shmem: prepare huge= mount option and sysfs knob
[deliverable/linux.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/uio.h>
35
36 static struct vfsmount *shm_mnt;
37
38 #ifdef CONFIG_SHMEM
39 /*
40 * This virtual memory filesystem is heavily based on the ramfs. It
41 * extends ramfs by the ability to use swap and honor resource limits
42 * which makes it a completely usable filesystem.
43 */
44
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/posix_acl_xattr.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
69 #include <linux/syscalls.h>
70 #include <linux/fcntl.h>
71 #include <uapi/linux/memfd.h>
72
73 #include <asm/uaccess.h>
74 #include <asm/pgtable.h>
75
76 #include "internal.h"
77
78 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
79 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
80
81 /* Pretend that each entry is of this size in directory's i_size */
82 #define BOGO_DIRENT_SIZE 20
83
84 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
85 #define SHORT_SYMLINK_LEN 128
86
87 /*
88 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
89 * inode->i_private (with i_mutex making sure that it has only one user at
90 * a time): we would prefer not to enlarge the shmem inode just for that.
91 */
92 struct shmem_falloc {
93 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
94 pgoff_t start; /* start of range currently being fallocated */
95 pgoff_t next; /* the next page offset to be fallocated */
96 pgoff_t nr_falloced; /* how many new pages have been fallocated */
97 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
98 };
99
100 /* Flag allocation requirements to shmem_getpage */
101 enum sgp_type {
102 SGP_READ, /* don't exceed i_size, don't allocate page */
103 SGP_CACHE, /* don't exceed i_size, may allocate page */
104 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */
105 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */
106 };
107
108 #ifdef CONFIG_TMPFS
109 static unsigned long shmem_default_max_blocks(void)
110 {
111 return totalram_pages / 2;
112 }
113
114 static unsigned long shmem_default_max_inodes(void)
115 {
116 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
117 }
118 #endif
119
120 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
121 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
122 struct shmem_inode_info *info, pgoff_t index);
123 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
124 struct page **pagep, enum sgp_type sgp,
125 gfp_t gfp, struct mm_struct *fault_mm, int *fault_type);
126
127 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
128 struct page **pagep, enum sgp_type sgp)
129 {
130 return shmem_getpage_gfp(inode, index, pagep, sgp,
131 mapping_gfp_mask(inode->i_mapping), NULL, NULL);
132 }
133
134 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
135 {
136 return sb->s_fs_info;
137 }
138
139 /*
140 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
141 * for shared memory and for shared anonymous (/dev/zero) mappings
142 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
143 * consistent with the pre-accounting of private mappings ...
144 */
145 static inline int shmem_acct_size(unsigned long flags, loff_t size)
146 {
147 return (flags & VM_NORESERVE) ?
148 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
149 }
150
151 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
152 {
153 if (!(flags & VM_NORESERVE))
154 vm_unacct_memory(VM_ACCT(size));
155 }
156
157 static inline int shmem_reacct_size(unsigned long flags,
158 loff_t oldsize, loff_t newsize)
159 {
160 if (!(flags & VM_NORESERVE)) {
161 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
162 return security_vm_enough_memory_mm(current->mm,
163 VM_ACCT(newsize) - VM_ACCT(oldsize));
164 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
165 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
166 }
167 return 0;
168 }
169
170 /*
171 * ... whereas tmpfs objects are accounted incrementally as
172 * pages are allocated, in order to allow large sparse files.
173 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
174 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
175 */
176 static inline int shmem_acct_block(unsigned long flags)
177 {
178 return (flags & VM_NORESERVE) ?
179 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_SIZE)) : 0;
180 }
181
182 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
183 {
184 if (flags & VM_NORESERVE)
185 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
186 }
187
188 static const struct super_operations shmem_ops;
189 static const struct address_space_operations shmem_aops;
190 static const struct file_operations shmem_file_operations;
191 static const struct inode_operations shmem_inode_operations;
192 static const struct inode_operations shmem_dir_inode_operations;
193 static const struct inode_operations shmem_special_inode_operations;
194 static const struct vm_operations_struct shmem_vm_ops;
195
196 static LIST_HEAD(shmem_swaplist);
197 static DEFINE_MUTEX(shmem_swaplist_mutex);
198
199 static int shmem_reserve_inode(struct super_block *sb)
200 {
201 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
202 if (sbinfo->max_inodes) {
203 spin_lock(&sbinfo->stat_lock);
204 if (!sbinfo->free_inodes) {
205 spin_unlock(&sbinfo->stat_lock);
206 return -ENOSPC;
207 }
208 sbinfo->free_inodes--;
209 spin_unlock(&sbinfo->stat_lock);
210 }
211 return 0;
212 }
213
214 static void shmem_free_inode(struct super_block *sb)
215 {
216 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
217 if (sbinfo->max_inodes) {
218 spin_lock(&sbinfo->stat_lock);
219 sbinfo->free_inodes++;
220 spin_unlock(&sbinfo->stat_lock);
221 }
222 }
223
224 /**
225 * shmem_recalc_inode - recalculate the block usage of an inode
226 * @inode: inode to recalc
227 *
228 * We have to calculate the free blocks since the mm can drop
229 * undirtied hole pages behind our back.
230 *
231 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
232 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
233 *
234 * It has to be called with the spinlock held.
235 */
236 static void shmem_recalc_inode(struct inode *inode)
237 {
238 struct shmem_inode_info *info = SHMEM_I(inode);
239 long freed;
240
241 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
242 if (freed > 0) {
243 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
244 if (sbinfo->max_blocks)
245 percpu_counter_add(&sbinfo->used_blocks, -freed);
246 info->alloced -= freed;
247 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
248 shmem_unacct_blocks(info->flags, freed);
249 }
250 }
251
252 /*
253 * Replace item expected in radix tree by a new item, while holding tree lock.
254 */
255 static int shmem_radix_tree_replace(struct address_space *mapping,
256 pgoff_t index, void *expected, void *replacement)
257 {
258 void **pslot;
259 void *item;
260
261 VM_BUG_ON(!expected);
262 VM_BUG_ON(!replacement);
263 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
264 if (!pslot)
265 return -ENOENT;
266 item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
267 if (item != expected)
268 return -ENOENT;
269 radix_tree_replace_slot(pslot, replacement);
270 return 0;
271 }
272
273 /*
274 * Sometimes, before we decide whether to proceed or to fail, we must check
275 * that an entry was not already brought back from swap by a racing thread.
276 *
277 * Checking page is not enough: by the time a SwapCache page is locked, it
278 * might be reused, and again be SwapCache, using the same swap as before.
279 */
280 static bool shmem_confirm_swap(struct address_space *mapping,
281 pgoff_t index, swp_entry_t swap)
282 {
283 void *item;
284
285 rcu_read_lock();
286 item = radix_tree_lookup(&mapping->page_tree, index);
287 rcu_read_unlock();
288 return item == swp_to_radix_entry(swap);
289 }
290
291 /*
292 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
293 *
294 * SHMEM_HUGE_NEVER:
295 * disables huge pages for the mount;
296 * SHMEM_HUGE_ALWAYS:
297 * enables huge pages for the mount;
298 * SHMEM_HUGE_WITHIN_SIZE:
299 * only allocate huge pages if the page will be fully within i_size,
300 * also respect fadvise()/madvise() hints;
301 * SHMEM_HUGE_ADVISE:
302 * only allocate huge pages if requested with fadvise()/madvise();
303 */
304
305 #define SHMEM_HUGE_NEVER 0
306 #define SHMEM_HUGE_ALWAYS 1
307 #define SHMEM_HUGE_WITHIN_SIZE 2
308 #define SHMEM_HUGE_ADVISE 3
309
310 /*
311 * Special values.
312 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
313 *
314 * SHMEM_HUGE_DENY:
315 * disables huge on shm_mnt and all mounts, for emergency use;
316 * SHMEM_HUGE_FORCE:
317 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
318 *
319 */
320 #define SHMEM_HUGE_DENY (-1)
321 #define SHMEM_HUGE_FORCE (-2)
322
323 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
324 /* ifdef here to avoid bloating shmem.o when not necessary */
325
326 int shmem_huge __read_mostly;
327
328 static int shmem_parse_huge(const char *str)
329 {
330 if (!strcmp(str, "never"))
331 return SHMEM_HUGE_NEVER;
332 if (!strcmp(str, "always"))
333 return SHMEM_HUGE_ALWAYS;
334 if (!strcmp(str, "within_size"))
335 return SHMEM_HUGE_WITHIN_SIZE;
336 if (!strcmp(str, "advise"))
337 return SHMEM_HUGE_ADVISE;
338 if (!strcmp(str, "deny"))
339 return SHMEM_HUGE_DENY;
340 if (!strcmp(str, "force"))
341 return SHMEM_HUGE_FORCE;
342 return -EINVAL;
343 }
344
345 static const char *shmem_format_huge(int huge)
346 {
347 switch (huge) {
348 case SHMEM_HUGE_NEVER:
349 return "never";
350 case SHMEM_HUGE_ALWAYS:
351 return "always";
352 case SHMEM_HUGE_WITHIN_SIZE:
353 return "within_size";
354 case SHMEM_HUGE_ADVISE:
355 return "advise";
356 case SHMEM_HUGE_DENY:
357 return "deny";
358 case SHMEM_HUGE_FORCE:
359 return "force";
360 default:
361 VM_BUG_ON(1);
362 return "bad_val";
363 }
364 }
365
366 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
367
368 #define shmem_huge SHMEM_HUGE_DENY
369
370 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
371
372 /*
373 * Like add_to_page_cache_locked, but error if expected item has gone.
374 */
375 static int shmem_add_to_page_cache(struct page *page,
376 struct address_space *mapping,
377 pgoff_t index, void *expected)
378 {
379 int error;
380
381 VM_BUG_ON_PAGE(!PageLocked(page), page);
382 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
383
384 get_page(page);
385 page->mapping = mapping;
386 page->index = index;
387
388 spin_lock_irq(&mapping->tree_lock);
389 if (!expected)
390 error = radix_tree_insert(&mapping->page_tree, index, page);
391 else
392 error = shmem_radix_tree_replace(mapping, index, expected,
393 page);
394 if (!error) {
395 mapping->nrpages++;
396 __inc_zone_page_state(page, NR_FILE_PAGES);
397 __inc_zone_page_state(page, NR_SHMEM);
398 spin_unlock_irq(&mapping->tree_lock);
399 } else {
400 page->mapping = NULL;
401 spin_unlock_irq(&mapping->tree_lock);
402 put_page(page);
403 }
404 return error;
405 }
406
407 /*
408 * Like delete_from_page_cache, but substitutes swap for page.
409 */
410 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
411 {
412 struct address_space *mapping = page->mapping;
413 int error;
414
415 spin_lock_irq(&mapping->tree_lock);
416 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
417 page->mapping = NULL;
418 mapping->nrpages--;
419 __dec_zone_page_state(page, NR_FILE_PAGES);
420 __dec_zone_page_state(page, NR_SHMEM);
421 spin_unlock_irq(&mapping->tree_lock);
422 put_page(page);
423 BUG_ON(error);
424 }
425
426 /*
427 * Remove swap entry from radix tree, free the swap and its page cache.
428 */
429 static int shmem_free_swap(struct address_space *mapping,
430 pgoff_t index, void *radswap)
431 {
432 void *old;
433
434 spin_lock_irq(&mapping->tree_lock);
435 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
436 spin_unlock_irq(&mapping->tree_lock);
437 if (old != radswap)
438 return -ENOENT;
439 free_swap_and_cache(radix_to_swp_entry(radswap));
440 return 0;
441 }
442
443 /*
444 * Determine (in bytes) how many of the shmem object's pages mapped by the
445 * given offsets are swapped out.
446 *
447 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
448 * as long as the inode doesn't go away and racy results are not a problem.
449 */
450 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
451 pgoff_t start, pgoff_t end)
452 {
453 struct radix_tree_iter iter;
454 void **slot;
455 struct page *page;
456 unsigned long swapped = 0;
457
458 rcu_read_lock();
459
460 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
461 if (iter.index >= end)
462 break;
463
464 page = radix_tree_deref_slot(slot);
465
466 if (radix_tree_deref_retry(page)) {
467 slot = radix_tree_iter_retry(&iter);
468 continue;
469 }
470
471 if (radix_tree_exceptional_entry(page))
472 swapped++;
473
474 if (need_resched()) {
475 cond_resched_rcu();
476 slot = radix_tree_iter_next(&iter);
477 }
478 }
479
480 rcu_read_unlock();
481
482 return swapped << PAGE_SHIFT;
483 }
484
485 /*
486 * Determine (in bytes) how many of the shmem object's pages mapped by the
487 * given vma is swapped out.
488 *
489 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
490 * as long as the inode doesn't go away and racy results are not a problem.
491 */
492 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
493 {
494 struct inode *inode = file_inode(vma->vm_file);
495 struct shmem_inode_info *info = SHMEM_I(inode);
496 struct address_space *mapping = inode->i_mapping;
497 unsigned long swapped;
498
499 /* Be careful as we don't hold info->lock */
500 swapped = READ_ONCE(info->swapped);
501
502 /*
503 * The easier cases are when the shmem object has nothing in swap, or
504 * the vma maps it whole. Then we can simply use the stats that we
505 * already track.
506 */
507 if (!swapped)
508 return 0;
509
510 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
511 return swapped << PAGE_SHIFT;
512
513 /* Here comes the more involved part */
514 return shmem_partial_swap_usage(mapping,
515 linear_page_index(vma, vma->vm_start),
516 linear_page_index(vma, vma->vm_end));
517 }
518
519 /*
520 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
521 */
522 void shmem_unlock_mapping(struct address_space *mapping)
523 {
524 struct pagevec pvec;
525 pgoff_t indices[PAGEVEC_SIZE];
526 pgoff_t index = 0;
527
528 pagevec_init(&pvec, 0);
529 /*
530 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
531 */
532 while (!mapping_unevictable(mapping)) {
533 /*
534 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
535 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
536 */
537 pvec.nr = find_get_entries(mapping, index,
538 PAGEVEC_SIZE, pvec.pages, indices);
539 if (!pvec.nr)
540 break;
541 index = indices[pvec.nr - 1] + 1;
542 pagevec_remove_exceptionals(&pvec);
543 check_move_unevictable_pages(pvec.pages, pvec.nr);
544 pagevec_release(&pvec);
545 cond_resched();
546 }
547 }
548
549 /*
550 * Remove range of pages and swap entries from radix tree, and free them.
