage */
100 enum sgp_type {
101 SGP_READ, /* don't exceed i_size, don't allocate page */
102 SGP_CACHE, /* don't exceed i_size, may allocate page */
103 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
104 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */
105 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */
106 };
107
108 #ifdef CONFIG_TMPFS
109 static unsigned long shmem_default_max_blocks(void)
110 {
111 return totalram_pages / 2;
112 }
113
114 static unsigned long shmem_default_max_inodes(void)
115 {
116 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
117 }
118 #endif
119
120 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
121 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
122 struct shmem_inode_info *info, pgoff_t index);
123 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
124 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
125
126 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
127 struct page **pagep, enum sgp_type sgp, int *fault_type)
128 {
129 return shmem_getpage_gfp(inode, index, pagep, sgp,
130 mapping_gfp_mask(inode->i_mapping), fault_type);
131 }
132
133 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
134 {
135 return sb->s_fs_info;
136 }
137
138 /*
139 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
140 * for shared memory and for shared anonymous (/dev/zero) mappings
141 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
142 * consistent with the pre-accounting of private mappings ...
143 */
144 static inline int shmem_acct_size(unsigned long flags, loff_t size)
145 {
146 return (flags & VM_NORESERVE) ?
147 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
148 }
149
150 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
151 {
152 if (!(flags & VM_NORESERVE))
153 vm_unacct_memory(VM_ACCT(size));
154 }
155
156 /*
157 * ... whereas tmpfs objects are accounted incrementally as
158 * pages are allocated, in order to allow huge sparse files.
159 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
160 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
161 */
162 static inline int shmem_acct_block(unsigned long flags)
163 {
164 return (flags & VM_NORESERVE) ?
165 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
166 }
167
168 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
169 {
170 if (flags & VM_NORESERVE)
171 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
172 }
173
174 static const struct super_operations shmem_ops;
175 static const struct address_space_operations shmem_aops;
176 static const struct file_operations shmem_file_operations;
177 static const struct inode_operations shmem_inode_operations;
178 static const struct inode_operations shmem_dir_inode_operations;
179 static const struct inode_operations shmem_special_inode_operations;
180 static const struct vm_operations_struct shmem_vm_ops;
181
182 static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
183 .ra_pages = 0, /* No readahead */
184 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
185 };
186
187 static LIST_HEAD(shmem_swaplist);
188 static DEFINE_MUTEX(shmem_swaplist_mutex);
189
190 static int shmem_reserve_inode(struct super_block *sb)
191 {
192 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
193 if (sbinfo->max_inodes) {
194 spin_lock(&sbinfo->stat_lock);
195 if (!sbinfo->free_inodes) {
196 spin_unlock(&sbinfo->stat_lock);
197 return -ENOSPC;
198 }
199 sbinfo->free_inodes--;
200 spin_unlock(&sbinfo->stat_lock);
201 }
202 return 0;
203 }
204
205 static void shmem_free_inode(struct super_block *sb)
206 {
207 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
208 if (sbinfo->max_inodes) {
209 spin_lock(&sbinfo->stat_lock);
210 sbinfo->free_inodes++;
211 spin_unlock(&sbinfo->stat_lock);
212 }
213 }
214
215 /**
216 * shmem_recalc_inode - recalculate the block usage of an inode
217 * @inode: inode to recalc
218 *
219 * We have to calculate the free blocks since the mm can drop
220 * undirtied hole pages behind our back.
221 *
222 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
223 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
224 *
225 * It has to be called with the spinlock held.
226 */
227 static void shmem_recalc_inode(struct inode *inode)
228 {
229 struct shmem_inode_info *info = SHMEM_I(inode);
230 long freed;
231
232 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
233 if (freed > 0) {
234 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
235 if (sbinfo->max_blocks)
236 percpu_counter_add(&sbinfo->used_blocks, -freed);
237 info->alloced -= freed;
238 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
239 shmem_unacct_blocks(info->flags, freed);
240 }
241 }
242
243 /*
244 * Replace item expected in radix tree by a new item, while holding tree lock.
245 */
246 static int shmem_radix_tree_replace(struct address_space *mapping,
247 pgoff_t index, void *expected, void *replacement)
248 {
249 void **pslot;
250 void *item = NULL;
251
252 VM_BUG_ON(!expected);
253 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
254 if (pslot)
255 item = radix_tree_deref_slot_protected(pslot,
256 &mapping->tree_lock);
257 if (item != expected)
258 return -ENOENT;
259 if (replacement)
260 radix_tree_replace_slot(pslot, replacement);
261 else
262 radix_tree_delete(&mapping->page_tree, index);
263 return 0;
264 }
265
266 /*
267 * Sometimes, before we decide whether to proceed or to fail, we must check
268 * that an entry was not already brought back from swap by a racing thread.
269 *
270 * Checking page is not enough: by the time a SwapCache page is locked, it
271 * might be reused, and again be SwapCache, using the same swap as before.
272 */
273 static bool shmem_confirm_swap(struct address_space *mapping,
274 pgoff_t index, swp_entry_t swap)
275 {
276 void *item;
277
278 rcu_read_lock();
279 item = radix_tree_lookup(&mapping->page_tree, index);
280 rcu_read_unlock();
281 return item == swp_to_radix_entry(swap);
282 }
283
284 /*
285 * Like add_to_page_cache_locked, but error if expected item has gone.
286 */
287 static int shmem_add_to_page_cache(struct page *page,
288 struct address_space *mapping,
289 pgoff_t index, gfp_t gfp, void *expected)
290 {
291 int error;
292
293 VM_BUG_ON(!PageLocked(page));
294 VM_BUG_ON(!PageSwapBacked(page));
295
296 page_cache_get(page);
297 page->mapping = mapping;
298 page->index = index;
299
300 spin_lock_irq(&mapping->tree_lock);
301 if (!expected)
302 error = radix_tree_insert(&mapping->page_tree, index, page);
303 else
304 error = shmem_radix_tree_replace(mapping, index, expected,
305 page);
306 if (!error) {
307 mapping->nrpages++;
308 __inc_zone_page_state(page, NR_FILE_PAGES);
309 __inc_zone_page_state(page, NR_SHMEM);
310 spin_unlock_irq(&mapping->tree_lock);
311 } else {
312 page->mapping = NULL;
313 spin_unlock_irq(&mapping->tree_lock);
314 page_cache_release(page);
315 }
316 return error;
317 }
318
319 /*
320 * Like delete_from_page_cache, but substitutes swap for page.
321 */
322 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
323 {
324 struct address_space *mapping = page->mapping;
325 int error;
326
327 spin_lock_irq(&mapping->tree_lock);
328 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
329 page->mapping = NULL;
330 mapping->nrpages--;
331 __dec_zone_page_state(page, NR_FILE_PAGES);
332 __dec_zone_page_state(page, NR_SHMEM);
333 spin_unlock_irq(&mapping->tree_lock);
334 page_cache_release(page);
335 BUG_ON(error);
336 }
337
338 /*
339 * Like find_get_pages, but collecting swap entries as well as pages.
340 */
341 static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping,
342 pgoff_t start, unsigned int nr_pages,
343 struct page **pages, pgoff_t *indices)
344 {
345 unsigned int i;
346 unsigned int ret;
347 unsigned int nr_found;
348
349 rcu_read_lock();
350 restart:
351 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
352 (void ***)pages, indices, start, nr_pages);
353 ret = 0;
354 for (i = 0; i < nr_found; i++) {
355 struct page *page;
356 repeat:
357 page = radix_tree_deref_slot((void **)pages[i]);
358 if (unlikely(!page))
359 continue;
360 if (radix_tree_exception(page)) {
361 if (radix_tree_deref_retry(page))
362 goto restart;
363 /*
364 * Otherwise, we must be storing a swap entry
365 * here as an exceptional entry: so return it
366 * without attempting to raise page count.
367 */
368 goto export;
369 }
370 if (!page_cache_get_speculative(page))
371 goto repeat;
372
373 /* Has the page moved? */
374 if (unlikely(page != *((void **)pages[i]))) {
375 page_cache_release(page);
376 goto repeat;
377 }
378 export:
379 indices[ret] = indices[i];
380 pages[ret] = page;
381 ret++;
382 }
383 if (unlikely(!ret && nr_found))
384 goto restart;
385 rcu_read_unlock();
386 return ret;
387 }
388
389 /*
390 * Remove swap entry from radix tree, free the swap and its page cache.
391 */
392 static int shmem_free_swap(struct address_space *mapping,
393 pgoff_t index, void *radswap)
394 {
395 int error;
396
397 spin_lock_irq(&mapping->tree_lock);
398 error = shmem_radix_tree_replace(mapping, index, radswap, NULL);
399 spin_unlock_irq(&mapping->tree_lock);
400 if (!error)
401 free_swap_and_cache(radix_to_swp_entry(radswap));
402 return error;
403 }
404
405 /*
406 * Pagevec may contain swap entries, so shuffle up pages before releasing.
407 */
408 static void shmem_deswap_pagevec(struct pagevec *pvec)
409 {
410 int i, j;
411
412 for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
413 struct page *page = pvec->pages[i];
414 if (!radix_tree_exceptional_entry(page))
415 pvec->pages[j++] = page;
416 }
417 pvec->nr = j;
418 }
419
420 /*
421 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
422 */
423 void shmem_unlock_mapping(struct address_space *mapping)
424 {
425 struct pagevec pvec;
426 pgoff_t indices[PAGEVEC_SIZE];
427 pgoff_t index = 0;
428
429 pagevec_init(&pvec, 0);
430 /*
431 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
432 */
433 while (!mapping_unevictable(mapping)) {
434 /*
435 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
436 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
437 */
438 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
439 PAGEVEC_SIZE, pvec.pages, indices);
440 if (!pvec.nr)
441 break;
442 index = indices[pvec.nr - 1] + 1;
443 shmem_deswap_pagevec(&pvec);
444 check_move_unevictable_pages(pvec.pages, pvec.nr);
445 pagevec_release(&pvec);
446 cond_resched();
447 }
448 }
449
450 /*
451 * Remove range of pages and swap entries from radix tree, and free them.
