tmpfs: convert shmem_getpage_gfp to radix-swap
[deliverable/linux.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
12 *
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16 *
17 * tiny-shmem:
18 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
19 *
20 * This file is released under the GPL.
21 */
22
23 #include <linux/fs.h>
24 #include <linux/init.h>
25 #include <linux/vfs.h>
26 #include <linux/mount.h>
27 #include <linux/pagemap.h>
28 #include <linux/file.h>
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/swap.h>
32
33 static struct vfsmount *shm_mnt;
34
35 #ifdef CONFIG_SHMEM
36 /*
37 * This virtual memory filesystem is heavily based on the ramfs. It
38 * extends ramfs by the ability to use swap and honor resource limits
39 * which makes it a completely usable filesystem.
40 */
41
42 #include <linux/xattr.h>
43 #include <linux/exportfs.h>
44 #include <linux/posix_acl.h>
45 #include <linux/generic_acl.h>
46 #include <linux/mman.h>
47 #include <linux/string.h>
48 #include <linux/slab.h>
49 #include <linux/backing-dev.h>
50 #include <linux/shmem_fs.h>
51 #include <linux/writeback.h>
52 #include <linux/blkdev.h>
53 #include <linux/pagevec.h>
54 #include <linux/percpu_counter.h>
55 #include <linux/splice.h>
56 #include <linux/security.h>
57 #include <linux/swapops.h>
58 #include <linux/mempolicy.h>
59 #include <linux/namei.h>
60 #include <linux/ctype.h>
61 #include <linux/migrate.h>
62 #include <linux/highmem.h>
63 #include <linux/seq_file.h>
64 #include <linux/magic.h>
65
66 #include <asm/uaccess.h>
67 #include <asm/pgtable.h>
68
69 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
70 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
71
72 /* Pretend that each entry is of this size in directory's i_size */
73 #define BOGO_DIRENT_SIZE 20
74
75 struct shmem_xattr {
76 struct list_head list; /* anchored by shmem_inode_info->xattr_list */
77 char *name; /* xattr name */
78 size_t size;
79 char value[0];
80 };
81
82 /* Flag allocation requirements to shmem_getpage */
83 enum sgp_type {
84 SGP_READ, /* don't exceed i_size, don't allocate page */
85 SGP_CACHE, /* don't exceed i_size, may allocate page */
86 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
87 SGP_WRITE, /* may exceed i_size, may allocate page */
88 };
89
90 #ifdef CONFIG_TMPFS
91 static unsigned long shmem_default_max_blocks(void)
92 {
93 return totalram_pages / 2;
94 }
95
96 static unsigned long shmem_default_max_inodes(void)
97 {
98 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
99 }
100 #endif
101
102 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
103 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
104
105 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
106 struct page **pagep, enum sgp_type sgp, int *fault_type)
107 {
108 return shmem_getpage_gfp(inode, index, pagep, sgp,
109 mapping_gfp_mask(inode->i_mapping), fault_type);
110 }
111
112 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
113 {
114 return sb->s_fs_info;
115 }
116
117 /*
118 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
119 * for shared memory and for shared anonymous (/dev/zero) mappings
120 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
121 * consistent with the pre-accounting of private mappings ...
122 */
123 static inline int shmem_acct_size(unsigned long flags, loff_t size)
124 {
125 return (flags & VM_NORESERVE) ?
126 0 : security_vm_enough_memory_kern(VM_ACCT(size));
127 }
128
129 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
130 {
131 if (!(flags & VM_NORESERVE))
132 vm_unacct_memory(VM_ACCT(size));
133 }
134
135 /*
136 * ... whereas tmpfs objects are accounted incrementally as
137 * pages are allocated, in order to allow huge sparse files.
138 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
139 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
140 */
141 static inline int shmem_acct_block(unsigned long flags)
142 {
143 return (flags & VM_NORESERVE) ?
144 security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE)) : 0;
145 }
146
147 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
148 {
149 if (flags & VM_NORESERVE)
150 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
151 }
152
153 static const struct super_operations shmem_ops;
154 static const struct address_space_operations shmem_aops;
155 static const struct file_operations shmem_file_operations;
156 static const struct inode_operations shmem_inode_operations;
157 static const struct inode_operations shmem_dir_inode_operations;
158 static const struct inode_operations shmem_special_inode_operations;
159 static const struct vm_operations_struct shmem_vm_ops;
160
161 static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
162 .ra_pages = 0, /* No readahead */
163 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
164 };
165
166 static LIST_HEAD(shmem_swaplist);
167 static DEFINE_MUTEX(shmem_swaplist_mutex);
168
169 static int shmem_reserve_inode(struct super_block *sb)
170 {
171 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
172 if (sbinfo->max_inodes) {
173 spin_lock(&sbinfo->stat_lock);
174 if (!sbinfo->free_inodes) {
175 spin_unlock(&sbinfo->stat_lock);
176 return -ENOSPC;
177 }
178 sbinfo->free_inodes--;
179 spin_unlock(&sbinfo->stat_lock);
180 }
181 return 0;
182 }
183
184 static void shmem_free_inode(struct super_block *sb)
185 {
186 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
187 if (sbinfo->max_inodes) {
188 spin_lock(&sbinfo->stat_lock);
189 sbinfo->free_inodes++;
190 spin_unlock(&sbinfo->stat_lock);
191 }
192 }
193
194 /**
195 * shmem_recalc_inode - recalculate the block usage of an inode
196 * @inode: inode to recalc
197 *
198 * We have to calculate the free blocks since the mm can drop
199 * undirtied hole pages behind our back.
200 *
201 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
202 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
203 *
204 * It has to be called with the spinlock held.
205 */
206 static void shmem_recalc_inode(struct inode *inode)
207 {
208 struct shmem_inode_info *info = SHMEM_I(inode);
209 long freed;
210
211 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
212 if (freed > 0) {
213 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
214 if (sbinfo->max_blocks)
215 percpu_counter_add(&sbinfo->used_blocks, -freed);
216 info->alloced -= freed;
217 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
218 shmem_unacct_blocks(info->flags, freed);
219 }
220 }
221
222 static void shmem_put_swap(struct shmem_inode_info *info, pgoff_t index,
223 swp_entry_t swap)
224 {
225 if (index < SHMEM_NR_DIRECT)
226 info->i_direct[index] = swap;
227 }
228
229 static swp_entry_t shmem_get_swap(struct shmem_inode_info *info, pgoff_t index)
230 {
231 return (index < SHMEM_NR_DIRECT) ?
232 info->i_direct[index] : (swp_entry_t){0};
233 }
234
235 /*
236 * Replace item expected in radix tree by a new item, while holding tree lock.
237 */
238 static int shmem_radix_tree_replace(struct address_space *mapping,
239 pgoff_t index, void *expected, void *replacement)
240 {
241 void **pslot;
242 void *item = NULL;
243
244 VM_BUG_ON(!expected);
245 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
246 if (pslot)
247 item = radix_tree_deref_slot_protected(pslot,
248 &mapping->tree_lock);
249 if (item != expected)
250 return -ENOENT;
251 if (replacement)
252 radix_tree_replace_slot(pslot, replacement);
253 else
254 radix_tree_delete(&mapping->page_tree, index);
255 return 0;
256 }
257
258 /*
259 * Like add_to_page_cache_locked, but error if expected item has gone.
260 */
261 static int shmem_add_to_page_cache(struct page *page,
262 struct address_space *mapping,
263 pgoff_t index, gfp_t gfp, void *expected)
264 {
265 int error;
266
267 VM_BUG_ON(!PageLocked(page));
268 VM_BUG_ON(!PageSwapBacked(page));
269
270 error = mem_cgroup_cache_charge(page, current->mm,
271 gfp & GFP_RECLAIM_MASK);
272 if (error)
273 goto out;
274 if (!expected)
275 error = radix_tree_preload(gfp & GFP_RECLAIM_MASK);
276 if (!error) {
277 page_cache_get(page);
278 page->mapping = mapping;
279 page->index = index;
280
281 spin_lock_irq(&mapping->tree_lock);
282 if (!expected)
283 error = radix_tree_insert(&mapping->page_tree,
284 index, page);
285 else
286 error = shmem_radix_tree_replace(mapping, index,
287 expected, page);
288 if (!error) {
289 mapping->nrpages++;
290 __inc_zone_page_state(page, NR_FILE_PAGES);
291 __inc_zone_page_state(page, NR_SHMEM);
292 spin_unlock_irq(&mapping->tree_lock);
293 } else {
294 page->mapping = NULL;
295 spin_unlock_irq(&mapping->tree_lock);
296 page_cache_release(page);
297 }
298 if (!expected)
299 radix_tree_preload_end();
300 }
301 if (error)
302 mem_cgroup_uncharge_cache_page(page);
303 out:
304 return error;
305 }
306
307 /*
308 * Like find_get_pages, but collecting swap entries as well as pages.
309 */
310 static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping,
311 pgoff_t start, unsigned int nr_pages,
312 struct page **pages, pgoff_t *indices)
313 {
314 unsigned int i;
315 unsigned int ret;
316 unsigned int nr_found;
317
318 rcu_read_lock();
319 restart:
320 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
321 (void ***)pages, indices, start, nr_pages);
322 ret = 0;
323 for (i = 0; i < nr_found; i++) {
324 struct page *page;
325 repeat:
326 page = radix_tree_deref_slot((void **)pages[i]);
327 if (unlikely(!page))
328 continue;
329 if (radix_tree_exception(page)) {
330 if (radix_tree_exceptional_entry(page))
331 goto export;
332 /* radix_tree_deref_retry(page) */
333 goto restart;
334 }
335 if (!page_cache_get_speculative(page))
336 goto repeat;
337
338 /* Has the page moved? */
339 if (unlikely(page != *((void **)pages[i]))) {
340 page_cache_release(page);
341 goto repeat;
342 }
343 export:
344 indices[ret] = indices[i];
345 pages[ret] = page;
346 ret++;
347 }
348 if (unlikely(!ret && nr_found))
349 goto restart;
350 rcu_read_unlock();
351 return ret;
352 }
353
354 /*
355 * Lockless lookup of swap entry in radix tree, avoiding refcount on pages.
