shmem: make shmem_inode_info::lock irq-safe
[deliverable/linux.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/uio.h>
35
36 static struct vfsmount *shm_mnt;
37
38 #ifdef CONFIG_SHMEM
39 /*
40 * This virtual memory filesystem is heavily based on the ramfs. It
41 * extends ramfs by the ability to use swap and honor resource limits
42 * which makes it a completely usable filesystem.
43 */
44
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/posix_acl_xattr.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
69 #include <linux/syscalls.h>
70 #include <linux/fcntl.h>
71 #include <uapi/linux/memfd.h>
72
73 #include <asm/uaccess.h>
74 #include <asm/pgtable.h>
75
76 #include "internal.h"
77
78 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
79 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
80
81 /* Pretend that each entry is of this size in directory's i_size */
82 #define BOGO_DIRENT_SIZE 20
83
84 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
85 #define SHORT_SYMLINK_LEN 128
86
87 /*
88 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
89 * inode->i_private (with i_mutex making sure that it has only one user at
90 * a time): we would prefer not to enlarge the shmem inode just for that.
91 */
92 struct shmem_falloc {
93 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
94 pgoff_t start; /* start of range currently being fallocated */
95 pgoff_t next; /* the next page offset to be fallocated */
96 pgoff_t nr_falloced; /* how many new pages have been fallocated */
97 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
98 };
99
100 /* Flag allocation requirements to shmem_getpage */
101 enum sgp_type {
102 SGP_READ, /* don't exceed i_size, don't allocate page */
103 SGP_CACHE, /* don't exceed i_size, may allocate page */
104 SGP_NOHUGE, /* like SGP_CACHE, but no huge pages */
105 SGP_HUGE, /* like SGP_CACHE, huge pages preferred */
106 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */
107 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */
108 };
109
110 #ifdef CONFIG_TMPFS
111 static unsigned long shmem_default_max_blocks(void)
112 {
113 return totalram_pages / 2;
114 }
115
116 static unsigned long shmem_default_max_inodes(void)
117 {
118 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
119 }
120 #endif
121
122 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
123 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
124 struct shmem_inode_info *info, pgoff_t index);
125 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
126 struct page **pagep, enum sgp_type sgp,
127 gfp_t gfp, struct mm_struct *fault_mm, int *fault_type);
128
129 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
130 struct page **pagep, enum sgp_type sgp)
131 {
132 return shmem_getpage_gfp(inode, index, pagep, sgp,
133 mapping_gfp_mask(inode->i_mapping), NULL, NULL);
134 }
135
136 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
137 {
138 return sb->s_fs_info;
139 }
140
141 /*
142 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
143 * for shared memory and for shared anonymous (/dev/zero) mappings
144 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
145 * consistent with the pre-accounting of private mappings ...
146 */
147 static inline int shmem_acct_size(unsigned long flags, loff_t size)
148 {
149 return (flags & VM_NORESERVE) ?
150 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
151 }
152
153 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
154 {
155 if (!(flags & VM_NORESERVE))
156 vm_unacct_memory(VM_ACCT(size));
157 }
158
159 static inline int shmem_reacct_size(unsigned long flags,
160 loff_t oldsize, loff_t newsize)
161 {
162 if (!(flags & VM_NORESERVE)) {
163 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
164 return security_vm_enough_memory_mm(current->mm,
165 VM_ACCT(newsize) - VM_ACCT(oldsize));
166 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
167 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
168 }
169 return 0;
170 }
171
172 /*
173 * ... whereas tmpfs objects are accounted incrementally as
174 * pages are allocated, in order to allow large sparse files.
175 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
176 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
177 */
178 static inline int shmem_acct_block(unsigned long flags, long pages)
179 {
180 if (!(flags & VM_NORESERVE))
181 return 0;
182
183 return security_vm_enough_memory_mm(current->mm,
184 pages * VM_ACCT(PAGE_SIZE));
185 }
186
187 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
188 {
189 if (flags & VM_NORESERVE)
190 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
191 }
192
193 static const struct super_operations shmem_ops;
194 static const struct address_space_operations shmem_aops;
195 static const struct file_operations shmem_file_operations;
196 static const struct inode_operations shmem_inode_operations;
197 static const struct inode_operations shmem_dir_inode_operations;
198 static const struct inode_operations shmem_special_inode_operations;
199 static const struct vm_operations_struct shmem_vm_ops;
200
201 static LIST_HEAD(shmem_swaplist);
202 static DEFINE_MUTEX(shmem_swaplist_mutex);
203
204 static int shmem_reserve_inode(struct super_block *sb)
205 {
206 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
207 if (sbinfo->max_inodes) {
208 spin_lock(&sbinfo->stat_lock);
209 if (!sbinfo->free_inodes) {
210 spin_unlock(&sbinfo->stat_lock);
211 return -ENOSPC;
212 }
213 sbinfo->free_inodes--;
214 spin_unlock(&sbinfo->stat_lock);
215 }
216 return 0;
217 }
218
219 static void shmem_free_inode(struct super_block *sb)
220 {
221 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
222 if (sbinfo->max_inodes) {
223 spin_lock(&sbinfo->stat_lock);
224 sbinfo->free_inodes++;
225 spin_unlock(&sbinfo->stat_lock);
226 }
227 }
228
229 /**
230 * shmem_recalc_inode - recalculate the block usage of an inode
231 * @inode: inode to recalc
232 *
233 * We have to calculate the free blocks since the mm can drop
234 * undirtied hole pages behind our back.
235 *
236 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
237 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
238 *
239 * It has to be called with the spinlock held.
240 */
241 static void shmem_recalc_inode(struct inode *inode)
242 {
243 struct shmem_inode_info *info = SHMEM_I(inode);
244 long freed;
245
246 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
247 if (freed > 0) {
248 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
249 if (sbinfo->max_blocks)
250 percpu_counter_add(&sbinfo->used_blocks, -freed);
251 info->alloced -= freed;
252 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
253 shmem_unacct_blocks(info->flags, freed);
254 }
255 }
256
257 bool shmem_charge(struct inode *inode, long pages)
258 {
259 struct shmem_inode_info *info = SHMEM_I(inode);
260 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
261 unsigned long flags;
262
263 if (shmem_acct_block(info->flags, pages))
264 return false;
265 spin_lock_irqsave(&info->lock, flags);
266 info->alloced += pages;
267 inode->i_blocks += pages * BLOCKS_PER_PAGE;
268 shmem_recalc_inode(inode);
269 spin_unlock_irqrestore(&info->lock, flags);
270 inode->i_mapping->nrpages += pages;
271
272 if (!sbinfo->max_blocks)
273 return true;
274 if (percpu_counter_compare(&sbinfo->used_blocks,
275 sbinfo->max_blocks - pages) > 0) {
276 inode->i_mapping->nrpages -= pages;
277 spin_lock_irqsave(&info->lock, flags);
278 info->alloced -= pages;
279 shmem_recalc_inode(inode);
280 spin_unlock_irqrestore(&info->lock, flags);
281
282 return false;
283 }
284 percpu_counter_add(&sbinfo->used_blocks, pages);
285 return true;
286 }
287
288 void shmem_uncharge(struct inode *inode, long pages)
289 {
290 struct shmem_inode_info *info = SHMEM_I(inode);
291 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
292 unsigned long flags;
293
294 spin_lock_irqsave(&info->lock, flags);
295 info->alloced -= pages;
296 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
297 shmem_recalc_inode(inode);
298 spin_unlock_irqrestore(&info->lock, flags);
299
300 if (sbinfo->max_blocks)
301 percpu_counter_sub(&sbinfo->used_blocks, pages);
302 }
303
304 /*
305 * Replace item expected in radix tree by a new item, while holding tree lock.
306 */
307 static int shmem_radix_tree_replace(struct address_space *mapping,
308 pgoff_t index, void *expected, void *replacement)
309 {
310 void **pslot;
311 void *item;
312
313 VM_BUG_ON(!expected);
314 VM_BUG_ON(!replacement);
315 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
316 if (!pslot)
317 return -ENOENT;
318 item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
319 if (item != expected)
320 return -ENOENT;
321 radix_tree_replace_slot(pslot, replacement);
322 return 0;
323 }
324
325 /*
326 * Sometimes, before we decide whether to proceed or to fail, we must check
327 * that an entry was not already brought back from swap by a racing thread.
328 *
329 * Checking page is not enough: by the time a SwapCache page is locked, it
330 * might be reused, and again be SwapCache, using the same swap as before.
331 */
332 static bool shmem_confirm_swap(struct address_space *mapping,
333 pgoff_t index, swp_entry_t swap)
334 {
335 void *item;
336
337 rcu_read_lock();
338 item = radix_tree_lookup(&mapping->page_tree, index);
339 rcu_read_unlock();
340 return item == swp_to_radix_entry(swap);
341 }
342
343 /*
344 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
345 *
346 * SHMEM_HUGE_NEVER:
347 * disables huge pages for the mount;
348 * SHMEM_HUGE_ALWAYS:
349 * enables huge pages for the mount;
350 * SHMEM_HUGE_WITHIN_SIZE:
351 * only allocate huge pages if the page will be fully within i_size,
352 * also respect fadvise()/madvise() hints;
353 * SHMEM_HUGE_ADVISE:
354 * only allocate huge pages if requested with fadvise()/madvise();
355 */
356
357 #define SHMEM_HUGE_NEVER 0
358 #define SHMEM_HUGE_ALWAYS 1
359 #define SHMEM_HUGE_WITHIN_SIZE 2
360 #define SHMEM_HUGE_ADVISE 3
361
362 /*
363 * Special values.
364 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
365 *
366 * SHMEM_HUGE_DENY:
367 * disables huge on shm_mnt and all mounts, for emergency use;
368 * SHMEM_HUGE_FORCE:
369 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
370 *
371 */
372 #define SHMEM_HUGE_DENY (-1)
373 #define SHMEM_HUGE_FORCE (-2)
374
375 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
376 /* ifdef here to avoid bloating shmem.o when not necessary */
377
378 int shmem_huge __read_mostly;
379
380 static int shmem_parse_huge(const char *str)
381 {
382 if (!strcmp(str, "never"))
383 return SHMEM_HUGE_NEVER;
384 if (!strcmp(str, "always"))
385 return SHMEM_HUGE_ALWAYS;
386 if (!strcmp(str, "within_size"))
387 return SHMEM_HUGE_WITHIN_SIZE;
388 if (!strcmp(str, "advise"))
389 return SHMEM_HUGE_ADVISE;
390 if (!strcmp(str, "deny"))
391 return SHMEM_HUGE_DENY;
392 if (!strcmp(str, "force"))
393 return SHMEM_HUGE_FORCE;
394 return -EINVAL;
395 }
396
397 static const char *shmem_format_huge(int huge)
398 {
399 switch (huge) {
400 case SHMEM_HUGE_NEVER:
401 return "never";
402 case SHMEM_HUGE_ALWAYS:
403 return "always";
404 case SHMEM_HUGE_WITHIN_SIZE:
405 return "within_size";
406 case SHMEM_HUGE_ADVISE:
407 return "advise";
408 case SHMEM_HUGE_DENY:
409 return "deny";
410 case SHMEM_HUGE_FORCE:
411 return "force";
412 default:
413 VM_BUG_ON(1);
414 return "bad_val";
415 }
416 }
417
418 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
419
420 #define shmem_huge SHMEM_HUGE_DENY
421
422 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
423
424 /*
425 * Like add_to_page_cache_locked, but error if expected item has gone.
426 */
427 static int shmem_add_to_page_cache(struct page *page,
428 struct address_space *mapping,
429 pgoff_t index, void *expected)
430 {
431 int error, nr = hpage_nr_pages(page);
432
433 VM_BUG_ON_PAGE(PageTail(page), page);
434 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
435 VM_BUG_ON_PAGE(!PageLocked(page), page);
436 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
437 VM_BUG_ON(expected && PageTransHuge(page));
438
439 page_ref_add(page, nr);
440 page->mapping = mapping;
441 page->index = index;
442
443 spin_lock_irq(&mapping->tree_lock);
444 if (PageTransHuge(page)) {
445 void __rcu **results;
446 pgoff_t idx;
447 int i;
448
449 error = 0;
450 if (radix_tree_gang_lookup_slot(&mapping->page_tree,
451 &results, &idx, index, 1) &&
452 idx < index + HPAGE_PMD_NR) {
453 error = -EEXIST;
454 }
455
456 if (!error) {
457 for (i = 0; i < HPAGE_PMD_NR; i++) {
458 error = radix_tree_insert(&mapping->page_tree,
459 index + i, page + i);
460 VM_BUG_ON(error);
461 }
462 count_vm_event(THP_FILE_ALLOC);
463 }
464 } else if (!expected) {
465 error = radix_tree_insert(&mapping->page_tree, index, page);
466 } else {
467 error = shmem_radix_tree_replace(mapping, index, expected,
468 page);
469 }
470
471 if (!error) {
472 mapping->nrpages += nr;
473 if (PageTransHuge(page))
474 __inc_zone_page_state(page, NR_SHMEM_THPS);
475 __mod_zone_page_state(page_zone(page), NR_FILE_PAGES, nr);
476 __mod_zone_page_state(page_zone(page), NR_SHMEM, nr);
477 spin_unlock_irq(&mapping->tree_lock);
478 } else {
479 page->mapping = NULL;
480 spin_unlock_irq(&mapping->tree_lock);
481 page_ref_sub(page, nr);
482 }
483 return error;
484 }
485
486 /*
487 * Like delete_from_page_cache, but substitutes swap for page.
488 */
489 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
490 {
491 struct address_space *mapping = page->mapping;
492 int error;
493
494 VM_BUG_ON_PAGE(PageCompound(page), page);
495
496 spin_lock_irq(&mapping->tree_lock);
497 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
498 page->mapping = NULL;
499 mapping->nrpages--;
500 __dec_zone_page_state(page, NR_FILE_PAGES);
501 __dec_zone_page_state(page, NR_SHMEM);
502 spin_unlock_irq(&mapping->tree_lock);
503 put_page(page);
504 BUG_ON(error);
505 }
506
507 /*
508 * Remove swap entry from radix tree, free the swap and its page cache.
509 */
510 static int shmem_free_swap(struct address_space *mapping,
511 pgoff_t index, void *radswap)
512 {
513 void *old;
514
515 spin_lock_irq(&mapping->tree_lock);
516 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
517 spin_unlock_irq(&mapping->tree_lock);
518 if (old != radswap)
519 return -ENOENT;
520 free_swap_and_cache(radix_to_swp_entry(radswap));
521 return 0;
522 }
523
524 /*
525 * Determine (in bytes) how many of the shmem object's pages mapped by the
526 * given offsets are swapped out.
527 *
528 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
529 * as long as the inode doesn't go away and racy results are not a problem.
530 */
531 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
532 pgoff_t start, pgoff_t end)
533 {
534 struct radix_tree_iter iter;
535 void **slot;
536 struct page *page;
537 unsigned long swapped = 0;
538
539 rcu_read_lock();
540
541 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
542 if (iter.index >= end)
543 break;
544
545 page = radix_tree_deref_slot(slot);
546
547 if (radix_tree_deref_retry(page)) {
548 slot = radix_tree_iter_retry(&iter);
549 continue;
550 }
551
552 if (radix_tree_exceptional_entry(page))
553 swapped++;
554
555 if (need_resched()) {
556 cond_resched_rcu();
557 slot = radix_tree_iter_next(&iter);
558 }
559 }
560
561 rcu_read_unlock();
562
563 return swapped << PAGE_SHIFT;
564 }
565
566 /*
567 * Determine (in bytes) how many of the shmem object's pages mapped by the
568 * given vma is swapped out.