452 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
453 */
454 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
455 bool unfalloc)
456 {
457 struct address_space *mapping = inode->i_mapping;
458 struct shmem_inode_info *info = SHMEM_I(inode);
459 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
460 pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
461 unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
462 unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
463 struct pagevec pvec;
464 pgoff_t indices[PAGEVEC_SIZE];
465 long nr_swaps_freed = 0;
466 pgoff_t index;
467 int i;
468
469 if (lend == -1)
470 end = -1; /* unsigned, so actually very big */
471
472 pagevec_init(&pvec, 0);
473 index = start;
474 while (index < end) {
475 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
476 min(end - index, (pgoff_t)PAGEVEC_SIZE),
477 pvec.pages, indices);
478 if (!pvec.nr)
479 break;
480 mem_cgroup_uncharge_start();
481 for (i = 0; i < pagevec_count(&pvec); i++) {
482 struct page *page = pvec.pages[i];
483
484 index = indices[i];
485 if (index >= end)
486 break;
487
488 if (radix_tree_exceptional_entry(page)) {
489 if (unfalloc)
490 continue;
491 nr_swaps_freed += !shmem_free_swap(mapping,
492 index, page);
493 continue;
494 }
495
496 if (!trylock_page(page))
497 continue;
498 if (!unfalloc || !PageUptodate(page)) {
499 if (page->mapping == mapping) {
500 VM_BUG_ON(PageWriteback(page));
501 truncate_inode_page(mapping, page);
502 }
503 }
504 unlock_page(page);
505 }
506 shmem_deswap_pagevec(&pvec);
507 pagevec_release(&pvec);
508 mem_cgroup_uncharge_end();
509 cond_resched();
510 index++;
511 }
512
513 if (partial_start) {
514 struct page *page = NULL;
515 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
516 if (page) {
517 unsigned int top = PAGE_CACHE_SIZE;
518 if (start > end) {
519 top = partial_end;
520 partial_end = 0;
521 }
522 zero_user_segment(page, partial_start, top);
523 set_page_dirty(page);
524 unlock_page(page);
525 page_cache_release(page);
526 }
527 }
528 if (partial_end) {
529 struct page *page = NULL;
530 shmem_getpage(inode, end, &page, SGP_READ, NULL);
531 if (page) {
532 zero_user_segment(page, 0, partial_end);
533 set_page_dirty(page);
534 unlock_page(page);
535 page_cache_release(page);
536 }
537 }
538 if (start >= end)
539 return;
540
541 index = start;
542 for ( ; ; ) {
543 cond_resched();
544 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
545 min(end - index, (pgoff_t)PAGEVEC_SIZE),
546 pvec.pages, indices);
547 if (!pvec.nr) {
548 if (index == start || unfalloc)
549 break;
550 index = start;
551 continue;
552 }
553 if ((index == start || unfalloc) && indices[0] >= end) {
554 shmem_deswap_pagevec(&pvec);
555 pagevec_release(&pvec);
556 break;
557 }
558 mem_cgroup_uncharge_start();
559 for (i = 0; i < pagevec_count(&pvec); i++) {
560 struct page *page = pvec.pages[i];
561
562 index = indices[i];
563 if (index >= end)
564 break;
565
566 if (radix_tree_exceptional_entry(page)) {
567 if (unfalloc)
568 continue;
569 nr_swaps_freed += !shmem_free_swap(mapping,
570 index, page);
571 continue;
572 }
573
574 lock_page(page);
575 if (!unfalloc || !PageUptodate(page)) {
576 if (page->mapping == mapping) {
577 VM_BUG_ON(PageWriteback(page));
578 truncate_inode_page(mapping, page);
579 }
580 }
581 unlock_page(page);
582 }
583 shmem_deswap_pagevec(&pvec);
584 pagevec_release(&pvec);
585 mem_cgroup_uncharge_end();
586 index++;
587 }
588
589 spin_lock(&info->lock);
590 info->swapped -= nr_swaps_freed;
591 shmem_recalc_inode(inode);
592 spin_unlock(&info->lock);
593 }
594
595 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
596 {
597 shmem_undo_range(inode, lstart, lend, false);
598 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
599 }
600 EXPORT_SYMBOL_GPL(shmem_truncate_range);
601
602 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
603 {
604 struct inode *inode = dentry->d_inode;
605 int error;
606
607 error = inode_change_ok(inode, attr);
608 if (error)
609 return error;
610
611 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
612 loff_t oldsize = inode->i_size;
613 loff_t newsize = attr->ia_size;
614
615 if (newsize != oldsize) {
616 i_size_write(inode, newsize);
617 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
618 }
619 if (newsize < oldsize) {
620 loff_t holebegin = round_up(newsize, PAGE_SIZE);
621 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
622 shmem_truncate_range(inode, newsize, (loff_t)-1);
623 /* unmap again to remove racily COWed private pages */
624 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
625 }
626 }
627
628 setattr_copy(inode, attr);
629 #ifdef CONFIG_TMPFS_POSIX_ACL
630 if (attr->ia_valid & ATTR_MODE)
631 error = generic_acl_chmod(inode);
632 #endif
633 return error;
634 }
635
636 static void shmem_evict_inode(struct inode *inode)
637 {
638 struct shmem_inode_info *info = SHMEM_I(inode);
639 struct shmem_xattr *xattr, *nxattr;
640
641 if (inode->i_mapping->a_ops == &shmem_aops) {
642 shmem_unacct_size(info->flags, inode->i_size);
643 inode->i_size = 0;
644 shmem_truncate_range(inode, 0, (loff_t)-1);
645 if (!list_empty(&info->swaplist)) {
646 mutex_lock(&shmem_swaplist_mutex);
647 list_del_init(&info->swaplist);
648 mutex_unlock(&shmem_swaplist_mutex);
649 }
650 } else
651 kfree(info->symlink);
652
653 list_for_each_entry_safe(xattr, nxattr, &info->xattr_list, list) {
654 kfree(xattr->name);
655 kfree(xattr);
656 }
657 BUG_ON(inode->i_blocks);
658 shmem_free_inode(inode->i_sb);
659 clear_inode(inode);
660 }
661
662 /*
663 * If swap found in inode, free it and move page from swapcache to filecache.
664 */
665 static int shmem_unuse_inode(struct shmem_inode_info *info,
666 swp_entry_t swap, struct page **pagep)
667 {
668 struct address_space *mapping = info->vfs_inode.i_mapping;
669 void *radswap;
670 pgoff_t index;
671 gfp_t gfp;
672 int error = 0;
673
674 radswap = swp_to_radix_entry(swap);
675 index = radix_tree_locate_item(&mapping->page_tree, radswap);
676 if (index == -1)
677 return 0;
678
679 /*
680 * Move _head_ to start search for next from here.
681 * But be careful: shmem_evict_inode checks list_empty without taking
682 * mutex, and there's an instant in list_move_tail when info->swaplist
683 * would appear empty, if it were the only one on shmem_swaplist.
684 */
685 if (shmem_swaplist.next != &info->swaplist)
686 list_move_tail(&shmem_swaplist, &info->swaplist);
687
688 gfp = mapping_gfp_mask(mapping);
689 if (shmem_should_replace_page(*pagep, gfp)) {
690 mutex_unlock(&shmem_swaplist_mutex);
691 error = shmem_replace_page(pagep, gfp, info, index);
692 mutex_lock(&shmem_swaplist_mutex);
693 /*
694 * We needed to drop mutex to make that restrictive page
695 * allocation, but the inode might have been freed while we
696 * dropped it: although a racing shmem_evict_inode() cannot
697 * complete without emptying the radix_tree, our page lock
698 * on this swapcache page is not enough to prevent that -
699 * free_swap_and_cache() of our swap entry will only
700 * trylock_page(), removing swap from radix_tree whatever.
701 *
702 * We must not proceed to shmem_add_to_page_cache() if the
703 * inode has been freed, but of course we cannot rely on
704 * inode or mapping or info to check that. However, we can
705 * safely check if our swap entry is still in use (and here
706 * it can't have got reused for another page): if it's still
707 * in use, then the inode cannot have been freed yet, and we
708 * can safely proceed (if it's no longer in use, that tells
709 * nothing about the inode, but we don't need to unuse swap).
710 */
711 if (!page_swapcount(*pagep))
712 error = -ENOENT;
713 }
714
715 /*
716 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
717 * but also to hold up shmem_evict_inode(): so inode cannot be freed
718 * beneath us (pagelock doesn't help until the page is in pagecache).
719 */
720 if (!error)
721 error = shmem_add_to_page_cache(*pagep, mapping, index,
722 GFP_NOWAIT, radswap);
723 if (error != -ENOMEM) {
724 /*
725 * Truncation and eviction use free_swap_and_cache(), which
726 * only does trylock page: if we raced, best clean up here.
727 */
728 delete_from_swap_cache(*pagep);
729 set_page_dirty(*pagep);
730 if (!error) {
731 spin_lock(&info->lock);
732 info->swapped--;
733 spin_unlock(&info->lock);
734 swap_free(swap);
735 }
736 error = 1; /* not an error, but entry was found */
737 }
738 return error;
739 }
740
741 /*
742 * Search through swapped inodes to find and replace swap by page.
743 */
744 int shmem_unuse(swp_entry_t swap, struct page *page)
745 {
746 struct list_head *this, *next;
747 struct shmem_inode_info *info;
748 int found = 0;
749 int error = 0;
750
751 /*
752 * There's a faint possibility that swap page was replaced before
753 * caller locked it: caller will come back later with the right page.
754 */
755 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
756 goto out;
757
758 /*
759 * Charge page using GFP_KERNEL while we can wait, before taking
760 * the shmem_swaplist_mutex which might hold up shmem_writepage().
761 * Charged back to the user (not to caller) when swap account is used.
762 */
763 error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
764 if (error)
765 goto out;
766 /* No radix_tree_preload: swap entry keeps a place for page in tree */
767
768 mutex_lock(&shmem_swaplist_mutex);
769 list_for_each_safe(this, next, &shmem_swaplist) {
770 info = list_entry(this, struct shmem_inode_info, swaplist);
771 if (info->swapped)
772 found = shmem_unuse_inode(info, swap, &page);
773 else
774 list_del_init(&info->swaplist);
775 cond_resched();
776 if (found)
777 break;
778 }
779 mutex_unlock(&shmem_swaplist_mutex);
780
781 if (found < 0)
782 error = found;
783 out:
784 unlock_page(page);
785 page_cache_release(page);
786 return error;
787 }
788
789 /*
790 * Move the page from the page cache to the swap cache.
791 */
792 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
793 {
794 struct shmem_inode_info *info;
795 struct address_space *mapping;
796 struct inode *inode;
797 swp_entry_t swap;
798 pgoff_t index;
799
800 BUG_ON(!PageLocked(page));
801 mapping = page->mapping;
802 index = page->index;
803 inode = mapping->host;
804 info = SHMEM_I(inode);
805 if (info->flags & VM_LOCKED)
806 goto redirty;
807 if (!total_swap_pages)
808 goto redirty;
809
810 /*
811 * shmem_backing_dev_info's capabilities prevent regular writeback or
812 * sync from ever calling shmem_writepage; but a stacking filesystem
813 * might use ->writepage of its underlying filesystem, in which case
814 * tmpfs should write out to swap only in response to memory pressure,
815 * and not for the writeback threads or sync.
816 */
817 if (!wbc->for_reclaim) {
818 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
819 goto redirty;
820 }
821
822 /*
823 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
824 * value into swapfile.c, the only way we can correctly account for a
825 * fallocated page arriving here is now to initialize it and write it.
826 *
827 * That's okay for a page already fallocated earlier, but if we have
828 * not yet completed the fallocation, then (a) we want to keep track
829 * of this page in case we have to undo it, and (b) it may not be a
830 * good idea to continue anyway, once we're pushing into swap. So
831 * reactivate the page, and let shmem_fallocate() quit when too many.