356 */
357 static pgoff_t shmem_find_swap(struct address_space *mapping, void *radswap)
358 {
359 void **slots[PAGEVEC_SIZE];
360 pgoff_t indices[PAGEVEC_SIZE];
361 unsigned int nr_found;
362
363 restart:
364 nr_found = 1;
365 indices[0] = -1;
366 while (nr_found) {
367 pgoff_t index = indices[nr_found - 1] + 1;
368 unsigned int i;
369
370 rcu_read_lock();
371 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
372 slots, indices, index, PAGEVEC_SIZE);
373 for (i = 0; i < nr_found; i++) {
374 void *item = radix_tree_deref_slot(slots[i]);
375 if (radix_tree_deref_retry(item)) {
376 rcu_read_unlock();
377 goto restart;
378 }
379 if (item == radswap) {
380 rcu_read_unlock();
381 return indices[i];
382 }
383 }
384 rcu_read_unlock();
385 cond_resched();
386 }
387 return -1;
388 }
389
390 /*
391 * Remove swap entry from radix tree, free the swap and its page cache.
392 */
393 static int shmem_free_swap(struct address_space *mapping,
394 pgoff_t index, void *radswap)
395 {
396 int error;
397
398 spin_lock_irq(&mapping->tree_lock);
399 error = shmem_radix_tree_replace(mapping, index, radswap, NULL);
400 spin_unlock_irq(&mapping->tree_lock);
401 if (!error)
402 free_swap_and_cache(radix_to_swp_entry(radswap));
403 return error;
404 }
405
406 /*
407 * Pagevec may contain swap entries, so shuffle up pages before releasing.
408 */
409 static void shmem_pagevec_release(struct pagevec *pvec)
410 {
411 int i, j;
412
413 for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
414 struct page *page = pvec->pages[i];
415 if (!radix_tree_exceptional_entry(page))
416 pvec->pages[j++] = page;
417 }
418 pvec->nr = j;
419 pagevec_release(pvec);
420 }
421
422 /*
423 * Remove range of pages and swap entries from radix tree, and free them.
424 */
425 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
426 {
427 struct address_space *mapping = inode->i_mapping;
428 struct shmem_inode_info *info = SHMEM_I(inode);
429 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
430 unsigned partial = lstart & (PAGE_CACHE_SIZE - 1);
431 pgoff_t end = (lend >> PAGE_CACHE_SHIFT);
432 struct pagevec pvec;
433 pgoff_t indices[PAGEVEC_SIZE];
434 long nr_swaps_freed = 0;
435 pgoff_t index;
436 int i;
437
438 BUG_ON((lend & (PAGE_CACHE_SIZE - 1)) != (PAGE_CACHE_SIZE - 1));
439
440 pagevec_init(&pvec, 0);
441 index = start;
442 while (index <= end) {
443 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
444 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
445 pvec.pages, indices);
446 if (!pvec.nr)
447 break;
448 mem_cgroup_uncharge_start();
449 for (i = 0; i < pagevec_count(&pvec); i++) {
450 struct page *page = pvec.pages[i];
451
452 index = indices[i];
453 if (index > end)
454 break;
455
456 if (radix_tree_exceptional_entry(page)) {
457 nr_swaps_freed += !shmem_free_swap(mapping,
458 index, page);
459 continue;
460 }
461
462 if (!trylock_page(page))
463 continue;
464 if (page->mapping == mapping) {
465 VM_BUG_ON(PageWriteback(page));
466 truncate_inode_page(mapping, page);
467 }
468 unlock_page(page);
469 }
470 shmem_pagevec_release(&pvec);
471 mem_cgroup_uncharge_end();
472 cond_resched();
473 index++;
474 }
475
476 if (partial) {
477 struct page *page = NULL;
478 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
479 if (page) {
480 zero_user_segment(page, partial, PAGE_CACHE_SIZE);
481 set_page_dirty(page);
482 unlock_page(page);
483 page_cache_release(page);
484 }
485 }
486
487 index = start;
488 for ( ; ; ) {
489 cond_resched();
490 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
491 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
492 pvec.pages, indices);
493 if (!pvec.nr) {
494 if (index == start)
495 break;
496 index = start;
497 continue;
498 }
499 if (index == start && indices[0] > end) {
500 shmem_pagevec_release(&pvec);
501 break;
502 }
503 mem_cgroup_uncharge_start();
504 for (i = 0; i < pagevec_count(&pvec); i++) {
505 struct page *page = pvec.pages[i];
506
507 index = indices[i];
508 if (index > end)
509 break;
510
511 if (radix_tree_exceptional_entry(page)) {
512 nr_swaps_freed += !shmem_free_swap(mapping,
513 index, page);
514 continue;
515 }
516
517 lock_page(page);
518 if (page->mapping == mapping) {
519 VM_BUG_ON(PageWriteback(page));
520 truncate_inode_page(mapping, page);
521 }
522 unlock_page(page);
523 }
524 shmem_pagevec_release(&pvec);
525 mem_cgroup_uncharge_end();
526 index++;
527 }
528
529 spin_lock(&info->lock);
530 info->swapped -= nr_swaps_freed;
531 shmem_recalc_inode(inode);
532 spin_unlock(&info->lock);
533
534 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
535 }
536 EXPORT_SYMBOL_GPL(shmem_truncate_range);
537
538 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
539 {
540 struct inode *inode = dentry->d_inode;
541 int error;
542
543 error = inode_change_ok(inode, attr);
544 if (error)
545 return error;
546
547 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
548 loff_t oldsize = inode->i_size;
549 loff_t newsize = attr->ia_size;
550
551 if (newsize != oldsize) {
552 i_size_write(inode, newsize);
553 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
554 }
555 if (newsize < oldsize) {
556 loff_t holebegin = round_up(newsize, PAGE_SIZE);
557 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
558 shmem_truncate_range(inode, newsize, (loff_t)-1);
559 /* unmap again to remove racily COWed private pages */
560 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
561 }
562 }
563
564 setattr_copy(inode, attr);
565 #ifdef CONFIG_TMPFS_POSIX_ACL
566 if (attr->ia_valid & ATTR_MODE)
567 error = generic_acl_chmod(inode);
568 #endif
569 return error;
570 }
571
572 static void shmem_evict_inode(struct inode *inode)
573 {
574 struct shmem_inode_info *info = SHMEM_I(inode);
575 struct shmem_xattr *xattr, *nxattr;
576
577 if (inode->i_mapping->a_ops == &shmem_aops) {
578 shmem_unacct_size(info->flags, inode->i_size);
579 inode->i_size = 0;
580 shmem_truncate_range(inode, 0, (loff_t)-1);
581 if (!list_empty(&info->swaplist)) {
582 mutex_lock(&shmem_swaplist_mutex);
583 list_del_init(&info->swaplist);
584 mutex_unlock(&shmem_swaplist_mutex);
585 }
586 }
587
588 list_for_each_entry_safe(xattr, nxattr, &info->xattr_list, list) {
589 kfree(xattr->name);
590 kfree(xattr);
591 }
592 BUG_ON(inode->i_blocks);
593 shmem_free_inode(inode->i_sb);
594 end_writeback(inode);
595 }
596
597 /*
598 * If swap found in inode, free it and move page from swapcache to filecache.
599 */
600 static int shmem_unuse_inode(struct shmem_inode_info *info,
601 swp_entry_t swap, struct page *page)
602 {
603 struct address_space *mapping = info->vfs_inode.i_mapping;
604 void *radswap;
605 pgoff_t index;
606 int error;
607
608 radswap = swp_to_radix_entry(swap);
609 index = shmem_find_swap(mapping, radswap);
610 if (index == -1)
611 return 0;
612
613 /*
614 * Move _head_ to start search for next from here.
615 * But be careful: shmem_evict_inode checks list_empty without taking
616 * mutex, and there's an instant in list_move_tail when info->swaplist
617 * would appear empty, if it were the only one on shmem_swaplist.
618 */
619 if (shmem_swaplist.next != &info->swaplist)
620 list_move_tail(&shmem_swaplist, &info->swaplist);
621
622 /*
623 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
624 * but also to hold up shmem_evict_inode(): so inode cannot be freed
625 * beneath us (pagelock doesn't help until the page is in pagecache).
626 */
627 error = shmem_add_to_page_cache(page, mapping, index,
628 GFP_NOWAIT, radswap);
629 /* which does mem_cgroup_uncharge_cache_page on error */
630
631 if (error != -ENOMEM) {
632 /*
633 * Truncation and eviction use free_swap_and_cache(), which
634 * only does trylock page: if we raced, best clean up here.
635 */
636 delete_from_swap_cache(page);
637 set_page_dirty(page);
638 if (!error) {
639 spin_lock(&info->lock);
640 info->swapped--;
641 spin_unlock(&info->lock);
642 swap_free(swap);
643 }
644 error = 1; /* not an error, but entry was found */
645 }
646 return error;
647 }
648
649 /*
650 * Search through swapped inodes to find and replace swap by page.
651 */
652 int shmem_unuse(swp_entry_t swap, struct page *page)
653 {
654 struct list_head *this, *next;
655 struct shmem_inode_info *info;
656 int found = 0;
657 int error;
658
659 /*
660 * Charge page using GFP_KERNEL while we can wait, before taking
661 * the shmem_swaplist_mutex which might hold up shmem_writepage().
662 * Charged back to the user (not to caller) when swap account is used.
663 * shmem_add_to_page_cache() will be called with GFP_NOWAIT.
664 */
665 error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
666 if (error)
667 goto out;
668 /* No radix_tree_preload: swap entry keeps a place for page in tree */
669
670 mutex_lock(&shmem_swaplist_mutex);
671 list_for_each_safe(this, next, &shmem_swaplist) {
672 info = list_entry(this, struct shmem_inode_info, swaplist);
673 if (!info->swapped) {
674 spin_lock(&info->lock);
675 if (!info->swapped)
676 list_del_init(&info->swaplist);
677 spin_unlock(&info->lock);
678 }
679 if (info->swapped)
680 found = shmem_unuse_inode(info, swap, page);
681 cond_resched();
682 if (found)
683 break;
684 }
685 mutex_unlock(&shmem_swaplist_mutex);
686
687 if (!found)
688 mem_cgroup_uncharge_cache_page(page);
689 if (found < 0)
690 error = found;
691 out:
692 unlock_page(page);
693 page_cache_release(page);
694 return error;
695 }
696
697 /*
698 * Move the page from the page cache to the swap cache.
