Merge tag 'spi-v4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie/spi
[deliverable/linux.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/uio.h>
35
36 static struct vfsmount *shm_mnt;
37
38 #ifdef CONFIG_SHMEM
39 /*
40 * This virtual memory filesystem is heavily based on the ramfs. It
41 * extends ramfs by the ability to use swap and honor resource limits
42 * which makes it a completely usable filesystem.
43 */
44
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/posix_acl_xattr.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
69 #include <linux/syscalls.h>
70 #include <linux/fcntl.h>
71 #include <uapi/linux/memfd.h>
72
73 #include <asm/uaccess.h>
74 #include <asm/pgtable.h>
75
76 #include "internal.h"
77
78 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
79 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
80
81 /* Pretend that each entry is of this size in directory's i_size */
82 #define BOGO_DIRENT_SIZE 20
83
84 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
85 #define SHORT_SYMLINK_LEN 128
86
87 /*
88 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
89 * inode->i_private (with i_mutex making sure that it has only one user at
90 * a time): we would prefer not to enlarge the shmem inode just for that.
91 */
92 struct shmem_falloc {
93 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
94 pgoff_t start; /* start of range currently being fallocated */
95 pgoff_t next; /* the next page offset to be fallocated */
96 pgoff_t nr_falloced; /* how many new pages have been fallocated */
97 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
98 };
99
100 /* Flag allocation requirements to shmem_getpage */
101 enum sgp_type {
102 SGP_READ, /* don't exceed i_size, don't allocate page */
103 SGP_CACHE, /* don't exceed i_size, may allocate page */
104 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */
105 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */
106 };
107
108 #ifdef CONFIG_TMPFS
109 static unsigned long shmem_default_max_blocks(void)
110 {
111 return totalram_pages / 2;
112 }
113
114 static unsigned long shmem_default_max_inodes(void)
115 {
116 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
117 }
118 #endif
119
120 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
121 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
122 struct shmem_inode_info *info, pgoff_t index);
123 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
124 struct page **pagep, enum sgp_type sgp,
125 gfp_t gfp, struct mm_struct *fault_mm, int *fault_type);
126
127 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
128 struct page **pagep, enum sgp_type sgp)
129 {
130 return shmem_getpage_gfp(inode, index, pagep, sgp,
131 mapping_gfp_mask(inode->i_mapping), NULL, NULL);
132 }
133
134 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
135 {
136 return sb->s_fs_info;
137 }
138
139 /*
140 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
141 * for shared memory and for shared anonymous (/dev/zero) mappings
142 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
143 * consistent with the pre-accounting of private mappings ...
144 */
145 static inline int shmem_acct_size(unsigned long flags, loff_t size)
146 {
147 return (flags & VM_NORESERVE) ?
148 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
149 }
150
151 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
152 {
153 if (!(flags & VM_NORESERVE))
154 vm_unacct_memory(VM_ACCT(size));
155 }
156
157 static inline int shmem_reacct_size(unsigned long flags,
158 loff_t oldsize, loff_t newsize)
159 {
160 if (!(flags & VM_NORESERVE)) {
161 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
162 return security_vm_enough_memory_mm(current->mm,
163 VM_ACCT(newsize) - VM_ACCT(oldsize));
164 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
165 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
166 }
167 return 0;
168 }
169
170 /*
171 * ... whereas tmpfs objects are accounted incrementally as
172 * pages are allocated, in order to allow large sparse files.
173 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
174 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
175 */
176 static inline int shmem_acct_block(unsigned long flags)
177 {
178 return (flags & VM_NORESERVE) ?
179 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_SIZE)) : 0;
180 }
181
182 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
183 {
184 if (flags & VM_NORESERVE)
185 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
186 }
187
188 static const struct super_operations shmem_ops;
189 static const struct address_space_operations shmem_aops;
190 static const struct file_operations shmem_file_operations;
191 static const struct inode_operations shmem_inode_operations;
192 static const struct inode_operations shmem_dir_inode_operations;
193 static const struct inode_operations shmem_special_inode_operations;
194 static const struct vm_operations_struct shmem_vm_ops;
195
196 static LIST_HEAD(shmem_swaplist);
197 static DEFINE_MUTEX(shmem_swaplist_mutex);
198
199 static int shmem_reserve_inode(struct super_block *sb)
200 {
201 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
202 if (sbinfo->max_inodes) {
203 spin_lock(&sbinfo->stat_lock);
204 if (!sbinfo->free_inodes) {
205 spin_unlock(&sbinfo->stat_lock);
206 return -ENOSPC;
207 }
208 sbinfo->free_inodes--;
209 spin_unlock(&sbinfo->stat_lock);
210 }
211 return 0;
212 }
213
214 static void shmem_free_inode(struct super_block *sb)
215 {
216 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
217 if (sbinfo->max_inodes) {
218 spin_lock(&sbinfo->stat_lock);
219 sbinfo->free_inodes++;
220 spin_unlock(&sbinfo->stat_lock);
221 }
222 }
223
224 /**
225 * shmem_recalc_inode - recalculate the block usage of an inode
226 * @inode: inode to recalc
227 *
228 * We have to calculate the free blocks since the mm can drop
229 * undirtied hole pages behind our back.
230 *
231 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
232 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
233 *
234 * It has to be called with the spinlock held.
235 */
236 static void shmem_recalc_inode(struct inode *inode)
237 {
238 struct shmem_inode_info *info = SHMEM_I(inode);
239 long freed;
240
241 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
242 if (freed > 0) {
243 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
244 if (sbinfo->max_blocks)
245 percpu_counter_add(&sbinfo->used_blocks, -freed);
246 info->alloced -= freed;
247 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
248 shmem_unacct_blocks(info->flags, freed);
249 }
250 }
251
252 /*
253 * Replace item expected in radix tree by a new item, while holding tree lock.
254 */
255 static int shmem_radix_tree_replace(struct address_space *mapping,
256 pgoff_t index, void *expected, void *replacement)
257 {
258 void **pslot;
259 void *item;
260
261 VM_BUG_ON(!expected);
262 VM_BUG_ON(!replacement);
263 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
264 if (!pslot)
265 return -ENOENT;
266 item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
267 if (item != expected)
268 return -ENOENT;
269 radix_tree_replace_slot(pslot, replacement);
270 return 0;
271 }
272
273 /*
274 * Sometimes, before we decide whether to proceed or to fail, we must check
275 * that an entry was not already brought back from swap by a racing thread.
276 *
277 * Checking page is not enough: by the time a SwapCache page is locked, it
278 * might be reused, and again be SwapCache, using the same swap as before.
279 */
280 static bool shmem_confirm_swap(struct address_space *mapping,
281 pgoff_t index, swp_entry_t swap)
282 {
283 void *item;
284
285 rcu_read_lock();
286 item = radix_tree_lookup(&mapping->page_tree, index);
287 rcu_read_unlock();
288 return item == swp_to_radix_entry(swap);
289 }
290
291 /*
292 * Like add_to_page_cache_locked, but error if expected item has gone.
293 */
294 static int shmem_add_to_page_cache(struct page *page,
295 struct address_space *mapping,
296 pgoff_t index, void *expected)
297 {
298 int error;
299
300 VM_BUG_ON_PAGE(!PageLocked(page), page);
301 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
302
303 get_page(page);
304 page->mapping = mapping;
305 page->index = index;
306
307 spin_lock_irq(&mapping->tree_lock);
308 if (!expected)
309 error = radix_tree_insert(&mapping->page_tree, index, page);
310 else
311 error = shmem_radix_tree_replace(mapping, index, expected,
312 page);
313 if (!error) {
314 mapping->nrpages++;
315 __inc_zone_page_state(page, NR_FILE_PAGES);
316 __inc_zone_page_state(page, NR_SHMEM);
317 spin_unlock_irq(&mapping->tree_lock);
318 } else {
319 page->mapping = NULL;
320 spin_unlock_irq(&mapping->tree_lock);
321 put_page(page);
322 }
323 return error;
324 }
325
326 /*
327 * Like delete_from_page_cache, but substitutes swap for page.
328 */
329 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
330 {
331 struct address_space *mapping = page->mapping;
332 int error;
333
334 spin_lock_irq(&mapping->tree_lock);
335 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
336 page->mapping = NULL;
337 mapping->nrpages--;
338 __dec_zone_page_state(page, NR_FILE_PAGES);
339 __dec_zone_page_state(page, NR_SHMEM);
340 spin_unlock_irq(&mapping->tree_lock);
341 put_page(page);
342 BUG_ON(error);
343 }
344
345 /*
346 * Remove swap entry from radix tree, free the swap and its page cache.
347 */
348 static int shmem_free_swap(struct address_space *mapping,
349 pgoff_t index, void *radswap)
350 {
351 void *old;
352
353 spin_lock_irq(&mapping->tree_lock);
354 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
355 spin_unlock_irq(&mapping->tree_lock);
356 if (old != radswap)
357 return -ENOENT;
358 free_swap_and_cache(radix_to_swp_entry(radswap));
359 return 0;
360 }
361
362 /*
363 * Determine (in bytes) how many of the shmem object's pages mapped by the
364 * given offsets are swapped out.
365 *
366 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
367 * as long as the inode doesn't go away and racy results are not a problem.
368 */
369 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
370 pgoff_t start, pgoff_t end)
371 {
372 struct radix_tree_iter iter;
373 void **slot;
374 struct page *page;
375 unsigned long swapped = 0;
376
377 rcu_read_lock();
378
379 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
380 if (iter.index >= end)
381 break;
382
383 page = radix_tree_deref_slot(slot);
384
385 if (radix_tree_deref_retry(page)) {
386 slot = radix_tree_iter_retry(&iter);
387 continue;
388 }
389
390 if (radix_tree_exceptional_entry(page))
391 swapped++;
392
393 if (need_resched()) {
394 cond_resched_rcu();
395 slot = radix_tree_iter_next(&iter);
396 }
397 }
398
399 rcu_read_unlock();
400
401 return swapped << PAGE_SHIFT;
402 }
403
404 /*
405 * Determine (in bytes) how many of the shmem object's pages mapped by the
406 * given vma is swapped out.
407 *
408 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
409 * as long as the inode doesn't go away and racy results are not a problem.
410 */
411 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
412 {
413 struct inode *inode = file_inode(vma->vm_file);
414 struct shmem_inode_info *info = SHMEM_I(inode);
415 struct address_space *mapping = inode->i_mapping;
416 unsigned long swapped;
417
418 /* Be careful as we don't hold info->lock */
419 swapped = READ_ONCE(info->swapped);
420
421 /*
422 * The easier cases are when the shmem object has nothing in swap, or
423 * the vma maps it whole. Then we can simply use the stats that we
424 * already track.
425 */
426 if (!swapped)
427 return 0;
428
429 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
430 return swapped << PAGE_SHIFT;
431
432 /* Here comes the more involved part */
433 return shmem_partial_swap_usage(mapping,
434 linear_page_index(vma, vma->vm_start),
435 linear_page_index(vma, vma->vm_end));
436 }
437
438 /*
439 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
440 */
441 void shmem_unlock_mapping(struct address_space *mapping)
442 {
443 struct pagevec pvec;
444 pgoff_t indices[PAGEVEC_SIZE];
445 pgoff_t index = 0;
446
447 pagevec_init(&pvec, 0);
448 /*
449 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
450 */
451 while (!mapping_unevictable(mapping)) {
452 /*
453 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
454 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
455 */
456 pvec.nr = find_get_entries(mapping, index,
457 PAGEVEC_SIZE, pvec.pages, indices);
458 if (!pvec.nr)
459 break;
460 index = indices[pvec.nr - 1] + 1;
461 pagevec_remove_exceptionals(&pvec);
462 check_move_unevictable_pages(pvec.pages, pvec.nr);
463 pagevec_release(&pvec);
464 cond_resched();
465 }
466 }
467
468 /*
469 * Remove range of pages and swap entries from radix tree, and free them.