832 */
833 if (!PageUptodate(page)) {
834 if (inode->i_private) {
835 struct shmem_falloc *shmem_falloc;
836 spin_lock(&inode->i_lock);
837 shmem_falloc = inode->i_private;
838 if (shmem_falloc &&
839 index >= shmem_falloc->start &&
840 index < shmem_falloc->next)
841 shmem_falloc->nr_unswapped++;
842 else
843 shmem_falloc = NULL;
844 spin_unlock(&inode->i_lock);
845 if (shmem_falloc)
846 goto redirty;
847 }
848 clear_highpage(page);
849 flush_dcache_page(page);
850 SetPageUptodate(page);
851 }
852
853 swap = get_swap_page();
854 if (!swap.val)
855 goto redirty;
856
857 /*
858 * Add inode to shmem_unuse()'s list of swapped-out inodes,
859 * if it's not already there. Do it now before the page is
860 * moved to swap cache, when its pagelock no longer protects
861 * the inode from eviction. But don't unlock the mutex until
862 * we've incremented swapped, because shmem_unuse_inode() will
863 * prune a !swapped inode from the swaplist under this mutex.
864 */
865 mutex_lock(&shmem_swaplist_mutex);
866 if (list_empty(&info->swaplist))
867 list_add_tail(&info->swaplist, &shmem_swaplist);
868
869 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
870 swap_shmem_alloc(swap);
871 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
872
873 spin_lock(&info->lock);
874 info->swapped++;
875 shmem_recalc_inode(inode);
876 spin_unlock(&info->lock);
877
878 mutex_unlock(&shmem_swaplist_mutex);
879 BUG_ON(page_mapped(page));
880 swap_writepage(page, wbc);
881 return 0;
882 }
883
884 mutex_unlock(&shmem_swaplist_mutex);
885 swapcache_free(swap, NULL);
886 redirty:
887 set_page_dirty(page);
888 if (wbc->for_reclaim)
889 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
890 unlock_page(page);
891 return 0;
892 }
893
894 #ifdef CONFIG_NUMA
895 #ifdef CONFIG_TMPFS
896 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
897 {
898 char buffer[64];
899
900 if (!mpol || mpol->mode == MPOL_DEFAULT)
901 return; /* show nothing */
902
903 mpol_to_str(buffer, sizeof(buffer), mpol, 1);
904
905 seq_printf(seq, ",mpol=%s", buffer);
906 }
907
908 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
909 {
910 struct mempolicy *mpol = NULL;
911 if (sbinfo->mpol) {
912 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
913 mpol = sbinfo->mpol;
914 mpol_get(mpol);
915 spin_unlock(&sbinfo->stat_lock);
916 }
917 return mpol;
918 }
919 #endif /* CONFIG_TMPFS */
920
921 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
922 struct shmem_inode_info *info, pgoff_t index)
923 {
924 struct mempolicy mpol, *spol;
925 struct vm_area_struct pvma;
926
927 spol = mpol_cond_copy(&mpol,
928 mpol_shared_policy_lookup(&info->policy, index));
929
930 /* Create a pseudo vma that just contains the policy */
931 pvma.vm_start = 0;
932 pvma.vm_pgoff = index;
933 pvma.vm_ops = NULL;
934 pvma.vm_policy = spol;
935 return swapin_readahead(swap, gfp, &pvma, 0);
936 }
937
938 static struct page *shmem_alloc_page(gfp_t gfp,
939 struct shmem_inode_info *info, pgoff_t index)
940 {
941 struct vm_area_struct pvma;
942
943 /* Create a pseudo vma that just contains the policy */
944 pvma.vm_start = 0;
945 pvma.vm_pgoff = index;
946 pvma.vm_ops = NULL;
947 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
948
949 /*
950 * alloc_page_vma() will drop the shared policy reference
951 */
952 return alloc_page_vma(gfp, &pvma, 0);
953 }
954 #else /* !CONFIG_NUMA */
955 #ifdef CONFIG_TMPFS
956 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
957 {
958 }
959 #endif /* CONFIG_TMPFS */
960
961 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
962 struct shmem_inode_info *info, pgoff_t index)
963 {
964 return swapin_readahead(swap, gfp, NULL, 0);
965 }
966
967 static inline struct page *shmem_alloc_page(gfp_t gfp,
968 struct shmem_inode_info *info, pgoff_t index)
969 {
970 return alloc_page(gfp);
971 }
972 #endif /* CONFIG_NUMA */
973
974 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
975 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
976 {
977 return NULL;
978 }
979 #endif
980
981 /*
982 * When a page is moved from swapcache to shmem filecache (either by the
983 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
984 * shmem_unuse_inode()), it may have been read in earlier from swap, in
985 * ignorance of the mapping it belongs to. If that mapping has special
986 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
987 * we may need to copy to a suitable page before moving to filecache.
988 *
989 * In a future release, this may well be extended to respect cpuset and
990 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
991 * but for now it is a simple matter of zone.
992 */
993 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
994 {
995 return page_zonenum(page) > gfp_zone(gfp);
996 }
997
998 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
999 struct shmem_inode_info *info, pgoff_t index)
1000 {
1001 struct page *oldpage, *newpage;
1002 struct address_space *swap_mapping;
1003 pgoff_t swap_index;
1004 int error;
1005
1006 oldpage = *pagep;
1007 swap_index = page_private(oldpage);
1008 swap_mapping = page_mapping(oldpage);
1009
1010 /*
1011 * We have arrived here because our zones are constrained, so don't
1012 * limit chance of success by further cpuset and node constraints.
1013 */
1014 gfp &= ~GFP_CONSTRAINT_MASK;
1015 newpage = shmem_alloc_page(gfp, info, index);
1016 if (!newpage)
1017 return -ENOMEM;
1018
1019 page_cache_get(newpage);
1020 copy_highpage(newpage, oldpage);
1021 flush_dcache_page(newpage);
1022
1023 __set_page_locked(newpage);
1024 SetPageUptodate(newpage);
1025 SetPageSwapBacked(newpage);
1026 set_page_private(newpage, swap_index);
1027 SetPageSwapCache(newpage);
1028
1029 /*
1030 * Our caller will very soon move newpage out of swapcache, but it's
1031 * a nice clean interface for us to replace oldpage by newpage there.
1032 */
1033 spin_lock_irq(&swap_mapping->tree_lock);
1034 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1035 newpage);
1036 if (!error) {
1037 __inc_zone_page_state(newpage, NR_FILE_PAGES);
1038 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1039 }
1040 spin_unlock_irq(&swap_mapping->tree_lock);
1041
1042 if (unlikely(error)) {
1043 /*
1044 * Is this possible? I think not, now that our callers check
1045 * both PageSwapCache and page_private after getting page lock;
1046 * but be defensive. Reverse old to newpage for clear and free.
1047 */
1048 oldpage = newpage;
1049 } else {
1050 mem_cgroup_replace_page_cache(oldpage, newpage);
1051 lru_cache_add_anon(newpage);
1052 *pagep = newpage;
1053 }
1054
1055 ClearPageSwapCache(oldpage);
1056 set_page_private(oldpage, 0);
1057
1058 unlock_page(oldpage);
1059 page_cache_release(oldpage);
1060 page_cache_release(oldpage);
1061 return error;
1062 }
1063
1064 /*
1065 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1066 *
1067 * If we allocate a new one we do not mark it dirty. That's up to the
1068 * vm. If we swap it in we mark it dirty since we also free the swap
1069 * entry since a page cannot live in both the swap and page cache
1070 */
1071 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1072 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1073 {
1074 struct address_space *mapping = inode->i_mapping;
1075 struct shmem_inode_info *info;
1076 struct shmem_sb_info *sbinfo;
1077 struct page *page;
1078 swp_entry_t swap;
1079 int error;
1080 int once = 0;
1081 int alloced = 0;
1082
1083 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1084 return -EFBIG;
1085 repeat:
1086 swap.val = 0;
1087 page = find_lock_page(mapping, index);
1088 if (radix_tree_exceptional_entry(page)) {
1089 swap = radix_to_swp_entry(page);
1090 page = NULL;
1091 }
1092
1093 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1094 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1095 error = -EINVAL;
1096 goto failed;
1097 }
1098
1099 /* fallocated page? */
1100 if (page && !PageUptodate(page)) {
1101 if (sgp != SGP_READ)
1102 goto clear;
1103 unlock_page(page);
1104 page_cache_release(page);
1105 page = NULL;
1106 }
1107 if (page || (sgp == SGP_READ && !swap.val)) {
1108 *pagep = page;
1109 return 0;
1110 }
1111
1112 /*
1113 * Fast cache lookup did not find it:
1114 * bring it back from swap or allocate.
1115 */
1116 info = SHMEM_I(inode);
1117 sbinfo = SHMEM_SB(inode->i_sb);
1118
1119 if (swap.val) {
1120 /* Look it up and read it in.. */
1121 page = lookup_swap_cache(swap);
1122 if (!page) {
1123 /* here we actually do the io */
1124 if (fault_type)
1125 *fault_type |= VM_FAULT_MAJOR;
1126 page = shmem_swapin(swap, gfp, info, index);
1127 if (!page) {
1128 error = -ENOMEM;
1129 goto failed;
1130 }
1131 }
1132
1133 /* We have to do this with page locked to prevent races */
1134 lock_page(page);
1135 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1136 !shmem_confirm_swap(mapping, index, swap)) {
1137 error = -EEXIST; /* try again */
1138 goto unlock;
1139 }
1140 if (!PageUptodate(page)) {
1141 error = -EIO;
1142 goto failed;
1143 }
1144 wait_on_page_writeback(page);
1145
1146 if (shmem_should_replace_page(page, gfp)) {
1147 error = shmem_replace_page(&page, gfp, info, index);
1148 if (error)
1149 goto failed;
1150 }
1151
1152 error = mem_cgroup_cache_charge(page, current->mm,
1153 gfp & GFP_RECLAIM_MASK);
1154 if (!error) {
1155 error = shmem_add_to_page_cache(page, mapping, index,
1156 gfp, swp_to_radix_entry(swap));
1157 /* We already confirmed swap, and make no allocation */
1158 VM_BUG_ON(error);
1159 }
1160 if (error)
1161 goto failed;
1162
1163 spin_lock(&info->lock);
1164 info->swapped--;
1165 shmem_recalc_inode(inode);
1166 spin_unlock(&info->lock);
1167
1168 delete_from_swap_cache(page);
1169 set_page_dirty(page);
1170 swap_free(swap);
1171
1172 } else {
1173 if (shmem_acct_block(info->flags)) {
1174 error = -ENOSPC;
1175 goto failed;
1176 }
1177 if (sbinfo->max_blocks) {
1178 if (percpu_counter_compare(&sbinfo->used_blocks,
1179 sbinfo->max_blocks) >= 0) {
1180 error = -ENOSPC;
1181 goto unacct;
1182 }
1183 percpu_counter_inc(&sbinfo->used_blocks);
1184 }
1185
1186 page = shmem_alloc_page(gfp, info, index);
1187 if (!page) {
1188 error = -ENOMEM;
1189 goto decused;
1190 }
1191
1192 SetPageSwapBacked(page);
1193 __set_page_locked(page);
1194 error = mem_cgroup_cache_charge(page, current->mm,
1195 gfp & GFP_RECLAIM_MASK);
1196 if (error)
1197 goto decused;
1198 error = radix_tree_preload(gfp & GFP_RECLAIM_MASK);
1199 if (!error) {
1200 error = shmem_add_to_page_cache(page, mapping, index,
1201 gfp, NULL);
1202 radix_tree_preload_end();
1203 }
1204 if (error) {
1205 mem_cgroup_uncharge_cache_page(page);
1206 goto decused;
1207 }
1208 lru_cache_add_anon(page);
1209
1210 spin_lock(&info->lock);
1211 info->alloced++;
1212 inode->i_blocks += BLOCKS_PER_PAGE;
1213 shmem_recalc_inode(inode);
1214 spin_unlock(&info->lock);
1215 alloced = true;
1216
1217 /*
1218 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1219 */
1220 if (sgp == SGP_FALLOC)
1221 sgp = SGP_WRITE;
1222 clear:
1223 /*
1224 * Let SGP_WRITE caller clear ends if write does not fill page;
1225 * but SGP_FALLOC on a page fallocated earlier must initialize
1226 * it now, lest undo on failure cancel our earlier guarantee.