699 */
700 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
701 {
702 struct shmem_inode_info *info;
703 swp_entry_t swap, oswap;
704 struct address_space *mapping;
705 pgoff_t index;
706 struct inode *inode;
707
708 BUG_ON(!PageLocked(page));
709 mapping = page->mapping;
710 index = page->index;
711 inode = mapping->host;
712 info = SHMEM_I(inode);
713 if (info->flags & VM_LOCKED)
714 goto redirty;
715 if (!total_swap_pages)
716 goto redirty;
717
718 /*
719 * shmem_backing_dev_info's capabilities prevent regular writeback or
720 * sync from ever calling shmem_writepage; but a stacking filesystem
721 * might use ->writepage of its underlying filesystem, in which case
722 * tmpfs should write out to swap only in response to memory pressure,
723 * and not for the writeback threads or sync.
724 */
725 if (!wbc->for_reclaim) {
726 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
727 goto redirty;
728 }
729
730 /*
731 * Disable even the toy swapping implementation, while we convert
732 * functions one by one to having swap entries in the radix tree.
733 */
734 if (index < ULONG_MAX)
735 goto redirty;
736
737 swap = get_swap_page();
738 if (!swap.val)
739 goto redirty;
740
741 /*
742 * Add inode to shmem_unuse()'s list of swapped-out inodes,
743 * if it's not already there. Do it now because we cannot take
744 * mutex while holding spinlock, and must do so before the page
745 * is moved to swap cache, when its pagelock no longer protects
746 * the inode from eviction. But don't unlock the mutex until
747 * we've taken the spinlock, because shmem_unuse_inode() will
748 * prune a !swapped inode from the swaplist under both locks.
749 */
750 mutex_lock(&shmem_swaplist_mutex);
751 if (list_empty(&info->swaplist))
752 list_add_tail(&info->swaplist, &shmem_swaplist);
753
754 spin_lock(&info->lock);
755 mutex_unlock(&shmem_swaplist_mutex);
756
757 oswap = shmem_get_swap(info, index);
758 if (oswap.val) {
759 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
760 free_swap_and_cache(oswap);
761 shmem_put_swap(info, index, (swp_entry_t){0});
762 info->swapped--;
763 }
764 shmem_recalc_inode(inode);
765
766 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
767 delete_from_page_cache(page);
768 shmem_put_swap(info, index, swap);
769 info->swapped++;
770 swap_shmem_alloc(swap);
771 spin_unlock(&info->lock);
772 BUG_ON(page_mapped(page));
773 swap_writepage(page, wbc);
774 return 0;
775 }
776
777 spin_unlock(&info->lock);
778 swapcache_free(swap, NULL);
779 redirty:
780 set_page_dirty(page);
781 if (wbc->for_reclaim)
782 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
783 unlock_page(page);
784 return 0;
785 }
786
787 #ifdef CONFIG_NUMA
788 #ifdef CONFIG_TMPFS
789 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
790 {
791 char buffer[64];
792
793 if (!mpol || mpol->mode == MPOL_DEFAULT)
794 return; /* show nothing */
795
796 mpol_to_str(buffer, sizeof(buffer), mpol, 1);
797
798 seq_printf(seq, ",mpol=%s", buffer);
799 }
800
801 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
802 {
803 struct mempolicy *mpol = NULL;
804 if (sbinfo->mpol) {
805 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
806 mpol = sbinfo->mpol;
807 mpol_get(mpol);
808 spin_unlock(&sbinfo->stat_lock);
809 }
810 return mpol;
811 }
812 #endif /* CONFIG_TMPFS */
813
814 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
815 struct shmem_inode_info *info, pgoff_t index)
816 {
817 struct mempolicy mpol, *spol;
818 struct vm_area_struct pvma;
819
820 spol = mpol_cond_copy(&mpol,
821 mpol_shared_policy_lookup(&info->policy, index));
822
823 /* Create a pseudo vma that just contains the policy */
824 pvma.vm_start = 0;
825 pvma.vm_pgoff = index;
826 pvma.vm_ops = NULL;
827 pvma.vm_policy = spol;
828 return swapin_readahead(swap, gfp, &pvma, 0);
829 }
830
831 static struct page *shmem_alloc_page(gfp_t gfp,
832 struct shmem_inode_info *info, pgoff_t index)
833 {
834 struct vm_area_struct pvma;
835
836 /* Create a pseudo vma that just contains the policy */
837 pvma.vm_start = 0;
838 pvma.vm_pgoff = index;
839 pvma.vm_ops = NULL;
840 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
841
842 /*
843 * alloc_page_vma() will drop the shared policy reference
844 */
845 return alloc_page_vma(gfp, &pvma, 0);
846 }
847 #else /* !CONFIG_NUMA */
848 #ifdef CONFIG_TMPFS
849 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
850 {
851 }
852 #endif /* CONFIG_TMPFS */
853
854 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
855 struct shmem_inode_info *info, pgoff_t index)
856 {
857 return swapin_readahead(swap, gfp, NULL, 0);
858 }
859
860 static inline struct page *shmem_alloc_page(gfp_t gfp,
861 struct shmem_inode_info *info, pgoff_t index)
862 {
863 return alloc_page(gfp);
864 }
865 #endif /* CONFIG_NUMA */
866
867 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
868 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
869 {
870 return NULL;
871 }
872 #endif
873
874 /*
875 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
876 *
877 * If we allocate a new one we do not mark it dirty. That's up to the
878 * vm. If we swap it in we mark it dirty since we also free the swap
879 * entry since a page cannot live in both the swap and page cache
880 */
881 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
882 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
883 {
884 struct address_space *mapping = inode->i_mapping;
885 struct shmem_inode_info *info;
886 struct shmem_sb_info *sbinfo;
887 struct page *page;
888 swp_entry_t swap;
889 int error;
890 int once = 0;
891
892 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
893 return -EFBIG;
894 repeat:
895 swap.val = 0;
896 page = find_lock_page(mapping, index);
897 if (radix_tree_exceptional_entry(page)) {
898 swap = radix_to_swp_entry(page);
899 page = NULL;
900 }
901
902 if (sgp != SGP_WRITE &&
903 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
904 error = -EINVAL;
905 goto failed;
906 }
907
908 if (page || (sgp == SGP_READ && !swap.val)) {
909 /*
910 * Once we can get the page lock, it must be uptodate:
911 * if there were an error in reading back from swap,
912 * the page would not be inserted into the filecache.
913 */
914 BUG_ON(page && !PageUptodate(page));
915 *pagep = page;
916 return 0;
917 }
918
919 /*
920 * Fast cache lookup did not find it:
921 * bring it back from swap or allocate.
922 */
923 info = SHMEM_I(inode);
924 sbinfo = SHMEM_SB(inode->i_sb);
925
926 if (swap.val) {
927 /* Look it up and read it in.. */
928 page = lookup_swap_cache(swap);
929 if (!page) {
930 /* here we actually do the io */
931 if (fault_type)
932 *fault_type |= VM_FAULT_MAJOR;
933 page = shmem_swapin(swap, gfp, info, index);
934 if (!page) {
935 error = -ENOMEM;
936 goto failed;
937 }
938 }
939
940 /* We have to do this with page locked to prevent races */
941 lock_page(page);
942 if (!PageUptodate(page)) {
943 error = -EIO;
944 goto failed;
945 }
946 wait_on_page_writeback(page);
947
948 /* Someone may have already done it for us */
949 if (page->mapping) {
950 if (page->mapping == mapping &&
951 page->index == index)
952 goto done;
953 error = -EEXIST;
954 goto failed;
955 }
956
957 error = shmem_add_to_page_cache(page, mapping, index,
958 gfp, swp_to_radix_entry(swap));
959 if (error)
960 goto failed;
961
962 spin_lock(&info->lock);
963 info->swapped--;
964 shmem_recalc_inode(inode);
965 spin_unlock(&info->lock);
966
967 delete_from_swap_cache(page);
968 set_page_dirty(page);
969 swap_free(swap);
970
971 } else {
972 if (shmem_acct_block(info->flags)) {
973 error = -ENOSPC;
974 goto failed;
975 }
976 if (sbinfo->max_blocks) {
977 if (percpu_counter_compare(&sbinfo->used_blocks,
978 sbinfo->max_blocks) >= 0) {
979 error = -ENOSPC;
980 goto unacct;
981 }
982 percpu_counter_inc(&sbinfo->used_blocks);
983 }
984
985 page = shmem_alloc_page(gfp, info, index);
986 if (!page) {
987 error = -ENOMEM;
988 goto decused;
989 }
990
991 SetPageSwapBacked(page);
992 __set_page_locked(page);
993 error = shmem_add_to_page_cache(page, mapping, index,
994 gfp, NULL);
995 if (error)
996 goto decused;
997 lru_cache_add_anon(page);
998
999 spin_lock(&info->lock);
1000 info->alloced++;
1001 inode->i_blocks += BLOCKS_PER_PAGE;
1002 shmem_recalc_inode(inode);
1003 spin_unlock(&info->lock);
1004
1005 clear_highpage(page);
1006 flush_dcache_page(page);
1007 SetPageUptodate(page);
1008 if (sgp == SGP_DIRTY)
1009 set_page_dirty(page);
1010 }
1011 done:
1012 /* Perhaps the file has been truncated since we checked */
1013 if (sgp != SGP_WRITE &&
1014 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1015 error = -EINVAL;
1016 goto trunc;
1017 }
1018 *pagep = page;
1019 return 0;
1020
1021 /*
1022 * Error recovery.