569 *
570 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
571 * as long as the inode doesn't go away and racy results are not a problem.
572 */
573 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
574 {
575 struct inode *inode = file_inode(vma->vm_file);
576 struct shmem_inode_info *info = SHMEM_I(inode);
577 struct address_space *mapping = inode->i_mapping;
578 unsigned long swapped;
579
580 /* Be careful as we don't hold info->lock */
581 swapped = READ_ONCE(info->swapped);
582
583 /*
584 * The easier cases are when the shmem object has nothing in swap, or
585 * the vma maps it whole. Then we can simply use the stats that we
586 * already track.
587 */
588 if (!swapped)
589 return 0;
590
591 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
592 return swapped << PAGE_SHIFT;
593
594 /* Here comes the more involved part */
595 return shmem_partial_swap_usage(mapping,
596 linear_page_index(vma, vma->vm_start),
597 linear_page_index(vma, vma->vm_end));
598 }
599
600 /*
601 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
602 */
603 void shmem_unlock_mapping(struct address_space *mapping)
604 {
605 struct pagevec pvec;
606 pgoff_t indices[PAGEVEC_SIZE];
607 pgoff_t index = 0;
608
609 pagevec_init(&pvec, 0);
610 /*
611 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
612 */
613 while (!mapping_unevictable(mapping)) {
614 /*
615 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
616 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
617 */
618 pvec.nr = find_get_entries(mapping, index,
619 PAGEVEC_SIZE, pvec.pages, indices);
620 if (!pvec.nr)
621 break;
622 index = indices[pvec.nr - 1] + 1;
623 pagevec_remove_exceptionals(&pvec);
624 check_move_unevictable_pages(pvec.pages, pvec.nr);
625 pagevec_release(&pvec);
626 cond_resched();
627 }
628 }
629
630 /*
631 * Remove range of pages and swap entries from radix tree, and free them.
632 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
633 */
634 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
635 bool unfalloc)
636 {
637 struct address_space *mapping = inode->i_mapping;
638 struct shmem_inode_info *info = SHMEM_I(inode);
639 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
640 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
641 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
642 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
643 struct pagevec pvec;
644 pgoff_t indices[PAGEVEC_SIZE];
645 long nr_swaps_freed = 0;
646 pgoff_t index;
647 int i;
648
649 if (lend == -1)
650 end = -1; /* unsigned, so actually very big */
651
652 pagevec_init(&pvec, 0);
653 index = start;
654 while (index < end) {
655 pvec.nr = find_get_entries(mapping, index,
656 min(end - index, (pgoff_t)PAGEVEC_SIZE),
657 pvec.pages, indices);
658 if (!pvec.nr)
659 break;
660 for (i = 0; i < pagevec_count(&pvec); i++) {
661 struct page *page = pvec.pages[i];
662
663 index = indices[i];
664 if (index >= end)
665 break;
666
667 if (radix_tree_exceptional_entry(page)) {
668 if (unfalloc)
669 continue;
670 nr_swaps_freed += !shmem_free_swap(mapping,
671 index, page);
672 continue;
673 }
674
675 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
676
677 if (!trylock_page(page))
678 continue;
679
680 if (PageTransTail(page)) {
681 /* Middle of THP: zero out the page */
682 clear_highpage(page);
683 unlock_page(page);
684 continue;
685 } else if (PageTransHuge(page)) {
686 if (index == round_down(end, HPAGE_PMD_NR)) {
687 /*
688 * Range ends in the middle of THP:
689 * zero out the page
690 */
691 clear_highpage(page);
692 unlock_page(page);
693 continue;
694 }
695 index += HPAGE_PMD_NR - 1;
696 i += HPAGE_PMD_NR - 1;
697 }
698
699 if (!unfalloc || !PageUptodate(page)) {
700 VM_BUG_ON_PAGE(PageTail(page), page);
701 if (page_mapping(page) == mapping) {
702 VM_BUG_ON_PAGE(PageWriteback(page), page);
703 truncate_inode_page(mapping, page);
704 }
705 }
706 unlock_page(page);
707 }
708 pagevec_remove_exceptionals(&pvec);
709 pagevec_release(&pvec);
710 cond_resched();
711 index++;
712 }
713
714 if (partial_start) {
715 struct page *page = NULL;
716 shmem_getpage(inode, start - 1, &page, SGP_READ);
717 if (page) {
718 unsigned int top = PAGE_SIZE;
719 if (start > end) {
720 top = partial_end;
721 partial_end = 0;
722 }
723 zero_user_segment(page, partial_start, top);
724 set_page_dirty(page);
725 unlock_page(page);
726 put_page(page);
727 }
728 }
729 if (partial_end) {
730 struct page *page = NULL;
731 shmem_getpage(inode, end, &page, SGP_READ);
732 if (page) {
733 zero_user_segment(page, 0, partial_end);
734 set_page_dirty(page);
735 unlock_page(page);
736 put_page(page);
737 }
738 }
739 if (start >= end)
740 return;
741
742 index = start;
743 while (index < end) {
744 cond_resched();
745
746 pvec.nr = find_get_entries(mapping, index,
747 min(end - index, (pgoff_t)PAGEVEC_SIZE),
748 pvec.pages, indices);
749 if (!pvec.nr) {
750 /* If all gone or hole-punch or unfalloc, we're done */
751 if (index == start || end != -1)
752 break;
753 /* But if truncating, restart to make sure all gone */
754 index = start;
755 continue;
756 }
757 for (i = 0; i < pagevec_count(&pvec); i++) {
758 struct page *page = pvec.pages[i];
759
760 index = indices[i];
761 if (index >= end)
762 break;
763
764 if (radix_tree_exceptional_entry(page)) {
765 if (unfalloc)
766 continue;
767 if (shmem_free_swap(mapping, index, page)) {
768 /* Swap was replaced by page: retry */
769 index--;
770 break;
771 }
772 nr_swaps_freed++;
773 continue;
774 }
775
776 lock_page(page);
777
778 if (PageTransTail(page)) {
779 /* Middle of THP: zero out the page */
780 clear_highpage(page);
781 unlock_page(page);
782 /*
783 * Partial thp truncate due 'start' in middle
784 * of THP: don't need to look on these pages
785 * again on !pvec.nr restart.
786 */
787 if (index != round_down(end, HPAGE_PMD_NR))
788 start++;
789 continue;
790 } else if (PageTransHuge(page)) {
791 if (index == round_down(end, HPAGE_PMD_NR)) {
792 /*
793 * Range ends in the middle of THP:
794 * zero out the page
795 */
796 clear_highpage(page);
797 unlock_page(page);
798 continue;
799 }
800 index += HPAGE_PMD_NR - 1;
801 i += HPAGE_PMD_NR - 1;
802 }
803
804 if (!unfalloc || !PageUptodate(page)) {
805 VM_BUG_ON_PAGE(PageTail(page), page);
806 if (page_mapping(page) == mapping) {
807 VM_BUG_ON_PAGE(PageWriteback(page), page);
808 truncate_inode_page(mapping, page);
809 } else {
810 /* Page was replaced by swap: retry */
811 unlock_page(page);
812 index--;
813 break;
814 }
815 }
816 unlock_page(page);
817 }
818 pagevec_remove_exceptionals(&pvec);
819 pagevec_release(&pvec);
820 index++;
821 }
822
823 spin_lock_irq(&info->lock);
824 info->swapped -= nr_swaps_freed;
825 shmem_recalc_inode(inode);
826 spin_unlock_irq(&info->lock);
827 }
828
829 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
830 {
831 shmem_undo_range(inode, lstart, lend, false);
832 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
833 }
834 EXPORT_SYMBOL_GPL(shmem_truncate_range);
835
836 static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry,
837 struct kstat *stat)
838 {
839 struct inode *inode = dentry->d_inode;
840 struct shmem_inode_info *info = SHMEM_I(inode);
841
842 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
843 spin_lock_irq(&info->lock);
844 shmem_recalc_inode(inode);
845 spin_unlock_irq(&info->lock);
846 }
847 generic_fillattr(inode, stat);
848 return 0;
849 }
850
851 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
852 {
853 struct inode *inode = d_inode(dentry);
854 struct shmem_inode_info *info = SHMEM_I(inode);
855 int error;
856
857 error = inode_change_ok(inode, attr);
858 if (error)
859 return error;
860
861 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
862 loff_t oldsize = inode->i_size;
863 loff_t newsize = attr->ia_size;
864
865 /* protected by i_mutex */
866 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
867 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
868 return -EPERM;
869
870 if (newsize != oldsize) {
871 error = shmem_reacct_size(SHMEM_I(inode)->flags,
872 oldsize, newsize);
873 if (error)
874 return error;
875 i_size_write(inode, newsize);
876 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
877 }
878 if (newsize <= oldsize) {
879 loff_t holebegin = round_up(newsize, PAGE_SIZE);
880 if (oldsize > holebegin)
881 unmap_mapping_range(inode->i_mapping,
882 holebegin, 0, 1);
883 if (info->alloced)
884 shmem_truncate_range(inode,
885 newsize, (loff_t)-1);
886 /* unmap again to remove racily COWed private pages */
887 if (oldsize > holebegin)
888 unmap_mapping_range(inode->i_mapping,
889 holebegin, 0, 1);
890 }
891 }
892
893 setattr_copy(inode, attr);
894 if (attr->ia_valid & ATTR_MODE)
895 error = posix_acl_chmod(inode, inode->i_mode);
896 return error;
897 }
898
899 static void shmem_evict_inode(struct inode *inode)
900 {
901 struct shmem_inode_info *info = SHMEM_I(inode);
902
903 if (inode->i_mapping->a_ops == &shmem_aops) {
904 shmem_unacct_size(info->flags, inode->i_size);
905 inode->i_size = 0;
906 shmem_truncate_range(inode, 0, (loff_t)-1);
907 if (!list_empty(&info->swaplist)) {
908 mutex_lock(&shmem_swaplist_mutex);
909 list_del_init(&info->swaplist);
910 mutex_unlock(&shmem_swaplist_mutex);
911 }
912 }
913
914 simple_xattrs_free(&info->xattrs);
915 WARN_ON(inode->i_blocks);
916 shmem_free_inode(inode->i_sb);
917 clear_inode(inode);
918 }
919
920 /*
921 * If swap found in inode, free it and move page from swapcache to filecache.
922 */
923 static int shmem_unuse_inode(struct shmem_inode_info *info,
924 swp_entry_t swap, struct page **pagep)
925 {
926 struct address_space *mapping = info->vfs_inode.i_mapping;
927 void *radswap;
928 pgoff_t index;
929 gfp_t gfp;
930 int error = 0;
931
932 radswap = swp_to_radix_entry(swap);
933 index = radix_tree_locate_item(&mapping->page_tree, radswap);
934 if (index == -1)
935 return -EAGAIN; /* tell shmem_unuse we found nothing */
936
937 /*
938 * Move _head_ to start search for next from here.
939 * But be careful: shmem_evict_inode checks list_empty without taking
940 * mutex, and there's an instant in list_move_tail when info->swaplist
941 * would appear empty, if it were the only one on shmem_swaplist.
942 */
943 if (shmem_swaplist.next != &info->swaplist)
944 list_move_tail(&shmem_swaplist, &info->swaplist);
945
946 gfp = mapping_gfp_mask(mapping);
947 if (shmem_should_replace_page(*pagep, gfp)) {
948 mutex_unlock(&shmem_swaplist_mutex);
949 error = shmem_replace_page(pagep, gfp, info, index);
950 mutex_lock(&shmem_swaplist_mutex);
951 /*
952 * We needed to drop mutex to make that restrictive page
953 * allocation, but the inode might have been freed while we
954 * dropped it: although a racing shmem_evict_inode() cannot
955 * complete without emptying the radix_tree, our page lock
956 * on this swapcache page is not enough to prevent that -
957 * free_swap_and_cache() of our swap entry will only
958 * trylock_page(), removing swap from radix_tree whatever.
959 *
960 * We must not proceed to shmem_add_to_page_cache() if the
961 * inode has been freed, but of course we cannot rely on
962 * inode or mapping or info to check that. However, we can
963 * safely check if our swap entry is still in use (and here
964 * it can't have got reused for another page): if it's still
965 * in use, then the inode cannot have been freed yet, and we
966 * can safely proceed (if it's no longer in use, that tells
967 * nothing about the inode, but we don't need to unuse swap).
968 */
969 if (!page_swapcount(*pagep))
970 error = -ENOENT;
971 }
972
973 /*
974 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
975 * but also to hold up shmem_evict_inode(): so inode cannot be freed
976 * beneath us (pagelock doesn't help until the page is in pagecache).
977 */
978 if (!error)
979 error = shmem_add_to_page_cache(*pagep, mapping, index,
980 radswap);
981 if (error != -ENOMEM) {
982 /*
983 * Truncation and eviction use free_swap_and_cache(), which
984 * only does trylock page: if we raced, best clean up here.
985 */
986 delete_from_swap_cache(*pagep);
987 set_page_dirty(*pagep);
988 if (!error) {
989 spin_lock_irq(&info->lock);
990 info->swapped--;
991 spin_unlock_irq(&info->lock);
992 swap_free(swap);
993 }
994 }
995 return error;
996 }
997
998 /*
999 * Search through swapped inodes to find and replace swap by page.
1000 */
1001 int shmem_unuse(swp_entry_t swap, struct page *page)
1002 {
1003 struct list_head *this, *next;
1004 struct shmem_inode_info *info;
1005 struct mem_cgroup *memcg;
1006 int error = 0;
1007
1008 /*
1009 * There's a faint possibility that swap page was replaced before
1010 * caller locked it: caller will come back later with the right page.
1011 */
1012 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
1013 goto out;
1014
1015 /*
1016 * Charge page using GFP_KERNEL while we can wait, before taking
1017 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1018 * Charged back to the user (not to caller) when swap account is used.
1019 */
1020 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
1021 false);
1022 if (error)
1023 goto out;
1024 /* No radix_tree_preload: swap entry keeps a place for page in tree */
1025 error = -EAGAIN;
1026
1027 mutex_lock(&shmem_swaplist_mutex);
1028 list_for_each_safe(this, next, &shmem_swaplist) {
1029 info = list_entry(this, struct shmem_inode_info, swaplist);
1030 if (info->swapped)
1031 error = shmem_unuse_inode(info, swap, &page);
1032 else
1033 list_del_init(&info->swaplist);
1034 cond_resched();
1035 if (error != -EAGAIN)
1036 break;
1037 /* found nothing in this: move on to search the next */
1038 }
1039 mutex_unlock(&shmem_swaplist_mutex);
1040
1041 if (error) {
1042 if (error != -ENOMEM)
1043 error = 0;
1044 mem_cgroup_cancel_charge(page, memcg, false);
1045 } else
1046 mem_cgroup_commit_charge(page, memcg, true, false);
1047 out:
1048 unlock_page(page);
1049 put_page(page);
1050 return error;
1051 }
1052
1053 /*
1054 * Move the page from the page cache to the swap cache.