470 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
471 */
472 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
473 bool unfalloc)
474 {
475 struct address_space *mapping = inode->i_mapping;
476 struct shmem_inode_info *info = SHMEM_I(inode);
477 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
478 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
479 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
480 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
481 struct pagevec pvec;
482 pgoff_t indices[PAGEVEC_SIZE];
483 long nr_swaps_freed = 0;
484 pgoff_t index;
485 int i;
486
487 if (lend == -1)
488 end = -1; /* unsigned, so actually very big */
489
490 pagevec_init(&pvec, 0);
491 index = start;
492 while (index < end) {
493 pvec.nr = find_get_entries(mapping, index,
494 min(end - index, (pgoff_t)PAGEVEC_SIZE),
495 pvec.pages, indices);
496 if (!pvec.nr)
497 break;
498 for (i = 0; i < pagevec_count(&pvec); i++) {
499 struct page *page = pvec.pages[i];
500
501 index = indices[i];
502 if (index >= end)
503 break;
504
505 if (radix_tree_exceptional_entry(page)) {
506 if (unfalloc)
507 continue;
508 nr_swaps_freed += !shmem_free_swap(mapping,
509 index, page);
510 continue;
511 }
512
513 if (!trylock_page(page))
514 continue;
515 if (!unfalloc || !PageUptodate(page)) {
516 if (page->mapping == mapping) {
517 VM_BUG_ON_PAGE(PageWriteback(page), page);
518 truncate_inode_page(mapping, page);
519 }
520 }
521 unlock_page(page);
522 }
523 pagevec_remove_exceptionals(&pvec);
524 pagevec_release(&pvec);
525 cond_resched();
526 index++;
527 }
528
529 if (partial_start) {
530 struct page *page = NULL;
531 shmem_getpage(inode, start - 1, &page, SGP_READ);
532 if (page) {
533 unsigned int top = PAGE_SIZE;
534 if (start > end) {
535 top = partial_end;
536 partial_end = 0;
537 }
538 zero_user_segment(page, partial_start, top);
539 set_page_dirty(page);
540 unlock_page(page);
541 put_page(page);
542 }
543 }
544 if (partial_end) {
545 struct page *page = NULL;
546 shmem_getpage(inode, end, &page, SGP_READ);
547 if (page) {
548 zero_user_segment(page, 0, partial_end);
549 set_page_dirty(page);
550 unlock_page(page);
551 put_page(page);
552 }
553 }
554 if (start >= end)
555 return;
556
557 index = start;
558 while (index < end) {
559 cond_resched();
560
561 pvec.nr = find_get_entries(mapping, index,
562 min(end - index, (pgoff_t)PAGEVEC_SIZE),
563 pvec.pages, indices);
564 if (!pvec.nr) {
565 /* If all gone or hole-punch or unfalloc, we're done */
566 if (index == start || end != -1)
567 break;
568 /* But if truncating, restart to make sure all gone */
569 index = start;
570 continue;
571 }
572 for (i = 0; i < pagevec_count(&pvec); i++) {
573 struct page *page = pvec.pages[i];
574
575 index = indices[i];
576 if (index >= end)
577 break;
578
579 if (radix_tree_exceptional_entry(page)) {
580 if (unfalloc)
581 continue;
582 if (shmem_free_swap(mapping, index, page)) {
583 /* Swap was replaced by page: retry */
584 index--;
585 break;
586 }
587 nr_swaps_freed++;
588 continue;
589 }
590
591 lock_page(page);
592 if (!unfalloc || !PageUptodate(page)) {
593 if (page->mapping == mapping) {
594 VM_BUG_ON_PAGE(PageWriteback(page), page);
595 truncate_inode_page(mapping, page);
596 } else {
597 /* Page was replaced by swap: retry */
598 unlock_page(page);
599 index--;
600 break;
601 }
602 }
603 unlock_page(page);
604 }
605 pagevec_remove_exceptionals(&pvec);
606 pagevec_release(&pvec);
607 index++;
608 }
609
610 spin_lock(&info->lock);
611 info->swapped -= nr_swaps_freed;
612 shmem_recalc_inode(inode);
613 spin_unlock(&info->lock);
614 }
615
616 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
617 {
618 shmem_undo_range(inode, lstart, lend, false);
619 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
620 }
621 EXPORT_SYMBOL_GPL(shmem_truncate_range);
622
623 static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry,
624 struct kstat *stat)
625 {
626 struct inode *inode = dentry->d_inode;
627 struct shmem_inode_info *info = SHMEM_I(inode);
628
629 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
630 spin_lock(&info->lock);
631 shmem_recalc_inode(inode);
632 spin_unlock(&info->lock);
633 }
634 generic_fillattr(inode, stat);
635 return 0;
636 }
637
638 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
639 {
640 struct inode *inode = d_inode(dentry);
641 struct shmem_inode_info *info = SHMEM_I(inode);
642 int error;
643
644 error = inode_change_ok(inode, attr);
645 if (error)
646 return error;
647
648 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
649 loff_t oldsize = inode->i_size;
650 loff_t newsize = attr->ia_size;
651
652 /* protected by i_mutex */
653 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
654 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
655 return -EPERM;
656
657 if (newsize != oldsize) {
658 error = shmem_reacct_size(SHMEM_I(inode)->flags,
659 oldsize, newsize);
660 if (error)
661 return error;
662 i_size_write(inode, newsize);
663 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
664 }
665 if (newsize <= oldsize) {
666 loff_t holebegin = round_up(newsize, PAGE_SIZE);
667 if (oldsize > holebegin)
668 unmap_mapping_range(inode->i_mapping,
669 holebegin, 0, 1);
670 if (info->alloced)
671 shmem_truncate_range(inode,
672 newsize, (loff_t)-1);
673 /* unmap again to remove racily COWed private pages */
674 if (oldsize > holebegin)
675 unmap_mapping_range(inode->i_mapping,
676 holebegin, 0, 1);
677 }
678 }
679
680 setattr_copy(inode, attr);
681 if (attr->ia_valid & ATTR_MODE)
682 error = posix_acl_chmod(inode, inode->i_mode);
683 return error;
684 }
685
686 static void shmem_evict_inode(struct inode *inode)
687 {
688 struct shmem_inode_info *info = SHMEM_I(inode);
689
690 if (inode->i_mapping->a_ops == &shmem_aops) {
691 shmem_unacct_size(info->flags, inode->i_size);
692 inode->i_size = 0;
693 shmem_truncate_range(inode, 0, (loff_t)-1);
694 if (!list_empty(&info->swaplist)) {
695 mutex_lock(&shmem_swaplist_mutex);
696 list_del_init(&info->swaplist);
697 mutex_unlock(&shmem_swaplist_mutex);
698 }
699 }
700
701 simple_xattrs_free(&info->xattrs);
702 WARN_ON(inode->i_blocks);
703 shmem_free_inode(inode->i_sb);
704 clear_inode(inode);
705 }
706
707 /*
708 * If swap found in inode, free it and move page from swapcache to filecache.
709 */
710 static int shmem_unuse_inode(struct shmem_inode_info *info,
711 swp_entry_t swap, struct page **pagep)
712 {
713 struct address_space *mapping = info->vfs_inode.i_mapping;
714 void *radswap;
715 pgoff_t index;
716 gfp_t gfp;
717 int error = 0;
718
719 radswap = swp_to_radix_entry(swap);
720 index = radix_tree_locate_item(&mapping->page_tree, radswap);
721 if (index == -1)
722 return -EAGAIN; /* tell shmem_unuse we found nothing */
723
724 /*
725 * Move _head_ to start search for next from here.
726 * But be careful: shmem_evict_inode checks list_empty without taking
727 * mutex, and there's an instant in list_move_tail when info->swaplist
728 * would appear empty, if it were the only one on shmem_swaplist.
729 */
730 if (shmem_swaplist.next != &info->swaplist)
731 list_move_tail(&shmem_swaplist, &info->swaplist);
732
733 gfp = mapping_gfp_mask(mapping);
734 if (shmem_should_replace_page(*pagep, gfp)) {
735 mutex_unlock(&shmem_swaplist_mutex);
736 error = shmem_replace_page(pagep, gfp, info, index);
737 mutex_lock(&shmem_swaplist_mutex);
738 /*
739 * We needed to drop mutex to make that restrictive page
740 * allocation, but the inode might have been freed while we
741 * dropped it: although a racing shmem_evict_inode() cannot
742 * complete without emptying the radix_tree, our page lock
743 * on this swapcache page is not enough to prevent that -
744 * free_swap_and_cache() of our swap entry will only
745 * trylock_page(), removing swap from radix_tree whatever.
746 *
747 * We must not proceed to shmem_add_to_page_cache() if the
748 * inode has been freed, but of course we cannot rely on
749 * inode or mapping or info to check that. However, we can
750 * safely check if our swap entry is still in use (and here
751 * it can't have got reused for another page): if it's still
752 * in use, then the inode cannot have been freed yet, and we
753 * can safely proceed (if it's no longer in use, that tells
754 * nothing about the inode, but we don't need to unuse swap).
755 */
756 if (!page_swapcount(*pagep))
757 error = -ENOENT;
758 }
759
760 /*
761 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
762 * but also to hold up shmem_evict_inode(): so inode cannot be freed
763 * beneath us (pagelock doesn't help until the page is in pagecache).
764 */
765 if (!error)
766 error = shmem_add_to_page_cache(*pagep, mapping, index,
767 radswap);
768 if (error != -ENOMEM) {
769 /*
770 * Truncation and eviction use free_swap_and_cache(), which
771 * only does trylock page: if we raced, best clean up here.
772 */
773 delete_from_swap_cache(*pagep);
774 set_page_dirty(*pagep);
775 if (!error) {
776 spin_lock(&info->lock);
777 info->swapped--;
778 spin_unlock(&info->lock);
779 swap_free(swap);
780 }
781 }
782 return error;
783 }
784
785 /*
786 * Search through swapped inodes to find and replace swap by page.
787 */
788 int shmem_unuse(swp_entry_t swap, struct page *page)
789 {
790 struct list_head *this, *next;
791 struct shmem_inode_info *info;
792 struct mem_cgroup *memcg;
793 int error = 0;
794
795 /*
796 * There's a faint possibility that swap page was replaced before
797 * caller locked it: caller will come back later with the right page.
798 */
799 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
800 goto out;
801
802 /*
803 * Charge page using GFP_KERNEL while we can wait, before taking
804 * the shmem_swaplist_mutex which might hold up shmem_writepage().
805 * Charged back to the user (not to caller) when swap account is used.
806 */
807 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
808 false);
809 if (error)
810 goto out;
811 /* No radix_tree_preload: swap entry keeps a place for page in tree */
812 error = -EAGAIN;
813
814 mutex_lock(&shmem_swaplist_mutex);
815 list_for_each_safe(this, next, &shmem_swaplist) {
816 info = list_entry(this, struct shmem_inode_info, swaplist);
817 if (info->swapped)
818 error = shmem_unuse_inode(info, swap, &page);
819 else
820 list_del_init(&info->swaplist);
821 cond_resched();
822 if (error != -EAGAIN)
823 break;
824 /* found nothing in this: move on to search the next */
825 }
826 mutex_unlock(&shmem_swaplist_mutex);
827
828 if (error) {
829 if (error != -ENOMEM)
830 error = 0;
831 mem_cgroup_cancel_charge(page, memcg, false);
832 } else
833 mem_cgroup_commit_charge(page, memcg, true, false);
834 out:
835 unlock_page(page);
836 put_page(page);
837 return error;
838 }
839
840 /*
841 * Move the page from the page cache to the swap cache.
842 */
843 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
844 {
845 struct shmem_inode_info *info;
846 struct address_space *mapping;
847 struct inode *inode;
848 swp_entry_t swap;
849 pgoff_t index;
850
851 BUG_ON(!PageLocked(page));
852 mapping = page->mapping;
853 index = page->index;
854 inode = mapping->host;
855 info = SHMEM_I(inode);
856 if (info->flags & VM_LOCKED)
857 goto redirty;
858 if (!total_swap_pages)
859 goto redirty;
860
861 /*
862 * Our capabilities prevent regular writeback or sync from ever calling
863 * shmem_writepage; but a stacking filesystem might use ->writepage of
864 * its underlying filesystem, in which case tmpfs should write out to
865 * swap only in response to memory pressure, and not for the writeback
866 * threads or sync.
867 */
868 if (!wbc->for_reclaim) {
869 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
870 goto redirty;
871 }
872
873 /*
874 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
875 * value into swapfile.c, the only way we can correctly account for a
876 * fallocated page arriving here is now to initialize it and write it.
877 *
878 * That's okay for a page already fallocated earlier, but if we have
879 * not yet completed the fallocation, then (a) we want to keep track
880 * of this page in case we have to undo it, and (b) it may not be a
881 * good idea to continue anyway, once we're pushing into swap. So
882 * reactivate the page, and let shmem_fallocate() quit when too many.
883 */
884 if (!PageUptodate(page)) {
885 if (inode->i_private) {
886 struct shmem_falloc *shmem_falloc;
887 spin_lock(&inode->i_lock);
888 shmem_falloc = inode->i_private;
889 if (shmem_falloc &&
890 !shmem_falloc->waitq &&
891 index >= shmem_falloc->start &&
892 index < shmem_falloc->next)
893 shmem_falloc->nr_unswapped++;
894 else
895 shmem_falloc = NULL;
896 spin_unlock(&inode->i_lock);
897 if (shmem_falloc)
898 goto redirty;
899 }
900 clear_highpage(page);
901 flush_dcache_page(page);
902 SetPageUptodate(page);
903 }
904
905 swap = get_swap_page();
906 if (!swap.val)
907 goto redirty;
908
909 if (mem_cgroup_try_charge_swap(page, swap))
910 goto free_swap;
911
912 /*
913 * Add inode to shmem_unuse()'s list of swapped-out inodes,
914 * if it's not already there. Do it now before the page is
915 * moved to swap cache, when its pagelock no longer protects
916 * the inode from eviction. But don't unlock the mutex until
917 * we've incremented swapped, because shmem_unuse_inode() will
918 * prune a !swapped inode from the swaplist under this mutex.