1023 */
1024 trunc:
1025 ClearPageDirty(page);
1026 delete_from_page_cache(page);
1027 spin_lock(&info->lock);
1028 info->alloced--;
1029 inode->i_blocks -= BLOCKS_PER_PAGE;
1030 spin_unlock(&info->lock);
1031 decused:
1032 if (sbinfo->max_blocks)
1033 percpu_counter_add(&sbinfo->used_blocks, -1);
1034 unacct:
1035 shmem_unacct_blocks(info->flags, 1);
1036 failed:
1037 if (swap.val && error != -EINVAL) {
1038 struct page *test = find_get_page(mapping, index);
1039 if (test && !radix_tree_exceptional_entry(test))
1040 page_cache_release(test);
1041 /* Have another try if the entry has changed */
1042 if (test != swp_to_radix_entry(swap))
1043 error = -EEXIST;
1044 }
1045 if (page) {
1046 unlock_page(page);
1047 page_cache_release(page);
1048 }
1049 if (error == -ENOSPC && !once++) {
1050 info = SHMEM_I(inode);
1051 spin_lock(&info->lock);
1052 shmem_recalc_inode(inode);
1053 spin_unlock(&info->lock);
1054 goto repeat;
1055 }
1056 if (error == -EEXIST)
1057 goto repeat;
1058 return error;
1059 }
1060
1061 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1062 {
1063 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1064 int error;
1065 int ret = VM_FAULT_LOCKED;
1066
1067 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1068 if (error)
1069 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1070
1071 if (ret & VM_FAULT_MAJOR) {
1072 count_vm_event(PGMAJFAULT);
1073 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1074 }
1075 return ret;
1076 }
1077
1078 #ifdef CONFIG_NUMA
1079 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1080 {
1081 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1082 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1083 }
1084
1085 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1086 unsigned long addr)
1087 {
1088 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1089 pgoff_t index;
1090
1091 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1092 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1093 }
1094 #endif
1095
1096 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1097 {
1098 struct inode *inode = file->f_path.dentry->d_inode;
1099 struct shmem_inode_info *info = SHMEM_I(inode);
1100 int retval = -ENOMEM;
1101
1102 spin_lock(&info->lock);
1103 if (lock && !(info->flags & VM_LOCKED)) {
1104 if (!user_shm_lock(inode->i_size, user))
1105 goto out_nomem;
1106 info->flags |= VM_LOCKED;
1107 mapping_set_unevictable(file->f_mapping);
1108 }
1109 if (!lock && (info->flags & VM_LOCKED) && user) {
1110 user_shm_unlock(inode->i_size, user);
1111 info->flags &= ~VM_LOCKED;
1112 mapping_clear_unevictable(file->f_mapping);
1113 scan_mapping_unevictable_pages(file->f_mapping);
1114 }
1115 retval = 0;
1116
1117 out_nomem:
1118 spin_unlock(&info->lock);
1119 return retval;
1120 }
1121
1122 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1123 {
1124 file_accessed(file);
1125 vma->vm_ops = &shmem_vm_ops;
1126 vma->vm_flags |= VM_CAN_NONLINEAR;
1127 return 0;
1128 }
1129
1130 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1131 int mode, dev_t dev, unsigned long flags)
1132 {
1133 struct inode *inode;
1134 struct shmem_inode_info *info;
1135 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1136
1137 if (shmem_reserve_inode(sb))
1138 return NULL;
1139
1140 inode = new_inode(sb);
1141 if (inode) {
1142 inode->i_ino = get_next_ino();
1143 inode_init_owner(inode, dir, mode);
1144 inode->i_blocks = 0;
1145 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1146 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1147 inode->i_generation = get_seconds();
1148 info = SHMEM_I(inode);
1149 memset(info, 0, (char *)inode - (char *)info);
1150 spin_lock_init(&info->lock);
1151 info->flags = flags & VM_NORESERVE;
1152 INIT_LIST_HEAD(&info->swaplist);
1153 INIT_LIST_HEAD(&info->xattr_list);
1154 cache_no_acl(inode);
1155
1156 switch (mode & S_IFMT) {
1157 default:
1158 inode->i_op = &shmem_special_inode_operations;
1159 init_special_inode(inode, mode, dev);
1160 break;
1161 case S_IFREG:
1162 inode->i_mapping->a_ops = &shmem_aops;
1163 inode->i_op = &shmem_inode_operations;
1164 inode->i_fop = &shmem_file_operations;
1165 mpol_shared_policy_init(&info->policy,
1166 shmem_get_sbmpol(sbinfo));
1167 break;
1168 case S_IFDIR:
1169 inc_nlink(inode);
1170 /* Some things misbehave if size == 0 on a directory */
1171 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1172 inode->i_op = &shmem_dir_inode_operations;
1173 inode->i_fop = &simple_dir_operations;
1174 break;
1175 case S_IFLNK:
1176 /*
1177 * Must not load anything in the rbtree,
1178 * mpol_free_shared_policy will not be called.
1179 */
1180 mpol_shared_policy_init(&info->policy, NULL);
1181 break;
1182 }
1183 } else
1184 shmem_free_inode(sb);
1185 return inode;
1186 }
1187
1188 #ifdef CONFIG_TMPFS
1189 static const struct inode_operations shmem_symlink_inode_operations;
1190 static const struct inode_operations shmem_symlink_inline_operations;
1191
1192 static int
1193 shmem_write_begin(struct file *file, struct address_space *mapping,
1194 loff_t pos, unsigned len, unsigned flags,
1195 struct page **pagep, void **fsdata)
1196 {
1197 struct inode *inode = mapping->host;
1198 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1199 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1200 }
1201
1202 static int
1203 shmem_write_end(struct file *file, struct address_space *mapping,
1204 loff_t pos, unsigned len, unsigned copied,
1205 struct page *page, void *fsdata)
1206 {
1207 struct inode *inode = mapping->host;
1208
1209 if (pos + copied > inode->i_size)
1210 i_size_write(inode, pos + copied);
1211
1212 set_page_dirty(page);
1213 unlock_page(page);
1214 page_cache_release(page);
1215
1216 return copied;
1217 }
1218
1219 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1220 {
1221 struct inode *inode = filp->f_path.dentry->d_inode;
1222 struct address_space *mapping = inode->i_mapping;
1223 pgoff_t index;
1224 unsigned long offset;
1225 enum sgp_type sgp = SGP_READ;
1226
1227 /*
1228 * Might this read be for a stacking filesystem? Then when reading
1229 * holes of a sparse file, we actually need to allocate those pages,
1230 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1231 */
1232 if (segment_eq(get_fs(), KERNEL_DS))
1233 sgp = SGP_DIRTY;
1234
1235 index = *ppos >> PAGE_CACHE_SHIFT;
1236 offset = *ppos & ~PAGE_CACHE_MASK;
1237
1238 for (;;) {
1239 struct page *page = NULL;
1240 pgoff_t end_index;
1241 unsigned long nr, ret;
1242 loff_t i_size = i_size_read(inode);
1243
1244 end_index = i_size >> PAGE_CACHE_SHIFT;
1245 if (index > end_index)
1246 break;
1247 if (index == end_index) {
1248 nr = i_size & ~PAGE_CACHE_MASK;
1249 if (nr <= offset)
1250 break;
1251 }
1252
1253 desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1254 if (desc->error) {
1255 if (desc->error == -EINVAL)
1256 desc->error = 0;
1257 break;
1258 }
1259 if (page)
1260 unlock_page(page);
1261
1262 /*
1263 * We must evaluate after, since reads (unlike writes)
1264 * are called without i_mutex protection against truncate
1265 */
1266 nr = PAGE_CACHE_SIZE;
1267 i_size = i_size_read(inode);
1268 end_index = i_size >> PAGE_CACHE_SHIFT;
1269 if (index == end_index) {
1270 nr = i_size & ~PAGE_CACHE_MASK;
1271 if (nr <= offset) {
1272 if (page)
1273 page_cache_release(page);
1274 break;
1275 }
1276 }
1277 nr -= offset;
1278
1279 if (page) {
1280 /*
1281 * If users can be writing to this page using arbitrary
1282 * virtual addresses, take care about potential aliasing
1283 * before reading the page on the kernel side.
1284 */
1285 if (mapping_writably_mapped(mapping))
1286 flush_dcache_page(page);
1287 /*
1288 * Mark the page accessed if we read the beginning.
1289 */
1290 if (!offset)
1291 mark_page_accessed(page);
1292 } else {
1293 page = ZERO_PAGE(0);
1294 page_cache_get(page);
1295 }
1296
1297 /*
1298 * Ok, we have the page, and it's up-to-date, so
1299 * now we can copy it to user space...
1300 *
1301 * The actor routine returns how many bytes were actually used..
1302 * NOTE! This may not be the same as how much of a user buffer
1303 * we filled up (we may be padding etc), so we can only update
1304 * "pos" here (the actor routine has to update the user buffer
1305 * pointers and the remaining count).
