shm: add memfd_create() syscall
[deliverable/linux.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/aio.h>
35
36 static struct vfsmount *shm_mnt;
37
38 #ifdef CONFIG_SHMEM
39 /*
40 * This virtual memory filesystem is heavily based on the ramfs. It
41 * extends ramfs by the ability to use swap and honor resource limits
42 * which makes it a completely usable filesystem.
43 */
44
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/posix_acl_xattr.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
69 #include <linux/syscalls.h>
70 #include <linux/fcntl.h>
71 #include <uapi/linux/memfd.h>
72
73 #include <asm/uaccess.h>
74 #include <asm/pgtable.h>
75
76 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
77 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
78
79 /* Pretend that each entry is of this size in directory's i_size */
80 #define BOGO_DIRENT_SIZE 20
81
82 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
83 #define SHORT_SYMLINK_LEN 128
84
85 /*
86 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
87 * inode->i_private (with i_mutex making sure that it has only one user at
88 * a time): we would prefer not to enlarge the shmem inode just for that.
89 */
90 struct shmem_falloc {
91 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
92 pgoff_t start; /* start of range currently being fallocated */
93 pgoff_t next; /* the next page offset to be fallocated */
94 pgoff_t nr_falloced; /* how many new pages have been fallocated */
95 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
96 };
97
98 /* Flag allocation requirements to shmem_getpage */
99 enum sgp_type {
100 SGP_READ, /* don't exceed i_size, don't allocate page */
101 SGP_CACHE, /* don't exceed i_size, may allocate page */
102 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
103 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */
104 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */
105 };
106
107 #ifdef CONFIG_TMPFS
108 static unsigned long shmem_default_max_blocks(void)
109 {
110 return totalram_pages / 2;
111 }
112
113 static unsigned long shmem_default_max_inodes(void)
114 {
115 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
116 }
117 #endif
118
119 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
120 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
121 struct shmem_inode_info *info, pgoff_t index);
122 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
123 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
124
125 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
126 struct page **pagep, enum sgp_type sgp, int *fault_type)
127 {
128 return shmem_getpage_gfp(inode, index, pagep, sgp,
129 mapping_gfp_mask(inode->i_mapping), fault_type);
130 }
131
132 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
133 {
134 return sb->s_fs_info;
135 }
136
137 /*
138 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
139 * for shared memory and for shared anonymous (/dev/zero) mappings
140 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
141 * consistent with the pre-accounting of private mappings ...
142 */
143 static inline int shmem_acct_size(unsigned long flags, loff_t size)
144 {
145 return (flags & VM_NORESERVE) ?
146 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
147 }
148
149 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
150 {
151 if (!(flags & VM_NORESERVE))
152 vm_unacct_memory(VM_ACCT(size));
153 }
154
155 static inline int shmem_reacct_size(unsigned long flags,
156 loff_t oldsize, loff_t newsize)
157 {
158 if (!(flags & VM_NORESERVE)) {
159 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
160 return security_vm_enough_memory_mm(current->mm,
161 VM_ACCT(newsize) - VM_ACCT(oldsize));
162 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
163 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
164 }
165 return 0;
166 }
167
168 /*
169 * ... whereas tmpfs objects are accounted incrementally as
170 * pages are allocated, in order to allow huge sparse files.
171 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
172 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
173 */
174 static inline int shmem_acct_block(unsigned long flags)
175 {
176 return (flags & VM_NORESERVE) ?
177 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
178 }
179
180 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
181 {
182 if (flags & VM_NORESERVE)
183 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
184 }
185
186 static const struct super_operations shmem_ops;
187 static const struct address_space_operations shmem_aops;
188 static const struct file_operations shmem_file_operations;
189 static const struct inode_operations shmem_inode_operations;
190 static const struct inode_operations shmem_dir_inode_operations;
191 static const struct inode_operations shmem_special_inode_operations;
192 static const struct vm_operations_struct shmem_vm_ops;
193
194 static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
195 .ra_pages = 0, /* No readahead */
196 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
197 };
198
199 static LIST_HEAD(shmem_swaplist);
200 static DEFINE_MUTEX(shmem_swaplist_mutex);
201
202 static int shmem_reserve_inode(struct super_block *sb)
203 {
204 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
205 if (sbinfo->max_inodes) {
206 spin_lock(&sbinfo->stat_lock);
207 if (!sbinfo->free_inodes) {
208 spin_unlock(&sbinfo->stat_lock);
209 return -ENOSPC;
210 }
211 sbinfo->free_inodes--;
212 spin_unlock(&sbinfo->stat_lock);
213 }
214 return 0;
215 }
216
217 static void shmem_free_inode(struct super_block *sb)
218 {
219 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
220 if (sbinfo->max_inodes) {
221 spin_lock(&sbinfo->stat_lock);
222 sbinfo->free_inodes++;
223 spin_unlock(&sbinfo->stat_lock);
224 }
225 }
226
227 /**
228 * shmem_recalc_inode - recalculate the block usage of an inode
229 * @inode: inode to recalc
230 *
231 * We have to calculate the free blocks since the mm can drop
232 * undirtied hole pages behind our back.
233 *
234 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
235 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
236 *
237 * It has to be called with the spinlock held.
238 */
239 static void shmem_recalc_inode(struct inode *inode)
240 {
241 struct shmem_inode_info *info = SHMEM_I(inode);
242 long freed;
243
244 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
245 if (freed > 0) {
246 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
247 if (sbinfo->max_blocks)
248 percpu_counter_add(&sbinfo->used_blocks, -freed);
249 info->alloced -= freed;
250 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
251 shmem_unacct_blocks(info->flags, freed);
252 }
253 }
254
255 /*
256 * Replace item expected in radix tree by a new item, while holding tree lock.
257 */
258 static int shmem_radix_tree_replace(struct address_space *mapping,
259 pgoff_t index, void *expected, void *replacement)
260 {
261 void **pslot;
262 void *item;
263
264 VM_BUG_ON(!expected);
265 VM_BUG_ON(!replacement);
266 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
267 if (!pslot)
268 return -ENOENT;
269 item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
270 if (item != expected)
271 return -ENOENT;
272 radix_tree_replace_slot(pslot, replacement);
273 return 0;
274 }
275
276 /*
277 * Sometimes, before we decide whether to proceed or to fail, we must check
278 * that an entry was not already brought back from swap by a racing thread.
279 *
280 * Checking page is not enough: by the time a SwapCache page is locked, it
281 * might be reused, and again be SwapCache, using the same swap as before.
282 */
283 static bool shmem_confirm_swap(struct address_space *mapping,
284 pgoff_t index, swp_entry_t swap)
285 {
286 void *item;
287
288 rcu_read_lock();
289 item = radix_tree_lookup(&mapping->page_tree, index);
290 rcu_read_unlock();
291 return item == swp_to_radix_entry(swap);
292 }
293
294 /*
295 * Like add_to_page_cache_locked, but error if expected item has gone.
296 */
297 static int shmem_add_to_page_cache(struct page *page,
298 struct address_space *mapping,
299 pgoff_t index, void *expected)
300 {
301 int error;
302
303 VM_BUG_ON_PAGE(!PageLocked(page), page);
304 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
305
306 page_cache_get(page);
307 page->mapping = mapping;
308 page->index = index;
309
310 spin_lock_irq(&mapping->tree_lock);
311 if (!expected)
312 error = radix_tree_insert(&mapping->page_tree, index, page);
313 else
314 error = shmem_radix_tree_replace(mapping, index, expected,
315 page);
316 if (!error) {
317 mapping->nrpages++;
318 __inc_zone_page_state(page, NR_FILE_PAGES);
319 __inc_zone_page_state(page, NR_SHMEM);
320 spin_unlock_irq(&mapping->tree_lock);
321 } else {
322 page->mapping = NULL;
323 spin_unlock_irq(&mapping->tree_lock);
324 page_cache_release(page);
325 }
326 return error;
327 }
328
329 /*
330 * Like delete_from_page_cache, but substitutes swap for page.
331 */
332 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
333 {
334 struct address_space *mapping = page->mapping;
335 int error;
336
337 spin_lock_irq(&mapping->tree_lock);
338 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
339 page->mapping = NULL;
340 mapping->nrpages--;
341 __dec_zone_page_state(page, NR_FILE_PAGES);
342 __dec_zone_page_state(page, NR_SHMEM);
343 spin_unlock_irq(&mapping->tree_lock);
344 page_cache_release(page);
345 BUG_ON(error);
346 }
347
348 /*
349 * Remove swap entry from radix tree, free the swap and its page cache.
350 */
351 static int shmem_free_swap(struct address_space *mapping,
352 pgoff_t index, void *radswap)
353 {
354 void *old;
355
356 spin_lock_irq(&mapping->tree_lock);
357 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
358 spin_unlock_irq(&mapping->tree_lock);
359 if (old != radswap)
360 return -ENOENT;
361 free_swap_and_cache(radix_to_swp_entry(radswap));
362 return 0;
363 }
364
365 /*
366 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
367 */
368 void shmem_unlock_mapping(struct address_space *mapping)
369 {
370 struct pagevec pvec;
371 pgoff_t indices[PAGEVEC_SIZE];
372 pgoff_t index = 0;
373
374 pagevec_init(&pvec, 0);
375 /*
376 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
377 */
378 while (!mapping_unevictable(mapping)) {
379 /*
380 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
381 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
382 */
383 pvec.nr = find_get_entries(mapping, index,
384 PAGEVEC_SIZE, pvec.pages, indices);
385 if (!pvec.nr)
386 break;
387 index = indices[pvec.nr - 1] + 1;
388 pagevec_remove_exceptionals(&pvec);
389 check_move_unevictable_pages(pvec.pages, pvec.nr);
390 pagevec_release(&pvec);
391 cond_resched();
392 }
393 }
394
395 /*
396 * Remove range of pages and swap entries from radix tree, and free them.