1227 */
1228 if (sgp != SGP_WRITE) {
1229 clear_highpage(page);
1230 flush_dcache_page(page);
1231 SetPageUptodate(page);
1232 }
1233 if (sgp == SGP_DIRTY)
1234 set_page_dirty(page);
1235 }
1236
1237 /* Perhaps the file has been truncated since we checked */
1238 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1239 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1240 error = -EINVAL;
1241 if (alloced)
1242 goto trunc;
1243 else
1244 goto failed;
1245 }
1246 *pagep = page;
1247 return 0;
1248
1249 /*
1250 * Error recovery.
1251 */
1252 trunc:
1253 info = SHMEM_I(inode);
1254 ClearPageDirty(page);
1255 delete_from_page_cache(page);
1256 spin_lock(&info->lock);
1257 info->alloced--;
1258 inode->i_blocks -= BLOCKS_PER_PAGE;
1259 spin_unlock(&info->lock);
1260 decused:
1261 sbinfo = SHMEM_SB(inode->i_sb);
1262 if (sbinfo->max_blocks)
1263 percpu_counter_add(&sbinfo->used_blocks, -1);
1264 unacct:
1265 shmem_unacct_blocks(info->flags, 1);
1266 failed:
1267 if (swap.val && error != -EINVAL &&
1268 !shmem_confirm_swap(mapping, index, swap))
1269 error = -EEXIST;
1270 unlock:
1271 if (page) {
1272 unlock_page(page);
1273 page_cache_release(page);
1274 }
1275 if (error == -ENOSPC && !once++) {
1276 info = SHMEM_I(inode);
1277 spin_lock(&info->lock);
1278 shmem_recalc_inode(inode);
1279 spin_unlock(&info->lock);
1280 goto repeat;
1281 }
1282 if (error == -EEXIST) /* from above or from radix_tree_insert */
1283 goto repeat;
1284 return error;
1285 }
1286
1287 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1288 {
1289 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1290 int error;
1291 int ret = VM_FAULT_LOCKED;
1292
1293 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1294 if (error)
1295 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1296
1297 if (ret & VM_FAULT_MAJOR) {
1298 count_vm_event(PGMAJFAULT);
1299 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1300 }
1301 return ret;
1302 }
1303
1304 #ifdef CONFIG_NUMA
1305 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1306 {
1307 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1308 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1309 }
1310
1311 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1312 unsigned long addr)
1313 {
1314 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1315 pgoff_t index;
1316
1317 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1318 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1319 }
1320 #endif
1321
1322 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1323 {
1324 struct inode *inode = file->f_path.dentry->d_inode;
1325 struct shmem_inode_info *info = SHMEM_I(inode);
1326 int retval = -ENOMEM;
1327
1328 spin_lock(&info->lock);
1329 if (lock && !(info->flags & VM_LOCKED)) {
1330 if (!user_shm_lock(inode->i_size, user))
1331 goto out_nomem;
1332 info->flags |= VM_LOCKED;
1333 mapping_set_unevictable(file->f_mapping);
1334 }
1335 if (!lock && (info->flags & VM_LOCKED) && user) {
1336 user_shm_unlock(inode->i_size, user);
1337 info->flags &= ~VM_LOCKED;
1338 mapping_clear_unevictable(file->f_mapping);
1339 }
1340 retval = 0;
1341
1342 out_nomem:
1343 spin_unlock(&info->lock);
1344 return retval;
1345 }
1346
1347 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1348 {
1349 file_accessed(file);
1350 vma->vm_ops = &shmem_vm_ops;
1351 vma->vm_flags |= VM_CAN_NONLINEAR;
1352 return 0;
1353 }
1354
1355 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1356 umode_t mode, dev_t dev, unsigned long flags)
1357 {
1358 struct inode *inode;
1359 struct shmem_inode_info *info;
1360 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1361
1362 if (shmem_reserve_inode(sb))
1363 return NULL;
1364
1365 inode = new_inode(sb);
1366 if (inode) {
1367 inode->i_ino = get_next_ino();
1368 inode_init_owner(inode, dir, mode);
1369 inode->i_blocks = 0;
1370 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1371 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1372 inode->i_generation = get_seconds();
1373 info = SHMEM_I(inode);
1374 memset(info, 0, (char *)inode - (char *)info);
1375 spin_lock_init(&info->lock);
1376 info->flags = flags & VM_NORESERVE;
1377 INIT_LIST_HEAD(&info->swaplist);
1378 INIT_LIST_HEAD(&info->xattr_list);
1379 cache_no_acl(inode);
1380
1381 switch (mode & S_IFMT) {
1382 default:
1383 inode->i_op = &shmem_special_inode_operations;
1384 init_special_inode(inode, mode, dev);
1385 break;
1386 case S_IFREG:
1387 inode->i_mapping->a_ops = &shmem_aops;
1388 inode->i_op = &shmem_inode_operations;
1389 inode->i_fop = &shmem_file_operations;
1390 mpol_shared_policy_init(&info->policy,
1391 shmem_get_sbmpol(sbinfo));
1392 break;
1393 case S_IFDIR:
1394 inc_nlink(inode);
1395 /* Some things misbehave if size == 0 on a directory */
1396 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1397 inode->i_op = &shmem_dir_inode_operations;
1398 inode->i_fop = &simple_dir_operations;
1399 break;
1400 case S_IFLNK:
1401 /*
1402 * Must not load anything in the rbtree,
1403 * mpol_free_shared_policy will not be called.
1404 */
1405 mpol_shared_policy_init(&info->policy, NULL);
1406 break;
1407 }
1408 } else
1409 shmem_free_inode(sb);
1410 return inode;
1411 }
1412
1413 #ifdef CONFIG_TMPFS
1414 static const struct inode_operations shmem_symlink_inode_operations;
1415 static const struct inode_operations shmem_short_symlink_operations;
1416
1417 #ifdef CONFIG_TMPFS_XATTR
1418 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1419 #else
1420 #define shmem_initxattrs NULL
1421 #endif
1422
1423 static int
1424 shmem_write_begin(struct file *file, struct address_space *mapping,
1425 loff_t pos, unsigned len, unsigned flags,
1426 struct page **pagep, void **fsdata)
1427 {
1428 struct inode *inode = mapping->host;
1429 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1430 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1431 }
1432
1433 static int
1434 shmem_write_end(struct file *file, struct address_space *mapping,
1435 loff_t pos, unsigned len, unsigned copied,
1436 struct page *page, void *fsdata)
1437 {
1438 struct inode *inode = mapping->host;
1439
1440 if (pos + copied > inode->i_size)
1441 i_size_write(inode, pos + copied);
1442
1443 if (!PageUptodate(page)) {
1444 if (copied < PAGE_CACHE_SIZE) {
1445 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1446 zero_user_segments(page, 0, from,
1447 from + copied, PAGE_CACHE_SIZE);
1448 }
1449 SetPageUptodate(page);
1450 }
1451 set_page_dirty(page);
1452 unlock_page(page);
1453 page_cache_release(page);
1454
1455 return copied;
1456 }
1457
1458 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1459 {
1460 struct inode *inode = filp->f_path.dentry->d_inode;
1461 struct address_space *mapping = inode->i_mapping;
1462 pgoff_t index;
1463 unsigned long offset;
1464 enum sgp_type sgp = SGP_READ;
1465
1466 /*
1467 * Might this read be for a stacking filesystem? Then when reading
1468 * holes of a sparse file, we actually need to allocate those pages,
1469 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1470 */
1471 if (segment_eq(get_fs(), KERNEL_DS))
1472 sgp = SGP_DIRTY;
1473
1474 index = *ppos >> PAGE_CACHE_SHIFT;
1475 offset = *ppos & ~PAGE_CACHE_MASK;
1476
1477 for (;;) {
1478 struct page *page = NULL;
1479 pgoff_t end_index;
1480 unsigned long nr, ret;
1481 loff_t i_size = i_size_read(inode);
1482
1483 end_index = i_size >> PAGE_CACHE_SHIFT;
1484 if (index > end_index)
1485 break;
1486 if (index == end_index) {
1487 nr = i_size & ~PAGE_CACHE_MASK;
1488 if (nr <= offset)
1489 break;
1490 }
1491
1492 desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1493 if (desc->error) {
1494 if (desc->error == -EINVAL)
1495 desc->error = 0;
1496 break;
1497 }
1498 if (page)
1499 unlock_page(page);
1500
1501 /*
1502 * We must evaluate after, since reads (unlike writes)
1503 * are called without i_mutex protection against truncate
1504 */
1505 nr = PAGE_CACHE_SIZE;
1506 i_size = i_size_read(inode);
1507 end_index = i_size >> PAGE_CACHE_SHIFT;
1508 if (index == end_index) {
1509 nr = i_size & ~PAGE_CACHE_MASK;
1510 if (nr <= offset) {
1511 if (page)
1512 page_cache_release(page);
1513 break;
1514 }
1515 }
1516 nr -= offset;
1517
1518 if (page) {
1519 /*
1520 * If users can be writing to this page using arbitrary
1521 * virtual addresses, take care about potential aliasing
1522 * before reading the page on the kernel side.
1523 */
1524 if (mapping_writably_mapped(mapping))
1525 flush_dcache_page(page);
1526 /*
1527 * Mark the page accessed if we read the beginning.
1528 */
1529 if (!offset)
1530 mark_page_accessed(page);
1531 } else {
1532 page = ZERO_PAGE(0);
1533 page_cache_get(page);
1534 }
1535
1536 /*
1537 * Ok, we have the page, and it's up-to-date, so
1538 * now we can copy it to user space...
1539 *
1540 * The actor routine returns how many bytes were actually used..
1541 * NOTE! This may not be the same as how much of a user buffer
1542 * we filled up (we may be padding etc), so we can only update
1543 * "pos" here (the actor routine has to update the user buffer
1544 * pointers and the remaining count).