1306 */
1307 ret = actor(desc, page, offset, nr);
1308 offset += ret;
1309 index += offset >> PAGE_CACHE_SHIFT;
1310 offset &= ~PAGE_CACHE_MASK;
1311
1312 page_cache_release(page);
1313 if (ret != nr || !desc->count)
1314 break;
1315
1316 cond_resched();
1317 }
1318
1319 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1320 file_accessed(filp);
1321 }
1322
1323 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1324 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1325 {
1326 struct file *filp = iocb->ki_filp;
1327 ssize_t retval;
1328 unsigned long seg;
1329 size_t count;
1330 loff_t *ppos = &iocb->ki_pos;
1331
1332 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1333 if (retval)
1334 return retval;
1335
1336 for (seg = 0; seg < nr_segs; seg++) {
1337 read_descriptor_t desc;
1338
1339 desc.written = 0;
1340 desc.arg.buf = iov[seg].iov_base;
1341 desc.count = iov[seg].iov_len;
1342 if (desc.count == 0)
1343 continue;
1344 desc.error = 0;
1345 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1346 retval += desc.written;
1347 if (desc.error) {
1348 retval = retval ?: desc.error;
1349 break;
1350 }
1351 if (desc.count > 0)
1352 break;
1353 }
1354 return retval;
1355 }
1356
1357 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1358 struct pipe_inode_info *pipe, size_t len,
1359 unsigned int flags)
1360 {
1361 struct address_space *mapping = in->f_mapping;
1362 struct inode *inode = mapping->host;
1363 unsigned int loff, nr_pages, req_pages;
1364 struct page *pages[PIPE_DEF_BUFFERS];
1365 struct partial_page partial[PIPE_DEF_BUFFERS];
1366 struct page *page;
1367 pgoff_t index, end_index;
1368 loff_t isize, left;
1369 int error, page_nr;
1370 struct splice_pipe_desc spd = {
1371 .pages = pages,
1372 .partial = partial,
1373 .flags = flags,
1374 .ops = &page_cache_pipe_buf_ops,
1375 .spd_release = spd_release_page,
1376 };
1377
1378 isize = i_size_read(inode);
1379 if (unlikely(*ppos >= isize))
1380 return 0;
1381
1382 left = isize - *ppos;
1383 if (unlikely(left < len))
1384 len = left;
1385
1386 if (splice_grow_spd(pipe, &spd))
1387 return -ENOMEM;
1388
1389 index = *ppos >> PAGE_CACHE_SHIFT;
1390 loff = *ppos & ~PAGE_CACHE_MASK;
1391 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1392 nr_pages = min(req_pages, pipe->buffers);
1393
1394 spd.nr_pages = find_get_pages_contig(mapping, index,
1395 nr_pages, spd.pages);
1396 index += spd.nr_pages;
1397 error = 0;
1398
1399 while (spd.nr_pages < nr_pages) {
1400 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1401 if (error)
1402 break;
1403 unlock_page(page);
1404 spd.pages[spd.nr_pages++] = page;
1405 index++;
1406 }
1407
1408 index = *ppos >> PAGE_CACHE_SHIFT;
1409 nr_pages = spd.nr_pages;
1410 spd.nr_pages = 0;
1411
1412 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1413 unsigned int this_len;
1414
1415 if (!len)
1416 break;
1417
1418 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1419 page = spd.pages[page_nr];
1420
1421 if (!PageUptodate(page) || page->mapping != mapping) {
1422 error = shmem_getpage(inode, index, &page,
1423 SGP_CACHE, NULL);
1424 if (error)
1425 break;
1426 unlock_page(page);
1427 page_cache_release(spd.pages[page_nr]);
1428 spd.pages[page_nr] = page;
1429 }
1430
1431 isize = i_size_read(inode);
1432 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1433 if (unlikely(!isize || index > end_index))
1434 break;
1435
1436 if (end_index == index) {
1437 unsigned int plen;
1438
1439 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1440 if (plen <= loff)
1441 break;
1442
1443 this_len = min(this_len, plen - loff);
1444 len = this_len;
1445 }
1446
1447 spd.partial[page_nr].offset = loff;
1448 spd.partial[page_nr].len = this_len;
1449 len -= this_len;
1450 loff = 0;
1451 spd.nr_pages++;
1452 index++;
1453 }
1454
1455 while (page_nr < nr_pages)
1456 page_cache_release(spd.pages[page_nr++]);
1457
1458 if (spd.nr_pages)
1459 error = splice_to_pipe(pipe, &spd);
1460
1461 splice_shrink_spd(pipe, &spd);
1462
1463 if (error > 0) {
1464 *ppos += error;
1465 file_accessed(in);
1466 }
1467 return error;
1468 }
1469
1470 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1471 {
1472 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1473
1474 buf->f_type = TMPFS_MAGIC;
1475 buf->f_bsize = PAGE_CACHE_SIZE;
1476 buf->f_namelen = NAME_MAX;
1477 if (sbinfo->max_blocks) {
1478 buf->f_blocks = sbinfo->max_blocks;
1479 buf->f_bavail =
1480 buf->f_bfree = sbinfo->max_blocks -
1481 percpu_counter_sum(&sbinfo->used_blocks);
1482 }
1483 if (sbinfo->max_inodes) {
1484 buf->f_files = sbinfo->max_inodes;
1485 buf->f_ffree = sbinfo->free_inodes;
1486 }
1487 /* else leave those fields 0 like simple_statfs */
1488 return 0;
1489 }
1490
1491 /*
1492 * File creation. Allocate an inode, and we're done..
1493 */
1494 static int
1495 shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1496 {
1497 struct inode *inode;
1498 int error = -ENOSPC;
1499
1500 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1501 if (inode) {
1502 error = security_inode_init_security(inode, dir,
1503 &dentry->d_name, NULL,
1504 NULL, NULL);
1505 if (error) {
1506 if (error != -EOPNOTSUPP) {
1507 iput(inode);
1508 return error;
1509 }
1510 }
1511 #ifdef CONFIG_TMPFS_POSIX_ACL
1512 error = generic_acl_init(inode, dir);
1513 if (error) {
1514 iput(inode);
1515 return error;
1516 }
1517 #else
1518 error = 0;
1519 #endif
1520 dir->i_size += BOGO_DIRENT_SIZE;
1521 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1522 d_instantiate(dentry, inode);
1523 dget(dentry); /* Extra count - pin the dentry in core */
1524 }
1525 return error;
1526 }
1527
1528 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1529 {
1530 int error;
1531
1532 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1533 return error;
1534 inc_nlink(dir);
1535 return 0;
1536 }
1537
1538 static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1539 struct nameidata *nd)
1540 {
1541 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1542 }
1543
1544 /*
1545 * Link a file..
1546 */
1547 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1548 {
1549 struct inode *inode = old_dentry->d_inode;
1550 int ret;
1551
1552 /*
1553 * No ordinary (disk based) filesystem counts links as inodes;
1554 * but each new link needs a new dentry, pinning lowmem, and
1555 * tmpfs dentries cannot be pruned until they are unlinked.
1556 */
1557 ret = shmem_reserve_inode(inode->i_sb);
1558 if (ret)
1559 goto out;
1560
1561 dir->i_size += BOGO_DIRENT_SIZE;
1562 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1563 inc_nlink(inode);
1564 ihold(inode); /* New dentry reference */
1565 dget(dentry); /* Extra pinning count for the created dentry */
1566 d_instantiate(dentry, inode);
1567 out:
1568 return ret;
1569 }
1570
1571 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1572 {
1573 struct inode *inode = dentry->d_inode;
1574
1575 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1576 shmem_free_inode(inode->i_sb);
1577
1578 dir->i_size -= BOGO_DIRENT_SIZE;
1579 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1580 drop_nlink(inode);
1581 dput(dentry); /* Undo the count from "create" - this does all the work */
1582 return 0;
1583 }
1584
1585 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1586 {
1587 if (!simple_empty(dentry))
1588 return -ENOTEMPTY;
1589
1590 drop_nlink(dentry->d_inode);
1591 drop_nlink(dir);
1592 return shmem_unlink(dir, dentry);
1593 }
1594
1595 /*
1596 * The VFS layer already does all the dentry stuff for rename,
1597 * we just have to decrement the usage count for the target if
1598 * it exists so that the VFS layer correctly free's it when it
1599 * gets overwritten.
1600 */
1601 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1602 {
1603 struct inode *inode = old_dentry->d_inode;
1604 int they_are_dirs = S_ISDIR(inode->i_mode);
1605
1606 if (!simple_empty(new_dentry))
1607 return -ENOTEMPTY;
1608
1609 if (new_dentry->d_inode) {
1610 (void) shmem_unlink(new_dir, new_dentry);
1611 if (they_are_dirs)
1612 drop_nlink(old_dir);
1613 } else if (they_are_dirs) {
1614 drop_nlink(old_dir);
1615 inc_nlink(new_dir);
1616 }
1617
1618 old_dir->i_size -= BOGO_DIRENT_SIZE;
1619 new_dir->i_size += BOGO_DIRENT_SIZE;
1620 old_dir->i_ctime = old_dir->i_mtime =
1621 new_dir->i_ctime = new_dir->i_mtime =
1622 inode->i_ctime = CURRENT_TIME;
1623 return 0;
1624 }
1625
1626 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1627 {
1628 int error;
1629 int len;
1630 struct inode *inode;
1631 struct page *page;
1632 char *kaddr;
1633 struct shmem_inode_info *info;
1634
1635 len = strlen(symname) + 1;
1636 if (len > PAGE_CACHE_SIZE)
1637 return -ENAMETOOLONG;
1638
1639 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1640 if (!inode)
1641 return -ENOSPC;
1642
1643 error = security_inode_init_security(inode, dir, &dentry->d_name, NULL,
1644 NULL, NULL);
1645 if (error) {
1646 if (error != -EOPNOTSUPP) {
1647 iput(inode);
1648 return error;
1649 }
1650 error = 0;
1651 }
1652
1653 info = SHMEM_I(inode);
1654 inode->i_size = len-1;
1655 if (len <= SHMEM_SYMLINK_INLINE_LEN) {
1656 /* do it inline */
1657 memcpy(info->inline_symlink, symname, len);
1658 inode->i_op = &shmem_symlink_inline_operations;
1659 } else {
1660 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1661 if (error) {
1662 iput(inode);
1663 return error;
1664 }
1665 inode->i_mapping->a_ops = &shmem_aops;
1666 inode->i_op = &shmem_symlink_inode_operations;
1667 kaddr = kmap_atomic(page, KM_USER0);
1668 memcpy(kaddr, symname, len);
1669 kunmap_atomic(kaddr, KM_USER0);
1670 set_page_dirty(page);
1671 unlock_page(page);
1672 page_cache_release(page);
1673 }
1674 dir->i_size += BOGO_DIRENT_SIZE;
1675 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1676 d_instantiate(dentry, inode);
1677 dget(dentry);
1678 return 0;
1679 }
1680
1681 static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1682 {
1683 nd_set_link(nd, SHMEM_I(dentry->d_inode)->inline_symlink);
1684 return NULL;
1685 }
1686
1687 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1688 {
1689 struct page *page = NULL;
1690 int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1691 nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
1692 if (page)
1693 unlock_page(page);
1694 return page;
1695 }
1696
1697 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1698 {
1699 if (!IS_ERR(nd_get_link(nd))) {
1700 struct page *page = cookie;
1701 kunmap(page);
1702 mark_page_accessed(page);
1703 page_cache_release(page);
1704 }
1705 }
1706
1707 #ifdef CONFIG_TMPFS_XATTR
1708 /*
1709 * Superblocks without xattr inode operations may get some security.* xattr
1710 * support from the LSM "for free". As soon as we have any other xattrs
1711 * like ACLs, we also need to implement the security.* handlers at
1712 * filesystem level, though.