1055 */
1056 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1057 {
1058 struct shmem_inode_info *info;
1059 struct address_space *mapping;
1060 struct inode *inode;
1061 swp_entry_t swap;
1062 pgoff_t index;
1063
1064 VM_BUG_ON_PAGE(PageCompound(page), page);
1065 BUG_ON(!PageLocked(page));
1066 mapping = page->mapping;
1067 index = page->index;
1068 inode = mapping->host;
1069 info = SHMEM_I(inode);
1070 if (info->flags & VM_LOCKED)
1071 goto redirty;
1072 if (!total_swap_pages)
1073 goto redirty;
1074
1075 /*
1076 * Our capabilities prevent regular writeback or sync from ever calling
1077 * shmem_writepage; but a stacking filesystem might use ->writepage of
1078 * its underlying filesystem, in which case tmpfs should write out to
1079 * swap only in response to memory pressure, and not for the writeback
1080 * threads or sync.
1081 */
1082 if (!wbc->for_reclaim) {
1083 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1084 goto redirty;
1085 }
1086
1087 /*
1088 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1089 * value into swapfile.c, the only way we can correctly account for a
1090 * fallocated page arriving here is now to initialize it and write it.
1091 *
1092 * That's okay for a page already fallocated earlier, but if we have
1093 * not yet completed the fallocation, then (a) we want to keep track
1094 * of this page in case we have to undo it, and (b) it may not be a
1095 * good idea to continue anyway, once we're pushing into swap. So
1096 * reactivate the page, and let shmem_fallocate() quit when too many.
1097 */
1098 if (!PageUptodate(page)) {
1099 if (inode->i_private) {
1100 struct shmem_falloc *shmem_falloc;
1101 spin_lock(&inode->i_lock);
1102 shmem_falloc = inode->i_private;
1103 if (shmem_falloc &&
1104 !shmem_falloc->waitq &&
1105 index >= shmem_falloc->start &&
1106 index < shmem_falloc->next)
1107 shmem_falloc->nr_unswapped++;
1108 else
1109 shmem_falloc = NULL;
1110 spin_unlock(&inode->i_lock);
1111 if (shmem_falloc)
1112 goto redirty;
1113 }
1114 clear_highpage(page);
1115 flush_dcache_page(page);
1116 SetPageUptodate(page);
1117 }
1118
1119 swap = get_swap_page();
1120 if (!swap.val)
1121 goto redirty;
1122
1123 if (mem_cgroup_try_charge_swap(page, swap))
1124 goto free_swap;
1125
1126 /*
1127 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1128 * if it's not already there. Do it now before the page is
1129 * moved to swap cache, when its pagelock no longer protects
1130 * the inode from eviction. But don't unlock the mutex until
1131 * we've incremented swapped, because shmem_unuse_inode() will
1132 * prune a !swapped inode from the swaplist under this mutex.
1133 */
1134 mutex_lock(&shmem_swaplist_mutex);
1135 if (list_empty(&info->swaplist))
1136 list_add_tail(&info->swaplist, &shmem_swaplist);
1137
1138 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1139 spin_lock_irq(&info->lock);
1140 shmem_recalc_inode(inode);
1141 info->swapped++;
1142 spin_unlock_irq(&info->lock);
1143
1144 swap_shmem_alloc(swap);
1145 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1146
1147 mutex_unlock(&shmem_swaplist_mutex);
1148 BUG_ON(page_mapped(page));
1149 swap_writepage(page, wbc);
1150 return 0;
1151 }
1152
1153 mutex_unlock(&shmem_swaplist_mutex);
1154 free_swap:
1155 swapcache_free(swap);
1156 redirty:
1157 set_page_dirty(page);
1158 if (wbc->for_reclaim)
1159 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1160 unlock_page(page);
1161 return 0;
1162 }
1163
1164 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1165 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1166 {
1167 char buffer[64];
1168
1169 if (!mpol || mpol->mode == MPOL_DEFAULT)
1170 return; /* show nothing */
1171
1172 mpol_to_str(buffer, sizeof(buffer), mpol);
1173
1174 seq_printf(seq, ",mpol=%s", buffer);
1175 }
1176
1177 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1178 {
1179 struct mempolicy *mpol = NULL;
1180 if (sbinfo->mpol) {
1181 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1182 mpol = sbinfo->mpol;
1183 mpol_get(mpol);
1184 spin_unlock(&sbinfo->stat_lock);
1185 }
1186 return mpol;
1187 }
1188 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1189 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1190 {
1191 }
1192 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1193 {
1194 return NULL;
1195 }
1196 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1197 #ifndef CONFIG_NUMA
1198 #define vm_policy vm_private_data
1199 #endif
1200
1201 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1202 struct shmem_inode_info *info, pgoff_t index)
1203 {
1204 /* Create a pseudo vma that just contains the policy */
1205 vma->vm_start = 0;
1206 /* Bias interleave by inode number to distribute better across nodes */
1207 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1208 vma->vm_ops = NULL;
1209 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1210 }
1211
1212 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1213 {
1214 /* Drop reference taken by mpol_shared_policy_lookup() */
1215 mpol_cond_put(vma->vm_policy);
1216 }
1217
1218 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1219 struct shmem_inode_info *info, pgoff_t index)
1220 {
1221 struct vm_area_struct pvma;
1222 struct page *page;
1223
1224 shmem_pseudo_vma_init(&pvma, info, index);
1225 page = swapin_readahead(swap, gfp, &pvma, 0);
1226 shmem_pseudo_vma_destroy(&pvma);
1227
1228 return page;
1229 }
1230
1231 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1232 struct shmem_inode_info *info, pgoff_t index)
1233 {
1234 struct vm_area_struct pvma;
1235 struct inode *inode = &info->vfs_inode;
1236 struct address_space *mapping = inode->i_mapping;
1237 pgoff_t idx, hindex = round_down(index, HPAGE_PMD_NR);
1238 void __rcu **results;
1239 struct page *page;
1240
1241 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1242 return NULL;
1243
1244 rcu_read_lock();
1245 if (radix_tree_gang_lookup_slot(&mapping->page_tree, &results, &idx,
1246 hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1247 rcu_read_unlock();
1248 return NULL;
1249 }
1250 rcu_read_unlock();
1251
1252 shmem_pseudo_vma_init(&pvma, info, hindex);
1253 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1254 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1255 shmem_pseudo_vma_destroy(&pvma);
1256 if (page)
1257 prep_transhuge_page(page);
1258 return page;
1259 }
1260
1261 static struct page *shmem_alloc_page(gfp_t gfp,
1262 struct shmem_inode_info *info, pgoff_t index)
1263 {
1264 struct vm_area_struct pvma;
1265 struct page *page;
1266
1267 shmem_pseudo_vma_init(&pvma, info, index);
1268 page = alloc_page_vma(gfp, &pvma, 0);
1269 shmem_pseudo_vma_destroy(&pvma);
1270
1271 return page;
1272 }
1273
1274 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1275 struct shmem_inode_info *info, struct shmem_sb_info *sbinfo,
1276 pgoff_t index, bool huge)
1277 {
1278 struct page *page;
1279 int nr;
1280 int err = -ENOSPC;
1281
1282 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1283 huge = false;
1284 nr = huge ? HPAGE_PMD_NR : 1;
1285
1286 if (shmem_acct_block(info->flags, nr))
1287 goto failed;
1288 if (sbinfo->max_blocks) {
1289 if (percpu_counter_compare(&sbinfo->used_blocks,
1290 sbinfo->max_blocks - nr) > 0)
1291 goto unacct;
1292 percpu_counter_add(&sbinfo->used_blocks, nr);
1293 }
1294
1295 if (huge)
1296 page = shmem_alloc_hugepage(gfp, info, index);
1297 else
1298 page = shmem_alloc_page(gfp, info, index);
1299 if (page) {
1300 __SetPageLocked(page);
1301 __SetPageSwapBacked(page);
1302 return page;
1303 }
1304
1305 err = -ENOMEM;
1306 if (sbinfo->max_blocks)
1307 percpu_counter_add(&sbinfo->used_blocks, -nr);
1308 unacct:
1309 shmem_unacct_blocks(info->flags, nr);
1310 failed:
1311 return ERR_PTR(err);
1312 }
1313
1314 /*
1315 * When a page is moved from swapcache to shmem filecache (either by the
1316 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1317 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1318 * ignorance of the mapping it belongs to. If that mapping has special
1319 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1320 * we may need to copy to a suitable page before moving to filecache.
1321 *
1322 * In a future release, this may well be extended to respect cpuset and
1323 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1324 * but for now it is a simple matter of zone.
1325 */
1326 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1327 {
1328 return page_zonenum(page) > gfp_zone(gfp);
1329 }
1330
1331 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1332 struct shmem_inode_info *info, pgoff_t index)
1333 {
1334 struct page *oldpage, *newpage;
1335 struct address_space *swap_mapping;
1336 pgoff_t swap_index;
1337 int error;
1338
1339 oldpage = *pagep;
1340 swap_index = page_private(oldpage);
1341 swap_mapping = page_mapping(oldpage);
1342
1343 /*
1344 * We have arrived here because our zones are constrained, so don't
1345 * limit chance of success by further cpuset and node constraints.
1346 */
1347 gfp &= ~GFP_CONSTRAINT_MASK;
1348 newpage = shmem_alloc_page(gfp, info, index);
1349 if (!newpage)
1350 return -ENOMEM;
1351
1352 get_page(newpage);
1353 copy_highpage(newpage, oldpage);
1354 flush_dcache_page(newpage);
1355
1356 SetPageUptodate(newpage);
1357 set_page_private(newpage, swap_index);
1358 SetPageSwapCache(newpage);
1359
1360 /*
1361 * Our caller will very soon move newpage out of swapcache, but it's
1362 * a nice clean interface for us to replace oldpage by newpage there.
1363 */
1364 spin_lock_irq(&swap_mapping->tree_lock);
1365 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1366 newpage);
1367 if (!error) {
1368 __inc_zone_page_state(newpage, NR_FILE_PAGES);
1369 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1370 }
1371 spin_unlock_irq(&swap_mapping->tree_lock);
1372
1373 if (unlikely(error)) {
1374 /*
1375 * Is this possible? I think not, now that our callers check
1376 * both PageSwapCache and page_private after getting page lock;
1377 * but be defensive. Reverse old to newpage for clear and free.
1378 */
1379 oldpage = newpage;
1380 } else {
1381 mem_cgroup_migrate(oldpage, newpage);
1382 lru_cache_add_anon(newpage);
1383 *pagep = newpage;
1384 }
1385
1386 ClearPageSwapCache(oldpage);
1387 set_page_private(oldpage, 0);
1388
1389 unlock_page(oldpage);
1390 put_page(oldpage);
1391 put_page(oldpage);
1392 return error;
1393 }
1394
1395 /*
1396 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1397 *
1398 * If we allocate a new one we do not mark it dirty. That's up to the
1399 * vm. If we swap it in we mark it dirty since we also free the swap
1400 * entry since a page cannot live in both the swap and page cache.
1401 *
1402 * fault_mm and fault_type are only supplied by shmem_fault:
1403 * otherwise they are NULL.
1404 */
1405 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1406 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1407 struct mm_struct *fault_mm, int *fault_type)
1408 {
1409 struct address_space *mapping = inode->i_mapping;
1410 struct shmem_inode_info *info;
1411 struct shmem_sb_info *sbinfo;
1412 struct mm_struct *charge_mm;
1413 struct mem_cgroup *memcg;
1414 struct page *page;
1415 swp_entry_t swap;
1416 enum sgp_type sgp_huge = sgp;
1417 pgoff_t hindex = index;
1418 int error;
1419 int once = 0;
1420 int alloced = 0;
1421
1422 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1423 return -EFBIG;
1424 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1425 sgp = SGP_CACHE;
1426 repeat:
1427 swap.val = 0;
1428 page = find_lock_entry(mapping, index);
1429 if (radix_tree_exceptional_entry(page)) {
1430 swap = radix_to_swp_entry(page);
1431 page = NULL;
1432 }
1433
1434 if (sgp <= SGP_CACHE &&
1435 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1436 error = -EINVAL;
1437 goto unlock;
1438 }
1439
1440 if (page && sgp == SGP_WRITE)
1441 mark_page_accessed(page);
1442
1443 /* fallocated page? */
1444 if (page && !PageUptodate(page)) {
1445 if (sgp != SGP_READ)
1446 goto clear;
1447 unlock_page(page);
1448 put_page(page);
1449 page = NULL;
1450 }
1451 if (page || (sgp == SGP_READ && !swap.val)) {
1452 *pagep = page;
1453 return 0;
1454 }
1455
1456 /*
1457 * Fast cache lookup did not find it:
1458 * bring it back from swap or allocate.
1459 */
1460 info = SHMEM_I(inode);
1461 sbinfo = SHMEM_SB(inode->i_sb);
1462 charge_mm = fault_mm ? : current->mm;
1463
1464 if (swap.val) {
1465 /* Look it up and read it in.. */
1466 page = lookup_swap_cache(swap);
1467 if (!page) {
1468 /* Or update major stats only when swapin succeeds?? */
1469 if (fault_type) {
1470 *fault_type |= VM_FAULT_MAJOR;
1471 count_vm_event(PGMAJFAULT);
1472 mem_cgroup_count_vm_event(fault_mm, PGMAJFAULT);
1473 }
1474 /* Here we actually start the io */
1475 page = shmem_swapin(swap, gfp, info, index);
1476 if (!page) {
1477 error = -ENOMEM;
1478 goto failed;
1479 }
1480 }
1481
1482 /* We have to do this with page locked to prevent races */
1483 lock_page(page);
1484 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1485 !shmem_confirm_swap(mapping, index, swap)) {
1486 error = -EEXIST; /* try again */
1487 goto unlock;
1488 }
1489 if (!PageUptodate(page)) {
1490 error = -EIO;
1491 goto failed;
1492 }
1493 wait_on_page_writeback(page);
1494
1495 if (shmem_should_replace_page(page, gfp)) {
1496 error = shmem_replace_page(&page, gfp, info, index);
1497 if (error)
1498 goto failed;
1499 }
1500
1501 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1502 false);
1503 if (!error) {
1504 error = shmem_add_to_page_cache(page, mapping, index,
1505 swp_to_radix_entry(swap));
1506 /*
1507 * We already confirmed swap under page lock, and make
1508 * no memory allocation here, so usually no possibility
1509 * of error; but free_swap_and_cache() only trylocks a
1510 * page, so it is just possible that the entry has been
1511 * truncated or holepunched since swap was confirmed.
1512 * shmem_undo_range() will have done some of the
1513 * unaccounting, now delete_from_swap_cache() will do
1514 * the rest.
1515 * Reset swap.val? No, leave it so "failed" goes back to
1516 * "repeat": reading a hole and writing should succeed.