551 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
552 */
553 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
554 bool unfalloc)
555 {
556 struct address_space *mapping = inode->i_mapping;
557 struct shmem_inode_info *info = SHMEM_I(inode);
558 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
559 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
560 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
561 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
562 struct pagevec pvec;
563 pgoff_t indices[PAGEVEC_SIZE];
564 long nr_swaps_freed = 0;
565 pgoff_t index;
566 int i;
567
568 if (lend == -1)
569 end = -1; /* unsigned, so actually very big */
570
571 pagevec_init(&pvec, 0);
572 index = start;
573 while (index < end) {
574 pvec.nr = find_get_entries(mapping, index,
575 min(end - index, (pgoff_t)PAGEVEC_SIZE),
576 pvec.pages, indices);
577 if (!pvec.nr)
578 break;
579 for (i = 0; i < pagevec_count(&pvec); i++) {
580 struct page *page = pvec.pages[i];
581
582 index = indices[i];
583 if (index >= end)
584 break;
585
586 if (radix_tree_exceptional_entry(page)) {
587 if (unfalloc)
588 continue;
589 nr_swaps_freed += !shmem_free_swap(mapping,
590 index, page);
591 continue;
592 }
593
594 if (!trylock_page(page))
595 continue;
596 if (!unfalloc || !PageUptodate(page)) {
597 if (page->mapping == mapping) {
598 VM_BUG_ON_PAGE(PageWriteback(page), page);
599 truncate_inode_page(mapping, page);
600 }
601 }
602 unlock_page(page);
603 }
604 pagevec_remove_exceptionals(&pvec);
605 pagevec_release(&pvec);
606 cond_resched();
607 index++;
608 }
609
610 if (partial_start) {
611 struct page *page = NULL;
612 shmem_getpage(inode, start - 1, &page, SGP_READ);
613 if (page) {
614 unsigned int top = PAGE_SIZE;
615 if (start > end) {
616 top = partial_end;
617 partial_end = 0;
618 }
619 zero_user_segment(page, partial_start, top);
620 set_page_dirty(page);
621 unlock_page(page);
622 put_page(page);
623 }
624 }
625 if (partial_end) {
626 struct page *page = NULL;
627 shmem_getpage(inode, end, &page, SGP_READ);
628 if (page) {
629 zero_user_segment(page, 0, partial_end);
630 set_page_dirty(page);
631 unlock_page(page);
632 put_page(page);
633 }
634 }
635 if (start >= end)
636 return;
637
638 index = start;
639 while (index < end) {
640 cond_resched();
641
642 pvec.nr = find_get_entries(mapping, index,
643 min(end - index, (pgoff_t)PAGEVEC_SIZE),
644 pvec.pages, indices);
645 if (!pvec.nr) {
646 /* If all gone or hole-punch or unfalloc, we're done */
647 if (index == start || end != -1)
648 break;
649 /* But if truncating, restart to make sure all gone */
650 index = start;
651 continue;
652 }
653 for (i = 0; i < pagevec_count(&pvec); i++) {
654 struct page *page = pvec.pages[i];
655
656 index = indices[i];
657 if (index >= end)
658 break;
659
660 if (radix_tree_exceptional_entry(page)) {
661 if (unfalloc)
662 continue;
663 if (shmem_free_swap(mapping, index, page)) {
664 /* Swap was replaced by page: retry */
665 index--;
666 break;
667 }
668 nr_swaps_freed++;
669 continue;
670 }
671
672 lock_page(page);
673 if (!unfalloc || !PageUptodate(page)) {
674 if (page->mapping == mapping) {
675 VM_BUG_ON_PAGE(PageWriteback(page), page);
676 truncate_inode_page(mapping, page);
677 } else {
678 /* Page was replaced by swap: retry */
679 unlock_page(page);
680 index--;
681 break;
682 }
683 }
684 unlock_page(page);
685 }
686 pagevec_remove_exceptionals(&pvec);
687 pagevec_release(&pvec);
688 index++;
689 }
690
691 spin_lock(&info->lock);
692 info->swapped -= nr_swaps_freed;
693 shmem_recalc_inode(inode);
694 spin_unlock(&info->lock);
695 }
696
697 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
698 {
699 shmem_undo_range(inode, lstart, lend, false);
700 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
701 }
702 EXPORT_SYMBOL_GPL(shmem_truncate_range);
703
704 static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry,
705 struct kstat *stat)
706 {
707 struct inode *inode = dentry->d_inode;
708 struct shmem_inode_info *info = SHMEM_I(inode);
709
710 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
711 spin_lock(&info->lock);
712 shmem_recalc_inode(inode);
713 spin_unlock(&info->lock);
714 }
715 generic_fillattr(inode, stat);
716 return 0;
717 }
718
719 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
720 {
721 struct inode *inode = d_inode(dentry);
722 struct shmem_inode_info *info = SHMEM_I(inode);
723 int error;
724
725 error = inode_change_ok(inode, attr);
726 if (error)
727 return error;
728
729 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
730 loff_t oldsize = inode->i_size;
731 loff_t newsize = attr->ia_size;
732
733 /* protected by i_mutex */
734 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
735 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
736 return -EPERM;
737
738 if (newsize != oldsize) {
739 error = shmem_reacct_size(SHMEM_I(inode)->flags,
740 oldsize, newsize);
741 if (error)
742 return error;
743 i_size_write(inode, newsize);
744 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
745 }
746 if (newsize <= oldsize) {
747 loff_t holebegin = round_up(newsize, PAGE_SIZE);
748 if (oldsize > holebegin)
749 unmap_mapping_range(inode->i_mapping,
750 holebegin, 0, 1);
751 if (info->alloced)
752 shmem_truncate_range(inode,
753 newsize, (loff_t)-1);
754 /* unmap again to remove racily COWed private pages */
755 if (oldsize > holebegin)
756 unmap_mapping_range(inode->i_mapping,
757 holebegin, 0, 1);
758 }
759 }
760
761 setattr_copy(inode, attr);
762 if (attr->ia_valid & ATTR_MODE)
763 error = posix_acl_chmod(inode, inode->i_mode);
764 return error;
765 }
766
767 static void shmem_evict_inode(struct inode *inode)
768 {
769 struct shmem_inode_info *info = SHMEM_I(inode);
770
771 if (inode->i_mapping->a_ops == &shmem_aops) {
772 shmem_unacct_size(info->flags, inode->i_size);
773 inode->i_size = 0;
774 shmem_truncate_range(inode, 0, (loff_t)-1);
775 if (!list_empty(&info->swaplist)) {
776 mutex_lock(&shmem_swaplist_mutex);
777 list_del_init(&info->swaplist);
778 mutex_unlock(&shmem_swaplist_mutex);
779 }
780 }
781
782 simple_xattrs_free(&info->xattrs);
783 WARN_ON(inode->i_blocks);
784 shmem_free_inode(inode->i_sb);
785 clear_inode(inode);
786 }
787
788 /*
789 * If swap found in inode, free it and move page from swapcache to filecache.
790 */
791 static int shmem_unuse_inode(struct shmem_inode_info *info,
792 swp_entry_t swap, struct page **pagep)
793 {
794 struct address_space *mapping = info->vfs_inode.i_mapping;
795 void *radswap;
796 pgoff_t index;
797 gfp_t gfp;
798 int error = 0;
799
800 radswap = swp_to_radix_entry(swap);
801 index = radix_tree_locate_item(&mapping->page_tree, radswap);
802 if (index == -1)
803 return -EAGAIN; /* tell shmem_unuse we found nothing */
804
805 /*
806 * Move _head_ to start search for next from here.
807 * But be careful: shmem_evict_inode checks list_empty without taking
808 * mutex, and there's an instant in list_move_tail when info->swaplist
809 * would appear empty, if it were the only one on shmem_swaplist.
810 */
811 if (shmem_swaplist.next != &info->swaplist)
812 list_move_tail(&shmem_swaplist, &info->swaplist);
813
814 gfp = mapping_gfp_mask(mapping);
815 if (shmem_should_replace_page(*pagep, gfp)) {
816 mutex_unlock(&shmem_swaplist_mutex);
817 error = shmem_replace_page(pagep, gfp, info, index);
818 mutex_lock(&shmem_swaplist_mutex);
819 /*
820 * We needed to drop mutex to make that restrictive page
821 * allocation, but the inode might have been freed while we
822 * dropped it: although a racing shmem_evict_inode() cannot
823 * complete without emptying the radix_tree, our page lock
824 * on this swapcache page is not enough to prevent that -
825 * free_swap_and_cache() of our swap entry will only
826 * trylock_page(), removing swap from radix_tree whatever.
827 *
828 * We must not proceed to shmem_add_to_page_cache() if the
829 * inode has been freed, but of course we cannot rely on
830 * inode or mapping or info to check that. However, we can
831 * safely check if our swap entry is still in use (and here
832 * it can't have got reused for another page): if it's still
833 * in use, then the inode cannot have been freed yet, and we
834 * can safely proceed (if it's no longer in use, that tells
835 * nothing about the inode, but we don't need to unuse swap).
836 */
837 if (!page_swapcount(*pagep))
838 error = -ENOENT;
839 }
840
841 /*
842 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
843 * but also to hold up shmem_evict_inode(): so inode cannot be freed
844 * beneath us (pagelock doesn't help until the page is in pagecache).
845 */
846 if (!error)
847 error = shmem_add_to_page_cache(*pagep, mapping, index,
848 radswap);
849 if (error != -ENOMEM) {
850 /*
851 * Truncation and eviction use free_swap_and_cache(), which
852 * only does trylock page: if we raced, best clean up here.
853 */
854 delete_from_swap_cache(*pagep);
855 set_page_dirty(*pagep);
856 if (!error) {
857 spin_lock(&info->lock);
858 info->swapped--;
859 spin_unlock(&info->lock);
860 swap_free(swap);
861 }
862 }
863 return error;
864 }
865
866 /*
867 * Search through swapped inodes to find and replace swap by page.
868 */
869 int shmem_unuse(swp_entry_t swap, struct page *page)
870 {
871 struct list_head *this, *next;
872 struct shmem_inode_info *info;
873 struct mem_cgroup *memcg;
874 int error = 0;
875
876 /*
877 * There's a faint possibility that swap page was replaced before
878 * caller locked it: caller will come back later with the right page.
879 */
880 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
881 goto out;
882
883 /*
884 * Charge page using GFP_KERNEL while we can wait, before taking
885 * the shmem_swaplist_mutex which might hold up shmem_writepage().
886 * Charged back to the user (not to caller) when swap account is used.
887 */
888 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
889 false);
890 if (error)
891 goto out;
892 /* No radix_tree_preload: swap entry keeps a place for page in tree */
893 error = -EAGAIN;
894
895 mutex_lock(&shmem_swaplist_mutex);
896 list_for_each_safe(this, next, &shmem_swaplist) {
897 info = list_entry(this, struct shmem_inode_info, swaplist);
898 if (info->swapped)
899 error = shmem_unuse_inode(info, swap, &page);
900 else
901 list_del_init(&info->swaplist);
902 cond_resched();
903 if (error != -EAGAIN)
904 break;
905 /* found nothing in this: move on to search the next */
906 }
907 mutex_unlock(&shmem_swaplist_mutex);
908
909 if (error) {
910 if (error != -ENOMEM)
911 error = 0;
912 mem_cgroup_cancel_charge(page, memcg, false);
913 } else
914 mem_cgroup_commit_charge(page, memcg, true, false);
915 out:
916 unlock_page(page);
917 put_page(page);
918 return error;
919 }
920
921 /*
922 * Move the page from the page cache to the swap cache.
923 */
924 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
925 {
926 struct shmem_inode_info *info;
927 struct address_space *mapping;
928 struct inode *inode;
929 swp_entry_t swap;
930 pgoff_t index;
931
932 BUG_ON(!PageLocked(page));
933 mapping = page->mapping;
934 index = page->index;
935 inode = mapping->host;
936 info = SHMEM_I(inode);
937 if (info->flags & VM_LOCKED)
938 goto redirty;
939 if (!total_swap_pages)
940 goto redirty;
941
942 /*
943 * Our capabilities prevent regular writeback or sync from ever calling
944 * shmem_writepage; but a stacking filesystem might use ->writepage of
945 * its underlying filesystem, in which case tmpfs should write out to
946 * swap only in response to memory pressure, and not for the writeback
947 * threads or sync.
948 */
949 if (!wbc->for_reclaim) {
950 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
951 goto redirty;
952 }
953
954 /*
955 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
956 * value into swapfile.c, the only way we can correctly account for a
957 * fallocated page arriving here is now to initialize it and write it.
958 *
959 * That's okay for a page already fallocated earlier, but if we have
960 * not yet completed the fallocation, then (a) we want to keep track
961 * of this page in case we have to undo it, and (b) it may not be a
962 * good idea to continue anyway, once we're pushing into swap. So
963 * reactivate the page, and let shmem_fallocate() quit when too many.
964 */
965 if (!PageUptodate(page)) {
966 if (inode->i_private) {
967 struct shmem_falloc *shmem_falloc;
968 spin_lock(&inode->i_lock);
969 shmem_falloc = inode->i_private;
970 if (shmem_falloc &&
971 !shmem_falloc->waitq &&
972 index >= shmem_falloc->start &&
973 index < shmem_falloc->next)
974 shmem_falloc->nr_unswapped++;
975 else
976 shmem_falloc = NULL;
977 spin_unlock(&inode->i_lock);
978 if (shmem_falloc)
979 goto redirty;
980 }
981 clear_highpage(page);
982 flush_dcache_page(page);
983 SetPageUptodate(page);
984 }
985
986 swap = get_swap_page();
987 if (!swap.val)
988 goto redirty;
989
990 if (mem_cgroup_try_charge_swap(page, swap))
991 goto free_swap;
992
993 /*
994 * Add inode to shmem_unuse()'s list of swapped-out inodes,
995 * if it's not already there. Do it now before the page is
996 * moved to swap cache, when its pagelock no longer protects
997 * the inode from eviction. But don't unlock the mutex until
998 * we've incremented swapped, because shmem_unuse_inode() will
999 * prune a !swapped inode from the swaplist under this mutex.
