Merge git://www.linux-watchdog.org/linux-watchdog
[deliverable/linux.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/uio.h>
35
36 static struct vfsmount *shm_mnt;
37
38 #ifdef CONFIG_SHMEM
39 /*
40 * This virtual memory filesystem is heavily based on the ramfs. It
41 * extends ramfs by the ability to use swap and honor resource limits
42 * which makes it a completely usable filesystem.
43 */
44
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/posix_acl_xattr.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
69 #include <linux/syscalls.h>
70 #include <linux/fcntl.h>
71 #include <uapi/linux/memfd.h>
72
73 #include <asm/uaccess.h>
74 #include <asm/pgtable.h>
75
76 #include "internal.h"
77
78 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
79 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
80
81 /* Pretend that each entry is of this size in directory's i_size */
82 #define BOGO_DIRENT_SIZE 20
83
84 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
85 #define SHORT_SYMLINK_LEN 128
86
87 /*
88 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
89 * inode->i_private (with i_mutex making sure that it has only one user at
90 * a time): we would prefer not to enlarge the shmem inode just for that.
91 */
92 struct shmem_falloc {
93 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
94 pgoff_t start; /* start of range currently being fallocated */
95 pgoff_t next; /* the next page offset to be fallocated */
96 pgoff_t nr_falloced; /* how many new pages have been fallocated */
97 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
98 };
99
100 /* Flag allocation requirements to shmem_getpage */
101 enum sgp_type {
102 SGP_READ, /* don't exceed i_size, don't allocate page */
103 SGP_CACHE, /* don't exceed i_size, may allocate page */
104 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
105 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */
106 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */
107 };
108
109 #ifdef CONFIG_TMPFS
110 static unsigned long shmem_default_max_blocks(void)
111 {
112 return totalram_pages / 2;
113 }
114
115 static unsigned long shmem_default_max_inodes(void)
116 {
117 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
118 }
119 #endif
120
121 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
122 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
123 struct shmem_inode_info *info, pgoff_t index);
124 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
125 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
126
127 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
128 struct page **pagep, enum sgp_type sgp, int *fault_type)
129 {
130 return shmem_getpage_gfp(inode, index, pagep, sgp,
131 mapping_gfp_mask(inode->i_mapping), fault_type);
132 }
133
134 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
135 {
136 return sb->s_fs_info;
137 }
138
139 /*
140 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
141 * for shared memory and for shared anonymous (/dev/zero) mappings
142 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
143 * consistent with the pre-accounting of private mappings ...
144 */
145 static inline int shmem_acct_size(unsigned long flags, loff_t size)
146 {
147 return (flags & VM_NORESERVE) ?
148 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
149 }
150
151 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
152 {
153 if (!(flags & VM_NORESERVE))
154 vm_unacct_memory(VM_ACCT(size));
155 }
156
157 static inline int shmem_reacct_size(unsigned long flags,
158 loff_t oldsize, loff_t newsize)
159 {
160 if (!(flags & VM_NORESERVE)) {
161 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
162 return security_vm_enough_memory_mm(current->mm,
163 VM_ACCT(newsize) - VM_ACCT(oldsize));
164 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
165 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
166 }
167 return 0;
168 }
169
170 /*
171 * ... whereas tmpfs objects are accounted incrementally as
172 * pages are allocated, in order to allow huge sparse files.
173 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
174 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
175 */
176 static inline int shmem_acct_block(unsigned long flags)
177 {
178 return (flags & VM_NORESERVE) ?
179 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
180 }
181
182 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
183 {
184 if (flags & VM_NORESERVE)
185 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
186 }
187
188 static const struct super_operations shmem_ops;
189 static const struct address_space_operations shmem_aops;
190 static const struct file_operations shmem_file_operations;
191 static const struct inode_operations shmem_inode_operations;
192 static const struct inode_operations shmem_dir_inode_operations;
193 static const struct inode_operations shmem_special_inode_operations;
194 static const struct vm_operations_struct shmem_vm_ops;
195
196 static LIST_HEAD(shmem_swaplist);
197 static DEFINE_MUTEX(shmem_swaplist_mutex);
198
199 static int shmem_reserve_inode(struct super_block *sb)
200 {
201 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
202 if (sbinfo->max_inodes) {
203 spin_lock(&sbinfo->stat_lock);
204 if (!sbinfo->free_inodes) {
205 spin_unlock(&sbinfo->stat_lock);
206 return -ENOSPC;
207 }
208 sbinfo->free_inodes--;
209 spin_unlock(&sbinfo->stat_lock);
210 }
211 return 0;
212 }
213
214 static void shmem_free_inode(struct super_block *sb)
215 {
216 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
217 if (sbinfo->max_inodes) {
218 spin_lock(&sbinfo->stat_lock);
219 sbinfo->free_inodes++;
220 spin_unlock(&sbinfo->stat_lock);
221 }
222 }
223
224 /**
225 * shmem_recalc_inode - recalculate the block usage of an inode
226 * @inode: inode to recalc
227 *
228 * We have to calculate the free blocks since the mm can drop
229 * undirtied hole pages behind our back.
230 *
231 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
232 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
233 *
234 * It has to be called with the spinlock held.
235 */
236 static void shmem_recalc_inode(struct inode *inode)
237 {
238 struct shmem_inode_info *info = SHMEM_I(inode);
239 long freed;
240
241 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
242 if (freed > 0) {
243 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
244 if (sbinfo->max_blocks)
245 percpu_counter_add(&sbinfo->used_blocks, -freed);
246 info->alloced -= freed;
247 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
248 shmem_unacct_blocks(info->flags, freed);
249 }
250 }
251
252 /*
253 * Replace item expected in radix tree by a new item, while holding tree lock.
254 */
255 static int shmem_radix_tree_replace(struct address_space *mapping,
256 pgoff_t index, void *expected, void *replacement)
257 {
258 void **pslot;
259 void *item;
260
261 VM_BUG_ON(!expected);
262 VM_BUG_ON(!replacement);
263 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
264 if (!pslot)
265 return -ENOENT;
266 item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
267 if (item != expected)
268 return -ENOENT;
269 radix_tree_replace_slot(pslot, replacement);
270 return 0;
271 }
272
273 /*
274 * Sometimes, before we decide whether to proceed or to fail, we must check
275 * that an entry was not already brought back from swap by a racing thread.
276 *
277 * Checking page is not enough: by the time a SwapCache page is locked, it
278 * might be reused, and again be SwapCache, using the same swap as before.
279 */
280 static bool shmem_confirm_swap(struct address_space *mapping,
281 pgoff_t index, swp_entry_t swap)
282 {
283 void *item;
284
285 rcu_read_lock();
286 item = radix_tree_lookup(&mapping->page_tree, index);
287 rcu_read_unlock();
288 return item == swp_to_radix_entry(swap);
289 }
290
291 /*
292 * Like add_to_page_cache_locked, but error if expected item has gone.
293 */
294 static int shmem_add_to_page_cache(struct page *page,
295 struct address_space *mapping,
296 pgoff_t index, void *expected)
297 {
298 int error;
299
300 VM_BUG_ON_PAGE(!PageLocked(page), page);
301 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
302
303 page_cache_get(page);
304 page->mapping = mapping;
305 page->index = index;
306
307 spin_lock_irq(&mapping->tree_lock);
308 if (!expected)
309 error = radix_tree_insert(&mapping->page_tree, index, page);
310 else
311 error = shmem_radix_tree_replace(mapping, index, expected,
312 page);
313 if (!error) {
314 mapping->nrpages++;
315 __inc_zone_page_state(page, NR_FILE_PAGES);
316 __inc_zone_page_state(page, NR_SHMEM);
317 spin_unlock_irq(&mapping->tree_lock);
318 } else {
319 page->mapping = NULL;
320 spin_unlock_irq(&mapping->tree_lock);
321 page_cache_release(page);
322 }
323 return error;
324 }
325
326 /*
327 * Like delete_from_page_cache, but substitutes swap for page.
328 */
329 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
330 {
331 struct address_space *mapping = page->mapping;
332 int error;
333
334 spin_lock_irq(&mapping->tree_lock);
335 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
336 page->mapping = NULL;
337 mapping->nrpages--;
338 __dec_zone_page_state(page, NR_FILE_PAGES);
339 __dec_zone_page_state(page, NR_SHMEM);
340 spin_unlock_irq(&mapping->tree_lock);
341 page_cache_release(page);
342 BUG_ON(error);
343 }
344
345 /*
346 * Remove swap entry from radix tree, free the swap and its page cache.
347 */
348 static int shmem_free_swap(struct address_space *mapping,
349 pgoff_t index, void *radswap)
350 {
351 void *old;
352
353 spin_lock_irq(&mapping->tree_lock);
354 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
355 spin_unlock_irq(&mapping->tree_lock);
356 if (old != radswap)
357 return -ENOENT;
358 free_swap_and_cache(radix_to_swp_entry(radswap));
359 return 0;
360 }
361
362 /*
363 * Determine (in bytes) how many of the shmem object's pages mapped by the
364 * given offsets are swapped out.
365 *
366 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
367 * as long as the inode doesn't go away and racy results are not a problem.
368 */
369 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
370 pgoff_t start, pgoff_t end)
371 {
372 struct radix_tree_iter iter;
373 void **slot;
374 struct page *page;
375 unsigned long swapped = 0;
376
377 rcu_read_lock();
378
379 restart:
380 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
381 if (iter.index >= end)
382 break;
383
384 page = radix_tree_deref_slot(slot);
385
386 /*
387 * This should only be possible to happen at index 0, so we
388 * don't need to reset the counter, nor do we risk infinite
389 * restarts.
390 */
391 if (radix_tree_deref_retry(page))
392 goto restart;
393
394 if (radix_tree_exceptional_entry(page))
395 swapped++;
396
397 if (need_resched()) {
398 cond_resched_rcu();
399 start = iter.index + 1;
400 goto restart;
401 }
402 }
403
404 rcu_read_unlock();
405
406 return swapped << PAGE_SHIFT;
407 }
408
409 /*
410 * Determine (in bytes) how many of the shmem object's pages mapped by the
411 * given vma is swapped out.
412 *
413 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
414 * as long as the inode doesn't go away and racy results are not a problem.
415 */
416 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
417 {
418 struct inode *inode = file_inode(vma->vm_file);
419 struct shmem_inode_info *info = SHMEM_I(inode);
420 struct address_space *mapping = inode->i_mapping;
421 unsigned long swapped;
422
423 /* Be careful as we don't hold info->lock */
424 swapped = READ_ONCE(info->swapped);
425
426 /*
427 * The easier cases are when the shmem object has nothing in swap, or
428 * the vma maps it whole. Then we can simply use the stats that we
429 * already track.
430 */
431 if (!swapped)
432 return 0;
433
434 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
435 return swapped << PAGE_SHIFT;
436
437 /* Here comes the more involved part */
438 return shmem_partial_swap_usage(mapping,
439 linear_page_index(vma, vma->vm_start),
440 linear_page_index(vma, vma->vm_end));
441 }
442
443 /*
444 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
445 */
446 void shmem_unlock_mapping(struct address_space *mapping)
447 {
448 struct pagevec pvec;
449 pgoff_t indices[PAGEVEC_SIZE];
450 pgoff_t index = 0;
451
452 pagevec_init(&pvec, 0);
453 /*
454 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
455 */
456 while (!mapping_unevictable(mapping)) {
457 /*
458 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
459 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
460 */
461 pvec.nr = find_get_entries(mapping, index,
462 PAGEVEC_SIZE, pvec.pages, indices);
463 if (!pvec.nr)
464 break;
465 index = indices[pvec.nr - 1] + 1;
466 pagevec_remove_exceptionals(&pvec);
467 check_move_unevictable_pages(pvec.pages, pvec.nr);
468 pagevec_release(&pvec);
469 cond_resched();
470 }
471 }
472
473 /*
474 * Remove range of pages and swap entries from radix tree, and free them.