1517 */
1518 if (error) {
1519 mem_cgroup_cancel_charge(page, memcg, false);
1520 delete_from_swap_cache(page);
1521 }
1522 }
1523 if (error)
1524 goto failed;
1525
1526 mem_cgroup_commit_charge(page, memcg, true, false);
1527
1528 spin_lock_irq(&info->lock);
1529 info->swapped--;
1530 shmem_recalc_inode(inode);
1531 spin_unlock_irq(&info->lock);
1532
1533 if (sgp == SGP_WRITE)
1534 mark_page_accessed(page);
1535
1536 delete_from_swap_cache(page);
1537 set_page_dirty(page);
1538 swap_free(swap);
1539
1540 } else {
1541 /* shmem_symlink() */
1542 if (mapping->a_ops != &shmem_aops)
1543 goto alloc_nohuge;
1544 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1545 goto alloc_nohuge;
1546 if (shmem_huge == SHMEM_HUGE_FORCE)
1547 goto alloc_huge;
1548 switch (sbinfo->huge) {
1549 loff_t i_size;
1550 pgoff_t off;
1551 case SHMEM_HUGE_NEVER:
1552 goto alloc_nohuge;
1553 case SHMEM_HUGE_WITHIN_SIZE:
1554 off = round_up(index, HPAGE_PMD_NR);
1555 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1556 if (i_size >= HPAGE_PMD_SIZE &&
1557 i_size >> PAGE_SHIFT >= off)
1558 goto alloc_huge;
1559 /* fallthrough */
1560 case SHMEM_HUGE_ADVISE:
1561 if (sgp_huge == SGP_HUGE)
1562 goto alloc_huge;
1563 /* TODO: implement fadvise() hints */
1564 goto alloc_nohuge;
1565 }
1566
1567 alloc_huge:
1568 page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1569 index, true);
1570 if (IS_ERR(page)) {
1571 alloc_nohuge: page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1572 index, false);
1573 }
1574 if (IS_ERR(page)) {
1575 error = PTR_ERR(page);
1576 page = NULL;
1577 goto failed;
1578 }
1579
1580 if (PageTransHuge(page))
1581 hindex = round_down(index, HPAGE_PMD_NR);
1582 else
1583 hindex = index;
1584
1585 if (sgp == SGP_WRITE)
1586 __SetPageReferenced(page);
1587
1588 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1589 PageTransHuge(page));
1590 if (error)
1591 goto unacct;
1592 error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1593 compound_order(page));
1594 if (!error) {
1595 error = shmem_add_to_page_cache(page, mapping, hindex,
1596 NULL);
1597 radix_tree_preload_end();
1598 }
1599 if (error) {
1600 mem_cgroup_cancel_charge(page, memcg,
1601 PageTransHuge(page));
1602 goto unacct;
1603 }
1604 mem_cgroup_commit_charge(page, memcg, false,
1605 PageTransHuge(page));
1606 lru_cache_add_anon(page);
1607
1608 spin_lock_irq(&info->lock);
1609 info->alloced += 1 << compound_order(page);
1610 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1611 shmem_recalc_inode(inode);
1612 spin_unlock_irq(&info->lock);
1613 alloced = true;
1614
1615 /*
1616 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1617 */
1618 if (sgp == SGP_FALLOC)
1619 sgp = SGP_WRITE;
1620 clear:
1621 /*
1622 * Let SGP_WRITE caller clear ends if write does not fill page;
1623 * but SGP_FALLOC on a page fallocated earlier must initialize
1624 * it now, lest undo on failure cancel our earlier guarantee.
1625 */
1626 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1627 struct page *head = compound_head(page);
1628 int i;
1629
1630 for (i = 0; i < (1 << compound_order(head)); i++) {
1631 clear_highpage(head + i);
1632 flush_dcache_page(head + i);
1633 }
1634 SetPageUptodate(head);
1635 }
1636 }
1637
1638 /* Perhaps the file has been truncated since we checked */
1639 if (sgp <= SGP_CACHE &&
1640 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1641 if (alloced) {
1642 ClearPageDirty(page);
1643 delete_from_page_cache(page);
1644 spin_lock_irq(&info->lock);
1645 shmem_recalc_inode(inode);
1646 spin_unlock_irq(&info->lock);
1647 }
1648 error = -EINVAL;
1649 goto unlock;
1650 }
1651 *pagep = page + index - hindex;
1652 return 0;
1653
1654 /*
1655 * Error recovery.
1656 */
1657 unacct:
1658 if (sbinfo->max_blocks)
1659 percpu_counter_sub(&sbinfo->used_blocks,
1660 1 << compound_order(page));
1661 shmem_unacct_blocks(info->flags, 1 << compound_order(page));
1662
1663 if (PageTransHuge(page)) {
1664 unlock_page(page);
1665 put_page(page);
1666 goto alloc_nohuge;
1667 }
1668 failed:
1669 if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1670 error = -EEXIST;
1671 unlock:
1672 if (page) {
1673 unlock_page(page);
1674 put_page(page);
1675 }
1676 if (error == -ENOSPC && !once++) {
1677 info = SHMEM_I(inode);
1678 spin_lock_irq(&info->lock);
1679 shmem_recalc_inode(inode);
1680 spin_unlock_irq(&info->lock);
1681 goto repeat;
1682 }
1683 if (error == -EEXIST) /* from above or from radix_tree_insert */
1684 goto repeat;
1685 return error;
1686 }
1687
1688 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1689 {
1690 struct inode *inode = file_inode(vma->vm_file);
1691 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1692 enum sgp_type sgp;
1693 int error;
1694 int ret = VM_FAULT_LOCKED;
1695
1696 /*
1697 * Trinity finds that probing a hole which tmpfs is punching can
1698 * prevent the hole-punch from ever completing: which in turn
1699 * locks writers out with its hold on i_mutex. So refrain from
1700 * faulting pages into the hole while it's being punched. Although
1701 * shmem_undo_range() does remove the additions, it may be unable to
1702 * keep up, as each new page needs its own unmap_mapping_range() call,
1703 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1704 *
1705 * It does not matter if we sometimes reach this check just before the
1706 * hole-punch begins, so that one fault then races with the punch:
1707 * we just need to make racing faults a rare case.
1708 *
1709 * The implementation below would be much simpler if we just used a
1710 * standard mutex or completion: but we cannot take i_mutex in fault,
1711 * and bloating every shmem inode for this unlikely case would be sad.
1712 */
1713 if (unlikely(inode->i_private)) {
1714 struct shmem_falloc *shmem_falloc;
1715
1716 spin_lock(&inode->i_lock);
1717 shmem_falloc = inode->i_private;
1718 if (shmem_falloc &&
1719 shmem_falloc->waitq &&
1720 vmf->pgoff >= shmem_falloc->start &&
1721 vmf->pgoff < shmem_falloc->next) {
1722 wait_queue_head_t *shmem_falloc_waitq;
1723 DEFINE_WAIT(shmem_fault_wait);
1724
1725 ret = VM_FAULT_NOPAGE;
1726 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1727 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1728 /* It's polite to up mmap_sem if we can */
1729 up_read(&vma->vm_mm->mmap_sem);
1730 ret = VM_FAULT_RETRY;
1731 }
1732
1733 shmem_falloc_waitq = shmem_falloc->waitq;
1734 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1735 TASK_UNINTERRUPTIBLE);
1736 spin_unlock(&inode->i_lock);
1737 schedule();
1738
1739 /*
1740 * shmem_falloc_waitq points into the shmem_fallocate()
1741 * stack of the hole-punching task: shmem_falloc_waitq
1742 * is usually invalid by the time we reach here, but
1743 * finish_wait() does not dereference it in that case;
1744 * though i_lock needed lest racing with wake_up_all().
1745 */
1746 spin_lock(&inode->i_lock);
1747 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1748 spin_unlock(&inode->i_lock);
1749 return ret;
1750 }
1751 spin_unlock(&inode->i_lock);
1752 }
1753
1754 sgp = SGP_CACHE;
1755 if (vma->vm_flags & VM_HUGEPAGE)
1756 sgp = SGP_HUGE;
1757 else if (vma->vm_flags & VM_NOHUGEPAGE)
1758 sgp = SGP_NOHUGE;
1759
1760 error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
1761 gfp, vma->vm_mm, &ret);
1762 if (error)
1763 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1764 return ret;
1765 }
1766
1767 unsigned long shmem_get_unmapped_area(struct file *file,
1768 unsigned long uaddr, unsigned long len,
1769 unsigned long pgoff, unsigned long flags)
1770 {
1771 unsigned long (*get_area)(struct file *,
1772 unsigned long, unsigned long, unsigned long, unsigned long);
1773 unsigned long addr;
1774 unsigned long offset;
1775 unsigned long inflated_len;
1776 unsigned long inflated_addr;
1777 unsigned long inflated_offset;
1778
1779 if (len > TASK_SIZE)
1780 return -ENOMEM;
1781
1782 get_area = current->mm->get_unmapped_area;
1783 addr = get_area(file, uaddr, len, pgoff, flags);
1784
1785 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1786 return addr;
1787 if (IS_ERR_VALUE(addr))
1788 return addr;
1789 if (addr & ~PAGE_MASK)
1790 return addr;
1791 if (addr > TASK_SIZE - len)
1792 return addr;
1793
1794 if (shmem_huge == SHMEM_HUGE_DENY)
1795 return addr;
1796 if (len < HPAGE_PMD_SIZE)
1797 return addr;
1798 if (flags & MAP_FIXED)
1799 return addr;
1800 /*
1801 * Our priority is to support MAP_SHARED mapped hugely;
1802 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
1803 * But if caller specified an address hint, respect that as before.
1804 */
1805 if (uaddr)
1806 return addr;
1807
1808 if (shmem_huge != SHMEM_HUGE_FORCE) {
1809 struct super_block *sb;
1810
1811 if (file) {
1812 VM_BUG_ON(file->f_op != &shmem_file_operations);
1813 sb = file_inode(file)->i_sb;
1814 } else {
1815 /*
1816 * Called directly from mm/mmap.c, or drivers/char/mem.c
1817 * for "/dev/zero", to create a shared anonymous object.
1818 */
1819 if (IS_ERR(shm_mnt))
1820 return addr;
1821 sb = shm_mnt->mnt_sb;
1822 }
1823 if (SHMEM_SB(sb)->huge != SHMEM_HUGE_NEVER)
1824 return addr;
1825 }
1826
1827 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
1828 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
1829 return addr;
1830 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
1831 return addr;
1832
1833 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
1834 if (inflated_len > TASK_SIZE)
1835 return addr;
1836 if (inflated_len < len)
1837 return addr;
1838
1839 inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
1840 if (IS_ERR_VALUE(inflated_addr))
1841 return addr;
1842 if (inflated_addr & ~PAGE_MASK)
1843 return addr;
1844
1845 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
1846 inflated_addr += offset - inflated_offset;
1847 if (inflated_offset > offset)
1848 inflated_addr += HPAGE_PMD_SIZE;
1849
1850 if (inflated_addr > TASK_SIZE - len)
1851 return addr;
1852 return inflated_addr;
1853 }
1854
1855 #ifdef CONFIG_NUMA
1856 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1857 {
1858 struct inode *inode = file_inode(vma->vm_file);
1859 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1860 }
1861
1862 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1863 unsigned long addr)
1864 {
1865 struct inode *inode = file_inode(vma->vm_file);
1866 pgoff_t index;
1867
1868 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1869 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1870 }
1871 #endif
1872
1873 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1874 {
1875 struct inode *inode = file_inode(file);
1876 struct shmem_inode_info *info = SHMEM_I(inode);
1877 int retval = -ENOMEM;
1878
1879 spin_lock_irq(&info->lock);
1880 if (lock && !(info->flags & VM_LOCKED)) {
1881 if (!user_shm_lock(inode->i_size, user))
1882 goto out_nomem;
1883 info->flags |= VM_LOCKED;
1884 mapping_set_unevictable(file->f_mapping);
1885 }
1886 if (!lock && (info->flags & VM_LOCKED) && user) {
1887 user_shm_unlock(inode->i_size, user);
1888 info->flags &= ~VM_LOCKED;
1889 mapping_clear_unevictable(file->f_mapping);
1890 }
1891 retval = 0;
1892
1893 out_nomem:
1894 spin_unlock_irq(&info->lock);
1895 return retval;
1896 }
1897
1898 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1899 {
1900 file_accessed(file);
1901 vma->vm_ops = &shmem_vm_ops;
1902 return 0;
1903 }
1904
1905 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1906 umode_t mode, dev_t dev, unsigned long flags)
1907 {
1908 struct inode *inode;
1909 struct shmem_inode_info *info;
1910 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1911
1912 if (shmem_reserve_inode(sb))
1913 return NULL;
1914
1915 inode = new_inode(sb);
1916 if (inode) {
1917 inode->i_ino = get_next_ino();
1918 inode_init_owner(inode, dir, mode);
1919 inode->i_blocks = 0;
1920 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1921 inode->i_generation = get_seconds();
1922 info = SHMEM_I(inode);
1923 memset(info, 0, (char *)inode - (char *)info);
1924 spin_lock_init(&info->lock);
1925 info->seals = F_SEAL_SEAL;
1926 info->flags = flags & VM_NORESERVE;
1927 INIT_LIST_HEAD(&info->swaplist);
1928 simple_xattrs_init(&info->xattrs);
1929 cache_no_acl(inode);
1930
1931 switch (mode & S_IFMT) {
1932 default:
1933 inode->i_op = &shmem_special_inode_operations;
1934 init_special_inode(inode, mode, dev);
1935 break;
1936 case S_IFREG:
1937 inode->i_mapping->a_ops = &shmem_aops;
1938 inode->i_op = &shmem_inode_operations;
1939 inode->i_fop = &shmem_file_operations;
1940 mpol_shared_policy_init(&info->policy,
1941 shmem_get_sbmpol(sbinfo));
1942 break;
1943 case S_IFDIR:
1944 inc_nlink(inode);
1945 /* Some things misbehave if size == 0 on a directory */
1946 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1947 inode->i_op = &shmem_dir_inode_operations;
1948 inode->i_fop = &simple_dir_operations;
1949 break;
1950 case S_IFLNK:
1951 /*
1952 * Must not load anything in the rbtree,
1953 * mpol_free_shared_policy will not be called.