919 */
920 mutex_lock(&shmem_swaplist_mutex);
921 if (list_empty(&info->swaplist))
922 list_add_tail(&info->swaplist, &shmem_swaplist);
923
924 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
925 spin_lock(&info->lock);
926 shmem_recalc_inode(inode);
927 info->swapped++;
928 spin_unlock(&info->lock);
929
930 swap_shmem_alloc(swap);
931 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
932
933 mutex_unlock(&shmem_swaplist_mutex);
934 BUG_ON(page_mapped(page));
935 swap_writepage(page, wbc);
936 return 0;
937 }
938
939 mutex_unlock(&shmem_swaplist_mutex);
940 free_swap:
941 swapcache_free(swap);
942 redirty:
943 set_page_dirty(page);
944 if (wbc->for_reclaim)
945 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
946 unlock_page(page);
947 return 0;
948 }
949
950 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
951 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
952 {
953 char buffer[64];
954
955 if (!mpol || mpol->mode == MPOL_DEFAULT)
956 return; /* show nothing */
957
958 mpol_to_str(buffer, sizeof(buffer), mpol);
959
960 seq_printf(seq, ",mpol=%s", buffer);
961 }
962
963 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
964 {
965 struct mempolicy *mpol = NULL;
966 if (sbinfo->mpol) {
967 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
968 mpol = sbinfo->mpol;
969 mpol_get(mpol);
970 spin_unlock(&sbinfo->stat_lock);
971 }
972 return mpol;
973 }
974 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
975 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
976 {
977 }
978 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
979 {
980 return NULL;
981 }
982 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
983 #ifndef CONFIG_NUMA
984 #define vm_policy vm_private_data
985 #endif
986
987 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
988 struct shmem_inode_info *info, pgoff_t index)
989 {
990 struct vm_area_struct pvma;
991 struct page *page;
992
993 /* Create a pseudo vma that just contains the policy */
994 pvma.vm_start = 0;
995 /* Bias interleave by inode number to distribute better across nodes */
996 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
997 pvma.vm_ops = NULL;
998 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
999
1000 page = swapin_readahead(swap, gfp, &pvma, 0);
1001
1002 /* Drop reference taken by mpol_shared_policy_lookup() */
1003 mpol_cond_put(pvma.vm_policy);
1004
1005 return page;
1006 }
1007
1008 static struct page *shmem_alloc_page(gfp_t gfp,
1009 struct shmem_inode_info *info, pgoff_t index)
1010 {
1011 struct vm_area_struct pvma;
1012 struct page *page;
1013
1014 /* Create a pseudo vma that just contains the policy */
1015 pvma.vm_start = 0;
1016 /* Bias interleave by inode number to distribute better across nodes */
1017 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
1018 pvma.vm_ops = NULL;
1019 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1020
1021 page = alloc_pages_vma(gfp, 0, &pvma, 0, numa_node_id(), false);
1022 if (page) {
1023 __SetPageLocked(page);
1024 __SetPageSwapBacked(page);
1025 }
1026
1027 /* Drop reference taken by mpol_shared_policy_lookup() */
1028 mpol_cond_put(pvma.vm_policy);
1029
1030 return page;
1031 }
1032
1033 /*
1034 * When a page is moved from swapcache to shmem filecache (either by the
1035 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1036 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1037 * ignorance of the mapping it belongs to. If that mapping has special
1038 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1039 * we may need to copy to a suitable page before moving to filecache.
1040 *
1041 * In a future release, this may well be extended to respect cpuset and
1042 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1043 * but for now it is a simple matter of zone.
1044 */
1045 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1046 {
1047 return page_zonenum(page) > gfp_zone(gfp);
1048 }
1049
1050 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1051 struct shmem_inode_info *info, pgoff_t index)
1052 {
1053 struct page *oldpage, *newpage;
1054 struct address_space *swap_mapping;
1055 pgoff_t swap_index;
1056 int error;
1057
1058 oldpage = *pagep;
1059 swap_index = page_private(oldpage);
1060 swap_mapping = page_mapping(oldpage);
1061
1062 /*
1063 * We have arrived here because our zones are constrained, so don't
1064 * limit chance of success by further cpuset and node constraints.
1065 */
1066 gfp &= ~GFP_CONSTRAINT_MASK;
1067 newpage = shmem_alloc_page(gfp, info, index);
1068 if (!newpage)
1069 return -ENOMEM;
1070
1071 get_page(newpage);
1072 copy_highpage(newpage, oldpage);
1073 flush_dcache_page(newpage);
1074
1075 SetPageUptodate(newpage);
1076 set_page_private(newpage, swap_index);
1077 SetPageSwapCache(newpage);
1078
1079 /*
1080 * Our caller will very soon move newpage out of swapcache, but it's
1081 * a nice clean interface for us to replace oldpage by newpage there.
1082 */
1083 spin_lock_irq(&swap_mapping->tree_lock);
1084 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1085 newpage);
1086 if (!error) {
1087 __inc_zone_page_state(newpage, NR_FILE_PAGES);
1088 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1089 }
1090 spin_unlock_irq(&swap_mapping->tree_lock);
1091
1092 if (unlikely(error)) {
1093 /*
1094 * Is this possible? I think not, now that our callers check
1095 * both PageSwapCache and page_private after getting page lock;
1096 * but be defensive. Reverse old to newpage for clear and free.
1097 */
1098 oldpage = newpage;
1099 } else {
1100 mem_cgroup_migrate(oldpage, newpage);
1101 lru_cache_add_anon(newpage);
1102 *pagep = newpage;
1103 }
1104
1105 ClearPageSwapCache(oldpage);
1106 set_page_private(oldpage, 0);
1107
1108 unlock_page(oldpage);
1109 put_page(oldpage);
1110 put_page(oldpage);
1111 return error;
1112 }
1113
1114 /*
1115 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1116 *
1117 * If we allocate a new one we do not mark it dirty. That's up to the
1118 * vm. If we swap it in we mark it dirty since we also free the swap
1119 * entry since a page cannot live in both the swap and page cache.
1120 *
1121 * fault_mm and fault_type are only supplied by shmem_fault:
1122 * otherwise they are NULL.
1123 */
1124 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1125 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1126 struct mm_struct *fault_mm, int *fault_type)
1127 {
1128 struct address_space *mapping = inode->i_mapping;
1129 struct shmem_inode_info *info;
1130 struct shmem_sb_info *sbinfo;
1131 struct mm_struct *charge_mm;
1132 struct mem_cgroup *memcg;
1133 struct page *page;
1134 swp_entry_t swap;
1135 int error;
1136 int once = 0;
1137 int alloced = 0;
1138
1139 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1140 return -EFBIG;
1141 repeat:
1142 swap.val = 0;
1143 page = find_lock_entry(mapping, index);
1144 if (radix_tree_exceptional_entry(page)) {
1145 swap = radix_to_swp_entry(page);
1146 page = NULL;
1147 }
1148
1149 if (sgp <= SGP_CACHE &&
1150 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1151 error = -EINVAL;
1152 goto unlock;
1153 }
1154
1155 if (page && sgp == SGP_WRITE)
1156 mark_page_accessed(page);
1157
1158 /* fallocated page? */
1159 if (page && !PageUptodate(page)) {
1160 if (sgp != SGP_READ)
1161 goto clear;
1162 unlock_page(page);
1163 put_page(page);
1164 page = NULL;
1165 }
1166 if (page || (sgp == SGP_READ && !swap.val)) {
1167 *pagep = page;
1168 return 0;
1169 }
1170
1171 /*
1172 * Fast cache lookup did not find it:
1173 * bring it back from swap or allocate.
1174 */
1175 info = SHMEM_I(inode);
1176 sbinfo = SHMEM_SB(inode->i_sb);
1177 charge_mm = fault_mm ? : current->mm;
1178
1179 if (swap.val) {
1180 /* Look it up and read it in.. */
1181 page = lookup_swap_cache(swap);
1182 if (!page) {
1183 /* Or update major stats only when swapin succeeds?? */
1184 if (fault_type) {
1185 *fault_type |= VM_FAULT_MAJOR;
1186 count_vm_event(PGMAJFAULT);
1187 mem_cgroup_count_vm_event(fault_mm, PGMAJFAULT);
1188 }
1189 /* Here we actually start the io */
1190 page = shmem_swapin(swap, gfp, info, index);
1191 if (!page) {
1192 error = -ENOMEM;
1193 goto failed;
1194 }
1195 }
1196
1197 /* We have to do this with page locked to prevent races */
1198 lock_page(page);
1199 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1200 !shmem_confirm_swap(mapping, index, swap)) {
1201 error = -EEXIST; /* try again */
1202 goto unlock;
1203 }
1204 if (!PageUptodate(page)) {
1205 error = -EIO;
1206 goto failed;
1207 }
1208 wait_on_page_writeback(page);
1209
1210 if (shmem_should_replace_page(page, gfp)) {
1211 error = shmem_replace_page(&page, gfp, info, index);
1212 if (error)
1213 goto failed;
1214 }
1215
1216 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1217 false);
1218 if (!error) {
1219 error = shmem_add_to_page_cache(page, mapping, index,
1220 swp_to_radix_entry(swap));
1221 /*
1222 * We already confirmed swap under page lock, and make
1223 * no memory allocation here, so usually no possibility
1224 * of error; but free_swap_and_cache() only trylocks a
1225 * page, so it is just possible that the entry has been
1226 * truncated or holepunched since swap was confirmed.
1227 * shmem_undo_range() will have done some of the
1228 * unaccounting, now delete_from_swap_cache() will do
1229 * the rest.
1230 * Reset swap.val? No, leave it so "failed" goes back to
1231 * "repeat": reading a hole and writing should succeed.
1232 */
1233 if (error) {
1234 mem_cgroup_cancel_charge(page, memcg, false);
1235 delete_from_swap_cache(page);
1236 }
1237 }
1238 if (error)
1239 goto failed;
1240
1241 mem_cgroup_commit_charge(page, memcg, true, false);
1242
1243 spin_lock(&info->lock);
1244 info->swapped--;
1245 shmem_recalc_inode(inode);
1246 spin_unlock(&info->lock);
1247
1248 if (sgp == SGP_WRITE)
1249 mark_page_accessed(page);
1250
1251 delete_from_swap_cache(page);
1252 set_page_dirty(page);
1253 swap_free(swap);
1254
1255 } else {
1256 if (shmem_acct_block(info->flags)) {
1257 error = -ENOSPC;
1258 goto failed;
1259 }
1260 if (sbinfo->max_blocks) {
1261 if (percpu_counter_compare(&sbinfo->used_blocks,
1262 sbinfo->max_blocks) >= 0) {
1263 error = -ENOSPC;
1264 goto unacct;
1265 }
1266 percpu_counter_inc(&sbinfo->used_blocks);
1267 }
1268
1269 page = shmem_alloc_page(gfp, info, index);
1270 if (!page) {
1271 error = -ENOMEM;
1272 goto decused;
1273 }
1274 if (sgp == SGP_WRITE)
1275 __SetPageReferenced(page);
1276
1277 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1278 false);
1279 if (error)
1280 goto decused;
1281 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1282 if (!error) {
1283 error = shmem_add_to_page_cache(page, mapping, index,
1284 NULL);
1285 radix_tree_preload_end();
1286 }
1287 if (error) {
1288 mem_cgroup_cancel_charge(page, memcg, false);
1289 goto decused;
1290 }
1291 mem_cgroup_commit_charge(page, memcg, false, false);
1292 lru_cache_add_anon(page);
1293
1294 spin_lock(&info->lock);
1295 info->alloced++;
1296 inode->i_blocks += BLOCKS_PER_PAGE;
1297 shmem_recalc_inode(inode);
1298 spin_unlock(&info->lock);
1299 alloced = true;
1300
1301 /*
1302 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1303 */
1304 if (sgp == SGP_FALLOC)
1305 sgp = SGP_WRITE;
1306 clear:
1307 /*
1308 * Let SGP_WRITE caller clear ends if write does not fill page;
1309 * but SGP_FALLOC on a page fallocated earlier must initialize
1310 * it now, lest undo on failure cancel our earlier guarantee.
1311 */
1312 if (sgp != SGP_WRITE) {
1313 clear_highpage(page);
1314 flush_dcache_page(page);
1315 SetPageUptodate(page);
1316 }
1317 }
1318
1319 /* Perhaps the file has been truncated since we checked */
1320 if (sgp <= SGP_CACHE &&
1321 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1322 if (alloced) {
1323 ClearPageDirty(page);
1324 delete_from_page_cache(page);
1325 spin_lock(&info->lock);
1326 shmem_recalc_inode(inode);
1327 spin_unlock(&info->lock);
1328 }
1329 error = -EINVAL;
1330 goto unlock;
1331 }
1332 *pagep = page;
1333 return 0;
1334
1335 /*
1336 * Error recovery.
1337 */
1338 decused:
1339 if (sbinfo->max_blocks)
1340 percpu_counter_add(&sbinfo->used_blocks, -1);
1341 unacct:
1342 shmem_unacct_blocks(info->flags, 1);
1343 failed:
1344 if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1345 error = -EEXIST;
1346 unlock:
1347 if (page) {
1348 unlock_page(page);
1349 put_page(page);
1350 }
1351 if (error == -ENOSPC && !once++) {
1352 info = SHMEM_I(inode);
1353 spin_lock(&info->lock);
1354 shmem_recalc_inode(inode);
1355 spin_unlock(&info->lock);
1356 goto repeat;
1357 }
1358 if (error == -EEXIST) /* from above or from radix_tree_insert */
1359 goto repeat;
1360 return error;
1361 }
1362
1363 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1364 {
1365 struct inode *inode = file_inode(vma->vm_file);
1366 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1367 int error;
1368 int ret = VM_FAULT_LOCKED;
1369
1370 /*
1371 * Trinity finds that probing a hole which tmpfs is punching can
1372 * prevent the hole-punch from ever completing: which in turn
1373 * locks writers out with its hold on i_mutex. So refrain from
1374 * faulting pages into the hole while it's being punched. Although
1375 * shmem_undo_range() does remove the additions, it may be unable to
1376 * keep up, as each new page needs its own unmap_mapping_range() call,
1377 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1378 *
1379 * It does not matter if we sometimes reach this check just before the
1380 * hole-punch begins, so that one fault then races with the punch:
1381 * we just need to make racing faults a rare case.