475 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
476 */
477 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
478 bool unfalloc)
479 {
480 struct address_space *mapping = inode->i_mapping;
481 struct shmem_inode_info *info = SHMEM_I(inode);
482 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
483 pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
484 unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
485 unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
486 struct pagevec pvec;
487 pgoff_t indices[PAGEVEC_SIZE];
488 long nr_swaps_freed = 0;
489 pgoff_t index;
490 int i;
491
492 if (lend == -1)
493 end = -1; /* unsigned, so actually very big */
494
495 pagevec_init(&pvec, 0);
496 index = start;
497 while (index < end) {
498 pvec.nr = find_get_entries(mapping, index,
499 min(end - index, (pgoff_t)PAGEVEC_SIZE),
500 pvec.pages, indices);
501 if (!pvec.nr)
502 break;
503 for (i = 0; i < pagevec_count(&pvec); i++) {
504 struct page *page = pvec.pages[i];
505
506 index = indices[i];
507 if (index >= end)
508 break;
509
510 if (radix_tree_exceptional_entry(page)) {
511 if (unfalloc)
512 continue;
513 nr_swaps_freed += !shmem_free_swap(mapping,
514 index, page);
515 continue;
516 }
517
518 if (!trylock_page(page))
519 continue;
520 if (!unfalloc || !PageUptodate(page)) {
521 if (page->mapping == mapping) {
522 VM_BUG_ON_PAGE(PageWriteback(page), page);
523 truncate_inode_page(mapping, page);
524 }
525 }
526 unlock_page(page);
527 }
528 pagevec_remove_exceptionals(&pvec);
529 pagevec_release(&pvec);
530 cond_resched();
531 index++;
532 }
533
534 if (partial_start) {
535 struct page *page = NULL;
536 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
537 if (page) {
538 unsigned int top = PAGE_CACHE_SIZE;
539 if (start > end) {
540 top = partial_end;
541 partial_end = 0;
542 }
543 zero_user_segment(page, partial_start, top);
544 set_page_dirty(page);
545 unlock_page(page);
546 page_cache_release(page);
547 }
548 }
549 if (partial_end) {
550 struct page *page = NULL;
551 shmem_getpage(inode, end, &page, SGP_READ, NULL);
552 if (page) {
553 zero_user_segment(page, 0, partial_end);
554 set_page_dirty(page);
555 unlock_page(page);
556 page_cache_release(page);
557 }
558 }
559 if (start >= end)
560 return;
561
562 index = start;
563 while (index < end) {
564 cond_resched();
565
566 pvec.nr = find_get_entries(mapping, index,
567 min(end - index, (pgoff_t)PAGEVEC_SIZE),
568 pvec.pages, indices);
569 if (!pvec.nr) {
570 /* If all gone or hole-punch or unfalloc, we're done */
571 if (index == start || end != -1)
572 break;
573 /* But if truncating, restart to make sure all gone */
574 index = start;
575 continue;
576 }
577 for (i = 0; i < pagevec_count(&pvec); i++) {
578 struct page *page = pvec.pages[i];
579
580 index = indices[i];
581 if (index >= end)
582 break;
583
584 if (radix_tree_exceptional_entry(page)) {
585 if (unfalloc)
586 continue;
587 if (shmem_free_swap(mapping, index, page)) {
588 /* Swap was replaced by page: retry */
589 index--;
590 break;
591 }
592 nr_swaps_freed++;
593 continue;
594 }
595
596 lock_page(page);
597 if (!unfalloc || !PageUptodate(page)) {
598 if (page->mapping == mapping) {
599 VM_BUG_ON_PAGE(PageWriteback(page), page);
600 truncate_inode_page(mapping, page);
601 } else {
602 /* Page was replaced by swap: retry */
603 unlock_page(page);
604 index--;
605 break;
606 }
607 }
608 unlock_page(page);
609 }
610 pagevec_remove_exceptionals(&pvec);
611 pagevec_release(&pvec);
612 index++;
613 }
614
615 spin_lock(&info->lock);
616 info->swapped -= nr_swaps_freed;
617 shmem_recalc_inode(inode);
618 spin_unlock(&info->lock);
619 }
620
621 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
622 {
623 shmem_undo_range(inode, lstart, lend, false);
624 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
625 }
626 EXPORT_SYMBOL_GPL(shmem_truncate_range);
627
628 static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry,
629 struct kstat *stat)
630 {
631 struct inode *inode = dentry->d_inode;
632 struct shmem_inode_info *info = SHMEM_I(inode);
633
634 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
635 spin_lock(&info->lock);
636 shmem_recalc_inode(inode);
637 spin_unlock(&info->lock);
638 }
639 generic_fillattr(inode, stat);
640 return 0;
641 }
642
643 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
644 {
645 struct inode *inode = d_inode(dentry);
646 struct shmem_inode_info *info = SHMEM_I(inode);
647 int error;
648
649 error = inode_change_ok(inode, attr);
650 if (error)
651 return error;
652
653 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
654 loff_t oldsize = inode->i_size;
655 loff_t newsize = attr->ia_size;
656
657 /* protected by i_mutex */
658 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
659 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
660 return -EPERM;
661
662 if (newsize != oldsize) {
663 error = shmem_reacct_size(SHMEM_I(inode)->flags,
664 oldsize, newsize);
665 if (error)
666 return error;
667 i_size_write(inode, newsize);
668 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
669 }
670 if (newsize <= oldsize) {
671 loff_t holebegin = round_up(newsize, PAGE_SIZE);
672 if (oldsize > holebegin)
673 unmap_mapping_range(inode->i_mapping,
674 holebegin, 0, 1);
675 if (info->alloced)
676 shmem_truncate_range(inode,
677 newsize, (loff_t)-1);
678 /* unmap again to remove racily COWed private pages */
679 if (oldsize > holebegin)
680 unmap_mapping_range(inode->i_mapping,
681 holebegin, 0, 1);
682 }
683 }
684
685 setattr_copy(inode, attr);
686 if (attr->ia_valid & ATTR_MODE)
687 error = posix_acl_chmod(inode, inode->i_mode);
688 return error;
689 }
690
691 static void shmem_evict_inode(struct inode *inode)
692 {
693 struct shmem_inode_info *info = SHMEM_I(inode);
694
695 if (inode->i_mapping->a_ops == &shmem_aops) {
696 shmem_unacct_size(info->flags, inode->i_size);
697 inode->i_size = 0;
698 shmem_truncate_range(inode, 0, (loff_t)-1);
699 if (!list_empty(&info->swaplist)) {
700 mutex_lock(&shmem_swaplist_mutex);
701 list_del_init(&info->swaplist);
702 mutex_unlock(&shmem_swaplist_mutex);
703 }
704 } else
705 kfree(info->symlink);
706
707 simple_xattrs_free(&info->xattrs);
708 WARN_ON(inode->i_blocks);
709 shmem_free_inode(inode->i_sb);
710 clear_inode(inode);
711 }
712
713 /*
714 * If swap found in inode, free it and move page from swapcache to filecache.
715 */
716 static int shmem_unuse_inode(struct shmem_inode_info *info,
717 swp_entry_t swap, struct page **pagep)
718 {
719 struct address_space *mapping = info->vfs_inode.i_mapping;
720 void *radswap;
721 pgoff_t index;
722 gfp_t gfp;
723 int error = 0;
724
725 radswap = swp_to_radix_entry(swap);
726 index = radix_tree_locate_item(&mapping->page_tree, radswap);
727 if (index == -1)
728 return -EAGAIN; /* tell shmem_unuse we found nothing */
729
730 /*
731 * Move _head_ to start search for next from here.
732 * But be careful: shmem_evict_inode checks list_empty without taking
733 * mutex, and there's an instant in list_move_tail when info->swaplist
734 * would appear empty, if it were the only one on shmem_swaplist.
735 */
736 if (shmem_swaplist.next != &info->swaplist)
737 list_move_tail(&shmem_swaplist, &info->swaplist);
738
739 gfp = mapping_gfp_mask(mapping);
740 if (shmem_should_replace_page(*pagep, gfp)) {
741 mutex_unlock(&shmem_swaplist_mutex);
742 error = shmem_replace_page(pagep, gfp, info, index);
743 mutex_lock(&shmem_swaplist_mutex);
744 /*
745 * We needed to drop mutex to make that restrictive page
746 * allocation, but the inode might have been freed while we
747 * dropped it: although a racing shmem_evict_inode() cannot
748 * complete without emptying the radix_tree, our page lock
749 * on this swapcache page is not enough to prevent that -
750 * free_swap_and_cache() of our swap entry will only
751 * trylock_page(), removing swap from radix_tree whatever.
752 *
753 * We must not proceed to shmem_add_to_page_cache() if the
754 * inode has been freed, but of course we cannot rely on
755 * inode or mapping or info to check that. However, we can
756 * safely check if our swap entry is still in use (and here
757 * it can't have got reused for another page): if it's still
758 * in use, then the inode cannot have been freed yet, and we
759 * can safely proceed (if it's no longer in use, that tells
760 * nothing about the inode, but we don't need to unuse swap).
761 */
762 if (!page_swapcount(*pagep))
763 error = -ENOENT;
764 }
765
766 /*
767 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
768 * but also to hold up shmem_evict_inode(): so inode cannot be freed
769 * beneath us (pagelock doesn't help until the page is in pagecache).
770 */
771 if (!error)
772 error = shmem_add_to_page_cache(*pagep, mapping, index,
773 radswap);
774 if (error != -ENOMEM) {
775 /*
776 * Truncation and eviction use free_swap_and_cache(), which
777 * only does trylock page: if we raced, best clean up here.
778 */
779 delete_from_swap_cache(*pagep);
780 set_page_dirty(*pagep);
781 if (!error) {
782 spin_lock(&info->lock);
783 info->swapped--;
784 spin_unlock(&info->lock);
785 swap_free(swap);
786 }
787 }
788 return error;
789 }
790
791 /*
792 * Search through swapped inodes to find and replace swap by page.
793 */
794 int shmem_unuse(swp_entry_t swap, struct page *page)
795 {
796 struct list_head *this, *next;
797 struct shmem_inode_info *info;
798 struct mem_cgroup *memcg;
799 int error = 0;
800
801 /*
802 * There's a faint possibility that swap page was replaced before
803 * caller locked it: caller will come back later with the right page.
804 */
805 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
806 goto out;
807
808 /*
809 * Charge page using GFP_KERNEL while we can wait, before taking
810 * the shmem_swaplist_mutex which might hold up shmem_writepage().
811 * Charged back to the user (not to caller) when swap account is used.
812 */
813 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg);
814 if (error)
815 goto out;
816 /* No radix_tree_preload: swap entry keeps a place for page in tree */
817 error = -EAGAIN;
818
819 mutex_lock(&shmem_swaplist_mutex);
820 list_for_each_safe(this, next, &shmem_swaplist) {
821 info = list_entry(this, struct shmem_inode_info, swaplist);
822 if (info->swapped)
823 error = shmem_unuse_inode(info, swap, &page);
824 else
825 list_del_init(&info->swaplist);
826 cond_resched();
827 if (error != -EAGAIN)
828 break;
829 /* found nothing in this: move on to search the next */
830 }
831 mutex_unlock(&shmem_swaplist_mutex);
832
833 if (error) {
834 if (error != -ENOMEM)
835 error = 0;
836 mem_cgroup_cancel_charge(page, memcg);
837 } else
838 mem_cgroup_commit_charge(page, memcg, true);
839 out:
840 unlock_page(page);
841 page_cache_release(page);
842 return error;
843 }
844
845 /*
846 * Move the page from the page cache to the swap cache.
847 */
848 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
849 {
850 struct shmem_inode_info *info;
851 struct address_space *mapping;
852 struct inode *inode;
853 swp_entry_t swap;
854 pgoff_t index;
855
856 BUG_ON(!PageLocked(page));
857 mapping = page->mapping;
858 index = page->index;
859 inode = mapping->host;
860 info = SHMEM_I(inode);
861 if (info->flags & VM_LOCKED)
862 goto redirty;
863 if (!total_swap_pages)
864 goto redirty;
865
866 /*
867 * Our capabilities prevent regular writeback or sync from ever calling
868 * shmem_writepage; but a stacking filesystem might use ->writepage of
869 * its underlying filesystem, in which case tmpfs should write out to
870 * swap only in response to memory pressure, and not for the writeback
871 * threads or sync.
872 */
873 if (!wbc->for_reclaim) {
874 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
875 goto redirty;
876 }
877
878 /*
879 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
880 * value into swapfile.c, the only way we can correctly account for a
881 * fallocated page arriving here is now to initialize it and write it.
882 *
883 * That's okay for a page already fallocated earlier, but if we have
884 * not yet completed the fallocation, then (a) we want to keep track
885 * of this page in case we have to undo it, and (b) it may not be a
886 * good idea to continue anyway, once we're pushing into swap. So
887 * reactivate the page, and let shmem_fallocate() quit when too many.
888 */
889 if (!PageUptodate(page)) {
890 if (inode->i_private) {
891 struct shmem_falloc *shmem_falloc;
892 spin_lock(&inode->i_lock);
893 shmem_falloc = inode->i_private;
894 if (shmem_falloc &&
895 !shmem_falloc->waitq &&
896 index >= shmem_falloc->start &&
897 index < shmem_falloc->next)
898 shmem_falloc->nr_unswapped++;
899 else
900 shmem_falloc = NULL;
901 spin_unlock(&inode->i_lock);
902 if (shmem_falloc)
903 goto redirty;
904 }
905 clear_highpage(page);
906 flush_dcache_page(page);
907 SetPageUptodate(page);
908 }
909
910 swap = get_swap_page();
911 if (!swap.val)
912 goto redirty;
913
914 /*
915 * Add inode to shmem_unuse()'s list of swapped-out inodes,
916 * if it's not already there. Do it now before the page is
917 * moved to swap cache, when its pagelock no longer protects
918 * the inode from eviction. But don't unlock the mutex until
919 * we've incremented swapped, because shmem_unuse_inode() will
920 * prune a !swapped inode from the swaplist under this mutex.