397 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
398 */
399 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
400 bool unfalloc)
401 {
402 struct address_space *mapping = inode->i_mapping;
403 struct shmem_inode_info *info = SHMEM_I(inode);
404 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
405 pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
406 unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
407 unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
408 struct pagevec pvec;
409 pgoff_t indices[PAGEVEC_SIZE];
410 long nr_swaps_freed = 0;
411 pgoff_t index;
412 int i;
413
414 if (lend == -1)
415 end = -1; /* unsigned, so actually very big */
416
417 pagevec_init(&pvec, 0);
418 index = start;
419 while (index < end) {
420 pvec.nr = find_get_entries(mapping, index,
421 min(end - index, (pgoff_t)PAGEVEC_SIZE),
422 pvec.pages, indices);
423 if (!pvec.nr)
424 break;
425 for (i = 0; i < pagevec_count(&pvec); i++) {
426 struct page *page = pvec.pages[i];
427
428 index = indices[i];
429 if (index >= end)
430 break;
431
432 if (radix_tree_exceptional_entry(page)) {
433 if (unfalloc)
434 continue;
435 nr_swaps_freed += !shmem_free_swap(mapping,
436 index, page);
437 continue;
438 }
439
440 if (!trylock_page(page))
441 continue;
442 if (!unfalloc || !PageUptodate(page)) {
443 if (page->mapping == mapping) {
444 VM_BUG_ON_PAGE(PageWriteback(page), page);
445 truncate_inode_page(mapping, page);
446 }
447 }
448 unlock_page(page);
449 }
450 pagevec_remove_exceptionals(&pvec);
451 pagevec_release(&pvec);
452 cond_resched();
453 index++;
454 }
455
456 if (partial_start) {
457 struct page *page = NULL;
458 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
459 if (page) {
460 unsigned int top = PAGE_CACHE_SIZE;
461 if (start > end) {
462 top = partial_end;
463 partial_end = 0;
464 }
465 zero_user_segment(page, partial_start, top);
466 set_page_dirty(page);
467 unlock_page(page);
468 page_cache_release(page);
469 }
470 }
471 if (partial_end) {
472 struct page *page = NULL;
473 shmem_getpage(inode, end, &page, SGP_READ, NULL);
474 if (page) {
475 zero_user_segment(page, 0, partial_end);
476 set_page_dirty(page);
477 unlock_page(page);
478 page_cache_release(page);
479 }
480 }
481 if (start >= end)
482 return;
483
484 index = start;
485 while (index < end) {
486 cond_resched();
487
488 pvec.nr = find_get_entries(mapping, index,
489 min(end - index, (pgoff_t)PAGEVEC_SIZE),
490 pvec.pages, indices);
491 if (!pvec.nr) {
492 /* If all gone or hole-punch or unfalloc, we're done */
493 if (index == start || end != -1)
494 break;
495 /* But if truncating, restart to make sure all gone */
496 index = start;
497 continue;
498 }
499 for (i = 0; i < pagevec_count(&pvec); i++) {
500 struct page *page = pvec.pages[i];
501
502 index = indices[i];
503 if (index >= end)
504 break;
505
506 if (radix_tree_exceptional_entry(page)) {
507 if (unfalloc)
508 continue;
509 if (shmem_free_swap(mapping, index, page)) {
510 /* Swap was replaced by page: retry */
511 index--;
512 break;
513 }
514 nr_swaps_freed++;
515 continue;
516 }
517
518 lock_page(page);
519 if (!unfalloc || !PageUptodate(page)) {
520 if (page->mapping == mapping) {
521 VM_BUG_ON_PAGE(PageWriteback(page), page);
522 truncate_inode_page(mapping, page);
523 } else {
524 /* Page was replaced by swap: retry */
525 unlock_page(page);
526 index--;
527 break;
528 }
529 }
530 unlock_page(page);
531 }
532 pagevec_remove_exceptionals(&pvec);
533 pagevec_release(&pvec);
534 index++;
535 }
536
537 spin_lock(&info->lock);
538 info->swapped -= nr_swaps_freed;
539 shmem_recalc_inode(inode);
540 spin_unlock(&info->lock);
541 }
542
543 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
544 {
545 shmem_undo_range(inode, lstart, lend, false);
546 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
547 }
548 EXPORT_SYMBOL_GPL(shmem_truncate_range);
549
550 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
551 {
552 struct inode *inode = dentry->d_inode;
553 struct shmem_inode_info *info = SHMEM_I(inode);
554 int error;
555
556 error = inode_change_ok(inode, attr);
557 if (error)
558 return error;
559
560 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
561 loff_t oldsize = inode->i_size;
562 loff_t newsize = attr->ia_size;
563
564 /* protected by i_mutex */
565 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
566 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
567 return -EPERM;
568
569 if (newsize != oldsize) {
570 error = shmem_reacct_size(SHMEM_I(inode)->flags,
571 oldsize, newsize);
572 if (error)
573 return error;
574 i_size_write(inode, newsize);
575 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
576 }
577 if (newsize < oldsize) {
578 loff_t holebegin = round_up(newsize, PAGE_SIZE);
579 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
580 shmem_truncate_range(inode, newsize, (loff_t)-1);
581 /* unmap again to remove racily COWed private pages */
582 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
583 }
584 }
585
586 setattr_copy(inode, attr);
587 if (attr->ia_valid & ATTR_MODE)
588 error = posix_acl_chmod(inode, inode->i_mode);
589 return error;
590 }
591
592 static void shmem_evict_inode(struct inode *inode)
593 {
594 struct shmem_inode_info *info = SHMEM_I(inode);
595
596 if (inode->i_mapping->a_ops == &shmem_aops) {
597 shmem_unacct_size(info->flags, inode->i_size);
598 inode->i_size = 0;
599 shmem_truncate_range(inode, 0, (loff_t)-1);
600 if (!list_empty(&info->swaplist)) {
601 mutex_lock(&shmem_swaplist_mutex);
602 list_del_init(&info->swaplist);
603 mutex_unlock(&shmem_swaplist_mutex);
604 }
605 } else
606 kfree(info->symlink);
607
608 simple_xattrs_free(&info->xattrs);
609 WARN_ON(inode->i_blocks);
610 shmem_free_inode(inode->i_sb);
611 clear_inode(inode);
612 }
613
614 /*
615 * If swap found in inode, free it and move page from swapcache to filecache.
616 */
617 static int shmem_unuse_inode(struct shmem_inode_info *info,
618 swp_entry_t swap, struct page **pagep)
619 {
620 struct address_space *mapping = info->vfs_inode.i_mapping;
621 void *radswap;
622 pgoff_t index;
623 gfp_t gfp;
624 int error = 0;
625
626 radswap = swp_to_radix_entry(swap);
627 index = radix_tree_locate_item(&mapping->page_tree, radswap);
628 if (index == -1)
629 return -EAGAIN; /* tell shmem_unuse we found nothing */
630
631 /*
632 * Move _head_ to start search for next from here.
633 * But be careful: shmem_evict_inode checks list_empty without taking
634 * mutex, and there's an instant in list_move_tail when info->swaplist
635 * would appear empty, if it were the only one on shmem_swaplist.
636 */
637 if (shmem_swaplist.next != &info->swaplist)
638 list_move_tail(&shmem_swaplist, &info->swaplist);
639
640 gfp = mapping_gfp_mask(mapping);
641 if (shmem_should_replace_page(*pagep, gfp)) {
642 mutex_unlock(&shmem_swaplist_mutex);
643 error = shmem_replace_page(pagep, gfp, info, index);
644 mutex_lock(&shmem_swaplist_mutex);
645 /*
646 * We needed to drop mutex to make that restrictive page
647 * allocation, but the inode might have been freed while we
648 * dropped it: although a racing shmem_evict_inode() cannot
649 * complete without emptying the radix_tree, our page lock
650 * on this swapcache page is not enough to prevent that -
651 * free_swap_and_cache() of our swap entry will only
652 * trylock_page(), removing swap from radix_tree whatever.
653 *
654 * We must not proceed to shmem_add_to_page_cache() if the
655 * inode has been freed, but of course we cannot rely on
656 * inode or mapping or info to check that. However, we can
657 * safely check if our swap entry is still in use (and here
658 * it can't have got reused for another page): if it's still
659 * in use, then the inode cannot have been freed yet, and we
660 * can safely proceed (if it's no longer in use, that tells
661 * nothing about the inode, but we don't need to unuse swap).
662 */
663 if (!page_swapcount(*pagep))
664 error = -ENOENT;
665 }
666
667 /*
668 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
669 * but also to hold up shmem_evict_inode(): so inode cannot be freed
670 * beneath us (pagelock doesn't help until the page is in pagecache).
671 */
672 if (!error)
673 error = shmem_add_to_page_cache(*pagep, mapping, index,
674 radswap);
675 if (error != -ENOMEM) {
676 /*
677 * Truncation and eviction use free_swap_and_cache(), which
678 * only does trylock page: if we raced, best clean up here.
679 */
680 delete_from_swap_cache(*pagep);
681 set_page_dirty(*pagep);
682 if (!error) {
683 spin_lock(&info->lock);
684 info->swapped--;
685 spin_unlock(&info->lock);
686 swap_free(swap);
687 }
688 }
689 return error;
690 }
691
692 /*
693 * Search through swapped inodes to find and replace swap by page.
694 */
695 int shmem_unuse(swp_entry_t swap, struct page *page)
696 {
697 struct list_head *this, *next;
698 struct shmem_inode_info *info;
699 struct mem_cgroup *memcg;
700 int error = 0;
701
702 /*
703 * There's a faint possibility that swap page was replaced before
704 * caller locked it: caller will come back later with the right page.
705 */
706 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
707 goto out;
708
709 /*
710 * Charge page using GFP_KERNEL while we can wait, before taking
711 * the shmem_swaplist_mutex which might hold up shmem_writepage().
712 * Charged back to the user (not to caller) when swap account is used.
713 */
714 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg);
715 if (error)
716 goto out;
717 /* No radix_tree_preload: swap entry keeps a place for page in tree */
718 error = -EAGAIN;
719
720 mutex_lock(&shmem_swaplist_mutex);
721 list_for_each_safe(this, next, &shmem_swaplist) {
722 info = list_entry(this, struct shmem_inode_info, swaplist);
723 if (info->swapped)
724 error = shmem_unuse_inode(info, swap, &page);
725 else
726 list_del_init(&info->swaplist);
727 cond_resched();
728 if (error != -EAGAIN)
729 break;
730 /* found nothing in this: move on to search the next */
731 }
732 mutex_unlock(&shmem_swaplist_mutex);
733
734 if (error) {
735 if (error != -ENOMEM)
736 error = 0;
737 mem_cgroup_cancel_charge(page, memcg);
738 } else
739 mem_cgroup_commit_charge(page, memcg, true);
740 out:
741 unlock_page(page);
742 page_cache_release(page);
743 return error;
744 }
745
746 /*
747 * Move the page from the page cache to the swap cache.
748 */
749 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
750 {
751 struct shmem_inode_info *info;
752 struct address_space *mapping;
753 struct inode *inode;
754 swp_entry_t swap;
755 pgoff_t index;
756
757 BUG_ON(!PageLocked(page));
758 mapping = page->mapping;
759 index = page->index;
760 inode = mapping->host;
761 info = SHMEM_I(inode);
762 if (info->flags & VM_LOCKED)
763 goto redirty;
764 if (!total_swap_pages)
765 goto redirty;
766
767 /*
768 * shmem_backing_dev_info's capabilities prevent regular writeback or
769 * sync from ever calling shmem_writepage; but a stacking filesystem
770 * might use ->writepage of its underlying filesystem, in which case
771 * tmpfs should write out to swap only in response to memory pressure,
772 * and not for the writeback threads or sync.
773 */
774 if (!wbc->for_reclaim) {
775 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
776 goto redirty;
777 }
778
779 /*
780 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
781 * value into swapfile.c, the only way we can correctly account for a
782 * fallocated page arriving here is now to initialize it and write it.
783 *
784 * That's okay for a page already fallocated earlier, but if we have
785 * not yet completed the fallocation, then (a) we want to keep track
786 * of this page in case we have to undo it, and (b) it may not be a
787 * good idea to continue anyway, once we're pushing into swap. So
788 * reactivate the page, and let shmem_fallocate() quit when too many.
789 */
790 if (!PageUptodate(page)) {
791 if (inode->i_private) {
792 struct shmem_falloc *shmem_falloc;
793 spin_lock(&inode->i_lock);
794 shmem_falloc = inode->i_private;
795 if (shmem_falloc &&
796 !shmem_falloc->waitq &&
797 index >= shmem_falloc->start &&
798 index < shmem_falloc->next)
799 shmem_falloc->nr_unswapped++;
800 else
801 shmem_falloc = NULL;
802 spin_unlock(&inode->i_lock);
803 if (shmem_falloc)
804 goto redirty;
805 }
806 clear_highpage(page);
807 flush_dcache_page(page);
808 SetPageUptodate(page);
809 }
810
811 swap = get_swap_page();
812 if (!swap.val)
813 goto redirty;
814
815 /*
816 * Add inode to shmem_unuse()'s list of swapped-out inodes,
817 * if it's not already there. Do it now before the page is
818 * moved to swap cache, when its pagelock no longer protects
819 * the inode from eviction. But don't unlock the mutex until
820 * we've incremented swapped, because shmem_unuse_inode() will
821 * prune a !swapped inode from the swaplist under this mutex.