1382 *
1383 * The implementation below would be much simpler if we just used a
1384 * standard mutex or completion: but we cannot take i_mutex in fault,
1385 * and bloating every shmem inode for this unlikely case would be sad.
1386 */
1387 if (unlikely(inode->i_private)) {
1388 struct shmem_falloc *shmem_falloc;
1389
1390 spin_lock(&inode->i_lock);
1391 shmem_falloc = inode->i_private;
1392 if (shmem_falloc &&
1393 shmem_falloc->waitq &&
1394 vmf->pgoff >= shmem_falloc->start &&
1395 vmf->pgoff < shmem_falloc->next) {
1396 wait_queue_head_t *shmem_falloc_waitq;
1397 DEFINE_WAIT(shmem_fault_wait);
1398
1399 ret = VM_FAULT_NOPAGE;
1400 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1401 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1402 /* It's polite to up mmap_sem if we can */
1403 up_read(&vma->vm_mm->mmap_sem);
1404 ret = VM_FAULT_RETRY;
1405 }
1406
1407 shmem_falloc_waitq = shmem_falloc->waitq;
1408 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1409 TASK_UNINTERRUPTIBLE);
1410 spin_unlock(&inode->i_lock);
1411 schedule();
1412
1413 /*
1414 * shmem_falloc_waitq points into the shmem_fallocate()
1415 * stack of the hole-punching task: shmem_falloc_waitq
1416 * is usually invalid by the time we reach here, but
1417 * finish_wait() does not dereference it in that case;
1418 * though i_lock needed lest racing with wake_up_all().
1419 */
1420 spin_lock(&inode->i_lock);
1421 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1422 spin_unlock(&inode->i_lock);
1423 return ret;
1424 }
1425 spin_unlock(&inode->i_lock);
1426 }
1427
1428 error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, SGP_CACHE,
1429 gfp, vma->vm_mm, &ret);
1430 if (error)
1431 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1432 return ret;
1433 }
1434
1435 #ifdef CONFIG_NUMA
1436 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1437 {
1438 struct inode *inode = file_inode(vma->vm_file);
1439 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1440 }
1441
1442 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1443 unsigned long addr)
1444 {
1445 struct inode *inode = file_inode(vma->vm_file);
1446 pgoff_t index;
1447
1448 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1449 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1450 }
1451 #endif
1452
1453 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1454 {
1455 struct inode *inode = file_inode(file);
1456 struct shmem_inode_info *info = SHMEM_I(inode);
1457 int retval = -ENOMEM;
1458
1459 spin_lock(&info->lock);
1460 if (lock && !(info->flags & VM_LOCKED)) {
1461 if (!user_shm_lock(inode->i_size, user))
1462 goto out_nomem;
1463 info->flags |= VM_LOCKED;
1464 mapping_set_unevictable(file->f_mapping);
1465 }
1466 if (!lock && (info->flags & VM_LOCKED) && user) {
1467 user_shm_unlock(inode->i_size, user);
1468 info->flags &= ~VM_LOCKED;
1469 mapping_clear_unevictable(file->f_mapping);
1470 }
1471 retval = 0;
1472
1473 out_nomem:
1474 spin_unlock(&info->lock);
1475 return retval;
1476 }
1477
1478 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1479 {
1480 file_accessed(file);
1481 vma->vm_ops = &shmem_vm_ops;
1482 return 0;
1483 }
1484
1485 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1486 umode_t mode, dev_t dev, unsigned long flags)
1487 {
1488 struct inode *inode;
1489 struct shmem_inode_info *info;
1490 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1491
1492 if (shmem_reserve_inode(sb))
1493 return NULL;
1494
1495 inode = new_inode(sb);
1496 if (inode) {
1497 inode->i_ino = get_next_ino();
1498 inode_init_owner(inode, dir, mode);
1499 inode->i_blocks = 0;
1500 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1501 inode->i_generation = get_seconds();
1502 info = SHMEM_I(inode);
1503 memset(info, 0, (char *)inode - (char *)info);
1504 spin_lock_init(&info->lock);
1505 info->seals = F_SEAL_SEAL;
1506 info->flags = flags & VM_NORESERVE;
1507 INIT_LIST_HEAD(&info->swaplist);
1508 simple_xattrs_init(&info->xattrs);
1509 cache_no_acl(inode);
1510
1511 switch (mode & S_IFMT) {
1512 default:
1513 inode->i_op = &shmem_special_inode_operations;
1514 init_special_inode(inode, mode, dev);
1515 break;
1516 case S_IFREG:
1517 inode->i_mapping->a_ops = &shmem_aops;
1518 inode->i_op = &shmem_inode_operations;
1519 inode->i_fop = &shmem_file_operations;
1520 mpol_shared_policy_init(&info->policy,
1521 shmem_get_sbmpol(sbinfo));
1522 break;
1523 case S_IFDIR:
1524 inc_nlink(inode);
1525 /* Some things misbehave if size == 0 on a directory */
1526 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1527 inode->i_op = &shmem_dir_inode_operations;
1528 inode->i_fop = &simple_dir_operations;
1529 break;
1530 case S_IFLNK:
1531 /*
1532 * Must not load anything in the rbtree,
1533 * mpol_free_shared_policy will not be called.
1534 */
1535 mpol_shared_policy_init(&info->policy, NULL);
1536 break;
1537 }
1538 } else
1539 shmem_free_inode(sb);
1540 return inode;
1541 }
1542
1543 bool shmem_mapping(struct address_space *mapping)
1544 {
1545 if (!mapping->host)
1546 return false;
1547
1548 return mapping->host->i_sb->s_op == &shmem_ops;
1549 }
1550
1551 #ifdef CONFIG_TMPFS
1552 static const struct inode_operations shmem_symlink_inode_operations;
1553 static const struct inode_operations shmem_short_symlink_operations;
1554
1555 #ifdef CONFIG_TMPFS_XATTR
1556 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1557 #else
1558 #define shmem_initxattrs NULL
1559 #endif
1560
1561 static int
1562 shmem_write_begin(struct file *file, struct address_space *mapping,
1563 loff_t pos, unsigned len, unsigned flags,
1564 struct page **pagep, void **fsdata)
1565 {
1566 struct inode *inode = mapping->host;
1567 struct shmem_inode_info *info = SHMEM_I(inode);
1568 pgoff_t index = pos >> PAGE_SHIFT;
1569
1570 /* i_mutex is held by caller */
1571 if (unlikely(info->seals)) {
1572 if (info->seals & F_SEAL_WRITE)
1573 return -EPERM;
1574 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
1575 return -EPERM;
1576 }
1577
1578 return shmem_getpage(inode, index, pagep, SGP_WRITE);
1579 }
1580
1581 static int
1582 shmem_write_end(struct file *file, struct address_space *mapping,
1583 loff_t pos, unsigned len, unsigned copied,
1584 struct page *page, void *fsdata)
1585 {
1586 struct inode *inode = mapping->host;
1587
1588 if (pos + copied > inode->i_size)
1589 i_size_write(inode, pos + copied);
1590
1591 if (!PageUptodate(page)) {
1592 if (copied < PAGE_SIZE) {
1593 unsigned from = pos & (PAGE_SIZE - 1);
1594 zero_user_segments(page, 0, from,
1595 from + copied, PAGE_SIZE);
1596 }
1597 SetPageUptodate(page);
1598 }
1599 set_page_dirty(page);
1600 unlock_page(page);
1601 put_page(page);
1602
1603 return copied;
1604 }
1605
1606 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1607 {
1608 struct file *file = iocb->ki_filp;
1609 struct inode *inode = file_inode(file);
1610 struct address_space *mapping = inode->i_mapping;
1611 pgoff_t index;
1612 unsigned long offset;
1613 enum sgp_type sgp = SGP_READ;
1614 int error = 0;
1615 ssize_t retval = 0;
1616 loff_t *ppos = &iocb->ki_pos;
1617
1618 /*
1619 * Might this read be for a stacking filesystem? Then when reading
1620 * holes of a sparse file, we actually need to allocate those pages,
1621 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1622 */
1623 if (!iter_is_iovec(to))
1624 sgp = SGP_CACHE;
1625
1626 index = *ppos >> PAGE_SHIFT;
1627 offset = *ppos & ~PAGE_MASK;
1628
1629 for (;;) {
1630 struct page *page = NULL;
1631 pgoff_t end_index;
1632 unsigned long nr, ret;
1633 loff_t i_size = i_size_read(inode);
1634
1635 end_index = i_size >> PAGE_SHIFT;
1636 if (index > end_index)
1637 break;
1638 if (index == end_index) {
1639 nr = i_size & ~PAGE_MASK;
1640 if (nr <= offset)
1641 break;
1642 }
1643
1644 error = shmem_getpage(inode, index, &page, sgp);
1645 if (error) {
1646 if (error == -EINVAL)
1647 error = 0;
1648 break;
1649 }
1650 if (page) {
1651 if (sgp == SGP_CACHE)
1652 set_page_dirty(page);
1653 unlock_page(page);
1654 }
1655
1656 /*
1657 * We must evaluate after, since reads (unlike writes)
1658 * are called without i_mutex protection against truncate
1659 */
1660 nr = PAGE_SIZE;
1661 i_size = i_size_read(inode);
1662 end_index = i_size >> PAGE_SHIFT;
1663 if (index == end_index) {
1664 nr = i_size & ~PAGE_MASK;
1665 if (nr <= offset) {
1666 if (page)
1667 put_page(page);
1668 break;
1669 }
1670 }
1671 nr -= offset;
1672
1673 if (page) {
1674 /*
1675 * If users can be writing to this page using arbitrary
1676 * virtual addresses, take care about potential aliasing
1677 * before reading the page on the kernel side.
1678 */
1679 if (mapping_writably_mapped(mapping))
1680 flush_dcache_page(page);
1681 /*
1682 * Mark the page accessed if we read the beginning.
1683 */
1684 if (!offset)
1685 mark_page_accessed(page);
1686 } else {
1687 page = ZERO_PAGE(0);
1688 get_page(page);
1689 }
1690
1691 /*
1692 * Ok, we have the page, and it's up-to-date, so
1693 * now we can copy it to user space...