921 */
922 mutex_lock(&shmem_swaplist_mutex);
923 if (list_empty(&info->swaplist))
924 list_add_tail(&info->swaplist, &shmem_swaplist);
925
926 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
927 spin_lock(&info->lock);
928 shmem_recalc_inode(inode);
929 info->swapped++;
930 spin_unlock(&info->lock);
931
932 swap_shmem_alloc(swap);
933 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
934
935 mutex_unlock(&shmem_swaplist_mutex);
936 BUG_ON(page_mapped(page));
937 swap_writepage(page, wbc);
938 return 0;
939 }
940
941 mutex_unlock(&shmem_swaplist_mutex);
942 swapcache_free(swap);
943 redirty:
944 set_page_dirty(page);
945 if (wbc->for_reclaim)
946 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
947 unlock_page(page);
948 return 0;
949 }
950
951 #ifdef CONFIG_NUMA
952 #ifdef CONFIG_TMPFS
953 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
954 {
955 char buffer[64];
956
957 if (!mpol || mpol->mode == MPOL_DEFAULT)
958 return; /* show nothing */
959
960 mpol_to_str(buffer, sizeof(buffer), mpol);
961
962 seq_printf(seq, ",mpol=%s", buffer);
963 }
964
965 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
966 {
967 struct mempolicy *mpol = NULL;
968 if (sbinfo->mpol) {
969 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
970 mpol = sbinfo->mpol;
971 mpol_get(mpol);
972 spin_unlock(&sbinfo->stat_lock);
973 }
974 return mpol;
975 }
976 #endif /* CONFIG_TMPFS */
977
978 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
979 struct shmem_inode_info *info, pgoff_t index)
980 {
981 struct vm_area_struct pvma;
982 struct page *page;
983
984 /* Create a pseudo vma that just contains the policy */
985 pvma.vm_start = 0;
986 /* Bias interleave by inode number to distribute better across nodes */
987 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
988 pvma.vm_ops = NULL;
989 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
990
991 page = swapin_readahead(swap, gfp, &pvma, 0);
992
993 /* Drop reference taken by mpol_shared_policy_lookup() */
994 mpol_cond_put(pvma.vm_policy);
995
996 return page;
997 }
998
999 static struct page *shmem_alloc_page(gfp_t gfp,
1000 struct shmem_inode_info *info, pgoff_t index)
1001 {
1002 struct vm_area_struct pvma;
1003 struct page *page;
1004
1005 /* Create a pseudo vma that just contains the policy */
1006 pvma.vm_start = 0;
1007 /* Bias interleave by inode number to distribute better across nodes */
1008 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
1009 pvma.vm_ops = NULL;
1010 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1011
1012 page = alloc_page_vma(gfp, &pvma, 0);
1013
1014 /* Drop reference taken by mpol_shared_policy_lookup() */
1015 mpol_cond_put(pvma.vm_policy);
1016
1017 return page;
1018 }
1019 #else /* !CONFIG_NUMA */
1020 #ifdef CONFIG_TMPFS
1021 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1022 {
1023 }
1024 #endif /* CONFIG_TMPFS */
1025
1026 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1027 struct shmem_inode_info *info, pgoff_t index)
1028 {
1029 return swapin_readahead(swap, gfp, NULL, 0);
1030 }
1031
1032 static inline struct page *shmem_alloc_page(gfp_t gfp,
1033 struct shmem_inode_info *info, pgoff_t index)
1034 {
1035 return alloc_page(gfp);
1036 }
1037 #endif /* CONFIG_NUMA */
1038
1039 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1040 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1041 {
1042 return NULL;
1043 }
1044 #endif
1045
1046 /*
1047 * When a page is moved from swapcache to shmem filecache (either by the
1048 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1049 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1050 * ignorance of the mapping it belongs to. If that mapping has special
1051 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1052 * we may need to copy to a suitable page before moving to filecache.
1053 *
1054 * In a future release, this may well be extended to respect cpuset and
1055 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1056 * but for now it is a simple matter of zone.
1057 */
1058 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1059 {
1060 return page_zonenum(page) > gfp_zone(gfp);
1061 }
1062
1063 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1064 struct shmem_inode_info *info, pgoff_t index)
1065 {
1066 struct page *oldpage, *newpage;
1067 struct address_space *swap_mapping;
1068 pgoff_t swap_index;
1069 int error;
1070
1071 oldpage = *pagep;
1072 swap_index = page_private(oldpage);
1073 swap_mapping = page_mapping(oldpage);
1074
1075 /*
1076 * We have arrived here because our zones are constrained, so don't
1077 * limit chance of success by further cpuset and node constraints.
1078 */
1079 gfp &= ~GFP_CONSTRAINT_MASK;
1080 newpage = shmem_alloc_page(gfp, info, index);
1081 if (!newpage)
1082 return -ENOMEM;
1083
1084 page_cache_get(newpage);
1085 copy_highpage(newpage, oldpage);
1086 flush_dcache_page(newpage);
1087
1088 __set_page_locked(newpage);
1089 SetPageUptodate(newpage);
1090 SetPageSwapBacked(newpage);
1091 set_page_private(newpage, swap_index);
1092 SetPageSwapCache(newpage);
1093
1094 /*
1095 * Our caller will very soon move newpage out of swapcache, but it's
1096 * a nice clean interface for us to replace oldpage by newpage there.
1097 */
1098 spin_lock_irq(&swap_mapping->tree_lock);
1099 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1100 newpage);
1101 if (!error) {
1102 __inc_zone_page_state(newpage, NR_FILE_PAGES);
1103 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1104 }
1105 spin_unlock_irq(&swap_mapping->tree_lock);
1106
1107 if (unlikely(error)) {
1108 /*
1109 * Is this possible? I think not, now that our callers check
1110 * both PageSwapCache and page_private after getting page lock;
1111 * but be defensive. Reverse old to newpage for clear and free.
1112 */
1113 oldpage = newpage;
1114 } else {
1115 mem_cgroup_replace_page(oldpage, newpage);
1116 lru_cache_add_anon(newpage);
1117 *pagep = newpage;
1118 }
1119
1120 ClearPageSwapCache(oldpage);
1121 set_page_private(oldpage, 0);
1122
1123 unlock_page(oldpage);
1124 page_cache_release(oldpage);
1125 page_cache_release(oldpage);
1126 return error;
1127 }
1128
1129 /*
1130 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1131 *
1132 * If we allocate a new one we do not mark it dirty. That's up to the
1133 * vm. If we swap it in we mark it dirty since we also free the swap
1134 * entry since a page cannot live in both the swap and page cache
1135 */
1136 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1137 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1138 {
1139 struct address_space *mapping = inode->i_mapping;
1140 struct shmem_inode_info *info;
1141 struct shmem_sb_info *sbinfo;
1142 struct mem_cgroup *memcg;
1143 struct page *page;
1144 swp_entry_t swap;
1145 int error;
1146 int once = 0;
1147 int alloced = 0;
1148
1149 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1150 return -EFBIG;
1151 repeat:
1152 swap.val = 0;
1153 page = find_lock_entry(mapping, index);
1154 if (radix_tree_exceptional_entry(page)) {
1155 swap = radix_to_swp_entry(page);
1156 page = NULL;
1157 }
1158
1159 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1160 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1161 error = -EINVAL;
1162 goto unlock;
1163 }
1164
1165 if (page && sgp == SGP_WRITE)
1166 mark_page_accessed(page);
1167
1168 /* fallocated page? */
1169 if (page && !PageUptodate(page)) {
1170 if (sgp != SGP_READ)
1171 goto clear;
1172 unlock_page(page);
1173 page_cache_release(page);
1174 page = NULL;
1175 }
1176 if (page || (sgp == SGP_READ && !swap.val)) {
1177 *pagep = page;
1178 return 0;
1179 }
1180
1181 /*
1182 * Fast cache lookup did not find it:
1183 * bring it back from swap or allocate.
1184 */
1185 info = SHMEM_I(inode);
1186 sbinfo = SHMEM_SB(inode->i_sb);
1187
1188 if (swap.val) {
1189 /* Look it up and read it in.. */
1190 page = lookup_swap_cache(swap);
1191 if (!page) {
1192 /* here we actually do the io */
1193 if (fault_type)
1194 *fault_type |= VM_FAULT_MAJOR;
1195 page = shmem_swapin(swap, gfp, info, index);
1196 if (!page) {
1197 error = -ENOMEM;
1198 goto failed;
1199 }
1200 }
1201
1202 /* We have to do this with page locked to prevent races */
1203 lock_page(page);
1204 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1205 !shmem_confirm_swap(mapping, index, swap)) {
1206 error = -EEXIST; /* try again */
1207 goto unlock;
1208 }
1209 if (!PageUptodate(page)) {
1210 error = -EIO;
1211 goto failed;
1212 }
1213 wait_on_page_writeback(page);
1214
1215 if (shmem_should_replace_page(page, gfp)) {
1216 error = shmem_replace_page(&page, gfp, info, index);
1217 if (error)
1218 goto failed;
1219 }
1220
1221 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg);
1222 if (!error) {
1223 error = shmem_add_to_page_cache(page, mapping, index,
1224 swp_to_radix_entry(swap));
1225 /*
1226 * We already confirmed swap under page lock, and make
1227 * no memory allocation here, so usually no possibility
1228 * of error; but free_swap_and_cache() only trylocks a
1229 * page, so it is just possible that the entry has been
1230 * truncated or holepunched since swap was confirmed.
1231 * shmem_undo_range() will have done some of the
1232 * unaccounting, now delete_from_swap_cache() will do
1233 * the rest.
1234 * Reset swap.val? No, leave it so "failed" goes back to
1235 * "repeat": reading a hole and writing should succeed.
1236 */
1237 if (error) {
1238 mem_cgroup_cancel_charge(page, memcg);
1239 delete_from_swap_cache(page);
1240 }
1241 }
1242 if (error)
1243 goto failed;
1244
1245 mem_cgroup_commit_charge(page, memcg, true);
1246
1247 spin_lock(&info->lock);
1248 info->swapped--;
1249 shmem_recalc_inode(inode);
1250 spin_unlock(&info->lock);
1251
1252 if (sgp == SGP_WRITE)
1253 mark_page_accessed(page);
1254
1255 delete_from_swap_cache(page);
1256 set_page_dirty(page);
1257 swap_free(swap);
1258
1259 } else {
1260 if (shmem_acct_block(info->flags)) {
1261 error = -ENOSPC;
1262 goto failed;
1263 }
1264 if (sbinfo->max_blocks) {
1265 if (percpu_counter_compare(&sbinfo->used_blocks,
1266 sbinfo->max_blocks) >= 0) {
1267 error = -ENOSPC;
1268 goto unacct;
1269 }
1270 percpu_counter_inc(&sbinfo->used_blocks);
1271 }
1272
1273 page = shmem_alloc_page(gfp, info, index);
1274 if (!page) {
1275 error = -ENOMEM;
1276 goto decused;
1277 }
1278
1279 __SetPageSwapBacked(page);
1280 __set_page_locked(page);
1281 if (sgp == SGP_WRITE)
1282 __SetPageReferenced(page);
1283
1284 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg);
1285 if (error)
1286 goto decused;
1287 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1288 if (!error) {
1289 error = shmem_add_to_page_cache(page, mapping, index,
1290 NULL);
1291 radix_tree_preload_end();
1292 }
1293 if (error) {
1294 mem_cgroup_cancel_charge(page, memcg);
1295 goto decused;
1296 }
1297 mem_cgroup_commit_charge(page, memcg, false);
1298 lru_cache_add_anon(page);
1299
1300 spin_lock(&info->lock);
1301 info->alloced++;
1302 inode->i_blocks += BLOCKS_PER_PAGE;
1303 shmem_recalc_inode(inode);
1304 spin_unlock(&info->lock);
1305 alloced = true;
1306
1307 /*
1308 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1309 */
1310 if (sgp == SGP_FALLOC)
1311 sgp = SGP_WRITE;
1312 clear:
1313 /*
1314 * Let SGP_WRITE caller clear ends if write does not fill page;
1315 * but SGP_FALLOC on a page fallocated earlier must initialize
1316 * it now, lest undo on failure cancel our earlier guarantee.
1317 */
1318 if (sgp != SGP_WRITE) {
1319 clear_highpage(page);
1320 flush_dcache_page(page);
1321 SetPageUptodate(page);
1322 }
1323 if (sgp == SGP_DIRTY)
1324 set_page_dirty(page);
1325 }
1326
1327 /* Perhaps the file has been truncated since we checked */
1328 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1329 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1330 if (alloced) {
1331 ClearPageDirty(page);
1332 delete_from_page_cache(page);
1333 spin_lock(&info->lock);
1334 shmem_recalc_inode(inode);
1335 spin_unlock(&info->lock);
1336 }
1337 error = -EINVAL;
1338 goto unlock;
1339 }
1340 *pagep = page;
1341 return 0;
1342
1343 /*
1344 * Error recovery.
1345 */
1346 decused:
1347 if (sbinfo->max_blocks)
1348 percpu_counter_add(&sbinfo->used_blocks, -1);
1349 unacct:
1350 shmem_unacct_blocks(info->flags, 1);
1351 failed:
1352 if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1353 error = -EEXIST;
1354 unlock:
1355 if (page) {
1356 unlock_page(page);
1357 page_cache_release(page);
1358 }
1359 if (error == -ENOSPC && !once++) {
1360 info = SHMEM_I(inode);
1361 spin_lock(&info->lock);
1362 shmem_recalc_inode(inode);
1363 spin_unlock(&info->lock);
1364 goto repeat;
1365 }
1366 if (error == -EEXIST) /* from above or from radix_tree_insert */
1367 goto repeat;
1368 return error;
1369 }
1370
1371 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1372 {
1373 struct inode *inode = file_inode(vma->vm_file);
1374 int error;
1375 int ret = VM_FAULT_LOCKED;
1376
1377 /*
1378 * Trinity finds that probing a hole which tmpfs is punching can
1379 * prevent the hole-punch from ever completing: which in turn
1380 * locks writers out with its hold on i_mutex. So refrain from
1381 * faulting pages into the hole while it's being punched. Although
1382 * shmem_undo_range() does remove the additions, it may be unable to
1383 * keep up, as each new page needs its own unmap_mapping_range() call,
1384 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1385 *
1386 * It does not matter if we sometimes reach this check just before the
1387 * hole-punch begins, so that one fault then races with the punch:
1388 * we just need to make racing faults a rare case.