1545 */
1546 ret = actor(desc, page, offset, nr);
1547 offset += ret;
1548 index += offset >> PAGE_CACHE_SHIFT;
1549 offset &= ~PAGE_CACHE_MASK;
1550
1551 page_cache_release(page);
1552 if (ret != nr || !desc->count)
1553 break;
1554
1555 cond_resched();
1556 }
1557
1558 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1559 file_accessed(filp);
1560 }
1561
1562 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1563 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1564 {
1565 struct file *filp = iocb->ki_filp;
1566 ssize_t retval;
1567 unsigned long seg;
1568 size_t count;
1569 loff_t *ppos = &iocb->ki_pos;
1570
1571 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1572 if (retval)
1573 return retval;
1574
1575 for (seg = 0; seg < nr_segs; seg++) {
1576 read_descriptor_t desc;
1577
1578 desc.written = 0;
1579 desc.arg.buf = iov[seg].iov_base;
1580 desc.count = iov[seg].iov_len;
1581 if (desc.count == 0)
1582 continue;
1583 desc.error = 0;
1584 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1585 retval += desc.written;
1586 if (desc.error) {
1587 retval = retval ?: desc.error;
1588 break;
1589 }
1590 if (desc.count > 0)
1591 break;
1592 }
1593 return retval;
1594 }
1595
1596 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1597 struct pipe_inode_info *pipe, size_t len,
1598 unsigned int flags)
1599 {
1600 struct address_space *mapping = in->f_mapping;
1601 struct inode *inode = mapping->host;
1602 unsigned int loff, nr_pages, req_pages;
1603 struct page *pages[PIPE_DEF_BUFFERS];
1604 struct partial_page partial[PIPE_DEF_BUFFERS];
1605 struct page *page;
1606 pgoff_t index, end_index;
1607 loff_t isize, left;
1608 int error, page_nr;
1609 struct splice_pipe_desc spd = {
1610 .pages = pages,
1611 .partial = partial,
1612 .nr_pages_max = PIPE_DEF_BUFFERS,
1613 .flags = flags,
1614 .ops = &page_cache_pipe_buf_ops,
1615 .spd_release = spd_release_page,
1616 };
1617
1618 isize = i_size_read(inode);
1619 if (unlikely(*ppos >= isize))
1620 return 0;
1621
1622 left = isize - *ppos;
1623 if (unlikely(left < len))
1624 len = left;
1625
1626 if (splice_grow_spd(pipe, &spd))
1627 return -ENOMEM;
1628
1629 index = *ppos >> PAGE_CACHE_SHIFT;
1630 loff = *ppos & ~PAGE_CACHE_MASK;
1631 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1632 nr_pages = min(req_pages, pipe->buffers);
1633
1634 spd.nr_pages = find_get_pages_contig(mapping, index,
1635 nr_pages, spd.pages);
1636 index += spd.nr_pages;
1637 error = 0;
1638
1639 while (spd.nr_pages < nr_pages) {
1640 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1641 if (error)
1642 break;
1643 unlock_page(page);
1644 spd.pages[spd.nr_pages++] = page;
1645 index++;
1646 }
1647
1648 index = *ppos >> PAGE_CACHE_SHIFT;
1649 nr_pages = spd.nr_pages;
1650 spd.nr_pages = 0;
1651
1652 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1653 unsigned int this_len;
1654
1655 if (!len)
1656 break;
1657
1658 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1659 page = spd.pages[page_nr];
1660
1661 if (!PageUptodate(page) || page->mapping != mapping) {
1662 error = shmem_getpage(inode, index, &page,
1663 SGP_CACHE, NULL);
1664 if (error)
1665 break;
1666 unlock_page(page);
1667 page_cache_release(spd.pages[page_nr]);
1668 spd.pages[page_nr] = page;
1669 }
1670
1671 isize = i_size_read(inode);
1672 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1673 if (unlikely(!isize || index > end_index))
1674 break;
1675
1676 if (end_index == index) {
1677 unsigned int plen;
1678
1679 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1680 if (plen <= loff)
1681 break;
1682
1683 this_len = min(this_len, plen - loff);
1684 len = this_len;
1685 }
1686
1687 spd.partial[page_nr].offset = loff;
1688 spd.partial[page_nr].len = this_len;
1689 len -= this_len;
1690 loff = 0;
1691 spd.nr_pages++;
1692 index++;
1693 }
1694
1695 while (page_nr < nr_pages)
1696 page_cache_release(spd.pages[page_nr++]);
1697
1698 if (spd.nr_pages)
1699 error = splice_to_pipe(pipe, &spd);
1700
1701 splice_shrink_spd(&spd);
1702
1703 if (error > 0) {
1704 *ppos += error;
1705 file_accessed(in);
1706 }
1707 return error;
1708 }
1709
1710 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1711 loff_t len)
1712 {
1713 struct inode *inode = file->f_path.dentry->d_inode;
1714 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1715 struct shmem_falloc shmem_falloc;
1716 pgoff_t start, index, end;
1717 int error;
1718
1719 mutex_lock(&inode->i_mutex);
1720
1721 if (mode & FALLOC_FL_PUNCH_HOLE) {
1722 struct address_space *mapping = file->f_mapping;
1723 loff_t unmap_start = round_up(offset, PAGE_SIZE);
1724 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1725
1726 if ((u64)unmap_end > (u64)unmap_start)
1727 unmap_mapping_range(mapping, unmap_start,
1728 1 + unmap_end - unmap_start, 0);
1729 shmem_truncate_range(inode, offset, offset + len - 1);
1730 /* No need to unmap again: hole-punching leaves COWed pages */
1731 error = 0;
1732 goto out;
1733 }
1734
1735 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1736 error = inode_newsize_ok(inode, offset + len);
1737 if (error)
1738 goto out;
1739
1740 start = offset >> PAGE_CACHE_SHIFT;
1741 end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1742 /* Try to avoid a swapstorm if len is impossible to satisfy */
1743 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1744 error = -ENOSPC;
1745 goto out;
1746 }
1747
1748 shmem_falloc.start = start;
1749 shmem_falloc.next = start;
1750 shmem_falloc.nr_falloced = 0;
1751 shmem_falloc.nr_unswapped = 0;
1752 spin_lock(&inode->i_lock);
1753 inode->i_private = &shmem_falloc;
1754 spin_unlock(&inode->i_lock);
1755
1756 for (index = start; index < end; index++) {
1757 struct page *page;
1758
1759 /*
1760 * Good, the fallocate(2) manpage permits EINTR: we may have
1761 * been interrupted because we are using up too much memory.
1762 */
1763 if (signal_pending(current))
1764 error = -EINTR;
1765 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1766 error = -ENOMEM;
1767 else
1768 error = shmem_getpage(inode, index, &page, SGP_FALLOC,
1769 NULL);
1770 if (error) {
1771 /* Remove the !PageUptodate pages we added */
1772 shmem_undo_range(inode,
1773 (loff_t)start << PAGE_CACHE_SHIFT,
1774 (loff_t)index << PAGE_CACHE_SHIFT, true);
1775 goto undone;
1776 }
1777
1778 /*
1779 * Inform shmem_writepage() how far we have reached.
1780 * No need for lock or barrier: we have the page lock.
1781 */
1782 shmem_falloc.next++;
1783 if (!PageUptodate(page))
1784 shmem_falloc.nr_falloced++;
1785
1786 /*
1787 * If !PageUptodate, leave it that way so that freeable pages
1788 * can be recognized if we need to rollback on error later.
1789 * But set_page_dirty so that memory pressure will swap rather
1790 * than free the pages we are allocating (and SGP_CACHE pages
1791 * might still be clean: we now need to mark those dirty too).
1792 */
1793 set_page_dirty(page);
1794 unlock_page(page);
1795 page_cache_release(page);
1796 cond_resched();
1797 }
1798
1799 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1800 i_size_write(inode, offset + len);
1801 inode->i_ctime = CURRENT_TIME;
1802 undone:
1803 spin_lock(&inode->i_lock);
1804 inode->i_private = NULL;
1805 spin_unlock(&inode->i_lock);
1806 out:
1807 mutex_unlock(&inode->i_mutex);
1808 return error;
1809 }
1810
1811 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1812 {
1813 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1814
1815 buf->f_type = TMPFS_MAGIC;
1816 buf->f_bsize = PAGE_CACHE_SIZE;
1817 buf->f_namelen = NAME_MAX;
1818 if (sbinfo->max_blocks) {
1819 buf->f_blocks = sbinfo->max_blocks;
1820 buf->f_bavail =
1821 buf->f_bfree = sbinfo->max_blocks -
1822 percpu_counter_sum(&sbinfo->used_blocks);
1823 }
1824 if (sbinfo->max_inodes) {
1825 buf->f_files = sbinfo->max_inodes;
1826 buf->f_ffree = sbinfo->free_inodes;
1827 }
1828 /* else leave those fields 0 like simple_statfs */
1829 return 0;
1830 }
1831
1832 /*
1833 * File creation. Allocate an inode, and we're done..
1834 */
1835 static int
1836 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1837 {
1838 struct inode *inode;
1839 int error = -ENOSPC;
1840
1841 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1842 if (inode) {
1843 error = security_inode_init_security(inode, dir,
1844 &dentry->d_name,
1845 shmem_initxattrs, NULL);
1846 if (error) {
1847 if (error != -EOPNOTSUPP) {
1848 iput(inode);
1849 return error;
1850 }
1851 }
1852 #ifdef CONFIG_TMPFS_POSIX_ACL
1853 error = generic_acl_init(inode, dir);
1854 if (error) {
1855 iput(inode);
1856 return error;
1857 }
1858 #else
1859 error = 0;
1860 #endif
1861 dir->i_size += BOGO_DIRENT_SIZE;
1862 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1863 d_instantiate(dentry, inode);
1864 dget(dentry); /* Extra count - pin the dentry in core */
1865 }
1866 return error;
1867 }
1868
1869 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1870 {
1871 int error;
1872
1873 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1874 return error;
1875 inc_nlink(dir);
1876 return 0;
1877 }
1878
1879 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
1880 struct nameidata *nd)
1881 {
1882 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1883 }
1884
1885 /*
1886 * Link a file..
1887 */
1888 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1889 {
1890 struct inode *inode = old_dentry->d_inode;
1891 int ret;
1892
1893 /*
1894 * No ordinary (disk based) filesystem counts links as inodes;
1895 * but each new link needs a new dentry, pinning lowmem, and
1896 * tmpfs dentries cannot be pruned until they are unlinked.
1897 */
1898 ret = shmem_reserve_inode(inode->i_sb);
1899 if (ret)
1900 goto out;
1901
1902 dir->i_size += BOGO_DIRENT_SIZE;
1903 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1904 inc_nlink(inode);
1905 ihold(inode); /* New dentry reference */
1906 dget(dentry); /* Extra pinning count for the created dentry */
1907 d_instantiate(dentry, inode);
1908 out:
1909 return ret;
1910 }
1911
1912 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1913 {
1914 struct inode *inode = dentry->d_inode;
1915
1916 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1917 shmem_free_inode(inode->i_sb);
1918
1919 dir->i_size -= BOGO_DIRENT_SIZE;
1920 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1921 drop_nlink(inode);
1922 dput(dentry); /* Undo the count from "create" - this does all the work */
1923 return 0;
1924 }
1925
1926 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1927 {
1928 if (!simple_empty(dentry))
1929 return -ENOTEMPTY;
1930
1931 drop_nlink(dentry->d_inode);
1932 drop_nlink(dir);
1933 return shmem_unlink(dir, dentry);
1934 }
1935
1936 /*
1937 * The VFS layer already does all the dentry stuff for rename,
1938 * we just have to decrement the usage count for the target if
1939 * it exists so that the VFS layer correctly free's it when it
1940 * gets overwritten.
