krealloc: fix kerneldoc comments
[deliverable/linux.git] / mm / slab.c
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
87 */
88
89 #include <linux/slab.h>
90 #include <linux/mm.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/seq_file.h>
99 #include <linux/notifier.h>
100 #include <linux/kallsyms.h>
101 #include <linux/cpu.h>
102 #include <linux/sysctl.h>
103 #include <linux/module.h>
104 #include <linux/rcupdate.h>
105 #include <linux/string.h>
106 #include <linux/uaccess.h>
107 #include <linux/nodemask.h>
108 #include <linux/mempolicy.h>
109 #include <linux/mutex.h>
110 #include <linux/fault-inject.h>
111 #include <linux/rtmutex.h>
112 #include <linux/reciprocal_div.h>
113
114 #include <asm/cacheflush.h>
115 #include <asm/tlbflush.h>
116 #include <asm/page.h>
117
118 /*
119 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
120 * 0 for faster, smaller code (especially in the critical paths).
121 *
122 * STATS - 1 to collect stats for /proc/slabinfo.
123 * 0 for faster, smaller code (especially in the critical paths).
124 *
125 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
126 */
127
128 #ifdef CONFIG_DEBUG_SLAB
129 #define DEBUG 1
130 #define STATS 1
131 #define FORCED_DEBUG 1
132 #else
133 #define DEBUG 0
134 #define STATS 0
135 #define FORCED_DEBUG 0
136 #endif
137
138 /* Shouldn't this be in a header file somewhere? */
139 #define BYTES_PER_WORD sizeof(void *)
140
141 #ifndef cache_line_size
142 #define cache_line_size() L1_CACHE_BYTES
143 #endif
144
145 #ifndef ARCH_KMALLOC_MINALIGN
146 /*
147 * Enforce a minimum alignment for the kmalloc caches.
148 * Usually, the kmalloc caches are cache_line_size() aligned, except when
149 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
150 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
151 * alignment larger than the alignment of a 64-bit integer.
152 * ARCH_KMALLOC_MINALIGN allows that.
153 * Note that increasing this value may disable some debug features.
154 */
155 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
156 #endif
157
158 #ifndef ARCH_SLAB_MINALIGN
159 /*
160 * Enforce a minimum alignment for all caches.
161 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
162 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
163 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
164 * some debug features.
165 */
166 #define ARCH_SLAB_MINALIGN 0
167 #endif
168
169 #ifndef ARCH_KMALLOC_FLAGS
170 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
171 #endif
172
173 /* Legal flag mask for kmem_cache_create(). */
174 #if DEBUG
175 # define CREATE_MASK (SLAB_RED_ZONE | \
176 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
177 SLAB_CACHE_DMA | \
178 SLAB_STORE_USER | \
179 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
180 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
181 #else
182 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
183 SLAB_CACHE_DMA | \
184 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
185 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
186 #endif
187
188 /*
189 * kmem_bufctl_t:
190 *
191 * Bufctl's are used for linking objs within a slab
192 * linked offsets.
193 *
194 * This implementation relies on "struct page" for locating the cache &
195 * slab an object belongs to.
196 * This allows the bufctl structure to be small (one int), but limits
197 * the number of objects a slab (not a cache) can contain when off-slab
198 * bufctls are used. The limit is the size of the largest general cache
199 * that does not use off-slab slabs.
200 * For 32bit archs with 4 kB pages, is this 56.
201 * This is not serious, as it is only for large objects, when it is unwise
202 * to have too many per slab.
203 * Note: This limit can be raised by introducing a general cache whose size
204 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
205 */
206
207 typedef unsigned int kmem_bufctl_t;
208 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
209 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
210 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
211 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
212
213 /*
214 * struct slab
215 *
216 * Manages the objs in a slab. Placed either at the beginning of mem allocated
217 * for a slab, or allocated from an general cache.
218 * Slabs are chained into three list: fully used, partial, fully free slabs.
219 */
220 struct slab {
221 struct list_head list;
222 unsigned long colouroff;
223 void *s_mem; /* including colour offset */
224 unsigned int inuse; /* num of objs active in slab */
225 kmem_bufctl_t free;
226 unsigned short nodeid;
227 };
228
229 /*
230 * struct slab_rcu
231 *
232 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
233 * arrange for kmem_freepages to be called via RCU. This is useful if
234 * we need to approach a kernel structure obliquely, from its address
235 * obtained without the usual locking. We can lock the structure to
236 * stabilize it and check it's still at the given address, only if we
237 * can be sure that the memory has not been meanwhile reused for some
238 * other kind of object (which our subsystem's lock might corrupt).
239 *
240 * rcu_read_lock before reading the address, then rcu_read_unlock after
241 * taking the spinlock within the structure expected at that address.
242 *
243 * We assume struct slab_rcu can overlay struct slab when destroying.
244 */
245 struct slab_rcu {
246 struct rcu_head head;
247 struct kmem_cache *cachep;
248 void *addr;
249 };
250
251 /*
252 * struct array_cache
253 *
254 * Purpose:
255 * - LIFO ordering, to hand out cache-warm objects from _alloc
256 * - reduce the number of linked list operations
257 * - reduce spinlock operations
258 *
259 * The limit is stored in the per-cpu structure to reduce the data cache
260 * footprint.
261 *
262 */
263 struct array_cache {
264 unsigned int avail;
265 unsigned int limit;
266 unsigned int batchcount;
267 unsigned int touched;
268 spinlock_t lock;
269 void *entry[0]; /*
270 * Must have this definition in here for the proper
271 * alignment of array_cache. Also simplifies accessing
272 * the entries.
273 * [0] is for gcc 2.95. It should really be [].
274 */
275 };
276
277 /*
278 * bootstrap: The caches do not work without cpuarrays anymore, but the
279 * cpuarrays are allocated from the generic caches...
280 */
281 #define BOOT_CPUCACHE_ENTRIES 1
282 struct arraycache_init {
283 struct array_cache cache;
284 void *entries[BOOT_CPUCACHE_ENTRIES];
285 };
286
287 /*
288 * The slab lists for all objects.
289 */
290 struct kmem_list3 {
291 struct list_head slabs_partial; /* partial list first, better asm code */
292 struct list_head slabs_full;
293 struct list_head slabs_free;
294 unsigned long free_objects;
295 unsigned int free_limit;
296 unsigned int colour_next; /* Per-node cache coloring */
297 spinlock_t list_lock;
298 struct array_cache *shared; /* shared per node */
299 struct array_cache **alien; /* on other nodes */
300 unsigned long next_reap; /* updated without locking */
301 int free_touched; /* updated without locking */
302 };
303
304 /*
305 * Need this for bootstrapping a per node allocator.
306 */
307 #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
308 struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
309 #define CACHE_CACHE 0
310 #define SIZE_AC 1
311 #define SIZE_L3 (1 + MAX_NUMNODES)
312
313 static int drain_freelist(struct kmem_cache *cache,
314 struct kmem_list3 *l3, int tofree);
315 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
316 int node);
317 static int enable_cpucache(struct kmem_cache *cachep);
318 static void cache_reap(struct work_struct *unused);
319
320 /*
321 * This function must be completely optimized away if a constant is passed to
322 * it. Mostly the same as what is in linux/slab.h except it returns an index.
323 */
324 static __always_inline int index_of(const size_t size)
325 {
326 extern void __bad_size(void);
327
328 if (__builtin_constant_p(size)) {
329 int i = 0;
330
331 #define CACHE(x) \
332 if (size <=x) \
333 return i; \
334 else \
335 i++;
336 #include "linux/kmalloc_sizes.h"
337 #undef CACHE
338 __bad_size();
339 } else
340 __bad_size();
341 return 0;
342 }
343
344 static int slab_early_init = 1;
345
346 #define INDEX_AC index_of(sizeof(struct arraycache_init))
347 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
348
349 static void kmem_list3_init(struct kmem_list3 *parent)
350 {
351 INIT_LIST_HEAD(&parent->slabs_full);
352 INIT_LIST_HEAD(&parent->slabs_partial);
353 INIT_LIST_HEAD(&parent->slabs_free);
354 parent->shared = NULL;
355 parent->alien = NULL;
356 parent->colour_next = 0;
357 spin_lock_init(&parent->list_lock);
358 parent->free_objects = 0;
359 parent->free_touched = 0;
360 }
361
362 #define MAKE_LIST(cachep, listp, slab, nodeid) \
363 do { \
364 INIT_LIST_HEAD(listp); \
365 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
366 } while (0)
367
368 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
369 do { \
370 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
371 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
372 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
373 } while (0)
374
375 /*
376 * struct kmem_cache
377 *
378 * manages a cache.
379 */
380
381 struct kmem_cache {
382 /* 1) per-cpu data, touched during every alloc/free */
383 struct array_cache *array[NR_CPUS];
384 /* 2) Cache tunables. Protected by cache_chain_mutex */
385 unsigned int batchcount;
386 unsigned int limit;
387 unsigned int shared;
388
389 unsigned int buffer_size;
390 u32 reciprocal_buffer_size;
391 /* 3) touched by every alloc & free from the backend */
392
393 unsigned int flags; /* constant flags */
394 unsigned int num; /* # of objs per slab */
395
396 /* 4) cache_grow/shrink */
397 /* order of pgs per slab (2^n) */
398 unsigned int gfporder;
399
400 /* force GFP flags, e.g. GFP_DMA */
401 gfp_t gfpflags;
402
403 size_t colour; /* cache colouring range */
404 unsigned int colour_off; /* colour offset */
405 struct kmem_cache *slabp_cache;
406 unsigned int slab_size;
407 unsigned int dflags; /* dynamic flags */
408
409 /* constructor func */
410 void (*ctor) (void *, struct kmem_cache *, unsigned long);
411
412 /* de-constructor func */
413 void (*dtor) (void *, struct kmem_cache *, unsigned long);
414
415 /* 5) cache creation/removal */
416 const char *name;
417 struct list_head next;
418
419 /* 6) statistics */
420 #if STATS
421 unsigned long num_active;
422 unsigned long num_allocations;
423 unsigned long high_mark;
424 unsigned long grown;
425 unsigned long reaped;
426 unsigned long errors;
427 unsigned long max_freeable;
428 unsigned long node_allocs;
429 unsigned long node_frees;
430 unsigned long node_overflow;
431 atomic_t allochit;
432 atomic_t allocmiss;
433 atomic_t freehit;
434 atomic_t freemiss;
435 #endif
436 #if DEBUG
437 /*
438 * If debugging is enabled, then the allocator can add additional
439 * fields and/or padding to every object. buffer_size contains the total
440 * object size including these internal fields, the following two
441 * variables contain the offset to the user object and its size.