1694 */
1695 ret = copy_page_to_iter(page, offset, nr, to);
1696 retval += ret;
1697 offset += ret;
1698 index += offset >> PAGE_SHIFT;
1699 offset &= ~PAGE_MASK;
1700
1701 put_page(page);
1702 if (!iov_iter_count(to))
1703 break;
1704 if (ret < nr) {
1705 error = -EFAULT;
1706 break;
1707 }
1708 cond_resched();
1709 }
1710
1711 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
1712 file_accessed(file);
1713 return retval ? retval : error;
1714 }
1715
1716 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1717 struct pipe_inode_info *pipe, size_t len,
1718 unsigned int flags)
1719 {
1720 struct address_space *mapping = in->f_mapping;
1721 struct inode *inode = mapping->host;
1722 unsigned int loff, nr_pages, req_pages;
1723 struct page *pages[PIPE_DEF_BUFFERS];
1724 struct partial_page partial[PIPE_DEF_BUFFERS];
1725 struct page *page;
1726 pgoff_t index, end_index;
1727 loff_t isize, left;
1728 int error, page_nr;
1729 struct splice_pipe_desc spd = {
1730 .pages = pages,
1731 .partial = partial,
1732 .nr_pages_max = PIPE_DEF_BUFFERS,
1733 .flags = flags,
1734 .ops = &page_cache_pipe_buf_ops,
1735 .spd_release = spd_release_page,
1736 };
1737
1738 isize = i_size_read(inode);
1739 if (unlikely(*ppos >= isize))
1740 return 0;
1741
1742 left = isize - *ppos;
1743 if (unlikely(left < len))
1744 len = left;
1745
1746 if (splice_grow_spd(pipe, &spd))
1747 return -ENOMEM;
1748
1749 index = *ppos >> PAGE_SHIFT;
1750 loff = *ppos & ~PAGE_MASK;
1751 req_pages = (len + loff + PAGE_SIZE - 1) >> PAGE_SHIFT;
1752 nr_pages = min(req_pages, spd.nr_pages_max);
1753
1754 spd.nr_pages = find_get_pages_contig(mapping, index,
1755 nr_pages, spd.pages);
1756 index += spd.nr_pages;
1757 error = 0;
1758
1759 while (spd.nr_pages < nr_pages) {
1760 error = shmem_getpage(inode, index, &page, SGP_CACHE);
1761 if (error)
1762 break;
1763 unlock_page(page);
1764 spd.pages[spd.nr_pages++] = page;
1765 index++;
1766 }
1767
1768 index = *ppos >> PAGE_SHIFT;
1769 nr_pages = spd.nr_pages;
1770 spd.nr_pages = 0;
1771
1772 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1773 unsigned int this_len;
1774
1775 if (!len)
1776 break;
1777
1778 this_len = min_t(unsigned long, len, PAGE_SIZE - loff);
1779 page = spd.pages[page_nr];
1780
1781 if (!PageUptodate(page) || page->mapping != mapping) {
1782 error = shmem_getpage(inode, index, &page, SGP_CACHE);
1783 if (error)
1784 break;
1785 unlock_page(page);
1786 put_page(spd.pages[page_nr]);
1787 spd.pages[page_nr] = page;
1788 }
1789
1790 isize = i_size_read(inode);
1791 end_index = (isize - 1) >> PAGE_SHIFT;
1792 if (unlikely(!isize || index > end_index))
1793 break;
1794
1795 if (end_index == index) {
1796 unsigned int plen;
1797
1798 plen = ((isize - 1) & ~PAGE_MASK) + 1;
1799 if (plen <= loff)
1800 break;
1801
1802 this_len = min(this_len, plen - loff);
1803 len = this_len;
1804 }
1805
1806 spd.partial[page_nr].offset = loff;
1807 spd.partial[page_nr].len = this_len;
1808 len -= this_len;
1809 loff = 0;
1810 spd.nr_pages++;
1811 index++;
1812 }
1813
1814 while (page_nr < nr_pages)
1815 put_page(spd.pages[page_nr++]);
1816
1817 if (spd.nr_pages)
1818 error = splice_to_pipe(pipe, &spd);
1819
1820 splice_shrink_spd(&spd);
1821
1822 if (error > 0) {
1823 *ppos += error;
1824 file_accessed(in);
1825 }
1826 return error;
1827 }
1828
1829 /*
1830 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1831 */
1832 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1833 pgoff_t index, pgoff_t end, int whence)
1834 {
1835 struct page *page;
1836 struct pagevec pvec;
1837 pgoff_t indices[PAGEVEC_SIZE];
1838 bool done = false;
1839 int i;
1840
1841 pagevec_init(&pvec, 0);
1842 pvec.nr = 1; /* start small: we may be there already */
1843 while (!done) {
1844 pvec.nr = find_get_entries(mapping, index,
1845 pvec.nr, pvec.pages, indices);
1846 if (!pvec.nr) {
1847 if (whence == SEEK_DATA)
1848 index = end;
1849 break;
1850 }
1851 for (i = 0; i < pvec.nr; i++, index++) {
1852 if (index < indices[i]) {
1853 if (whence == SEEK_HOLE) {
1854 done = true;
1855 break;
1856 }
1857 index = indices[i];
1858 }
1859 page = pvec.pages[i];
1860 if (page && !radix_tree_exceptional_entry(page)) {
1861 if (!PageUptodate(page))
1862 page = NULL;
1863 }
1864 if (index >= end ||
1865 (page && whence == SEEK_DATA) ||
1866 (!page && whence == SEEK_HOLE)) {
1867 done = true;
1868 break;
1869 }
1870 }
1871 pagevec_remove_exceptionals(&pvec);
1872 pagevec_release(&pvec);
1873 pvec.nr = PAGEVEC_SIZE;
1874 cond_resched();
1875 }
1876 return index;
1877 }
1878
1879 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1880 {
1881 struct address_space *mapping = file->f_mapping;
1882 struct inode *inode = mapping->host;
1883 pgoff_t start, end;
1884 loff_t new_offset;
1885
1886 if (whence != SEEK_DATA && whence != SEEK_HOLE)
1887 return generic_file_llseek_size(file, offset, whence,
1888 MAX_LFS_FILESIZE, i_size_read(inode));
1889 inode_lock(inode);
1890 /* We're holding i_mutex so we can access i_size directly */
1891
1892 if (offset < 0)
1893 offset = -EINVAL;
1894 else if (offset >= inode->i_size)
1895 offset = -ENXIO;
1896 else {
1897 start = offset >> PAGE_SHIFT;
1898 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1899 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1900 new_offset <<= PAGE_SHIFT;
1901 if (new_offset > offset) {
1902 if (new_offset < inode->i_size)
1903 offset = new_offset;
1904 else if (whence == SEEK_DATA)
1905 offset = -ENXIO;
1906 else
1907 offset = inode->i_size;
1908 }
1909 }
1910
1911 if (offset >= 0)
1912 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1913 inode_unlock(inode);
1914 return offset;
1915 }
1916
1917 /*
1918 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
1919 * so reuse a tag which we firmly believe is never set or cleared on shmem.
1920 */
1921 #define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
1922 #define LAST_SCAN 4 /* about 150ms max */
1923
1924 static void shmem_tag_pins(struct address_space *mapping)
1925 {
1926 struct radix_tree_iter iter;
1927 void **slot;
1928 pgoff_t start;
1929 struct page *page;
1930
1931 lru_add_drain();
1932 start = 0;
1933 rcu_read_lock();
1934
1935 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1936 page = radix_tree_deref_slot(slot);
1937 if (!page || radix_tree_exception(page)) {
1938 if (radix_tree_deref_retry(page)) {
1939 slot = radix_tree_iter_retry(&iter);
1940 continue;
1941 }
1942 } else if (page_count(page) - page_mapcount(page) > 1) {
1943 spin_lock_irq(&mapping->tree_lock);
1944 radix_tree_tag_set(&mapping->page_tree, iter.index,
1945 SHMEM_TAG_PINNED);
1946 spin_unlock_irq(&mapping->tree_lock);
1947 }
1948
1949 if (need_resched()) {
1950 cond_resched_rcu();
1951 slot = radix_tree_iter_next(&iter);
1952 }
1953 }
1954 rcu_read_unlock();
1955 }
1956
1957 /*
1958 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
1959 * via get_user_pages(), drivers might have some pending I/O without any active
1960 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
1961 * and see whether it has an elevated ref-count. If so, we tag them and wait for
1962 * them to be dropped.
1963 * The caller must guarantee that no new user will acquire writable references
1964 * to those pages to avoid races.
1965 */
1966 static int shmem_wait_for_pins(struct address_space *mapping)
1967 {
1968 struct radix_tree_iter iter;
1969 void **slot;
1970 pgoff_t start;
1971 struct page *page;
1972 int error, scan;
1973
1974 shmem_tag_pins(mapping);
1975
1976 error = 0;
1977 for (scan = 0; scan <= LAST_SCAN; scan++) {
1978 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
1979 break;
1980
1981 if (!scan)
1982 lru_add_drain_all();
1983 else if (schedule_timeout_killable((HZ << scan) / 200))
1984 scan = LAST_SCAN;
1985
1986 start = 0;
1987 rcu_read_lock();
1988 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
1989 start, SHMEM_TAG_PINNED) {
1990
1991 page = radix_tree_deref_slot(slot);
1992 if (radix_tree_exception(page)) {
1993 if (radix_tree_deref_retry(page)) {
1994 slot = radix_tree_iter_retry(&iter);
1995 continue;
1996 }
1997
1998 page = NULL;
1999 }
2000
2001 if (page &&
2002 page_count(page) - page_mapcount(page) != 1) {
2003 if (scan < LAST_SCAN)
2004 goto continue_resched;
2005
2006 /*
2007 * On the last scan, we clean up all those tags
2008 * we inserted; but make a note that we still
2009 * found pages pinned.
2010 */
2011 error = -EBUSY;
2012 }
2013
2014 spin_lock_irq(&mapping->tree_lock);
2015 radix_tree_tag_clear(&mapping->page_tree,
2016 iter.index, SHMEM_TAG_PINNED);
2017 spin_unlock_irq(&mapping->tree_lock);
2018 continue_resched:
2019 if (need_resched()) {
2020 cond_resched_rcu();
2021 slot = radix_tree_iter_next(&iter);
2022 }
2023 }
2024 rcu_read_unlock();
2025 }
2026
2027 return error;
2028 }
2029
2030 #define F_ALL_SEALS (F_SEAL_SEAL | \
2031 F_SEAL_SHRINK | \
2032 F_SEAL_GROW | \
2033 F_SEAL_WRITE)
2034
2035 int shmem_add_seals(struct file *file, unsigned int seals)
2036 {
2037 struct inode *inode = file_inode(file);
2038 struct shmem_inode_info *info = SHMEM_I(inode);
2039 int error;
2040
2041 /*
2042 * SEALING
2043 * Sealing allows multiple parties to share a shmem-file but restrict
2044 * access to a specific subset of file operations. Seals can only be
2045 * added, but never removed. This way, mutually untrusted parties can
2046 * share common memory regions with a well-defined policy. A malicious
2047 * peer can thus never perform unwanted operations on a shared object.
2048 *
2049 * Seals are only supported on special shmem-files and always affect
2050 * the whole underlying inode. Once a seal is set, it may prevent some
2051 * kinds of access to the file. Currently, the following seals are
2052 * defined:
2053 * SEAL_SEAL: Prevent further seals from being set on this file
2054 * SEAL_SHRINK: Prevent the file from shrinking
2055 * SEAL_GROW: Prevent the file from growing
2056 * SEAL_WRITE: Prevent write access to the file
2057 *
2058 * As we don't require any trust relationship between two parties, we
2059 * must prevent seals from being removed. Therefore, sealing a file
2060 * only adds a given set of seals to the file, it never touches
2061 * existing seals. Furthermore, the "setting seals"-operation can be
2062 * sealed itself, which basically prevents any further seal from being
2063 * added.
2064 *
2065 * Semantics of sealing are only defined on volatile files. Only
2066 * anonymous shmem files support sealing. More importantly, seals are
2067 * never written to disk. Therefore, there's no plan to support it on
2068 * other file types.
2069 */
2070
2071 if (file->f_op != &shmem_file_operations)
2072 return -EINVAL;
2073 if (!(file->f_mode & FMODE_WRITE))
2074 return -EPERM;
2075 if (seals & ~(unsigned int)F_ALL_SEALS)
2076 return -EINVAL;
2077
2078 inode_lock(inode);
2079
2080 if (info->seals & F_SEAL_SEAL) {
2081 error = -EPERM;
2082 goto unlock;
2083 }
2084
2085 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2086 error = mapping_deny_writable(file->f_mapping);
2087 if (error)
2088 goto unlock;
2089
2090 error = shmem_wait_for_pins(file->f_mapping);
2091 if (error) {
2092 mapping_allow_writable(file->f_mapping);
2093 goto unlock;
2094 }
2095 }
2096
2097 info->seals |= seals;
2098 error = 0;
2099
2100 unlock:
2101 inode_unlock(inode);
2102 return error;
2103 }
2104 EXPORT_SYMBOL_GPL(shmem_add_seals);
2105
2106 int shmem_get_seals(struct file *file)
2107 {
2108 if (file->f_op != &shmem_file_operations)
2109 return -EINVAL;
2110
2111 return SHMEM_I(file_inode(file))->seals;
2112 }
2113 EXPORT_SYMBOL_GPL(shmem_get_seals);
2114
2115 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2116 {
2117 long error;
2118
2119 switch (cmd) {
2120 case F_ADD_SEALS:
2121 /* disallow upper 32bit */
2122 if (arg > UINT_MAX)
2123 return -EINVAL;
2124
2125 error = shmem_add_seals(file, arg);
2126 break;
2127 case F_GET_SEALS:
2128 error = shmem_get_seals(file);
2129 break;
2130 default:
2131 error = -EINVAL;
2132 break;
2133 }
2134
2135 return error;
2136 }
2137
2138 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2139 loff_t len)
2140 {
2141 struct inode *inode = file_inode(file);
2142 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2143 struct shmem_inode_info *info = SHMEM_I(inode);
2144 struct shmem_falloc shmem_falloc;
2145 pgoff_t start, index, end;
2146 int error;
2147
2148 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2149 return -EOPNOTSUPP;
2150
2151 inode_lock(inode);
2152
2153 if (mode & FALLOC_FL_PUNCH_HOLE) {
2154 struct address_space *mapping = file->f_mapping;
2155 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2156 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2157 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2158
2159 /* protected by i_mutex */
2160 if (info->seals & F_SEAL_WRITE) {
2161 error = -EPERM;
2162 goto out;
2163 }
2164
2165 shmem_falloc.waitq = &shmem_falloc_waitq;
2166 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2167 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2168 spin_lock(&inode->i_lock);
2169 inode->i_private = &shmem_falloc;
2170 spin_unlock(&inode->i_lock);
2171
2172 if ((u64)unmap_end > (u64)unmap_start)
2173 unmap_mapping_range(mapping, unmap_start,
2174 1 + unmap_end - unmap_start, 0);
2175 shmem_truncate_range(inode, offset, offset + len - 1);
2176 /* No need to unmap again: hole-punching leaves COWed pages */
2177
2178 spin_lock(&inode->i_lock);
2179 inode->i_private = NULL;
2180 wake_up_all(&shmem_falloc_waitq);
2181 spin_unlock(&inode->i_lock);
2182 error = 0;
2183 goto out;
2184 }
2185
2186 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2187 error = inode_newsize_ok(inode, offset + len);
2188 if (error)
2189 goto out;
2190
2191 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2192 error = -EPERM;
2193 goto out;
2194 }
2195
2196 start = offset >> PAGE_SHIFT;
2197 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2198 /* Try to avoid a swapstorm if len is impossible to satisfy */
2199 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2200 error = -ENOSPC;
2201 goto out;
2202 }
2203
2204 shmem_falloc.waitq = NULL;
2205 shmem_falloc.start = start;
2206 shmem_falloc.next = start;
2207 shmem_falloc.nr_falloced = 0;
2208 shmem_falloc.nr_unswapped = 0;
2209 spin_lock(&inode->i_lock);
2210 inode->i_private = &shmem_falloc;
2211 spin_unlock(&inode->i_lock);
2212
2213 for (index = start; index < end; index++) {
2214 struct page *page;
2215
2216 /*
2217 * Good, the fallocate(2) manpage permits EINTR: we may have
2218 * been interrupted because we are using up too much memory.