1389 *
1390 * The implementation below would be much simpler if we just used a
1391 * standard mutex or completion: but we cannot take i_mutex in fault,
1392 * and bloating every shmem inode for this unlikely case would be sad.
1393 */
1394 if (unlikely(inode->i_private)) {
1395 struct shmem_falloc *shmem_falloc;
1396
1397 spin_lock(&inode->i_lock);
1398 shmem_falloc = inode->i_private;
1399 if (shmem_falloc &&
1400 shmem_falloc->waitq &&
1401 vmf->pgoff >= shmem_falloc->start &&
1402 vmf->pgoff < shmem_falloc->next) {
1403 wait_queue_head_t *shmem_falloc_waitq;
1404 DEFINE_WAIT(shmem_fault_wait);
1405
1406 ret = VM_FAULT_NOPAGE;
1407 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1408 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1409 /* It's polite to up mmap_sem if we can */
1410 up_read(&vma->vm_mm->mmap_sem);
1411 ret = VM_FAULT_RETRY;
1412 }
1413
1414 shmem_falloc_waitq = shmem_falloc->waitq;
1415 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1416 TASK_UNINTERRUPTIBLE);
1417 spin_unlock(&inode->i_lock);
1418 schedule();
1419
1420 /*
1421 * shmem_falloc_waitq points into the shmem_fallocate()
1422 * stack of the hole-punching task: shmem_falloc_waitq
1423 * is usually invalid by the time we reach here, but
1424 * finish_wait() does not dereference it in that case;
1425 * though i_lock needed lest racing with wake_up_all().
1426 */
1427 spin_lock(&inode->i_lock);
1428 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1429 spin_unlock(&inode->i_lock);
1430 return ret;
1431 }
1432 spin_unlock(&inode->i_lock);
1433 }
1434
1435 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1436 if (error)
1437 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1438
1439 if (ret & VM_FAULT_MAJOR) {
1440 count_vm_event(PGMAJFAULT);
1441 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1442 }
1443 return ret;
1444 }
1445
1446 #ifdef CONFIG_NUMA
1447 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1448 {
1449 struct inode *inode = file_inode(vma->vm_file);
1450 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1451 }
1452
1453 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1454 unsigned long addr)
1455 {
1456 struct inode *inode = file_inode(vma->vm_file);
1457 pgoff_t index;
1458
1459 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1460 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1461 }
1462 #endif
1463
1464 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1465 {
1466 struct inode *inode = file_inode(file);
1467 struct shmem_inode_info *info = SHMEM_I(inode);
1468 int retval = -ENOMEM;
1469
1470 spin_lock(&info->lock);
1471 if (lock && !(info->flags & VM_LOCKED)) {
1472 if (!user_shm_lock(inode->i_size, user))
1473 goto out_nomem;
1474 info->flags |= VM_LOCKED;
1475 mapping_set_unevictable(file->f_mapping);
1476 }
1477 if (!lock && (info->flags & VM_LOCKED) && user) {
1478 user_shm_unlock(inode->i_size, user);
1479 info->flags &= ~VM_LOCKED;
1480 mapping_clear_unevictable(file->f_mapping);
1481 }
1482 retval = 0;
1483
1484 out_nomem:
1485 spin_unlock(&info->lock);
1486 return retval;
1487 }
1488
1489 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1490 {
1491 file_accessed(file);
1492 vma->vm_ops = &shmem_vm_ops;
1493 return 0;
1494 }
1495
1496 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1497 umode_t mode, dev_t dev, unsigned long flags)
1498 {
1499 struct inode *inode;
1500 struct shmem_inode_info *info;
1501 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1502
1503 if (shmem_reserve_inode(sb))
1504 return NULL;
1505
1506 inode = new_inode(sb);
1507 if (inode) {
1508 inode->i_ino = get_next_ino();
1509 inode_init_owner(inode, dir, mode);
1510 inode->i_blocks = 0;
1511 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1512 inode->i_generation = get_seconds();
1513 info = SHMEM_I(inode);
1514 memset(info, 0, (char *)inode - (char *)info);
1515 spin_lock_init(&info->lock);
1516 info->seals = F_SEAL_SEAL;
1517 info->flags = flags & VM_NORESERVE;
1518 INIT_LIST_HEAD(&info->swaplist);
1519 simple_xattrs_init(&info->xattrs);
1520 cache_no_acl(inode);
1521
1522 switch (mode & S_IFMT) {
1523 default:
1524 inode->i_op = &shmem_special_inode_operations;
1525 init_special_inode(inode, mode, dev);
1526 break;
1527 case S_IFREG:
1528 inode->i_mapping->a_ops = &shmem_aops;
1529 inode->i_op = &shmem_inode_operations;
1530 inode->i_fop = &shmem_file_operations;
1531 mpol_shared_policy_init(&info->policy,
1532 shmem_get_sbmpol(sbinfo));
1533 break;
1534 case S_IFDIR:
1535 inc_nlink(inode);
1536 /* Some things misbehave if size == 0 on a directory */
1537 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1538 inode->i_op = &shmem_dir_inode_operations;
1539 inode->i_fop = &simple_dir_operations;
1540 break;
1541 case S_IFLNK:
1542 /*
1543 * Must not load anything in the rbtree,
1544 * mpol_free_shared_policy will not be called.
1545 */
1546 mpol_shared_policy_init(&info->policy, NULL);
1547 break;
1548 }
1549 } else
1550 shmem_free_inode(sb);
1551 return inode;
1552 }
1553
1554 bool shmem_mapping(struct address_space *mapping)
1555 {
1556 if (!mapping->host)
1557 return false;
1558
1559 return mapping->host->i_sb->s_op == &shmem_ops;
1560 }
1561
1562 #ifdef CONFIG_TMPFS
1563 static const struct inode_operations shmem_symlink_inode_operations;
1564 static const struct inode_operations shmem_short_symlink_operations;
1565
1566 #ifdef CONFIG_TMPFS_XATTR
1567 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1568 #else
1569 #define shmem_initxattrs NULL
1570 #endif
1571
1572 static int
1573 shmem_write_begin(struct file *file, struct address_space *mapping,
1574 loff_t pos, unsigned len, unsigned flags,
1575 struct page **pagep, void **fsdata)
1576 {
1577 struct inode *inode = mapping->host;
1578 struct shmem_inode_info *info = SHMEM_I(inode);
1579 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1580
1581 /* i_mutex is held by caller */
1582 if (unlikely(info->seals)) {
1583 if (info->seals & F_SEAL_WRITE)
1584 return -EPERM;
1585 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
1586 return -EPERM;
1587 }
1588
1589 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1590 }
1591
1592 static int
1593 shmem_write_end(struct file *file, struct address_space *mapping,
1594 loff_t pos, unsigned len, unsigned copied,
1595 struct page *page, void *fsdata)
1596 {
1597 struct inode *inode = mapping->host;
1598
1599 if (pos + copied > inode->i_size)
1600 i_size_write(inode, pos + copied);
1601
1602 if (!PageUptodate(page)) {
1603 if (copied < PAGE_CACHE_SIZE) {
1604 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1605 zero_user_segments(page, 0, from,
1606 from + copied, PAGE_CACHE_SIZE);
1607 }
1608 SetPageUptodate(page);
1609 }
1610 set_page_dirty(page);
1611 unlock_page(page);
1612 page_cache_release(page);
1613
1614 return copied;
1615 }
1616
1617 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1618 {
1619 struct file *file = iocb->ki_filp;
1620 struct inode *inode = file_inode(file);
1621 struct address_space *mapping = inode->i_mapping;
1622 pgoff_t index;
1623 unsigned long offset;
1624 enum sgp_type sgp = SGP_READ;
1625 int error = 0;
1626 ssize_t retval = 0;
1627 loff_t *ppos = &iocb->ki_pos;
1628
1629 /*
1630 * Might this read be for a stacking filesystem? Then when reading
1631 * holes of a sparse file, we actually need to allocate those pages,
1632 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1633 */
1634 if (!iter_is_iovec(to))
1635 sgp = SGP_DIRTY;
1636
1637 index = *ppos >> PAGE_CACHE_SHIFT;
1638 offset = *ppos & ~PAGE_CACHE_MASK;
1639
1640 for (;;) {
1641 struct page *page = NULL;
1642 pgoff_t end_index;
1643 unsigned long nr, ret;
1644 loff_t i_size = i_size_read(inode);
1645
1646 end_index = i_size >> PAGE_CACHE_SHIFT;
1647 if (index > end_index)
1648 break;
1649 if (index == end_index) {
1650 nr = i_size & ~PAGE_CACHE_MASK;
1651 if (nr <= offset)
1652 break;
1653 }
1654
1655 error = shmem_getpage(inode, index, &page, sgp, NULL);
1656 if (error) {
1657 if (error == -EINVAL)
1658 error = 0;
1659 break;
1660 }
1661 if (page)
1662 unlock_page(page);
1663
1664 /*
1665 * We must evaluate after, since reads (unlike writes)
1666 * are called without i_mutex protection against truncate
1667 */
1668 nr = PAGE_CACHE_SIZE;
1669 i_size = i_size_read(inode);
1670 end_index = i_size >> PAGE_CACHE_SHIFT;
1671 if (index == end_index) {
1672 nr = i_size & ~PAGE_CACHE_MASK;
1673 if (nr <= offset) {
1674 if (page)
1675 page_cache_release(page);
1676 break;
1677 }
1678 }
1679 nr -= offset;
1680
1681 if (page) {
1682 /*
1683 * If users can be writing to this page using arbitrary
1684 * virtual addresses, take care about potential aliasing
1685 * before reading the page on the kernel side.
1686 */
1687 if (mapping_writably_mapped(mapping))
1688 flush_dcache_page(page);
1689 /*
1690 * Mark the page accessed if we read the beginning.
1691 */
1692 if (!offset)
1693 mark_page_accessed(page);
1694 } else {
1695 page = ZERO_PAGE(0);
1696 page_cache_get(page);
1697 }
1698
1699 /*
1700 * Ok, we have the page, and it's up-to-date, so
1701 * now we can copy it to user space...