1954 */
1955 mpol_shared_policy_init(&info->policy, NULL);
1956 break;
1957 }
1958 } else
1959 shmem_free_inode(sb);
1960 return inode;
1961 }
1962
1963 bool shmem_mapping(struct address_space *mapping)
1964 {
1965 if (!mapping->host)
1966 return false;
1967
1968 return mapping->host->i_sb->s_op == &shmem_ops;
1969 }
1970
1971 #ifdef CONFIG_TMPFS
1972 static const struct inode_operations shmem_symlink_inode_operations;
1973 static const struct inode_operations shmem_short_symlink_operations;
1974
1975 #ifdef CONFIG_TMPFS_XATTR
1976 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1977 #else
1978 #define shmem_initxattrs NULL
1979 #endif
1980
1981 static int
1982 shmem_write_begin(struct file *file, struct address_space *mapping,
1983 loff_t pos, unsigned len, unsigned flags,
1984 struct page **pagep, void **fsdata)
1985 {
1986 struct inode *inode = mapping->host;
1987 struct shmem_inode_info *info = SHMEM_I(inode);
1988 pgoff_t index = pos >> PAGE_SHIFT;
1989
1990 /* i_mutex is held by caller */
1991 if (unlikely(info->seals)) {
1992 if (info->seals & F_SEAL_WRITE)
1993 return -EPERM;
1994 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
1995 return -EPERM;
1996 }
1997
1998 return shmem_getpage(inode, index, pagep, SGP_WRITE);
1999 }
2000
2001 static int
2002 shmem_write_end(struct file *file, struct address_space *mapping,
2003 loff_t pos, unsigned len, unsigned copied,
2004 struct page *page, void *fsdata)
2005 {
2006 struct inode *inode = mapping->host;
2007
2008 if (pos + copied > inode->i_size)
2009 i_size_write(inode, pos + copied);
2010
2011 if (!PageUptodate(page)) {
2012 struct page *head = compound_head(page);
2013 if (PageTransCompound(page)) {
2014 int i;
2015
2016 for (i = 0; i < HPAGE_PMD_NR; i++) {
2017 if (head + i == page)
2018 continue;
2019 clear_highpage(head + i);
2020 flush_dcache_page(head + i);
2021 }
2022 }
2023 if (copied < PAGE_SIZE) {
2024 unsigned from = pos & (PAGE_SIZE - 1);
2025 zero_user_segments(page, 0, from,
2026 from + copied, PAGE_SIZE);
2027 }
2028 SetPageUptodate(head);
2029 }
2030 set_page_dirty(page);
2031 unlock_page(page);
2032 put_page(page);
2033
2034 return copied;
2035 }
2036
2037 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2038 {
2039 struct file *file = iocb->ki_filp;
2040 struct inode *inode = file_inode(file);
2041 struct address_space *mapping = inode->i_mapping;
2042 pgoff_t index;
2043 unsigned long offset;
2044 enum sgp_type sgp = SGP_READ;
2045 int error = 0;
2046 ssize_t retval = 0;
2047 loff_t *ppos = &iocb->ki_pos;
2048
2049 /*
2050 * Might this read be for a stacking filesystem? Then when reading
2051 * holes of a sparse file, we actually need to allocate those pages,
2052 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2053 */
2054 if (!iter_is_iovec(to))
2055 sgp = SGP_CACHE;
2056
2057 index = *ppos >> PAGE_SHIFT;
2058 offset = *ppos & ~PAGE_MASK;
2059
2060 for (;;) {
2061 struct page *page = NULL;
2062 pgoff_t end_index;
2063 unsigned long nr, ret;
2064 loff_t i_size = i_size_read(inode);
2065
2066 end_index = i_size >> PAGE_SHIFT;
2067 if (index > end_index)
2068 break;
2069 if (index == end_index) {
2070 nr = i_size & ~PAGE_MASK;
2071 if (nr <= offset)
2072 break;
2073 }
2074
2075 error = shmem_getpage(inode, index, &page, sgp);
2076 if (error) {
2077 if (error == -EINVAL)
2078 error = 0;
2079 break;
2080 }
2081 if (page) {
2082 if (sgp == SGP_CACHE)
2083 set_page_dirty(page);
2084 unlock_page(page);
2085 }
2086
2087 /*
2088 * We must evaluate after, since reads (unlike writes)
2089 * are called without i_mutex protection against truncate
2090 */
2091 nr = PAGE_SIZE;
2092 i_size = i_size_read(inode);
2093 end_index = i_size >> PAGE_SHIFT;
2094 if (index == end_index) {
2095 nr = i_size & ~PAGE_MASK;
2096 if (nr <= offset) {
2097 if (page)
2098 put_page(page);
2099 break;
2100 }
2101 }
2102 nr -= offset;
2103
2104 if (page) {
2105 /*
2106 * If users can be writing to this page using arbitrary
2107 * virtual addresses, take care about potential aliasing
2108 * before reading the page on the kernel side.
2109 */
2110 if (mapping_writably_mapped(mapping))
2111 flush_dcache_page(page);
2112 /*
2113 * Mark the page accessed if we read the beginning.
2114 */
2115 if (!offset)
2116 mark_page_accessed(page);
2117 } else {
2118 page = ZERO_PAGE(0);
2119 get_page(page);
2120 }
2121
2122 /*
2123 * Ok, we have the page, and it's up-to-date, so
2124 * now we can copy it to user space...
2125 */
2126 ret = copy_page_to_iter(page, offset, nr, to);
2127 retval += ret;
2128 offset += ret;
2129 index += offset >> PAGE_SHIFT;
2130 offset &= ~PAGE_MASK;
2131
2132 put_page(page);
2133 if (!iov_iter_count(to))
2134 break;
2135 if (ret < nr) {
2136 error = -EFAULT;
2137 break;
2138 }
2139 cond_resched();
2140 }
2141
2142 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2143 file_accessed(file);
2144 return retval ? retval : error;
2145 }
2146
2147 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
2148 struct pipe_inode_info *pipe, size_t len,
2149 unsigned int flags)
2150 {
2151 struct address_space *mapping = in->f_mapping;
2152 struct inode *inode = mapping->host;
2153 unsigned int loff, nr_pages, req_pages;
2154 struct page *pages[PIPE_DEF_BUFFERS];
2155 struct partial_page partial[PIPE_DEF_BUFFERS];
2156 struct page *page;
2157 pgoff_t index, end_index;
2158 loff_t isize, left;
2159 int error, page_nr;
2160 struct splice_pipe_desc spd = {
2161 .pages = pages,
2162 .partial = partial,
2163 .nr_pages_max = PIPE_DEF_BUFFERS,
2164 .flags = flags,
2165 .ops = &page_cache_pipe_buf_ops,
2166 .spd_release = spd_release_page,
2167 };
2168
2169 isize = i_size_read(inode);
2170 if (unlikely(*ppos >= isize))
2171 return 0;
2172
2173 left = isize - *ppos;
2174 if (unlikely(left < len))
2175 len = left;
2176
2177 if (splice_grow_spd(pipe, &spd))
2178 return -ENOMEM;
2179
2180 index = *ppos >> PAGE_SHIFT;
2181 loff = *ppos & ~PAGE_MASK;
2182 req_pages = (len + loff + PAGE_SIZE - 1) >> PAGE_SHIFT;
2183 nr_pages = min(req_pages, spd.nr_pages_max);
2184
2185 spd.nr_pages = find_get_pages_contig(mapping, index,
2186 nr_pages, spd.pages);
2187 index += spd.nr_pages;
2188 error = 0;
2189
2190 while (spd.nr_pages < nr_pages) {
2191 error = shmem_getpage(inode, index, &page, SGP_CACHE);
2192 if (error)
2193 break;
2194 unlock_page(page);
2195 spd.pages[spd.nr_pages++] = page;
2196 index++;
2197 }
2198
2199 index = *ppos >> PAGE_SHIFT;
2200 nr_pages = spd.nr_pages;
2201 spd.nr_pages = 0;
2202
2203 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
2204 unsigned int this_len;
2205
2206 if (!len)
2207 break;
2208
2209 this_len = min_t(unsigned long, len, PAGE_SIZE - loff);
2210 page = spd.pages[page_nr];
2211
2212 if (!PageUptodate(page) || page->mapping != mapping) {
2213 error = shmem_getpage(inode, index, &page, SGP_CACHE);
2214 if (error)
2215 break;
2216 unlock_page(page);
2217 put_page(spd.pages[page_nr]);
2218 spd.pages[page_nr] = page;
2219 }
2220
2221 isize = i_size_read(inode);
2222 end_index = (isize - 1) >> PAGE_SHIFT;
2223 if (unlikely(!isize || index > end_index))
2224 break;
2225
2226 if (end_index == index) {
2227 unsigned int plen;
2228
2229 plen = ((isize - 1) & ~PAGE_MASK) + 1;
2230 if (plen <= loff)
2231 break;
2232
2233 this_len = min(this_len, plen - loff);
2234 len = this_len;
2235 }
2236
2237 spd.partial[page_nr].offset = loff;
2238 spd.partial[page_nr].len = this_len;
2239 len -= this_len;
2240 loff = 0;
2241 spd.nr_pages++;
2242 index++;
2243 }
2244
2245 while (page_nr < nr_pages)
2246 put_page(spd.pages[page_nr++]);
2247
2248 if (spd.nr_pages)
2249 error = splice_to_pipe(pipe, &spd);
2250
2251 splice_shrink_spd(&spd);
2252
2253 if (error > 0) {
2254 *ppos += error;
2255 file_accessed(in);
2256 }
2257 return error;
2258 }
2259
2260 /*
2261 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2262 */
2263 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2264 pgoff_t index, pgoff_t end, int whence)
2265 {
2266 struct page *page;
2267 struct pagevec pvec;
2268 pgoff_t indices[PAGEVEC_SIZE];
2269 bool done = false;
2270 int i;
2271
2272 pagevec_init(&pvec, 0);
2273 pvec.nr = 1; /* start small: we may be there already */
2274 while (!done) {
2275 pvec.nr = find_get_entries(mapping, index,
2276 pvec.nr, pvec.pages, indices);
2277 if (!pvec.nr) {
2278 if (whence == SEEK_DATA)
2279 index = end;
2280 break;
2281 }
2282 for (i = 0; i < pvec.nr; i++, index++) {
2283 if (index < indices[i]) {
2284 if (whence == SEEK_HOLE) {
2285 done = true;
2286 break;
2287 }
2288 index = indices[i];
2289 }
2290 page = pvec.pages[i];
2291 if (page && !radix_tree_exceptional_entry(page)) {
2292 if (!PageUptodate(page))
2293 page = NULL;
2294 }
2295 if (index >= end ||
2296 (page && whence == SEEK_DATA) ||
2297 (!page && whence == SEEK_HOLE)) {
2298 done = true;
2299 break;
2300 }
2301 }
2302 pagevec_remove_exceptionals(&pvec);
2303 pagevec_release(&pvec);
2304 pvec.nr = PAGEVEC_SIZE;
2305 cond_resched();
2306 }
2307 return index;
2308 }
2309
2310 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2311 {
2312 struct address_space *mapping = file->f_mapping;
2313 struct inode *inode = mapping->host;
2314 pgoff_t start, end;
2315 loff_t new_offset;
2316
2317 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2318 return generic_file_llseek_size(file, offset, whence,
2319 MAX_LFS_FILESIZE, i_size_read(inode));
2320 inode_lock(inode);
2321 /* We're holding i_mutex so we can access i_size directly */
2322
2323 if (offset < 0)
2324 offset = -EINVAL;
2325 else if (offset >= inode->i_size)
2326 offset = -ENXIO;
2327 else {
2328 start = offset >> PAGE_SHIFT;
2329 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2330 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2331 new_offset <<= PAGE_SHIFT;
2332 if (new_offset > offset) {
2333 if (new_offset < inode->i_size)
2334 offset = new_offset;
2335 else if (whence == SEEK_DATA)
2336 offset = -ENXIO;
2337 else
2338 offset = inode->i_size;
2339 }
2340 }
2341
2342 if (offset >= 0)
2343 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2344 inode_unlock(inode);
2345 return offset;
2346 }
2347
2348 /*
2349 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2350 * so reuse a tag which we firmly believe is never set or cleared on shmem.
2351 */
2352 #define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
2353 #define LAST_SCAN 4 /* about 150ms max */
2354
2355 static void shmem_tag_pins(struct address_space *mapping)
2356 {
2357 struct radix_tree_iter iter;
2358 void **slot;
2359 pgoff_t start;
2360 struct page *page;
2361
2362 lru_add_drain();
2363 start = 0;
2364 rcu_read_lock();
2365
2366 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
2367 page = radix_tree_deref_slot(slot);
2368 if (!page || radix_tree_exception(page)) {
2369 if (radix_tree_deref_retry(page)) {
2370 slot = radix_tree_iter_retry(&iter);
2371 continue;
2372 }
2373 } else if (page_count(page) - page_mapcount(page) > 1) {
2374 spin_lock_irq(&mapping->tree_lock);
2375 radix_tree_tag_set(&mapping->page_tree, iter.index,
2376 SHMEM_TAG_PINNED);
2377 spin_unlock_irq(&mapping->tree_lock);
2378 }
2379
2380 if (need_resched()) {
2381 cond_resched_rcu();
2382 slot = radix_tree_iter_next(&iter);
2383 }
2384 }
2385 rcu_read_unlock();
2386 }
2387
2388 /*
2389 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2390 * via get_user_pages(), drivers might have some pending I/O without any active
2391 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2392 * and see whether it has an elevated ref-count. If so, we tag them and wait for
2393 * them to be dropped.
2394 * The caller must guarantee that no new user will acquire writable references
2395 * to those pages to avoid races.
2396 */
2397 static int shmem_wait_for_pins(struct address_space *mapping)
2398 {
2399 struct radix_tree_iter iter;
2400 void **slot;
2401 pgoff_t start;
2402 struct page *page;
2403 int error, scan;
2404
2405 shmem_tag_pins(mapping);
2406
2407 error = 0;
2408 for (scan = 0; scan <= LAST_SCAN; scan++) {
2409 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
2410 break;
2411
2412 if (!scan)
2413 lru_add_drain_all();
2414 else if (schedule_timeout_killable((HZ << scan) / 200))
2415 scan = LAST_SCAN;
2416
2417 start = 0;
2418 rcu_read_lock();
2419 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
2420 start, SHMEM_TAG_PINNED) {
2421
2422 page = radix_tree_deref_slot(slot);
2423 if (radix_tree_exception(page)) {
2424 if (radix_tree_deref_retry(page)) {
2425 slot = radix_tree_iter_retry(&iter);
2426 continue;
2427 }
2428
2429 page = NULL;
2430 }
2431
2432 if (page &&
2433 page_count(page) - page_mapcount(page) != 1) {
2434 if (scan < LAST_SCAN)
2435 goto continue_resched;
2436
2437 /*
2438 * On the last scan, we clean up all those tags
2439 * we inserted; but make a note that we still
2440 * found pages pinned.
2441 */
2442 error = -EBUSY;
2443 }
2444
2445 spin_lock_irq(&mapping->tree_lock);
2446 radix_tree_tag_clear(&mapping->page_tree,
2447 iter.index, SHMEM_TAG_PINNED);
2448 spin_unlock_irq(&mapping->tree_lock);
2449 continue_resched:
2450 if (need_resched()) {
2451 cond_resched_rcu();
2452 slot = radix_tree_iter_next(&iter);
2453 }
2454 }
2455 rcu_read_unlock();
2456 }
2457
2458 return error;
2459 }
2460
2461 #define F_ALL_SEALS (F_SEAL_SEAL | \
2462 F_SEAL_SHRINK | \
2463 F_SEAL_GROW | \
2464 F_SEAL_WRITE)
2465
2466 int shmem_add_seals(struct file *file, unsigned int seals)
2467 {
2468 struct inode *inode = file_inode(file);
2469 struct shmem_inode_info *info = SHMEM_I(inode);
2470 int error;
2471
2472 /*
2473 * SEALING
2474 * Sealing allows multiple parties to share a shmem-file but restrict
2475 * access to a specific subset of file operations. Seals can only be
2476 * added, but never removed. This way, mutually untrusted parties can
2477 * share common memory regions with a well-defined policy. A malicious
2478 * peer can thus never perform unwanted operations on a shared object.
2479 *
2480 * Seals are only supported on special shmem-files and always affect
2481 * the whole underlying inode. Once a seal is set, it may prevent some
2482 * kinds of access to the file. Currently, the following seals are
2483 * defined:
2484 * SEAL_SEAL: Prevent further seals from being set on this file
2485 * SEAL_SHRINK: Prevent the file from shrinking
2486 * SEAL_GROW: Prevent the file from growing
2487 * SEAL_WRITE: Prevent write access to the file
2488 *
2489 * As we don't require any trust relationship between two parties, we
2490 * must prevent seals from being removed. Therefore, sealing a file
2491 * only adds a given set of seals to the file, it never touches
2492 * existing seals. Furthermore, the "setting seals"-operation can be
2493 * sealed itself, which basically prevents any further seal from being
2494 * added.
2495 *
2496 * Semantics of sealing are only defined on volatile files. Only
2497 * anonymous shmem files support sealing. More importantly, seals are
2498 * never written to disk. Therefore, there's no plan to support it on
2499 * other file types.