822 */
823 mutex_lock(&shmem_swaplist_mutex);
824 if (list_empty(&info->swaplist))
825 list_add_tail(&info->swaplist, &shmem_swaplist);
826
827 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
828 swap_shmem_alloc(swap);
829 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
830
831 spin_lock(&info->lock);
832 info->swapped++;
833 shmem_recalc_inode(inode);
834 spin_unlock(&info->lock);
835
836 mutex_unlock(&shmem_swaplist_mutex);
837 BUG_ON(page_mapped(page));
838 swap_writepage(page, wbc);
839 return 0;
840 }
841
842 mutex_unlock(&shmem_swaplist_mutex);
843 swapcache_free(swap);
844 redirty:
845 set_page_dirty(page);
846 if (wbc->for_reclaim)
847 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
848 unlock_page(page);
849 return 0;
850 }
851
852 #ifdef CONFIG_NUMA
853 #ifdef CONFIG_TMPFS
854 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
855 {
856 char buffer[64];
857
858 if (!mpol || mpol->mode == MPOL_DEFAULT)
859 return; /* show nothing */
860
861 mpol_to_str(buffer, sizeof(buffer), mpol);
862
863 seq_printf(seq, ",mpol=%s", buffer);
864 }
865
866 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
867 {
868 struct mempolicy *mpol = NULL;
869 if (sbinfo->mpol) {
870 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
871 mpol = sbinfo->mpol;
872 mpol_get(mpol);
873 spin_unlock(&sbinfo->stat_lock);
874 }
875 return mpol;
876 }
877 #endif /* CONFIG_TMPFS */
878
879 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
880 struct shmem_inode_info *info, pgoff_t index)
881 {
882 struct vm_area_struct pvma;
883 struct page *page;
884
885 /* Create a pseudo vma that just contains the policy */
886 pvma.vm_start = 0;
887 /* Bias interleave by inode number to distribute better across nodes */
888 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
889 pvma.vm_ops = NULL;
890 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
891
892 page = swapin_readahead(swap, gfp, &pvma, 0);
893
894 /* Drop reference taken by mpol_shared_policy_lookup() */
895 mpol_cond_put(pvma.vm_policy);
896
897 return page;
898 }
899
900 static struct page *shmem_alloc_page(gfp_t gfp,
901 struct shmem_inode_info *info, pgoff_t index)
902 {
903 struct vm_area_struct pvma;
904 struct page *page;
905
906 /* Create a pseudo vma that just contains the policy */
907 pvma.vm_start = 0;
908 /* Bias interleave by inode number to distribute better across nodes */
909 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
910 pvma.vm_ops = NULL;
911 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
912
913 page = alloc_page_vma(gfp, &pvma, 0);
914
915 /* Drop reference taken by mpol_shared_policy_lookup() */
916 mpol_cond_put(pvma.vm_policy);
917
918 return page;
919 }
920 #else /* !CONFIG_NUMA */
921 #ifdef CONFIG_TMPFS
922 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
923 {
924 }
925 #endif /* CONFIG_TMPFS */
926
927 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
928 struct shmem_inode_info *info, pgoff_t index)
929 {
930 return swapin_readahead(swap, gfp, NULL, 0);
931 }
932
933 static inline struct page *shmem_alloc_page(gfp_t gfp,
934 struct shmem_inode_info *info, pgoff_t index)
935 {
936 return alloc_page(gfp);
937 }
938 #endif /* CONFIG_NUMA */
939
940 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
941 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
942 {
943 return NULL;
944 }
945 #endif
946
947 /*
948 * When a page is moved from swapcache to shmem filecache (either by the
949 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
950 * shmem_unuse_inode()), it may have been read in earlier from swap, in
951 * ignorance of the mapping it belongs to. If that mapping has special
952 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
953 * we may need to copy to a suitable page before moving to filecache.
954 *
955 * In a future release, this may well be extended to respect cpuset and
956 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
957 * but for now it is a simple matter of zone.
958 */
959 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
960 {
961 return page_zonenum(page) > gfp_zone(gfp);
962 }
963
964 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
965 struct shmem_inode_info *info, pgoff_t index)
966 {
967 struct page *oldpage, *newpage;
968 struct address_space *swap_mapping;
969 pgoff_t swap_index;
970 int error;
971
972 oldpage = *pagep;
973 swap_index = page_private(oldpage);
974 swap_mapping = page_mapping(oldpage);
975
976 /*
977 * We have arrived here because our zones are constrained, so don't
978 * limit chance of success by further cpuset and node constraints.
979 */
980 gfp &= ~GFP_CONSTRAINT_MASK;
981 newpage = shmem_alloc_page(gfp, info, index);
982 if (!newpage)
983 return -ENOMEM;
984
985 page_cache_get(newpage);
986 copy_highpage(newpage, oldpage);
987 flush_dcache_page(newpage);
988
989 __set_page_locked(newpage);
990 SetPageUptodate(newpage);
991 SetPageSwapBacked(newpage);
992 set_page_private(newpage, swap_index);
993 SetPageSwapCache(newpage);
994
995 /*
996 * Our caller will very soon move newpage out of swapcache, but it's
997 * a nice clean interface for us to replace oldpage by newpage there.
998 */
999 spin_lock_irq(&swap_mapping->tree_lock);
1000 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1001 newpage);
1002 if (!error) {
1003 __inc_zone_page_state(newpage, NR_FILE_PAGES);
1004 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1005 }
1006 spin_unlock_irq(&swap_mapping->tree_lock);
1007
1008 if (unlikely(error)) {
1009 /*
1010 * Is this possible? I think not, now that our callers check
1011 * both PageSwapCache and page_private after getting page lock;
1012 * but be defensive. Reverse old to newpage for clear and free.
1013 */
1014 oldpage = newpage;
1015 } else {
1016 mem_cgroup_migrate(oldpage, newpage, false);
1017 lru_cache_add_anon(newpage);
1018 *pagep = newpage;
1019 }
1020
1021 ClearPageSwapCache(oldpage);
1022 set_page_private(oldpage, 0);
1023
1024 unlock_page(oldpage);
1025 page_cache_release(oldpage);
1026 page_cache_release(oldpage);
1027 return error;
1028 }
1029
1030 /*
1031 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1032 *
1033 * If we allocate a new one we do not mark it dirty. That's up to the
1034 * vm. If we swap it in we mark it dirty since we also free the swap
1035 * entry since a page cannot live in both the swap and page cache
1036 */
1037 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1038 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1039 {
1040 struct address_space *mapping = inode->i_mapping;
1041 struct shmem_inode_info *info;
1042 struct shmem_sb_info *sbinfo;
1043 struct mem_cgroup *memcg;
1044 struct page *page;
1045 swp_entry_t swap;
1046 int error;
1047 int once = 0;
1048 int alloced = 0;
1049
1050 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1051 return -EFBIG;
1052 repeat:
1053 swap.val = 0;
1054 page = find_lock_entry(mapping, index);
1055 if (radix_tree_exceptional_entry(page)) {
1056 swap = radix_to_swp_entry(page);
1057 page = NULL;
1058 }
1059
1060 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1061 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1062 error = -EINVAL;
1063 goto failed;
1064 }
1065
1066 if (page && sgp == SGP_WRITE)
1067 mark_page_accessed(page);
1068
1069 /* fallocated page? */
1070 if (page && !PageUptodate(page)) {
1071 if (sgp != SGP_READ)
1072 goto clear;
1073 unlock_page(page);
1074 page_cache_release(page);
1075 page = NULL;
1076 }
1077 if (page || (sgp == SGP_READ && !swap.val)) {
1078 *pagep = page;
1079 return 0;
1080 }
1081
1082 /*
1083 * Fast cache lookup did not find it:
1084 * bring it back from swap or allocate.
1085 */
1086 info = SHMEM_I(inode);
1087 sbinfo = SHMEM_SB(inode->i_sb);
1088
1089 if (swap.val) {
1090 /* Look it up and read it in.. */
1091 page = lookup_swap_cache(swap);
1092 if (!page) {
1093 /* here we actually do the io */
1094 if (fault_type)
1095 *fault_type |= VM_FAULT_MAJOR;
1096 page = shmem_swapin(swap, gfp, info, index);
1097 if (!page) {
1098 error = -ENOMEM;
1099 goto failed;
1100 }
1101 }
1102
1103 /* We have to do this with page locked to prevent races */
1104 lock_page(page);
1105 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1106 !shmem_confirm_swap(mapping, index, swap)) {
1107 error = -EEXIST; /* try again */
1108 goto unlock;
1109 }
1110 if (!PageUptodate(page)) {
1111 error = -EIO;
1112 goto failed;
1113 }
1114 wait_on_page_writeback(page);
1115
1116 if (shmem_should_replace_page(page, gfp)) {
1117 error = shmem_replace_page(&page, gfp, info, index);
1118 if (error)
1119 goto failed;
1120 }
1121
1122 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg);
1123 if (!error) {
1124 error = shmem_add_to_page_cache(page, mapping, index,
1125 swp_to_radix_entry(swap));
1126 /*
1127 * We already confirmed swap under page lock, and make
1128 * no memory allocation here, so usually no possibility
1129 * of error; but free_swap_and_cache() only trylocks a
1130 * page, so it is just possible that the entry has been
1131 * truncated or holepunched since swap was confirmed.
1132 * shmem_undo_range() will have done some of the
1133 * unaccounting, now delete_from_swap_cache() will do
1134 * the rest (including mem_cgroup_uncharge_swapcache).
1135 * Reset swap.val? No, leave it so "failed" goes back to
1136 * "repeat": reading a hole and writing should succeed.
1137 */
1138 if (error) {
1139 mem_cgroup_cancel_charge(page, memcg);
1140 delete_from_swap_cache(page);
1141 }
1142 }
1143 if (error)
1144 goto failed;
1145
1146 mem_cgroup_commit_charge(page, memcg, true);
1147
1148 spin_lock(&info->lock);
1149 info->swapped--;
1150 shmem_recalc_inode(inode);
1151 spin_unlock(&info->lock);
1152
1153 if (sgp == SGP_WRITE)
1154 mark_page_accessed(page);
1155
1156 delete_from_swap_cache(page);
1157 set_page_dirty(page);
1158 swap_free(swap);
1159
1160 } else {
1161 if (shmem_acct_block(info->flags)) {
1162 error = -ENOSPC;
1163 goto failed;
1164 }
1165 if (sbinfo->max_blocks) {
1166 if (percpu_counter_compare(&sbinfo->used_blocks,
1167 sbinfo->max_blocks) >= 0) {
1168 error = -ENOSPC;
1169 goto unacct;
1170 }
1171 percpu_counter_inc(&sbinfo->used_blocks);
1172 }
1173
1174 page = shmem_alloc_page(gfp, info, index);
1175 if (!page) {
1176 error = -ENOMEM;
1177 goto decused;
1178 }
1179
1180 __SetPageSwapBacked(page);
1181 __set_page_locked(page);
1182 if (sgp == SGP_WRITE)
1183 __SetPageReferenced(page);
1184
1185 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg);
1186 if (error)
1187 goto decused;
1188 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1189 if (!error) {
1190 error = shmem_add_to_page_cache(page, mapping, index,
1191 NULL);
1192 radix_tree_preload_end();
1193 }
1194 if (error) {
1195 mem_cgroup_cancel_charge(page, memcg);
1196 goto decused;
1197 }
1198 mem_cgroup_commit_charge(page, memcg, false);
1199 lru_cache_add_anon(page);
1200
1201 spin_lock(&info->lock);
1202 info->alloced++;
1203 inode->i_blocks += BLOCKS_PER_PAGE;
1204 shmem_recalc_inode(inode);
1205 spin_unlock(&info->lock);
1206 alloced = true;
1207
1208 /*
1209 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1210 */
1211 if (sgp == SGP_FALLOC)
1212 sgp = SGP_WRITE;
1213 clear:
1214 /*
1215 * Let SGP_WRITE caller clear ends if write does not fill page;
1216 * but SGP_FALLOC on a page fallocated earlier must initialize
1217 * it now, lest undo on failure cancel our earlier guarantee.
1218 */
1219 if (sgp != SGP_WRITE) {
1220 clear_highpage(page);
1221 flush_dcache_page(page);
1222 SetPageUptodate(page);
1223 }
1224 if (sgp == SGP_DIRTY)
1225 set_page_dirty(page);
1226 }
1227
1228 /* Perhaps the file has been truncated since we checked */
1229 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1230 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1231 error = -EINVAL;
1232 if (alloced)
1233 goto trunc;
1234 else
1235 goto failed;
1236 }
1237 *pagep = page;
1238 return 0;
1239
1240 /*
1241 * Error recovery.
1242 */
1243 trunc:
1244 info = SHMEM_I(inode);
1245 ClearPageDirty(page);
1246 delete_from_page_cache(page);
1247 spin_lock(&info->lock);
1248 info->alloced--;
1249 inode->i_blocks -= BLOCKS_PER_PAGE;
1250 spin_unlock(&info->lock);
1251 decused:
1252 sbinfo = SHMEM_SB(inode->i_sb);
1253 if (sbinfo->max_blocks)
1254 percpu_counter_add(&sbinfo->used_blocks, -1);
1255 unacct:
1256 shmem_unacct_blocks(info->flags, 1);
1257 failed:
1258 if (swap.val && error != -EINVAL &&
1259 !shmem_confirm_swap(mapping, index, swap))
1260 error = -EEXIST;
1261 unlock:
1262 if (page) {
1263 unlock_page(page);
1264 page_cache_release(page);
1265 }
1266 if (error == -ENOSPC && !once++) {
1267 info = SHMEM_I(inode);
1268 spin_lock(&info->lock);
1269 shmem_recalc_inode(inode);
1270 spin_unlock(&info->lock);
1271 goto repeat;
1272 }
1273 if (error == -EEXIST) /* from above or from radix_tree_insert */
1274 goto repeat;
1275 return error;
1276 }
1277
1278 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1279 {
1280 struct inode *inode = file_inode(vma->vm_file);
1281 int error;
1282 int ret = VM_FAULT_LOCKED;
1283
1284 /*
1285 * Trinity finds that probing a hole which tmpfs is punching can
1286 * prevent the hole-punch from ever completing: which in turn
1287 * locks writers out with its hold on i_mutex. So refrain from
1288 * faulting pages into the hole while it's being punched. Although
1289 * shmem_undo_range() does remove the additions, it may be unable to
1290 * keep up, as each new page needs its own unmap_mapping_range() call,
1291 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1292 *
1293 * It does not matter if we sometimes reach this check just before the
1294 * hole-punch begins, so that one fault then races with the punch:
1295 * we just need to make racing faults a rare case.