1000 */
1001 mutex_lock(&shmem_swaplist_mutex);
1002 if (list_empty(&info->swaplist))
1003 list_add_tail(&info->swaplist, &shmem_swaplist);
1004
1005 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1006 spin_lock(&info->lock);
1007 shmem_recalc_inode(inode);
1008 info->swapped++;
1009 spin_unlock(&info->lock);
1010
1011 swap_shmem_alloc(swap);
1012 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1013
1014 mutex_unlock(&shmem_swaplist_mutex);
1015 BUG_ON(page_mapped(page));
1016 swap_writepage(page, wbc);
1017 return 0;
1018 }
1019
1020 mutex_unlock(&shmem_swaplist_mutex);
1021 free_swap:
1022 swapcache_free(swap);
1023 redirty:
1024 set_page_dirty(page);
1025 if (wbc->for_reclaim)
1026 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1027 unlock_page(page);
1028 return 0;
1029 }
1030
1031 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1032 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1033 {
1034 char buffer[64];
1035
1036 if (!mpol || mpol->mode == MPOL_DEFAULT)
1037 return; /* show nothing */
1038
1039 mpol_to_str(buffer, sizeof(buffer), mpol);
1040
1041 seq_printf(seq, ",mpol=%s", buffer);
1042 }
1043
1044 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1045 {
1046 struct mempolicy *mpol = NULL;
1047 if (sbinfo->mpol) {
1048 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1049 mpol = sbinfo->mpol;
1050 mpol_get(mpol);
1051 spin_unlock(&sbinfo->stat_lock);
1052 }
1053 return mpol;
1054 }
1055 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1056 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1057 {
1058 }
1059 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1060 {
1061 return NULL;
1062 }
1063 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1064 #ifndef CONFIG_NUMA
1065 #define vm_policy vm_private_data
1066 #endif
1067
1068 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1069 struct shmem_inode_info *info, pgoff_t index)
1070 {
1071 struct vm_area_struct pvma;
1072 struct page *page;
1073
1074 /* Create a pseudo vma that just contains the policy */
1075 pvma.vm_start = 0;
1076 /* Bias interleave by inode number to distribute better across nodes */
1077 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
1078 pvma.vm_ops = NULL;
1079 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1080
1081 page = swapin_readahead(swap, gfp, &pvma, 0);
1082
1083 /* Drop reference taken by mpol_shared_policy_lookup() */
1084 mpol_cond_put(pvma.vm_policy);
1085
1086 return page;
1087 }
1088
1089 static struct page *shmem_alloc_page(gfp_t gfp,
1090 struct shmem_inode_info *info, pgoff_t index)
1091 {
1092 struct vm_area_struct pvma;
1093 struct page *page;
1094
1095 /* Create a pseudo vma that just contains the policy */
1096 pvma.vm_start = 0;
1097 /* Bias interleave by inode number to distribute better across nodes */
1098 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
1099 pvma.vm_ops = NULL;
1100 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1101
1102 page = alloc_pages_vma(gfp, 0, &pvma, 0, numa_node_id(), false);
1103 if (page) {
1104 __SetPageLocked(page);
1105 __SetPageSwapBacked(page);
1106 }
1107
1108 /* Drop reference taken by mpol_shared_policy_lookup() */
1109 mpol_cond_put(pvma.vm_policy);
1110
1111 return page;
1112 }
1113
1114 /*
1115 * When a page is moved from swapcache to shmem filecache (either by the
1116 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1117 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1118 * ignorance of the mapping it belongs to. If that mapping has special
1119 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1120 * we may need to copy to a suitable page before moving to filecache.
1121 *
1122 * In a future release, this may well be extended to respect cpuset and
1123 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1124 * but for now it is a simple matter of zone.
1125 */
1126 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1127 {
1128 return page_zonenum(page) > gfp_zone(gfp);
1129 }
1130
1131 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1132 struct shmem_inode_info *info, pgoff_t index)
1133 {
1134 struct page *oldpage, *newpage;
1135 struct address_space *swap_mapping;
1136 pgoff_t swap_index;
1137 int error;
1138
1139 oldpage = *pagep;
1140 swap_index = page_private(oldpage);
1141 swap_mapping = page_mapping(oldpage);
1142
1143 /*
1144 * We have arrived here because our zones are constrained, so don't
1145 * limit chance of success by further cpuset and node constraints.
1146 */
1147 gfp &= ~GFP_CONSTRAINT_MASK;
1148 newpage = shmem_alloc_page(gfp, info, index);
1149 if (!newpage)
1150 return -ENOMEM;
1151
1152 get_page(newpage);
1153 copy_highpage(newpage, oldpage);
1154 flush_dcache_page(newpage);
1155
1156 SetPageUptodate(newpage);
1157 set_page_private(newpage, swap_index);
1158 SetPageSwapCache(newpage);
1159
1160 /*
1161 * Our caller will very soon move newpage out of swapcache, but it's
1162 * a nice clean interface for us to replace oldpage by newpage there.
1163 */
1164 spin_lock_irq(&swap_mapping->tree_lock);
1165 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1166 newpage);
1167 if (!error) {
1168 __inc_zone_page_state(newpage, NR_FILE_PAGES);
1169 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1170 }
1171 spin_unlock_irq(&swap_mapping->tree_lock);
1172
1173 if (unlikely(error)) {
1174 /*
1175 * Is this possible? I think not, now that our callers check
1176 * both PageSwapCache and page_private after getting page lock;
1177 * but be defensive. Reverse old to newpage for clear and free.
1178 */
1179 oldpage = newpage;
1180 } else {
1181 mem_cgroup_migrate(oldpage, newpage);
1182 lru_cache_add_anon(newpage);
1183 *pagep = newpage;
1184 }
1185
1186 ClearPageSwapCache(oldpage);
1187 set_page_private(oldpage, 0);
1188
1189 unlock_page(oldpage);
1190 put_page(oldpage);
1191 put_page(oldpage);
1192 return error;
1193 }
1194
1195 /*
1196 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1197 *
1198 * If we allocate a new one we do not mark it dirty. That's up to the
1199 * vm. If we swap it in we mark it dirty since we also free the swap
1200 * entry since a page cannot live in both the swap and page cache.
1201 *
1202 * fault_mm and fault_type are only supplied by shmem_fault:
1203 * otherwise they are NULL.
1204 */
1205 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1206 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1207 struct mm_struct *fault_mm, int *fault_type)
1208 {
1209 struct address_space *mapping = inode->i_mapping;
1210 struct shmem_inode_info *info;
1211 struct shmem_sb_info *sbinfo;
1212 struct mm_struct *charge_mm;
1213 struct mem_cgroup *memcg;
1214 struct page *page;
1215 swp_entry_t swap;
1216 int error;
1217 int once = 0;
1218 int alloced = 0;
1219
1220 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1221 return -EFBIG;
1222 repeat:
1223 swap.val = 0;
1224 page = find_lock_entry(mapping, index);
1225 if (radix_tree_exceptional_entry(page)) {
1226 swap = radix_to_swp_entry(page);
1227 page = NULL;
1228 }
1229
1230 if (sgp <= SGP_CACHE &&
1231 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1232 error = -EINVAL;
1233 goto unlock;
1234 }
1235
1236 if (page && sgp == SGP_WRITE)
1237 mark_page_accessed(page);
1238
1239 /* fallocated page? */
1240 if (page && !PageUptodate(page)) {
1241 if (sgp != SGP_READ)
1242 goto clear;
1243 unlock_page(page);
1244 put_page(page);
1245 page = NULL;
1246 }
1247 if (page || (sgp == SGP_READ && !swap.val)) {
1248 *pagep = page;
1249 return 0;
1250 }
1251
1252 /*
1253 * Fast cache lookup did not find it:
1254 * bring it back from swap or allocate.
1255 */
1256 info = SHMEM_I(inode);
1257 sbinfo = SHMEM_SB(inode->i_sb);
1258 charge_mm = fault_mm ? : current->mm;
1259
1260 if (swap.val) {
1261 /* Look it up and read it in.. */
1262 page = lookup_swap_cache(swap);
1263 if (!page) {
1264 /* Or update major stats only when swapin succeeds?? */
1265 if (fault_type) {
1266 *fault_type |= VM_FAULT_MAJOR;
1267 count_vm_event(PGMAJFAULT);
1268 mem_cgroup_count_vm_event(fault_mm, PGMAJFAULT);
1269 }
1270 /* Here we actually start the io */
1271 page = shmem_swapin(swap, gfp, info, index);
1272 if (!page) {
1273 error = -ENOMEM;
1274 goto failed;
1275 }
1276 }
1277
1278 /* We have to do this with page locked to prevent races */
1279 lock_page(page);
1280 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1281 !shmem_confirm_swap(mapping, index, swap)) {
1282 error = -EEXIST; /* try again */
1283 goto unlock;
1284 }
1285 if (!PageUptodate(page)) {
1286 error = -EIO;
1287 goto failed;
1288 }
1289 wait_on_page_writeback(page);
1290
1291 if (shmem_should_replace_page(page, gfp)) {
1292 error = shmem_replace_page(&page, gfp, info, index);
1293 if (error)
1294 goto failed;
1295 }
1296
1297 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1298 false);
1299 if (!error) {
1300 error = shmem_add_to_page_cache(page, mapping, index,
1301 swp_to_radix_entry(swap));
1302 /*
1303 * We already confirmed swap under page lock, and make
1304 * no memory allocation here, so usually no possibility
1305 * of error; but free_swap_and_cache() only trylocks a
1306 * page, so it is just possible that the entry has been
1307 * truncated or holepunched since swap was confirmed.
1308 * shmem_undo_range() will have done some of the
1309 * unaccounting, now delete_from_swap_cache() will do
1310 * the rest.
1311 * Reset swap.val? No, leave it so "failed" goes back to
1312 * "repeat": reading a hole and writing should succeed.
1313 */
1314 if (error) {
1315 mem_cgroup_cancel_charge(page, memcg, false);
1316 delete_from_swap_cache(page);
1317 }
1318 }
1319 if (error)
1320 goto failed;
1321
1322 mem_cgroup_commit_charge(page, memcg, true, false);
1323
1324 spin_lock(&info->lock);
1325 info->swapped--;
1326 shmem_recalc_inode(inode);
1327 spin_unlock(&info->lock);
1328
1329 if (sgp == SGP_WRITE)
1330 mark_page_accessed(page);
1331
1332 delete_from_swap_cache(page);
1333 set_page_dirty(page);
1334 swap_free(swap);
1335
1336 } else {
1337 if (shmem_acct_block(info->flags)) {
1338 error = -ENOSPC;
1339 goto failed;
1340 }
1341 if (sbinfo->max_blocks) {
1342 if (percpu_counter_compare(&sbinfo->used_blocks,
1343 sbinfo->max_blocks) >= 0) {
1344 error = -ENOSPC;
1345 goto unacct;
1346 }
1347 percpu_counter_inc(&sbinfo->used_blocks);
1348 }
1349
1350 page = shmem_alloc_page(gfp, info, index);
1351 if (!page) {
1352 error = -ENOMEM;
1353 goto decused;
1354 }
1355 if (sgp == SGP_WRITE)
1356 __SetPageReferenced(page);
1357
1358 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1359 false);
1360 if (error)
1361 goto decused;
1362 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1363 if (!error) {
1364 error = shmem_add_to_page_cache(page, mapping, index,
1365 NULL);
1366 radix_tree_preload_end();
1367 }
1368 if (error) {
1369 mem_cgroup_cancel_charge(page, memcg, false);
1370 goto decused;
1371 }
1372 mem_cgroup_commit_charge(page, memcg, false, false);
1373 lru_cache_add_anon(page);
1374
1375 spin_lock(&info->lock);
1376 info->alloced++;
1377 inode->i_blocks += BLOCKS_PER_PAGE;
1378 shmem_recalc_inode(inode);
1379 spin_unlock(&info->lock);
1380 alloced = true;
1381
1382 /*
1383 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1384 */
1385 if (sgp == SGP_FALLOC)
1386 sgp = SGP_WRITE;
1387 clear:
1388 /*
1389 * Let SGP_WRITE caller clear ends if write does not fill page;
1390 * but SGP_FALLOC on a page fallocated earlier must initialize
1391 * it now, lest undo on failure cancel our earlier guarantee.
1392 */
1393 if (sgp != SGP_WRITE) {
1394 clear_highpage(page);
1395 flush_dcache_page(page);
1396 SetPageUptodate(page);
1397 }
1398 }
1399
1400 /* Perhaps the file has been truncated since we checked */
1401 if (sgp <= SGP_CACHE &&
1402 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1403 if (alloced) {
1404 ClearPageDirty(page);
1405 delete_from_page_cache(page);
1406 spin_lock(&info->lock);
1407 shmem_recalc_inode(inode);
1408 spin_unlock(&info->lock);
1409 }
1410 error = -EINVAL;
1411 goto unlock;
1412 }
1413 *pagep = page;
1414 return 0;
1415
1416 /*
1417 * Error recovery.