1702 */
1703 ret = copy_page_to_iter(page, offset, nr, to);
1704 retval += ret;
1705 offset += ret;
1706 index += offset >> PAGE_CACHE_SHIFT;
1707 offset &= ~PAGE_CACHE_MASK;
1708
1709 page_cache_release(page);
1710 if (!iov_iter_count(to))
1711 break;
1712 if (ret < nr) {
1713 error = -EFAULT;
1714 break;
1715 }
1716 cond_resched();
1717 }
1718
1719 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1720 file_accessed(file);
1721 return retval ? retval : error;
1722 }
1723
1724 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1725 struct pipe_inode_info *pipe, size_t len,
1726 unsigned int flags)
1727 {
1728 struct address_space *mapping = in->f_mapping;
1729 struct inode *inode = mapping->host;
1730 unsigned int loff, nr_pages, req_pages;
1731 struct page *pages[PIPE_DEF_BUFFERS];
1732 struct partial_page partial[PIPE_DEF_BUFFERS];
1733 struct page *page;
1734 pgoff_t index, end_index;
1735 loff_t isize, left;
1736 int error, page_nr;
1737 struct splice_pipe_desc spd = {
1738 .pages = pages,
1739 .partial = partial,
1740 .nr_pages_max = PIPE_DEF_BUFFERS,
1741 .flags = flags,
1742 .ops = &page_cache_pipe_buf_ops,
1743 .spd_release = spd_release_page,
1744 };
1745
1746 isize = i_size_read(inode);
1747 if (unlikely(*ppos >= isize))
1748 return 0;
1749
1750 left = isize - *ppos;
1751 if (unlikely(left < len))
1752 len = left;
1753
1754 if (splice_grow_spd(pipe, &spd))
1755 return -ENOMEM;
1756
1757 index = *ppos >> PAGE_CACHE_SHIFT;
1758 loff = *ppos & ~PAGE_CACHE_MASK;
1759 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1760 nr_pages = min(req_pages, spd.nr_pages_max);
1761
1762 spd.nr_pages = find_get_pages_contig(mapping, index,
1763 nr_pages, spd.pages);
1764 index += spd.nr_pages;
1765 error = 0;
1766
1767 while (spd.nr_pages < nr_pages) {
1768 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1769 if (error)
1770 break;
1771 unlock_page(page);
1772 spd.pages[spd.nr_pages++] = page;
1773 index++;
1774 }
1775
1776 index = *ppos >> PAGE_CACHE_SHIFT;
1777 nr_pages = spd.nr_pages;
1778 spd.nr_pages = 0;
1779
1780 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1781 unsigned int this_len;
1782
1783 if (!len)
1784 break;
1785
1786 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1787 page = spd.pages[page_nr];
1788
1789 if (!PageUptodate(page) || page->mapping != mapping) {
1790 error = shmem_getpage(inode, index, &page,
1791 SGP_CACHE, NULL);
1792 if (error)
1793 break;
1794 unlock_page(page);
1795 page_cache_release(spd.pages[page_nr]);
1796 spd.pages[page_nr] = page;
1797 }
1798
1799 isize = i_size_read(inode);
1800 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1801 if (unlikely(!isize || index > end_index))
1802 break;
1803
1804 if (end_index == index) {
1805 unsigned int plen;
1806
1807 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1808 if (plen <= loff)
1809 break;
1810
1811 this_len = min(this_len, plen - loff);
1812 len = this_len;
1813 }
1814
1815 spd.partial[page_nr].offset = loff;
1816 spd.partial[page_nr].len = this_len;
1817 len -= this_len;
1818 loff = 0;
1819 spd.nr_pages++;
1820 index++;
1821 }
1822
1823 while (page_nr < nr_pages)
1824 page_cache_release(spd.pages[page_nr++]);
1825
1826 if (spd.nr_pages)
1827 error = splice_to_pipe(pipe, &spd);
1828
1829 splice_shrink_spd(&spd);
1830
1831 if (error > 0) {
1832 *ppos += error;
1833 file_accessed(in);
1834 }
1835 return error;
1836 }
1837
1838 /*
1839 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1840 */
1841 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1842 pgoff_t index, pgoff_t end, int whence)
1843 {
1844 struct page *page;
1845 struct pagevec pvec;
1846 pgoff_t indices[PAGEVEC_SIZE];
1847 bool done = false;
1848 int i;
1849
1850 pagevec_init(&pvec, 0);
1851 pvec.nr = 1; /* start small: we may be there already */
1852 while (!done) {
1853 pvec.nr = find_get_entries(mapping, index,
1854 pvec.nr, pvec.pages, indices);
1855 if (!pvec.nr) {
1856 if (whence == SEEK_DATA)
1857 index = end;
1858 break;
1859 }
1860 for (i = 0; i < pvec.nr; i++, index++) {
1861 if (index < indices[i]) {
1862 if (whence == SEEK_HOLE) {
1863 done = true;
1864 break;
1865 }
1866 index = indices[i];
1867 }
1868 page = pvec.pages[i];
1869 if (page && !radix_tree_exceptional_entry(page)) {
1870 if (!PageUptodate(page))
1871 page = NULL;
1872 }
1873 if (index >= end ||
1874 (page && whence == SEEK_DATA) ||
1875 (!page && whence == SEEK_HOLE)) {
1876 done = true;
1877 break;
1878 }
1879 }
1880 pagevec_remove_exceptionals(&pvec);
1881 pagevec_release(&pvec);
1882 pvec.nr = PAGEVEC_SIZE;
1883 cond_resched();
1884 }
1885 return index;
1886 }
1887
1888 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1889 {
1890 struct address_space *mapping = file->f_mapping;
1891 struct inode *inode = mapping->host;
1892 pgoff_t start, end;
1893 loff_t new_offset;
1894
1895 if (whence != SEEK_DATA && whence != SEEK_HOLE)
1896 return generic_file_llseek_size(file, offset, whence,
1897 MAX_LFS_FILESIZE, i_size_read(inode));
1898 mutex_lock(&inode->i_mutex);
1899 /* We're holding i_mutex so we can access i_size directly */
1900
1901 if (offset < 0)
1902 offset = -EINVAL;
1903 else if (offset >= inode->i_size)
1904 offset = -ENXIO;
1905 else {
1906 start = offset >> PAGE_CACHE_SHIFT;
1907 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1908 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1909 new_offset <<= PAGE_CACHE_SHIFT;
1910 if (new_offset > offset) {
1911 if (new_offset < inode->i_size)
1912 offset = new_offset;
1913 else if (whence == SEEK_DATA)
1914 offset = -ENXIO;
1915 else
1916 offset = inode->i_size;
1917 }
1918 }
1919
1920 if (offset >= 0)
1921 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1922 mutex_unlock(&inode->i_mutex);
1923 return offset;
1924 }
1925
1926 /*
1927 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
1928 * so reuse a tag which we firmly believe is never set or cleared on shmem.
1929 */
1930 #define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
1931 #define LAST_SCAN 4 /* about 150ms max */
1932
1933 static void shmem_tag_pins(struct address_space *mapping)
1934 {
1935 struct radix_tree_iter iter;
1936 void **slot;
1937 pgoff_t start;
1938 struct page *page;
1939
1940 lru_add_drain();
1941 start = 0;
1942 rcu_read_lock();
1943
1944 restart:
1945 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1946 page = radix_tree_deref_slot(slot);
1947 if (!page || radix_tree_exception(page)) {
1948 if (radix_tree_deref_retry(page))
1949 goto restart;
1950 } else if (page_count(page) - page_mapcount(page) > 1) {
1951 spin_lock_irq(&mapping->tree_lock);
1952 radix_tree_tag_set(&mapping->page_tree, iter.index,
1953 SHMEM_TAG_PINNED);
1954 spin_unlock_irq(&mapping->tree_lock);
1955 }
1956
1957 if (need_resched()) {
1958 cond_resched_rcu();
1959 start = iter.index + 1;
1960 goto restart;
1961 }
1962 }
1963 rcu_read_unlock();
1964 }
1965
1966 /*
1967 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
1968 * via get_user_pages(), drivers might have some pending I/O without any active
1969 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
1970 * and see whether it has an elevated ref-count. If so, we tag them and wait for
1971 * them to be dropped.
1972 * The caller must guarantee that no new user will acquire writable references
1973 * to those pages to avoid races.
1974 */
1975 static int shmem_wait_for_pins(struct address_space *mapping)
1976 {
1977 struct radix_tree_iter iter;
1978 void **slot;
1979 pgoff_t start;
1980 struct page *page;
1981 int error, scan;
1982
1983 shmem_tag_pins(mapping);
1984
1985 error = 0;
1986 for (scan = 0; scan <= LAST_SCAN; scan++) {
1987 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
1988 break;
1989
1990 if (!scan)
1991 lru_add_drain_all();
1992 else if (schedule_timeout_killable((HZ << scan) / 200))
1993 scan = LAST_SCAN;
1994
1995 start = 0;
1996 rcu_read_lock();
1997 restart:
1998 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
1999 start, SHMEM_TAG_PINNED) {
2000
2001 page = radix_tree_deref_slot(slot);
2002 if (radix_tree_exception(page)) {
2003 if (radix_tree_deref_retry(page))
2004 goto restart;
2005
2006 page = NULL;
2007 }
2008
2009 if (page &&
2010 page_count(page) - page_mapcount(page) != 1) {
2011 if (scan < LAST_SCAN)
2012 goto continue_resched;
2013
2014 /*
2015 * On the last scan, we clean up all those tags
2016 * we inserted; but make a note that we still
2017 * found pages pinned.
2018 */
2019 error = -EBUSY;
2020 }
2021
2022 spin_lock_irq(&mapping->tree_lock);
2023 radix_tree_tag_clear(&mapping->page_tree,
2024 iter.index, SHMEM_TAG_PINNED);
2025 spin_unlock_irq(&mapping->tree_lock);
2026 continue_resched:
2027 if (need_resched()) {
2028 cond_resched_rcu();
2029 start = iter.index + 1;
2030 goto restart;
2031 }
2032 }
2033 rcu_read_unlock();
2034 }
2035
2036 return error;
2037 }
2038
2039 #define F_ALL_SEALS (F_SEAL_SEAL | \
2040 F_SEAL_SHRINK | \
2041 F_SEAL_GROW | \
2042 F_SEAL_WRITE)
2043
2044 int shmem_add_seals(struct file *file, unsigned int seals)
2045 {
2046 struct inode *inode = file_inode(file);
2047 struct shmem_inode_info *info = SHMEM_I(inode);
2048 int error;
2049
2050 /*
2051 * SEALING
2052 * Sealing allows multiple parties to share a shmem-file but restrict
2053 * access to a specific subset of file operations. Seals can only be
2054 * added, but never removed. This way, mutually untrusted parties can
2055 * share common memory regions with a well-defined policy. A malicious
2056 * peer can thus never perform unwanted operations on a shared object.
2057 *
2058 * Seals are only supported on special shmem-files and always affect
2059 * the whole underlying inode. Once a seal is set, it may prevent some
2060 * kinds of access to the file. Currently, the following seals are
2061 * defined:
2062 * SEAL_SEAL: Prevent further seals from being set on this file
2063 * SEAL_SHRINK: Prevent the file from shrinking
2064 * SEAL_GROW: Prevent the file from growing
2065 * SEAL_WRITE: Prevent write access to the file
2066 *
2067 * As we don't require any trust relationship between two parties, we
2068 * must prevent seals from being removed. Therefore, sealing a file
2069 * only adds a given set of seals to the file, it never touches
2070 * existing seals. Furthermore, the "setting seals"-operation can be
2071 * sealed itself, which basically prevents any further seal from being
2072 * added.
2073 *
2074 * Semantics of sealing are only defined on volatile files. Only
2075 * anonymous shmem files support sealing. More importantly, seals are
2076 * never written to disk. Therefore, there's no plan to support it on
2077 * other file types.
2078 */
2079
2080 if (file->f_op != &shmem_file_operations)
2081 return -EINVAL;
2082 if (!(file->f_mode & FMODE_WRITE))
2083 return -EPERM;
2084 if (seals & ~(unsigned int)F_ALL_SEALS)
2085 return -EINVAL;
2086
2087 mutex_lock(&inode->i_mutex);
2088
2089 if (info->seals & F_SEAL_SEAL) {
2090 error = -EPERM;
2091 goto unlock;
2092 }
2093
2094 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2095 error = mapping_deny_writable(file->f_mapping);
2096 if (error)
2097 goto unlock;
2098
2099 error = shmem_wait_for_pins(file->f_mapping);
2100 if (error) {
2101 mapping_allow_writable(file->f_mapping);
2102 goto unlock;
2103 }
2104 }
2105
2106 info->seals |= seals;
2107 error = 0;
2108
2109 unlock:
2110 mutex_unlock(&inode->i_mutex);
2111 return error;
2112 }
2113 EXPORT_SYMBOL_GPL(shmem_add_seals);
2114
2115 int shmem_get_seals(struct file *file)
2116 {
2117 if (file->f_op != &shmem_file_operations)
2118 return -EINVAL;
2119
2120 return SHMEM_I(file_inode(file))->seals;
2121 }
2122 EXPORT_SYMBOL_GPL(shmem_get_seals);
2123
2124 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2125 {
2126 long error;
2127
2128 switch (cmd) {
2129 case F_ADD_SEALS:
2130 /* disallow upper 32bit */
2131 if (arg > UINT_MAX)
2132 return -EINVAL;
2133
2134 error = shmem_add_seals(file, arg);
2135 break;
2136 case F_GET_SEALS:
2137 error = shmem_get_seals(file);
2138 break;
2139 default:
2140 error = -EINVAL;
2141 break;
2142 }
2143
2144 return error;
2145 }
2146
2147 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2148 loff_t len)
2149 {
2150 struct inode *inode = file_inode(file);
2151 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2152 struct shmem_inode_info *info = SHMEM_I(inode);
2153 struct shmem_falloc shmem_falloc;
2154 pgoff_t start, index, end;
2155 int error;
2156
2157 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2158 return -EOPNOTSUPP;
2159
2160 mutex_lock(&inode->i_mutex);
2161
2162 if (mode & FALLOC_FL_PUNCH_HOLE) {
2163 struct address_space *mapping = file->f_mapping;
2164 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2165 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2166 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2167
2168 /* protected by i_mutex */
2169 if (info->seals & F_SEAL_WRITE) {
2170 error = -EPERM;
2171 goto out;
2172 }
2173
2174 shmem_falloc.waitq = &shmem_falloc_waitq;
2175 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2176 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2177 spin_lock(&inode->i_lock);
2178 inode->i_private = &shmem_falloc;
2179 spin_unlock(&inode->i_lock);
2180
2181 if ((u64)unmap_end > (u64)unmap_start)
2182 unmap_mapping_range(mapping, unmap_start,
2183 1 + unmap_end - unmap_start, 0);
2184 shmem_truncate_range(inode, offset, offset + len - 1);
2185 /* No need to unmap again: hole-punching leaves COWed pages */
2186
2187 spin_lock(&inode->i_lock);
2188 inode->i_private = NULL;
2189 wake_up_all(&shmem_falloc_waitq);
2190 spin_unlock(&inode->i_lock);
2191 error = 0;
2192 goto out;
2193 }
2194
2195 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2196 error = inode_newsize_ok(inode, offset + len);
2197 if (error)
2198 goto out;
2199
2200 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2201 error = -EPERM;
2202 goto out;
2203 }
2204
2205 start = offset >> PAGE_CACHE_SHIFT;
2206 end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
2207 /* Try to avoid a swapstorm if len is impossible to satisfy */
2208 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2209 error = -ENOSPC;
2210 goto out;
2211 }
2212
2213 shmem_falloc.waitq = NULL;
2214 shmem_falloc.start = start;
2215 shmem_falloc.next = start;
2216 shmem_falloc.nr_falloced = 0;
2217 shmem_falloc.nr_unswapped = 0;
2218 spin_lock(&inode->i_lock);
2219 inode->i_private = &shmem_falloc;
2220 spin_unlock(&inode->i_lock);
2221
2222 for (index = start; index < end; index++) {
2223 struct page *page;
2224
2225 /*
2226 * Good, the fallocate(2) manpage permits EINTR: we may have
2227 * been interrupted because we are using up too much memory.