442 */
443 int obj_offset;
444 int obj_size;
445 #endif
446 /*
447 * We put nodelists[] at the end of kmem_cache, because we want to size
448 * this array to nr_node_ids slots instead of MAX_NUMNODES
449 * (see kmem_cache_init())
450 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
451 * is statically defined, so we reserve the max number of nodes.
452 */
453 struct kmem_list3 *nodelists[MAX_NUMNODES];
454 /*
455 * Do not add fields after nodelists[]
456 */
457 };
458
459 #define CFLGS_OFF_SLAB (0x80000000UL)
460 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
461
462 #define BATCHREFILL_LIMIT 16
463 /*
464 * Optimization question: fewer reaps means less probability for unnessary
465 * cpucache drain/refill cycles.
466 *
467 * OTOH the cpuarrays can contain lots of objects,
468 * which could lock up otherwise freeable slabs.
469 */
470 #define REAPTIMEOUT_CPUC (2*HZ)
471 #define REAPTIMEOUT_LIST3 (4*HZ)
472
473 #if STATS
474 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
475 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
476 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
477 #define STATS_INC_GROWN(x) ((x)->grown++)
478 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
479 #define STATS_SET_HIGH(x) \
480 do { \
481 if ((x)->num_active > (x)->high_mark) \
482 (x)->high_mark = (x)->num_active; \
483 } while (0)
484 #define STATS_INC_ERR(x) ((x)->errors++)
485 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
486 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
487 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
488 #define STATS_SET_FREEABLE(x, i) \
489 do { \
490 if ((x)->max_freeable < i) \
491 (x)->max_freeable = i; \
492 } while (0)
493 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
494 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
495 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
496 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
497 #else
498 #define STATS_INC_ACTIVE(x) do { } while (0)
499 #define STATS_DEC_ACTIVE(x) do { } while (0)
500 #define STATS_INC_ALLOCED(x) do { } while (0)
501 #define STATS_INC_GROWN(x) do { } while (0)
502 #define STATS_ADD_REAPED(x,y) do { } while (0)
503 #define STATS_SET_HIGH(x) do { } while (0)
504 #define STATS_INC_ERR(x) do { } while (0)
505 #define STATS_INC_NODEALLOCS(x) do { } while (0)
506 #define STATS_INC_NODEFREES(x) do { } while (0)
507 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
508 #define STATS_SET_FREEABLE(x, i) do { } while (0)
509 #define STATS_INC_ALLOCHIT(x) do { } while (0)
510 #define STATS_INC_ALLOCMISS(x) do { } while (0)
511 #define STATS_INC_FREEHIT(x) do { } while (0)
512 #define STATS_INC_FREEMISS(x) do { } while (0)
513 #endif
514
515 #if DEBUG
516
517 /*
518 * memory layout of objects:
519 * 0 : objp
520 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
521 * the end of an object is aligned with the end of the real
522 * allocation. Catches writes behind the end of the allocation.
523 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
524 * redzone word.
525 * cachep->obj_offset: The real object.
526 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
527 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
528 * [BYTES_PER_WORD long]
529 */
530 static int obj_offset(struct kmem_cache *cachep)
531 {
532 return cachep->obj_offset;
533 }
534
535 static int obj_size(struct kmem_cache *cachep)
536 {
537 return cachep->obj_size;
538 }
539
540 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
541 {
542 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
543 return (unsigned long long*) (objp + obj_offset(cachep) -
544 sizeof(unsigned long long));
545 }
546
547 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
548 {
549 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
550 if (cachep->flags & SLAB_STORE_USER)
551 return (unsigned long long *)(objp + cachep->buffer_size -
552 sizeof(unsigned long long) -
553 BYTES_PER_WORD);
554 return (unsigned long long *) (objp + cachep->buffer_size -
555 sizeof(unsigned long long));
556 }
557
558 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
559 {
560 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
561 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
562 }
563
564 #else
565
566 #define obj_offset(x) 0
567 #define obj_size(cachep) (cachep->buffer_size)
568 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
569 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
570 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
571
572 #endif
573
574 /*
575 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
576 * order.
577 */
578 #if defined(CONFIG_LARGE_ALLOCS)
579 #define MAX_OBJ_ORDER 13 /* up to 32Mb */
580 #define MAX_GFP_ORDER 13 /* up to 32Mb */
581 #elif defined(CONFIG_MMU)
582 #define MAX_OBJ_ORDER 5 /* 32 pages */
583 #define MAX_GFP_ORDER 5 /* 32 pages */
584 #else
585 #define MAX_OBJ_ORDER 8 /* up to 1Mb */
586 #define MAX_GFP_ORDER 8 /* up to 1Mb */
587 #endif
588
589 /*
590 * Do not go above this order unless 0 objects fit into the slab.
591 */
592 #define BREAK_GFP_ORDER_HI 1
593 #define BREAK_GFP_ORDER_LO 0
594 static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
595
596 /*
597 * Functions for storing/retrieving the cachep and or slab from the page
598 * allocator. These are used to find the slab an obj belongs to. With kfree(),
599 * these are used to find the cache which an obj belongs to.
600 */
601 static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
602 {
603 page->lru.next = (struct list_head *)cache;
604 }
605
606 static inline struct kmem_cache *page_get_cache(struct page *page)
607 {
608 page = compound_head(page);
609 BUG_ON(!PageSlab(page));
610 return (struct kmem_cache *)page->lru.next;
611 }
612
613 static inline void page_set_slab(struct page *page, struct slab *slab)
614 {
615 page->lru.prev = (struct list_head *)slab;
616 }
617
618 static inline struct slab *page_get_slab(struct page *page)
619 {
620 BUG_ON(!PageSlab(page));
621 return (struct slab *)page->lru.prev;
622 }
623
624 static inline struct kmem_cache *virt_to_cache(const void *obj)
625 {
626 struct page *page = virt_to_head_page(obj);
627 return page_get_cache(page);
628 }
629
630 static inline struct slab *virt_to_slab(const void *obj)
631 {
632 struct page *page = virt_to_head_page(obj);
633 return page_get_slab(page);
634 }
635
636 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
637 unsigned int idx)
638 {
639 return slab->s_mem + cache->buffer_size * idx;
640 }
641
642 /*
643 * We want to avoid an expensive divide : (offset / cache->buffer_size)
644 * Using the fact that buffer_size is a constant for a particular cache,
645 * we can replace (offset / cache->buffer_size) by
646 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
647 */
648 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
649 const struct slab *slab, void *obj)
650 {
651 u32 offset = (obj - slab->s_mem);
652 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
653 }
654
655 /*
656 * These are the default caches for kmalloc. Custom caches can have other sizes.
657 */
658 struct cache_sizes malloc_sizes[] = {
659 #define CACHE(x) { .cs_size = (x) },
660 #include <linux/kmalloc_sizes.h>
661 CACHE(ULONG_MAX)
662 #undef CACHE
663 };
664 EXPORT_SYMBOL(malloc_sizes);
665
666 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
667 struct cache_names {
668 char *name;
669 char *name_dma;
670 };
671
672 static struct cache_names __initdata cache_names[] = {
673 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
674 #include <linux/kmalloc_sizes.h>
675 {NULL,}
676 #undef CACHE
677 };
678
679 static struct arraycache_init initarray_cache __initdata =
680 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
681 static struct arraycache_init initarray_generic =
682 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
683
684 /* internal cache of cache description objs */
685 static struct kmem_cache cache_cache = {
686 .batchcount = 1,
687 .limit = BOOT_CPUCACHE_ENTRIES,
688 .shared = 1,
689 .buffer_size = sizeof(struct kmem_cache),
690 .name = "kmem_cache",
691 };
692
693 #define BAD_ALIEN_MAGIC 0x01020304ul
694
695 #ifdef CONFIG_LOCKDEP
696
697 /*
698 * Slab sometimes uses the kmalloc slabs to store the slab headers
699 * for other slabs "off slab".
700 * The locking for this is tricky in that it nests within the locks
701 * of all other slabs in a few places; to deal with this special
702 * locking we put on-slab caches into a separate lock-class.
703 *
704 * We set lock class for alien array caches which are up during init.
705 * The lock annotation will be lost if all cpus of a node goes down and
706 * then comes back up during hotplug
707 */
708 static struct lock_class_key on_slab_l3_key;
709 static struct lock_class_key on_slab_alc_key;
710
711 static inline void init_lock_keys(void)
712
713 {
714 int q;
715 struct cache_sizes *s = malloc_sizes;
716
717 while (s->cs_size != ULONG_MAX) {
718 for_each_node(q) {
719 struct array_cache **alc;
720 int r;
721 struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
722 if (!l3 || OFF_SLAB(s->cs_cachep))
723 continue;
724 lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
725 alc = l3->alien;
726 /*
727 * FIXME: This check for BAD_ALIEN_MAGIC
728 * should go away when common slab code is taught to
729 * work even without alien caches.
730 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
731 * for alloc_alien_cache,
732 */
733 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
734 continue;
735 for_each_node(r) {
736 if (alc[r])
737 lockdep_set_class(&alc[r]->lock,
738 &on_slab_alc_key);
739 }
740 }
741 s++;
742 }
743 }
744 #else
745 static inline void init_lock_keys(void)
746 {
747 }
748 #endif
749
750 /*
751 * 1. Guard access to the cache-chain.
752 * 2. Protect sanity of cpu_online_map against cpu hotplug events
753 */
754 static DEFINE_MUTEX(cache_chain_mutex);
755 static struct list_head cache_chain;
756
757 /*
758 * chicken and egg problem: delay the per-cpu array allocation
759 * until the general caches are up.
760 */
761 static enum {
762 NONE,
763 PARTIAL_AC,
764 PARTIAL_L3,
765 FULL
766 } g_cpucache_up;
767
768 /*
769 * used by boot code to determine if it can use slab based allocator
770 */
771 int slab_is_available(void)
772 {
773 return g_cpucache_up == FULL;
774 }
775
776 static DEFINE_PER_CPU(struct delayed_work, reap_work);
777
778 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
779 {
780 return cachep->array[smp_processor_id()];
781 }
782
783 static inline struct kmem_cache *__find_general_cachep(size_t size,
784 gfp_t gfpflags)
785 {
786 struct cache_sizes *csizep = malloc_sizes;
787
788 #if DEBUG
789 /* This happens if someone tries to call
790 * kmem_cache_create(), or __kmalloc(), before
791 * the generic caches are initialized.