2500 */
2501
2502 if (file->f_op != &shmem_file_operations)
2503 return -EINVAL;
2504 if (!(file->f_mode & FMODE_WRITE))
2505 return -EPERM;
2506 if (seals & ~(unsigned int)F_ALL_SEALS)
2507 return -EINVAL;
2508
2509 inode_lock(inode);
2510
2511 if (info->seals & F_SEAL_SEAL) {
2512 error = -EPERM;
2513 goto unlock;
2514 }
2515
2516 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2517 error = mapping_deny_writable(file->f_mapping);
2518 if (error)
2519 goto unlock;
2520
2521 error = shmem_wait_for_pins(file->f_mapping);
2522 if (error) {
2523 mapping_allow_writable(file->f_mapping);
2524 goto unlock;
2525 }
2526 }
2527
2528 info->seals |= seals;
2529 error = 0;
2530
2531 unlock:
2532 inode_unlock(inode);
2533 return error;
2534 }
2535 EXPORT_SYMBOL_GPL(shmem_add_seals);
2536
2537 int shmem_get_seals(struct file *file)
2538 {
2539 if (file->f_op != &shmem_file_operations)
2540 return -EINVAL;
2541
2542 return SHMEM_I(file_inode(file))->seals;
2543 }
2544 EXPORT_SYMBOL_GPL(shmem_get_seals);
2545
2546 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2547 {
2548 long error;
2549
2550 switch (cmd) {
2551 case F_ADD_SEALS:
2552 /* disallow upper 32bit */
2553 if (arg > UINT_MAX)
2554 return -EINVAL;
2555
2556 error = shmem_add_seals(file, arg);
2557 break;
2558 case F_GET_SEALS:
2559 error = shmem_get_seals(file);
2560 break;
2561 default:
2562 error = -EINVAL;
2563 break;
2564 }
2565
2566 return error;
2567 }
2568
2569 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2570 loff_t len)
2571 {
2572 struct inode *inode = file_inode(file);
2573 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2574 struct shmem_inode_info *info = SHMEM_I(inode);
2575 struct shmem_falloc shmem_falloc;
2576 pgoff_t start, index, end;
2577 int error;
2578
2579 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2580 return -EOPNOTSUPP;
2581
2582 inode_lock(inode);
2583
2584 if (mode & FALLOC_FL_PUNCH_HOLE) {
2585 struct address_space *mapping = file->f_mapping;
2586 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2587 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2588 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2589
2590 /* protected by i_mutex */
2591 if (info->seals & F_SEAL_WRITE) {
2592 error = -EPERM;
2593 goto out;
2594 }
2595
2596 shmem_falloc.waitq = &shmem_falloc_waitq;
2597 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2598 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2599 spin_lock(&inode->i_lock);
2600 inode->i_private = &shmem_falloc;
2601 spin_unlock(&inode->i_lock);
2602
2603 if ((u64)unmap_end > (u64)unmap_start)
2604 unmap_mapping_range(mapping, unmap_start,
2605 1 + unmap_end - unmap_start, 0);
2606 shmem_truncate_range(inode, offset, offset + len - 1);
2607 /* No need to unmap again: hole-punching leaves COWed pages */
2608
2609 spin_lock(&inode->i_lock);
2610 inode->i_private = NULL;
2611 wake_up_all(&shmem_falloc_waitq);
2612 spin_unlock(&inode->i_lock);
2613 error = 0;
2614 goto out;
2615 }
2616
2617 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2618 error = inode_newsize_ok(inode, offset + len);
2619 if (error)
2620 goto out;
2621
2622 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2623 error = -EPERM;
2624 goto out;
2625 }
2626
2627 start = offset >> PAGE_SHIFT;
2628 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2629 /* Try to avoid a swapstorm if len is impossible to satisfy */
2630 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2631 error = -ENOSPC;
2632 goto out;
2633 }
2634
2635 shmem_falloc.waitq = NULL;
2636 shmem_falloc.start = start;
2637 shmem_falloc.next = start;
2638 shmem_falloc.nr_falloced = 0;
2639 shmem_falloc.nr_unswapped = 0;
2640 spin_lock(&inode->i_lock);
2641 inode->i_private = &shmem_falloc;
2642 spin_unlock(&inode->i_lock);
2643
2644 for (index = start; index < end; index++) {
2645 struct page *page;
2646
2647 /*
2648 * Good, the fallocate(2) manpage permits EINTR: we may have
2649 * been interrupted because we are using up too much memory.
2650 */
2651 if (signal_pending(current))
2652 error = -EINTR;
2653 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2654 error = -ENOMEM;
2655 else
2656 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2657 if (error) {
2658 /* Remove the !PageUptodate pages we added */
2659 if (index > start) {
2660 shmem_undo_range(inode,
2661 (loff_t)start << PAGE_SHIFT,
2662 ((loff_t)index << PAGE_SHIFT) - 1, true);
2663 }
2664 goto undone;
2665 }
2666
2667 /*
2668 * Inform shmem_writepage() how far we have reached.
2669 * No need for lock or barrier: we have the page lock.
2670 */
2671 shmem_falloc.next++;
2672 if (!PageUptodate(page))
2673 shmem_falloc.nr_falloced++;
2674
2675 /*
2676 * If !PageUptodate, leave it that way so that freeable pages
2677 * can be recognized if we need to rollback on error later.
2678 * But set_page_dirty so that memory pressure will swap rather
2679 * than free the pages we are allocating (and SGP_CACHE pages
2680 * might still be clean: we now need to mark those dirty too).
2681 */
2682 set_page_dirty(page);
2683 unlock_page(page);
2684 put_page(page);
2685 cond_resched();
2686 }
2687
2688 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2689 i_size_write(inode, offset + len);
2690 inode->i_ctime = CURRENT_TIME;
2691 undone:
2692 spin_lock(&inode->i_lock);
2693 inode->i_private = NULL;
2694 spin_unlock(&inode->i_lock);
2695 out:
2696 inode_unlock(inode);
2697 return error;
2698 }
2699
2700 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2701 {
2702 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2703
2704 buf->f_type = TMPFS_MAGIC;
2705 buf->f_bsize = PAGE_SIZE;
2706 buf->f_namelen = NAME_MAX;
2707 if (sbinfo->max_blocks) {
2708 buf->f_blocks = sbinfo->max_blocks;
2709 buf->f_bavail =
2710 buf->f_bfree = sbinfo->max_blocks -
2711 percpu_counter_sum(&sbinfo->used_blocks);
2712 }
2713 if (sbinfo->max_inodes) {
2714 buf->f_files = sbinfo->max_inodes;
2715 buf->f_ffree = sbinfo->free_inodes;
2716 }
2717 /* else leave those fields 0 like simple_statfs */
2718 return 0;
2719 }
2720
2721 /*
2722 * File creation. Allocate an inode, and we're done..
2723 */
2724 static int
2725 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2726 {
2727 struct inode *inode;
2728 int error = -ENOSPC;
2729
2730 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2731 if (inode) {
2732 error = simple_acl_create(dir, inode);
2733 if (error)
2734 goto out_iput;
2735 error = security_inode_init_security(inode, dir,
2736 &dentry->d_name,
2737 shmem_initxattrs, NULL);
2738 if (error && error != -EOPNOTSUPP)
2739 goto out_iput;
2740
2741 error = 0;
2742 dir->i_size += BOGO_DIRENT_SIZE;
2743 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2744 d_instantiate(dentry, inode);
2745 dget(dentry); /* Extra count - pin the dentry in core */
2746 }
2747 return error;
2748 out_iput:
2749 iput(inode);
2750 return error;
2751 }
2752
2753 static int
2754 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2755 {
2756 struct inode *inode;
2757 int error = -ENOSPC;
2758
2759 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2760 if (inode) {
2761 error = security_inode_init_security(inode, dir,
2762 NULL,
2763 shmem_initxattrs, NULL);
2764 if (error && error != -EOPNOTSUPP)
2765 goto out_iput;
2766 error = simple_acl_create(dir, inode);
2767 if (error)
2768 goto out_iput;
2769 d_tmpfile(dentry, inode);
2770 }
2771 return error;
2772 out_iput:
2773 iput(inode);
2774 return error;
2775 }
2776
2777 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2778 {
2779 int error;
2780
2781 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2782 return error;
2783 inc_nlink(dir);
2784 return 0;
2785 }
2786
2787 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2788 bool excl)
2789 {
2790 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2791 }
2792
2793 /*
2794 * Link a file..
2795 */
2796 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2797 {
2798 struct inode *inode = d_inode(old_dentry);
2799 int ret;
2800
2801 /*
2802 * No ordinary (disk based) filesystem counts links as inodes;
2803 * but each new link needs a new dentry, pinning lowmem, and
2804 * tmpfs dentries cannot be pruned until they are unlinked.
2805 */
2806 ret = shmem_reserve_inode(inode->i_sb);
2807 if (ret)
2808 goto out;
2809
2810 dir->i_size += BOGO_DIRENT_SIZE;
2811 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2812 inc_nlink(inode);
2813 ihold(inode); /* New dentry reference */
2814 dget(dentry); /* Extra pinning count for the created dentry */
2815 d_instantiate(dentry, inode);
2816 out:
2817 return ret;
2818 }
2819
2820 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2821 {
2822 struct inode *inode = d_inode(dentry);
2823
2824 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2825 shmem_free_inode(inode->i_sb);
2826
2827 dir->i_size -= BOGO_DIRENT_SIZE;
2828 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2829 drop_nlink(inode);
2830 dput(dentry); /* Undo the count from "create" - this does all the work */
2831 return 0;
2832 }
2833
2834 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2835 {
2836 if (!simple_empty(dentry))
2837 return -ENOTEMPTY;
2838
2839 drop_nlink(d_inode(dentry));
2840 drop_nlink(dir);
2841 return shmem_unlink(dir, dentry);
2842 }
2843
2844 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2845 {
2846 bool old_is_dir = d_is_dir(old_dentry);
2847 bool new_is_dir = d_is_dir(new_dentry);
2848
2849 if (old_dir != new_dir && old_is_dir != new_is_dir) {
2850 if (old_is_dir) {
2851 drop_nlink(old_dir);
2852 inc_nlink(new_dir);
2853 } else {
2854 drop_nlink(new_dir);
2855 inc_nlink(old_dir);
2856 }
2857 }
2858 old_dir->i_ctime = old_dir->i_mtime =
2859 new_dir->i_ctime = new_dir->i_mtime =
2860 d_inode(old_dentry)->i_ctime =
2861 d_inode(new_dentry)->i_ctime = CURRENT_TIME;
2862
2863 return 0;
2864 }
2865
2866 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2867 {
2868 struct dentry *whiteout;
2869 int error;
2870
2871 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2872 if (!whiteout)
2873 return -ENOMEM;
2874
2875 error = shmem_mknod(old_dir, whiteout,
2876 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2877 dput(whiteout);
2878 if (error)
2879 return error;
2880
2881 /*
2882 * Cheat and hash the whiteout while the old dentry is still in
2883 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2884 *
2885 * d_lookup() will consistently find one of them at this point,
2886 * not sure which one, but that isn't even important.
2887 */
2888 d_rehash(whiteout);
2889 return 0;
2890 }
2891
2892 /*
2893 * The VFS layer already does all the dentry stuff for rename,
2894 * we just have to decrement the usage count for the target if
2895 * it exists so that the VFS layer correctly free's it when it
2896 * gets overwritten.
2897 */
2898 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
2899 {
2900 struct inode *inode = d_inode(old_dentry);
2901 int they_are_dirs = S_ISDIR(inode->i_mode);
2902
2903 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2904 return -EINVAL;
2905
2906 if (flags & RENAME_EXCHANGE)
2907 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2908
2909 if (!simple_empty(new_dentry))
2910 return -ENOTEMPTY;
2911
2912 if (flags & RENAME_WHITEOUT) {
2913 int error;
2914
2915 error = shmem_whiteout(old_dir, old_dentry);
2916 if (error)
2917 return error;
2918 }
2919
2920 if (d_really_is_positive(new_dentry)) {
2921 (void) shmem_unlink(new_dir, new_dentry);
2922 if (they_are_dirs) {
2923 drop_nlink(d_inode(new_dentry));
2924 drop_nlink(old_dir);
2925 }
2926 } else if (they_are_dirs) {
2927 drop_nlink(old_dir);
2928 inc_nlink(new_dir);
2929 }
2930
2931 old_dir->i_size -= BOGO_DIRENT_SIZE;
2932 new_dir->i_size += BOGO_DIRENT_SIZE;
2933 old_dir->i_ctime = old_dir->i_mtime =
2934 new_dir->i_ctime = new_dir->i_mtime =
2935 inode->i_ctime = CURRENT_TIME;
2936 return 0;
2937 }
2938
2939 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2940 {
2941 int error;
2942 int len;
2943 struct inode *inode;
2944 struct page *page;
2945 struct shmem_inode_info *info;
2946
2947 len = strlen(symname) + 1;
2948 if (len > PAGE_SIZE)
2949 return -ENAMETOOLONG;
2950
2951 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2952 if (!inode)
2953 return -ENOSPC;
2954
2955 error = security_inode_init_security(inode, dir, &dentry->d_name,
2956 shmem_initxattrs, NULL);
2957 if (error) {
2958 if (error != -EOPNOTSUPP) {
2959 iput(inode);
2960 return error;
2961 }
2962 error = 0;
2963 }
2964
2965 info = SHMEM_I(inode);
2966 inode->i_size = len-1;
2967 if (len <= SHORT_SYMLINK_LEN) {
2968 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
2969 if (!inode->i_link) {
2970 iput(inode);
2971 return -ENOMEM;
2972 }
2973 inode->i_op = &shmem_short_symlink_operations;
2974 } else {
2975 inode_nohighmem(inode);
2976 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
2977 if (error) {
2978 iput(inode);
2979 return error;
2980 }
2981 inode->i_mapping->a_ops = &shmem_aops;
2982 inode->i_op = &shmem_symlink_inode_operations;
2983 memcpy(page_address(page), symname, len);
2984 SetPageUptodate(page);
2985 set_page_dirty(page);
2986 unlock_page(page);
2987 put_page(page);
2988 }
2989 dir->i_size += BOGO_DIRENT_SIZE;
2990 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2991 d_instantiate(dentry, inode);
2992 dget(dentry);
2993 return 0;
2994 }
2995
2996 static void shmem_put_link(void *arg)
2997 {
2998 mark_page_accessed(arg);
2999 put_page(arg);
3000 }
3001
3002 static const char *shmem_get_link(struct dentry *dentry,
3003 struct inode *inode,
3004 struct delayed_call *done)
3005 {
3006 struct page *page = NULL;
3007 int error;
3008 if (!dentry) {
3009 page = find_get_page(inode->i_mapping, 0);
3010 if (!page)
3011 return ERR_PTR(-ECHILD);
3012 if (!PageUptodate(page)) {
3013 put_page(page);
3014 return ERR_PTR(-ECHILD);
3015 }
3016 } else {
3017 error = shmem_getpage(inode, 0, &page, SGP_READ);
3018 if (error)
3019 return ERR_PTR(error);
3020 unlock_page(page);
3021 }
3022 set_delayed_call(done, shmem_put_link, page);
3023 return page_address(page);
3024 }
3025
3026 #ifdef CONFIG_TMPFS_XATTR
3027 /*
3028 * Superblocks without xattr inode operations may get some security.* xattr
3029 * support from the LSM "for free". As soon as we have any other xattrs
3030 * like ACLs, we also need to implement the security.* handlers at
3031 * filesystem level, though.
3032 */
3033
3034 /*
3035 * Callback for security_inode_init_security() for acquiring xattrs.