1296 *
1297 * The implementation below would be much simpler if we just used a
1298 * standard mutex or completion: but we cannot take i_mutex in fault,
1299 * and bloating every shmem inode for this unlikely case would be sad.
1300 */
1301 if (unlikely(inode->i_private)) {
1302 struct shmem_falloc *shmem_falloc;
1303
1304 spin_lock(&inode->i_lock);
1305 shmem_falloc = inode->i_private;
1306 if (shmem_falloc &&
1307 shmem_falloc->waitq &&
1308 vmf->pgoff >= shmem_falloc->start &&
1309 vmf->pgoff < shmem_falloc->next) {
1310 wait_queue_head_t *shmem_falloc_waitq;
1311 DEFINE_WAIT(shmem_fault_wait);
1312
1313 ret = VM_FAULT_NOPAGE;
1314 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1315 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1316 /* It's polite to up mmap_sem if we can */
1317 up_read(&vma->vm_mm->mmap_sem);
1318 ret = VM_FAULT_RETRY;
1319 }
1320
1321 shmem_falloc_waitq = shmem_falloc->waitq;
1322 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1323 TASK_UNINTERRUPTIBLE);
1324 spin_unlock(&inode->i_lock);
1325 schedule();
1326
1327 /*
1328 * shmem_falloc_waitq points into the shmem_fallocate()
1329 * stack of the hole-punching task: shmem_falloc_waitq
1330 * is usually invalid by the time we reach here, but
1331 * finish_wait() does not dereference it in that case;
1332 * though i_lock needed lest racing with wake_up_all().
1333 */
1334 spin_lock(&inode->i_lock);
1335 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1336 spin_unlock(&inode->i_lock);
1337 return ret;
1338 }
1339 spin_unlock(&inode->i_lock);
1340 }
1341
1342 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1343 if (error)
1344 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1345
1346 if (ret & VM_FAULT_MAJOR) {
1347 count_vm_event(PGMAJFAULT);
1348 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1349 }
1350 return ret;
1351 }
1352
1353 #ifdef CONFIG_NUMA
1354 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1355 {
1356 struct inode *inode = file_inode(vma->vm_file);
1357 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1358 }
1359
1360 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1361 unsigned long addr)
1362 {
1363 struct inode *inode = file_inode(vma->vm_file);
1364 pgoff_t index;
1365
1366 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1367 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1368 }
1369 #endif
1370
1371 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1372 {
1373 struct inode *inode = file_inode(file);
1374 struct shmem_inode_info *info = SHMEM_I(inode);
1375 int retval = -ENOMEM;
1376
1377 spin_lock(&info->lock);
1378 if (lock && !(info->flags & VM_LOCKED)) {
1379 if (!user_shm_lock(inode->i_size, user))
1380 goto out_nomem;
1381 info->flags |= VM_LOCKED;
1382 mapping_set_unevictable(file->f_mapping);
1383 }
1384 if (!lock && (info->flags & VM_LOCKED) && user) {
1385 user_shm_unlock(inode->i_size, user);
1386 info->flags &= ~VM_LOCKED;
1387 mapping_clear_unevictable(file->f_mapping);
1388 }
1389 retval = 0;
1390
1391 out_nomem:
1392 spin_unlock(&info->lock);
1393 return retval;
1394 }
1395
1396 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1397 {
1398 file_accessed(file);
1399 vma->vm_ops = &shmem_vm_ops;
1400 return 0;
1401 }
1402
1403 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1404 umode_t mode, dev_t dev, unsigned long flags)
1405 {
1406 struct inode *inode;
1407 struct shmem_inode_info *info;
1408 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1409
1410 if (shmem_reserve_inode(sb))
1411 return NULL;
1412
1413 inode = new_inode(sb);
1414 if (inode) {
1415 inode->i_ino = get_next_ino();
1416 inode_init_owner(inode, dir, mode);
1417 inode->i_blocks = 0;
1418 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1419 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1420 inode->i_generation = get_seconds();
1421 info = SHMEM_I(inode);
1422 memset(info, 0, (char *)inode - (char *)info);
1423 spin_lock_init(&info->lock);
1424 info->seals = F_SEAL_SEAL;
1425 info->flags = flags & VM_NORESERVE;
1426 INIT_LIST_HEAD(&info->swaplist);
1427 simple_xattrs_init(&info->xattrs);
1428 cache_no_acl(inode);
1429
1430 switch (mode & S_IFMT) {
1431 default:
1432 inode->i_op = &shmem_special_inode_operations;
1433 init_special_inode(inode, mode, dev);
1434 break;
1435 case S_IFREG:
1436 inode->i_mapping->a_ops = &shmem_aops;
1437 inode->i_op = &shmem_inode_operations;
1438 inode->i_fop = &shmem_file_operations;
1439 mpol_shared_policy_init(&info->policy,
1440 shmem_get_sbmpol(sbinfo));
1441 break;
1442 case S_IFDIR:
1443 inc_nlink(inode);
1444 /* Some things misbehave if size == 0 on a directory */
1445 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1446 inode->i_op = &shmem_dir_inode_operations;
1447 inode->i_fop = &simple_dir_operations;
1448 break;
1449 case S_IFLNK:
1450 /*
1451 * Must not load anything in the rbtree,
1452 * mpol_free_shared_policy will not be called.
1453 */
1454 mpol_shared_policy_init(&info->policy, NULL);
1455 break;
1456 }
1457 } else
1458 shmem_free_inode(sb);
1459 return inode;
1460 }
1461
1462 bool shmem_mapping(struct address_space *mapping)
1463 {
1464 return mapping->backing_dev_info == &shmem_backing_dev_info;
1465 }
1466
1467 #ifdef CONFIG_TMPFS
1468 static const struct inode_operations shmem_symlink_inode_operations;
1469 static const struct inode_operations shmem_short_symlink_operations;
1470
1471 #ifdef CONFIG_TMPFS_XATTR
1472 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1473 #else
1474 #define shmem_initxattrs NULL
1475 #endif
1476
1477 static int
1478 shmem_write_begin(struct file *file, struct address_space *mapping,
1479 loff_t pos, unsigned len, unsigned flags,
1480 struct page **pagep, void **fsdata)
1481 {
1482 struct inode *inode = mapping->host;
1483 struct shmem_inode_info *info = SHMEM_I(inode);
1484 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1485
1486 /* i_mutex is held by caller */
1487 if (unlikely(info->seals)) {
1488 if (info->seals & F_SEAL_WRITE)
1489 return -EPERM;
1490 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
1491 return -EPERM;
1492 }
1493
1494 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1495 }
1496
1497 static int
1498 shmem_write_end(struct file *file, struct address_space *mapping,
1499 loff_t pos, unsigned len, unsigned copied,
1500 struct page *page, void *fsdata)
1501 {
1502 struct inode *inode = mapping->host;
1503
1504 if (pos + copied > inode->i_size)
1505 i_size_write(inode, pos + copied);
1506
1507 if (!PageUptodate(page)) {
1508 if (copied < PAGE_CACHE_SIZE) {
1509 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1510 zero_user_segments(page, 0, from,
1511 from + copied, PAGE_CACHE_SIZE);
1512 }
1513 SetPageUptodate(page);
1514 }
1515 set_page_dirty(page);
1516 unlock_page(page);
1517 page_cache_release(page);
1518
1519 return copied;
1520 }
1521
1522 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1523 {
1524 struct file *file = iocb->ki_filp;
1525 struct inode *inode = file_inode(file);
1526 struct address_space *mapping = inode->i_mapping;
1527 pgoff_t index;
1528 unsigned long offset;
1529 enum sgp_type sgp = SGP_READ;
1530 int error = 0;
1531 ssize_t retval = 0;
1532 loff_t *ppos = &iocb->ki_pos;
1533
1534 /*
1535 * Might this read be for a stacking filesystem? Then when reading
1536 * holes of a sparse file, we actually need to allocate those pages,
1537 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1538 */
1539 if (segment_eq(get_fs(), KERNEL_DS))
1540 sgp = SGP_DIRTY;
1541
1542 index = *ppos >> PAGE_CACHE_SHIFT;
1543 offset = *ppos & ~PAGE_CACHE_MASK;
1544
1545 for (;;) {
1546 struct page *page = NULL;
1547 pgoff_t end_index;
1548 unsigned long nr, ret;
1549 loff_t i_size = i_size_read(inode);
1550
1551 end_index = i_size >> PAGE_CACHE_SHIFT;
1552 if (index > end_index)
1553 break;
1554 if (index == end_index) {
1555 nr = i_size & ~PAGE_CACHE_MASK;
1556 if (nr <= offset)
1557 break;
1558 }
1559
1560 error = shmem_getpage(inode, index, &page, sgp, NULL);
1561 if (error) {
1562 if (error == -EINVAL)
1563 error = 0;
1564 break;
1565 }
1566 if (page)
1567 unlock_page(page);
1568
1569 /*
1570 * We must evaluate after, since reads (unlike writes)
1571 * are called without i_mutex protection against truncate
1572 */
1573 nr = PAGE_CACHE_SIZE;
1574 i_size = i_size_read(inode);
1575 end_index = i_size >> PAGE_CACHE_SHIFT;
1576 if (index == end_index) {
1577 nr = i_size & ~PAGE_CACHE_MASK;
1578 if (nr <= offset) {
1579 if (page)
1580 page_cache_release(page);
1581 break;
1582 }
1583 }
1584 nr -= offset;
1585
1586 if (page) {
1587 /*
1588 * If users can be writing to this page using arbitrary
1589 * virtual addresses, take care about potential aliasing
1590 * before reading the page on the kernel side.
1591 */
1592 if (mapping_writably_mapped(mapping))
1593 flush_dcache_page(page);
1594 /*
1595 * Mark the page accessed if we read the beginning.
1596 */
1597 if (!offset)
1598 mark_page_accessed(page);
1599 } else {
1600 page = ZERO_PAGE(0);
1601 page_cache_get(page);
1602 }
1603
1604 /*
1605 * Ok, we have the page, and it's up-to-date, so
1606 * now we can copy it to user space...