1713 */
1714
1715 static int shmem_xattr_get(struct dentry *dentry, const char *name,
1716 void *buffer, size_t size)
1717 {
1718 struct shmem_inode_info *info;
1719 struct shmem_xattr *xattr;
1720 int ret = -ENODATA;
1721
1722 info = SHMEM_I(dentry->d_inode);
1723
1724 spin_lock(&info->lock);
1725 list_for_each_entry(xattr, &info->xattr_list, list) {
1726 if (strcmp(name, xattr->name))
1727 continue;
1728
1729 ret = xattr->size;
1730 if (buffer) {
1731 if (size < xattr->size)
1732 ret = -ERANGE;
1733 else
1734 memcpy(buffer, xattr->value, xattr->size);
1735 }
1736 break;
1737 }
1738 spin_unlock(&info->lock);
1739 return ret;
1740 }
1741
1742 static int shmem_xattr_set(struct dentry *dentry, const char *name,
1743 const void *value, size_t size, int flags)
1744 {
1745 struct inode *inode = dentry->d_inode;
1746 struct shmem_inode_info *info = SHMEM_I(inode);
1747 struct shmem_xattr *xattr;
1748 struct shmem_xattr *new_xattr = NULL;
1749 size_t len;
1750 int err = 0;
1751
1752 /* value == NULL means remove */
1753 if (value) {
1754 /* wrap around? */
1755 len = sizeof(*new_xattr) + size;
1756 if (len <= sizeof(*new_xattr))
1757 return -ENOMEM;
1758
1759 new_xattr = kmalloc(len, GFP_KERNEL);
1760 if (!new_xattr)
1761 return -ENOMEM;
1762
1763 new_xattr->name = kstrdup(name, GFP_KERNEL);
1764 if (!new_xattr->name) {
1765 kfree(new_xattr);
1766 return -ENOMEM;
1767 }
1768
1769 new_xattr->size = size;
1770 memcpy(new_xattr->value, value, size);
1771 }
1772
1773 spin_lock(&info->lock);
1774 list_for_each_entry(xattr, &info->xattr_list, list) {
1775 if (!strcmp(name, xattr->name)) {
1776 if (flags & XATTR_CREATE) {
1777 xattr = new_xattr;
1778 err = -EEXIST;
1779 } else if (new_xattr) {
1780 list_replace(&xattr->list, &new_xattr->list);
1781 } else {
1782 list_del(&xattr->list);
1783 }
1784 goto out;
1785 }
1786 }
1787 if (flags & XATTR_REPLACE) {
1788 xattr = new_xattr;
1789 err = -ENODATA;
1790 } else {
1791 list_add(&new_xattr->list, &info->xattr_list);
1792 xattr = NULL;
1793 }
1794 out:
1795 spin_unlock(&info->lock);
1796 if (xattr)
1797 kfree(xattr->name);
1798 kfree(xattr);
1799 return err;
1800 }
1801
1802 static const struct xattr_handler *shmem_xattr_handlers[] = {
1803 #ifdef CONFIG_TMPFS_POSIX_ACL
1804 &generic_acl_access_handler,
1805 &generic_acl_default_handler,
1806 #endif
1807 NULL
1808 };
1809
1810 static int shmem_xattr_validate(const char *name)
1811 {
1812 struct { const char *prefix; size_t len; } arr[] = {
1813 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
1814 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
1815 };
1816 int i;
1817
1818 for (i = 0; i < ARRAY_SIZE(arr); i++) {
1819 size_t preflen = arr[i].len;
1820 if (strncmp(name, arr[i].prefix, preflen) == 0) {
1821 if (!name[preflen])
1822 return -EINVAL;
1823 return 0;
1824 }
1825 }
1826 return -EOPNOTSUPP;
1827 }
1828
1829 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
1830 void *buffer, size_t size)
1831 {
1832 int err;
1833
1834 /*
1835 * If this is a request for a synthetic attribute in the system.*
1836 * namespace use the generic infrastructure to resolve a handler
1837 * for it via sb->s_xattr.
1838 */
1839 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
1840 return generic_getxattr(dentry, name, buffer, size);
1841
1842 err = shmem_xattr_validate(name);
1843 if (err)
1844 return err;
1845
1846 return shmem_xattr_get(dentry, name, buffer, size);
1847 }
1848
1849 static int shmem_setxattr(struct dentry *dentry, const char *name,
1850 const void *value, size_t size, int flags)
1851 {
1852 int err;
1853
1854 /*
1855 * If this is a request for a synthetic attribute in the system.*
1856 * namespace use the generic infrastructure to resolve a handler
1857 * for it via sb->s_xattr.
1858 */
1859 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
1860 return generic_setxattr(dentry, name, value, size, flags);
1861
1862 err = shmem_xattr_validate(name);
1863 if (err)
1864 return err;
1865
1866 if (size == 0)
1867 value = ""; /* empty EA, do not remove */
1868
1869 return shmem_xattr_set(dentry, name, value, size, flags);
1870
1871 }
1872
1873 static int shmem_removexattr(struct dentry *dentry, const char *name)
1874 {
1875 int err;
1876
1877 /*
1878 * If this is a request for a synthetic attribute in the system.*
1879 * namespace use the generic infrastructure to resolve a handler
1880 * for it via sb->s_xattr.
1881 */
1882 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
1883 return generic_removexattr(dentry, name);
1884
1885 err = shmem_xattr_validate(name);
1886 if (err)
1887 return err;
1888
1889 return shmem_xattr_set(dentry, name, NULL, 0, XATTR_REPLACE);
1890 }
1891
1892 static bool xattr_is_trusted(const char *name)
1893 {
1894 return !strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN);
1895 }
1896
1897 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
1898 {
1899 bool trusted = capable(CAP_SYS_ADMIN);
1900 struct shmem_xattr *xattr;
1901 struct shmem_inode_info *info;
1902 size_t used = 0;
1903
1904 info = SHMEM_I(dentry->d_inode);
1905
1906 spin_lock(&info->lock);
1907 list_for_each_entry(xattr, &info->xattr_list, list) {
1908 size_t len;
1909
1910 /* skip "trusted." attributes for unprivileged callers */
1911 if (!trusted && xattr_is_trusted(xattr->name))
1912 continue;
1913
1914 len = strlen(xattr->name) + 1;
1915 used += len;
1916 if (buffer) {
1917 if (size < used) {
1918 used = -ERANGE;
1919 break;
1920 }
1921 memcpy(buffer, xattr->name, len);
1922 buffer += len;
1923 }
1924 }
1925 spin_unlock(&info->lock);
1926
1927 return used;
1928 }
1929 #endif /* CONFIG_TMPFS_XATTR */
1930
1931 static const struct inode_operations shmem_symlink_inline_operations = {
1932 .readlink = generic_readlink,
1933 .follow_link = shmem_follow_link_inline,
1934 #ifdef CONFIG_TMPFS_XATTR
1935 .setxattr = shmem_setxattr,
1936 .getxattr = shmem_getxattr,
1937 .listxattr = shmem_listxattr,
1938 .removexattr = shmem_removexattr,
1939 #endif
1940 };
1941
1942 static const struct inode_operations shmem_symlink_inode_operations = {
1943 .readlink = generic_readlink,
1944 .follow_link = shmem_follow_link,
1945 .put_link = shmem_put_link,
1946 #ifdef CONFIG_TMPFS_XATTR
1947 .setxattr = shmem_setxattr,
1948 .getxattr = shmem_getxattr,
1949 .listxattr = shmem_listxattr,
1950 .removexattr = shmem_removexattr,
1951 #endif
1952 };
1953
1954 static struct dentry *shmem_get_parent(struct dentry *child)
1955 {
1956 return ERR_PTR(-ESTALE);
1957 }
1958
1959 static int shmem_match(struct inode *ino, void *vfh)
1960 {
1961 __u32 *fh = vfh;
1962 __u64 inum = fh[2];
1963 inum = (inum << 32) | fh[1];
1964 return ino->i_ino == inum && fh[0] == ino->i_generation;
1965 }
1966
1967 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
1968 struct fid *fid, int fh_len, int fh_type)
1969 {
1970 struct inode *inode;
1971 struct dentry *dentry = NULL;
1972 u64 inum = fid->raw[2];
1973 inum = (inum << 32) | fid->raw[1];
1974
1975 if (fh_len < 3)
1976 return NULL;
1977
1978 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
1979 shmem_match, fid->raw);
1980 if (inode) {
1981 dentry = d_find_alias(inode);
1982 iput(inode);
1983 }
1984
1985 return dentry;
1986 }
1987
1988 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
1989 int connectable)
1990 {
1991 struct inode *inode = dentry->d_inode;
1992
1993 if (*len < 3) {
1994 *len = 3;
1995 return 255;
1996 }
1997
1998 if (inode_unhashed(inode)) {
1999 /* Unfortunately insert_inode_hash is not idempotent,
2000 * so as we hash inodes here rather than at creation
2001 * time, we need a lock to ensure we only try
2002 * to do it once
2003 */
2004 static DEFINE_SPINLOCK(lock);
2005 spin_lock(&lock);
2006 if (inode_unhashed(inode))
2007 __insert_inode_hash(inode,
2008 inode->i_ino + inode->i_generation);
2009 spin_unlock(&lock);
2010 }
2011
2012 fh[0] = inode->i_generation;
2013 fh[1] = inode->i_ino;
2014 fh[2] = ((__u64)inode->i_ino) >> 32;
2015
2016 *len = 3;
2017 return 1;
2018 }
2019
2020 static const struct export_operations shmem_export_ops = {
2021 .get_parent = shmem_get_parent,
2022 .encode_fh = shmem_encode_fh,
2023 .fh_to_dentry = shmem_fh_to_dentry,
2024 };
2025
2026 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2027 bool remount)
2028 {
2029 char *this_char, *value, *rest;
2030
2031 while (options != NULL) {
2032 this_char = options;
2033 for (;;) {
2034 /*
2035 * NUL-terminate this option: unfortunately,
2036 * mount options form a comma-separated list,
2037 * but mpol's nodelist may also contain commas.