792 */
793 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
794 #endif
795 while (size > csizep->cs_size)
796 csizep++;
797
798 /*
799 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
800 * has cs_{dma,}cachep==NULL. Thus no special case
801 * for large kmalloc calls required.
802 */
803 #ifdef CONFIG_ZONE_DMA
804 if (unlikely(gfpflags & GFP_DMA))
805 return csizep->cs_dmacachep;
806 #endif
807 return csizep->cs_cachep;
808 }
809
810 static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
811 {
812 return __find_general_cachep(size, gfpflags);
813 }
814
815 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
816 {
817 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
818 }
819
820 /*
821 * Calculate the number of objects and left-over bytes for a given buffer size.
822 */
823 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
824 size_t align, int flags, size_t *left_over,
825 unsigned int *num)
826 {
827 int nr_objs;
828 size_t mgmt_size;
829 size_t slab_size = PAGE_SIZE << gfporder;
830
831 /*
832 * The slab management structure can be either off the slab or
833 * on it. For the latter case, the memory allocated for a
834 * slab is used for:
835 *
836 * - The struct slab
837 * - One kmem_bufctl_t for each object
838 * - Padding to respect alignment of @align
839 * - @buffer_size bytes for each object
840 *
841 * If the slab management structure is off the slab, then the
842 * alignment will already be calculated into the size. Because
843 * the slabs are all pages aligned, the objects will be at the
844 * correct alignment when allocated.
845 */
846 if (flags & CFLGS_OFF_SLAB) {
847 mgmt_size = 0;
848 nr_objs = slab_size / buffer_size;
849
850 if (nr_objs > SLAB_LIMIT)
851 nr_objs = SLAB_LIMIT;
852 } else {
853 /*
854 * Ignore padding for the initial guess. The padding
855 * is at most @align-1 bytes, and @buffer_size is at
856 * least @align. In the worst case, this result will
857 * be one greater than the number of objects that fit
858 * into the memory allocation when taking the padding
859 * into account.
860 */
861 nr_objs = (slab_size - sizeof(struct slab)) /
862 (buffer_size + sizeof(kmem_bufctl_t));
863
864 /*
865 * This calculated number will be either the right
866 * amount, or one greater than what we want.
867 */
868 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
869 > slab_size)
870 nr_objs--;
871
872 if (nr_objs > SLAB_LIMIT)
873 nr_objs = SLAB_LIMIT;
874
875 mgmt_size = slab_mgmt_size(nr_objs, align);
876 }
877 *num = nr_objs;
878 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
879 }
880
881 #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
882
883 static void __slab_error(const char *function, struct kmem_cache *cachep,
884 char *msg)
885 {
886 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
887 function, cachep->name, msg);
888 dump_stack();
889 }
890
891 /*
892 * By default on NUMA we use alien caches to stage the freeing of
893 * objects allocated from other nodes. This causes massive memory
894 * inefficiencies when using fake NUMA setup to split memory into a
895 * large number of small nodes, so it can be disabled on the command
896 * line
897 */
898
899 static int use_alien_caches __read_mostly = 1;
900 static int __init noaliencache_setup(char *s)
901 {
902 use_alien_caches = 0;
903 return 1;
904 }
905 __setup("noaliencache", noaliencache_setup);
906
907 #ifdef CONFIG_NUMA
908 /*
909 * Special reaping functions for NUMA systems called from cache_reap().
910 * These take care of doing round robin flushing of alien caches (containing
911 * objects freed on different nodes from which they were allocated) and the
912 * flushing of remote pcps by calling drain_node_pages.
913 */
914 static DEFINE_PER_CPU(unsigned long, reap_node);
915
916 static void init_reap_node(int cpu)
917 {
918 int node;
919
920 node = next_node(cpu_to_node(cpu), node_online_map);
921 if (node == MAX_NUMNODES)
922 node = first_node(node_online_map);
923
924 per_cpu(reap_node, cpu) = node;
925 }
926
927 static void next_reap_node(void)
928 {
929 int node = __get_cpu_var(reap_node);
930
931 /*
932 * Also drain per cpu pages on remote zones
933 */
934 if (node != numa_node_id())
935 drain_node_pages(node);
936
937 node = next_node(node, node_online_map);
938 if (unlikely(node >= MAX_NUMNODES))
939 node = first_node(node_online_map);
940 __get_cpu_var(reap_node) = node;
941 }
942
943 #else
944 #define init_reap_node(cpu) do { } while (0)
945 #define next_reap_node(void) do { } while (0)
946 #endif
947
948 /*
949 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
950 * via the workqueue/eventd.
951 * Add the CPU number into the expiration time to minimize the possibility of
952 * the CPUs getting into lockstep and contending for the global cache chain
953 * lock.
954 */
955 static void __devinit start_cpu_timer(int cpu)
956 {
957 struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
958
959 /*
960 * When this gets called from do_initcalls via cpucache_init(),
961 * init_workqueues() has already run, so keventd will be setup
962 * at that time.
963 */
964 if (keventd_up() && reap_work->work.func == NULL) {
965 init_reap_node(cpu);
966 INIT_DELAYED_WORK(reap_work, cache_reap);
967 schedule_delayed_work_on(cpu, reap_work,
968 __round_jiffies_relative(HZ, cpu));
969 }
970 }
971
972 static struct array_cache *alloc_arraycache(int node, int entries,
973 int batchcount)
974 {
975 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
976 struct array_cache *nc = NULL;
977
978 nc = kmalloc_node(memsize, GFP_KERNEL, node);
979 if (nc) {
980 nc->avail = 0;
981 nc->limit = entries;
982 nc->batchcount = batchcount;
983 nc->touched = 0;
984 spin_lock_init(&nc->lock);
985 }
986 return nc;
987 }
988
989 /*
990 * Transfer objects in one arraycache to another.
991 * Locking must be handled by the caller.
992 *
993 * Return the number of entries transferred.
994 */
995 static int transfer_objects(struct array_cache *to,
996 struct array_cache *from, unsigned int max)
997 {
998 /* Figure out how many entries to transfer */
999 int nr = min(min(from->avail, max), to->limit - to->avail);
1000
1001 if (!nr)
1002 return 0;
1003
1004 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
1005 sizeof(void *) *nr);
1006
1007 from->avail -= nr;
1008 to->avail += nr;
1009 to->touched = 1;
1010 return nr;
1011 }
1012
1013 #ifndef CONFIG_NUMA
1014
1015 #define drain_alien_cache(cachep, alien) do { } while (0)
1016 #define reap_alien(cachep, l3) do { } while (0)
1017
1018 static inline struct array_cache **alloc_alien_cache(int node, int limit)
1019 {
1020 return (struct array_cache **)BAD_ALIEN_MAGIC;
1021 }
1022
1023 static inline void free_alien_cache(struct array_cache **ac_ptr)
1024 {
1025 }
1026
1027 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1028 {
1029 return 0;
1030 }
1031
1032 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1033 gfp_t flags)
1034 {
1035 return NULL;
1036 }
1037
1038 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1039 gfp_t flags, int nodeid)
1040 {
1041 return NULL;
1042 }
1043
1044 #else /* CONFIG_NUMA */
1045
1046 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1047 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1048
1049 static struct array_cache **alloc_alien_cache(int node, int limit)
1050 {
1051 struct array_cache **ac_ptr;
1052 int memsize = sizeof(void *) * nr_node_ids;
1053 int i;
1054
1055 if (limit > 1)
1056 limit = 12;
1057 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
1058 if (ac_ptr) {
1059 for_each_node(i) {
1060 if (i == node || !node_online(i)) {
1061 ac_ptr[i] = NULL;
1062 continue;
1063 }
1064 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
1065 if (!ac_ptr[i]) {
1066 for (i--; i <= 0; i--)
1067 kfree(ac_ptr[i]);
1068 kfree(ac_ptr);
1069 return NULL;
1070 }
1071 }
1072 }
1073 return ac_ptr;
1074 }
1075
1076 static void free_alien_cache(struct array_cache **ac_ptr)
1077 {
1078 int i;
1079
1080 if (!ac_ptr)
1081 return;
1082 for_each_node(i)
1083 kfree(ac_ptr[i]);
1084 kfree(ac_ptr);
1085 }
1086
1087 static void __drain_alien_cache(struct kmem_cache *cachep,
1088 struct array_cache *ac, int node)
1089 {
1090 struct kmem_list3 *rl3 = cachep->nodelists[node];
1091
1092 if (ac->avail) {
1093 spin_lock(&rl3->list_lock);
1094 /*
1095 * Stuff objects into the remote nodes shared array first.
1096 * That way we could avoid the overhead of putting the objects
1097 * into the free lists and getting them back later.
1098 */
1099 if (rl3->shared)
1100 transfer_objects(rl3->shared, ac, ac->limit);
1101
1102 free_block(cachep, ac->entry, ac->avail, node);
1103 ac->avail = 0;
1104 spin_unlock(&rl3->list_lock);
1105 }
1106 }
1107
1108 /*
1109 * Called from cache_reap() to regularly drain alien caches round robin.
1110 */
1111 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1112 {
1113 int node = __get_cpu_var(reap_node);
1114
1115 if (l3->alien) {
1116 struct array_cache *ac = l3->alien[node];
1117
1118 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1119 __drain_alien_cache(cachep, ac, node);
1120 spin_unlock_irq(&ac->lock);
1121 }
1122 }
1123 }
1124
1125 static void drain_alien_cache(struct kmem_cache *cachep,
1126 struct array_cache **alien)
1127 {
1128 int i = 0;
1129 struct array_cache *ac;
1130 unsigned long flags;
1131
1132 for_each_online_node(i) {
1133 ac = alien[i];
1134 if (ac) {
1135 spin_lock_irqsave(&ac->lock, flags);
1136 __drain_alien_cache(cachep, ac, i);
1137 spin_unlock_irqrestore(&ac->lock, flags);
1138 }
1139 }
1140 }
1141
1142 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1143 {
1144 struct slab *slabp = virt_to_slab(objp);
1145 int nodeid = slabp->nodeid;
1146 struct kmem_list3 *l3;
1147 struct array_cache *alien = NULL;
1148 int node;
1149
1150 node = numa_node_id();
1151
1152 /*
1153 * Make sure we are not freeing a object from another node to the array
1154 * cache on this cpu.