1941 */
1942 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1943 {
1944 struct inode *inode = old_dentry->d_inode;
1945 int they_are_dirs = S_ISDIR(inode->i_mode);
1946
1947 if (!simple_empty(new_dentry))
1948 return -ENOTEMPTY;
1949
1950 if (new_dentry->d_inode) {
1951 (void) shmem_unlink(new_dir, new_dentry);
1952 if (they_are_dirs)
1953 drop_nlink(old_dir);
1954 } else if (they_are_dirs) {
1955 drop_nlink(old_dir);
1956 inc_nlink(new_dir);
1957 }
1958
1959 old_dir->i_size -= BOGO_DIRENT_SIZE;
1960 new_dir->i_size += BOGO_DIRENT_SIZE;
1961 old_dir->i_ctime = old_dir->i_mtime =
1962 new_dir->i_ctime = new_dir->i_mtime =
1963 inode->i_ctime = CURRENT_TIME;
1964 return 0;
1965 }
1966
1967 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1968 {
1969 int error;
1970 int len;
1971 struct inode *inode;
1972 struct page *page;
1973 char *kaddr;
1974 struct shmem_inode_info *info;
1975
1976 len = strlen(symname) + 1;
1977 if (len > PAGE_CACHE_SIZE)
1978 return -ENAMETOOLONG;
1979
1980 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1981 if (!inode)
1982 return -ENOSPC;
1983
1984 error = security_inode_init_security(inode, dir, &dentry->d_name,
1985 shmem_initxattrs, NULL);
1986 if (error) {
1987 if (error != -EOPNOTSUPP) {
1988 iput(inode);
1989 return error;
1990 }
1991 error = 0;
1992 }
1993
1994 info = SHMEM_I(inode);
1995 inode->i_size = len-1;
1996 if (len <= SHORT_SYMLINK_LEN) {
1997 info->symlink = kmemdup(symname, len, GFP_KERNEL);
1998 if (!info->symlink) {
1999 iput(inode);
2000 return -ENOMEM;
2001 }
2002 inode->i_op = &shmem_short_symlink_operations;
2003 } else {
2004 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2005 if (error) {
2006 iput(inode);
2007 return error;
2008 }
2009 inode->i_mapping->a_ops = &shmem_aops;
2010 inode->i_op = &shmem_symlink_inode_operations;
2011 kaddr = kmap_atomic(page);
2012 memcpy(kaddr, symname, len);
2013 kunmap_atomic(kaddr);
2014 SetPageUptodate(page);
2015 set_page_dirty(page);
2016 unlock_page(page);
2017 page_cache_release(page);
2018 }
2019 dir->i_size += BOGO_DIRENT_SIZE;
2020 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2021 d_instantiate(dentry, inode);
2022 dget(dentry);
2023 return 0;
2024 }
2025
2026 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2027 {
2028 nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2029 return NULL;
2030 }
2031
2032 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2033 {
2034 struct page *page = NULL;
2035 int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2036 nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2037 if (page)
2038 unlock_page(page);
2039 return page;
2040 }
2041
2042 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2043 {
2044 if (!IS_ERR(nd_get_link(nd))) {
2045 struct page *page = cookie;
2046 kunmap(page);
2047 mark_page_accessed(page);
2048 page_cache_release(page);
2049 }
2050 }
2051
2052 #ifdef CONFIG_TMPFS_XATTR
2053 /*
2054 * Superblocks without xattr inode operations may get some security.* xattr
2055 * support from the LSM "for free". As soon as we have any other xattrs
2056 * like ACLs, we also need to implement the security.* handlers at
2057 * filesystem level, though.
2058 */
2059
2060 /*
2061 * Allocate new xattr and copy in the value; but leave the name to callers.
2062 */
2063 static struct shmem_xattr *shmem_xattr_alloc(const void *value, size_t size)
2064 {
2065 struct shmem_xattr *new_xattr;
2066 size_t len;
2067
2068 /* wrap around? */
2069 len = sizeof(*new_xattr) + size;
2070 if (len <= sizeof(*new_xattr))
2071 return NULL;
2072
2073 new_xattr = kmalloc(len, GFP_KERNEL);
2074 if (!new_xattr)
2075 return NULL;
2076
2077 new_xattr->size = size;
2078 memcpy(new_xattr->value, value, size);
2079 return new_xattr;
2080 }
2081
2082 /*
2083 * Callback for security_inode_init_security() for acquiring xattrs.
2084 */
2085 static int shmem_initxattrs(struct inode *inode,
2086 const struct xattr *xattr_array,
2087 void *fs_info)
2088 {
2089 struct shmem_inode_info *info = SHMEM_I(inode);
2090 const struct xattr *xattr;
2091 struct shmem_xattr *new_xattr;
2092 size_t len;
2093
2094 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2095 new_xattr = shmem_xattr_alloc(xattr->value, xattr->value_len);
2096 if (!new_xattr)
2097 return -ENOMEM;
2098
2099 len = strlen(xattr->name) + 1;
2100 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2101 GFP_KERNEL);
2102 if (!new_xattr->name) {
2103 kfree(new_xattr);
2104 return -ENOMEM;
2105 }
2106
2107 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2108 XATTR_SECURITY_PREFIX_LEN);
2109 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2110 xattr->name, len);
2111
2112 spin_lock(&info->lock);
2113 list_add(&new_xattr->list, &info->xattr_list);
2114 spin_unlock(&info->lock);
2115 }
2116
2117 return 0;
2118 }
2119
2120 static int shmem_xattr_get(struct dentry *dentry, const char *name,
2121 void *buffer, size_t size)
2122 {
2123 struct shmem_inode_info *info;
2124 struct shmem_xattr *xattr;
2125 int ret = -ENODATA;
2126
2127 info = SHMEM_I(dentry->d_inode);
2128
2129 spin_lock(&info->lock);
2130 list_for_each_entry(xattr, &info->xattr_list, list) {
2131 if (strcmp(name, xattr->name))
2132 continue;
2133
2134 ret = xattr->size;
2135 if (buffer) {
2136 if (size < xattr->size)
2137 ret = -ERANGE;
2138 else
2139 memcpy(buffer, xattr->value, xattr->size);
2140 }
2141 break;
2142 }
2143 spin_unlock(&info->lock);
2144 return ret;
2145 }
2146
2147 static int shmem_xattr_set(struct inode *inode, const char *name,
2148 const void *value, size_t size, int flags)
2149 {
2150 struct shmem_inode_info *info = SHMEM_I(inode);
2151 struct shmem_xattr *xattr;
2152 struct shmem_xattr *new_xattr = NULL;
2153 int err = 0;
2154
2155 /* value == NULL means remove */
2156 if (value) {
2157 new_xattr = shmem_xattr_alloc(value, size);
2158 if (!new_xattr)
2159 return -ENOMEM;
2160
2161 new_xattr->name = kstrdup(name, GFP_KERNEL);
2162 if (!new_xattr->name) {
2163 kfree(new_xattr);
2164 return -ENOMEM;
2165 }
2166 }
2167
2168 spin_lock(&info->lock);
2169 list_for_each_entry(xattr, &info->xattr_list, list) {
2170 if (!strcmp(name, xattr->name)) {
2171 if (flags & XATTR_CREATE) {
2172 xattr = new_xattr;
2173 err = -EEXIST;
2174 } else if (new_xattr) {
2175 list_replace(&xattr->list, &new_xattr->list);
2176 } else {
2177 list_del(&xattr->list);
2178 }
2179 goto out;
2180 }
2181 }
2182 if (flags & XATTR_REPLACE) {
2183 xattr = new_xattr;
2184 err = -ENODATA;
2185 } else {
2186 list_add(&new_xattr->list, &info->xattr_list);
2187 xattr = NULL;
2188 }
2189 out:
2190 spin_unlock(&info->lock);
2191 if (xattr)
2192 kfree(xattr->name);
2193 kfree(xattr);
2194 return err;
2195 }
2196
2197 static const struct xattr_handler *shmem_xattr_handlers[] = {
2198 #ifdef CONFIG_TMPFS_POSIX_ACL
2199 &generic_acl_access_handler,
2200 &generic_acl_default_handler,
2201 #endif
2202 NULL
2203 };
2204
2205 static int shmem_xattr_validate(const char *name)
2206 {
2207 struct { const char *prefix; size_t len; } arr[] = {
2208 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2209 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2210 };
2211 int i;
2212
2213 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2214 size_t preflen = arr[i].len;
2215 if (strncmp(name, arr[i].prefix, preflen) == 0) {
2216 if (!name[preflen])
2217 return -EINVAL;
2218 return 0;
2219 }
2220 }
2221 return -EOPNOTSUPP;
2222 }
2223
2224 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2225 void *buffer, size_t size)
2226 {
2227 int err;
2228
2229 /*
2230 * If this is a request for a synthetic attribute in the system.*
2231 * namespace use the generic infrastructure to resolve a handler
2232 * for it via sb->s_xattr.
2233 */
2234 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2235 return generic_getxattr(dentry, name, buffer, size);
2236
2237 err = shmem_xattr_validate(name);
2238 if (err)
2239 return err;
2240
2241 return shmem_xattr_get(dentry, name, buffer, size);
2242 }
2243
2244 static int shmem_setxattr(struct dentry *dentry, const char *name,
2245 const void *value, size_t size, int flags)
2246 {
2247 int err;
2248
2249 /*
2250 * If this is a request for a synthetic attribute in the system.*
2251 * namespace use the generic infrastructure to resolve a handler
2252 * for it via sb->s_xattr.
2253 */
2254 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2255 return generic_setxattr(dentry, name, value, size, flags);
2256
2257 err = shmem_xattr_validate(name);
2258 if (err)
2259 return err;
2260
2261 if (size == 0)
2262 value = ""; /* empty EA, do not remove */
2263
2264 return shmem_xattr_set(dentry->d_inode, name, value, size, flags);
2265
2266 }
2267
2268 static int shmem_removexattr(struct dentry *dentry, const char *name)
2269 {
2270 int err;
2271
2272 /*
2273 * If this is a request for a synthetic attribute in the system.*
2274 * namespace use the generic infrastructure to resolve a handler
2275 * for it via sb->s_xattr.