1418 */
1419 decused:
1420 if (sbinfo->max_blocks)
1421 percpu_counter_add(&sbinfo->used_blocks, -1);
1422 unacct:
1423 shmem_unacct_blocks(info->flags, 1);
1424 failed:
1425 if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1426 error = -EEXIST;
1427 unlock:
1428 if (page) {
1429 unlock_page(page);
1430 put_page(page);
1431 }
1432 if (error == -ENOSPC && !once++) {
1433 info = SHMEM_I(inode);
1434 spin_lock(&info->lock);
1435 shmem_recalc_inode(inode);
1436 spin_unlock(&info->lock);
1437 goto repeat;
1438 }
1439 if (error == -EEXIST) /* from above or from radix_tree_insert */
1440 goto repeat;
1441 return error;
1442 }
1443
1444 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1445 {
1446 struct inode *inode = file_inode(vma->vm_file);
1447 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1448 int error;
1449 int ret = VM_FAULT_LOCKED;
1450
1451 /*
1452 * Trinity finds that probing a hole which tmpfs is punching can
1453 * prevent the hole-punch from ever completing: which in turn
1454 * locks writers out with its hold on i_mutex. So refrain from
1455 * faulting pages into the hole while it's being punched. Although
1456 * shmem_undo_range() does remove the additions, it may be unable to
1457 * keep up, as each new page needs its own unmap_mapping_range() call,
1458 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1459 *
1460 * It does not matter if we sometimes reach this check just before the
1461 * hole-punch begins, so that one fault then races with the punch:
1462 * we just need to make racing faults a rare case.
1463 *
1464 * The implementation below would be much simpler if we just used a
1465 * standard mutex or completion: but we cannot take i_mutex in fault,
1466 * and bloating every shmem inode for this unlikely case would be sad.
1467 */
1468 if (unlikely(inode->i_private)) {
1469 struct shmem_falloc *shmem_falloc;
1470
1471 spin_lock(&inode->i_lock);
1472 shmem_falloc = inode->i_private;
1473 if (shmem_falloc &&
1474 shmem_falloc->waitq &&
1475 vmf->pgoff >= shmem_falloc->start &&
1476 vmf->pgoff < shmem_falloc->next) {
1477 wait_queue_head_t *shmem_falloc_waitq;
1478 DEFINE_WAIT(shmem_fault_wait);
1479
1480 ret = VM_FAULT_NOPAGE;
1481 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1482 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1483 /* It's polite to up mmap_sem if we can */
1484 up_read(&vma->vm_mm->mmap_sem);
1485 ret = VM_FAULT_RETRY;
1486 }
1487
1488 shmem_falloc_waitq = shmem_falloc->waitq;
1489 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1490 TASK_UNINTERRUPTIBLE);
1491 spin_unlock(&inode->i_lock);
1492 schedule();
1493
1494 /*
1495 * shmem_falloc_waitq points into the shmem_fallocate()
1496 * stack of the hole-punching task: shmem_falloc_waitq
1497 * is usually invalid by the time we reach here, but
1498 * finish_wait() does not dereference it in that case;
1499 * though i_lock needed lest racing with wake_up_all().
1500 */
1501 spin_lock(&inode->i_lock);
1502 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1503 spin_unlock(&inode->i_lock);
1504 return ret;
1505 }
1506 spin_unlock(&inode->i_lock);
1507 }
1508
1509 error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, SGP_CACHE,
1510 gfp, vma->vm_mm, &ret);
1511 if (error)
1512 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1513 return ret;
1514 }
1515
1516 #ifdef CONFIG_NUMA
1517 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1518 {
1519 struct inode *inode = file_inode(vma->vm_file);
1520 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1521 }
1522
1523 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1524 unsigned long addr)
1525 {
1526 struct inode *inode = file_inode(vma->vm_file);
1527 pgoff_t index;
1528
1529 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1530 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1531 }
1532 #endif
1533
1534 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1535 {
1536 struct inode *inode = file_inode(file);
1537 struct shmem_inode_info *info = SHMEM_I(inode);
1538 int retval = -ENOMEM;
1539
1540 spin_lock(&info->lock);
1541 if (lock && !(info->flags & VM_LOCKED)) {
1542 if (!user_shm_lock(inode->i_size, user))
1543 goto out_nomem;
1544 info->flags |= VM_LOCKED;
1545 mapping_set_unevictable(file->f_mapping);
1546 }
1547 if (!lock && (info->flags & VM_LOCKED) && user) {
1548 user_shm_unlock(inode->i_size, user);
1549 info->flags &= ~VM_LOCKED;
1550 mapping_clear_unevictable(file->f_mapping);
1551 }
1552 retval = 0;
1553
1554 out_nomem:
1555 spin_unlock(&info->lock);
1556 return retval;
1557 }
1558
1559 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1560 {
1561 file_accessed(file);
1562 vma->vm_ops = &shmem_vm_ops;
1563 return 0;
1564 }
1565
1566 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1567 umode_t mode, dev_t dev, unsigned long flags)
1568 {
1569 struct inode *inode;
1570 struct shmem_inode_info *info;
1571 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1572
1573 if (shmem_reserve_inode(sb))
1574 return NULL;
1575
1576 inode = new_inode(sb);
1577 if (inode) {
1578 inode->i_ino = get_next_ino();
1579 inode_init_owner(inode, dir, mode);
1580 inode->i_blocks = 0;
1581 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1582 inode->i_generation = get_seconds();
1583 info = SHMEM_I(inode);
1584 memset(info, 0, (char *)inode - (char *)info);
1585 spin_lock_init(&info->lock);
1586 info->seals = F_SEAL_SEAL;
1587 info->flags = flags & VM_NORESERVE;
1588 INIT_LIST_HEAD(&info->swaplist);
1589 simple_xattrs_init(&info->xattrs);
1590 cache_no_acl(inode);
1591
1592 switch (mode & S_IFMT) {
1593 default:
1594 inode->i_op = &shmem_special_inode_operations;
1595 init_special_inode(inode, mode, dev);
1596 break;
1597 case S_IFREG:
1598 inode->i_mapping->a_ops = &shmem_aops;
1599 inode->i_op = &shmem_inode_operations;
1600 inode->i_fop = &shmem_file_operations;
1601 mpol_shared_policy_init(&info->policy,
1602 shmem_get_sbmpol(sbinfo));
1603 break;
1604 case S_IFDIR:
1605 inc_nlink(inode);
1606 /* Some things misbehave if size == 0 on a directory */
1607 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1608 inode->i_op = &shmem_dir_inode_operations;
1609 inode->i_fop = &simple_dir_operations;
1610 break;
1611 case S_IFLNK:
1612 /*
1613 * Must not load anything in the rbtree,
1614 * mpol_free_shared_policy will not be called.
1615 */
1616 mpol_shared_policy_init(&info->policy, NULL);
1617 break;
1618 }
1619 } else
1620 shmem_free_inode(sb);
1621 return inode;
1622 }
1623
1624 bool shmem_mapping(struct address_space *mapping)
1625 {
1626 if (!mapping->host)
1627 return false;
1628
1629 return mapping->host->i_sb->s_op == &shmem_ops;
1630 }
1631
1632 #ifdef CONFIG_TMPFS
1633 static const struct inode_operations shmem_symlink_inode_operations;
1634 static const struct inode_operations shmem_short_symlink_operations;
1635
1636 #ifdef CONFIG_TMPFS_XATTR
1637 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1638 #else
1639 #define shmem_initxattrs NULL
1640 #endif
1641
1642 static int
1643 shmem_write_begin(struct file *file, struct address_space *mapping,
1644 loff_t pos, unsigned len, unsigned flags,
1645 struct page **pagep, void **fsdata)
1646 {
1647 struct inode *inode = mapping->host;
1648 struct shmem_inode_info *info = SHMEM_I(inode);
1649 pgoff_t index = pos >> PAGE_SHIFT;
1650
1651 /* i_mutex is held by caller */
1652 if (unlikely(info->seals)) {
1653 if (info->seals & F_SEAL_WRITE)
1654 return -EPERM;
1655 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
1656 return -EPERM;
1657 }
1658
1659 return shmem_getpage(inode, index, pagep, SGP_WRITE);
1660 }
1661
1662 static int
1663 shmem_write_end(struct file *file, struct address_space *mapping,
1664 loff_t pos, unsigned len, unsigned copied,
1665 struct page *page, void *fsdata)
1666 {
1667 struct inode *inode = mapping->host;
1668
1669 if (pos + copied > inode->i_size)
1670 i_size_write(inode, pos + copied);
1671
1672 if (!PageUptodate(page)) {
1673 if (copied < PAGE_SIZE) {
1674 unsigned from = pos & (PAGE_SIZE - 1);
1675 zero_user_segments(page, 0, from,
1676 from + copied, PAGE_SIZE);
1677 }
1678 SetPageUptodate(page);
1679 }
1680 set_page_dirty(page);
1681 unlock_page(page);
1682 put_page(page);
1683
1684 return copied;
1685 }
1686
1687 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1688 {
1689 struct file *file = iocb->ki_filp;
1690 struct inode *inode = file_inode(file);
1691 struct address_space *mapping = inode->i_mapping;
1692 pgoff_t index;
1693 unsigned long offset;
1694 enum sgp_type sgp = SGP_READ;
1695 int error = 0;
1696 ssize_t retval = 0;
1697 loff_t *ppos = &iocb->ki_pos;
1698
1699 /*
1700 * Might this read be for a stacking filesystem? Then when reading
1701 * holes of a sparse file, we actually need to allocate those pages,
1702 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1703 */
1704 if (!iter_is_iovec(to))
1705 sgp = SGP_CACHE;
1706
1707 index = *ppos >> PAGE_SHIFT;
1708 offset = *ppos & ~PAGE_MASK;
1709
1710 for (;;) {
1711 struct page *page = NULL;
1712 pgoff_t end_index;
1713 unsigned long nr, ret;
1714 loff_t i_size = i_size_read(inode);
1715
1716 end_index = i_size >> PAGE_SHIFT;
1717 if (index > end_index)
1718 break;
1719 if (index == end_index) {
1720 nr = i_size & ~PAGE_MASK;
1721 if (nr <= offset)
1722 break;
1723 }
1724
1725 error = shmem_getpage(inode, index, &page, sgp);
1726 if (error) {
1727 if (error == -EINVAL)
1728 error = 0;
1729 break;
1730 }
1731 if (page) {
1732 if (sgp == SGP_CACHE)
1733 set_page_dirty(page);
1734 unlock_page(page);
1735 }
1736
1737 /*
1738 * We must evaluate after, since reads (unlike writes)
1739 * are called without i_mutex protection against truncate
1740 */
1741 nr = PAGE_SIZE;
1742 i_size = i_size_read(inode);
1743 end_index = i_size >> PAGE_SHIFT;
1744 if (index == end_index) {
1745 nr = i_size & ~PAGE_MASK;
1746 if (nr <= offset) {
1747 if (page)
1748 put_page(page);
1749 break;
1750 }
1751 }
1752 nr -= offset;
1753
1754 if (page) {
1755 /*
1756 * If users can be writing to this page using arbitrary
1757 * virtual addresses, take care about potential aliasing
1758 * before reading the page on the kernel side.
1759 */
1760 if (mapping_writably_mapped(mapping))
1761 flush_dcache_page(page);
1762 /*
1763 * Mark the page accessed if we read the beginning.
1764 */
1765 if (!offset)
1766 mark_page_accessed(page);
1767 } else {
1768 page = ZERO_PAGE(0);
1769 get_page(page);
1770 }
1771
1772 /*
1773 * Ok, we have the page, and it's up-to-date, so
1774 * now we can copy it to user space...