1155 */
1156 if (likely(slabp->nodeid == node))
1157 return 0;
1158
1159 l3 = cachep->nodelists[node];
1160 STATS_INC_NODEFREES(cachep);
1161 if (l3->alien && l3->alien[nodeid]) {
1162 alien = l3->alien[nodeid];
1163 spin_lock(&alien->lock);
1164 if (unlikely(alien->avail == alien->limit)) {
1165 STATS_INC_ACOVERFLOW(cachep);
1166 __drain_alien_cache(cachep, alien, nodeid);
1167 }
1168 alien->entry[alien->avail++] = objp;
1169 spin_unlock(&alien->lock);
1170 } else {
1171 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1172 free_block(cachep, &objp, 1, nodeid);
1173 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1174 }
1175 return 1;
1176 }
1177 #endif
1178
1179 static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1180 unsigned long action, void *hcpu)
1181 {
1182 long cpu = (long)hcpu;
1183 struct kmem_cache *cachep;
1184 struct kmem_list3 *l3 = NULL;
1185 int node = cpu_to_node(cpu);
1186 int memsize = sizeof(struct kmem_list3);
1187
1188 switch (action) {
1189 case CPU_UP_PREPARE:
1190 mutex_lock(&cache_chain_mutex);
1191 /*
1192 * We need to do this right in the beginning since
1193 * alloc_arraycache's are going to use this list.
1194 * kmalloc_node allows us to add the slab to the right
1195 * kmem_list3 and not this cpu's kmem_list3
1196 */
1197
1198 list_for_each_entry(cachep, &cache_chain, next) {
1199 /*
1200 * Set up the size64 kmemlist for cpu before we can
1201 * begin anything. Make sure some other cpu on this
1202 * node has not already allocated this
1203 */
1204 if (!cachep->nodelists[node]) {
1205 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1206 if (!l3)
1207 goto bad;
1208 kmem_list3_init(l3);
1209 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1210 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1211
1212 /*
1213 * The l3s don't come and go as CPUs come and
1214 * go. cache_chain_mutex is sufficient
1215 * protection here.
1216 */
1217 cachep->nodelists[node] = l3;
1218 }
1219
1220 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1221 cachep->nodelists[node]->free_limit =
1222 (1 + nr_cpus_node(node)) *
1223 cachep->batchcount + cachep->num;
1224 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1225 }
1226
1227 /*
1228 * Now we can go ahead with allocating the shared arrays and
1229 * array caches
1230 */
1231 list_for_each_entry(cachep, &cache_chain, next) {
1232 struct array_cache *nc;
1233 struct array_cache *shared = NULL;
1234 struct array_cache **alien = NULL;
1235
1236 nc = alloc_arraycache(node, cachep->limit,
1237 cachep->batchcount);
1238 if (!nc)
1239 goto bad;
1240 if (cachep->shared) {
1241 shared = alloc_arraycache(node,
1242 cachep->shared * cachep->batchcount,
1243 0xbaadf00d);
1244 if (!shared)
1245 goto bad;
1246 }
1247 if (use_alien_caches) {
1248 alien = alloc_alien_cache(node, cachep->limit);
1249 if (!alien)
1250 goto bad;
1251 }
1252 cachep->array[cpu] = nc;
1253 l3 = cachep->nodelists[node];
1254 BUG_ON(!l3);
1255
1256 spin_lock_irq(&l3->list_lock);
1257 if (!l3->shared) {
1258 /*
1259 * We are serialised from CPU_DEAD or
1260 * CPU_UP_CANCELLED by the cpucontrol lock
1261 */
1262 l3->shared = shared;
1263 shared = NULL;
1264 }
1265 #ifdef CONFIG_NUMA
1266 if (!l3->alien) {
1267 l3->alien = alien;
1268 alien = NULL;
1269 }
1270 #endif
1271 spin_unlock_irq(&l3->list_lock);
1272 kfree(shared);
1273 free_alien_cache(alien);
1274 }
1275 break;
1276 case CPU_ONLINE:
1277 mutex_unlock(&cache_chain_mutex);
1278 start_cpu_timer(cpu);
1279 break;
1280 #ifdef CONFIG_HOTPLUG_CPU
1281 case CPU_DOWN_PREPARE:
1282 mutex_lock(&cache_chain_mutex);
1283 break;
1284 case CPU_DOWN_FAILED:
1285 mutex_unlock(&cache_chain_mutex);
1286 break;
1287 case CPU_DEAD:
1288 /*
1289 * Even if all the cpus of a node are down, we don't free the
1290 * kmem_list3 of any cache. This to avoid a race between
1291 * cpu_down, and a kmalloc allocation from another cpu for
1292 * memory from the node of the cpu going down. The list3
1293 * structure is usually allocated from kmem_cache_create() and
1294 * gets destroyed at kmem_cache_destroy().
1295 */
1296 /* fall thru */
1297 #endif
1298 case CPU_UP_CANCELED:
1299 list_for_each_entry(cachep, &cache_chain, next) {
1300 struct array_cache *nc;
1301 struct array_cache *shared;
1302 struct array_cache **alien;
1303 cpumask_t mask;
1304
1305 mask = node_to_cpumask(node);
1306 /* cpu is dead; no one can alloc from it. */
1307 nc = cachep->array[cpu];
1308 cachep->array[cpu] = NULL;
1309 l3 = cachep->nodelists[node];
1310
1311 if (!l3)
1312 goto free_array_cache;
1313
1314 spin_lock_irq(&l3->list_lock);
1315
1316 /* Free limit for this kmem_list3 */
1317 l3->free_limit -= cachep->batchcount;
1318 if (nc)
1319 free_block(cachep, nc->entry, nc->avail, node);
1320
1321 if (!cpus_empty(mask)) {
1322 spin_unlock_irq(&l3->list_lock);
1323 goto free_array_cache;
1324 }
1325
1326 shared = l3->shared;
1327 if (shared) {
1328 free_block(cachep, shared->entry,
1329 shared->avail, node);
1330 l3->shared = NULL;
1331 }
1332
1333 alien = l3->alien;
1334 l3->alien = NULL;
1335
1336 spin_unlock_irq(&l3->list_lock);
1337
1338 kfree(shared);
1339 if (alien) {
1340 drain_alien_cache(cachep, alien);
1341 free_alien_cache(alien);
1342 }
1343 free_array_cache:
1344 kfree(nc);
1345 }
1346 /*
1347 * In the previous loop, all the objects were freed to
1348 * the respective cache's slabs, now we can go ahead and
1349 * shrink each nodelist to its limit.
1350 */
1351 list_for_each_entry(cachep, &cache_chain, next) {
1352 l3 = cachep->nodelists[node];
1353 if (!l3)
1354 continue;
1355 drain_freelist(cachep, l3, l3->free_objects);
1356 }
1357 mutex_unlock(&cache_chain_mutex);
1358 break;
1359 }
1360 return NOTIFY_OK;
1361 bad:
1362 return NOTIFY_BAD;
1363 }
1364
1365 static struct notifier_block __cpuinitdata cpucache_notifier = {
1366 &cpuup_callback, NULL, 0
1367 };
1368
1369 /*
1370 * swap the static kmem_list3 with kmalloced memory
1371 */
1372 static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1373 int nodeid)
1374 {
1375 struct kmem_list3 *ptr;
1376
1377 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1378 BUG_ON(!ptr);
1379
1380 local_irq_disable();
1381 memcpy(ptr, list, sizeof(struct kmem_list3));
1382 /*
1383 * Do not assume that spinlocks can be initialized via memcpy:
1384 */
1385 spin_lock_init(&ptr->list_lock);
1386
1387 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1388 cachep->nodelists[nodeid] = ptr;
1389 local_irq_enable();
1390 }
1391
1392 /*
1393 * Initialisation. Called after the page allocator have been initialised and
1394 * before smp_init().
1395 */
1396 void __init kmem_cache_init(void)
1397 {
1398 size_t left_over;
1399 struct cache_sizes *sizes;
1400 struct cache_names *names;
1401 int i;
1402 int order;
1403 int node;
1404
1405 if (num_possible_nodes() == 1)
1406 use_alien_caches = 0;
1407
1408 for (i = 0; i < NUM_INIT_LISTS; i++) {
1409 kmem_list3_init(&initkmem_list3[i]);
1410 if (i < MAX_NUMNODES)
1411 cache_cache.nodelists[i] = NULL;
1412 }
1413
1414 /*
1415 * Fragmentation resistance on low memory - only use bigger
1416 * page orders on machines with more than 32MB of memory.
1417 */
1418 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1419 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1420
1421 /* Bootstrap is tricky, because several objects are allocated
1422 * from caches that do not exist yet:
1423 * 1) initialize the cache_cache cache: it contains the struct
1424 * kmem_cache structures of all caches, except cache_cache itself:
1425 * cache_cache is statically allocated.
1426 * Initially an __init data area is used for the head array and the
1427 * kmem_list3 structures, it's replaced with a kmalloc allocated
1428 * array at the end of the bootstrap.
1429 * 2) Create the first kmalloc cache.
1430 * The struct kmem_cache for the new cache is allocated normally.
1431 * An __init data area is used for the head array.
1432 * 3) Create the remaining kmalloc caches, with minimally sized
1433 * head arrays.
1434 * 4) Replace the __init data head arrays for cache_cache and the first
1435 * kmalloc cache with kmalloc allocated arrays.
1436 * 5) Replace the __init data for kmem_list3 for cache_cache and
1437 * the other cache's with kmalloc allocated memory.
1438 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1439 */
1440
1441 node = numa_node_id();
1442
1443 /* 1) create the cache_cache */
1444 INIT_LIST_HEAD(&cache_chain);
1445 list_add(&cache_cache.next, &cache_chain);
1446 cache_cache.colour_off = cache_line_size();
1447 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1448 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE];
1449
1450 /*
1451 * struct kmem_cache size depends on nr_node_ids, which
1452 * can be less than MAX_NUMNODES.
1453 */
1454 cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
1455 nr_node_ids * sizeof(struct kmem_list3 *);
1456 #if DEBUG
1457 cache_cache.obj_size = cache_cache.buffer_size;
1458 #endif
1459 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1460 cache_line_size());
1461 cache_cache.reciprocal_buffer_size =
1462 reciprocal_value(cache_cache.buffer_size);
1463
1464 for (order = 0; order < MAX_ORDER; order++) {
1465 cache_estimate(order, cache_cache.buffer_size,
1466 cache_line_size(), 0, &left_over, &cache_cache.num);
1467 if (cache_cache.num)
1468 break;
1469 }
1470 BUG_ON(!cache_cache.num);
1471 cache_cache.gfporder = order;
1472 cache_cache.colour = left_over / cache_cache.colour_off;
1473 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1474 sizeof(struct slab), cache_line_size());
1475
1476 /* 2+3) create the kmalloc caches */
1477 sizes = malloc_sizes;
1478 names = cache_names;
1479
1480 /*
1481 * Initialize the caches that provide memory for the array cache and the
1482 * kmem_list3 structures first. Without this, further allocations will
1483 * bug.