2219 */
2220 if (signal_pending(current))
2221 error = -EINTR;
2222 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2223 error = -ENOMEM;
2224 else
2225 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2226 if (error) {
2227 /* Remove the !PageUptodate pages we added */
2228 shmem_undo_range(inode,
2229 (loff_t)start << PAGE_SHIFT,
2230 (loff_t)index << PAGE_SHIFT, true);
2231 goto undone;
2232 }
2233
2234 /*
2235 * Inform shmem_writepage() how far we have reached.
2236 * No need for lock or barrier: we have the page lock.
2237 */
2238 shmem_falloc.next++;
2239 if (!PageUptodate(page))
2240 shmem_falloc.nr_falloced++;
2241
2242 /*
2243 * If !PageUptodate, leave it that way so that freeable pages
2244 * can be recognized if we need to rollback on error later.
2245 * But set_page_dirty so that memory pressure will swap rather
2246 * than free the pages we are allocating (and SGP_CACHE pages
2247 * might still be clean: we now need to mark those dirty too).
2248 */
2249 set_page_dirty(page);
2250 unlock_page(page);
2251 put_page(page);
2252 cond_resched();
2253 }
2254
2255 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2256 i_size_write(inode, offset + len);
2257 inode->i_ctime = CURRENT_TIME;
2258 undone:
2259 spin_lock(&inode->i_lock);
2260 inode->i_private = NULL;
2261 spin_unlock(&inode->i_lock);
2262 out:
2263 inode_unlock(inode);
2264 return error;
2265 }
2266
2267 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2268 {
2269 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2270
2271 buf->f_type = TMPFS_MAGIC;
2272 buf->f_bsize = PAGE_SIZE;
2273 buf->f_namelen = NAME_MAX;
2274 if (sbinfo->max_blocks) {
2275 buf->f_blocks = sbinfo->max_blocks;
2276 buf->f_bavail =
2277 buf->f_bfree = sbinfo->max_blocks -
2278 percpu_counter_sum(&sbinfo->used_blocks);
2279 }
2280 if (sbinfo->max_inodes) {
2281 buf->f_files = sbinfo->max_inodes;
2282 buf->f_ffree = sbinfo->free_inodes;
2283 }
2284 /* else leave those fields 0 like simple_statfs */
2285 return 0;
2286 }
2287
2288 /*
2289 * File creation. Allocate an inode, and we're done..
2290 */
2291 static int
2292 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2293 {
2294 struct inode *inode;
2295 int error = -ENOSPC;
2296
2297 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2298 if (inode) {
2299 error = simple_acl_create(dir, inode);
2300 if (error)
2301 goto out_iput;
2302 error = security_inode_init_security(inode, dir,
2303 &dentry->d_name,
2304 shmem_initxattrs, NULL);
2305 if (error && error != -EOPNOTSUPP)
2306 goto out_iput;
2307
2308 error = 0;
2309 dir->i_size += BOGO_DIRENT_SIZE;
2310 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2311 d_instantiate(dentry, inode);
2312 dget(dentry); /* Extra count - pin the dentry in core */
2313 }
2314 return error;
2315 out_iput:
2316 iput(inode);
2317 return error;
2318 }
2319
2320 static int
2321 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2322 {
2323 struct inode *inode;
2324 int error = -ENOSPC;
2325
2326 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2327 if (inode) {
2328 error = security_inode_init_security(inode, dir,
2329 NULL,
2330 shmem_initxattrs, NULL);
2331 if (error && error != -EOPNOTSUPP)
2332 goto out_iput;
2333 error = simple_acl_create(dir, inode);
2334 if (error)
2335 goto out_iput;
2336 d_tmpfile(dentry, inode);
2337 }
2338 return error;
2339 out_iput:
2340 iput(inode);
2341 return error;
2342 }
2343
2344 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2345 {
2346 int error;
2347
2348 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2349 return error;
2350 inc_nlink(dir);
2351 return 0;
2352 }
2353
2354 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2355 bool excl)
2356 {
2357 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2358 }
2359
2360 /*
2361 * Link a file..
2362 */
2363 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2364 {
2365 struct inode *inode = d_inode(old_dentry);
2366 int ret;
2367
2368 /*
2369 * No ordinary (disk based) filesystem counts links as inodes;
2370 * but each new link needs a new dentry, pinning lowmem, and
2371 * tmpfs dentries cannot be pruned until they are unlinked.
2372 */
2373 ret = shmem_reserve_inode(inode->i_sb);
2374 if (ret)
2375 goto out;
2376
2377 dir->i_size += BOGO_DIRENT_SIZE;
2378 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2379 inc_nlink(inode);
2380 ihold(inode); /* New dentry reference */
2381 dget(dentry); /* Extra pinning count for the created dentry */
2382 d_instantiate(dentry, inode);
2383 out:
2384 return ret;
2385 }
2386
2387 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2388 {
2389 struct inode *inode = d_inode(dentry);
2390
2391 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2392 shmem_free_inode(inode->i_sb);
2393
2394 dir->i_size -= BOGO_DIRENT_SIZE;
2395 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2396 drop_nlink(inode);
2397 dput(dentry); /* Undo the count from "create" - this does all the work */
2398 return 0;
2399 }
2400
2401 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2402 {
2403 if (!simple_empty(dentry))
2404 return -ENOTEMPTY;
2405
2406 drop_nlink(d_inode(dentry));
2407 drop_nlink(dir);
2408 return shmem_unlink(dir, dentry);
2409 }
2410
2411 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2412 {
2413 bool old_is_dir = d_is_dir(old_dentry);
2414 bool new_is_dir = d_is_dir(new_dentry);
2415
2416 if (old_dir != new_dir && old_is_dir != new_is_dir) {
2417 if (old_is_dir) {
2418 drop_nlink(old_dir);
2419 inc_nlink(new_dir);
2420 } else {
2421 drop_nlink(new_dir);
2422 inc_nlink(old_dir);
2423 }
2424 }
2425 old_dir->i_ctime = old_dir->i_mtime =
2426 new_dir->i_ctime = new_dir->i_mtime =
2427 d_inode(old_dentry)->i_ctime =
2428 d_inode(new_dentry)->i_ctime = CURRENT_TIME;
2429
2430 return 0;
2431 }
2432
2433 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2434 {
2435 struct dentry *whiteout;
2436 int error;
2437
2438 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2439 if (!whiteout)
2440 return -ENOMEM;
2441
2442 error = shmem_mknod(old_dir, whiteout,
2443 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2444 dput(whiteout);
2445 if (error)
2446 return error;
2447
2448 /*
2449 * Cheat and hash the whiteout while the old dentry is still in
2450 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2451 *
2452 * d_lookup() will consistently find one of them at this point,
2453 * not sure which one, but that isn't even important.
2454 */
2455 d_rehash(whiteout);
2456 return 0;
2457 }
2458
2459 /*
2460 * The VFS layer already does all the dentry stuff for rename,
2461 * we just have to decrement the usage count for the target if
2462 * it exists so that the VFS layer correctly free's it when it
2463 * gets overwritten.
2464 */
2465 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
2466 {
2467 struct inode *inode = d_inode(old_dentry);
2468 int they_are_dirs = S_ISDIR(inode->i_mode);
2469
2470 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2471 return -EINVAL;
2472
2473 if (flags & RENAME_EXCHANGE)
2474 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2475
2476 if (!simple_empty(new_dentry))
2477 return -ENOTEMPTY;
2478
2479 if (flags & RENAME_WHITEOUT) {
2480 int error;
2481
2482 error = shmem_whiteout(old_dir, old_dentry);
2483 if (error)
2484 return error;
2485 }
2486
2487 if (d_really_is_positive(new_dentry)) {
2488 (void) shmem_unlink(new_dir, new_dentry);
2489 if (they_are_dirs) {
2490 drop_nlink(d_inode(new_dentry));
2491 drop_nlink(old_dir);
2492 }
2493 } else if (they_are_dirs) {
2494 drop_nlink(old_dir);
2495 inc_nlink(new_dir);
2496 }
2497
2498 old_dir->i_size -= BOGO_DIRENT_SIZE;
2499 new_dir->i_size += BOGO_DIRENT_SIZE;
2500 old_dir->i_ctime = old_dir->i_mtime =
2501 new_dir->i_ctime = new_dir->i_mtime =
2502 inode->i_ctime = CURRENT_TIME;
2503 return 0;
2504 }
2505
2506 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2507 {
2508 int error;
2509 int len;
2510 struct inode *inode;
2511 struct page *page;
2512 struct shmem_inode_info *info;
2513
2514 len = strlen(symname) + 1;
2515 if (len > PAGE_SIZE)
2516 return -ENAMETOOLONG;
2517
2518 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2519 if (!inode)
2520 return -ENOSPC;
2521
2522 error = security_inode_init_security(inode, dir, &dentry->d_name,
2523 shmem_initxattrs, NULL);
2524 if (error) {
2525 if (error != -EOPNOTSUPP) {
2526 iput(inode);
2527 return error;
2528 }
2529 error = 0;
2530 }
2531
2532 info = SHMEM_I(inode);
2533 inode->i_size = len-1;
2534 if (len <= SHORT_SYMLINK_LEN) {
2535 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
2536 if (!inode->i_link) {
2537 iput(inode);
2538 return -ENOMEM;
2539 }
2540 inode->i_op = &shmem_short_symlink_operations;
2541 } else {
2542 inode_nohighmem(inode);
2543 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
2544 if (error) {
2545 iput(inode);
2546 return error;
2547 }
2548 inode->i_mapping->a_ops = &shmem_aops;
2549 inode->i_op = &shmem_symlink_inode_operations;
2550 memcpy(page_address(page), symname, len);
2551 SetPageUptodate(page);
2552 set_page_dirty(page);
2553 unlock_page(page);
2554 put_page(page);
2555 }
2556 dir->i_size += BOGO_DIRENT_SIZE;
2557 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2558 d_instantiate(dentry, inode);
2559 dget(dentry);
2560 return 0;
2561 }
2562
2563 static void shmem_put_link(void *arg)
2564 {
2565 mark_page_accessed(arg);
2566 put_page(arg);
2567 }
2568
2569 static const char *shmem_get_link(struct dentry *dentry,
2570 struct inode *inode,
2571 struct delayed_call *done)
2572 {
2573 struct page *page = NULL;
2574 int error;
2575 if (!dentry) {
2576 page = find_get_page(inode->i_mapping, 0);
2577 if (!page)
2578 return ERR_PTR(-ECHILD);
2579 if (!PageUptodate(page)) {
2580 put_page(page);
2581 return ERR_PTR(-ECHILD);
2582 }
2583 } else {
2584 error = shmem_getpage(inode, 0, &page, SGP_READ);
2585 if (error)
2586 return ERR_PTR(error);
2587 unlock_page(page);
2588 }
2589 set_delayed_call(done, shmem_put_link, page);
2590 return page_address(page);
2591 }
2592
2593 #ifdef CONFIG_TMPFS_XATTR
2594 /*
2595 * Superblocks without xattr inode operations may get some security.* xattr
2596 * support from the LSM "for free". As soon as we have any other xattrs
2597 * like ACLs, we also need to implement the security.* handlers at
2598 * filesystem level, though.
2599 */
2600
2601 /*
2602 * Callback for security_inode_init_security() for acquiring xattrs.