1775 */
1776 ret = copy_page_to_iter(page, offset, nr, to);
1777 retval += ret;
1778 offset += ret;
1779 index += offset >> PAGE_SHIFT;
1780 offset &= ~PAGE_MASK;
1781
1782 put_page(page);
1783 if (!iov_iter_count(to))
1784 break;
1785 if (ret < nr) {
1786 error = -EFAULT;
1787 break;
1788 }
1789 cond_resched();
1790 }
1791
1792 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
1793 file_accessed(file);
1794 return retval ? retval : error;
1795 }
1796
1797 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1798 struct pipe_inode_info *pipe, size_t len,
1799 unsigned int flags)
1800 {
1801 struct address_space *mapping = in->f_mapping;
1802 struct inode *inode = mapping->host;
1803 unsigned int loff, nr_pages, req_pages;
1804 struct page *pages[PIPE_DEF_BUFFERS];
1805 struct partial_page partial[PIPE_DEF_BUFFERS];
1806 struct page *page;
1807 pgoff_t index, end_index;
1808 loff_t isize, left;
1809 int error, page_nr;
1810 struct splice_pipe_desc spd = {
1811 .pages = pages,
1812 .partial = partial,
1813 .nr_pages_max = PIPE_DEF_BUFFERS,
1814 .flags = flags,
1815 .ops = &page_cache_pipe_buf_ops,
1816 .spd_release = spd_release_page,
1817 };
1818
1819 isize = i_size_read(inode);
1820 if (unlikely(*ppos >= isize))
1821 return 0;
1822
1823 left = isize - *ppos;
1824 if (unlikely(left < len))
1825 len = left;
1826
1827 if (splice_grow_spd(pipe, &spd))
1828 return -ENOMEM;
1829
1830 index = *ppos >> PAGE_SHIFT;
1831 loff = *ppos & ~PAGE_MASK;
1832 req_pages = (len + loff + PAGE_SIZE - 1) >> PAGE_SHIFT;
1833 nr_pages = min(req_pages, spd.nr_pages_max);
1834
1835 spd.nr_pages = find_get_pages_contig(mapping, index,
1836 nr_pages, spd.pages);
1837 index += spd.nr_pages;
1838 error = 0;
1839
1840 while (spd.nr_pages < nr_pages) {
1841 error = shmem_getpage(inode, index, &page, SGP_CACHE);
1842 if (error)
1843 break;
1844 unlock_page(page);
1845 spd.pages[spd.nr_pages++] = page;
1846 index++;
1847 }
1848
1849 index = *ppos >> PAGE_SHIFT;
1850 nr_pages = spd.nr_pages;
1851 spd.nr_pages = 0;
1852
1853 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1854 unsigned int this_len;
1855
1856 if (!len)
1857 break;
1858
1859 this_len = min_t(unsigned long, len, PAGE_SIZE - loff);
1860 page = spd.pages[page_nr];
1861
1862 if (!PageUptodate(page) || page->mapping != mapping) {
1863 error = shmem_getpage(inode, index, &page, SGP_CACHE);
1864 if (error)
1865 break;
1866 unlock_page(page);
1867 put_page(spd.pages[page_nr]);
1868 spd.pages[page_nr] = page;
1869 }
1870
1871 isize = i_size_read(inode);
1872 end_index = (isize - 1) >> PAGE_SHIFT;
1873 if (unlikely(!isize || index > end_index))
1874 break;
1875
1876 if (end_index == index) {
1877 unsigned int plen;
1878
1879 plen = ((isize - 1) & ~PAGE_MASK) + 1;
1880 if (plen <= loff)
1881 break;
1882
1883 this_len = min(this_len, plen - loff);
1884 len = this_len;
1885 }
1886
1887 spd.partial[page_nr].offset = loff;
1888 spd.partial[page_nr].len = this_len;
1889 len -= this_len;
1890 loff = 0;
1891 spd.nr_pages++;
1892 index++;
1893 }
1894
1895 while (page_nr < nr_pages)
1896 put_page(spd.pages[page_nr++]);
1897
1898 if (spd.nr_pages)
1899 error = splice_to_pipe(pipe, &spd);
1900
1901 splice_shrink_spd(&spd);
1902
1903 if (error > 0) {
1904 *ppos += error;
1905 file_accessed(in);
1906 }
1907 return error;
1908 }
1909
1910 /*
1911 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1912 */
1913 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1914 pgoff_t index, pgoff_t end, int whence)
1915 {
1916 struct page *page;
1917 struct pagevec pvec;
1918 pgoff_t indices[PAGEVEC_SIZE];
1919 bool done = false;
1920 int i;
1921
1922 pagevec_init(&pvec, 0);
1923 pvec.nr = 1; /* start small: we may be there already */
1924 while (!done) {
1925 pvec.nr = find_get_entries(mapping, index,
1926 pvec.nr, pvec.pages, indices);
1927 if (!pvec.nr) {
1928 if (whence == SEEK_DATA)
1929 index = end;
1930 break;
1931 }
1932 for (i = 0; i < pvec.nr; i++, index++) {
1933 if (index < indices[i]) {
1934 if (whence == SEEK_HOLE) {
1935 done = true;
1936 break;
1937 }
1938 index = indices[i];
1939 }
1940 page = pvec.pages[i];
1941 if (page && !radix_tree_exceptional_entry(page)) {
1942 if (!PageUptodate(page))
1943 page = NULL;
1944 }
1945 if (index >= end ||
1946 (page && whence == SEEK_DATA) ||
1947 (!page && whence == SEEK_HOLE)) {
1948 done = true;
1949 break;
1950 }
1951 }
1952 pagevec_remove_exceptionals(&pvec);
1953 pagevec_release(&pvec);
1954 pvec.nr = PAGEVEC_SIZE;
1955 cond_resched();
1956 }
1957 return index;
1958 }
1959
1960 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1961 {
1962 struct address_space *mapping = file->f_mapping;
1963 struct inode *inode = mapping->host;
1964 pgoff_t start, end;
1965 loff_t new_offset;
1966
1967 if (whence != SEEK_DATA && whence != SEEK_HOLE)
1968 return generic_file_llseek_size(file, offset, whence,
1969 MAX_LFS_FILESIZE, i_size_read(inode));
1970 inode_lock(inode);
1971 /* We're holding i_mutex so we can access i_size directly */
1972
1973 if (offset < 0)
1974 offset = -EINVAL;
1975 else if (offset >= inode->i_size)
1976 offset = -ENXIO;
1977 else {
1978 start = offset >> PAGE_SHIFT;
1979 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1980 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1981 new_offset <<= PAGE_SHIFT;
1982 if (new_offset > offset) {
1983 if (new_offset < inode->i_size)
1984 offset = new_offset;
1985 else if (whence == SEEK_DATA)
1986 offset = -ENXIO;
1987 else
1988 offset = inode->i_size;
1989 }
1990 }
1991
1992 if (offset >= 0)
1993 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1994 inode_unlock(inode);
1995 return offset;
1996 }
1997
1998 /*
1999 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2000 * so reuse a tag which we firmly believe is never set or cleared on shmem.
2001 */
2002 #define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
2003 #define LAST_SCAN 4 /* about 150ms max */
2004
2005 static void shmem_tag_pins(struct address_space *mapping)
2006 {
2007 struct radix_tree_iter iter;
2008 void **slot;
2009 pgoff_t start;
2010 struct page *page;
2011
2012 lru_add_drain();
2013 start = 0;
2014 rcu_read_lock();
2015
2016 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
2017 page = radix_tree_deref_slot(slot);
2018 if (!page || radix_tree_exception(page)) {
2019 if (radix_tree_deref_retry(page)) {
2020 slot = radix_tree_iter_retry(&iter);
2021 continue;
2022 }
2023 } else if (page_count(page) - page_mapcount(page) > 1) {
2024 spin_lock_irq(&mapping->tree_lock);
2025 radix_tree_tag_set(&mapping->page_tree, iter.index,
2026 SHMEM_TAG_PINNED);
2027 spin_unlock_irq(&mapping->tree_lock);
2028 }
2029
2030 if (need_resched()) {
2031 cond_resched_rcu();
2032 slot = radix_tree_iter_next(&iter);
2033 }
2034 }
2035 rcu_read_unlock();
2036 }
2037
2038 /*
2039 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2040 * via get_user_pages(), drivers might have some pending I/O without any active
2041 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2042 * and see whether it has an elevated ref-count. If so, we tag them and wait for
2043 * them to be dropped.
2044 * The caller must guarantee that no new user will acquire writable references
2045 * to those pages to avoid races.
2046 */
2047 static int shmem_wait_for_pins(struct address_space *mapping)
2048 {
2049 struct radix_tree_iter iter;
2050 void **slot;
2051 pgoff_t start;
2052 struct page *page;
2053 int error, scan;
2054
2055 shmem_tag_pins(mapping);
2056
2057 error = 0;
2058 for (scan = 0; scan <= LAST_SCAN; scan++) {
2059 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
2060 break;
2061
2062 if (!scan)
2063 lru_add_drain_all();
2064 else if (schedule_timeout_killable((HZ << scan) / 200))
2065 scan = LAST_SCAN;
2066
2067 start = 0;
2068 rcu_read_lock();
2069 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
2070 start, SHMEM_TAG_PINNED) {
2071
2072 page = radix_tree_deref_slot(slot);
2073 if (radix_tree_exception(page)) {
2074 if (radix_tree_deref_retry(page)) {
2075 slot = radix_tree_iter_retry(&iter);
2076 continue;
2077 }
2078
2079 page = NULL;
2080 }
2081
2082 if (page &&
2083 page_count(page) - page_mapcount(page) != 1) {
2084 if (scan < LAST_SCAN)
2085 goto continue_resched;
2086
2087 /*
2088 * On the last scan, we clean up all those tags
2089 * we inserted; but make a note that we still
2090 * found pages pinned.
2091 */
2092 error = -EBUSY;
2093 }
2094
2095 spin_lock_irq(&mapping->tree_lock);
2096 radix_tree_tag_clear(&mapping->page_tree,
2097 iter.index, SHMEM_TAG_PINNED);
2098 spin_unlock_irq(&mapping->tree_lock);
2099 continue_resched:
2100 if (need_resched()) {
2101 cond_resched_rcu();
2102 slot = radix_tree_iter_next(&iter);
2103 }
2104 }
2105 rcu_read_unlock();
2106 }
2107
2108 return error;
2109 }
2110
2111 #define F_ALL_SEALS (F_SEAL_SEAL | \
2112 F_SEAL_SHRINK | \
2113 F_SEAL_GROW | \
2114 F_SEAL_WRITE)
2115
2116 int shmem_add_seals(struct file *file, unsigned int seals)
2117 {
2118 struct inode *inode = file_inode(file);
2119 struct shmem_inode_info *info = SHMEM_I(inode);
2120 int error;
2121
2122 /*
2123 * SEALING
2124 * Sealing allows multiple parties to share a shmem-file but restrict
2125 * access to a specific subset of file operations. Seals can only be
2126 * added, but never removed. This way, mutually untrusted parties can
2127 * share common memory regions with a well-defined policy. A malicious
2128 * peer can thus never perform unwanted operations on a shared object.
2129 *
2130 * Seals are only supported on special shmem-files and always affect
2131 * the whole underlying inode. Once a seal is set, it may prevent some
2132 * kinds of access to the file. Currently, the following seals are
2133 * defined:
2134 * SEAL_SEAL: Prevent further seals from being set on this file
2135 * SEAL_SHRINK: Prevent the file from shrinking
2136 * SEAL_GROW: Prevent the file from growing
2137 * SEAL_WRITE: Prevent write access to the file
2138 *
2139 * As we don't require any trust relationship between two parties, we
2140 * must prevent seals from being removed. Therefore, sealing a file
2141 * only adds a given set of seals to the file, it never touches
2142 * existing seals. Furthermore, the "setting seals"-operation can be
2143 * sealed itself, which basically prevents any further seal from being
2144 * added.
2145 *
2146 * Semantics of sealing are only defined on volatile files. Only
2147 * anonymous shmem files support sealing. More importantly, seals are
2148 * never written to disk. Therefore, there's no plan to support it on
2149 * other file types.
2150 */
2151
2152 if (file->f_op != &shmem_file_operations)
2153 return -EINVAL;
2154 if (!(file->f_mode & FMODE_WRITE))
2155 return -EPERM;
2156 if (seals & ~(unsigned int)F_ALL_SEALS)
2157 return -EINVAL;
2158
2159 inode_lock(inode);
2160
2161 if (info->seals & F_SEAL_SEAL) {
2162 error = -EPERM;
2163 goto unlock;
2164 }
2165
2166 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2167 error = mapping_deny_writable(file->f_mapping);
2168 if (error)
2169 goto unlock;
2170
2171 error = shmem_wait_for_pins(file->f_mapping);
2172 if (error) {
2173 mapping_allow_writable(file->f_mapping);
2174 goto unlock;
2175 }
2176 }
2177
2178 info->seals |= seals;
2179 error = 0;
2180
2181 unlock:
2182 inode_unlock(inode);
2183 return error;
2184 }
2185 EXPORT_SYMBOL_GPL(shmem_add_seals);
2186
2187 int shmem_get_seals(struct file *file)
2188 {
2189 if (file->f_op != &shmem_file_operations)
2190 return -EINVAL;
2191
2192 return SHMEM_I(file_inode(file))->seals;
2193 }
2194 EXPORT_SYMBOL_GPL(shmem_get_seals);
2195
2196 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2197 {
2198 long error;
2199
2200 switch (cmd) {
2201 case F_ADD_SEALS:
2202 /* disallow upper 32bit */
2203 if (arg > UINT_MAX)
2204 return -EINVAL;
2205
2206 error = shmem_add_seals(file, arg);
2207 break;
2208 case F_GET_SEALS:
2209 error = shmem_get_seals(file);
2210 break;
2211 default:
2212 error = -EINVAL;
2213 break;
2214 }
2215
2216 return error;
2217 }
2218
2219 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2220 loff_t len)
2221 {
2222 struct inode *inode = file_inode(file);
2223 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2224 struct shmem_inode_info *info = SHMEM_I(inode);
2225 struct shmem_falloc shmem_falloc;
2226 pgoff_t start, index, end;
2227 int error;
2228
2229 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2230 return -EOPNOTSUPP;
2231
2232 inode_lock(inode);
2233
2234 if (mode & FALLOC_FL_PUNCH_HOLE) {
2235 struct address_space *mapping = file->f_mapping;
2236 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2237 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2238 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2239
2240 /* protected by i_mutex */
2241 if (info->seals & F_SEAL_WRITE) {
2242 error = -EPERM;
2243 goto out;
2244 }
2245
2246 shmem_falloc.waitq = &shmem_falloc_waitq;
2247 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2248 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2249 spin_lock(&inode->i_lock);
2250 inode->i_private = &shmem_falloc;
2251 spin_unlock(&inode->i_lock);
2252
2253 if ((u64)unmap_end > (u64)unmap_start)
2254 unmap_mapping_range(mapping, unmap_start,
2255 1 + unmap_end - unmap_start, 0);
2256 shmem_truncate_range(inode, offset, offset + len - 1);
2257 /* No need to unmap again: hole-punching leaves COWed pages */
2258
2259 spin_lock(&inode->i_lock);
2260 inode->i_private = NULL;
2261 wake_up_all(&shmem_falloc_waitq);
2262 spin_unlock(&inode->i_lock);
2263 error = 0;
2264 goto out;
2265 }
2266
2267 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2268 error = inode_newsize_ok(inode, offset + len);
2269 if (error)
2270 goto out;
2271
2272 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2273 error = -EPERM;
2274 goto out;
2275 }
2276
2277 start = offset >> PAGE_SHIFT;
2278 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2279 /* Try to avoid a swapstorm if len is impossible to satisfy */
2280 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2281 error = -ENOSPC;
2282 goto out;
2283 }
2284
2285 shmem_falloc.waitq = NULL;
2286 shmem_falloc.start = start;
2287 shmem_falloc.next = start;
2288 shmem_falloc.nr_falloced = 0;
2289 shmem_falloc.nr_unswapped = 0;
2290 spin_lock(&inode->i_lock);
2291 inode->i_private = &shmem_falloc;
2292 spin_unlock(&inode->i_lock);
2293
2294 for (index = start; index < end; index++) {
2295 struct page *page;
2296
2297 /*
2298 * Good, the fallocate(2) manpage permits EINTR: we may have
2299 * been interrupted because we are using up too much memory.
2300 */
2301 if (signal_pending(current))
2302 error = -EINTR;
2303 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2304 error = -ENOMEM;
2305 else
2306 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2307 if (error) {
2308 /* Remove the !PageUptodate pages we added */
2309 if (index > start) {
2310 shmem_undo_range(inode,
2311 (loff_t)start << PAGE_SHIFT,
2312 ((loff_t)index << PAGE_SHIFT) - 1, true);
2313 }
2314 goto undone;
2315 }
2316
2317 /*
2318 * Inform shmem_writepage() how far we have reached.