1484 */
1485
1486 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1487 sizes[INDEX_AC].cs_size,
1488 ARCH_KMALLOC_MINALIGN,
1489 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1490 NULL, NULL);
1491
1492 if (INDEX_AC != INDEX_L3) {
1493 sizes[INDEX_L3].cs_cachep =
1494 kmem_cache_create(names[INDEX_L3].name,
1495 sizes[INDEX_L3].cs_size,
1496 ARCH_KMALLOC_MINALIGN,
1497 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1498 NULL, NULL);
1499 }
1500
1501 slab_early_init = 0;
1502
1503 while (sizes->cs_size != ULONG_MAX) {
1504 /*
1505 * For performance, all the general caches are L1 aligned.
1506 * This should be particularly beneficial on SMP boxes, as it
1507 * eliminates "false sharing".
1508 * Note for systems short on memory removing the alignment will
1509 * allow tighter packing of the smaller caches.
1510 */
1511 if (!sizes->cs_cachep) {
1512 sizes->cs_cachep = kmem_cache_create(names->name,
1513 sizes->cs_size,
1514 ARCH_KMALLOC_MINALIGN,
1515 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1516 NULL, NULL);
1517 }
1518 #ifdef CONFIG_ZONE_DMA
1519 sizes->cs_dmacachep = kmem_cache_create(
1520 names->name_dma,
1521 sizes->cs_size,
1522 ARCH_KMALLOC_MINALIGN,
1523 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1524 SLAB_PANIC,
1525 NULL, NULL);
1526 #endif
1527 sizes++;
1528 names++;
1529 }
1530 /* 4) Replace the bootstrap head arrays */
1531 {
1532 struct array_cache *ptr;
1533
1534 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1535
1536 local_irq_disable();
1537 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1538 memcpy(ptr, cpu_cache_get(&cache_cache),
1539 sizeof(struct arraycache_init));
1540 /*
1541 * Do not assume that spinlocks can be initialized via memcpy:
1542 */
1543 spin_lock_init(&ptr->lock);
1544
1545 cache_cache.array[smp_processor_id()] = ptr;
1546 local_irq_enable();
1547
1548 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1549
1550 local_irq_disable();
1551 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1552 != &initarray_generic.cache);
1553 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1554 sizeof(struct arraycache_init));
1555 /*
1556 * Do not assume that spinlocks can be initialized via memcpy:
1557 */
1558 spin_lock_init(&ptr->lock);
1559
1560 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1561 ptr;
1562 local_irq_enable();
1563 }
1564 /* 5) Replace the bootstrap kmem_list3's */
1565 {
1566 int nid;
1567
1568 /* Replace the static kmem_list3 structures for the boot cpu */
1569 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], node);
1570
1571 for_each_online_node(nid) {
1572 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1573 &initkmem_list3[SIZE_AC + nid], nid);
1574
1575 if (INDEX_AC != INDEX_L3) {
1576 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1577 &initkmem_list3[SIZE_L3 + nid], nid);
1578 }
1579 }
1580 }
1581
1582 /* 6) resize the head arrays to their final sizes */
1583 {
1584 struct kmem_cache *cachep;
1585 mutex_lock(&cache_chain_mutex);
1586 list_for_each_entry(cachep, &cache_chain, next)
1587 if (enable_cpucache(cachep))
1588 BUG();
1589 mutex_unlock(&cache_chain_mutex);
1590 }
1591
1592 /* Annotate slab for lockdep -- annotate the malloc caches */
1593 init_lock_keys();
1594
1595
1596 /* Done! */
1597 g_cpucache_up = FULL;
1598
1599 /*
1600 * Register a cpu startup notifier callback that initializes
1601 * cpu_cache_get for all new cpus
1602 */
1603 register_cpu_notifier(&cpucache_notifier);
1604
1605 /*
1606 * The reap timers are started later, with a module init call: That part
1607 * of the kernel is not yet operational.
1608 */
1609 }
1610
1611 static int __init cpucache_init(void)
1612 {
1613 int cpu;
1614
1615 /*
1616 * Register the timers that return unneeded pages to the page allocator
1617 */
1618 for_each_online_cpu(cpu)
1619 start_cpu_timer(cpu);
1620 return 0;
1621 }
1622 __initcall(cpucache_init);
1623
1624 /*
1625 * Interface to system's page allocator. No need to hold the cache-lock.
1626 *
1627 * If we requested dmaable memory, we will get it. Even if we
1628 * did not request dmaable memory, we might get it, but that
1629 * would be relatively rare and ignorable.
1630 */
1631 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1632 {
1633 struct page *page;
1634 int nr_pages;
1635 int i;
1636
1637 #ifndef CONFIG_MMU
1638 /*
1639 * Nommu uses slab's for process anonymous memory allocations, and thus
1640 * requires __GFP_COMP to properly refcount higher order allocations
1641 */
1642 flags |= __GFP_COMP;
1643 #endif
1644
1645 flags |= cachep->gfpflags;
1646
1647 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1648 if (!page)
1649 return NULL;
1650
1651 nr_pages = (1 << cachep->gfporder);
1652 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1653 add_zone_page_state(page_zone(page),
1654 NR_SLAB_RECLAIMABLE, nr_pages);
1655 else
1656 add_zone_page_state(page_zone(page),
1657 NR_SLAB_UNRECLAIMABLE, nr_pages);
1658 for (i = 0; i < nr_pages; i++)
1659 __SetPageSlab(page + i);
1660 return page_address(page);
1661 }
1662
1663 /*
1664 * Interface to system's page release.
1665 */
1666 static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1667 {
1668 unsigned long i = (1 << cachep->gfporder);
1669 struct page *page = virt_to_page(addr);
1670 const unsigned long nr_freed = i;
1671
1672 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1673 sub_zone_page_state(page_zone(page),
1674 NR_SLAB_RECLAIMABLE, nr_freed);
1675 else
1676 sub_zone_page_state(page_zone(page),
1677 NR_SLAB_UNRECLAIMABLE, nr_freed);
1678 while (i--) {
1679 BUG_ON(!PageSlab(page));
1680 __ClearPageSlab(page);
1681 page++;
1682 }
1683 if (current->reclaim_state)
1684 current->reclaim_state->reclaimed_slab += nr_freed;
1685 free_pages((unsigned long)addr, cachep->gfporder);
1686 }
1687
1688 static void kmem_rcu_free(struct rcu_head *head)
1689 {
1690 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1691 struct kmem_cache *cachep = slab_rcu->cachep;
1692
1693 kmem_freepages(cachep, slab_rcu->addr);
1694 if (OFF_SLAB(cachep))
1695 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1696 }
1697
1698 #if DEBUG
1699
1700 #ifdef CONFIG_DEBUG_PAGEALLOC
1701 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1702 unsigned long caller)
1703 {
1704 int size = obj_size(cachep);
1705
1706 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1707
1708 if (size < 5 * sizeof(unsigned long))
1709 return;
1710
1711 *addr++ = 0x12345678;
1712 *addr++ = caller;
1713 *addr++ = smp_processor_id();
1714 size -= 3 * sizeof(unsigned long);
1715 {
1716 unsigned long *sptr = &caller;
1717 unsigned long svalue;
1718
1719 while (!kstack_end(sptr)) {
1720 svalue = *sptr++;
1721 if (kernel_text_address(svalue)) {
1722 *addr++ = svalue;
1723 size -= sizeof(unsigned long);
1724 if (size <= sizeof(unsigned long))
1725 break;
1726 }
1727 }
1728
1729 }
1730 *addr++ = 0x87654321;
1731 }
1732 #endif
1733
1734 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1735 {
1736 int size = obj_size(cachep);
1737 addr = &((char *)addr)[obj_offset(cachep)];
1738
1739 memset(addr, val, size);
1740 *(unsigned char *)(addr + size - 1) = POISON_END;
1741 }
1742
1743 static void dump_line(char *data, int offset, int limit)
1744 {
1745 int i;
1746 unsigned char error = 0;
1747 int bad_count = 0;
1748
1749 printk(KERN_ERR "%03x:", offset);
1750 for (i = 0; i < limit; i++) {
1751 if (data[offset + i] != POISON_FREE) {
1752 error = data[offset + i];
1753 bad_count++;
1754 }
1755 printk(" %02x", (unsigned char)data[offset + i]);
1756 }
1757 printk("\n");
1758
1759 if (bad_count == 1) {
1760 error ^= POISON_FREE;
1761 if (!(error & (error - 1))) {
1762 printk(KERN_ERR "Single bit error detected. Probably "
1763 "bad RAM.\n");
1764 #ifdef CONFIG_X86
1765 printk(KERN_ERR "Run memtest86+ or a similar memory "
1766 "test tool.\n");
1767 #else
1768 printk(KERN_ERR "Run a memory test tool.\n");
1769 #endif
1770 }
1771 }
1772 }
1773 #endif
1774
1775 #if DEBUG
1776
1777 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1778 {
1779 int i, size;
1780 char *realobj;
1781
1782 if (cachep->flags & SLAB_RED_ZONE) {
1783 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1784 *dbg_redzone1(cachep, objp),
1785 *dbg_redzone2(cachep, objp));
1786 }
1787
1788 if (cachep->flags & SLAB_STORE_USER) {
1789 printk(KERN_ERR "Last user: [<%p>]",
1790 *dbg_userword(cachep, objp));
1791 print_symbol("(%s)",
1792 (unsigned long)*dbg_userword(cachep, objp));
1793 printk("\n");
1794 }
1795 realobj = (char *)objp + obj_offset(cachep);
1796 size = obj_size(cachep);
1797 for (i = 0; i < size && lines; i += 16, lines--) {
1798 int limit;
1799 limit = 16;
1800 if (i + limit > size)
1801 limit = size - i;
1802 dump_line(realobj, i, limit);
1803 }
1804 }
1805
1806 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1807 {
1808 char *realobj;
1809 int size, i;
1810 int lines = 0;
1811
1812 realobj = (char *)objp + obj_offset(cachep);
1813 size = obj_size(cachep);
1814
1815 for (i = 0; i < size; i++) {
1816 char exp = POISON_FREE;
1817 if (i == size - 1)
1818 exp = POISON_END;
1819 if (realobj[i] != exp) {
1820 int limit;
1821 /* Mismatch ! */
1822 /* Print header */
1823 if (lines == 0) {
1824 printk(KERN_ERR
1825 "Slab corruption: %s start=%p, len=%d\n",
1826 cachep->name, realobj, size);
1827 print_objinfo(cachep, objp, 0);
1828 }
1829 /* Hexdump the affected line */
1830 i = (i / 16) * 16;
1831 limit = 16;
1832 if (i + limit > size)
1833 limit = size - i;
1834 dump_line(realobj, i, limit);
1835 i += 16;
1836 lines++;
1837 /* Limit to 5 lines */
1838 if (lines > 5)
1839 break;
1840 }
1841 }
1842 if (lines != 0) {
1843 /* Print some data about the neighboring objects, if they
1844 * exist:
1845 */
1846 struct slab *slabp = virt_to_slab(objp);
1847 unsigned int objnr;
1848
1849 objnr = obj_to_index(cachep, slabp, objp);
1850 if (objnr) {
1851 objp = index_to_obj(cachep, slabp, objnr - 1);
1852 realobj = (char *)objp + obj_offset(cachep);
1853 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1854 realobj, size);
1855 print_objinfo(cachep, objp, 2);
1856 }
1857 if (objnr + 1 < cachep->num) {
1858 objp = index_to_obj(cachep, slabp, objnr + 1);
1859 realobj = (char *)objp + obj_offset(cachep);
1860 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1861 realobj, size);
1862 print_objinfo(cachep, objp, 2);
1863 }
1864 }
1865 }
1866 #endif
1867
1868 #if DEBUG
1869 /**
1870 * slab_destroy_objs - destroy a slab and its objects
1871 * @cachep: cache pointer being destroyed
1872 * @slabp: slab pointer being destroyed
1873 *
1874 * Call the registered destructor for each object in a slab that is being
1875 * destroyed.