2603 */
2604 static int shmem_initxattrs(struct inode *inode,
2605 const struct xattr *xattr_array,
2606 void *fs_info)
2607 {
2608 struct shmem_inode_info *info = SHMEM_I(inode);
2609 const struct xattr *xattr;
2610 struct simple_xattr *new_xattr;
2611 size_t len;
2612
2613 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2614 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2615 if (!new_xattr)
2616 return -ENOMEM;
2617
2618 len = strlen(xattr->name) + 1;
2619 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2620 GFP_KERNEL);
2621 if (!new_xattr->name) {
2622 kfree(new_xattr);
2623 return -ENOMEM;
2624 }
2625
2626 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2627 XATTR_SECURITY_PREFIX_LEN);
2628 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2629 xattr->name, len);
2630
2631 simple_xattr_list_add(&info->xattrs, new_xattr);
2632 }
2633
2634 return 0;
2635 }
2636
2637 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
2638 struct dentry *unused, struct inode *inode,
2639 const char *name, void *buffer, size_t size)
2640 {
2641 struct shmem_inode_info *info = SHMEM_I(inode);
2642
2643 name = xattr_full_name(handler, name);
2644 return simple_xattr_get(&info->xattrs, name, buffer, size);
2645 }
2646
2647 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
2648 struct dentry *dentry, const char *name,
2649 const void *value, size_t size, int flags)
2650 {
2651 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2652
2653 name = xattr_full_name(handler, name);
2654 return simple_xattr_set(&info->xattrs, name, value, size, flags);
2655 }
2656
2657 static const struct xattr_handler shmem_security_xattr_handler = {
2658 .prefix = XATTR_SECURITY_PREFIX,
2659 .get = shmem_xattr_handler_get,
2660 .set = shmem_xattr_handler_set,
2661 };
2662
2663 static const struct xattr_handler shmem_trusted_xattr_handler = {
2664 .prefix = XATTR_TRUSTED_PREFIX,
2665 .get = shmem_xattr_handler_get,
2666 .set = shmem_xattr_handler_set,
2667 };
2668
2669 static const struct xattr_handler *shmem_xattr_handlers[] = {
2670 #ifdef CONFIG_TMPFS_POSIX_ACL
2671 &posix_acl_access_xattr_handler,
2672 &posix_acl_default_xattr_handler,
2673 #endif
2674 &shmem_security_xattr_handler,
2675 &shmem_trusted_xattr_handler,
2676 NULL
2677 };
2678
2679 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2680 {
2681 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2682 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
2683 }
2684 #endif /* CONFIG_TMPFS_XATTR */
2685
2686 static const struct inode_operations shmem_short_symlink_operations = {
2687 .readlink = generic_readlink,
2688 .get_link = simple_get_link,
2689 #ifdef CONFIG_TMPFS_XATTR
2690 .setxattr = generic_setxattr,
2691 .getxattr = generic_getxattr,
2692 .listxattr = shmem_listxattr,
2693 .removexattr = generic_removexattr,
2694 #endif
2695 };
2696
2697 static const struct inode_operations shmem_symlink_inode_operations = {
2698 .readlink = generic_readlink,
2699 .get_link = shmem_get_link,
2700 #ifdef CONFIG_TMPFS_XATTR
2701 .setxattr = generic_setxattr,
2702 .getxattr = generic_getxattr,
2703 .listxattr = shmem_listxattr,
2704 .removexattr = generic_removexattr,
2705 #endif
2706 };
2707
2708 static struct dentry *shmem_get_parent(struct dentry *child)
2709 {
2710 return ERR_PTR(-ESTALE);
2711 }
2712
2713 static int shmem_match(struct inode *ino, void *vfh)
2714 {
2715 __u32 *fh = vfh;
2716 __u64 inum = fh[2];
2717 inum = (inum << 32) | fh[1];
2718 return ino->i_ino == inum && fh[0] == ino->i_generation;
2719 }
2720
2721 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2722 struct fid *fid, int fh_len, int fh_type)
2723 {
2724 struct inode *inode;
2725 struct dentry *dentry = NULL;
2726 u64 inum;
2727
2728 if (fh_len < 3)
2729 return NULL;
2730
2731 inum = fid->raw[2];
2732 inum = (inum << 32) | fid->raw[1];
2733
2734 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2735 shmem_match, fid->raw);
2736 if (inode) {
2737 dentry = d_find_alias(inode);
2738 iput(inode);
2739 }
2740
2741 return dentry;
2742 }
2743
2744 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2745 struct inode *parent)
2746 {
2747 if (*len < 3) {
2748 *len = 3;
2749 return FILEID_INVALID;
2750 }
2751
2752 if (inode_unhashed(inode)) {
2753 /* Unfortunately insert_inode_hash is not idempotent,
2754 * so as we hash inodes here rather than at creation
2755 * time, we need a lock to ensure we only try
2756 * to do it once
2757 */
2758 static DEFINE_SPINLOCK(lock);
2759 spin_lock(&lock);
2760 if (inode_unhashed(inode))
2761 __insert_inode_hash(inode,
2762 inode->i_ino + inode->i_generation);
2763 spin_unlock(&lock);
2764 }
2765
2766 fh[0] = inode->i_generation;
2767 fh[1] = inode->i_ino;
2768 fh[2] = ((__u64)inode->i_ino) >> 32;
2769
2770 *len = 3;
2771 return 1;
2772 }
2773
2774 static const struct export_operations shmem_export_ops = {
2775 .get_parent = shmem_get_parent,
2776 .encode_fh = shmem_encode_fh,
2777 .fh_to_dentry = shmem_fh_to_dentry,
2778 };
2779
2780 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2781 bool remount)
2782 {
2783 char *this_char, *value, *rest;
2784 struct mempolicy *mpol = NULL;
2785 uid_t uid;
2786 gid_t gid;
2787
2788 while (options != NULL) {
2789 this_char = options;
2790 for (;;) {
2791 /*
2792 * NUL-terminate this option: unfortunately,
2793 * mount options form a comma-separated list,
2794 * but mpol's nodelist may also contain commas.
2795 */
2796 options = strchr(options, ',');
2797 if (options == NULL)
2798 break;
2799 options++;
2800 if (!isdigit(*options)) {
2801 options[-1] = '\0';
2802 break;
2803 }
2804 }
2805 if (!*this_char)
2806 continue;
2807 if ((value = strchr(this_char,'=')) != NULL) {
2808 *value++ = 0;
2809 } else {
2810 pr_err("tmpfs: No value for mount option '%s'\n",
2811 this_char);
2812 goto error;
2813 }
2814
2815 if (!strcmp(this_char,"size")) {
2816 unsigned long long size;
2817 size = memparse(value,&rest);
2818 if (*rest == '%') {
2819 size <<= PAGE_SHIFT;
2820 size *= totalram_pages;
2821 do_div(size, 100);
2822 rest++;
2823 }
2824 if (*rest)
2825 goto bad_val;
2826 sbinfo->max_blocks =
2827 DIV_ROUND_UP(size, PAGE_SIZE);
2828 } else if (!strcmp(this_char,"nr_blocks")) {
2829 sbinfo->max_blocks = memparse(value, &rest);
2830 if (*rest)
2831 goto bad_val;
2832 } else if (!strcmp(this_char,"nr_inodes")) {
2833 sbinfo->max_inodes = memparse(value, &rest);
2834 if (*rest)
2835 goto bad_val;
2836 } else if (!strcmp(this_char,"mode")) {
2837 if (remount)
2838 continue;
2839 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2840 if (*rest)
2841 goto bad_val;
2842 } else if (!strcmp(this_char,"uid")) {
2843 if (remount)
2844 continue;
2845 uid = simple_strtoul(value, &rest, 0);
2846 if (*rest)
2847 goto bad_val;
2848 sbinfo->uid = make_kuid(current_user_ns(), uid);
2849 if (!uid_valid(sbinfo->uid))
2850 goto bad_val;
2851 } else if (!strcmp(this_char,"gid")) {
2852 if (remount)
2853 continue;
2854 gid = simple_strtoul(value, &rest, 0);
2855 if (*rest)
2856 goto bad_val;
2857 sbinfo->gid = make_kgid(current_user_ns(), gid);
2858 if (!gid_valid(sbinfo->gid))
2859 goto bad_val;
2860 } else if (!strcmp(this_char,"mpol")) {
2861 mpol_put(mpol);
2862 mpol = NULL;
2863 if (mpol_parse_str(value, &mpol))
2864 goto bad_val;
2865 } else {
2866 pr_err("tmpfs: Bad mount option %s\n", this_char);
2867 goto error;
2868 }
2869 }
2870 sbinfo->mpol = mpol;
2871 return 0;
2872
2873 bad_val:
2874 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
2875 value, this_char);
2876 error:
2877 mpol_put(mpol);
2878 return 1;
2879
2880 }
2881
2882 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2883 {
2884 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2885 struct shmem_sb_info config = *sbinfo;
2886 unsigned long inodes;
2887 int error = -EINVAL;
2888
2889 config.mpol = NULL;
2890 if (shmem_parse_options(data, &config, true))
2891 return error;
2892
2893 spin_lock(&sbinfo->stat_lock);
2894 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2895 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2896 goto out;
2897 if (config.max_inodes < inodes)
2898 goto out;
2899 /*
2900 * Those tests disallow limited->unlimited while any are in use;
2901 * but we must separately disallow unlimited->limited, because
2902 * in that case we have no record of how much is already in use.
2903 */
2904 if (config.max_blocks && !sbinfo->max_blocks)
2905 goto out;
2906 if (config.max_inodes && !sbinfo->max_inodes)
2907 goto out;
2908
2909 error = 0;
2910 sbinfo->max_blocks = config.max_blocks;
2911 sbinfo->max_inodes = config.max_inodes;
2912 sbinfo->free_inodes = config.max_inodes - inodes;
2913
2914 /*
2915 * Preserve previous mempolicy unless mpol remount option was specified.
2916 */
2917 if (config.mpol) {
2918 mpol_put(sbinfo->mpol);
2919 sbinfo->mpol = config.mpol; /* transfers initial ref */
2920 }
2921 out:
2922 spin_unlock(&sbinfo->stat_lock);
2923 return error;
2924 }
2925
2926 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2927 {
2928 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2929
2930 if (sbinfo->max_blocks != shmem_default_max_blocks())
2931 seq_printf(seq, ",size=%luk",
2932 sbinfo->max_blocks << (PAGE_SHIFT - 10));
2933 if (sbinfo->max_inodes != shmem_default_max_inodes())
2934 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2935 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2936 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2937 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2938 seq_printf(seq, ",uid=%u",
2939 from_kuid_munged(&init_user_ns, sbinfo->uid));
2940 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2941 seq_printf(seq, ",gid=%u",
2942 from_kgid_munged(&init_user_ns, sbinfo->gid));
2943 shmem_show_mpol(seq, sbinfo->mpol);
2944 return 0;
2945 }
2946
2947 #define MFD_NAME_PREFIX "memfd:"
2948 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
2949 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
2950
2951 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
2952
2953 SYSCALL_DEFINE2(memfd_create,
2954 const char __user *, uname,
2955 unsigned int, flags)
2956 {
2957 struct shmem_inode_info *info;
2958 struct file *file;
2959 int fd, error;
2960 char *name;
2961 long len;
2962
2963 if (flags & ~(unsigned int)MFD_ALL_FLAGS)
2964 return -EINVAL;
2965
2966 /* length includes terminating zero */
2967 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
2968 if (len <= 0)
2969 return -EFAULT;
2970 if (len > MFD_NAME_MAX_LEN + 1)
2971 return -EINVAL;
2972
2973 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
2974 if (!name)
2975 return -ENOMEM;
2976
2977 strcpy(name, MFD_NAME_PREFIX);
2978 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
2979 error = -EFAULT;
2980 goto err_name;
2981 }
2982
2983 /* terminating-zero may have changed after strnlen_user() returned */
2984 if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
2985 error = -EFAULT;
2986 goto err_name;
2987 }
2988
2989 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
2990 if (fd < 0) {
2991 error = fd;
2992 goto err_name;
2993 }
2994
2995 file = shmem_file_setup(name, 0, VM_NORESERVE);
2996 if (IS_ERR(file)) {
2997 error = PTR_ERR(file);
2998 goto err_fd;
2999 }
3000 info = SHMEM_I(file_inode(file));
3001 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3002 file->f_flags |= O_RDWR | O_LARGEFILE;
3003 if (flags & MFD_ALLOW_SEALING)
3004 info->seals &= ~F_SEAL_SEAL;
3005
3006 fd_install(fd, file);
3007 kfree(name);
3008 return fd;
3009
3010 err_fd:
3011 put_unused_fd(fd);
3012 err_name:
3013 kfree(name);
3014 return error;
3015 }
3016
3017 #endif /* CONFIG_TMPFS */
3018
3019 static void shmem_put_super(struct super_block *sb)
3020 {
3021 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3022
3023 percpu_counter_destroy(&sbinfo->used_blocks);
3024 mpol_put(sbinfo->mpol);
3025 kfree(sbinfo);
3026 sb->s_fs_info = NULL;
3027 }
3028
3029 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3030 {
3031 struct inode *inode;
3032 struct shmem_sb_info *sbinfo;
3033 int err = -ENOMEM;
3034
3035 /* Round up to L1_CACHE_BYTES to resist false sharing */
3036 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3037 L1_CACHE_BYTES), GFP_KERNEL);
3038 if (!sbinfo)
3039 return -ENOMEM;
3040
3041 sbinfo->mode = S_IRWXUGO | S_ISVTX;
3042 sbinfo->uid = current_fsuid();
3043 sbinfo->gid = current_fsgid();
3044 sb->s_fs_info = sbinfo;
3045
3046 #ifdef CONFIG_TMPFS
3047 /*
3048 * Per default we only allow half of the physical ram per
3049 * tmpfs instance, limiting inodes to one per page of lowmem;
3050 * but the internal instance is left unlimited.