3036 */
3037 static int shmem_initxattrs(struct inode *inode,
3038 const struct xattr *xattr_array,
3039 void *fs_info)
3040 {
3041 struct shmem_inode_info *info = SHMEM_I(inode);
3042 const struct xattr *xattr;
3043 struct simple_xattr *new_xattr;
3044 size_t len;
3045
3046 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3047 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3048 if (!new_xattr)
3049 return -ENOMEM;
3050
3051 len = strlen(xattr->name) + 1;
3052 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3053 GFP_KERNEL);
3054 if (!new_xattr->name) {
3055 kfree(new_xattr);
3056 return -ENOMEM;
3057 }
3058
3059 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3060 XATTR_SECURITY_PREFIX_LEN);
3061 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3062 xattr->name, len);
3063
3064 simple_xattr_list_add(&info->xattrs, new_xattr);
3065 }
3066
3067 return 0;
3068 }
3069
3070 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3071 struct dentry *unused, struct inode *inode,
3072 const char *name, void *buffer, size_t size)
3073 {
3074 struct shmem_inode_info *info = SHMEM_I(inode);
3075
3076 name = xattr_full_name(handler, name);
3077 return simple_xattr_get(&info->xattrs, name, buffer, size);
3078 }
3079
3080 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3081 struct dentry *unused, struct inode *inode,
3082 const char *name, const void *value,
3083 size_t size, int flags)
3084 {
3085 struct shmem_inode_info *info = SHMEM_I(inode);
3086
3087 name = xattr_full_name(handler, name);
3088 return simple_xattr_set(&info->xattrs, name, value, size, flags);
3089 }
3090
3091 static const struct xattr_handler shmem_security_xattr_handler = {
3092 .prefix = XATTR_SECURITY_PREFIX,
3093 .get = shmem_xattr_handler_get,
3094 .set = shmem_xattr_handler_set,
3095 };
3096
3097 static const struct xattr_handler shmem_trusted_xattr_handler = {
3098 .prefix = XATTR_TRUSTED_PREFIX,
3099 .get = shmem_xattr_handler_get,
3100 .set = shmem_xattr_handler_set,
3101 };
3102
3103 static const struct xattr_handler *shmem_xattr_handlers[] = {
3104 #ifdef CONFIG_TMPFS_POSIX_ACL
3105 &posix_acl_access_xattr_handler,
3106 &posix_acl_default_xattr_handler,
3107 #endif
3108 &shmem_security_xattr_handler,
3109 &shmem_trusted_xattr_handler,
3110 NULL
3111 };
3112
3113 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3114 {
3115 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3116 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3117 }
3118 #endif /* CONFIG_TMPFS_XATTR */
3119
3120 static const struct inode_operations shmem_short_symlink_operations = {
3121 .readlink = generic_readlink,
3122 .get_link = simple_get_link,
3123 #ifdef CONFIG_TMPFS_XATTR
3124 .setxattr = generic_setxattr,
3125 .getxattr = generic_getxattr,
3126 .listxattr = shmem_listxattr,
3127 .removexattr = generic_removexattr,
3128 #endif
3129 };
3130
3131 static const struct inode_operations shmem_symlink_inode_operations = {
3132 .readlink = generic_readlink,
3133 .get_link = shmem_get_link,
3134 #ifdef CONFIG_TMPFS_XATTR
3135 .setxattr = generic_setxattr,
3136 .getxattr = generic_getxattr,
3137 .listxattr = shmem_listxattr,
3138 .removexattr = generic_removexattr,
3139 #endif
3140 };
3141
3142 static struct dentry *shmem_get_parent(struct dentry *child)
3143 {
3144 return ERR_PTR(-ESTALE);
3145 }
3146
3147 static int shmem_match(struct inode *ino, void *vfh)
3148 {
3149 __u32 *fh = vfh;
3150 __u64 inum = fh[2];
3151 inum = (inum << 32) | fh[1];
3152 return ino->i_ino == inum && fh[0] == ino->i_generation;
3153 }
3154
3155 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3156 struct fid *fid, int fh_len, int fh_type)
3157 {
3158 struct inode *inode;
3159 struct dentry *dentry = NULL;
3160 u64 inum;
3161
3162 if (fh_len < 3)
3163 return NULL;
3164
3165 inum = fid->raw[2];
3166 inum = (inum << 32) | fid->raw[1];
3167
3168 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3169 shmem_match, fid->raw);
3170 if (inode) {
3171 dentry = d_find_alias(inode);
3172 iput(inode);
3173 }
3174
3175 return dentry;
3176 }
3177
3178 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3179 struct inode *parent)
3180 {
3181 if (*len < 3) {
3182 *len = 3;
3183 return FILEID_INVALID;
3184 }
3185
3186 if (inode_unhashed(inode)) {
3187 /* Unfortunately insert_inode_hash is not idempotent,
3188 * so as we hash inodes here rather than at creation
3189 * time, we need a lock to ensure we only try
3190 * to do it once
3191 */
3192 static DEFINE_SPINLOCK(lock);
3193 spin_lock(&lock);
3194 if (inode_unhashed(inode))
3195 __insert_inode_hash(inode,
3196 inode->i_ino + inode->i_generation);
3197 spin_unlock(&lock);
3198 }
3199
3200 fh[0] = inode->i_generation;
3201 fh[1] = inode->i_ino;
3202 fh[2] = ((__u64)inode->i_ino) >> 32;
3203
3204 *len = 3;
3205 return 1;
3206 }
3207
3208 static const struct export_operations shmem_export_ops = {
3209 .get_parent = shmem_get_parent,
3210 .encode_fh = shmem_encode_fh,
3211 .fh_to_dentry = shmem_fh_to_dentry,
3212 };
3213
3214 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3215 bool remount)
3216 {
3217 char *this_char, *value, *rest;
3218 struct mempolicy *mpol = NULL;
3219 uid_t uid;
3220 gid_t gid;
3221
3222 while (options != NULL) {
3223 this_char = options;
3224 for (;;) {
3225 /*
3226 * NUL-terminate this option: unfortunately,
3227 * mount options form a comma-separated list,
3228 * but mpol's nodelist may also contain commas.
3229 */
3230 options = strchr(options, ',');
3231 if (options == NULL)
3232 break;
3233 options++;
3234 if (!isdigit(*options)) {
3235 options[-1] = '\0';
3236 break;
3237 }
3238 }
3239 if (!*this_char)
3240 continue;
3241 if ((value = strchr(this_char,'=')) != NULL) {
3242 *value++ = 0;
3243 } else {
3244 pr_err("tmpfs: No value for mount option '%s'\n",
3245 this_char);
3246 goto error;
3247 }
3248
3249 if (!strcmp(this_char,"size")) {
3250 unsigned long long size;
3251 size = memparse(value,&rest);
3252 if (*rest == '%') {
3253 size <<= PAGE_SHIFT;
3254 size *= totalram_pages;
3255 do_div(size, 100);
3256 rest++;
3257 }
3258 if (*rest)
3259 goto bad_val;
3260 sbinfo->max_blocks =
3261 DIV_ROUND_UP(size, PAGE_SIZE);
3262 } else if (!strcmp(this_char,"nr_blocks")) {
3263 sbinfo->max_blocks = memparse(value, &rest);
3264 if (*rest)
3265 goto bad_val;
3266 } else if (!strcmp(this_char,"nr_inodes")) {
3267 sbinfo->max_inodes = memparse(value, &rest);
3268 if (*rest)
3269 goto bad_val;
3270 } else if (!strcmp(this_char,"mode")) {
3271 if (remount)
3272 continue;
3273 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3274 if (*rest)
3275 goto bad_val;
3276 } else if (!strcmp(this_char,"uid")) {
3277 if (remount)
3278 continue;
3279 uid = simple_strtoul(value, &rest, 0);
3280 if (*rest)
3281 goto bad_val;
3282 sbinfo->uid = make_kuid(current_user_ns(), uid);
3283 if (!uid_valid(sbinfo->uid))
3284 goto bad_val;
3285 } else if (!strcmp(this_char,"gid")) {
3286 if (remount)
3287 continue;
3288 gid = simple_strtoul(value, &rest, 0);
3289 if (*rest)
3290 goto bad_val;
3291 sbinfo->gid = make_kgid(current_user_ns(), gid);
3292 if (!gid_valid(sbinfo->gid))
3293 goto bad_val;
3294 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3295 } else if (!strcmp(this_char, "huge")) {
3296 int huge;
3297 huge = shmem_parse_huge(value);
3298 if (huge < 0)
3299 goto bad_val;
3300 if (!has_transparent_hugepage() &&
3301 huge != SHMEM_HUGE_NEVER)
3302 goto bad_val;
3303 sbinfo->huge = huge;
3304 #endif
3305 #ifdef CONFIG_NUMA
3306 } else if (!strcmp(this_char,"mpol")) {
3307 mpol_put(mpol);
3308 mpol = NULL;
3309 if (mpol_parse_str(value, &mpol))
3310 goto bad_val;
3311 #endif
3312 } else {
3313 pr_err("tmpfs: Bad mount option %s\n", this_char);
3314 goto error;
3315 }
3316 }
3317 sbinfo->mpol = mpol;
3318 return 0;
3319
3320 bad_val:
3321 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3322 value, this_char);
3323 error:
3324 mpol_put(mpol);
3325 return 1;
3326
3327 }
3328
3329 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3330 {
3331 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3332 struct shmem_sb_info config = *sbinfo;
3333 unsigned long inodes;
3334 int error = -EINVAL;
3335
3336 config.mpol = NULL;
3337 if (shmem_parse_options(data, &config, true))
3338 return error;
3339
3340 spin_lock(&sbinfo->stat_lock);
3341 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3342 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3343 goto out;
3344 if (config.max_inodes < inodes)
3345 goto out;
3346 /*
3347 * Those tests disallow limited->unlimited while any are in use;
3348 * but we must separately disallow unlimited->limited, because
3349 * in that case we have no record of how much is already in use.
3350 */
3351 if (config.max_blocks && !sbinfo->max_blocks)
3352 goto out;
3353 if (config.max_inodes && !sbinfo->max_inodes)
3354 goto out;
3355
3356 error = 0;
3357 sbinfo->huge = config.huge;
3358 sbinfo->max_blocks = config.max_blocks;
3359 sbinfo->max_inodes = config.max_inodes;
3360 sbinfo->free_inodes = config.max_inodes - inodes;
3361
3362 /*
3363 * Preserve previous mempolicy unless mpol remount option was specified.
3364 */
3365 if (config.mpol) {
3366 mpol_put(sbinfo->mpol);
3367 sbinfo->mpol = config.mpol; /* transfers initial ref */
3368 }
3369 out:
3370 spin_unlock(&sbinfo->stat_lock);
3371 return error;
3372 }
3373
3374 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3375 {
3376 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3377
3378 if (sbinfo->max_blocks != shmem_default_max_blocks())
3379 seq_printf(seq, ",size=%luk",
3380 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3381 if (sbinfo->max_inodes != shmem_default_max_inodes())
3382 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3383 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
3384 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3385 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3386 seq_printf(seq, ",uid=%u",
3387 from_kuid_munged(&init_user_ns, sbinfo->uid));
3388 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3389 seq_printf(seq, ",gid=%u",
3390 from_kgid_munged(&init_user_ns, sbinfo->gid));
3391 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3392 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3393 if (sbinfo->huge)
3394 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3395 #endif
3396 shmem_show_mpol(seq, sbinfo->mpol);
3397 return 0;
3398 }
3399
3400 #define MFD_NAME_PREFIX "memfd:"
3401 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3402 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3403
3404 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
3405
3406 SYSCALL_DEFINE2(memfd_create,
3407 const char __user *, uname,
3408 unsigned int, flags)
3409 {
3410 struct shmem_inode_info *info;
3411 struct file *file;
3412 int fd, error;
3413 char *name;
3414 long len;
3415
3416 if (flags & ~(unsigned int)MFD_ALL_FLAGS)
3417 return -EINVAL;
3418
3419 /* length includes terminating zero */
3420 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
3421 if (len <= 0)
3422 return -EFAULT;
3423 if (len > MFD_NAME_MAX_LEN + 1)
3424 return -EINVAL;
3425
3426 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
3427 if (!name)
3428 return -ENOMEM;
3429
3430 strcpy(name, MFD_NAME_PREFIX);
3431 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
3432 error = -EFAULT;
3433 goto err_name;
3434 }
3435
3436 /* terminating-zero may have changed after strnlen_user() returned */
3437 if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3438 error = -EFAULT;
3439 goto err_name;
3440 }
3441
3442 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3443 if (fd < 0) {
3444 error = fd;
3445 goto err_name;
3446 }
3447
3448 file = shmem_file_setup(name, 0, VM_NORESERVE);
3449 if (IS_ERR(file)) {
3450 error = PTR_ERR(file);
3451 goto err_fd;
3452 }
3453 info = SHMEM_I(file_inode(file));
3454 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3455 file->f_flags |= O_RDWR | O_LARGEFILE;
3456 if (flags & MFD_ALLOW_SEALING)
3457 info->seals &= ~F_SEAL_SEAL;
3458
3459 fd_install(fd, file);
3460 kfree(name);
3461 return fd;
3462
3463 err_fd:
3464 put_unused_fd(fd);
3465 err_name:
3466 kfree(name);
3467 return error;
3468 }
3469
3470 #endif /* CONFIG_TMPFS */
3471
3472 static void shmem_put_super(struct super_block *sb)
3473 {
3474 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3475
3476 percpu_counter_destroy(&sbinfo->used_blocks);
3477 mpol_put(sbinfo->mpol);
3478 kfree(sbinfo);
3479 sb->s_fs_info = NULL;
3480 }
3481
3482 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3483 {
3484 struct inode *inode;
3485 struct shmem_sb_info *sbinfo;
3486 int err = -ENOMEM;
3487
3488 /* Round up to L1_CACHE_BYTES to resist false sharing */
3489 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3490 L1_CACHE_BYTES), GFP_KERNEL);
3491 if (!sbinfo)
3492 return -ENOMEM;
3493
3494 sbinfo->mode = S_IRWXUGO | S_ISVTX;
3495 sbinfo->uid = current_fsuid();
3496 sbinfo->gid = current_fsgid();
3497 sb->s_fs_info = sbinfo;
3498
3499 #ifdef CONFIG_TMPFS
3500 /*
3501 * Per default we only allow half of the physical ram per
3502 * tmpfs instance, limiting inodes to one per page of lowmem;
3503 * but the internal instance is left unlimited.