1607 */
1608 ret = copy_page_to_iter(page, offset, nr, to);
1609 retval += ret;
1610 offset += ret;
1611 index += offset >> PAGE_CACHE_SHIFT;
1612 offset &= ~PAGE_CACHE_MASK;
1613
1614 page_cache_release(page);
1615 if (!iov_iter_count(to))
1616 break;
1617 if (ret < nr) {
1618 error = -EFAULT;
1619 break;
1620 }
1621 cond_resched();
1622 }
1623
1624 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1625 file_accessed(file);
1626 return retval ? retval : error;
1627 }
1628
1629 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1630 struct pipe_inode_info *pipe, size_t len,
1631 unsigned int flags)
1632 {
1633 struct address_space *mapping = in->f_mapping;
1634 struct inode *inode = mapping->host;
1635 unsigned int loff, nr_pages, req_pages;
1636 struct page *pages[PIPE_DEF_BUFFERS];
1637 struct partial_page partial[PIPE_DEF_BUFFERS];
1638 struct page *page;
1639 pgoff_t index, end_index;
1640 loff_t isize, left;
1641 int error, page_nr;
1642 struct splice_pipe_desc spd = {
1643 .pages = pages,
1644 .partial = partial,
1645 .nr_pages_max = PIPE_DEF_BUFFERS,
1646 .flags = flags,
1647 .ops = &page_cache_pipe_buf_ops,
1648 .spd_release = spd_release_page,
1649 };
1650
1651 isize = i_size_read(inode);
1652 if (unlikely(*ppos >= isize))
1653 return 0;
1654
1655 left = isize - *ppos;
1656 if (unlikely(left < len))
1657 len = left;
1658
1659 if (splice_grow_spd(pipe, &spd))
1660 return -ENOMEM;
1661
1662 index = *ppos >> PAGE_CACHE_SHIFT;
1663 loff = *ppos & ~PAGE_CACHE_MASK;
1664 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1665 nr_pages = min(req_pages, spd.nr_pages_max);
1666
1667 spd.nr_pages = find_get_pages_contig(mapping, index,
1668 nr_pages, spd.pages);
1669 index += spd.nr_pages;
1670 error = 0;
1671
1672 while (spd.nr_pages < nr_pages) {
1673 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1674 if (error)
1675 break;
1676 unlock_page(page);
1677 spd.pages[spd.nr_pages++] = page;
1678 index++;
1679 }
1680
1681 index = *ppos >> PAGE_CACHE_SHIFT;
1682 nr_pages = spd.nr_pages;
1683 spd.nr_pages = 0;
1684
1685 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1686 unsigned int this_len;
1687
1688 if (!len)
1689 break;
1690
1691 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1692 page = spd.pages[page_nr];
1693
1694 if (!PageUptodate(page) || page->mapping != mapping) {
1695 error = shmem_getpage(inode, index, &page,
1696 SGP_CACHE, NULL);
1697 if (error)
1698 break;
1699 unlock_page(page);
1700 page_cache_release(spd.pages[page_nr]);
1701 spd.pages[page_nr] = page;
1702 }
1703
1704 isize = i_size_read(inode);
1705 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1706 if (unlikely(!isize || index > end_index))
1707 break;
1708
1709 if (end_index == index) {
1710 unsigned int plen;
1711
1712 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1713 if (plen <= loff)
1714 break;
1715
1716 this_len = min(this_len, plen - loff);
1717 len = this_len;
1718 }
1719
1720 spd.partial[page_nr].offset = loff;
1721 spd.partial[page_nr].len = this_len;
1722 len -= this_len;
1723 loff = 0;
1724 spd.nr_pages++;
1725 index++;
1726 }
1727
1728 while (page_nr < nr_pages)
1729 page_cache_release(spd.pages[page_nr++]);
1730
1731 if (spd.nr_pages)
1732 error = splice_to_pipe(pipe, &spd);
1733
1734 splice_shrink_spd(&spd);
1735
1736 if (error > 0) {
1737 *ppos += error;
1738 file_accessed(in);
1739 }
1740 return error;
1741 }
1742
1743 /*
1744 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1745 */
1746 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1747 pgoff_t index, pgoff_t end, int whence)
1748 {
1749 struct page *page;
1750 struct pagevec pvec;
1751 pgoff_t indices[PAGEVEC_SIZE];
1752 bool done = false;
1753 int i;
1754
1755 pagevec_init(&pvec, 0);
1756 pvec.nr = 1; /* start small: we may be there already */
1757 while (!done) {
1758 pvec.nr = find_get_entries(mapping, index,
1759 pvec.nr, pvec.pages, indices);
1760 if (!pvec.nr) {
1761 if (whence == SEEK_DATA)
1762 index = end;
1763 break;
1764 }
1765 for (i = 0; i < pvec.nr; i++, index++) {
1766 if (index < indices[i]) {
1767 if (whence == SEEK_HOLE) {
1768 done = true;
1769 break;
1770 }
1771 index = indices[i];
1772 }
1773 page = pvec.pages[i];
1774 if (page && !radix_tree_exceptional_entry(page)) {
1775 if (!PageUptodate(page))
1776 page = NULL;
1777 }
1778 if (index >= end ||
1779 (page && whence == SEEK_DATA) ||
1780 (!page && whence == SEEK_HOLE)) {
1781 done = true;
1782 break;
1783 }
1784 }
1785 pagevec_remove_exceptionals(&pvec);
1786 pagevec_release(&pvec);
1787 pvec.nr = PAGEVEC_SIZE;
1788 cond_resched();
1789 }
1790 return index;
1791 }
1792
1793 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1794 {
1795 struct address_space *mapping = file->f_mapping;
1796 struct inode *inode = mapping->host;
1797 pgoff_t start, end;
1798 loff_t new_offset;
1799
1800 if (whence != SEEK_DATA && whence != SEEK_HOLE)
1801 return generic_file_llseek_size(file, offset, whence,
1802 MAX_LFS_FILESIZE, i_size_read(inode));
1803 mutex_lock(&inode->i_mutex);
1804 /* We're holding i_mutex so we can access i_size directly */
1805
1806 if (offset < 0)
1807 offset = -EINVAL;
1808 else if (offset >= inode->i_size)
1809 offset = -ENXIO;
1810 else {
1811 start = offset >> PAGE_CACHE_SHIFT;
1812 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1813 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1814 new_offset <<= PAGE_CACHE_SHIFT;
1815 if (new_offset > offset) {
1816 if (new_offset < inode->i_size)
1817 offset = new_offset;
1818 else if (whence == SEEK_DATA)
1819 offset = -ENXIO;
1820 else
1821 offset = inode->i_size;
1822 }
1823 }
1824
1825 if (offset >= 0)
1826 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1827 mutex_unlock(&inode->i_mutex);
1828 return offset;
1829 }
1830
1831 static int shmem_wait_for_pins(struct address_space *mapping)
1832 {
1833 return 0;
1834 }
1835
1836 #define F_ALL_SEALS (F_SEAL_SEAL | \
1837 F_SEAL_SHRINK | \
1838 F_SEAL_GROW | \
1839 F_SEAL_WRITE)
1840
1841 int shmem_add_seals(struct file *file, unsigned int seals)
1842 {
1843 struct inode *inode = file_inode(file);
1844 struct shmem_inode_info *info = SHMEM_I(inode);
1845 int error;
1846
1847 /*
1848 * SEALING
1849 * Sealing allows multiple parties to share a shmem-file but restrict
1850 * access to a specific subset of file operations. Seals can only be
1851 * added, but never removed. This way, mutually untrusted parties can
1852 * share common memory regions with a well-defined policy. A malicious
1853 * peer can thus never perform unwanted operations on a shared object.
1854 *
1855 * Seals are only supported on special shmem-files and always affect
1856 * the whole underlying inode. Once a seal is set, it may prevent some
1857 * kinds of access to the file. Currently, the following seals are
1858 * defined:
1859 * SEAL_SEAL: Prevent further seals from being set on this file
1860 * SEAL_SHRINK: Prevent the file from shrinking
1861 * SEAL_GROW: Prevent the file from growing
1862 * SEAL_WRITE: Prevent write access to the file
1863 *
1864 * As we don't require any trust relationship between two parties, we
1865 * must prevent seals from being removed. Therefore, sealing a file
1866 * only adds a given set of seals to the file, it never touches
1867 * existing seals. Furthermore, the "setting seals"-operation can be
1868 * sealed itself, which basically prevents any further seal from being
1869 * added.
1870 *
1871 * Semantics of sealing are only defined on volatile files. Only
1872 * anonymous shmem files support sealing. More importantly, seals are
1873 * never written to disk. Therefore, there's no plan to support it on
1874 * other file types.
1875 */
1876
1877 if (file->f_op != &shmem_file_operations)
1878 return -EINVAL;
1879 if (!(file->f_mode & FMODE_WRITE))
1880 return -EPERM;
1881 if (seals & ~(unsigned int)F_ALL_SEALS)
1882 return -EINVAL;
1883
1884 mutex_lock(&inode->i_mutex);
1885
1886 if (info->seals & F_SEAL_SEAL) {
1887 error = -EPERM;
1888 goto unlock;
1889 }
1890
1891 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
1892 error = mapping_deny_writable(file->f_mapping);
1893 if (error)
1894 goto unlock;
1895
1896 error = shmem_wait_for_pins(file->f_mapping);
1897 if (error) {
1898 mapping_allow_writable(file->f_mapping);
1899 goto unlock;
1900 }
1901 }
1902
1903 info->seals |= seals;
1904 error = 0;
1905
1906 unlock:
1907 mutex_unlock(&inode->i_mutex);
1908 return error;
1909 }
1910 EXPORT_SYMBOL_GPL(shmem_add_seals);
1911
1912 int shmem_get_seals(struct file *file)
1913 {
1914 if (file->f_op != &shmem_file_operations)
1915 return -EINVAL;
1916
1917 return SHMEM_I(file_inode(file))->seals;
1918 }
1919 EXPORT_SYMBOL_GPL(shmem_get_seals);
1920
1921 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1922 {
1923 long error;
1924
1925 switch (cmd) {
1926 case F_ADD_SEALS:
1927 /* disallow upper 32bit */
1928 if (arg > UINT_MAX)
1929 return -EINVAL;
1930
1931 error = shmem_add_seals(file, arg);
1932 break;
1933 case F_GET_SEALS:
1934 error = shmem_get_seals(file);
1935 break;
1936 default:
1937 error = -EINVAL;
1938 break;
1939 }
1940
1941 return error;
1942 }
1943
1944 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1945 loff_t len)
1946 {
1947 struct inode *inode = file_inode(file);
1948 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1949 struct shmem_inode_info *info = SHMEM_I(inode);
1950 struct shmem_falloc shmem_falloc;
1951 pgoff_t start, index, end;
1952 int error;
1953
1954 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
1955 return -EOPNOTSUPP;
1956
1957 mutex_lock(&inode->i_mutex);
1958
1959 if (mode & FALLOC_FL_PUNCH_HOLE) {
1960 struct address_space *mapping = file->f_mapping;
1961 loff_t unmap_start = round_up(offset, PAGE_SIZE);
1962 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1963 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
1964
1965 /* protected by i_mutex */
1966 if (info->seals & F_SEAL_WRITE) {
1967 error = -EPERM;
1968 goto out;
1969 }
1970
1971 shmem_falloc.waitq = &shmem_falloc_waitq;
1972 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
1973 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
1974 spin_lock(&inode->i_lock);
1975 inode->i_private = &shmem_falloc;
1976 spin_unlock(&inode->i_lock);
1977
1978 if ((u64)unmap_end > (u64)unmap_start)
1979 unmap_mapping_range(mapping, unmap_start,
1980 1 + unmap_end - unmap_start, 0);
1981 shmem_truncate_range(inode, offset, offset + len - 1);
1982 /* No need to unmap again: hole-punching leaves COWed pages */
1983
1984 spin_lock(&inode->i_lock);
1985 inode->i_private = NULL;
1986 wake_up_all(&shmem_falloc_waitq);
1987 spin_unlock(&inode->i_lock);
1988 error = 0;
1989 goto out;
1990 }
1991
1992 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1993 error = inode_newsize_ok(inode, offset + len);
1994 if (error)
1995 goto out;
1996
1997 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
1998 error = -EPERM;
1999 goto out;
2000 }
2001
2002 start = offset >> PAGE_CACHE_SHIFT;
2003 end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
2004 /* Try to avoid a swapstorm if len is impossible to satisfy */
2005 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2006 error = -ENOSPC;
2007 goto out;
2008 }
2009
2010 shmem_falloc.waitq = NULL;
2011 shmem_falloc.start = start;
2012 shmem_falloc.next = start;
2013 shmem_falloc.nr_falloced = 0;
2014 shmem_falloc.nr_unswapped = 0;
2015 spin_lock(&inode->i_lock);
2016 inode->i_private = &shmem_falloc;
2017 spin_unlock(&inode->i_lock);
2018
2019 for (index = start; index < end; index++) {
2020 struct page *page;
2021
2022 /*
2023 * Good, the fallocate(2) manpage permits EINTR: we may have
2024 * been interrupted because we are using up too much memory.
2025 */
2026 if (signal_pending(current))
2027 error = -EINTR;
2028 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2029 error = -ENOMEM;
2030 else
2031 error = shmem_getpage(inode, index, &page, SGP_FALLOC,
2032 NULL);
2033 if (error) {
2034 /* Remove the !PageUptodate pages we added */
2035 shmem_undo_range(inode,
2036 (loff_t)start << PAGE_CACHE_SHIFT,
2037 (loff_t)index << PAGE_CACHE_SHIFT, true);
2038 goto undone;
2039 }
2040
2041 /*
2042 * Inform shmem_writepage() how far we have reached.
2043 * No need for lock or barrier: we have the page lock.
2044 */
2045 shmem_falloc.next++;
2046 if (!PageUptodate(page))
2047 shmem_falloc.nr_falloced++;
2048
2049 /*
2050 * If !PageUptodate, leave it that way so that freeable pages
2051 * can be recognized if we need to rollback on error later.
2052 * But set_page_dirty so that memory pressure will swap rather
2053 * than free the pages we are allocating (and SGP_CACHE pages
2054 * might still be clean: we now need to mark those dirty too).