2276 */
2277 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2278 return generic_removexattr(dentry, name);
2279
2280 err = shmem_xattr_validate(name);
2281 if (err)
2282 return err;
2283
2284 return shmem_xattr_set(dentry->d_inode, name, NULL, 0, XATTR_REPLACE);
2285 }
2286
2287 static bool xattr_is_trusted(const char *name)
2288 {
2289 return !strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN);
2290 }
2291
2292 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2293 {
2294 bool trusted = capable(CAP_SYS_ADMIN);
2295 struct shmem_xattr *xattr;
2296 struct shmem_inode_info *info;
2297 size_t used = 0;
2298
2299 info = SHMEM_I(dentry->d_inode);
2300
2301 spin_lock(&info->lock);
2302 list_for_each_entry(xattr, &info->xattr_list, list) {
2303 size_t len;
2304
2305 /* skip "trusted." attributes for unprivileged callers */
2306 if (!trusted && xattr_is_trusted(xattr->name))
2307 continue;
2308
2309 len = strlen(xattr->name) + 1;
2310 used += len;
2311 if (buffer) {
2312 if (size < used) {
2313 used = -ERANGE;
2314 break;
2315 }
2316 memcpy(buffer, xattr->name, len);
2317 buffer += len;
2318 }
2319 }
2320 spin_unlock(&info->lock);
2321
2322 return used;
2323 }
2324 #endif /* CONFIG_TMPFS_XATTR */
2325
2326 static const struct inode_operations shmem_short_symlink_operations = {
2327 .readlink = generic_readlink,
2328 .follow_link = shmem_follow_short_symlink,
2329 #ifdef CONFIG_TMPFS_XATTR
2330 .setxattr = shmem_setxattr,
2331 .getxattr = shmem_getxattr,
2332 .listxattr = shmem_listxattr,
2333 .removexattr = shmem_removexattr,
2334 #endif
2335 };
2336
2337 static const struct inode_operations shmem_symlink_inode_operations = {
2338 .readlink = generic_readlink,
2339 .follow_link = shmem_follow_link,
2340 .put_link = shmem_put_link,
2341 #ifdef CONFIG_TMPFS_XATTR
2342 .setxattr = shmem_setxattr,
2343 .getxattr = shmem_getxattr,
2344 .listxattr = shmem_listxattr,
2345 .removexattr = shmem_removexattr,
2346 #endif
2347 };
2348
2349 static struct dentry *shmem_get_parent(struct dentry *child)
2350 {
2351 return ERR_PTR(-ESTALE);
2352 }
2353
2354 static int shmem_match(struct inode *ino, void *vfh)
2355 {
2356 __u32 *fh = vfh;
2357 __u64 inum = fh[2];
2358 inum = (inum << 32) | fh[1];
2359 return ino->i_ino == inum && fh[0] == ino->i_generation;
2360 }
2361
2362 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2363 struct fid *fid, int fh_len, int fh_type)
2364 {
2365 struct inode *inode;
2366 struct dentry *dentry = NULL;
2367 u64 inum = fid->raw[2];
2368 inum = (inum << 32) | fid->raw[1];
2369
2370 if (fh_len < 3)
2371 return NULL;
2372
2373 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2374 shmem_match, fid->raw);
2375 if (inode) {
2376 dentry = d_find_alias(inode);
2377 iput(inode);
2378 }
2379
2380 return dentry;
2381 }
2382
2383 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2384 struct inode *parent)
2385 {
2386 if (*len < 3) {
2387 *len = 3;
2388 return 255;
2389 }
2390
2391 if (inode_unhashed(inode)) {
2392 /* Unfortunately insert_inode_hash is not idempotent,
2393 * so as we hash inodes here rather than at creation
2394 * time, we need a lock to ensure we only try
2395 * to do it once
2396 */
2397 static DEFINE_SPINLOCK(lock);
2398 spin_lock(&lock);
2399 if (inode_unhashed(inode))
2400 __insert_inode_hash(inode,
2401 inode->i_ino + inode->i_generation);
2402 spin_unlock(&lock);
2403 }
2404
2405 fh[0] = inode->i_generation;
2406 fh[1] = inode->i_ino;
2407 fh[2] = ((__u64)inode->i_ino) >> 32;
2408
2409 *len = 3;
2410 return 1;
2411 }
2412
2413 static const struct export_operations shmem_export_ops = {
2414 .get_parent = shmem_get_parent,
2415 .encode_fh = shmem_encode_fh,
2416 .fh_to_dentry = shmem_fh_to_dentry,
2417 };
2418
2419 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2420 bool remount)
2421 {
2422 char *this_char, *value, *rest;
2423 uid_t uid;
2424 gid_t gid;
2425
2426 while (options != NULL) {
2427 this_char = options;
2428 for (;;) {
2429 /*
2430 * NUL-terminate this option: unfortunately,
2431 * mount options form a comma-separated list,
2432 * but mpol's nodelist may also contain commas.
2433 */
2434 options = strchr(options, ',');
2435 if (options == NULL)
2436 break;
2437 options++;
2438 if (!isdigit(*options)) {
2439 options[-1] = '\0';
2440 break;
2441 }
2442 }
2443 if (!*this_char)
2444 continue;
2445 if ((value = strchr(this_char,'=')) != NULL) {
2446 *value++ = 0;
2447 } else {
2448 printk(KERN_ERR
2449 "tmpfs: No value for mount option '%s'\n",
2450 this_char);
2451 return 1;
2452 }
2453
2454 if (!strcmp(this_char,"size")) {
2455 unsigned long long size;
2456 size = memparse(value,&rest);
2457 if (*rest == '%') {
2458 size <<= PAGE_SHIFT;
2459 size *= totalram_pages;
2460 do_div(size, 100);
2461 rest++;
2462 }
2463 if (*rest)
2464 goto bad_val;
2465 sbinfo->max_blocks =
2466 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2467 } else if (!strcmp(this_char,"nr_blocks")) {
2468 sbinfo->max_blocks = memparse(value, &rest);
2469 if (*rest)
2470 goto bad_val;
2471 } else if (!strcmp(this_char,"nr_inodes")) {
2472 sbinfo->max_inodes = memparse(value, &rest);
2473 if (*rest)
2474 goto bad_val;
2475 } else if (!strcmp(this_char,"mode")) {
2476 if (remount)
2477 continue;
2478 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2479 if (*rest)
2480 goto bad_val;
2481 } else if (!strcmp(this_char,"uid")) {
2482 if (remount)
2483 continue;
2484 uid = simple_strtoul(value, &rest, 0);
2485 if (*rest)
2486 goto bad_val;
2487 sbinfo->uid = make_kuid(current_user_ns(), uid);
2488 if (!uid_valid(sbinfo->uid))
2489 goto bad_val;
2490 } else if (!strcmp(this_char,"gid")) {
2491 if (remount)
2492 continue;
2493 gid = simple_strtoul(value, &rest, 0);
2494 if (*rest)
2495 goto bad_val;
2496 sbinfo->gid = make_kgid(current_user_ns(), gid);
2497 if (!gid_valid(sbinfo->gid))
2498 goto bad_val;
2499 } else if (!strcmp(this_char,"mpol")) {
2500 if (mpol_parse_str(value, &sbinfo->mpol, 1))
2501 goto bad_val;
2502 } else {
2503 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2504 this_char);
2505 return 1;
2506 }
2507 }
2508 return 0;
2509
2510 bad_val:
2511 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2512 value, this_char);
2513 return 1;
2514
2515 }
2516
2517 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2518 {
2519 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2520 struct shmem_sb_info config = *sbinfo;
2521 unsigned long inodes;
2522 int error = -EINVAL;
2523
2524 if (shmem_parse_options(data, &config, true))
2525 return error;
2526
2527 spin_lock(&sbinfo->stat_lock);
2528 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2529 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2530 goto out;
2531 if (config.max_inodes < inodes)
2532 goto out;
2533 /*
2534 * Those tests disallow limited->unlimited while any are in use;
2535 * but we must separately disallow unlimited->limited, because
2536 * in that case we have no record of how much is already in use.
2537 */
2538 if (config.max_blocks && !sbinfo->max_blocks)
2539 goto out;
2540 if (config.max_inodes && !sbinfo->max_inodes)
2541 goto out;
2542
2543 error = 0;
2544 sbinfo->max_blocks = config.max_blocks;
2545 sbinfo->max_inodes = config.max_inodes;
2546 sbinfo->free_inodes = config.max_inodes - inodes;
2547
2548 mpol_put(sbinfo->mpol);
2549 sbinfo->mpol = config.mpol; /* transfers initial ref */
2550 out:
2551 spin_unlock(&sbinfo->stat_lock);
2552 return error;
2553 }
2554
2555 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2556 {
2557 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2558
2559 if (sbinfo->max_blocks != shmem_default_max_blocks())
2560 seq_printf(seq, ",size=%luk",
2561 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2562 if (sbinfo->max_inodes != shmem_default_max_inodes())
2563 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2564 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2565 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2566 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2567 seq_printf(seq, ",uid=%u",
2568 from_kuid_munged(&init_user_ns, sbinfo->uid));
2569 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2570 seq_printf(seq, ",gid=%u",
2571 from_kgid_munged(&init_user_ns, sbinfo->gid));
2572 shmem_show_mpol(seq, sbinfo->mpol);
2573 return 0;
2574 }
2575 #endif /* CONFIG_TMPFS */
2576
2577 static void shmem_put_super(struct super_block *sb)
2578 {
2579 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2580
2581 percpu_counter_destroy(&sbinfo->used_blocks);
2582 kfree(sbinfo);
2583 sb->s_fs_info = NULL;
2584 }
2585
2586 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2587 {
2588 struct inode *inode;
2589 struct shmem_sb_info *sbinfo;
2590 int err = -ENOMEM;
2591
2592 /* Round up to L1_CACHE_BYTES to resist false sharing */
2593 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2594 L1_CACHE_BYTES), GFP_KERNEL);
2595 if (!sbinfo)
2596 return -ENOMEM;
2597
2598 sbinfo->mode = S_IRWXUGO | S_ISVTX;
2599 sbinfo->uid = current_fsuid();
2600 sbinfo->gid = current_fsgid();
2601 sb->s_fs_info = sbinfo;
2602
2603 #ifdef CONFIG_TMPFS
2604 /*
2605 * Per default we only allow half of the physical ram per
2606 * tmpfs instance, limiting inodes to one per page of lowmem;
2607 * but the internal instance is left unlimited.