2038 */
2039 options = strchr(options, ',');
2040 if (options == NULL)
2041 break;
2042 options++;
2043 if (!isdigit(*options)) {
2044 options[-1] = '\0';
2045 break;
2046 }
2047 }
2048 if (!*this_char)
2049 continue;
2050 if ((value = strchr(this_char,'=')) != NULL) {
2051 *value++ = 0;
2052 } else {
2053 printk(KERN_ERR
2054 "tmpfs: No value for mount option '%s'\n",
2055 this_char);
2056 return 1;
2057 }
2058
2059 if (!strcmp(this_char,"size")) {
2060 unsigned long long size;
2061 size = memparse(value,&rest);
2062 if (*rest == '%') {
2063 size <<= PAGE_SHIFT;
2064 size *= totalram_pages;
2065 do_div(size, 100);
2066 rest++;
2067 }
2068 if (*rest)
2069 goto bad_val;
2070 sbinfo->max_blocks =
2071 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2072 } else if (!strcmp(this_char,"nr_blocks")) {
2073 sbinfo->max_blocks = memparse(value, &rest);
2074 if (*rest)
2075 goto bad_val;
2076 } else if (!strcmp(this_char,"nr_inodes")) {
2077 sbinfo->max_inodes = memparse(value, &rest);
2078 if (*rest)
2079 goto bad_val;
2080 } else if (!strcmp(this_char,"mode")) {
2081 if (remount)
2082 continue;
2083 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2084 if (*rest)
2085 goto bad_val;
2086 } else if (!strcmp(this_char,"uid")) {
2087 if (remount)
2088 continue;
2089 sbinfo->uid = simple_strtoul(value, &rest, 0);
2090 if (*rest)
2091 goto bad_val;
2092 } else if (!strcmp(this_char,"gid")) {
2093 if (remount)
2094 continue;
2095 sbinfo->gid = simple_strtoul(value, &rest, 0);
2096 if (*rest)
2097 goto bad_val;
2098 } else if (!strcmp(this_char,"mpol")) {
2099 if (mpol_parse_str(value, &sbinfo->mpol, 1))
2100 goto bad_val;
2101 } else {
2102 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2103 this_char);
2104 return 1;
2105 }
2106 }
2107 return 0;
2108
2109 bad_val:
2110 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2111 value, this_char);
2112 return 1;
2113
2114 }
2115
2116 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2117 {
2118 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2119 struct shmem_sb_info config = *sbinfo;
2120 unsigned long inodes;
2121 int error = -EINVAL;
2122
2123 if (shmem_parse_options(data, &config, true))
2124 return error;
2125
2126 spin_lock(&sbinfo->stat_lock);
2127 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2128 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2129 goto out;
2130 if (config.max_inodes < inodes)
2131 goto out;
2132 /*
2133 * Those tests disallow limited->unlimited while any are in use;
2134 * but we must separately disallow unlimited->limited, because
2135 * in that case we have no record of how much is already in use.
2136 */
2137 if (config.max_blocks && !sbinfo->max_blocks)
2138 goto out;
2139 if (config.max_inodes && !sbinfo->max_inodes)
2140 goto out;
2141
2142 error = 0;
2143 sbinfo->max_blocks = config.max_blocks;
2144 sbinfo->max_inodes = config.max_inodes;
2145 sbinfo->free_inodes = config.max_inodes - inodes;
2146
2147 mpol_put(sbinfo->mpol);
2148 sbinfo->mpol = config.mpol; /* transfers initial ref */
2149 out:
2150 spin_unlock(&sbinfo->stat_lock);
2151 return error;
2152 }
2153
2154 static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs)
2155 {
2156 struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb);
2157
2158 if (sbinfo->max_blocks != shmem_default_max_blocks())
2159 seq_printf(seq, ",size=%luk",
2160 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2161 if (sbinfo->max_inodes != shmem_default_max_inodes())
2162 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2163 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2164 seq_printf(seq, ",mode=%03o", sbinfo->mode);
2165 if (sbinfo->uid != 0)
2166 seq_printf(seq, ",uid=%u", sbinfo->uid);
2167 if (sbinfo->gid != 0)
2168 seq_printf(seq, ",gid=%u", sbinfo->gid);
2169 shmem_show_mpol(seq, sbinfo->mpol);
2170 return 0;
2171 }
2172 #endif /* CONFIG_TMPFS */
2173
2174 static void shmem_put_super(struct super_block *sb)
2175 {
2176 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2177
2178 percpu_counter_destroy(&sbinfo->used_blocks);
2179 kfree(sbinfo);
2180 sb->s_fs_info = NULL;
2181 }
2182
2183 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2184 {
2185 struct inode *inode;
2186 struct dentry *root;
2187 struct shmem_sb_info *sbinfo;
2188 int err = -ENOMEM;
2189
2190 /* Round up to L1_CACHE_BYTES to resist false sharing */
2191 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2192 L1_CACHE_BYTES), GFP_KERNEL);
2193 if (!sbinfo)
2194 return -ENOMEM;
2195
2196 sbinfo->mode = S_IRWXUGO | S_ISVTX;
2197 sbinfo->uid = current_fsuid();
2198 sbinfo->gid = current_fsgid();
2199 sb->s_fs_info = sbinfo;
2200
2201 #ifdef CONFIG_TMPFS
2202 /*
2203 * Per default we only allow half of the physical ram per
2204 * tmpfs instance, limiting inodes to one per page of lowmem;
2205 * but the internal instance is left unlimited.
2206 */
2207 if (!(sb->s_flags & MS_NOUSER)) {
2208 sbinfo->max_blocks = shmem_default_max_blocks();
2209 sbinfo->max_inodes = shmem_default_max_inodes();
2210 if (shmem_parse_options(data, sbinfo, false)) {
2211 err = -EINVAL;
2212 goto failed;
2213 }
2214 }
2215 sb->s_export_op = &shmem_export_ops;
2216 #else
2217 sb->s_flags |= MS_NOUSER;
2218 #endif
2219
2220 spin_lock_init(&sbinfo->stat_lock);
2221 if (percpu_counter_init(&sbinfo->used_blocks, 0))
2222 goto failed;
2223 sbinfo->free_inodes = sbinfo->max_inodes;
2224
2225 sb->s_maxbytes = MAX_LFS_FILESIZE;
2226 sb->s_blocksize = PAGE_CACHE_SIZE;
2227 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2228 sb->s_magic = TMPFS_MAGIC;
2229 sb->s_op = &shmem_ops;
2230 sb->s_time_gran = 1;
2231 #ifdef CONFIG_TMPFS_XATTR
2232 sb->s_xattr = shmem_xattr_handlers;
2233 #endif
2234 #ifdef CONFIG_TMPFS_POSIX_ACL
2235 sb->s_flags |= MS_POSIXACL;
2236 #endif
2237
2238 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2239 if (!inode)
2240 goto failed;
2241 inode->i_uid = sbinfo->uid;
2242 inode->i_gid = sbinfo->gid;
2243 root = d_alloc_root(inode);
2244 if (!root)
2245 goto failed_iput;
2246 sb->s_root = root;
2247 return 0;
2248
2249 failed_iput:
2250 iput(inode);
2251 failed:
2252 shmem_put_super(sb);
2253 return err;
2254 }
2255
2256 static struct kmem_cache *shmem_inode_cachep;
2257
2258 static struct inode *shmem_alloc_inode(struct super_block *sb)
2259 {
2260 struct shmem_inode_info *info;
2261 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2262 if (!info)
2263 return NULL;
2264 return &info->vfs_inode;
2265 }
2266
2267 static void shmem_destroy_callback(struct rcu_head *head)
2268 {
2269 struct inode *inode = container_of(head, struct inode, i_rcu);
2270 INIT_LIST_HEAD(&inode->i_dentry);
2271 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2272 }
2273
2274 static void shmem_destroy_inode(struct inode *inode)
2275 {
2276 if ((inode->i_mode & S_IFMT) == S_IFREG) {
2277 /* only struct inode is valid if it's an inline symlink */
2278 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2279 }
2280 call_rcu(&inode->i_rcu, shmem_destroy_callback);
2281 }
2282
2283 static void shmem_init_inode(void *foo)
2284 {
2285 struct shmem_inode_info *info = foo;
2286 inode_init_once(&info->vfs_inode);
2287 }
2288
2289 static int shmem_init_inodecache(void)
2290 {
2291 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2292 sizeof(struct shmem_inode_info),
2293 0, SLAB_PANIC, shmem_init_inode);
2294 return 0;
2295 }
2296
2297 static void shmem_destroy_inodecache(void)
2298 {
2299 kmem_cache_destroy(shmem_inode_cachep);
2300 }
2301
2302 static const struct address_space_operations shmem_aops = {
2303 .writepage = shmem_writepage,
2304 .set_page_dirty = __set_page_dirty_no_writeback,
2305 #ifdef CONFIG_TMPFS
2306 .write_begin = shmem_write_begin,
2307 .write_end = shmem_write_end,
2308 #endif
2309 .migratepage = migrate_page,
2310 .error_remove_page = generic_error_remove_page,
2311 };
2312
2313 static const struct file_operations shmem_file_operations = {
2314 .mmap = shmem_mmap,
2315 #ifdef CONFIG_TMPFS
2316 .llseek = generic_file_llseek,
2317 .read = do_sync_read,
2318 .write = do_sync_write,
2319 .aio_read = shmem_file_aio_read,
2320 .aio_write = generic_file_aio_write,
2321 .fsync = noop_fsync,
2322 .splice_read = shmem_file_splice_read,
2323 .splice_write = generic_file_splice_write,
2324 #endif
2325 };
2326
2327 static const struct inode_operations shmem_inode_operations = {
2328 .setattr = shmem_setattr,
2329 .truncate_range = shmem_truncate_range,
2330 #ifdef CONFIG_TMPFS_XATTR
2331 .setxattr = shmem_setxattr,
2332 .getxattr = shmem_getxattr,
2333 .listxattr = shmem_listxattr,
2334 .removexattr = shmem_removexattr,
2335 #endif
2336 };
2337
2338 static const struct inode_operations shmem_dir_inode_operations = {
2339 #ifdef CONFIG_TMPFS
2340 .create = shmem_create,
2341 .lookup = simple_lookup,
2342 .link = shmem_link,
2343 .unlink = shmem_unlink,
2344 .symlink = shmem_symlink,
2345 .mkdir = shmem_mkdir,
2346 .rmdir = shmem_rmdir,
2347 .mknod = shmem_mknod,
2348 .rename = shmem_rename,
2349 #endif
2350 #ifdef CONFIG_TMPFS_XATTR
2351 .setxattr = shmem_setxattr,
2352 .getxattr = shmem_getxattr,
2353 .listxattr = shmem_listxattr,
2354 .removexattr = shmem_removexattr,
2355 #endif
2356 #ifdef CONFIG_TMPFS_POSIX_ACL
2357 .setattr = shmem_setattr,
2358 #endif
2359 };
2360