2055 */
2056 set_page_dirty(page);
2057 unlock_page(page);
2058 page_cache_release(page);
2059 cond_resched();
2060 }
2061
2062 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2063 i_size_write(inode, offset + len);
2064 inode->i_ctime = CURRENT_TIME;
2065 undone:
2066 spin_lock(&inode->i_lock);
2067 inode->i_private = NULL;
2068 spin_unlock(&inode->i_lock);
2069 out:
2070 mutex_unlock(&inode->i_mutex);
2071 return error;
2072 }
2073
2074 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2075 {
2076 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2077
2078 buf->f_type = TMPFS_MAGIC;
2079 buf->f_bsize = PAGE_CACHE_SIZE;
2080 buf->f_namelen = NAME_MAX;
2081 if (sbinfo->max_blocks) {
2082 buf->f_blocks = sbinfo->max_blocks;
2083 buf->f_bavail =
2084 buf->f_bfree = sbinfo->max_blocks -
2085 percpu_counter_sum(&sbinfo->used_blocks);
2086 }
2087 if (sbinfo->max_inodes) {
2088 buf->f_files = sbinfo->max_inodes;
2089 buf->f_ffree = sbinfo->free_inodes;
2090 }
2091 /* else leave those fields 0 like simple_statfs */
2092 return 0;
2093 }
2094
2095 /*
2096 * File creation. Allocate an inode, and we're done..
2097 */
2098 static int
2099 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2100 {
2101 struct inode *inode;
2102 int error = -ENOSPC;
2103
2104 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2105 if (inode) {
2106 error = simple_acl_create(dir, inode);
2107 if (error)
2108 goto out_iput;
2109 error = security_inode_init_security(inode, dir,
2110 &dentry->d_name,
2111 shmem_initxattrs, NULL);
2112 if (error && error != -EOPNOTSUPP)
2113 goto out_iput;
2114
2115 error = 0;
2116 dir->i_size += BOGO_DIRENT_SIZE;
2117 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2118 d_instantiate(dentry, inode);
2119 dget(dentry); /* Extra count - pin the dentry in core */
2120 }
2121 return error;
2122 out_iput:
2123 iput(inode);
2124 return error;
2125 }
2126
2127 static int
2128 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2129 {
2130 struct inode *inode;
2131 int error = -ENOSPC;
2132
2133 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2134 if (inode) {
2135 error = security_inode_init_security(inode, dir,
2136 NULL,
2137 shmem_initxattrs, NULL);
2138 if (error && error != -EOPNOTSUPP)
2139 goto out_iput;
2140 error = simple_acl_create(dir, inode);
2141 if (error)
2142 goto out_iput;
2143 d_tmpfile(dentry, inode);
2144 }
2145 return error;
2146 out_iput:
2147 iput(inode);
2148 return error;
2149 }
2150
2151 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2152 {
2153 int error;
2154
2155 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2156 return error;
2157 inc_nlink(dir);
2158 return 0;
2159 }
2160
2161 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2162 bool excl)
2163 {
2164 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2165 }
2166
2167 /*
2168 * Link a file..
2169 */
2170 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2171 {
2172 struct inode *inode = old_dentry->d_inode;
2173 int ret;
2174
2175 /*
2176 * No ordinary (disk based) filesystem counts links as inodes;
2177 * but each new link needs a new dentry, pinning lowmem, and
2178 * tmpfs dentries cannot be pruned until they are unlinked.
2179 */
2180 ret = shmem_reserve_inode(inode->i_sb);
2181 if (ret)
2182 goto out;
2183
2184 dir->i_size += BOGO_DIRENT_SIZE;
2185 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2186 inc_nlink(inode);
2187 ihold(inode); /* New dentry reference */
2188 dget(dentry); /* Extra pinning count for the created dentry */
2189 d_instantiate(dentry, inode);
2190 out:
2191 return ret;
2192 }
2193
2194 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2195 {
2196 struct inode *inode = dentry->d_inode;
2197
2198 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2199 shmem_free_inode(inode->i_sb);
2200
2201 dir->i_size -= BOGO_DIRENT_SIZE;
2202 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2203 drop_nlink(inode);
2204 dput(dentry); /* Undo the count from "create" - this does all the work */
2205 return 0;
2206 }
2207
2208 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2209 {
2210 if (!simple_empty(dentry))
2211 return -ENOTEMPTY;
2212
2213 drop_nlink(dentry->d_inode);
2214 drop_nlink(dir);
2215 return shmem_unlink(dir, dentry);
2216 }
2217
2218 /*
2219 * The VFS layer already does all the dentry stuff for rename,
2220 * we just have to decrement the usage count for the target if
2221 * it exists so that the VFS layer correctly free's it when it
2222 * gets overwritten.
2223 */
2224 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2225 {
2226 struct inode *inode = old_dentry->d_inode;
2227 int they_are_dirs = S_ISDIR(inode->i_mode);
2228
2229 if (!simple_empty(new_dentry))
2230 return -ENOTEMPTY;
2231
2232 if (new_dentry->d_inode) {
2233 (void) shmem_unlink(new_dir, new_dentry);
2234 if (they_are_dirs)
2235 drop_nlink(old_dir);
2236 } else if (they_are_dirs) {
2237 drop_nlink(old_dir);
2238 inc_nlink(new_dir);
2239 }
2240
2241 old_dir->i_size -= BOGO_DIRENT_SIZE;
2242 new_dir->i_size += BOGO_DIRENT_SIZE;
2243 old_dir->i_ctime = old_dir->i_mtime =
2244 new_dir->i_ctime = new_dir->i_mtime =
2245 inode->i_ctime = CURRENT_TIME;
2246 return 0;
2247 }
2248
2249 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2250 {
2251 int error;
2252 int len;
2253 struct inode *inode;
2254 struct page *page;
2255 char *kaddr;
2256 struct shmem_inode_info *info;
2257
2258 len = strlen(symname) + 1;
2259 if (len > PAGE_CACHE_SIZE)
2260 return -ENAMETOOLONG;
2261
2262 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2263 if (!inode)
2264 return -ENOSPC;
2265
2266 error = security_inode_init_security(inode, dir, &dentry->d_name,
2267 shmem_initxattrs, NULL);
2268 if (error) {
2269 if (error != -EOPNOTSUPP) {
2270 iput(inode);
2271 return error;
2272 }
2273 error = 0;
2274 }
2275
2276 info = SHMEM_I(inode);
2277 inode->i_size = len-1;
2278 if (len <= SHORT_SYMLINK_LEN) {
2279 info->symlink = kmemdup(symname, len, GFP_KERNEL);
2280 if (!info->symlink) {
2281 iput(inode);
2282 return -ENOMEM;
2283 }
2284 inode->i_op = &shmem_short_symlink_operations;
2285 } else {
2286 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2287 if (error) {
2288 iput(inode);
2289 return error;
2290 }
2291 inode->i_mapping->a_ops = &shmem_aops;
2292 inode->i_op = &shmem_symlink_inode_operations;
2293 kaddr = kmap_atomic(page);
2294 memcpy(kaddr, symname, len);
2295 kunmap_atomic(kaddr);
2296 SetPageUptodate(page);
2297 set_page_dirty(page);
2298 unlock_page(page);
2299 page_cache_release(page);
2300 }
2301 dir->i_size += BOGO_DIRENT_SIZE;
2302 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2303 d_instantiate(dentry, inode);
2304 dget(dentry);
2305 return 0;
2306 }
2307
2308 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2309 {
2310 nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2311 return NULL;
2312 }
2313
2314 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2315 {
2316 struct page *page = NULL;
2317 int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2318 nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2319 if (page)
2320 unlock_page(page);
2321 return page;
2322 }
2323
2324 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2325 {
2326 if (!IS_ERR(nd_get_link(nd))) {
2327 struct page *page = cookie;
2328 kunmap(page);
2329 mark_page_accessed(page);
2330 page_cache_release(page);
2331 }
2332 }
2333
2334 #ifdef CONFIG_TMPFS_XATTR
2335 /*
2336 * Superblocks without xattr inode operations may get some security.* xattr
2337 * support from the LSM "for free". As soon as we have any other xattrs
2338 * like ACLs, we also need to implement the security.* handlers at
2339 * filesystem level, though.
2340 */
2341
2342 /*
2343 * Callback for security_inode_init_security() for acquiring xattrs.
2344 */
2345 static int shmem_initxattrs(struct inode *inode,
2346 const struct xattr *xattr_array,
2347 void *fs_info)
2348 {
2349 struct shmem_inode_info *info = SHMEM_I(inode);
2350 const struct xattr *xattr;
2351 struct simple_xattr *new_xattr;
2352 size_t len;
2353
2354 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2355 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2356 if (!new_xattr)
2357 return -ENOMEM;
2358
2359 len = strlen(xattr->name) + 1;
2360 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2361 GFP_KERNEL);
2362 if (!new_xattr->name) {
2363 kfree(new_xattr);
2364 return -ENOMEM;
2365 }
2366
2367 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2368 XATTR_SECURITY_PREFIX_LEN);
2369 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2370 xattr->name, len);
2371
2372 simple_xattr_list_add(&info->xattrs, new_xattr);
2373 }
2374
2375 return 0;
2376 }
2377
2378 static const struct xattr_handler *shmem_xattr_handlers[] = {
2379 #ifdef CONFIG_TMPFS_POSIX_ACL
2380 &posix_acl_access_xattr_handler,
2381 &posix_acl_default_xattr_handler,
2382 #endif
2383 NULL
2384 };
2385
2386 static int shmem_xattr_validate(const char *name)
2387 {
2388 struct { const char *prefix; size_t len; } arr[] = {
2389 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2390 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2391 };
2392 int i;
2393
2394 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2395 size_t preflen = arr[i].len;
2396 if (strncmp(name, arr[i].prefix, preflen) == 0) {
2397 if (!name[preflen])
2398 return -EINVAL;
2399 return 0;
2400 }
2401 }
2402 return -EOPNOTSUPP;
2403 }
2404
2405 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2406 void *buffer, size_t size)
2407 {
2408 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2409 int err;
2410
2411 /*
2412 * If this is a request for a synthetic attribute in the system.*
2413 * namespace use the generic infrastructure to resolve a handler
2414 * for it via sb->s_xattr.
2415 */
2416 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2417 return generic_getxattr(dentry, name, buffer, size);
2418
2419 err = shmem_xattr_validate(name);
2420 if (err)
2421 return err;
2422
2423 return simple_xattr_get(&info->xattrs, name, buffer, size);
2424 }
2425
2426 static int shmem_setxattr(struct dentry *dentry, const char *name,
2427 const void *value, size_t size, int flags)
2428 {
2429 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2430 int err;
2431
2432 /*
2433 * If this is a request for a synthetic attribute in the system.*
2434 * namespace use the generic infrastructure to resolve a handler
2435 * for it via sb->s_xattr.
2436 */
2437 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2438 return generic_setxattr(dentry, name, value, size, flags);
2439
2440 err = shmem_xattr_validate(name);
2441 if (err)
2442 return err;
2443
2444 return simple_xattr_set(&info->xattrs, name, value, size, flags);
2445 }
2446
2447 static int shmem_removexattr(struct dentry *dentry, const char *name)
2448 {
2449 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2450 int err;
2451
2452 /*
2453 * If this is a request for a synthetic attribute in the system.*
2454 * namespace use the generic infrastructure to resolve a handler
2455 * for it via sb->s_xattr.