1876 */
1877 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1878 {
1879 int i;
1880 for (i = 0; i < cachep->num; i++) {
1881 void *objp = index_to_obj(cachep, slabp, i);
1882
1883 if (cachep->flags & SLAB_POISON) {
1884 #ifdef CONFIG_DEBUG_PAGEALLOC
1885 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1886 OFF_SLAB(cachep))
1887 kernel_map_pages(virt_to_page(objp),
1888 cachep->buffer_size / PAGE_SIZE, 1);
1889 else
1890 check_poison_obj(cachep, objp);
1891 #else
1892 check_poison_obj(cachep, objp);
1893 #endif
1894 }
1895 if (cachep->flags & SLAB_RED_ZONE) {
1896 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1897 slab_error(cachep, "start of a freed object "
1898 "was overwritten");
1899 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1900 slab_error(cachep, "end of a freed object "
1901 "was overwritten");
1902 }
1903 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
1904 (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
1905 }
1906 }
1907 #else
1908 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1909 {
1910 if (cachep->dtor) {
1911 int i;
1912 for (i = 0; i < cachep->num; i++) {
1913 void *objp = index_to_obj(cachep, slabp, i);
1914 (cachep->dtor) (objp, cachep, 0);
1915 }
1916 }
1917 }
1918 #endif
1919
1920 /**
1921 * slab_destroy - destroy and release all objects in a slab
1922 * @cachep: cache pointer being destroyed
1923 * @slabp: slab pointer being destroyed
1924 *
1925 * Destroy all the objs in a slab, and release the mem back to the system.
1926 * Before calling the slab must have been unlinked from the cache. The
1927 * cache-lock is not held/needed.
1928 */
1929 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1930 {
1931 void *addr = slabp->s_mem - slabp->colouroff;
1932
1933 slab_destroy_objs(cachep, slabp);
1934 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1935 struct slab_rcu *slab_rcu;
1936
1937 slab_rcu = (struct slab_rcu *)slabp;
1938 slab_rcu->cachep = cachep;
1939 slab_rcu->addr = addr;
1940 call_rcu(&slab_rcu->head, kmem_rcu_free);
1941 } else {
1942 kmem_freepages(cachep, addr);
1943 if (OFF_SLAB(cachep))
1944 kmem_cache_free(cachep->slabp_cache, slabp);
1945 }
1946 }
1947
1948 /*
1949 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1950 * size of kmem_list3.
1951 */
1952 static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1953 {
1954 int node;
1955
1956 for_each_online_node(node) {
1957 cachep->nodelists[node] = &initkmem_list3[index + node];
1958 cachep->nodelists[node]->next_reap = jiffies +
1959 REAPTIMEOUT_LIST3 +
1960 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1961 }
1962 }
1963
1964 static void __kmem_cache_destroy(struct kmem_cache *cachep)
1965 {
1966 int i;
1967 struct kmem_list3 *l3;
1968
1969 for_each_online_cpu(i)
1970 kfree(cachep->array[i]);
1971
1972 /* NUMA: free the list3 structures */
1973 for_each_online_node(i) {
1974 l3 = cachep->nodelists[i];
1975 if (l3) {
1976 kfree(l3->shared);
1977 free_alien_cache(l3->alien);
1978 kfree(l3);
1979 }
1980 }
1981 kmem_cache_free(&cache_cache, cachep);
1982 }
1983
1984
1985 /**
1986 * calculate_slab_order - calculate size (page order) of slabs
1987 * @cachep: pointer to the cache that is being created
1988 * @size: size of objects to be created in this cache.
1989 * @align: required alignment for the objects.
1990 * @flags: slab allocation flags
1991 *
1992 * Also calculates the number of objects per slab.
1993 *
1994 * This could be made much more intelligent. For now, try to avoid using
1995 * high order pages for slabs. When the gfp() functions are more friendly
1996 * towards high-order requests, this should be changed.
1997 */
1998 static size_t calculate_slab_order(struct kmem_cache *cachep,
1999 size_t size, size_t align, unsigned long flags)
2000 {
2001 unsigned long offslab_limit;
2002 size_t left_over = 0;
2003 int gfporder;
2004
2005 for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
2006 unsigned int num;
2007 size_t remainder;
2008
2009 cache_estimate(gfporder, size, align, flags, &remainder, &num);
2010 if (!num)
2011 continue;
2012
2013 if (flags & CFLGS_OFF_SLAB) {
2014 /*
2015 * Max number of objs-per-slab for caches which
2016 * use off-slab slabs. Needed to avoid a possible
2017 * looping condition in cache_grow().
2018 */
2019 offslab_limit = size - sizeof(struct slab);
2020 offslab_limit /= sizeof(kmem_bufctl_t);
2021
2022 if (num > offslab_limit)
2023 break;
2024 }
2025
2026 /* Found something acceptable - save it away */
2027 cachep->num = num;
2028 cachep->gfporder = gfporder;
2029 left_over = remainder;
2030
2031 /*
2032 * A VFS-reclaimable slab tends to have most allocations
2033 * as GFP_NOFS and we really don't want to have to be allocating
2034 * higher-order pages when we are unable to shrink dcache.
2035 */
2036 if (flags & SLAB_RECLAIM_ACCOUNT)
2037 break;
2038
2039 /*
2040 * Large number of objects is good, but very large slabs are
2041 * currently bad for the gfp()s.
2042 */
2043 if (gfporder >= slab_break_gfp_order)
2044 break;
2045
2046 /*
2047 * Acceptable internal fragmentation?
2048 */
2049 if (left_over * 8 <= (PAGE_SIZE << gfporder))
2050 break;
2051 }
2052 return left_over;
2053 }
2054
2055 static int setup_cpu_cache(struct kmem_cache *cachep)
2056 {
2057 if (g_cpucache_up == FULL)
2058 return enable_cpucache(cachep);
2059
2060 if (g_cpucache_up == NONE) {
2061 /*
2062 * Note: the first kmem_cache_create must create the cache
2063 * that's used by kmalloc(24), otherwise the creation of
2064 * further caches will BUG().
2065 */
2066 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2067
2068 /*
2069 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2070 * the first cache, then we need to set up all its list3s,
2071 * otherwise the creation of further caches will BUG().
2072 */
2073 set_up_list3s(cachep, SIZE_AC);
2074 if (INDEX_AC == INDEX_L3)
2075 g_cpucache_up = PARTIAL_L3;
2076 else
2077 g_cpucache_up = PARTIAL_AC;
2078 } else {
2079 cachep->array[smp_processor_id()] =
2080 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
2081
2082 if (g_cpucache_up == PARTIAL_AC) {
2083 set_up_list3s(cachep, SIZE_L3);
2084 g_cpucache_up = PARTIAL_L3;
2085 } else {
2086 int node;
2087 for_each_online_node(node) {
2088 cachep->nodelists[node] =
2089 kmalloc_node(sizeof(struct kmem_list3),
2090 GFP_KERNEL, node);
2091 BUG_ON(!cachep->nodelists[node]);
2092 kmem_list3_init(cachep->nodelists[node]);
2093 }
2094 }
2095 }
2096 cachep->nodelists[numa_node_id()]->next_reap =
2097 jiffies + REAPTIMEOUT_LIST3 +
2098 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2099
2100 cpu_cache_get(cachep)->avail = 0;
2101 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2102 cpu_cache_get(cachep)->batchcount = 1;
2103 cpu_cache_get(cachep)->touched = 0;
2104 cachep->batchcount = 1;
2105 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2106 return 0;
2107 }
2108
2109 /**
2110 * kmem_cache_create - Create a cache.
2111 * @name: A string which is used in /proc/slabinfo to identify this cache.
2112 * @size: The size of objects to be created in this cache.
2113 * @align: The required alignment for the objects.
2114 * @flags: SLAB flags
2115 * @ctor: A constructor for the objects.
2116 * @dtor: A destructor for the objects.
2117 *
2118 * Returns a ptr to the cache on success, NULL on failure.
2119 * Cannot be called within a int, but can be interrupted.
2120 * The @ctor is run when new pages are allocated by the cache
2121 * and the @dtor is run before the pages are handed back.
2122 *
2123 * @name must be valid until the cache is destroyed. This implies that
2124 * the module calling this has to destroy the cache before getting unloaded.
2125 *
2126 * The flags are
2127 *
2128 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2129 * to catch references to uninitialised memory.