2608 */
2609 if (!(sb->s_flags & MS_NOUSER)) {
2610 sbinfo->max_blocks = shmem_default_max_blocks();
2611 sbinfo->max_inodes = shmem_default_max_inodes();
2612 if (shmem_parse_options(data, sbinfo, false)) {
2613 err = -EINVAL;
2614 goto failed;
2615 }
2616 }
2617 sb->s_export_op = &shmem_export_ops;
2618 sb->s_flags |= MS_NOSEC;
2619 #else
2620 sb->s_flags |= MS_NOUSER;
2621 #endif
2622
2623 spin_lock_init(&sbinfo->stat_lock);
2624 if (percpu_counter_init(&sbinfo->used_blocks, 0))
2625 goto failed;
2626 sbinfo->free_inodes = sbinfo->max_inodes;
2627
2628 sb->s_maxbytes = MAX_LFS_FILESIZE;
2629 sb->s_blocksize = PAGE_CACHE_SIZE;
2630 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2631 sb->s_magic = TMPFS_MAGIC;
2632 sb->s_op = &shmem_ops;
2633 sb->s_time_gran = 1;
2634 #ifdef CONFIG_TMPFS_XATTR
2635 sb->s_xattr = shmem_xattr_handlers;
2636 #endif
2637 #ifdef CONFIG_TMPFS_POSIX_ACL
2638 sb->s_flags |= MS_POSIXACL;
2639 #endif
2640
2641 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2642 if (!inode)
2643 goto failed;
2644 inode->i_uid = sbinfo->uid;
2645 inode->i_gid = sbinfo->gid;
2646 sb->s_root = d_make_root(inode);
2647 if (!sb->s_root)
2648 goto failed;
2649 return 0;
2650
2651 failed:
2652 shmem_put_super(sb);
2653 return err;
2654 }
2655
2656 static struct kmem_cache *shmem_inode_cachep;
2657
2658 static struct inode *shmem_alloc_inode(struct super_block *sb)
2659 {
2660 struct shmem_inode_info *info;
2661 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2662 if (!info)
2663 return NULL;
2664 return &info->vfs_inode;
2665 }
2666
2667 static void shmem_destroy_callback(struct rcu_head *head)
2668 {
2669 struct inode *inode = container_of(head, struct inode, i_rcu);
2670 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2671 }
2672
2673 static void shmem_destroy_inode(struct inode *inode)
2674 {
2675 if (S_ISREG(inode->i_mode))
2676 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2677 call_rcu(&inode->i_rcu, shmem_destroy_callback);
2678 }
2679
2680 static void shmem_init_inode(void *foo)
2681 {
2682 struct shmem_inode_info *info = foo;
2683 inode_init_once(&info->vfs_inode);
2684 }
2685
2686 static int shmem_init_inodecache(void)
2687 {
2688 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2689 sizeof(struct shmem_inode_info),
2690 0, SLAB_PANIC, shmem_init_inode);
2691 return 0;
2692 }
2693
2694 static void shmem_destroy_inodecache(void)
2695 {
2696 kmem_cache_destroy(shmem_inode_cachep);
2697 }
2698
2699 static const struct address_space_operations shmem_aops = {
2700 .writepage = shmem_writepage,
2701 .set_page_dirty = __set_page_dirty_no_writeback,
2702 #ifdef CONFIG_TMPFS
2703 .write_begin = shmem_write_begin,
2704 .write_end = shmem_write_end,
2705 #endif
2706 .migratepage = migrate_page,
2707 .error_remove_page = generic_error_remove_page,
2708 };
2709
2710 static const struct file_operations shmem_file_operations = {
2711 .mmap = shmem_mmap,
2712 #ifdef CONFIG_TMPFS
2713 .llseek = generic_file_llseek,
2714 .read = do_sync_read,
2715 .write = do_sync_write,
2716 .aio_read = shmem_file_aio_read,
2717 .aio_write = generic_file_aio_write,
2718 .fsync = noop_fsync,
2719 .splice_read = shmem_file_splice_read,
2720 .splice_write = generic_file_splice_write,
2721 .fallocate = shmem_fallocate,
2722 #endif
2723 };
2724
2725 static const struct inode_operations shmem_inode_operations = {
2726 .setattr = shmem_setattr,
2727 #ifdef CONFIG_TMPFS_XATTR
2728 .setxattr = shmem_setxattr,
2729 .getxattr = shmem_getxattr,
2730 .listxattr = shmem_listxattr,
2731 .removexattr = shmem_removexattr,
2732 #endif
2733 };
2734
2735 static const struct inode_operations shmem_dir_inode_operations = {
2736 #ifdef CONFIG_TMPFS
2737 .create = shmem_create,
2738 .lookup = simple_lookup,
2739 .link = shmem_link,
2740 .unlink = shmem_unlink,
2741 .symlink = shmem_symlink,
2742 .mkdir = shmem_mkdir,
2743 .rmdir = shmem_rmdir,
2744 .mknod = shmem_mknod,
2745 .rename = shmem_rename,
2746 #endif
2747 #ifdef CONFIG_TMPFS_XATTR
2748 .setxattr = shmem_setxattr,
2749 .getxattr = shmem_getxattr,
2750 .listxattr = shmem_listxattr,
2751 .removexattr = shmem_removexattr,
2752 #endif
2753 #ifdef CONFIG_TMPFS_POSIX_ACL
2754 .setattr = shmem_setattr,
2755 #endif
2756 };
2757
2758 static const struct inode_operations shmem_special_inode_operations = {
2759 #ifdef CONFIG_TMPFS_XATTR
2760 .setxattr = shmem_setxattr,
2761 .getxattr = shmem_getxattr,
2762 .listxattr = shmem_listxattr,
2763 .removexattr = shmem_removexattr,
2764 #endif
2765 #ifdef CONFIG_TMPFS_POSIX_ACL
2766 .setattr = shmem_setattr,
2767 #endif
2768 };
2769
2770 static const struct super_operations shmem_ops = {
2771 .alloc_inode = shmem_alloc_inode,
2772 .destroy_inode = shmem_destroy_inode,
2773 #ifdef CONFIG_TMPFS
2774 .statfs = shmem_statfs,
2775 .remount_fs = shmem_remount_fs,
2776 .show_options = shmem_show_options,
2777 #endif
2778 .evict_inode = shmem_evict_inode,
2779 .drop_inode = generic_delete_inode,
2780 .put_super = shmem_put_super,
2781 };
2782
2783 static const struct vm_operations_struct shmem_vm_ops = {
2784 .fault = shmem_fault,
2785 #ifdef CONFIG_NUMA
2786 .set_policy = shmem_set_policy,
2787 .get_policy = shmem_get_policy,
2788 #endif
2789 };
2790
2791 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2792 int flags, const char *dev_name, void *data)
2793 {
2794 return mount_nodev(fs_type, flags, data, shmem_fill_super);
2795 }
2796
2797 static struct file_system_type shmem_fs_type = {
2798 .owner = THIS_MODULE,
2799 .name = "tmpfs",
2800 .mount = shmem_mount,
2801 .kill_sb = kill_litter_super,
2802 };
2803
2804 int __init shmem_init(void)
2805 {
2806 int error;
2807
2808 error = bdi_init(&shmem_backing_dev_info);
2809 if (error)
2810 goto out4;
2811
2812 error = shmem_init_inodecache();
2813 if (error)
2814 goto out3;
2815
2816 error = register_filesystem(&shmem_fs_type);
2817 if (error) {
2818 printk(KERN_ERR "Could not register tmpfs\n");
2819 goto out2;
2820 }
2821
2822 shm_mnt = vfs_kern_mount(&shmem_fs_type, MS_NOUSER,
2823 shmem_fs_type.name, NULL);
2824 if (IS_ERR(shm_mnt)) {
2825 error = PTR_ERR(shm_mnt);
2826 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2827 goto out1;
2828 }
2829 return 0;
2830
2831 out1:
2832 unregister_filesystem(&shmem_fs_type);
2833 out2:
2834 shmem_destroy_inodecache();
2835 out3:
2836 bdi_destroy(&shmem_backing_dev_info);
2837 out4:
2838 shm_mnt = ERR_PTR(error);
2839 return error;
2840 }
2841
2842 #else /* !CONFIG_SHMEM */
2843
2844 /*
2845 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2846 *
2847 * This is intended for small system where the benefits of the full
2848 * shmem code (swap-backed and resource-limited) are outweighed by
2849 * their complexity. On systems without swap this code should be
2850 * effectively equivalent, but much lighter weight.
2851 */
2852
2853 #include <linux/ramfs.h>
2854
2855 static struct file_system_type shmem_fs_type = {
2856 .name = "tmpfs",
2857 .mount = ramfs_mount,
2858 .kill_sb = kill_litter_super,
2859 };
2860
2861 int __init shmem_init(void)
2862 {
2863 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2864
2865 shm_mnt = kern_mount(&shmem_fs_type);
2866 BUG_ON(IS_ERR(shm_mnt));
2867
2868 return 0;
2869 }
2870
2871 int shmem_unuse(swp_entry_t swap, struct page *page)
2872 {
2873 return 0;
2874 }
2875
2876 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2877 {
2878 return 0;
2879 }
2880
2881 void shmem_unlock_mapping(struct address_space *mapping)
2882 {
2883 }
2884
2885 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2886 {
2887 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2888 }
2889 EXPORT_SYMBOL_GPL(shmem_truncate_range);
2890
2891 #define shmem_vm_ops generic_file_vm_ops
2892 #define shmem_file_operations ramfs_file_operations
2893 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
2894 #define shmem_acct_size(flags, size) 0
2895 #define shmem_unacct_size(flags, size) do {} while (0)
2896
2897 #endif /* CONFIG_SHMEM */
2898
2899 /* common code */
2900
2901 /**
2902 * shmem_file_setup - get an unlinked file living in tmpfs
2903 * @name: name for dentry (to be seen in /proc/<pid>/maps
2904 * @size: size to be set for the file
2905 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2906 */
2907 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2908 {
2909 int error;
2910 struct file *file;
2911 struct inode *inode;
2912 struct path path;
2913 struct dentry *root;
2914 struct qstr this;
2915
2916 if (IS_ERR(shm_mnt))
2917 return (void *)shm_mnt;
2918
2919 if (size < 0 || size > MAX_LFS_FILESIZE)
2920 return ERR_PTR(-EINVAL);
2921
2922 if (shmem_acct_size(flags, size))
2923 return ERR_PTR(-ENOMEM);
2924
2925 error = -ENOMEM;
2926 this.name = name;
2927 this.len = strlen(name);
2928 this.hash = 0; /* will go */
2929 root = shm_mnt->mnt_root;
2930 path.dentry = d_alloc(root, &this);
2931 if (!path.dentry)
2932 goto put_memory;
2933 path.mnt = mntget(shm_mnt);
2934
2935 error = -ENOSPC;
2936 inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2937 if (!inode)
2938 goto put_dentry;
2939
2940 d_instantiate(path.dentry, inode);
2941 inode->i_size = size;
2942 clear_nlink(inode); /* It is unlinked */
2943 #ifndef CONFIG_MMU
2944 error = ramfs_nommu_expand_for_mapping(inode, size);
2945 if (error)
2946 goto put_dentry;
2947 #endif
2948
2949 error = -ENFILE;
2950 file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2951 &shmem_file_operations);
2952 if (!file)
2953 goto put_dentry;
2954
2955 return file;
2956
2957 put_dentry:
2958 path_put(&path);
2959 put_memory:
2960 shmem_unacct_size(flags, size);
2961 return ERR_PTR(error);
2962 }
2963 EXPORT_SYMBOL_GPL(shmem_file_setup);
2964
2965 /**
2966 * shmem_zero_setup - setup a shared anonymous mapping
2967 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2968 */
2969 int shmem_zero_setup(struct vm_area_struct *vma)
2970 {
2971 struct file *file;
2972 loff_t size = vma->vm_end - vma->vm_start;
2973
2974 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2975 if (IS_ERR(file))
2976 return PTR_ERR(file);
2977
2978 if (vma->vm_file)
2979 fput(vma->vm_file);
2980 vma->vm_file = file;
2981 vma->vm_ops = &shmem_vm_ops;
2982 vma->vm_flags |= VM_CAN_NONLINEAR;
2983 return 0;
2984 }
2985
2986 /**
2987 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
2988 * @mapping: the page's address_space
2989 * @index: the page index
2990 * @gfp: the page allocator flags to use if allocating
2991 *
2992 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
2993 * with any new page allocations done using the specified allocation flags.
2994 * But read_cache_page_gfp() uses the ->readpage() method: which does not
2995 * suit tmpfs, since it may have pages in swapcache, and needs to find those
2996 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
2997 *
2998 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
2999 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3000 */
3001 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3002 pgoff_t index, gfp_t gfp)
3003 {
3004 #ifdef CONFIG_SHMEM
3005 struct inode *inode = mapping->host;
3006 struct page *page;
3007 int error;
3008
3009 BUG_ON(mapping->a_ops != &shmem_aops);
3010 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3011 if (error)
3012 page = ERR_PTR(error);
3013 else
3014 unlock_page(page);
3015 return page;
3016 #else
3017 /*
3018 * The tiny !SHMEM case uses ramfs without swap
3019 */
3020 return read_cache_page_gfp(mapping, index, gfp);
3021 #endif
3022 }
3023 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
This page took 0.16828 seconds and 5 git commands to generate.