3051 */
3052 if (!(sb->s_flags & MS_KERNMOUNT)) {
3053 sbinfo->max_blocks = shmem_default_max_blocks();
3054 sbinfo->max_inodes = shmem_default_max_inodes();
3055 if (shmem_parse_options(data, sbinfo, false)) {
3056 err = -EINVAL;
3057 goto failed;
3058 }
3059 } else {
3060 sb->s_flags |= MS_NOUSER;
3061 }
3062 sb->s_export_op = &shmem_export_ops;
3063 sb->s_flags |= MS_NOSEC;
3064 #else
3065 sb->s_flags |= MS_NOUSER;
3066 #endif
3067
3068 spin_lock_init(&sbinfo->stat_lock);
3069 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3070 goto failed;
3071 sbinfo->free_inodes = sbinfo->max_inodes;
3072
3073 sb->s_maxbytes = MAX_LFS_FILESIZE;
3074 sb->s_blocksize = PAGE_SIZE;
3075 sb->s_blocksize_bits = PAGE_SHIFT;
3076 sb->s_magic = TMPFS_MAGIC;
3077 sb->s_op = &shmem_ops;
3078 sb->s_time_gran = 1;
3079 #ifdef CONFIG_TMPFS_XATTR
3080 sb->s_xattr = shmem_xattr_handlers;
3081 #endif
3082 #ifdef CONFIG_TMPFS_POSIX_ACL
3083 sb->s_flags |= MS_POSIXACL;
3084 #endif
3085
3086 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3087 if (!inode)
3088 goto failed;
3089 inode->i_uid = sbinfo->uid;
3090 inode->i_gid = sbinfo->gid;
3091 sb->s_root = d_make_root(inode);
3092 if (!sb->s_root)
3093 goto failed;
3094 return 0;
3095
3096 failed:
3097 shmem_put_super(sb);
3098 return err;
3099 }
3100
3101 static struct kmem_cache *shmem_inode_cachep;
3102
3103 static struct inode *shmem_alloc_inode(struct super_block *sb)
3104 {
3105 struct shmem_inode_info *info;
3106 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3107 if (!info)
3108 return NULL;
3109 return &info->vfs_inode;
3110 }
3111
3112 static void shmem_destroy_callback(struct rcu_head *head)
3113 {
3114 struct inode *inode = container_of(head, struct inode, i_rcu);
3115 if (S_ISLNK(inode->i_mode))
3116 kfree(inode->i_link);
3117 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3118 }
3119
3120 static void shmem_destroy_inode(struct inode *inode)
3121 {
3122 if (S_ISREG(inode->i_mode))
3123 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3124 call_rcu(&inode->i_rcu, shmem_destroy_callback);
3125 }
3126
3127 static void shmem_init_inode(void *foo)
3128 {
3129 struct shmem_inode_info *info = foo;
3130 inode_init_once(&info->vfs_inode);
3131 }
3132
3133 static int shmem_init_inodecache(void)
3134 {
3135 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3136 sizeof(struct shmem_inode_info),
3137 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3138 return 0;
3139 }
3140
3141 static void shmem_destroy_inodecache(void)
3142 {
3143 kmem_cache_destroy(shmem_inode_cachep);
3144 }
3145
3146 static const struct address_space_operations shmem_aops = {
3147 .writepage = shmem_writepage,
3148 .set_page_dirty = __set_page_dirty_no_writeback,
3149 #ifdef CONFIG_TMPFS
3150 .write_begin = shmem_write_begin,
3151 .write_end = shmem_write_end,
3152 #endif
3153 #ifdef CONFIG_MIGRATION
3154 .migratepage = migrate_page,
3155 #endif
3156 .error_remove_page = generic_error_remove_page,
3157 };
3158
3159 static const struct file_operations shmem_file_operations = {
3160 .mmap = shmem_mmap,
3161 #ifdef CONFIG_TMPFS
3162 .llseek = shmem_file_llseek,
3163 .read_iter = shmem_file_read_iter,
3164 .write_iter = generic_file_write_iter,
3165 .fsync = noop_fsync,
3166 .splice_read = shmem_file_splice_read,
3167 .splice_write = iter_file_splice_write,
3168 .fallocate = shmem_fallocate,
3169 #endif
3170 };
3171
3172 static const struct inode_operations shmem_inode_operations = {
3173 .getattr = shmem_getattr,
3174 .setattr = shmem_setattr,
3175 #ifdef CONFIG_TMPFS_XATTR
3176 .setxattr = generic_setxattr,
3177 .getxattr = generic_getxattr,
3178 .listxattr = shmem_listxattr,
3179 .removexattr = generic_removexattr,
3180 .set_acl = simple_set_acl,
3181 #endif
3182 };
3183
3184 static const struct inode_operations shmem_dir_inode_operations = {
3185 #ifdef CONFIG_TMPFS
3186 .create = shmem_create,
3187 .lookup = simple_lookup,
3188 .link = shmem_link,
3189 .unlink = shmem_unlink,
3190 .symlink = shmem_symlink,
3191 .mkdir = shmem_mkdir,
3192 .rmdir = shmem_rmdir,
3193 .mknod = shmem_mknod,
3194 .rename2 = shmem_rename2,
3195 .tmpfile = shmem_tmpfile,
3196 #endif
3197 #ifdef CONFIG_TMPFS_XATTR
3198 .setxattr = generic_setxattr,
3199 .getxattr = generic_getxattr,
3200 .listxattr = shmem_listxattr,
3201 .removexattr = generic_removexattr,
3202 #endif
3203 #ifdef CONFIG_TMPFS_POSIX_ACL
3204 .setattr = shmem_setattr,
3205 .set_acl = simple_set_acl,
3206 #endif
3207 };
3208
3209 static const struct inode_operations shmem_special_inode_operations = {
3210 #ifdef CONFIG_TMPFS_XATTR
3211 .setxattr = generic_setxattr,
3212 .getxattr = generic_getxattr,
3213 .listxattr = shmem_listxattr,
3214 .removexattr = generic_removexattr,
3215 #endif
3216 #ifdef CONFIG_TMPFS_POSIX_ACL
3217 .setattr = shmem_setattr,
3218 .set_acl = simple_set_acl,
3219 #endif
3220 };
3221
3222 static const struct super_operations shmem_ops = {
3223 .alloc_inode = shmem_alloc_inode,
3224 .destroy_inode = shmem_destroy_inode,
3225 #ifdef CONFIG_TMPFS
3226 .statfs = shmem_statfs,
3227 .remount_fs = shmem_remount_fs,
3228 .show_options = shmem_show_options,
3229 #endif
3230 .evict_inode = shmem_evict_inode,
3231 .drop_inode = generic_delete_inode,
3232 .put_super = shmem_put_super,
3233 };
3234
3235 static const struct vm_operations_struct shmem_vm_ops = {
3236 .fault = shmem_fault,
3237 .map_pages = filemap_map_pages,
3238 #ifdef CONFIG_NUMA
3239 .set_policy = shmem_set_policy,
3240 .get_policy = shmem_get_policy,
3241 #endif
3242 };
3243
3244 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3245 int flags, const char *dev_name, void *data)
3246 {
3247 return mount_nodev(fs_type, flags, data, shmem_fill_super);
3248 }
3249
3250 static struct file_system_type shmem_fs_type = {
3251 .owner = THIS_MODULE,
3252 .name = "tmpfs",
3253 .mount = shmem_mount,
3254 .kill_sb = kill_litter_super,
3255 .fs_flags = FS_USERNS_MOUNT,
3256 };
3257
3258 int __init shmem_init(void)
3259 {
3260 int error;
3261
3262 /* If rootfs called this, don't re-init */
3263 if (shmem_inode_cachep)
3264 return 0;
3265
3266 error = shmem_init_inodecache();
3267 if (error)
3268 goto out3;
3269
3270 error = register_filesystem(&shmem_fs_type);
3271 if (error) {
3272 pr_err("Could not register tmpfs\n");
3273 goto out2;
3274 }
3275
3276 shm_mnt = kern_mount(&shmem_fs_type);
3277 if (IS_ERR(shm_mnt)) {
3278 error = PTR_ERR(shm_mnt);
3279 pr_err("Could not kern_mount tmpfs\n");
3280 goto out1;
3281 }
3282 return 0;
3283
3284 out1:
3285 unregister_filesystem(&shmem_fs_type);
3286 out2:
3287 shmem_destroy_inodecache();
3288 out3:
3289 shm_mnt = ERR_PTR(error);
3290 return error;
3291 }
3292
3293 #else /* !CONFIG_SHMEM */
3294
3295 /*
3296 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3297 *
3298 * This is intended for small system where the benefits of the full
3299 * shmem code (swap-backed and resource-limited) are outweighed by
3300 * their complexity. On systems without swap this code should be
3301 * effectively equivalent, but much lighter weight.
3302 */
3303
3304 static struct file_system_type shmem_fs_type = {
3305 .name = "tmpfs",
3306 .mount = ramfs_mount,
3307 .kill_sb = kill_litter_super,
3308 .fs_flags = FS_USERNS_MOUNT,
3309 };
3310
3311 int __init shmem_init(void)
3312 {
3313 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3314
3315 shm_mnt = kern_mount(&shmem_fs_type);
3316 BUG_ON(IS_ERR(shm_mnt));
3317
3318 return 0;
3319 }
3320
3321 int shmem_unuse(swp_entry_t swap, struct page *page)
3322 {
3323 return 0;
3324 }
3325
3326 int shmem_lock(struct file *file, int lock, struct user_struct *user)
3327 {
3328 return 0;
3329 }
3330
3331 void shmem_unlock_mapping(struct address_space *mapping)
3332 {
3333 }
3334
3335 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3336 {
3337 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3338 }
3339 EXPORT_SYMBOL_GPL(shmem_truncate_range);
3340
3341 #define shmem_vm_ops generic_file_vm_ops
3342 #define shmem_file_operations ramfs_file_operations
3343 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
3344 #define shmem_acct_size(flags, size) 0
3345 #define shmem_unacct_size(flags, size) do {} while (0)
3346
3347 #endif /* CONFIG_SHMEM */
3348
3349 /* common code */
3350
3351 static struct dentry_operations anon_ops = {
3352 .d_dname = simple_dname
3353 };
3354
3355 static struct file *__shmem_file_setup(const char *name, loff_t size,
3356 unsigned long flags, unsigned int i_flags)
3357 {
3358 struct file *res;
3359 struct inode *inode;
3360 struct path path;
3361 struct super_block *sb;
3362 struct qstr this;
3363
3364 if (IS_ERR(shm_mnt))
3365 return ERR_CAST(shm_mnt);
3366
3367 if (size < 0 || size > MAX_LFS_FILESIZE)
3368 return ERR_PTR(-EINVAL);
3369
3370 if (shmem_acct_size(flags, size))
3371 return ERR_PTR(-ENOMEM);
3372
3373 res = ERR_PTR(-ENOMEM);
3374 this.name = name;
3375 this.len = strlen(name);
3376 this.hash = 0; /* will go */
3377 sb = shm_mnt->mnt_sb;
3378 path.mnt = mntget(shm_mnt);
3379 path.dentry = d_alloc_pseudo(sb, &this);
3380 if (!path.dentry)
3381 goto put_memory;
3382 d_set_d_op(path.dentry, &anon_ops);
3383
3384 res = ERR_PTR(-ENOSPC);
3385 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
3386 if (!inode)
3387 goto put_memory;
3388
3389 inode->i_flags |= i_flags;
3390 d_instantiate(path.dentry, inode);
3391 inode->i_size = size;
3392 clear_nlink(inode); /* It is unlinked */
3393 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3394 if (IS_ERR(res))
3395 goto put_path;
3396
3397 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3398 &shmem_file_operations);
3399 if (IS_ERR(res))
3400 goto put_path;
3401
3402 return res;
3403
3404 put_memory:
3405 shmem_unacct_size(flags, size);
3406 put_path:
3407 path_put(&path);
3408 return res;
3409 }
3410
3411 /**
3412 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3413 * kernel internal. There will be NO LSM permission checks against the
3414 * underlying inode. So users of this interface must do LSM checks at a
3415 * higher layer. The users are the big_key and shm implementations. LSM
3416 * checks are provided at the key or shm level rather than the inode.
3417 * @name: name for dentry (to be seen in /proc/<pid>/maps
3418 * @size: size to be set for the file
3419 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3420 */
3421 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3422 {
3423 return __shmem_file_setup(name, size, flags, S_PRIVATE);
3424 }
3425
3426 /**
3427 * shmem_file_setup - get an unlinked file living in tmpfs
3428 * @name: name for dentry (to be seen in /proc/<pid>/maps
3429 * @size: size to be set for the file
3430 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3431 */
3432 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3433 {
3434 return __shmem_file_setup(name, size, flags, 0);
3435 }
3436 EXPORT_SYMBOL_GPL(shmem_file_setup);
3437
3438 /**
3439 * shmem_zero_setup - setup a shared anonymous mapping
3440 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3441 */
3442 int shmem_zero_setup(struct vm_area_struct *vma)
3443 {
3444 struct file *file;
3445 loff_t size = vma->vm_end - vma->vm_start;
3446
3447 /*
3448 * Cloning a new file under mmap_sem leads to a lock ordering conflict
3449 * between XFS directory reading and selinux: since this file is only
3450 * accessible to the user through its mapping, use S_PRIVATE flag to
3451 * bypass file security, in the same way as shmem_kernel_file_setup().
3452 */
3453 file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
3454 if (IS_ERR(file))
3455 return PTR_ERR(file);
3456
3457 if (vma->vm_file)
3458 fput(vma->vm_file);
3459 vma->vm_file = file;
3460 vma->vm_ops = &shmem_vm_ops;
3461 return 0;
3462 }
3463
3464 /**
3465 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3466 * @mapping: the page's address_space
3467 * @index: the page index
3468 * @gfp: the page allocator flags to use if allocating
3469 *
3470 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3471 * with any new page allocations done using the specified allocation flags.
3472 * But read_cache_page_gfp() uses the ->readpage() method: which does not
3473 * suit tmpfs, since it may have pages in swapcache, and needs to find those
3474 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3475 *
3476 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3477 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3478 */
3479 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3480 pgoff_t index, gfp_t gfp)
3481 {
3482 #ifdef CONFIG_SHMEM
3483 struct inode *inode = mapping->host;
3484 struct page *page;
3485 int error;
3486
3487 BUG_ON(mapping->a_ops != &shmem_aops);
3488 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
3489 gfp, NULL, NULL);
3490 if (error)
3491 page = ERR_PTR(error);
3492 else
3493 unlock_page(page);
3494 return page;
3495 #else
3496 /*
3497 * The tiny !SHMEM case uses ramfs without swap
3498 */
3499 return read_cache_page_gfp(mapping, index, gfp);
3500 #endif
3501 }
3502 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
This page took 0.094542 seconds and 6 git commands to generate.