2130 *
2131 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2132 * for buffer overruns.
2133 *
2134 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2135 * cacheline. This can be beneficial if you're counting cycles as closely
2136 * as davem.
2137 */
2138 struct kmem_cache *
2139 kmem_cache_create (const char *name, size_t size, size_t align,
2140 unsigned long flags,
2141 void (*ctor)(void*, struct kmem_cache *, unsigned long),
2142 void (*dtor)(void*, struct kmem_cache *, unsigned long))
2143 {
2144 size_t left_over, slab_size, ralign;
2145 struct kmem_cache *cachep = NULL, *pc;
2146
2147 /*
2148 * Sanity checks... these are all serious usage bugs.
2149 */
2150 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2151 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
2152 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
2153 name);
2154 BUG();
2155 }
2156
2157 /*
2158 * We use cache_chain_mutex to ensure a consistent view of
2159 * cpu_online_map as well. Please see cpuup_callback
2160 */
2161 mutex_lock(&cache_chain_mutex);
2162
2163 list_for_each_entry(pc, &cache_chain, next) {
2164 char tmp;
2165 int res;
2166
2167 /*
2168 * This happens when the module gets unloaded and doesn't
2169 * destroy its slab cache and no-one else reuses the vmalloc
2170 * area of the module. Print a warning.
2171 */
2172 res = probe_kernel_address(pc->name, tmp);
2173 if (res) {
2174 printk(KERN_ERR
2175 "SLAB: cache with size %d has lost its name\n",
2176 pc->buffer_size);
2177 continue;
2178 }
2179
2180 if (!strcmp(pc->name, name)) {
2181 printk(KERN_ERR
2182 "kmem_cache_create: duplicate cache %s\n", name);
2183 dump_stack();
2184 goto oops;
2185 }
2186 }
2187
2188 #if DEBUG
2189 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
2190 #if FORCED_DEBUG
2191 /*
2192 * Enable redzoning and last user accounting, except for caches with
2193 * large objects, if the increased size would increase the object size
2194 * above the next power of two: caches with object sizes just above a
2195 * power of two have a significant amount of internal fragmentation.
2196 */
2197 if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
2198 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2199 if (!(flags & SLAB_DESTROY_BY_RCU))
2200 flags |= SLAB_POISON;
2201 #endif
2202 if (flags & SLAB_DESTROY_BY_RCU)
2203 BUG_ON(flags & SLAB_POISON);
2204 #endif
2205 if (flags & SLAB_DESTROY_BY_RCU)
2206 BUG_ON(dtor);
2207
2208 /*
2209 * Always checks flags, a caller might be expecting debug support which
2210 * isn't available.
2211 */
2212 BUG_ON(flags & ~CREATE_MASK);
2213
2214 /*
2215 * Check that size is in terms of words. This is needed to avoid
2216 * unaligned accesses for some archs when redzoning is used, and makes
2217 * sure any on-slab bufctl's are also correctly aligned.
2218 */
2219 if (size & (BYTES_PER_WORD - 1)) {
2220 size += (BYTES_PER_WORD - 1);
2221 size &= ~(BYTES_PER_WORD - 1);
2222 }
2223
2224 /* calculate the final buffer alignment: */
2225
2226 /* 1) arch recommendation: can be overridden for debug */
2227 if (flags & SLAB_HWCACHE_ALIGN) {
2228 /*
2229 * Default alignment: as specified by the arch code. Except if
2230 * an object is really small, then squeeze multiple objects into
2231 * one cacheline.
2232 */
2233 ralign = cache_line_size();
2234 while (size <= ralign / 2)
2235 ralign /= 2;
2236 } else {
2237 ralign = BYTES_PER_WORD;
2238 }
2239
2240 /*
2241 * Redzoning and user store require word alignment. Note this will be
2242 * overridden by architecture or caller mandated alignment if either
2243 * is greater than BYTES_PER_WORD.
2244 */
2245 if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER)
2246 ralign = __alignof__(unsigned long long);
2247
2248 /* 2) arch mandated alignment */
2249 if (ralign < ARCH_SLAB_MINALIGN) {
2250 ralign = ARCH_SLAB_MINALIGN;
2251 }
2252 /* 3) caller mandated alignment */
2253 if (ralign < align) {
2254 ralign = align;
2255 }
2256 /* disable debug if necessary */
2257 if (ralign > __alignof__(unsigned long long))
2258 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2259 /*
2260 * 4) Store it.
2261 */
2262 align = ralign;
2263
2264 /* Get cache's description obj. */
2265 cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
2266 if (!cachep)
2267 goto oops;
2268
2269 #if DEBUG
2270 cachep->obj_size = size;
2271
2272 /*
2273 * Both debugging options require word-alignment which is calculated
2274 * into align above.
2275 */
2276 if (flags & SLAB_RED_ZONE) {
2277 /* add space for red zone words */
2278 cachep->obj_offset += sizeof(unsigned long long);
2279 size += 2 * sizeof(unsigned long long);
2280 }
2281 if (flags & SLAB_STORE_USER) {
2282 /* user store requires one word storage behind the end of
2283 * the real object.
2284 */
2285 size += BYTES_PER_WORD;
2286 }
2287 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2288 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2289 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2290 cachep->obj_offset += PAGE_SIZE - size;
2291 size = PAGE_SIZE;
2292 }
2293 #endif
2294 #endif
2295
2296 /*
2297 * Determine if the slab management is 'on' or 'off' slab.
2298 * (bootstrapping cannot cope with offslab caches so don't do
2299 * it too early on.)
2300 */
2301 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
2302 /*
2303 * Size is large, assume best to place the slab management obj
2304 * off-slab (should allow better packing of objs).
2305 */
2306 flags |= CFLGS_OFF_SLAB;
2307
2308 size = ALIGN(size, align);
2309
2310 left_over = calculate_slab_order(cachep, size, align, flags);
2311
2312 if (!cachep->num) {
2313 printk(KERN_ERR
2314 "kmem_cache_create: couldn't create cache %s.\n", name);
2315 kmem_cache_free(&cache_cache, cachep);
2316 cachep = NULL;
2317 goto oops;
2318 }
2319 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2320 + sizeof(struct slab), align);
2321
2322 /*
2323 * If the slab has been placed off-slab, and we have enough space then
2324 * move it on-slab. This is at the expense of any extra colouring.
2325 */
2326 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2327 flags &= ~CFLGS_OFF_SLAB;
2328 left_over -= slab_size;
2329 }
2330
2331 if (flags & CFLGS_OFF_SLAB) {
2332 /* really off slab. No need for manual alignment */
2333 slab_size =
2334 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2335 }
2336
2337 cachep->colour_off = cache_line_size();
2338 /* Offset must be a multiple of the alignment. */
2339 if (cachep->colour_off < align)
2340 cachep->colour_off = align;
2341 cachep->colour = left_over / cachep->colour_off;
2342 cachep->slab_size = slab_size;
2343 cachep->flags = flags;
2344 cachep->gfpflags = 0;
2345 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2346 cachep->gfpflags |= GFP_DMA;
2347 cachep->buffer_size = size;
2348 cachep->reciprocal_buffer_size = reciprocal_value(size);
2349
2350 if (flags & CFLGS_OFF_SLAB) {
2351 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2352 /*
2353 * This is a possibility for one of the malloc_sizes caches.
2354 * But since we go off slab only for object size greater than
2355 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2356 * this should not happen at all.
2357 * But leave a BUG_ON for some lucky dude.
2358 */
2359 BUG_ON(!cachep->slabp_cache);
2360 }
2361 cachep->ctor = ctor;
2362 cachep->dtor = dtor;
2363 cachep->name = name;
2364
2365 if (setup_cpu_cache(cachep)) {
2366 __kmem_cache_destroy(cachep);
2367 cachep = NULL;
2368 goto oops;
2369 }
2370
2371 /* cache setup completed, link it into the list */
2372 list_add(&cachep->next, &cache_chain);
2373 oops:
2374 if (!cachep && (flags & SLAB_PANIC))
2375 panic("kmem_cache_create(): failed to create slab `%s'\n",
2376 name);
2377 mutex_unlock(&cache_chain_mutex);
2378 return cachep;
2379 }
2380 EXPORT_SYMBOL(kmem_cache_create);
2381
2382 #if DEBUG
2383 static void check_irq_off(void)
2384 {
2385 BUG_ON(!irqs_disabled());
2386 }
2387
2388 static void check_irq_on(void)
2389 {
2390 BUG_ON(irqs_disabled());
2391 }
2392
2393 static void check_spinlock_acquired(struct kmem_cache *cachep)
2394 {
2395 #ifdef CONFIG_SMP
2396 check_irq_off();
2397 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
2398 #endif
2399 }
2400
2401 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2402 {
2403 #ifdef CONFIG_SMP
2404 check_irq_off();
2405 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2406 #endif
2407 }
2408
2409 #else
2410 #define check_irq_off() do { } while(0)
2411 #define check_irq_on() do { } while(0)
2412 #define check_spinlock_acquired(x) do { } while(0)
2413 #define check_spinlock_acquired_node(x, y) do { } while(0)
2414 #endif
2415
2416 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2417 struct array_cache *ac,
2418 int force, int node);
2419
2420 static void do_drain(void *arg)
2421 {
2422 struct kmem_cache *cachep = arg;
2423 struct array_cache *ac;
2424 int node = numa_node_id();
2425
2426 check_irq_off();
2427 ac = cpu_cache_get(cachep);
2428 spin_lock(&cachep->nodelists[node]->list_lock);
2429 free_block(cachep, ac->entry, ac->avail, node);
2430 spin_unlock(&cachep->nodelists[node]->list_lock);
2431 ac->avail = 0;
2432 }
2433
2434 static void drain_cpu_caches(struct kmem_cache *cachep)
2435 {
2436 struct kmem_list3 *l3;
2437 int node;
2438
2439 on_each_cpu(do_drain, cachep, 1, 1);
2440 check_irq_on();
2441 for_each_online_node(node) {
2442 l3 = cachep->nodelists[node];
2443 if (l3 && l3->alien)
2444 drain_alien_cache(cachep, l3->alien);
2445 }
2446
2447 for_each_online_node(node) {
2448 l3 = cachep->nodelists[node];
2449 if (l3)
2450 drain_array(cachep, l3, l3->shared, 1, node);
2451 }
2452 }
2453
2454 /*
2455 * Remove slabs from the list of free slabs.
2456 * Specify the number of slabs to drain in tofree.
2457 *
2458 * Returns the actual number of slabs released.