2456 */
2457 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2458 return generic_removexattr(dentry, name);
2459
2460 err = shmem_xattr_validate(name);
2461 if (err)
2462 return err;
2463
2464 return simple_xattr_remove(&info->xattrs, name);
2465 }
2466
2467 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2468 {
2469 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2470 return simple_xattr_list(&info->xattrs, buffer, size);
2471 }
2472 #endif /* CONFIG_TMPFS_XATTR */
2473
2474 static const struct inode_operations shmem_short_symlink_operations = {
2475 .readlink = generic_readlink,
2476 .follow_link = shmem_follow_short_symlink,
2477 #ifdef CONFIG_TMPFS_XATTR
2478 .setxattr = shmem_setxattr,
2479 .getxattr = shmem_getxattr,
2480 .listxattr = shmem_listxattr,
2481 .removexattr = shmem_removexattr,
2482 #endif
2483 };
2484
2485 static const struct inode_operations shmem_symlink_inode_operations = {
2486 .readlink = generic_readlink,
2487 .follow_link = shmem_follow_link,
2488 .put_link = shmem_put_link,
2489 #ifdef CONFIG_TMPFS_XATTR
2490 .setxattr = shmem_setxattr,
2491 .getxattr = shmem_getxattr,
2492 .listxattr = shmem_listxattr,
2493 .removexattr = shmem_removexattr,
2494 #endif
2495 };
2496
2497 static struct dentry *shmem_get_parent(struct dentry *child)
2498 {
2499 return ERR_PTR(-ESTALE);
2500 }
2501
2502 static int shmem_match(struct inode *ino, void *vfh)
2503 {
2504 __u32 *fh = vfh;
2505 __u64 inum = fh[2];
2506 inum = (inum << 32) | fh[1];
2507 return ino->i_ino == inum && fh[0] == ino->i_generation;
2508 }
2509
2510 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2511 struct fid *fid, int fh_len, int fh_type)
2512 {
2513 struct inode *inode;
2514 struct dentry *dentry = NULL;
2515 u64 inum;
2516
2517 if (fh_len < 3)
2518 return NULL;
2519
2520 inum = fid->raw[2];
2521 inum = (inum << 32) | fid->raw[1];
2522
2523 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2524 shmem_match, fid->raw);
2525 if (inode) {
2526 dentry = d_find_alias(inode);
2527 iput(inode);
2528 }
2529
2530 return dentry;
2531 }
2532
2533 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2534 struct inode *parent)
2535 {
2536 if (*len < 3) {
2537 *len = 3;
2538 return FILEID_INVALID;
2539 }
2540
2541 if (inode_unhashed(inode)) {
2542 /* Unfortunately insert_inode_hash is not idempotent,
2543 * so as we hash inodes here rather than at creation
2544 * time, we need a lock to ensure we only try
2545 * to do it once
2546 */
2547 static DEFINE_SPINLOCK(lock);
2548 spin_lock(&lock);
2549 if (inode_unhashed(inode))
2550 __insert_inode_hash(inode,
2551 inode->i_ino + inode->i_generation);
2552 spin_unlock(&lock);
2553 }
2554
2555 fh[0] = inode->i_generation;
2556 fh[1] = inode->i_ino;
2557 fh[2] = ((__u64)inode->i_ino) >> 32;
2558
2559 *len = 3;
2560 return 1;
2561 }
2562
2563 static const struct export_operations shmem_export_ops = {
2564 .get_parent = shmem_get_parent,
2565 .encode_fh = shmem_encode_fh,
2566 .fh_to_dentry = shmem_fh_to_dentry,
2567 };
2568
2569 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2570 bool remount)
2571 {
2572 char *this_char, *value, *rest;
2573 struct mempolicy *mpol = NULL;
2574 uid_t uid;
2575 gid_t gid;
2576
2577 while (options != NULL) {
2578 this_char = options;
2579 for (;;) {
2580 /*
2581 * NUL-terminate this option: unfortunately,
2582 * mount options form a comma-separated list,
2583 * but mpol's nodelist may also contain commas.
2584 */
2585 options = strchr(options, ',');
2586 if (options == NULL)
2587 break;
2588 options++;
2589 if (!isdigit(*options)) {
2590 options[-1] = '\0';
2591 break;
2592 }
2593 }
2594 if (!*this_char)
2595 continue;
2596 if ((value = strchr(this_char,'=')) != NULL) {
2597 *value++ = 0;
2598 } else {
2599 printk(KERN_ERR
2600 "tmpfs: No value for mount option '%s'\n",
2601 this_char);
2602 goto error;
2603 }
2604
2605 if (!strcmp(this_char,"size")) {
2606 unsigned long long size;
2607 size = memparse(value,&rest);
2608 if (*rest == '%') {
2609 size <<= PAGE_SHIFT;
2610 size *= totalram_pages;
2611 do_div(size, 100);
2612 rest++;
2613 }
2614 if (*rest)
2615 goto bad_val;
2616 sbinfo->max_blocks =
2617 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2618 } else if (!strcmp(this_char,"nr_blocks")) {
2619 sbinfo->max_blocks = memparse(value, &rest);
2620 if (*rest)
2621 goto bad_val;
2622 } else if (!strcmp(this_char,"nr_inodes")) {
2623 sbinfo->max_inodes = memparse(value, &rest);
2624 if (*rest)
2625 goto bad_val;
2626 } else if (!strcmp(this_char,"mode")) {
2627 if (remount)
2628 continue;
2629 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2630 if (*rest)
2631 goto bad_val;
2632 } else if (!strcmp(this_char,"uid")) {
2633 if (remount)
2634 continue;
2635 uid = simple_strtoul(value, &rest, 0);
2636 if (*rest)
2637 goto bad_val;
2638 sbinfo->uid = make_kuid(current_user_ns(), uid);
2639 if (!uid_valid(sbinfo->uid))
2640 goto bad_val;
2641 } else if (!strcmp(this_char,"gid")) {
2642 if (remount)
2643 continue;
2644 gid = simple_strtoul(value, &rest, 0);
2645 if (*rest)
2646 goto bad_val;
2647 sbinfo->gid = make_kgid(current_user_ns(), gid);
2648 if (!gid_valid(sbinfo->gid))
2649 goto bad_val;
2650 } else if (!strcmp(this_char,"mpol")) {
2651 mpol_put(mpol);
2652 mpol = NULL;
2653 if (mpol_parse_str(value, &mpol))
2654 goto bad_val;
2655 } else {
2656 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2657 this_char);
2658 goto error;
2659 }
2660 }
2661 sbinfo->mpol = mpol;
2662 return 0;
2663
2664 bad_val:
2665 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2666 value, this_char);
2667 error:
2668 mpol_put(mpol);
2669 return 1;
2670
2671 }
2672
2673 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2674 {
2675 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2676 struct shmem_sb_info config = *sbinfo;
2677 unsigned long inodes;
2678 int error = -EINVAL;
2679
2680 config.mpol = NULL;
2681 if (shmem_parse_options(data, &config, true))
2682 return error;
2683
2684 spin_lock(&sbinfo->stat_lock);
2685 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2686 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2687 goto out;
2688 if (config.max_inodes < inodes)
2689 goto out;
2690 /*
2691 * Those tests disallow limited->unlimited while any are in use;
2692 * but we must separately disallow unlimited->limited, because
2693 * in that case we have no record of how much is already in use.
2694 */
2695 if (config.max_blocks && !sbinfo->max_blocks)
2696 goto out;
2697 if (config.max_inodes && !sbinfo->max_inodes)
2698 goto out;
2699
2700 error = 0;
2701 sbinfo->max_blocks = config.max_blocks;
2702 sbinfo->max_inodes = config.max_inodes;
2703 sbinfo->free_inodes = config.max_inodes - inodes;
2704
2705 /*
2706 * Preserve previous mempolicy unless mpol remount option was specified.
2707 */
2708 if (config.mpol) {
2709 mpol_put(sbinfo->mpol);
2710 sbinfo->mpol = config.mpol; /* transfers initial ref */
2711 }
2712 out:
2713 spin_unlock(&sbinfo->stat_lock);
2714 return error;
2715 }
2716
2717 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2718 {
2719 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2720
2721 if (sbinfo->max_blocks != shmem_default_max_blocks())
2722 seq_printf(seq, ",size=%luk",
2723 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2724 if (sbinfo->max_inodes != shmem_default_max_inodes())
2725 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2726 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2727 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2728 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2729 seq_printf(seq, ",uid=%u",
2730 from_kuid_munged(&init_user_ns, sbinfo->uid));
2731 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2732 seq_printf(seq, ",gid=%u",
2733 from_kgid_munged(&init_user_ns, sbinfo->gid));
2734 shmem_show_mpol(seq, sbinfo->mpol);
2735 return 0;
2736 }
2737
2738 #define MFD_NAME_PREFIX "memfd:"
2739 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
2740 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
2741
2742 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
2743
2744 SYSCALL_DEFINE2(memfd_create,
2745 const char __user *, uname,
2746 unsigned int, flags)
2747 {
2748 struct shmem_inode_info *info;
2749 struct file *file;
2750 int fd, error;
2751 char *name;
2752 long len;
2753
2754 if (flags & ~(unsigned int)MFD_ALL_FLAGS)
2755 return -EINVAL;
2756
2757 /* length includes terminating zero */
2758 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
2759 if (len <= 0)
2760 return -EFAULT;
2761 if (len > MFD_NAME_MAX_LEN + 1)
2762 return -EINVAL;
2763
2764 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
2765 if (!name)
2766 return -ENOMEM;
2767
2768 strcpy(name, MFD_NAME_PREFIX);
2769 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
2770 error = -EFAULT;
2771 goto err_name;
2772 }
2773
2774 /* terminating-zero may have changed after strnlen_user() returned */
2775 if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
2776 error = -EFAULT;
2777 goto err_name;
2778 }
2779
2780 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
2781 if (fd < 0) {
2782 error = fd;
2783 goto err_name;
2784 }
2785
2786 file = shmem_file_setup(name, 0, VM_NORESERVE);
2787 if (IS_ERR(file)) {
2788 error = PTR_ERR(file);
2789 goto err_fd;
2790 }
2791 info = SHMEM_I(file_inode(file));
2792 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
2793 file->f_flags |= O_RDWR | O_LARGEFILE;
2794 if (flags & MFD_ALLOW_SEALING)
2795 info->seals &= ~F_SEAL_SEAL;
2796
2797 fd_install(fd, file);
2798 kfree(name);
2799 return fd;
2800
2801 err_fd:
2802 put_unused_fd(fd);
2803 err_name:
2804 kfree(name);
2805 return error;
2806 }
2807
2808 #endif /* CONFIG_TMPFS */
2809
2810 static void shmem_put_super(struct super_block *sb)
2811 {
2812 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2813
2814 percpu_counter_destroy(&sbinfo->used_blocks);
2815 mpol_put(sbinfo->mpol);
2816 kfree(sbinfo);
2817 sb->s_fs_info = NULL;
2818 }
2819
2820 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2821 {
2822 struct inode *inode;
2823 struct shmem_sb_info *sbinfo;
2824 int err = -ENOMEM;
2825
2826 /* Round up to L1_CACHE_BYTES to resist false sharing */
2827 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2828 L1_CACHE_BYTES), GFP_KERNEL);
2829 if (!sbinfo)
2830 return -ENOMEM;
2831
2832 sbinfo->mode = S_IRWXUGO | S_ISVTX;
2833 sbinfo->uid = current_fsuid();
2834 sbinfo->gid = current_fsgid();
2835 sb->s_fs_info = sbinfo;
2836
2837 #ifdef CONFIG_TMPFS
2838 /*
2839 * Per default we only allow half of the physical ram per
2840 * tmpfs instance, limiting inodes to one per page of lowmem;
2841 * but the internal instance is left unlimited.