2228 */
2229 if (signal_pending(current))
2230 error = -EINTR;
2231 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2232 error = -ENOMEM;
2233 else
2234 error = shmem_getpage(inode, index, &page, SGP_FALLOC,
2235 NULL);
2236 if (error) {
2237 /* Remove the !PageUptodate pages we added */
2238 shmem_undo_range(inode,
2239 (loff_t)start << PAGE_CACHE_SHIFT,
2240 (loff_t)index << PAGE_CACHE_SHIFT, true);
2241 goto undone;
2242 }
2243
2244 /*
2245 * Inform shmem_writepage() how far we have reached.
2246 * No need for lock or barrier: we have the page lock.
2247 */
2248 shmem_falloc.next++;
2249 if (!PageUptodate(page))
2250 shmem_falloc.nr_falloced++;
2251
2252 /*
2253 * If !PageUptodate, leave it that way so that freeable pages
2254 * can be recognized if we need to rollback on error later.
2255 * But set_page_dirty so that memory pressure will swap rather
2256 * than free the pages we are allocating (and SGP_CACHE pages
2257 * might still be clean: we now need to mark those dirty too).
2258 */
2259 set_page_dirty(page);
2260 unlock_page(page);
2261 page_cache_release(page);
2262 cond_resched();
2263 }
2264
2265 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2266 i_size_write(inode, offset + len);
2267 inode->i_ctime = CURRENT_TIME;
2268 undone:
2269 spin_lock(&inode->i_lock);
2270 inode->i_private = NULL;
2271 spin_unlock(&inode->i_lock);
2272 out:
2273 mutex_unlock(&inode->i_mutex);
2274 return error;
2275 }
2276
2277 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2278 {
2279 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2280
2281 buf->f_type = TMPFS_MAGIC;
2282 buf->f_bsize = PAGE_CACHE_SIZE;
2283 buf->f_namelen = NAME_MAX;
2284 if (sbinfo->max_blocks) {
2285 buf->f_blocks = sbinfo->max_blocks;
2286 buf->f_bavail =
2287 buf->f_bfree = sbinfo->max_blocks -
2288 percpu_counter_sum(&sbinfo->used_blocks);
2289 }
2290 if (sbinfo->max_inodes) {
2291 buf->f_files = sbinfo->max_inodes;
2292 buf->f_ffree = sbinfo->free_inodes;
2293 }
2294 /* else leave those fields 0 like simple_statfs */
2295 return 0;
2296 }
2297
2298 /*
2299 * File creation. Allocate an inode, and we're done..
2300 */
2301 static int
2302 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2303 {
2304 struct inode *inode;
2305 int error = -ENOSPC;
2306
2307 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2308 if (inode) {
2309 error = simple_acl_create(dir, inode);
2310 if (error)
2311 goto out_iput;
2312 error = security_inode_init_security(inode, dir,
2313 &dentry->d_name,
2314 shmem_initxattrs, NULL);
2315 if (error && error != -EOPNOTSUPP)
2316 goto out_iput;
2317
2318 error = 0;
2319 dir->i_size += BOGO_DIRENT_SIZE;
2320 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2321 d_instantiate(dentry, inode);
2322 dget(dentry); /* Extra count - pin the dentry in core */
2323 }
2324 return error;
2325 out_iput:
2326 iput(inode);
2327 return error;
2328 }
2329
2330 static int
2331 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2332 {
2333 struct inode *inode;
2334 int error = -ENOSPC;
2335
2336 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2337 if (inode) {
2338 error = security_inode_init_security(inode, dir,
2339 NULL,
2340 shmem_initxattrs, NULL);
2341 if (error && error != -EOPNOTSUPP)
2342 goto out_iput;
2343 error = simple_acl_create(dir, inode);
2344 if (error)
2345 goto out_iput;
2346 d_tmpfile(dentry, inode);
2347 }
2348 return error;
2349 out_iput:
2350 iput(inode);
2351 return error;
2352 }
2353
2354 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2355 {
2356 int error;
2357
2358 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2359 return error;
2360 inc_nlink(dir);
2361 return 0;
2362 }
2363
2364 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2365 bool excl)
2366 {
2367 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2368 }
2369
2370 /*
2371 * Link a file..
2372 */
2373 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2374 {
2375 struct inode *inode = d_inode(old_dentry);
2376 int ret;
2377
2378 /*
2379 * No ordinary (disk based) filesystem counts links as inodes;
2380 * but each new link needs a new dentry, pinning lowmem, and
2381 * tmpfs dentries cannot be pruned until they are unlinked.
2382 */
2383 ret = shmem_reserve_inode(inode->i_sb);
2384 if (ret)
2385 goto out;
2386
2387 dir->i_size += BOGO_DIRENT_SIZE;
2388 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2389 inc_nlink(inode);
2390 ihold(inode); /* New dentry reference */
2391 dget(dentry); /* Extra pinning count for the created dentry */
2392 d_instantiate(dentry, inode);
2393 out:
2394 return ret;
2395 }
2396
2397 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2398 {
2399 struct inode *inode = d_inode(dentry);
2400
2401 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2402 shmem_free_inode(inode->i_sb);
2403
2404 dir->i_size -= BOGO_DIRENT_SIZE;
2405 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2406 drop_nlink(inode);
2407 dput(dentry); /* Undo the count from "create" - this does all the work */
2408 return 0;
2409 }
2410
2411 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2412 {
2413 if (!simple_empty(dentry))
2414 return -ENOTEMPTY;
2415
2416 drop_nlink(d_inode(dentry));
2417 drop_nlink(dir);
2418 return shmem_unlink(dir, dentry);
2419 }
2420
2421 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2422 {
2423 bool old_is_dir = d_is_dir(old_dentry);
2424 bool new_is_dir = d_is_dir(new_dentry);
2425
2426 if (old_dir != new_dir && old_is_dir != new_is_dir) {
2427 if (old_is_dir) {
2428 drop_nlink(old_dir);
2429 inc_nlink(new_dir);
2430 } else {
2431 drop_nlink(new_dir);
2432 inc_nlink(old_dir);
2433 }
2434 }
2435 old_dir->i_ctime = old_dir->i_mtime =
2436 new_dir->i_ctime = new_dir->i_mtime =
2437 d_inode(old_dentry)->i_ctime =
2438 d_inode(new_dentry)->i_ctime = CURRENT_TIME;
2439
2440 return 0;
2441 }
2442
2443 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2444 {
2445 struct dentry *whiteout;
2446 int error;
2447
2448 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2449 if (!whiteout)
2450 return -ENOMEM;
2451
2452 error = shmem_mknod(old_dir, whiteout,
2453 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2454 dput(whiteout);
2455 if (error)
2456 return error;
2457
2458 /*
2459 * Cheat and hash the whiteout while the old dentry is still in
2460 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2461 *
2462 * d_lookup() will consistently find one of them at this point,
2463 * not sure which one, but that isn't even important.
2464 */
2465 d_rehash(whiteout);
2466 return 0;
2467 }
2468
2469 /*
2470 * The VFS layer already does all the dentry stuff for rename,
2471 * we just have to decrement the usage count for the target if
2472 * it exists so that the VFS layer correctly free's it when it
2473 * gets overwritten.
2474 */
2475 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
2476 {
2477 struct inode *inode = d_inode(old_dentry);
2478 int they_are_dirs = S_ISDIR(inode->i_mode);
2479
2480 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2481 return -EINVAL;
2482
2483 if (flags & RENAME_EXCHANGE)
2484 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2485
2486 if (!simple_empty(new_dentry))
2487 return -ENOTEMPTY;
2488
2489 if (flags & RENAME_WHITEOUT) {
2490 int error;
2491
2492 error = shmem_whiteout(old_dir, old_dentry);
2493 if (error)
2494 return error;
2495 }
2496
2497 if (d_really_is_positive(new_dentry)) {
2498 (void) shmem_unlink(new_dir, new_dentry);
2499 if (they_are_dirs) {
2500 drop_nlink(d_inode(new_dentry));
2501 drop_nlink(old_dir);
2502 }
2503 } else if (they_are_dirs) {
2504 drop_nlink(old_dir);
2505 inc_nlink(new_dir);
2506 }
2507
2508 old_dir->i_size -= BOGO_DIRENT_SIZE;
2509 new_dir->i_size += BOGO_DIRENT_SIZE;
2510 old_dir->i_ctime = old_dir->i_mtime =
2511 new_dir->i_ctime = new_dir->i_mtime =
2512 inode->i_ctime = CURRENT_TIME;
2513 return 0;
2514 }
2515
2516 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2517 {
2518 int error;
2519 int len;
2520 struct inode *inode;
2521 struct page *page;
2522 struct shmem_inode_info *info;
2523
2524 len = strlen(symname) + 1;
2525 if (len > PAGE_CACHE_SIZE)
2526 return -ENAMETOOLONG;
2527
2528 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2529 if (!inode)
2530 return -ENOSPC;
2531
2532 error = security_inode_init_security(inode, dir, &dentry->d_name,
2533 shmem_initxattrs, NULL);
2534 if (error) {
2535 if (error != -EOPNOTSUPP) {
2536 iput(inode);
2537 return error;
2538 }
2539 error = 0;
2540 }
2541
2542 info = SHMEM_I(inode);
2543 inode->i_size = len-1;
2544 if (len <= SHORT_SYMLINK_LEN) {
2545 info->symlink = kmemdup(symname, len, GFP_KERNEL);
2546 if (!info->symlink) {
2547 iput(inode);
2548 return -ENOMEM;
2549 }
2550 inode->i_op = &shmem_short_symlink_operations;
2551 inode->i_link = info->symlink;
2552 } else {
2553 inode_nohighmem(inode);
2554 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2555 if (error) {
2556 iput(inode);
2557 return error;
2558 }
2559 inode->i_mapping->a_ops = &shmem_aops;
2560 inode->i_op = &shmem_symlink_inode_operations;
2561 memcpy(page_address(page), symname, len);
2562 SetPageUptodate(page);
2563 set_page_dirty(page);
2564 unlock_page(page);
2565 page_cache_release(page);
2566 }
2567 dir->i_size += BOGO_DIRENT_SIZE;
2568 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2569 d_instantiate(dentry, inode);
2570 dget(dentry);
2571 return 0;
2572 }
2573
2574 static void shmem_put_link(void *arg)
2575 {
2576 mark_page_accessed(arg);
2577 put_page(arg);
2578 }
2579
2580 static const char *shmem_get_link(struct dentry *dentry,
2581 struct inode *inode,
2582 struct delayed_call *done)
2583 {
2584 struct page *page = NULL;
2585 int error;
2586 if (!dentry) {
2587 page = find_get_page(inode->i_mapping, 0);
2588 if (!page)
2589 return ERR_PTR(-ECHILD);
2590 if (!PageUptodate(page)) {
2591 put_page(page);
2592 return ERR_PTR(-ECHILD);
2593 }
2594 } else {
2595 error = shmem_getpage(inode, 0, &page, SGP_READ, NULL);
2596 if (error)
2597 return ERR_PTR(error);
2598 unlock_page(page);
2599 }
2600 set_delayed_call(done, shmem_put_link, page);
2601 return page_address(page);
2602 }
2603
2604 #ifdef CONFIG_TMPFS_XATTR
2605 /*
2606 * Superblocks without xattr inode operations may get some security.* xattr
2607 * support from the LSM "for free". As soon as we have any other xattrs
2608 * like ACLs, we also need to implement the security.* handlers at
2609 * filesystem level, though.
2610 */
2611
2612 /*
2613 * Callback for security_inode_init_security() for acquiring xattrs.