2319 * No need for lock or barrier: we have the page lock.
2320 */
2321 shmem_falloc.next++;
2322 if (!PageUptodate(page))
2323 shmem_falloc.nr_falloced++;
2324
2325 /*
2326 * If !PageUptodate, leave it that way so that freeable pages
2327 * can be recognized if we need to rollback on error later.
2328 * But set_page_dirty so that memory pressure will swap rather
2329 * than free the pages we are allocating (and SGP_CACHE pages
2330 * might still be clean: we now need to mark those dirty too).
2331 */
2332 set_page_dirty(page);
2333 unlock_page(page);
2334 put_page(page);
2335 cond_resched();
2336 }
2337
2338 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2339 i_size_write(inode, offset + len);
2340 inode->i_ctime = CURRENT_TIME;
2341 undone:
2342 spin_lock(&inode->i_lock);
2343 inode->i_private = NULL;
2344 spin_unlock(&inode->i_lock);
2345 out:
2346 inode_unlock(inode);
2347 return error;
2348 }
2349
2350 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2351 {
2352 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2353
2354 buf->f_type = TMPFS_MAGIC;
2355 buf->f_bsize = PAGE_SIZE;
2356 buf->f_namelen = NAME_MAX;
2357 if (sbinfo->max_blocks) {
2358 buf->f_blocks = sbinfo->max_blocks;
2359 buf->f_bavail =
2360 buf->f_bfree = sbinfo->max_blocks -
2361 percpu_counter_sum(&sbinfo->used_blocks);
2362 }
2363 if (sbinfo->max_inodes) {
2364 buf->f_files = sbinfo->max_inodes;
2365 buf->f_ffree = sbinfo->free_inodes;
2366 }
2367 /* else leave those fields 0 like simple_statfs */
2368 return 0;
2369 }
2370
2371 /*
2372 * File creation. Allocate an inode, and we're done..
2373 */
2374 static int
2375 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2376 {
2377 struct inode *inode;
2378 int error = -ENOSPC;
2379
2380 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2381 if (inode) {
2382 error = simple_acl_create(dir, inode);
2383 if (error)
2384 goto out_iput;
2385 error = security_inode_init_security(inode, dir,
2386 &dentry->d_name,
2387 shmem_initxattrs, NULL);
2388 if (error && error != -EOPNOTSUPP)
2389 goto out_iput;
2390
2391 error = 0;
2392 dir->i_size += BOGO_DIRENT_SIZE;
2393 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2394 d_instantiate(dentry, inode);
2395 dget(dentry); /* Extra count - pin the dentry in core */
2396 }
2397 return error;
2398 out_iput:
2399 iput(inode);
2400 return error;
2401 }
2402
2403 static int
2404 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2405 {
2406 struct inode *inode;
2407 int error = -ENOSPC;
2408
2409 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2410 if (inode) {
2411 error = security_inode_init_security(inode, dir,
2412 NULL,
2413 shmem_initxattrs, NULL);
2414 if (error && error != -EOPNOTSUPP)
2415 goto out_iput;
2416 error = simple_acl_create(dir, inode);
2417 if (error)
2418 goto out_iput;
2419 d_tmpfile(dentry, inode);
2420 }
2421 return error;
2422 out_iput:
2423 iput(inode);
2424 return error;
2425 }
2426
2427 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2428 {
2429 int error;
2430
2431 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2432 return error;
2433 inc_nlink(dir);
2434 return 0;
2435 }
2436
2437 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2438 bool excl)
2439 {
2440 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2441 }
2442
2443 /*
2444 * Link a file..
2445 */
2446 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2447 {
2448 struct inode *inode = d_inode(old_dentry);
2449 int ret;
2450
2451 /*
2452 * No ordinary (disk based) filesystem counts links as inodes;
2453 * but each new link needs a new dentry, pinning lowmem, and
2454 * tmpfs dentries cannot be pruned until they are unlinked.
2455 */
2456 ret = shmem_reserve_inode(inode->i_sb);
2457 if (ret)
2458 goto out;
2459
2460 dir->i_size += BOGO_DIRENT_SIZE;
2461 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2462 inc_nlink(inode);
2463 ihold(inode); /* New dentry reference */
2464 dget(dentry); /* Extra pinning count for the created dentry */
2465 d_instantiate(dentry, inode);
2466 out:
2467 return ret;
2468 }
2469
2470 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2471 {
2472 struct inode *inode = d_inode(dentry);
2473
2474 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2475 shmem_free_inode(inode->i_sb);
2476
2477 dir->i_size -= BOGO_DIRENT_SIZE;
2478 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2479 drop_nlink(inode);
2480 dput(dentry); /* Undo the count from "create" - this does all the work */
2481 return 0;
2482 }
2483
2484 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2485 {
2486 if (!simple_empty(dentry))
2487 return -ENOTEMPTY;
2488
2489 drop_nlink(d_inode(dentry));
2490 drop_nlink(dir);
2491 return shmem_unlink(dir, dentry);
2492 }
2493
2494 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2495 {
2496 bool old_is_dir = d_is_dir(old_dentry);
2497 bool new_is_dir = d_is_dir(new_dentry);
2498
2499 if (old_dir != new_dir && old_is_dir != new_is_dir) {
2500 if (old_is_dir) {
2501 drop_nlink(old_dir);
2502 inc_nlink(new_dir);
2503 } else {
2504 drop_nlink(new_dir);
2505 inc_nlink(old_dir);
2506 }
2507 }
2508 old_dir->i_ctime = old_dir->i_mtime =
2509 new_dir->i_ctime = new_dir->i_mtime =
2510 d_inode(old_dentry)->i_ctime =
2511 d_inode(new_dentry)->i_ctime = CURRENT_TIME;
2512
2513 return 0;
2514 }
2515
2516 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2517 {
2518 struct dentry *whiteout;
2519 int error;
2520
2521 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2522 if (!whiteout)
2523 return -ENOMEM;
2524
2525 error = shmem_mknod(old_dir, whiteout,
2526 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2527 dput(whiteout);
2528 if (error)
2529 return error;
2530
2531 /*
2532 * Cheat and hash the whiteout while the old dentry is still in
2533 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2534 *
2535 * d_lookup() will consistently find one of them at this point,
2536 * not sure which one, but that isn't even important.
2537 */
2538 d_rehash(whiteout);
2539 return 0;
2540 }
2541
2542 /*
2543 * The VFS layer already does all the dentry stuff for rename,
2544 * we just have to decrement the usage count for the target if
2545 * it exists so that the VFS layer correctly free's it when it
2546 * gets overwritten.
2547 */
2548 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
2549 {
2550 struct inode *inode = d_inode(old_dentry);
2551 int they_are_dirs = S_ISDIR(inode->i_mode);
2552
2553 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2554 return -EINVAL;
2555
2556 if (flags & RENAME_EXCHANGE)
2557 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2558
2559 if (!simple_empty(new_dentry))
2560 return -ENOTEMPTY;
2561
2562 if (flags & RENAME_WHITEOUT) {
2563 int error;
2564
2565 error = shmem_whiteout(old_dir, old_dentry);
2566 if (error)
2567 return error;
2568 }
2569
2570 if (d_really_is_positive(new_dentry)) {
2571 (void) shmem_unlink(new_dir, new_dentry);
2572 if (they_are_dirs) {
2573 drop_nlink(d_inode(new_dentry));
2574 drop_nlink(old_dir);
2575 }
2576 } else if (they_are_dirs) {
2577 drop_nlink(old_dir);
2578 inc_nlink(new_dir);
2579 }
2580
2581 old_dir->i_size -= BOGO_DIRENT_SIZE;
2582 new_dir->i_size += BOGO_DIRENT_SIZE;
2583 old_dir->i_ctime = old_dir->i_mtime =
2584 new_dir->i_ctime = new_dir->i_mtime =
2585 inode->i_ctime = CURRENT_TIME;
2586 return 0;
2587 }
2588
2589 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2590 {
2591 int error;
2592 int len;
2593 struct inode *inode;
2594 struct page *page;
2595 struct shmem_inode_info *info;
2596
2597 len = strlen(symname) + 1;
2598 if (len > PAGE_SIZE)
2599 return -ENAMETOOLONG;
2600
2601 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2602 if (!inode)
2603 return -ENOSPC;
2604
2605 error = security_inode_init_security(inode, dir, &dentry->d_name,
2606 shmem_initxattrs, NULL);
2607 if (error) {
2608 if (error != -EOPNOTSUPP) {
2609 iput(inode);
2610 return error;
2611 }
2612 error = 0;
2613 }
2614
2615 info = SHMEM_I(inode);
2616 inode->i_size = len-1;
2617 if (len <= SHORT_SYMLINK_LEN) {
2618 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
2619 if (!inode->i_link) {
2620 iput(inode);
2621 return -ENOMEM;
2622 }
2623 inode->i_op = &shmem_short_symlink_operations;
2624 } else {
2625 inode_nohighmem(inode);
2626 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
2627 if (error) {
2628 iput(inode);
2629 return error;
2630 }
2631 inode->i_mapping->a_ops = &shmem_aops;
2632 inode->i_op = &shmem_symlink_inode_operations;
2633 memcpy(page_address(page), symname, len);
2634 SetPageUptodate(page);
2635 set_page_dirty(page);
2636 unlock_page(page);
2637 put_page(page);
2638 }
2639 dir->i_size += BOGO_DIRENT_SIZE;
2640 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2641 d_instantiate(dentry, inode);
2642 dget(dentry);
2643 return 0;
2644 }
2645
2646 static void shmem_put_link(void *arg)
2647 {
2648 mark_page_accessed(arg);
2649 put_page(arg);
2650 }
2651
2652 static const char *shmem_get_link(struct dentry *dentry,
2653 struct inode *inode,
2654 struct delayed_call *done)
2655 {
2656 struct page *page = NULL;
2657 int error;
2658 if (!dentry) {
2659 page = find_get_page(inode->i_mapping, 0);
2660 if (!page)
2661 return ERR_PTR(-ECHILD);
2662 if (!PageUptodate(page)) {
2663 put_page(page);
2664 return ERR_PTR(-ECHILD);
2665 }
2666 } else {
2667 error = shmem_getpage(inode, 0, &page, SGP_READ);
2668 if (error)
2669 return ERR_PTR(error);
2670 unlock_page(page);
2671 }
2672 set_delayed_call(done, shmem_put_link, page);
2673 return page_address(page);
2674 }
2675
2676 #ifdef CONFIG_TMPFS_XATTR
2677 /*
2678 * Superblocks without xattr inode operations may get some security.* xattr
2679 * support from the LSM "for free". As soon as we have any other xattrs
2680 * like ACLs, we also need to implement the security.* handlers at
2681 * filesystem level, though.
2682 */
2683
2684 /*
2685 * Callback for security_inode_init_security() for acquiring xattrs.
2686 */
2687 static int shmem_initxattrs(struct inode *inode,
2688 const struct xattr *xattr_array,
2689 void *fs_info)
2690 {
2691 struct shmem_inode_info *info = SHMEM_I(inode);
2692 const struct xattr *xattr;
2693 struct simple_xattr *new_xattr;
2694 size_t len;
2695
2696 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2697 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2698 if (!new_xattr)
2699 return -ENOMEM;
2700
2701 len = strlen(xattr->name) + 1;
2702 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2703 GFP_KERNEL);
2704 if (!new_xattr->name) {
2705 kfree(new_xattr);
2706 return -ENOMEM;
2707 }
2708
2709 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2710 XATTR_SECURITY_PREFIX_LEN);
2711 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2712 xattr->name, len);
2713
2714 simple_xattr_list_add(&info->xattrs, new_xattr);
2715 }
2716
2717 return 0;
2718 }
2719
2720 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
2721 struct dentry *unused, struct inode *inode,
2722 const char *name, void *buffer, size_t size)
2723 {
2724 struct shmem_inode_info *info = SHMEM_I(inode);
2725
2726 name = xattr_full_name(handler, name);
2727 return simple_xattr_get(&info->xattrs, name, buffer, size);
2728 }
2729
2730 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
2731 struct dentry *unused, struct inode *inode,
2732 const char *name, const void *value,
2733 size_t size, int flags)
2734 {
2735 struct shmem_inode_info *info = SHMEM_I(inode);
2736
2737 name = xattr_full_name(handler, name);
2738 return simple_xattr_set(&info->xattrs, name, value, size, flags);
2739 }
2740
2741 static const struct xattr_handler shmem_security_xattr_handler = {
2742 .prefix = XATTR_SECURITY_PREFIX,
2743 .get = shmem_xattr_handler_get,
2744 .set = shmem_xattr_handler_set,
2745 };
2746
2747 static const struct xattr_handler shmem_trusted_xattr_handler = {
2748 .prefix = XATTR_TRUSTED_PREFIX,
2749 .get = shmem_xattr_handler_get,
2750 .set = shmem_xattr_handler_set,
2751 };
2752
2753 static const struct xattr_handler *shmem_xattr_handlers[] = {
2754 #ifdef CONFIG_TMPFS_POSIX_ACL
2755 &posix_acl_access_xattr_handler,
2756 &posix_acl_default_xattr_handler,
2757 #endif
2758 &shmem_security_xattr_handler,
2759 &shmem_trusted_xattr_handler,
2760 NULL
2761 };
2762
2763 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2764 {
2765 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2766 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
2767 }
2768 #endif /* CONFIG_TMPFS_XATTR */
2769
2770 static const struct inode_operations shmem_short_symlink_operations = {
2771 .readlink = generic_readlink,
2772 .get_link = simple_get_link,
2773 #ifdef CONFIG_TMPFS_XATTR
2774 .setxattr = generic_setxattr,
2775 .getxattr = generic_getxattr,
2776 .listxattr = shmem_listxattr,
2777 .removexattr = generic_removexattr,
2778 #endif
2779 };
2780
2781 static const struct inode_operations shmem_symlink_inode_operations = {
2782 .readlink = generic_readlink,
2783 .get_link = shmem_get_link,
2784 #ifdef CONFIG_TMPFS_XATTR
2785 .setxattr = generic_setxattr,
2786 .getxattr = generic_getxattr,
2787 .listxattr = shmem_listxattr,
2788 .removexattr = generic_removexattr,
2789 #endif
2790 };
2791
2792 static struct dentry *shmem_get_parent(struct dentry *child)
2793 {
2794 return ERR_PTR(-ESTALE);
2795 }
2796
2797 static int shmem_match(struct inode *ino, void *vfh)
2798 {
2799 __u32 *fh = vfh;
2800 __u64 inum = fh[2];
2801 inum = (inum << 32) | fh[1];
2802 return ino->i_ino == inum && fh[0] == ino->i_generation;
2803 }
2804
2805 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2806 struct fid *fid, int fh_len, int fh_type)
2807 {
2808 struct inode *inode;
2809 struct dentry *dentry = NULL;
2810 u64 inum;
2811
2812 if (fh_len < 3)
2813 return NULL;
2814
2815 inum = fid->raw[2];
2816 inum = (inum << 32) | fid->raw[1];
2817
2818 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2819 shmem_match, fid->raw);
2820 if (inode) {
2821 dentry = d_find_alias(inode);
2822 iput(inode);
2823 }
2824
2825 return dentry;
2826 }
2827
2828 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2829 struct inode *parent)
2830 {
2831 if (*len < 3) {
2832 *len = 3;
2833 return FILEID_INVALID;
2834 }
2835
2836 if (inode_unhashed(inode)) {
2837 /* Unfortunately insert_inode_hash is not idempotent,
2838 * so as we hash inodes here rather than at creation
2839 * time, we need a lock to ensure we only try
2840 * to do it once
2841 */
2842 static DEFINE_SPINLOCK(lock);
2843 spin_lock(&lock);
2844 if (inode_unhashed(inode))
2845 __insert_inode_hash(inode,
2846 inode->i_ino + inode->i_generation);
2847 spin_unlock(&lock);
2848 }
2849
2850 fh[0] = inode->i_generation;
2851 fh[1] = inode->i_ino;
2852 fh[2] = ((__u64)inode->i_ino) >> 32;
2853
2854 *len = 3;
2855 return 1;
2856 }
2857
2858 static const struct export_operations shmem_export_ops = {
2859 .get_parent = shmem_get_parent,
2860 .encode_fh = shmem_encode_fh,
2861 .fh_to_dentry = shmem_fh_to_dentry,
2862 };
2863
2864 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2865 bool remount)
2866 {
2867 char *this_char, *value, *rest;
2868 struct mempolicy *mpol = NULL;
2869 uid_t uid;
2870 gid_t gid;
2871
2872 while (options != NULL) {
2873 this_char = options;
2874 for (;;) {
2875 /*
2876 * NUL-terminate this option: unfortunately,
2877 * mount options form a comma-separated list,
2878 * but mpol's nodelist may also contain commas.