2842 */
2843 if (!(sb->s_flags & MS_KERNMOUNT)) {
2844 sbinfo->max_blocks = shmem_default_max_blocks();
2845 sbinfo->max_inodes = shmem_default_max_inodes();
2846 if (shmem_parse_options(data, sbinfo, false)) {
2847 err = -EINVAL;
2848 goto failed;
2849 }
2850 } else {
2851 sb->s_flags |= MS_NOUSER;
2852 }
2853 sb->s_export_op = &shmem_export_ops;
2854 sb->s_flags |= MS_NOSEC;
2855 #else
2856 sb->s_flags |= MS_NOUSER;
2857 #endif
2858
2859 spin_lock_init(&sbinfo->stat_lock);
2860 if (percpu_counter_init(&sbinfo->used_blocks, 0))
2861 goto failed;
2862 sbinfo->free_inodes = sbinfo->max_inodes;
2863
2864 sb->s_maxbytes = MAX_LFS_FILESIZE;
2865 sb->s_blocksize = PAGE_CACHE_SIZE;
2866 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2867 sb->s_magic = TMPFS_MAGIC;
2868 sb->s_op = &shmem_ops;
2869 sb->s_time_gran = 1;
2870 #ifdef CONFIG_TMPFS_XATTR
2871 sb->s_xattr = shmem_xattr_handlers;
2872 #endif
2873 #ifdef CONFIG_TMPFS_POSIX_ACL
2874 sb->s_flags |= MS_POSIXACL;
2875 #endif
2876
2877 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2878 if (!inode)
2879 goto failed;
2880 inode->i_uid = sbinfo->uid;
2881 inode->i_gid = sbinfo->gid;
2882 sb->s_root = d_make_root(inode);
2883 if (!sb->s_root)
2884 goto failed;
2885 return 0;
2886
2887 failed:
2888 shmem_put_super(sb);
2889 return err;
2890 }
2891
2892 static struct kmem_cache *shmem_inode_cachep;
2893
2894 static struct inode *shmem_alloc_inode(struct super_block *sb)
2895 {
2896 struct shmem_inode_info *info;
2897 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2898 if (!info)
2899 return NULL;
2900 return &info->vfs_inode;
2901 }
2902
2903 static void shmem_destroy_callback(struct rcu_head *head)
2904 {
2905 struct inode *inode = container_of(head, struct inode, i_rcu);
2906 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2907 }
2908
2909 static void shmem_destroy_inode(struct inode *inode)
2910 {
2911 if (S_ISREG(inode->i_mode))
2912 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2913 call_rcu(&inode->i_rcu, shmem_destroy_callback);
2914 }
2915
2916 static void shmem_init_inode(void *foo)
2917 {
2918 struct shmem_inode_info *info = foo;
2919 inode_init_once(&info->vfs_inode);
2920 }
2921
2922 static int shmem_init_inodecache(void)
2923 {
2924 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2925 sizeof(struct shmem_inode_info),
2926 0, SLAB_PANIC, shmem_init_inode);
2927 return 0;
2928 }
2929
2930 static void shmem_destroy_inodecache(void)
2931 {
2932 kmem_cache_destroy(shmem_inode_cachep);
2933 }
2934
2935 static const struct address_space_operations shmem_aops = {
2936 .writepage = shmem_writepage,
2937 .set_page_dirty = __set_page_dirty_no_writeback,
2938 #ifdef CONFIG_TMPFS
2939 .write_begin = shmem_write_begin,
2940 .write_end = shmem_write_end,
2941 #endif
2942 .migratepage = migrate_page,
2943 .error_remove_page = generic_error_remove_page,
2944 };
2945
2946 static const struct file_operations shmem_file_operations = {
2947 .mmap = shmem_mmap,
2948 #ifdef CONFIG_TMPFS
2949 .llseek = shmem_file_llseek,
2950 .read = new_sync_read,
2951 .write = new_sync_write,
2952 .read_iter = shmem_file_read_iter,
2953 .write_iter = generic_file_write_iter,
2954 .fsync = noop_fsync,
2955 .splice_read = shmem_file_splice_read,
2956 .splice_write = iter_file_splice_write,
2957 .fallocate = shmem_fallocate,
2958 #endif
2959 };
2960
2961 static const struct inode_operations shmem_inode_operations = {
2962 .setattr = shmem_setattr,
2963 #ifdef CONFIG_TMPFS_XATTR
2964 .setxattr = shmem_setxattr,
2965 .getxattr = shmem_getxattr,
2966 .listxattr = shmem_listxattr,
2967 .removexattr = shmem_removexattr,
2968 .set_acl = simple_set_acl,
2969 #endif
2970 };
2971
2972 static const struct inode_operations shmem_dir_inode_operations = {
2973 #ifdef CONFIG_TMPFS
2974 .create = shmem_create,
2975 .lookup = simple_lookup,
2976 .link = shmem_link,
2977 .unlink = shmem_unlink,
2978 .symlink = shmem_symlink,
2979 .mkdir = shmem_mkdir,
2980 .rmdir = shmem_rmdir,
2981 .mknod = shmem_mknod,
2982 .rename = shmem_rename,
2983 .tmpfile = shmem_tmpfile,
2984 #endif
2985 #ifdef CONFIG_TMPFS_XATTR
2986 .setxattr = shmem_setxattr,
2987 .getxattr = shmem_getxattr,
2988 .listxattr = shmem_listxattr,
2989 .removexattr = shmem_removexattr,
2990 #endif
2991 #ifdef CONFIG_TMPFS_POSIX_ACL
2992 .setattr = shmem_setattr,
2993 .set_acl = simple_set_acl,
2994 #endif
2995 };
2996
2997 static const struct inode_operations shmem_special_inode_operations = {
2998 #ifdef CONFIG_TMPFS_XATTR
2999 .setxattr = shmem_setxattr,
3000 .getxattr = shmem_getxattr,
3001 .listxattr = shmem_listxattr,
3002 .removexattr = shmem_removexattr,
3003 #endif
3004 #ifdef CONFIG_TMPFS_POSIX_ACL
3005 .setattr = shmem_setattr,
3006 .set_acl = simple_set_acl,
3007 #endif
3008 };
3009
3010 static const struct super_operations shmem_ops = {
3011 .alloc_inode = shmem_alloc_inode,
3012 .destroy_inode = shmem_destroy_inode,
3013 #ifdef CONFIG_TMPFS
3014 .statfs = shmem_statfs,
3015 .remount_fs = shmem_remount_fs,
3016 .show_options = shmem_show_options,
3017 #endif
3018 .evict_inode = shmem_evict_inode,
3019 .drop_inode = generic_delete_inode,
3020 .put_super = shmem_put_super,
3021 };
3022
3023 static const struct vm_operations_struct shmem_vm_ops = {
3024 .fault = shmem_fault,
3025 .map_pages = filemap_map_pages,
3026 #ifdef CONFIG_NUMA
3027 .set_policy = shmem_set_policy,
3028 .get_policy = shmem_get_policy,
3029 #endif
3030 .remap_pages = generic_file_remap_pages,
3031 };
3032
3033 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3034 int flags, const char *dev_name, void *data)
3035 {
3036 return mount_nodev(fs_type, flags, data, shmem_fill_super);
3037 }
3038
3039 static struct file_system_type shmem_fs_type = {
3040 .owner = THIS_MODULE,
3041 .name = "tmpfs",
3042 .mount = shmem_mount,
3043 .kill_sb = kill_litter_super,
3044 .fs_flags = FS_USERNS_MOUNT,
3045 };
3046
3047 int __init shmem_init(void)
3048 {
3049 int error;
3050
3051 /* If rootfs called this, don't re-init */
3052 if (shmem_inode_cachep)
3053 return 0;
3054
3055 error = bdi_init(&shmem_backing_dev_info);
3056 if (error)
3057 goto out4;
3058
3059 error = shmem_init_inodecache();
3060 if (error)
3061 goto out3;
3062
3063 error = register_filesystem(&shmem_fs_type);
3064 if (error) {
3065 printk(KERN_ERR "Could not register tmpfs\n");
3066 goto out2;
3067 }
3068
3069 shm_mnt = kern_mount(&shmem_fs_type);
3070 if (IS_ERR(shm_mnt)) {
3071 error = PTR_ERR(shm_mnt);
3072 printk(KERN_ERR "Could not kern_mount tmpfs\n");
3073 goto out1;
3074 }
3075 return 0;
3076
3077 out1:
3078 unregister_filesystem(&shmem_fs_type);
3079 out2:
3080 shmem_destroy_inodecache();
3081 out3:
3082 bdi_destroy(&shmem_backing_dev_info);
3083 out4:
3084 shm_mnt = ERR_PTR(error);
3085 return error;
3086 }
3087
3088 #else /* !CONFIG_SHMEM */
3089
3090 /*
3091 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3092 *
3093 * This is intended for small system where the benefits of the full
3094 * shmem code (swap-backed and resource-limited) are outweighed by
3095 * their complexity. On systems without swap this code should be
3096 * effectively equivalent, but much lighter weight.
3097 */
3098
3099 static struct file_system_type shmem_fs_type = {
3100 .name = "tmpfs",
3101 .mount = ramfs_mount,
3102 .kill_sb = kill_litter_super,
3103 .fs_flags = FS_USERNS_MOUNT,
3104 };
3105
3106 int __init shmem_init(void)
3107 {
3108 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3109
3110 shm_mnt = kern_mount(&shmem_fs_type);
3111 BUG_ON(IS_ERR(shm_mnt));
3112
3113 return 0;
3114 }
3115
3116 int shmem_unuse(swp_entry_t swap, struct page *page)
3117 {
3118 return 0;
3119 }
3120
3121 int shmem_lock(struct file *file, int lock, struct user_struct *user)
3122 {
3123 return 0;
3124 }
3125
3126 void shmem_unlock_mapping(struct address_space *mapping)
3127 {
3128 }
3129
3130 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3131 {
3132 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3133 }
3134 EXPORT_SYMBOL_GPL(shmem_truncate_range);
3135
3136 #define shmem_vm_ops generic_file_vm_ops
3137 #define shmem_file_operations ramfs_file_operations
3138 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
3139 #define shmem_acct_size(flags, size) 0
3140 #define shmem_unacct_size(flags, size) do {} while (0)
3141
3142 #endif /* CONFIG_SHMEM */
3143
3144 /* common code */
3145
3146 static struct dentry_operations anon_ops = {
3147 .d_dname = simple_dname
3148 };
3149
3150 static struct file *__shmem_file_setup(const char *name, loff_t size,
3151 unsigned long flags, unsigned int i_flags)
3152 {
3153 struct file *res;
3154 struct inode *inode;
3155 struct path path;
3156 struct super_block *sb;
3157 struct qstr this;
3158
3159 if (IS_ERR(shm_mnt))
3160 return ERR_CAST(shm_mnt);
3161
3162 if (size < 0 || size > MAX_LFS_FILESIZE)
3163 return ERR_PTR(-EINVAL);
3164
3165 if (shmem_acct_size(flags, size))
3166 return ERR_PTR(-ENOMEM);
3167
3168 res = ERR_PTR(-ENOMEM);
3169 this.name = name;
3170 this.len = strlen(name);
3171 this.hash = 0; /* will go */
3172 sb = shm_mnt->mnt_sb;
3173 path.mnt = mntget(shm_mnt);
3174 path.dentry = d_alloc_pseudo(sb, &this);
3175 if (!path.dentry)
3176 goto put_memory;
3177 d_set_d_op(path.dentry, &anon_ops);
3178
3179 res = ERR_PTR(-ENOSPC);
3180 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
3181 if (!inode)
3182 goto put_memory;
3183
3184 inode->i_flags |= i_flags;
3185 d_instantiate(path.dentry, inode);
3186 inode->i_size = size;
3187 clear_nlink(inode); /* It is unlinked */
3188 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3189 if (IS_ERR(res))
3190 goto put_path;
3191
3192 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3193 &shmem_file_operations);
3194 if (IS_ERR(res))
3195 goto put_path;
3196
3197 return res;
3198
3199 put_memory:
3200 shmem_unacct_size(flags, size);
3201 put_path:
3202 path_put(&path);
3203 return res;
3204 }
3205
3206 /**
3207 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3208 * kernel internal. There will be NO LSM permission checks against the
3209 * underlying inode. So users of this interface must do LSM checks at a
3210 * higher layer. The one user is the big_key implementation. LSM checks
3211 * are provided at the key level rather than the inode level.
3212 * @name: name for dentry (to be seen in /proc/<pid>/maps
3213 * @size: size to be set for the file
3214 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3215 */
3216 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3217 {
3218 return __shmem_file_setup(name, size, flags, S_PRIVATE);
3219 }
3220
3221 /**
3222 * shmem_file_setup - get an unlinked file living in tmpfs
3223 * @name: name for dentry (to be seen in /proc/<pid>/maps
3224 * @size: size to be set for the file
3225 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3226 */
3227 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3228 {
3229 return __shmem_file_setup(name, size, flags, 0);
3230 }
3231 EXPORT_SYMBOL_GPL(shmem_file_setup);
3232
3233 /**
3234 * shmem_zero_setup - setup a shared anonymous mapping
3235 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3236 */
3237 int shmem_zero_setup(struct vm_area_struct *vma)
3238 {
3239 struct file *file;
3240 loff_t size = vma->vm_end - vma->vm_start;
3241
3242 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
3243 if (IS_ERR(file))
3244 return PTR_ERR(file);
3245
3246 if (vma->vm_file)
3247 fput(vma->vm_file);
3248 vma->vm_file = file;
3249 vma->vm_ops = &shmem_vm_ops;
3250 return 0;
3251 }
3252
3253 /**
3254 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3255 * @mapping: the page's address_space
3256 * @index: the page index
3257 * @gfp: the page allocator flags to use if allocating
3258 *
3259 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3260 * with any new page allocations done using the specified allocation flags.
3261 * But read_cache_page_gfp() uses the ->readpage() method: which does not
3262 * suit tmpfs, since it may have pages in swapcache, and needs to find those
3263 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3264 *
3265 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3266 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3267 */
3268 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3269 pgoff_t index, gfp_t gfp)
3270 {
3271 #ifdef CONFIG_SHMEM
3272 struct inode *inode = mapping->host;
3273 struct page *page;
3274 int error;
3275
3276 BUG_ON(mapping->a_ops != &shmem_aops);
3277 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3278 if (error)
3279 page = ERR_PTR(error);
3280 else
3281 unlock_page(page);
3282 return page;
3283 #else
3284 /*
3285 * The tiny !SHMEM case uses ramfs without swap
3286 */
3287 return read_cache_page_gfp(mapping, index, gfp);
3288 #endif
3289 }
3290 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
This page took 0.133856 seconds and 6 git commands to generate.