2614 */
2615 static int shmem_initxattrs(struct inode *inode,
2616 const struct xattr *xattr_array,
2617 void *fs_info)
2618 {
2619 struct shmem_inode_info *info = SHMEM_I(inode);
2620 const struct xattr *xattr;
2621 struct simple_xattr *new_xattr;
2622 size_t len;
2623
2624 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2625 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2626 if (!new_xattr)
2627 return -ENOMEM;
2628
2629 len = strlen(xattr->name) + 1;
2630 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2631 GFP_KERNEL);
2632 if (!new_xattr->name) {
2633 kfree(new_xattr);
2634 return -ENOMEM;
2635 }
2636
2637 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2638 XATTR_SECURITY_PREFIX_LEN);
2639 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2640 xattr->name, len);
2641
2642 simple_xattr_list_add(&info->xattrs, new_xattr);
2643 }
2644
2645 return 0;
2646 }
2647
2648 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
2649 struct dentry *dentry, const char *name,
2650 void *buffer, size_t size)
2651 {
2652 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2653
2654 name = xattr_full_name(handler, name);
2655 return simple_xattr_get(&info->xattrs, name, buffer, size);
2656 }
2657
2658 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
2659 struct dentry *dentry, const char *name,
2660 const void *value, size_t size, int flags)
2661 {
2662 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2663
2664 name = xattr_full_name(handler, name);
2665 return simple_xattr_set(&info->xattrs, name, value, size, flags);
2666 }
2667
2668 static const struct xattr_handler shmem_security_xattr_handler = {
2669 .prefix = XATTR_SECURITY_PREFIX,
2670 .get = shmem_xattr_handler_get,
2671 .set = shmem_xattr_handler_set,
2672 };
2673
2674 static const struct xattr_handler shmem_trusted_xattr_handler = {
2675 .prefix = XATTR_TRUSTED_PREFIX,
2676 .get = shmem_xattr_handler_get,
2677 .set = shmem_xattr_handler_set,
2678 };
2679
2680 static const struct xattr_handler *shmem_xattr_handlers[] = {
2681 #ifdef CONFIG_TMPFS_POSIX_ACL
2682 &posix_acl_access_xattr_handler,
2683 &posix_acl_default_xattr_handler,
2684 #endif
2685 &shmem_security_xattr_handler,
2686 &shmem_trusted_xattr_handler,
2687 NULL
2688 };
2689
2690 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2691 {
2692 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2693 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
2694 }
2695 #endif /* CONFIG_TMPFS_XATTR */
2696
2697 static const struct inode_operations shmem_short_symlink_operations = {
2698 .readlink = generic_readlink,
2699 .get_link = simple_get_link,
2700 #ifdef CONFIG_TMPFS_XATTR
2701 .setxattr = generic_setxattr,
2702 .getxattr = generic_getxattr,
2703 .listxattr = shmem_listxattr,
2704 .removexattr = generic_removexattr,
2705 #endif
2706 };
2707
2708 static const struct inode_operations shmem_symlink_inode_operations = {
2709 .readlink = generic_readlink,
2710 .get_link = shmem_get_link,
2711 #ifdef CONFIG_TMPFS_XATTR
2712 .setxattr = generic_setxattr,
2713 .getxattr = generic_getxattr,
2714 .listxattr = shmem_listxattr,
2715 .removexattr = generic_removexattr,
2716 #endif
2717 };
2718
2719 static struct dentry *shmem_get_parent(struct dentry *child)
2720 {
2721 return ERR_PTR(-ESTALE);
2722 }
2723
2724 static int shmem_match(struct inode *ino, void *vfh)
2725 {
2726 __u32 *fh = vfh;
2727 __u64 inum = fh[2];
2728 inum = (inum << 32) | fh[1];
2729 return ino->i_ino == inum && fh[0] == ino->i_generation;
2730 }
2731
2732 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2733 struct fid *fid, int fh_len, int fh_type)
2734 {
2735 struct inode *inode;
2736 struct dentry *dentry = NULL;
2737 u64 inum;
2738
2739 if (fh_len < 3)
2740 return NULL;
2741
2742 inum = fid->raw[2];
2743 inum = (inum << 32) | fid->raw[1];
2744
2745 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2746 shmem_match, fid->raw);
2747 if (inode) {
2748 dentry = d_find_alias(inode);
2749 iput(inode);
2750 }
2751
2752 return dentry;
2753 }
2754
2755 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2756 struct inode *parent)
2757 {
2758 if (*len < 3) {
2759 *len = 3;
2760 return FILEID_INVALID;
2761 }
2762
2763 if (inode_unhashed(inode)) {
2764 /* Unfortunately insert_inode_hash is not idempotent,
2765 * so as we hash inodes here rather than at creation
2766 * time, we need a lock to ensure we only try
2767 * to do it once
2768 */
2769 static DEFINE_SPINLOCK(lock);
2770 spin_lock(&lock);
2771 if (inode_unhashed(inode))
2772 __insert_inode_hash(inode,
2773 inode->i_ino + inode->i_generation);
2774 spin_unlock(&lock);
2775 }
2776
2777 fh[0] = inode->i_generation;
2778 fh[1] = inode->i_ino;
2779 fh[2] = ((__u64)inode->i_ino) >> 32;
2780
2781 *len = 3;
2782 return 1;
2783 }
2784
2785 static const struct export_operations shmem_export_ops = {
2786 .get_parent = shmem_get_parent,
2787 .encode_fh = shmem_encode_fh,
2788 .fh_to_dentry = shmem_fh_to_dentry,
2789 };
2790
2791 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2792 bool remount)
2793 {
2794 char *this_char, *value, *rest;
2795 struct mempolicy *mpol = NULL;
2796 uid_t uid;
2797 gid_t gid;
2798
2799 while (options != NULL) {
2800 this_char = options;
2801 for (;;) {
2802 /*
2803 * NUL-terminate this option: unfortunately,
2804 * mount options form a comma-separated list,
2805 * but mpol's nodelist may also contain commas.
2806 */
2807 options = strchr(options, ',');
2808 if (options == NULL)
2809 break;
2810 options++;
2811 if (!isdigit(*options)) {
2812 options[-1] = '\0';
2813 break;
2814 }
2815 }
2816 if (!*this_char)
2817 continue;
2818 if ((value = strchr(this_char,'=')) != NULL) {
2819 *value++ = 0;
2820 } else {
2821 printk(KERN_ERR
2822 "tmpfs: No value for mount option '%s'\n",
2823 this_char);
2824 goto error;
2825 }
2826
2827 if (!strcmp(this_char,"size")) {
2828 unsigned long long size;
2829 size = memparse(value,&rest);
2830 if (*rest == '%') {
2831 size <<= PAGE_SHIFT;
2832 size *= totalram_pages;
2833 do_div(size, 100);
2834 rest++;
2835 }
2836 if (*rest)
2837 goto bad_val;
2838 sbinfo->max_blocks =
2839 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2840 } else if (!strcmp(this_char,"nr_blocks")) {
2841 sbinfo->max_blocks = memparse(value, &rest);
2842 if (*rest)
2843 goto bad_val;
2844 } else if (!strcmp(this_char,"nr_inodes")) {
2845 sbinfo->max_inodes = memparse(value, &rest);
2846 if (*rest)
2847 goto bad_val;
2848 } else if (!strcmp(this_char,"mode")) {
2849 if (remount)
2850 continue;
2851 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2852 if (*rest)
2853 goto bad_val;
2854 } else if (!strcmp(this_char,"uid")) {
2855 if (remount)
2856 continue;
2857 uid = simple_strtoul(value, &rest, 0);
2858 if (*rest)
2859 goto bad_val;
2860 sbinfo->uid = make_kuid(current_user_ns(), uid);
2861 if (!uid_valid(sbinfo->uid))
2862 goto bad_val;
2863 } else if (!strcmp(this_char,"gid")) {
2864 if (remount)
2865 continue;
2866 gid = simple_strtoul(value, &rest, 0);
2867 if (*rest)
2868 goto bad_val;
2869 sbinfo->gid = make_kgid(current_user_ns(), gid);
2870 if (!gid_valid(sbinfo->gid))
2871 goto bad_val;
2872 } else if (!strcmp(this_char,"mpol")) {
2873 mpol_put(mpol);
2874 mpol = NULL;
2875 if (mpol_parse_str(value, &mpol))
2876 goto bad_val;
2877 } else {
2878 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2879 this_char);
2880 goto error;
2881 }
2882 }
2883 sbinfo->mpol = mpol;
2884 return 0;
2885
2886 bad_val:
2887 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2888 value, this_char);
2889 error:
2890 mpol_put(mpol);
2891 return 1;
2892
2893 }
2894
2895 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2896 {
2897 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2898 struct shmem_sb_info config = *sbinfo;
2899 unsigned long inodes;
2900 int error = -EINVAL;
2901
2902 config.mpol = NULL;
2903 if (shmem_parse_options(data, &config, true))
2904 return error;
2905
2906 spin_lock(&sbinfo->stat_lock);
2907 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2908 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2909 goto out;
2910 if (config.max_inodes < inodes)
2911 goto out;
2912 /*
2913 * Those tests disallow limited->unlimited while any are in use;
2914 * but we must separately disallow unlimited->limited, because
2915 * in that case we have no record of how much is already in use.
2916 */
2917 if (config.max_blocks && !sbinfo->max_blocks)
2918 goto out;
2919 if (config.max_inodes && !sbinfo->max_inodes)
2920 goto out;
2921
2922 error = 0;
2923 sbinfo->max_blocks = config.max_blocks;
2924 sbinfo->max_inodes = config.max_inodes;
2925 sbinfo->free_inodes = config.max_inodes - inodes;
2926
2927 /*
2928 * Preserve previous mempolicy unless mpol remount option was specified.
2929 */
2930 if (config.mpol) {
2931 mpol_put(sbinfo->mpol);
2932 sbinfo->mpol = config.mpol; /* transfers initial ref */
2933 }
2934 out:
2935 spin_unlock(&sbinfo->stat_lock);
2936 return error;
2937 }
2938
2939 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2940 {
2941 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2942
2943 if (sbinfo->max_blocks != shmem_default_max_blocks())
2944 seq_printf(seq, ",size=%luk",
2945 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2946 if (sbinfo->max_inodes != shmem_default_max_inodes())
2947 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2948 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2949 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2950 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2951 seq_printf(seq, ",uid=%u",
2952 from_kuid_munged(&init_user_ns, sbinfo->uid));
2953 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2954 seq_printf(seq, ",gid=%u",
2955 from_kgid_munged(&init_user_ns, sbinfo->gid));
2956 shmem_show_mpol(seq, sbinfo->mpol);
2957 return 0;
2958 }
2959
2960 #define MFD_NAME_PREFIX "memfd:"
2961 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
2962 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
2963
2964 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
2965
2966 SYSCALL_DEFINE2(memfd_create,
2967 const char __user *, uname,
2968 unsigned int, flags)
2969 {
2970 struct shmem_inode_info *info;
2971 struct file *file;
2972 int fd, error;
2973 char *name;
2974 long len;
2975
2976 if (flags & ~(unsigned int)MFD_ALL_FLAGS)
2977 return -EINVAL;
2978
2979 /* length includes terminating zero */
2980 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
2981 if (len <= 0)
2982 return -EFAULT;
2983 if (len > MFD_NAME_MAX_LEN + 1)
2984 return -EINVAL;
2985
2986 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
2987 if (!name)
2988 return -ENOMEM;
2989
2990 strcpy(name, MFD_NAME_PREFIX);
2991 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
2992 error = -EFAULT;
2993 goto err_name;
2994 }
2995
2996 /* terminating-zero may have changed after strnlen_user() returned */
2997 if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
2998 error = -EFAULT;
2999 goto err_name;
3000 }
3001
3002 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3003 if (fd < 0) {
3004 error = fd;
3005 goto err_name;
3006 }
3007
3008 file = shmem_file_setup(name, 0, VM_NORESERVE);
3009 if (IS_ERR(file)) {
3010 error = PTR_ERR(file);
3011 goto err_fd;
3012 }
3013 info = SHMEM_I(file_inode(file));
3014 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3015 file->f_flags |= O_RDWR | O_LARGEFILE;
3016 if (flags & MFD_ALLOW_SEALING)
3017 info->seals &= ~F_SEAL_SEAL;
3018
3019 fd_install(fd, file);
3020 kfree(name);
3021 return fd;
3022
3023 err_fd:
3024 put_unused_fd(fd);
3025 err_name:
3026 kfree(name);
3027 return error;
3028 }
3029
3030 #endif /* CONFIG_TMPFS */
3031
3032 static void shmem_put_super(struct super_block *sb)
3033 {
3034 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3035
3036 percpu_counter_destroy(&sbinfo->used_blocks);
3037 mpol_put(sbinfo->mpol);
3038 kfree(sbinfo);
3039 sb->s_fs_info = NULL;
3040 }
3041
3042 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3043 {
3044 struct inode *inode;
3045 struct shmem_sb_info *sbinfo;
3046 int err = -ENOMEM;
3047
3048 /* Round up to L1_CACHE_BYTES to resist false sharing */
3049 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3050 L1_CACHE_BYTES), GFP_KERNEL);
3051 if (!sbinfo)
3052 return -ENOMEM;
3053
3054 sbinfo->mode = S_IRWXUGO | S_ISVTX;
3055 sbinfo->uid = current_fsuid();
3056 sbinfo->gid = current_fsgid();
3057 sb->s_fs_info = sbinfo;
3058
3059 #ifdef CONFIG_TMPFS
3060 /*
3061 * Per default we only allow half of the physical ram per
3062 * tmpfs instance, limiting inodes to one per page of lowmem;
3063 * but the internal instance is left unlimited.