2879 */
2880 options = strchr(options, ',');
2881 if (options == NULL)
2882 break;
2883 options++;
2884 if (!isdigit(*options)) {
2885 options[-1] = '\0';
2886 break;
2887 }
2888 }
2889 if (!*this_char)
2890 continue;
2891 if ((value = strchr(this_char,'=')) != NULL) {
2892 *value++ = 0;
2893 } else {
2894 pr_err("tmpfs: No value for mount option '%s'\n",
2895 this_char);
2896 goto error;
2897 }
2898
2899 if (!strcmp(this_char,"size")) {
2900 unsigned long long size;
2901 size = memparse(value,&rest);
2902 if (*rest == '%') {
2903 size <<= PAGE_SHIFT;
2904 size *= totalram_pages;
2905 do_div(size, 100);
2906 rest++;
2907 }
2908 if (*rest)
2909 goto bad_val;
2910 sbinfo->max_blocks =
2911 DIV_ROUND_UP(size, PAGE_SIZE);
2912 } else if (!strcmp(this_char,"nr_blocks")) {
2913 sbinfo->max_blocks = memparse(value, &rest);
2914 if (*rest)
2915 goto bad_val;
2916 } else if (!strcmp(this_char,"nr_inodes")) {
2917 sbinfo->max_inodes = memparse(value, &rest);
2918 if (*rest)
2919 goto bad_val;
2920 } else if (!strcmp(this_char,"mode")) {
2921 if (remount)
2922 continue;
2923 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2924 if (*rest)
2925 goto bad_val;
2926 } else if (!strcmp(this_char,"uid")) {
2927 if (remount)
2928 continue;
2929 uid = simple_strtoul(value, &rest, 0);
2930 if (*rest)
2931 goto bad_val;
2932 sbinfo->uid = make_kuid(current_user_ns(), uid);
2933 if (!uid_valid(sbinfo->uid))
2934 goto bad_val;
2935 } else if (!strcmp(this_char,"gid")) {
2936 if (remount)
2937 continue;
2938 gid = simple_strtoul(value, &rest, 0);
2939 if (*rest)
2940 goto bad_val;
2941 sbinfo->gid = make_kgid(current_user_ns(), gid);
2942 if (!gid_valid(sbinfo->gid))
2943 goto bad_val;
2944 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2945 } else if (!strcmp(this_char, "huge")) {
2946 int huge;
2947 huge = shmem_parse_huge(value);
2948 if (huge < 0)
2949 goto bad_val;
2950 if (!has_transparent_hugepage() &&
2951 huge != SHMEM_HUGE_NEVER)
2952 goto bad_val;
2953 sbinfo->huge = huge;
2954 #endif
2955 #ifdef CONFIG_NUMA
2956 } else if (!strcmp(this_char,"mpol")) {
2957 mpol_put(mpol);
2958 mpol = NULL;
2959 if (mpol_parse_str(value, &mpol))
2960 goto bad_val;
2961 #endif
2962 } else {
2963 pr_err("tmpfs: Bad mount option %s\n", this_char);
2964 goto error;
2965 }
2966 }
2967 sbinfo->mpol = mpol;
2968 return 0;
2969
2970 bad_val:
2971 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
2972 value, this_char);
2973 error:
2974 mpol_put(mpol);
2975 return 1;
2976
2977 }
2978
2979 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2980 {
2981 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2982 struct shmem_sb_info config = *sbinfo;
2983 unsigned long inodes;
2984 int error = -EINVAL;
2985
2986 config.mpol = NULL;
2987 if (shmem_parse_options(data, &config, true))
2988 return error;
2989
2990 spin_lock(&sbinfo->stat_lock);
2991 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2992 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2993 goto out;
2994 if (config.max_inodes < inodes)
2995 goto out;
2996 /*
2997 * Those tests disallow limited->unlimited while any are in use;
2998 * but we must separately disallow unlimited->limited, because
2999 * in that case we have no record of how much is already in use.
3000 */
3001 if (config.max_blocks && !sbinfo->max_blocks)
3002 goto out;
3003 if (config.max_inodes && !sbinfo->max_inodes)
3004 goto out;
3005
3006 error = 0;
3007 sbinfo->huge = config.huge;
3008 sbinfo->max_blocks = config.max_blocks;
3009 sbinfo->max_inodes = config.max_inodes;
3010 sbinfo->free_inodes = config.max_inodes - inodes;
3011
3012 /*
3013 * Preserve previous mempolicy unless mpol remount option was specified.
3014 */
3015 if (config.mpol) {
3016 mpol_put(sbinfo->mpol);
3017 sbinfo->mpol = config.mpol; /* transfers initial ref */
3018 }
3019 out:
3020 spin_unlock(&sbinfo->stat_lock);
3021 return error;
3022 }
3023
3024 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3025 {
3026 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3027
3028 if (sbinfo->max_blocks != shmem_default_max_blocks())
3029 seq_printf(seq, ",size=%luk",
3030 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3031 if (sbinfo->max_inodes != shmem_default_max_inodes())
3032 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3033 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
3034 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3035 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3036 seq_printf(seq, ",uid=%u",
3037 from_kuid_munged(&init_user_ns, sbinfo->uid));
3038 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3039 seq_printf(seq, ",gid=%u",
3040 from_kgid_munged(&init_user_ns, sbinfo->gid));
3041 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3042 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3043 if (sbinfo->huge)
3044 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3045 #endif
3046 shmem_show_mpol(seq, sbinfo->mpol);
3047 return 0;
3048 }
3049
3050 #define MFD_NAME_PREFIX "memfd:"
3051 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3052 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3053
3054 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
3055
3056 SYSCALL_DEFINE2(memfd_create,
3057 const char __user *, uname,
3058 unsigned int, flags)
3059 {
3060 struct shmem_inode_info *info;
3061 struct file *file;
3062 int fd, error;
3063 char *name;
3064 long len;
3065
3066 if (flags & ~(unsigned int)MFD_ALL_FLAGS)
3067 return -EINVAL;
3068
3069 /* length includes terminating zero */
3070 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
3071 if (len <= 0)
3072 return -EFAULT;
3073 if (len > MFD_NAME_MAX_LEN + 1)
3074 return -EINVAL;
3075
3076 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
3077 if (!name)
3078 return -ENOMEM;
3079
3080 strcpy(name, MFD_NAME_PREFIX);
3081 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
3082 error = -EFAULT;
3083 goto err_name;
3084 }
3085
3086 /* terminating-zero may have changed after strnlen_user() returned */
3087 if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3088 error = -EFAULT;
3089 goto err_name;
3090 }
3091
3092 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3093 if (fd < 0) {
3094 error = fd;
3095 goto err_name;
3096 }
3097
3098 file = shmem_file_setup(name, 0, VM_NORESERVE);
3099 if (IS_ERR(file)) {
3100 error = PTR_ERR(file);
3101 goto err_fd;
3102 }
3103 info = SHMEM_I(file_inode(file));
3104 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3105 file->f_flags |= O_RDWR | O_LARGEFILE;
3106 if (flags & MFD_ALLOW_SEALING)
3107 info->seals &= ~F_SEAL_SEAL;
3108
3109 fd_install(fd, file);
3110 kfree(name);
3111 return fd;
3112
3113 err_fd:
3114 put_unused_fd(fd);
3115 err_name:
3116 kfree(name);
3117 return error;
3118 }
3119
3120 #endif /* CONFIG_TMPFS */
3121
3122 static void shmem_put_super(struct super_block *sb)
3123 {
3124 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3125
3126 percpu_counter_destroy(&sbinfo->used_blocks);
3127 mpol_put(sbinfo->mpol);
3128 kfree(sbinfo);
3129 sb->s_fs_info = NULL;
3130 }
3131
3132 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3133 {
3134 struct inode *inode;
3135 struct shmem_sb_info *sbinfo;
3136 int err = -ENOMEM;
3137
3138 /* Round up to L1_CACHE_BYTES to resist false sharing */
3139 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3140 L1_CACHE_BYTES), GFP_KERNEL);
3141 if (!sbinfo)
3142 return -ENOMEM;
3143
3144 sbinfo->mode = S_IRWXUGO | S_ISVTX;
3145 sbinfo->uid = current_fsuid();
3146 sbinfo->gid = current_fsgid();
3147 sb->s_fs_info = sbinfo;
3148
3149 #ifdef CONFIG_TMPFS
3150 /*
3151 * Per default we only allow half of the physical ram per
3152 * tmpfs instance, limiting inodes to one per page of lowmem;
3153 * but the internal instance is left unlimited.