3504 */
3505 if (!(sb->s_flags & MS_KERNMOUNT)) {
3506 sbinfo->max_blocks = shmem_default_max_blocks();
3507 sbinfo->max_inodes = shmem_default_max_inodes();
3508 if (shmem_parse_options(data, sbinfo, false)) {
3509 err = -EINVAL;
3510 goto failed;
3511 }
3512 } else {
3513 sb->s_flags |= MS_NOUSER;
3514 }
3515 sb->s_export_op = &shmem_export_ops;
3516 sb->s_flags |= MS_NOSEC;
3517 #else
3518 sb->s_flags |= MS_NOUSER;
3519 #endif
3520
3521 spin_lock_init(&sbinfo->stat_lock);
3522 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3523 goto failed;
3524 sbinfo->free_inodes = sbinfo->max_inodes;
3525
3526 sb->s_maxbytes = MAX_LFS_FILESIZE;
3527 sb->s_blocksize = PAGE_SIZE;
3528 sb->s_blocksize_bits = PAGE_SHIFT;
3529 sb->s_magic = TMPFS_MAGIC;
3530 sb->s_op = &shmem_ops;
3531 sb->s_time_gran = 1;
3532 #ifdef CONFIG_TMPFS_XATTR
3533 sb->s_xattr = shmem_xattr_handlers;
3534 #endif
3535 #ifdef CONFIG_TMPFS_POSIX_ACL
3536 sb->s_flags |= MS_POSIXACL;
3537 #endif
3538
3539 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3540 if (!inode)
3541 goto failed;
3542 inode->i_uid = sbinfo->uid;
3543 inode->i_gid = sbinfo->gid;
3544 sb->s_root = d_make_root(inode);
3545 if (!sb->s_root)
3546 goto failed;
3547 return 0;
3548
3549 failed:
3550 shmem_put_super(sb);
3551 return err;
3552 }
3553
3554 static struct kmem_cache *shmem_inode_cachep;
3555
3556 static struct inode *shmem_alloc_inode(struct super_block *sb)
3557 {
3558 struct shmem_inode_info *info;
3559 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3560 if (!info)
3561 return NULL;
3562 return &info->vfs_inode;
3563 }
3564
3565 static void shmem_destroy_callback(struct rcu_head *head)
3566 {
3567 struct inode *inode = container_of(head, struct inode, i_rcu);
3568 if (S_ISLNK(inode->i_mode))
3569 kfree(inode->i_link);
3570 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3571 }
3572
3573 static void shmem_destroy_inode(struct inode *inode)
3574 {
3575 if (S_ISREG(inode->i_mode))
3576 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3577 call_rcu(&inode->i_rcu, shmem_destroy_callback);
3578 }
3579
3580 static void shmem_init_inode(void *foo)
3581 {
3582 struct shmem_inode_info *info = foo;
3583 inode_init_once(&info->vfs_inode);
3584 }
3585
3586 static int shmem_init_inodecache(void)
3587 {
3588 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3589 sizeof(struct shmem_inode_info),
3590 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3591 return 0;
3592 }
3593
3594 static void shmem_destroy_inodecache(void)
3595 {
3596 kmem_cache_destroy(shmem_inode_cachep);
3597 }
3598
3599 static const struct address_space_operations shmem_aops = {
3600 .writepage = shmem_writepage,
3601 .set_page_dirty = __set_page_dirty_no_writeback,
3602 #ifdef CONFIG_TMPFS
3603 .write_begin = shmem_write_begin,
3604 .write_end = shmem_write_end,
3605 #endif
3606 #ifdef CONFIG_MIGRATION
3607 .migratepage = migrate_page,
3608 #endif
3609 .error_remove_page = generic_error_remove_page,
3610 };
3611
3612 static const struct file_operations shmem_file_operations = {
3613 .mmap = shmem_mmap,
3614 .get_unmapped_area = shmem_get_unmapped_area,
3615 #ifdef CONFIG_TMPFS
3616 .llseek = shmem_file_llseek,
3617 .read_iter = shmem_file_read_iter,
3618 .write_iter = generic_file_write_iter,
3619 .fsync = noop_fsync,
3620 .splice_read = shmem_file_splice_read,
3621 .splice_write = iter_file_splice_write,
3622 .fallocate = shmem_fallocate,
3623 #endif
3624 };
3625
3626 static const struct inode_operations shmem_inode_operations = {
3627 .getattr = shmem_getattr,
3628 .setattr = shmem_setattr,
3629 #ifdef CONFIG_TMPFS_XATTR
3630 .setxattr = generic_setxattr,
3631 .getxattr = generic_getxattr,
3632 .listxattr = shmem_listxattr,
3633 .removexattr = generic_removexattr,
3634 .set_acl = simple_set_acl,
3635 #endif
3636 };
3637
3638 static const struct inode_operations shmem_dir_inode_operations = {
3639 #ifdef CONFIG_TMPFS
3640 .create = shmem_create,
3641 .lookup = simple_lookup,
3642 .link = shmem_link,
3643 .unlink = shmem_unlink,
3644 .symlink = shmem_symlink,
3645 .mkdir = shmem_mkdir,
3646 .rmdir = shmem_rmdir,
3647 .mknod = shmem_mknod,
3648 .rename2 = shmem_rename2,
3649 .tmpfile = shmem_tmpfile,
3650 #endif
3651 #ifdef CONFIG_TMPFS_XATTR
3652 .setxattr = generic_setxattr,
3653 .getxattr = generic_getxattr,
3654 .listxattr = shmem_listxattr,
3655 .removexattr = generic_removexattr,
3656 #endif
3657 #ifdef CONFIG_TMPFS_POSIX_ACL
3658 .setattr = shmem_setattr,
3659 .set_acl = simple_set_acl,
3660 #endif
3661 };
3662
3663 static const struct inode_operations shmem_special_inode_operations = {
3664 #ifdef CONFIG_TMPFS_XATTR
3665 .setxattr = generic_setxattr,
3666 .getxattr = generic_getxattr,
3667 .listxattr = shmem_listxattr,
3668 .removexattr = generic_removexattr,
3669 #endif
3670 #ifdef CONFIG_TMPFS_POSIX_ACL
3671 .setattr = shmem_setattr,
3672 .set_acl = simple_set_acl,
3673 #endif
3674 };
3675
3676 static const struct super_operations shmem_ops = {
3677 .alloc_inode = shmem_alloc_inode,
3678 .destroy_inode = shmem_destroy_inode,
3679 #ifdef CONFIG_TMPFS
3680 .statfs = shmem_statfs,
3681 .remount_fs = shmem_remount_fs,
3682 .show_options = shmem_show_options,
3683 #endif
3684 .evict_inode = shmem_evict_inode,
3685 .drop_inode = generic_delete_inode,
3686 .put_super = shmem_put_super,
3687 };
3688
3689 static const struct vm_operations_struct shmem_vm_ops = {
3690 .fault = shmem_fault,
3691 .map_pages = filemap_map_pages,
3692 #ifdef CONFIG_NUMA
3693 .set_policy = shmem_set_policy,
3694 .get_policy = shmem_get_policy,
3695 #endif
3696 };
3697
3698 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3699 int flags, const char *dev_name, void *data)
3700 {
3701 return mount_nodev(fs_type, flags, data, shmem_fill_super);
3702 }
3703
3704 static struct file_system_type shmem_fs_type = {
3705 .owner = THIS_MODULE,
3706 .name = "tmpfs",
3707 .mount = shmem_mount,
3708 .kill_sb = kill_litter_super,
3709 .fs_flags = FS_USERNS_MOUNT,
3710 };
3711
3712 int __init shmem_init(void)
3713 {
3714 int error;
3715
3716 /* If rootfs called this, don't re-init */
3717 if (shmem_inode_cachep)
3718 return 0;
3719
3720 error = shmem_init_inodecache();
3721 if (error)
3722 goto out3;
3723
3724 error = register_filesystem(&shmem_fs_type);
3725 if (error) {
3726 pr_err("Could not register tmpfs\n");
3727 goto out2;
3728 }
3729
3730 shm_mnt = kern_mount(&shmem_fs_type);
3731 if (IS_ERR(shm_mnt)) {
3732 error = PTR_ERR(shm_mnt);
3733 pr_err("Could not kern_mount tmpfs\n");
3734 goto out1;
3735 }
3736
3737 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3738 if (has_transparent_hugepage() && shmem_huge < SHMEM_HUGE_DENY)
3739 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3740 else
3741 shmem_huge = 0; /* just in case it was patched */
3742 #endif
3743 return 0;
3744
3745 out1:
3746 unregister_filesystem(&shmem_fs_type);
3747 out2:
3748 shmem_destroy_inodecache();
3749 out3:
3750 shm_mnt = ERR_PTR(error);
3751 return error;
3752 }
3753
3754 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
3755 static ssize_t shmem_enabled_show(struct kobject *kobj,
3756 struct kobj_attribute *attr, char *buf)
3757 {
3758 int values[] = {
3759 SHMEM_HUGE_ALWAYS,
3760 SHMEM_HUGE_WITHIN_SIZE,
3761 SHMEM_HUGE_ADVISE,
3762 SHMEM_HUGE_NEVER,
3763 SHMEM_HUGE_DENY,
3764 SHMEM_HUGE_FORCE,
3765 };
3766 int i, count;
3767
3768 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3769 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3770
3771 count += sprintf(buf + count, fmt,
3772 shmem_format_huge(values[i]));
3773 }
3774 buf[count - 1] = '\n';
3775 return count;
3776 }
3777
3778 static ssize_t shmem_enabled_store(struct kobject *kobj,
3779 struct kobj_attribute *attr, const char *buf, size_t count)
3780 {
3781 char tmp[16];
3782 int huge;
3783
3784 if (count + 1 > sizeof(tmp))
3785 return -EINVAL;
3786 memcpy(tmp, buf, count);
3787 tmp[count] = '\0';
3788 if (count && tmp[count - 1] == '\n')
3789 tmp[count - 1] = '\0';
3790
3791 huge = shmem_parse_huge(tmp);
3792 if (huge == -EINVAL)
3793 return -EINVAL;
3794 if (!has_transparent_hugepage() &&
3795 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3796 return -EINVAL;
3797
3798 shmem_huge = huge;
3799 if (shmem_huge < SHMEM_HUGE_DENY)
3800 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3801 return count;
3802 }
3803
3804 struct kobj_attribute shmem_enabled_attr =
3805 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3806 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
3807
3808 #else /* !CONFIG_SHMEM */
3809
3810 /*
3811 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3812 *
3813 * This is intended for small system where the benefits of the full
3814 * shmem code (swap-backed and resource-limited) are outweighed by
3815 * their complexity. On systems without swap this code should be
3816 * effectively equivalent, but much lighter weight.
3817 */
3818
3819 static struct file_system_type shmem_fs_type = {
3820 .name = "tmpfs",
3821 .mount = ramfs_mount,
3822 .kill_sb = kill_litter_super,
3823 .fs_flags = FS_USERNS_MOUNT,
3824 };
3825
3826 int __init shmem_init(void)
3827 {
3828 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3829
3830 shm_mnt = kern_mount(&shmem_fs_type);
3831 BUG_ON(IS_ERR(shm_mnt));
3832
3833 return 0;
3834 }
3835
3836 int shmem_unuse(swp_entry_t swap, struct page *page)
3837 {
3838 return 0;
3839 }
3840
3841 int shmem_lock(struct file *file, int lock, struct user_struct *user)
3842 {
3843 return 0;
3844 }
3845
3846 void shmem_unlock_mapping(struct address_space *mapping)
3847 {
3848 }
3849
3850 #ifdef CONFIG_MMU
3851 unsigned long shmem_get_unmapped_area(struct file *file,
3852 unsigned long addr, unsigned long len,
3853 unsigned long pgoff, unsigned long flags)
3854 {
3855 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
3856 }
3857 #endif
3858
3859 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3860 {
3861 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3862 }
3863 EXPORT_SYMBOL_GPL(shmem_truncate_range);
3864
3865 #define shmem_vm_ops generic_file_vm_ops
3866 #define shmem_file_operations ramfs_file_operations
3867 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
3868 #define shmem_acct_size(flags, size) 0
3869 #define shmem_unacct_size(flags, size) do {} while (0)
3870
3871 #endif /* CONFIG_SHMEM */
3872
3873 /* common code */
3874
3875 static struct dentry_operations anon_ops = {
3876 .d_dname = simple_dname
3877 };
3878
3879 static struct file *__shmem_file_setup(const char *name, loff_t size,
3880 unsigned long flags, unsigned int i_flags)
3881 {
3882 struct file *res;
3883 struct inode *inode;
3884 struct path path;
3885 struct super_block *sb;
3886 struct qstr this;
3887
3888 if (IS_ERR(shm_mnt))
3889 return ERR_CAST(shm_mnt);
3890
3891 if (size < 0 || size > MAX_LFS_FILESIZE)
3892 return ERR_PTR(-EINVAL);
3893
3894 if (shmem_acct_size(flags, size))
3895 return ERR_PTR(-ENOMEM);
3896
3897 res = ERR_PTR(-ENOMEM);
3898 this.name = name;
3899 this.len = strlen(name);
3900 this.hash = 0; /* will go */
3901 sb = shm_mnt->mnt_sb;
3902 path.mnt = mntget(shm_mnt);
3903 path.dentry = d_alloc_pseudo(sb, &this);
3904 if (!path.dentry)
3905 goto put_memory;
3906 d_set_d_op(path.dentry, &anon_ops);
3907
3908 res = ERR_PTR(-ENOSPC);
3909 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
3910 if (!inode)
3911 goto put_memory;
3912
3913 inode->i_flags |= i_flags;
3914 d_instantiate(path.dentry, inode);
3915 inode->i_size = size;
3916 clear_nlink(inode); /* It is unlinked */
3917 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3918 if (IS_ERR(res))
3919 goto put_path;
3920
3921 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3922 &shmem_file_operations);
3923 if (IS_ERR(res))
3924 goto put_path;
3925
3926 return res;
3927
3928 put_memory:
3929 shmem_unacct_size(flags, size);
3930 put_path:
3931 path_put(&path);
3932 return res;
3933 }
3934
3935 /**
3936 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3937 * kernel internal. There will be NO LSM permission checks against the
3938 * underlying inode. So users of this interface must do LSM checks at a
3939 * higher layer. The users are the big_key and shm implementations. LSM
3940 * checks are provided at the key or shm level rather than the inode.
3941 * @name: name for dentry (to be seen in /proc/<pid>/maps
3942 * @size: size to be set for the file
3943 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3944 */
3945 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3946 {
3947 return __shmem_file_setup(name, size, flags, S_PRIVATE);
3948 }
3949
3950 /**
3951 * shmem_file_setup - get an unlinked file living in tmpfs
3952 * @name: name for dentry (to be seen in /proc/<pid>/maps
3953 * @size: size to be set for the file
3954 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3955 */
3956 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3957 {
3958 return __shmem_file_setup(name, size, flags, 0);
3959 }
3960 EXPORT_SYMBOL_GPL(shmem_file_setup);
3961
3962 /**
3963 * shmem_zero_setup - setup a shared anonymous mapping
3964 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3965 */
3966 int shmem_zero_setup(struct vm_area_struct *vma)
3967 {
3968 struct file *file;
3969 loff_t size = vma->vm_end - vma->vm_start;
3970
3971 /*
3972 * Cloning a new file under mmap_sem leads to a lock ordering conflict
3973 * between XFS directory reading and selinux: since this file is only
3974 * accessible to the user through its mapping, use S_PRIVATE flag to
3975 * bypass file security, in the same way as shmem_kernel_file_setup().
3976 */
3977 file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
3978 if (IS_ERR(file))
3979 return PTR_ERR(file);
3980
3981 if (vma->vm_file)
3982 fput(vma->vm_file);
3983 vma->vm_file = file;
3984 vma->vm_ops = &shmem_vm_ops;
3985 return 0;
3986 }
3987
3988 /**
3989 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3990 * @mapping: the page's address_space
3991 * @index: the page index
3992 * @gfp: the page allocator flags to use if allocating
3993 *
3994 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3995 * with any new page allocations done using the specified allocation flags.
3996 * But read_cache_page_gfp() uses the ->readpage() method: which does not
3997 * suit tmpfs, since it may have pages in swapcache, and needs to find those
3998 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3999 *
4000 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4001 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4002 */
4003 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4004 pgoff_t index, gfp_t gfp)
4005 {
4006 #ifdef CONFIG_SHMEM
4007 struct inode *inode = mapping->host;
4008 struct page *page;
4009 int error;
4010
4011 BUG_ON(mapping->a_ops != &shmem_aops);
4012 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4013 gfp, NULL, NULL);
4014 if (error)
4015 page = ERR_PTR(error);
4016 else
4017 unlock_page(page);
4018 return page;
4019 #else
4020 /*
4021 * The tiny !SHMEM case uses ramfs without swap
4022 */
4023 return read_cache_page_gfp(mapping, index, gfp);
4024 #endif
4025 }
4026 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
This page took 0.124686 seconds and 6 git commands to generate.