3064 */
3065 if (!(sb->s_flags & MS_KERNMOUNT)) {
3066 sbinfo->max_blocks = shmem_default_max_blocks();
3067 sbinfo->max_inodes = shmem_default_max_inodes();
3068 if (shmem_parse_options(data, sbinfo, false)) {
3069 err = -EINVAL;
3070 goto failed;
3071 }
3072 } else {
3073 sb->s_flags |= MS_NOUSER;
3074 }
3075 sb->s_export_op = &shmem_export_ops;
3076 sb->s_flags |= MS_NOSEC;
3077 #else
3078 sb->s_flags |= MS_NOUSER;
3079 #endif
3080
3081 spin_lock_init(&sbinfo->stat_lock);
3082 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3083 goto failed;
3084 sbinfo->free_inodes = sbinfo->max_inodes;
3085
3086 sb->s_maxbytes = MAX_LFS_FILESIZE;
3087 sb->s_blocksize = PAGE_CACHE_SIZE;
3088 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
3089 sb->s_magic = TMPFS_MAGIC;
3090 sb->s_op = &shmem_ops;
3091 sb->s_time_gran = 1;
3092 #ifdef CONFIG_TMPFS_XATTR
3093 sb->s_xattr = shmem_xattr_handlers;
3094 #endif
3095 #ifdef CONFIG_TMPFS_POSIX_ACL
3096 sb->s_flags |= MS_POSIXACL;
3097 #endif
3098
3099 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3100 if (!inode)
3101 goto failed;
3102 inode->i_uid = sbinfo->uid;
3103 inode->i_gid = sbinfo->gid;
3104 sb->s_root = d_make_root(inode);
3105 if (!sb->s_root)
3106 goto failed;
3107 return 0;
3108
3109 failed:
3110 shmem_put_super(sb);
3111 return err;
3112 }
3113
3114 static struct kmem_cache *shmem_inode_cachep;
3115
3116 static struct inode *shmem_alloc_inode(struct super_block *sb)
3117 {
3118 struct shmem_inode_info *info;
3119 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3120 if (!info)
3121 return NULL;
3122 return &info->vfs_inode;
3123 }
3124
3125 static void shmem_destroy_callback(struct rcu_head *head)
3126 {
3127 struct inode *inode = container_of(head, struct inode, i_rcu);
3128 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3129 }
3130
3131 static void shmem_destroy_inode(struct inode *inode)
3132 {
3133 if (S_ISREG(inode->i_mode))
3134 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3135 call_rcu(&inode->i_rcu, shmem_destroy_callback);
3136 }
3137
3138 static void shmem_init_inode(void *foo)
3139 {
3140 struct shmem_inode_info *info = foo;
3141 inode_init_once(&info->vfs_inode);
3142 }
3143
3144 static int shmem_init_inodecache(void)
3145 {
3146 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3147 sizeof(struct shmem_inode_info),
3148 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3149 return 0;
3150 }
3151
3152 static void shmem_destroy_inodecache(void)
3153 {
3154 kmem_cache_destroy(shmem_inode_cachep);
3155 }
3156
3157 static const struct address_space_operations shmem_aops = {
3158 .writepage = shmem_writepage,
3159 .set_page_dirty = __set_page_dirty_no_writeback,
3160 #ifdef CONFIG_TMPFS
3161 .write_begin = shmem_write_begin,
3162 .write_end = shmem_write_end,
3163 #endif
3164 #ifdef CONFIG_MIGRATION
3165 .migratepage = migrate_page,
3166 #endif
3167 .error_remove_page = generic_error_remove_page,
3168 };
3169
3170 static const struct file_operations shmem_file_operations = {
3171 .mmap = shmem_mmap,
3172 #ifdef CONFIG_TMPFS
3173 .llseek = shmem_file_llseek,
3174 .read_iter = shmem_file_read_iter,
3175 .write_iter = generic_file_write_iter,
3176 .fsync = noop_fsync,
3177 .splice_read = shmem_file_splice_read,
3178 .splice_write = iter_file_splice_write,
3179 .fallocate = shmem_fallocate,
3180 #endif
3181 };
3182
3183 static const struct inode_operations shmem_inode_operations = {
3184 .getattr = shmem_getattr,
3185 .setattr = shmem_setattr,
3186 #ifdef CONFIG_TMPFS_XATTR
3187 .setxattr = generic_setxattr,
3188 .getxattr = generic_getxattr,
3189 .listxattr = shmem_listxattr,
3190 .removexattr = generic_removexattr,
3191 .set_acl = simple_set_acl,
3192 #endif
3193 };
3194
3195 static const struct inode_operations shmem_dir_inode_operations = {
3196 #ifdef CONFIG_TMPFS
3197 .create = shmem_create,
3198 .lookup = simple_lookup,
3199 .link = shmem_link,
3200 .unlink = shmem_unlink,
3201 .symlink = shmem_symlink,
3202 .mkdir = shmem_mkdir,
3203 .rmdir = shmem_rmdir,
3204 .mknod = shmem_mknod,
3205 .rename2 = shmem_rename2,
3206 .tmpfile = shmem_tmpfile,
3207 #endif
3208 #ifdef CONFIG_TMPFS_XATTR
3209 .setxattr = generic_setxattr,
3210 .getxattr = generic_getxattr,
3211 .listxattr = shmem_listxattr,
3212 .removexattr = generic_removexattr,
3213 #endif
3214 #ifdef CONFIG_TMPFS_POSIX_ACL
3215 .setattr = shmem_setattr,
3216 .set_acl = simple_set_acl,
3217 #endif
3218 };
3219
3220 static const struct inode_operations shmem_special_inode_operations = {
3221 #ifdef CONFIG_TMPFS_XATTR
3222 .setxattr = generic_setxattr,
3223 .getxattr = generic_getxattr,
3224 .listxattr = shmem_listxattr,
3225 .removexattr = generic_removexattr,
3226 #endif
3227 #ifdef CONFIG_TMPFS_POSIX_ACL
3228 .setattr = shmem_setattr,
3229 .set_acl = simple_set_acl,
3230 #endif
3231 };
3232
3233 static const struct super_operations shmem_ops = {
3234 .alloc_inode = shmem_alloc_inode,
3235 .destroy_inode = shmem_destroy_inode,
3236 #ifdef CONFIG_TMPFS
3237 .statfs = shmem_statfs,
3238 .remount_fs = shmem_remount_fs,
3239 .show_options = shmem_show_options,
3240 #endif
3241 .evict_inode = shmem_evict_inode,
3242 .drop_inode = generic_delete_inode,
3243 .put_super = shmem_put_super,
3244 };
3245
3246 static const struct vm_operations_struct shmem_vm_ops = {
3247 .fault = shmem_fault,
3248 .map_pages = filemap_map_pages,
3249 #ifdef CONFIG_NUMA
3250 .set_policy = shmem_set_policy,
3251 .get_policy = shmem_get_policy,
3252 #endif
3253 };
3254
3255 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3256 int flags, const char *dev_name, void *data)
3257 {
3258 return mount_nodev(fs_type, flags, data, shmem_fill_super);
3259 }
3260
3261 static struct file_system_type shmem_fs_type = {
3262 .owner = THIS_MODULE,
3263 .name = "tmpfs",
3264 .mount = shmem_mount,
3265 .kill_sb = kill_litter_super,
3266 .fs_flags = FS_USERNS_MOUNT,
3267 };
3268
3269 int __init shmem_init(void)
3270 {
3271 int error;
3272
3273 /* If rootfs called this, don't re-init */
3274 if (shmem_inode_cachep)
3275 return 0;
3276
3277 error = shmem_init_inodecache();
3278 if (error)
3279 goto out3;
3280
3281 error = register_filesystem(&shmem_fs_type);
3282 if (error) {
3283 printk(KERN_ERR "Could not register tmpfs\n");
3284 goto out2;
3285 }
3286
3287 shm_mnt = kern_mount(&shmem_fs_type);
3288 if (IS_ERR(shm_mnt)) {
3289 error = PTR_ERR(shm_mnt);
3290 printk(KERN_ERR "Could not kern_mount tmpfs\n");
3291 goto out1;
3292 }
3293 return 0;
3294
3295 out1:
3296 unregister_filesystem(&shmem_fs_type);
3297 out2:
3298 shmem_destroy_inodecache();
3299 out3:
3300 shm_mnt = ERR_PTR(error);
3301 return error;
3302 }
3303
3304 #else /* !CONFIG_SHMEM */
3305
3306 /*
3307 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3308 *
3309 * This is intended for small system where the benefits of the full
3310 * shmem code (swap-backed and resource-limited) are outweighed by
3311 * their complexity. On systems without swap this code should be
3312 * effectively equivalent, but much lighter weight.
3313 */
3314
3315 static struct file_system_type shmem_fs_type = {
3316 .name = "tmpfs",
3317 .mount = ramfs_mount,
3318 .kill_sb = kill_litter_super,
3319 .fs_flags = FS_USERNS_MOUNT,
3320 };
3321
3322 int __init shmem_init(void)
3323 {
3324 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3325
3326 shm_mnt = kern_mount(&shmem_fs_type);
3327 BUG_ON(IS_ERR(shm_mnt));
3328
3329 return 0;
3330 }
3331
3332 int shmem_unuse(swp_entry_t swap, struct page *page)
3333 {
3334 return 0;
3335 }
3336
3337 int shmem_lock(struct file *file, int lock, struct user_struct *user)
3338 {
3339 return 0;
3340 }
3341
3342 void shmem_unlock_mapping(struct address_space *mapping)
3343 {
3344 }
3345
3346 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3347 {
3348 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3349 }
3350 EXPORT_SYMBOL_GPL(shmem_truncate_range);
3351
3352 #define shmem_vm_ops generic_file_vm_ops
3353 #define shmem_file_operations ramfs_file_operations
3354 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
3355 #define shmem_acct_size(flags, size) 0
3356 #define shmem_unacct_size(flags, size) do {} while (0)
3357
3358 #endif /* CONFIG_SHMEM */
3359
3360 /* common code */
3361
3362 static struct dentry_operations anon_ops = {
3363 .d_dname = simple_dname
3364 };
3365
3366 static struct file *__shmem_file_setup(const char *name, loff_t size,
3367 unsigned long flags, unsigned int i_flags)
3368 {
3369 struct file *res;
3370 struct inode *inode;
3371 struct path path;
3372 struct super_block *sb;
3373 struct qstr this;
3374
3375 if (IS_ERR(shm_mnt))
3376 return ERR_CAST(shm_mnt);
3377
3378 if (size < 0 || size > MAX_LFS_FILESIZE)
3379 return ERR_PTR(-EINVAL);
3380
3381 if (shmem_acct_size(flags, size))
3382 return ERR_PTR(-ENOMEM);
3383
3384 res = ERR_PTR(-ENOMEM);
3385 this.name = name;
3386 this.len = strlen(name);
3387 this.hash = 0; /* will go */
3388 sb = shm_mnt->mnt_sb;
3389 path.mnt = mntget(shm_mnt);
3390 path.dentry = d_alloc_pseudo(sb, &this);
3391 if (!path.dentry)
3392 goto put_memory;
3393 d_set_d_op(path.dentry, &anon_ops);
3394
3395 res = ERR_PTR(-ENOSPC);
3396 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
3397 if (!inode)
3398 goto put_memory;
3399
3400 inode->i_flags |= i_flags;
3401 d_instantiate(path.dentry, inode);
3402 inode->i_size = size;
3403 clear_nlink(inode); /* It is unlinked */
3404 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3405 if (IS_ERR(res))
3406 goto put_path;
3407
3408 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3409 &shmem_file_operations);
3410 if (IS_ERR(res))
3411 goto put_path;
3412
3413 return res;
3414
3415 put_memory:
3416 shmem_unacct_size(flags, size);
3417 put_path:
3418 path_put(&path);
3419 return res;
3420 }
3421
3422 /**
3423 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3424 * kernel internal. There will be NO LSM permission checks against the
3425 * underlying inode. So users of this interface must do LSM checks at a
3426 * higher layer. The users are the big_key and shm implementations. LSM
3427 * checks are provided at the key or shm level rather than the inode.
3428 * @name: name for dentry (to be seen in /proc/<pid>/maps
3429 * @size: size to be set for the file
3430 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3431 */
3432 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3433 {
3434 return __shmem_file_setup(name, size, flags, S_PRIVATE);
3435 }
3436
3437 /**
3438 * shmem_file_setup - get an unlinked file living in tmpfs
3439 * @name: name for dentry (to be seen in /proc/<pid>/maps
3440 * @size: size to be set for the file
3441 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3442 */
3443 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3444 {
3445 return __shmem_file_setup(name, size, flags, 0);
3446 }
3447 EXPORT_SYMBOL_GPL(shmem_file_setup);
3448
3449 /**
3450 * shmem_zero_setup - setup a shared anonymous mapping
3451 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3452 */
3453 int shmem_zero_setup(struct vm_area_struct *vma)
3454 {
3455 struct file *file;
3456 loff_t size = vma->vm_end - vma->vm_start;
3457
3458 /*
3459 * Cloning a new file under mmap_sem leads to a lock ordering conflict
3460 * between XFS directory reading and selinux: since this file is only
3461 * accessible to the user through its mapping, use S_PRIVATE flag to
3462 * bypass file security, in the same way as shmem_kernel_file_setup().
3463 */
3464 file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
3465 if (IS_ERR(file))
3466 return PTR_ERR(file);
3467
3468 if (vma->vm_file)
3469 fput(vma->vm_file);
3470 vma->vm_file = file;
3471 vma->vm_ops = &shmem_vm_ops;
3472 return 0;
3473 }
3474
3475 /**
3476 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3477 * @mapping: the page's address_space
3478 * @index: the page index
3479 * @gfp: the page allocator flags to use if allocating
3480 *
3481 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3482 * with any new page allocations done using the specified allocation flags.
3483 * But read_cache_page_gfp() uses the ->readpage() method: which does not
3484 * suit tmpfs, since it may have pages in swapcache, and needs to find those
3485 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3486 *
3487 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3488 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3489 */
3490 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3491 pgoff_t index, gfp_t gfp)
3492 {
3493 #ifdef CONFIG_SHMEM
3494 struct inode *inode = mapping->host;
3495 struct page *page;
3496 int error;
3497
3498 BUG_ON(mapping->a_ops != &shmem_aops);
3499 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3500 if (error)
3501 page = ERR_PTR(error);
3502 else
3503 unlock_page(page);
3504 return page;
3505 #else
3506 /*
3507 * The tiny !SHMEM case uses ramfs without swap
3508 */
3509 return read_cache_page_gfp(mapping, index, gfp);
3510 #endif
3511 }
3512 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
This page took 0.1021 seconds and 6 git commands to generate.