3154 */
3155 if (!(sb->s_flags & MS_KERNMOUNT)) {
3156 sbinfo->max_blocks = shmem_default_max_blocks();
3157 sbinfo->max_inodes = shmem_default_max_inodes();
3158 if (shmem_parse_options(data, sbinfo, false)) {
3159 err = -EINVAL;
3160 goto failed;
3161 }
3162 } else {
3163 sb->s_flags |= MS_NOUSER;
3164 }
3165 sb->s_export_op = &shmem_export_ops;
3166 sb->s_flags |= MS_NOSEC;
3167 #else
3168 sb->s_flags |= MS_NOUSER;
3169 #endif
3170
3171 spin_lock_init(&sbinfo->stat_lock);
3172 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3173 goto failed;
3174 sbinfo->free_inodes = sbinfo->max_inodes;
3175
3176 sb->s_maxbytes = MAX_LFS_FILESIZE;
3177 sb->s_blocksize = PAGE_SIZE;
3178 sb->s_blocksize_bits = PAGE_SHIFT;
3179 sb->s_magic = TMPFS_MAGIC;
3180 sb->s_op = &shmem_ops;
3181 sb->s_time_gran = 1;
3182 #ifdef CONFIG_TMPFS_XATTR
3183 sb->s_xattr = shmem_xattr_handlers;
3184 #endif
3185 #ifdef CONFIG_TMPFS_POSIX_ACL
3186 sb->s_flags |= MS_POSIXACL;
3187 #endif
3188
3189 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3190 if (!inode)
3191 goto failed;
3192 inode->i_uid = sbinfo->uid;
3193 inode->i_gid = sbinfo->gid;
3194 sb->s_root = d_make_root(inode);
3195 if (!sb->s_root)
3196 goto failed;
3197 return 0;
3198
3199 failed:
3200 shmem_put_super(sb);
3201 return err;
3202 }
3203
3204 static struct kmem_cache *shmem_inode_cachep;
3205
3206 static struct inode *shmem_alloc_inode(struct super_block *sb)
3207 {
3208 struct shmem_inode_info *info;
3209 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3210 if (!info)
3211 return NULL;
3212 return &info->vfs_inode;
3213 }
3214
3215 static void shmem_destroy_callback(struct rcu_head *head)
3216 {
3217 struct inode *inode = container_of(head, struct inode, i_rcu);
3218 if (S_ISLNK(inode->i_mode))
3219 kfree(inode->i_link);
3220 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3221 }
3222
3223 static void shmem_destroy_inode(struct inode *inode)
3224 {
3225 if (S_ISREG(inode->i_mode))
3226 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3227 call_rcu(&inode->i_rcu, shmem_destroy_callback);
3228 }
3229
3230 static void shmem_init_inode(void *foo)
3231 {
3232 struct shmem_inode_info *info = foo;
3233 inode_init_once(&info->vfs_inode);
3234 }
3235
3236 static int shmem_init_inodecache(void)
3237 {
3238 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3239 sizeof(struct shmem_inode_info),
3240 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3241 return 0;
3242 }
3243
3244 static void shmem_destroy_inodecache(void)
3245 {
3246 kmem_cache_destroy(shmem_inode_cachep);
3247 }
3248
3249 static const struct address_space_operations shmem_aops = {
3250 .writepage = shmem_writepage,
3251 .set_page_dirty = __set_page_dirty_no_writeback,
3252 #ifdef CONFIG_TMPFS
3253 .write_begin = shmem_write_begin,
3254 .write_end = shmem_write_end,
3255 #endif
3256 #ifdef CONFIG_MIGRATION
3257 .migratepage = migrate_page,
3258 #endif
3259 .error_remove_page = generic_error_remove_page,
3260 };
3261
3262 static const struct file_operations shmem_file_operations = {
3263 .mmap = shmem_mmap,
3264 #ifdef CONFIG_TMPFS
3265 .llseek = shmem_file_llseek,
3266 .read_iter = shmem_file_read_iter,
3267 .write_iter = generic_file_write_iter,
3268 .fsync = noop_fsync,
3269 .splice_read = shmem_file_splice_read,
3270 .splice_write = iter_file_splice_write,
3271 .fallocate = shmem_fallocate,
3272 #endif
3273 };
3274
3275 static const struct inode_operations shmem_inode_operations = {
3276 .getattr = shmem_getattr,
3277 .setattr = shmem_setattr,
3278 #ifdef CONFIG_TMPFS_XATTR
3279 .setxattr = generic_setxattr,
3280 .getxattr = generic_getxattr,
3281 .listxattr = shmem_listxattr,
3282 .removexattr = generic_removexattr,
3283 .set_acl = simple_set_acl,
3284 #endif
3285 };
3286
3287 static const struct inode_operations shmem_dir_inode_operations = {
3288 #ifdef CONFIG_TMPFS
3289 .create = shmem_create,
3290 .lookup = simple_lookup,
3291 .link = shmem_link,
3292 .unlink = shmem_unlink,
3293 .symlink = shmem_symlink,
3294 .mkdir = shmem_mkdir,
3295 .rmdir = shmem_rmdir,
3296 .mknod = shmem_mknod,
3297 .rename2 = shmem_rename2,
3298 .tmpfile = shmem_tmpfile,
3299 #endif
3300 #ifdef CONFIG_TMPFS_XATTR
3301 .setxattr = generic_setxattr,
3302 .getxattr = generic_getxattr,
3303 .listxattr = shmem_listxattr,
3304 .removexattr = generic_removexattr,
3305 #endif
3306 #ifdef CONFIG_TMPFS_POSIX_ACL
3307 .setattr = shmem_setattr,
3308 .set_acl = simple_set_acl,
3309 #endif
3310 };
3311
3312 static const struct inode_operations shmem_special_inode_operations = {
3313 #ifdef CONFIG_TMPFS_XATTR
3314 .setxattr = generic_setxattr,
3315 .getxattr = generic_getxattr,
3316 .listxattr = shmem_listxattr,
3317 .removexattr = generic_removexattr,
3318 #endif
3319 #ifdef CONFIG_TMPFS_POSIX_ACL
3320 .setattr = shmem_setattr,
3321 .set_acl = simple_set_acl,
3322 #endif
3323 };
3324
3325 static const struct super_operations shmem_ops = {
3326 .alloc_inode = shmem_alloc_inode,
3327 .destroy_inode = shmem_destroy_inode,
3328 #ifdef CONFIG_TMPFS
3329 .statfs = shmem_statfs,
3330 .remount_fs = shmem_remount_fs,
3331 .show_options = shmem_show_options,
3332 #endif
3333 .evict_inode = shmem_evict_inode,
3334 .drop_inode = generic_delete_inode,
3335 .put_super = shmem_put_super,
3336 };
3337
3338 static const struct vm_operations_struct shmem_vm_ops = {
3339 .fault = shmem_fault,
3340 .map_pages = filemap_map_pages,
3341 #ifdef CONFIG_NUMA
3342 .set_policy = shmem_set_policy,
3343 .get_policy = shmem_get_policy,
3344 #endif
3345 };
3346
3347 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3348 int flags, const char *dev_name, void *data)
3349 {
3350 return mount_nodev(fs_type, flags, data, shmem_fill_super);
3351 }
3352
3353 static struct file_system_type shmem_fs_type = {
3354 .owner = THIS_MODULE,
3355 .name = "tmpfs",
3356 .mount = shmem_mount,
3357 .kill_sb = kill_litter_super,
3358 .fs_flags = FS_USERNS_MOUNT,
3359 };
3360
3361 int __init shmem_init(void)
3362 {
3363 int error;
3364
3365 /* If rootfs called this, don't re-init */
3366 if (shmem_inode_cachep)
3367 return 0;
3368
3369 error = shmem_init_inodecache();
3370 if (error)
3371 goto out3;
3372
3373 error = register_filesystem(&shmem_fs_type);
3374 if (error) {
3375 pr_err("Could not register tmpfs\n");
3376 goto out2;
3377 }
3378
3379 shm_mnt = kern_mount(&shmem_fs_type);
3380 if (IS_ERR(shm_mnt)) {
3381 error = PTR_ERR(shm_mnt);
3382 pr_err("Could not kern_mount tmpfs\n");
3383 goto out1;
3384 }
3385
3386 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3387 if (has_transparent_hugepage() && shmem_huge < SHMEM_HUGE_DENY)
3388 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3389 else
3390 shmem_huge = 0; /* just in case it was patched */
3391 #endif
3392 return 0;
3393
3394 out1:
3395 unregister_filesystem(&shmem_fs_type);
3396 out2:
3397 shmem_destroy_inodecache();
3398 out3:
3399 shm_mnt = ERR_PTR(error);
3400 return error;
3401 }
3402
3403 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
3404 static ssize_t shmem_enabled_show(struct kobject *kobj,
3405 struct kobj_attribute *attr, char *buf)
3406 {
3407 int values[] = {
3408 SHMEM_HUGE_ALWAYS,
3409 SHMEM_HUGE_WITHIN_SIZE,
3410 SHMEM_HUGE_ADVISE,
3411 SHMEM_HUGE_NEVER,
3412 SHMEM_HUGE_DENY,
3413 SHMEM_HUGE_FORCE,
3414 };
3415 int i, count;
3416
3417 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3418 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3419
3420 count += sprintf(buf + count, fmt,
3421 shmem_format_huge(values[i]));
3422 }
3423 buf[count - 1] = '\n';
3424 return count;
3425 }
3426
3427 static ssize_t shmem_enabled_store(struct kobject *kobj,
3428 struct kobj_attribute *attr, const char *buf, size_t count)
3429 {
3430 char tmp[16];
3431 int huge;
3432
3433 if (count + 1 > sizeof(tmp))
3434 return -EINVAL;
3435 memcpy(tmp, buf, count);
3436 tmp[count] = '\0';
3437 if (count && tmp[count - 1] == '\n')
3438 tmp[count - 1] = '\0';
3439
3440 huge = shmem_parse_huge(tmp);
3441 if (huge == -EINVAL)
3442 return -EINVAL;
3443 if (!has_transparent_hugepage() &&
3444 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3445 return -EINVAL;
3446
3447 shmem_huge = huge;
3448 if (shmem_huge < SHMEM_HUGE_DENY)
3449 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3450 return count;
3451 }
3452
3453 struct kobj_attribute shmem_enabled_attr =
3454 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3455 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
3456
3457 #else /* !CONFIG_SHMEM */
3458
3459 /*
3460 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3461 *
3462 * This is intended for small system where the benefits of the full
3463 * shmem code (swap-backed and resource-limited) are outweighed by
3464 * their complexity. On systems without swap this code should be
3465 * effectively equivalent, but much lighter weight.
3466 */
3467
3468 static struct file_system_type shmem_fs_type = {
3469 .name = "tmpfs",
3470 .mount = ramfs_mount,
3471 .kill_sb = kill_litter_super,
3472 .fs_flags = FS_USERNS_MOUNT,
3473 };
3474
3475 int __init shmem_init(void)
3476 {
3477 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3478
3479 shm_mnt = kern_mount(&shmem_fs_type);
3480 BUG_ON(IS_ERR(shm_mnt));
3481
3482 return 0;
3483 }
3484
3485 int shmem_unuse(swp_entry_t swap, struct page *page)
3486 {
3487 return 0;
3488 }
3489
3490 int shmem_lock(struct file *file, int lock, struct user_struct *user)
3491 {
3492 return 0;
3493 }
3494
3495 void shmem_unlock_mapping(struct address_space *mapping)
3496 {
3497 }
3498
3499 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3500 {
3501 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3502 }
3503 EXPORT_SYMBOL_GPL(shmem_truncate_range);
3504
3505 #define shmem_vm_ops generic_file_vm_ops
3506 #define shmem_file_operations ramfs_file_operations
3507 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
3508 #define shmem_acct_size(flags, size) 0
3509 #define shmem_unacct_size(flags, size) do {} while (0)
3510
3511 #endif /* CONFIG_SHMEM */
3512
3513 /* common code */
3514
3515 static struct dentry_operations anon_ops = {
3516 .d_dname = simple_dname
3517 };
3518
3519 static struct file *__shmem_file_setup(const char *name, loff_t size,
3520 unsigned long flags, unsigned int i_flags)
3521 {
3522 struct file *res;
3523 struct inode *inode;
3524 struct path path;
3525 struct super_block *sb;
3526 struct qstr this;
3527
3528 if (IS_ERR(shm_mnt))
3529 return ERR_CAST(shm_mnt);
3530
3531 if (size < 0 || size > MAX_LFS_FILESIZE)
3532 return ERR_PTR(-EINVAL);
3533
3534 if (shmem_acct_size(flags, size))
3535 return ERR_PTR(-ENOMEM);
3536
3537 res = ERR_PTR(-ENOMEM);
3538 this.name = name;
3539 this.len = strlen(name);
3540 this.hash = 0; /* will go */
3541 sb = shm_mnt->mnt_sb;
3542 path.mnt = mntget(shm_mnt);
3543 path.dentry = d_alloc_pseudo(sb, &this);
3544 if (!path.dentry)
3545 goto put_memory;
3546 d_set_d_op(path.dentry, &anon_ops);
3547
3548 res = ERR_PTR(-ENOSPC);
3549 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
3550 if (!inode)
3551 goto put_memory;
3552
3553 inode->i_flags |= i_flags;
3554 d_instantiate(path.dentry, inode);
3555 inode->i_size = size;
3556 clear_nlink(inode); /* It is unlinked */
3557 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3558 if (IS_ERR(res))
3559 goto put_path;
3560
3561 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3562 &shmem_file_operations);
3563 if (IS_ERR(res))
3564 goto put_path;
3565
3566 return res;
3567
3568 put_memory:
3569 shmem_unacct_size(flags, size);
3570 put_path:
3571 path_put(&path);
3572 return res;
3573 }
3574
3575 /**
3576 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3577 * kernel internal. There will be NO LSM permission checks against the
3578 * underlying inode. So users of this interface must do LSM checks at a
3579 * higher layer. The users are the big_key and shm implementations. LSM
3580 * checks are provided at the key or shm level rather than the inode.
3581 * @name: name for dentry (to be seen in /proc/<pid>/maps
3582 * @size: size to be set for the file
3583 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3584 */
3585 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3586 {
3587 return __shmem_file_setup(name, size, flags, S_PRIVATE);
3588 }
3589
3590 /**
3591 * shmem_file_setup - get an unlinked file living in tmpfs
3592 * @name: name for dentry (to be seen in /proc/<pid>/maps
3593 * @size: size to be set for the file
3594 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3595 */
3596 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3597 {
3598 return __shmem_file_setup(name, size, flags, 0);
3599 }
3600 EXPORT_SYMBOL_GPL(shmem_file_setup);
3601
3602 /**
3603 * shmem_zero_setup - setup a shared anonymous mapping
3604 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3605 */
3606 int shmem_zero_setup(struct vm_area_struct *vma)
3607 {
3608 struct file *file;
3609 loff_t size = vma->vm_end - vma->vm_start;
3610
3611 /*
3612 * Cloning a new file under mmap_sem leads to a lock ordering conflict
3613 * between XFS directory reading and selinux: since this file is only
3614 * accessible to the user through its mapping, use S_PRIVATE flag to
3615 * bypass file security, in the same way as shmem_kernel_file_setup().
3616 */
3617 file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
3618 if (IS_ERR(file))
3619 return PTR_ERR(file);
3620
3621 if (vma->vm_file)
3622 fput(vma->vm_file);
3623 vma->vm_file = file;
3624 vma->vm_ops = &shmem_vm_ops;
3625 return 0;
3626 }
3627
3628 /**
3629 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3630 * @mapping: the page's address_space
3631 * @index: the page index
3632 * @gfp: the page allocator flags to use if allocating
3633 *
3634 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3635 * with any new page allocations done using the specified allocation flags.
3636 * But read_cache_page_gfp() uses the ->readpage() method: which does not
3637 * suit tmpfs, since it may have pages in swapcache, and needs to find those
3638 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3639 *
3640 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3641 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3642 */
3643 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3644 pgoff_t index, gfp_t gfp)
3645 {
3646 #ifdef CONFIG_SHMEM
3647 struct inode *inode = mapping->host;
3648 struct page *page;
3649 int error;
3650
3651 BUG_ON(mapping->a_ops != &shmem_aops);
3652 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
3653 gfp, NULL, NULL);
3654 if (error)
3655 page = ERR_PTR(error);
3656 else
3657 unlock_page(page);
3658 return page;
3659 #else
3660 /*
3661 * The tiny !SHMEM case uses ramfs without swap
3662 */
3663 return read_cache_page_gfp(mapping, index, gfp);
3664 #endif
3665 }
3666 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
This page took 0.103881 seconds and 6 git commands to generate.