2361 static const struct inode_operations shmem_special_inode_operations = {
2362 #ifdef CONFIG_TMPFS_XATTR
2363 .setxattr = shmem_setxattr,
2364 .getxattr = shmem_getxattr,
2365 .listxattr = shmem_listxattr,
2366 .removexattr = shmem_removexattr,
2367 #endif
2368 #ifdef CONFIG_TMPFS_POSIX_ACL
2369 .setattr = shmem_setattr,
2370 #endif
2371 };
2372
2373 static const struct super_operations shmem_ops = {
2374 .alloc_inode = shmem_alloc_inode,
2375 .destroy_inode = shmem_destroy_inode,
2376 #ifdef CONFIG_TMPFS
2377 .statfs = shmem_statfs,
2378 .remount_fs = shmem_remount_fs,
2379 .show_options = shmem_show_options,
2380 #endif
2381 .evict_inode = shmem_evict_inode,
2382 .drop_inode = generic_delete_inode,
2383 .put_super = shmem_put_super,
2384 };
2385
2386 static const struct vm_operations_struct shmem_vm_ops = {
2387 .fault = shmem_fault,
2388 #ifdef CONFIG_NUMA
2389 .set_policy = shmem_set_policy,
2390 .get_policy = shmem_get_policy,
2391 #endif
2392 };
2393
2394 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2395 int flags, const char *dev_name, void *data)
2396 {
2397 return mount_nodev(fs_type, flags, data, shmem_fill_super);
2398 }
2399
2400 static struct file_system_type shmem_fs_type = {
2401 .owner = THIS_MODULE,
2402 .name = "tmpfs",
2403 .mount = shmem_mount,
2404 .kill_sb = kill_litter_super,
2405 };
2406
2407 int __init shmem_init(void)
2408 {
2409 int error;
2410
2411 error = bdi_init(&shmem_backing_dev_info);
2412 if (error)
2413 goto out4;
2414
2415 error = shmem_init_inodecache();
2416 if (error)
2417 goto out3;
2418
2419 error = register_filesystem(&shmem_fs_type);
2420 if (error) {
2421 printk(KERN_ERR "Could not register tmpfs\n");
2422 goto out2;
2423 }
2424
2425 shm_mnt = vfs_kern_mount(&shmem_fs_type, MS_NOUSER,
2426 shmem_fs_type.name, NULL);
2427 if (IS_ERR(shm_mnt)) {
2428 error = PTR_ERR(shm_mnt);
2429 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2430 goto out1;
2431 }
2432 return 0;
2433
2434 out1:
2435 unregister_filesystem(&shmem_fs_type);
2436 out2:
2437 shmem_destroy_inodecache();
2438 out3:
2439 bdi_destroy(&shmem_backing_dev_info);
2440 out4:
2441 shm_mnt = ERR_PTR(error);
2442 return error;
2443 }
2444
2445 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2446 /**
2447 * mem_cgroup_get_shmem_target - find page or swap assigned to the shmem file
2448 * @inode: the inode to be searched
2449 * @index: the page offset to be searched
2450 * @pagep: the pointer for the found page to be stored
2451 * @swapp: the pointer for the found swap entry to be stored
2452 *
2453 * If a page is found, refcount of it is incremented. Callers should handle
2454 * these refcount.
2455 */
2456 void mem_cgroup_get_shmem_target(struct inode *inode, pgoff_t index,
2457 struct page **pagep, swp_entry_t *swapp)
2458 {
2459 struct shmem_inode_info *info = SHMEM_I(inode);
2460 struct page *page = NULL;
2461 swp_entry_t swap = {0};
2462
2463 if ((index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
2464 goto out;
2465
2466 spin_lock(&info->lock);
2467 #ifdef CONFIG_SWAP
2468 swap = shmem_get_swap(info, index);
2469 if (swap.val)
2470 page = find_get_page(&swapper_space, swap.val);
2471 else
2472 #endif
2473 page = find_get_page(inode->i_mapping, index);
2474 spin_unlock(&info->lock);
2475 out:
2476 *pagep = page;
2477 *swapp = swap;
2478 }
2479 #endif
2480
2481 #else /* !CONFIG_SHMEM */
2482
2483 /*
2484 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2485 *
2486 * This is intended for small system where the benefits of the full
2487 * shmem code (swap-backed and resource-limited) are outweighed by
2488 * their complexity. On systems without swap this code should be
2489 * effectively equivalent, but much lighter weight.
2490 */
2491
2492 #include <linux/ramfs.h>
2493
2494 static struct file_system_type shmem_fs_type = {
2495 .name = "tmpfs",
2496 .mount = ramfs_mount,
2497 .kill_sb = kill_litter_super,
2498 };
2499
2500 int __init shmem_init(void)
2501 {
2502 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2503
2504 shm_mnt = kern_mount(&shmem_fs_type);
2505 BUG_ON(IS_ERR(shm_mnt));
2506
2507 return 0;
2508 }
2509
2510 int shmem_unuse(swp_entry_t swap, struct page *page)
2511 {
2512 return 0;
2513 }
2514
2515 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2516 {
2517 return 0;
2518 }
2519
2520 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2521 {
2522 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2523 }
2524 EXPORT_SYMBOL_GPL(shmem_truncate_range);
2525
2526 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2527 /**
2528 * mem_cgroup_get_shmem_target - find page or swap assigned to the shmem file
2529 * @inode: the inode to be searched
2530 * @index: the page offset to be searched
2531 * @pagep: the pointer for the found page to be stored
2532 * @swapp: the pointer for the found swap entry to be stored
2533 *
2534 * If a page is found, refcount of it is incremented. Callers should handle
2535 * these refcount.
2536 */
2537 void mem_cgroup_get_shmem_target(struct inode *inode, pgoff_t index,
2538 struct page **pagep, swp_entry_t *swapp)
2539 {
2540 struct page *page = NULL;
2541
2542 if ((index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
2543 goto out;
2544 page = find_get_page(inode->i_mapping, index);
2545 out:
2546 *pagep = page;
2547 *swapp = (swp_entry_t){0};
2548 }
2549 #endif
2550
2551 #define shmem_vm_ops generic_file_vm_ops
2552 #define shmem_file_operations ramfs_file_operations
2553 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
2554 #define shmem_acct_size(flags, size) 0
2555 #define shmem_unacct_size(flags, size) do {} while (0)
2556
2557 #endif /* CONFIG_SHMEM */
2558
2559 /* common code */
2560
2561 /**
2562 * shmem_file_setup - get an unlinked file living in tmpfs
2563 * @name: name for dentry (to be seen in /proc/<pid>/maps
2564 * @size: size to be set for the file
2565 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2566 */
2567 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2568 {
2569 int error;
2570 struct file *file;
2571 struct inode *inode;
2572 struct path path;
2573 struct dentry *root;
2574 struct qstr this;
2575
2576 if (IS_ERR(shm_mnt))
2577 return (void *)shm_mnt;
2578
2579 if (size < 0 || size > MAX_LFS_FILESIZE)
2580 return ERR_PTR(-EINVAL);
2581
2582 if (shmem_acct_size(flags, size))
2583 return ERR_PTR(-ENOMEM);
2584
2585 error = -ENOMEM;
2586 this.name = name;
2587 this.len = strlen(name);
2588 this.hash = 0; /* will go */
2589 root = shm_mnt->mnt_root;
2590 path.dentry = d_alloc(root, &this);
2591 if (!path.dentry)
2592 goto put_memory;
2593 path.mnt = mntget(shm_mnt);
2594
2595 error = -ENOSPC;
2596 inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2597 if (!inode)
2598 goto put_dentry;
2599
2600 d_instantiate(path.dentry, inode);
2601 inode->i_size = size;
2602 inode->i_nlink = 0; /* It is unlinked */
2603 #ifndef CONFIG_MMU
2604 error = ramfs_nommu_expand_for_mapping(inode, size);
2605 if (error)
2606 goto put_dentry;
2607 #endif
2608
2609 error = -ENFILE;
2610 file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2611 &shmem_file_operations);
2612 if (!file)
2613 goto put_dentry;
2614
2615 return file;
2616
2617 put_dentry:
2618 path_put(&path);
2619 put_memory:
2620 shmem_unacct_size(flags, size);
2621 return ERR_PTR(error);
2622 }
2623 EXPORT_SYMBOL_GPL(shmem_file_setup);
2624
2625 /**
2626 * shmem_zero_setup - setup a shared anonymous mapping
2627 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2628 */
2629 int shmem_zero_setup(struct vm_area_struct *vma)
2630 {
2631 struct file *file;
2632 loff_t size = vma->vm_end - vma->vm_start;
2633
2634 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2635 if (IS_ERR(file))
2636 return PTR_ERR(file);
2637
2638 if (vma->vm_file)
2639 fput(vma->vm_file);
2640 vma->vm_file = file;
2641 vma->vm_ops = &shmem_vm_ops;
2642 vma->vm_flags |= VM_CAN_NONLINEAR;
2643 return 0;
2644 }
2645
2646 /**
2647 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
2648 * @mapping: the page's address_space
2649 * @index: the page index
2650 * @gfp: the page allocator flags to use if allocating
2651 *
2652 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
2653 * with any new page allocations done using the specified allocation flags.
2654 * But read_cache_page_gfp() uses the ->readpage() method: which does not
2655 * suit tmpfs, since it may have pages in swapcache, and needs to find those
2656 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
2657 *
2658 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
2659 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
2660 */
2661 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
2662 pgoff_t index, gfp_t gfp)
2663 {
2664 #ifdef CONFIG_SHMEM
2665 struct inode *inode = mapping->host;
2666 struct page *page;
2667 int error;
2668
2669 BUG_ON(mapping->a_ops != &shmem_aops);
2670 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
2671 if (error)
2672 page = ERR_PTR(error);
2673 else
2674 unlock_page(page);
2675 return page;
2676 #else
2677 /*
2678 * The tiny !SHMEM case uses ramfs without swap
2679 */
2680 return read_cache_page_gfp(mapping, index, gfp);
2681 #endif
2682 }
2683 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
This page took 0.197918 seconds and 6 git commands to generate.