2459 */
2460 static int drain_freelist(struct kmem_cache *cache,
2461 struct kmem_list3 *l3, int tofree)
2462 {
2463 struct list_head *p;
2464 int nr_freed;
2465 struct slab *slabp;
2466
2467 nr_freed = 0;
2468 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
2469
2470 spin_lock_irq(&l3->list_lock);
2471 p = l3->slabs_free.prev;
2472 if (p == &l3->slabs_free) {
2473 spin_unlock_irq(&l3->list_lock);
2474 goto out;
2475 }
2476
2477 slabp = list_entry(p, struct slab, list);
2478 #if DEBUG
2479 BUG_ON(slabp->inuse);
2480 #endif
2481 list_del(&slabp->list);
2482 /*
2483 * Safe to drop the lock. The slab is no longer linked
2484 * to the cache.
2485 */
2486 l3->free_objects -= cache->num;
2487 spin_unlock_irq(&l3->list_lock);
2488 slab_destroy(cache, slabp);
2489 nr_freed++;
2490 }
2491 out:
2492 return nr_freed;
2493 }
2494
2495 /* Called with cache_chain_mutex held to protect against cpu hotplug */
2496 static int __cache_shrink(struct kmem_cache *cachep)
2497 {
2498 int ret = 0, i = 0;
2499 struct kmem_list3 *l3;
2500
2501 drain_cpu_caches(cachep);
2502
2503 check_irq_on();
2504 for_each_online_node(i) {
2505 l3 = cachep->nodelists[i];
2506 if (!l3)
2507 continue;
2508
2509 drain_freelist(cachep, l3, l3->free_objects);
2510
2511 ret += !list_empty(&l3->slabs_full) ||
2512 !list_empty(&l3->slabs_partial);
2513 }
2514 return (ret ? 1 : 0);
2515 }
2516
2517 /**
2518 * kmem_cache_shrink - Shrink a cache.
2519 * @cachep: The cache to shrink.
2520 *
2521 * Releases as many slabs as possible for a cache.
2522 * To help debugging, a zero exit status indicates all slabs were released.
2523 */
2524 int kmem_cache_shrink(struct kmem_cache *cachep)
2525 {
2526 int ret;
2527 BUG_ON(!cachep || in_interrupt());
2528
2529 mutex_lock(&cache_chain_mutex);
2530 ret = __cache_shrink(cachep);
2531 mutex_unlock(&cache_chain_mutex);
2532 return ret;
2533 }
2534 EXPORT_SYMBOL(kmem_cache_shrink);
2535
2536 /**
2537 * kmem_cache_destroy - delete a cache
2538 * @cachep: the cache to destroy
2539 *
2540 * Remove a &struct kmem_cache object from the slab cache.
2541 *
2542 * It is expected this function will be called by a module when it is
2543 * unloaded. This will remove the cache completely, and avoid a duplicate
2544 * cache being allocated each time a module is loaded and unloaded, if the
2545 * module doesn't have persistent in-kernel storage across loads and unloads.
2546 *
2547 * The cache must be empty before calling this function.
2548 *
2549 * The caller must guarantee that noone will allocate memory from the cache
2550 * during the kmem_cache_destroy().
2551 */
2552 void kmem_cache_destroy(struct kmem_cache *cachep)
2553 {
2554 BUG_ON(!cachep || in_interrupt());
2555
2556 /* Find the cache in the chain of caches. */
2557 mutex_lock(&cache_chain_mutex);
2558 /*
2559 * the chain is never empty, cache_cache is never destroyed
2560 */
2561 list_del(&cachep->next);
2562 if (__cache_shrink(cachep)) {
2563 slab_error(cachep, "Can't free all objects");
2564 list_add(&cachep->next, &cache_chain);
2565 mutex_unlock(&cache_chain_mutex);
2566 return;
2567 }
2568
2569 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2570 synchronize_rcu();
2571
2572 __kmem_cache_destroy(cachep);
2573 mutex_unlock(&cache_chain_mutex);
2574 }
2575 EXPORT_SYMBOL(kmem_cache_destroy);
2576
2577 /*
2578 * Get the memory for a slab management obj.
2579 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2580 * always come from malloc_sizes caches. The slab descriptor cannot
2581 * come from the same cache which is getting created because,
2582 * when we are searching for an appropriate cache for these
2583 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2584 * If we are creating a malloc_sizes cache here it would not be visible to
2585 * kmem_find_general_cachep till the initialization is complete.
2586 * Hence we cannot have slabp_cache same as the original cache.
2587 */
2588 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2589 int colour_off, gfp_t local_flags,
2590 int nodeid)
2591 {
2592 struct slab *slabp;
2593
2594 if (OFF_SLAB(cachep)) {
2595 /* Slab management obj is off-slab. */
2596 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2597 local_flags & ~GFP_THISNODE, nodeid);
2598 if (!slabp)
2599 return NULL;
2600 } else {
2601 slabp = objp + colour_off;
2602 colour_off += cachep->slab_size;
2603 }
2604 slabp->inuse = 0;
2605 slabp->colouroff = colour_off;
2606 slabp->s_mem = objp + colour_off;
2607 slabp->nodeid = nodeid;
2608 return slabp;
2609 }
2610
2611 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2612 {
2613 return (kmem_bufctl_t *) (slabp + 1);
2614 }
2615
2616 static void cache_init_objs(struct kmem_cache *cachep,
2617 struct slab *slabp, unsigned long ctor_flags)
2618 {
2619 int i;
2620
2621 for (i = 0; i < cachep->num; i++) {
2622 void *objp = index_to_obj(cachep, slabp, i);
2623 #if DEBUG
2624 /* need to poison the objs? */
2625 if (cachep->flags & SLAB_POISON)
2626 poison_obj(cachep, objp, POISON_FREE);
2627 if (cachep->flags & SLAB_STORE_USER)
2628 *dbg_userword(cachep, objp) = NULL;
2629
2630 if (cachep->flags & SLAB_RED_ZONE) {
2631 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2632 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2633 }
2634 /*
2635 * Constructors are not allowed to allocate memory from the same
2636 * cache which they are a constructor for. Otherwise, deadlock.
2637 * They must also be threaded.
2638 */
2639 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2640 cachep->ctor(objp + obj_offset(cachep), cachep,
2641 ctor_flags);
2642
2643 if (cachep->flags & SLAB_RED_ZONE) {
2644 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2645 slab_error(cachep, "constructor overwrote the"
2646 " end of an object");
2647 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2648 slab_error(cachep, "constructor overwrote the"
2649 " start of an object");
2650 }
2651 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2652 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2653 kernel_map_pages(virt_to_page(objp),
2654 cachep->buffer_size / PAGE_SIZE, 0);
2655 #else
2656 if (cachep->ctor)
2657 cachep->ctor(objp, cachep, ctor_flags);
2658 #endif
2659 slab_bufctl(slabp)[i] = i + 1;
2660 }
2661 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2662 slabp->free = 0;
2663 }
2664
2665 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2666 {
2667 if (CONFIG_ZONE_DMA_FLAG) {
2668 if (flags & GFP_DMA)
2669 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2670 else
2671 BUG_ON(cachep->gfpflags & GFP_DMA);
2672 }
2673 }
2674
2675 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2676 int nodeid)
2677 {
2678 void *objp = index_to_obj(cachep, slabp, slabp->free);
2679 kmem_bufctl_t next;
2680
2681 slabp->inuse++;
2682 next = slab_bufctl(slabp)[slabp->free];
2683 #if DEBUG
2684 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2685 WARN_ON(slabp->nodeid != nodeid);
2686 #endif
2687 slabp->free = next;
2688
2689 return objp;
2690 }
2691
2692 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2693 void *objp, int nodeid)
2694 {
2695 unsigned int objnr = obj_to_index(cachep, slabp, objp);
2696
2697 #if DEBUG
2698 /* Verify that the slab belongs to the intended node */
2699 WARN_ON(slabp->nodeid != nodeid);
2700
2701 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2702 printk(KERN_ERR "slab: double free detected in cache "
2703 "'%s', objp %p\n", cachep->name, objp);
2704 BUG();
2705 }
2706 #endif
2707 slab_bufctl(slabp)[objnr] = slabp->free;
2708 slabp->free = objnr;
2709 slabp->inuse--;
2710 }
2711
2712 /*
2713 * Map pages beginning at addr to the given cache and slab. This is required
2714 * for the slab allocator to be able to lookup the cache and slab of a
2715 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2716 */
2717 static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2718 void *addr)
2719 {
2720 int nr_pages;
2721 struct page *page;
2722
2723 page = virt_to_page(addr);
2724
2725 nr_pages = 1;
2726 if (likely(!PageCompound(page)))
2727 nr_pages <<= cache->gfporder;
2728
2729 do {
2730 page_set_cache(page, cache);
2731 page_set_slab(page, slab);
2732 page++;
2733 } while (--nr_pages);
2734 }
2735
2736 /*
2737 * Grow (by 1) the number of slabs within a cache. This is called by
2738 * kmem_cache_alloc() when there are no active objs left in a cache.
2739 */
2740 static int cache_grow(struct kmem_cache *cachep,
2741 gfp_t flags, int nodeid, void *objp)
2742 {
2743 struct slab *slabp;
2744 size_t offset;
2745 gfp_t local_flags;
2746 unsigned long ctor_flags;
2747 struct kmem_list3 *l3;
2748
2749 /*
2750 * Be lazy and only check for valid flags here, keeping it out of the
2751 * critical path in kmem_cache_alloc().
2752 */
2753 BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK));
2754
2755 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2756 local_flags = (flags & GFP_LEVEL_MASK);
2757 /* Take the l3 list lock to change the colour_next on this node */
2758 check_irq_off();
2759 l3 = cachep->nodelists[nodeid];
2760 spin_lock(&l3->list_lock);
2761
2762 /* Get colour for the slab, and cal the next value. */
2763 offset = l3->colour_next;
2764 l3->colour_next++;
2765 if (l3->colour_next >= cachep->colour)
2766 l3->colour_next = 0;
2767 spin_unlock(&l3->list_lock);
2768
2769 offset *= cachep->colour_off;
2770
2771 if (local_flags & __GFP_WAIT)
2772 local_irq_enable();
2773
2774 /*
2775 * The test for missing atomic flag is performed here, rather than
2776 * the more obvious place, simply to reduce the critical path length
2777 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2778 * will eventually be caught here (where it matters).
2779 */
2780 kmem_flagcheck(cachep, flags);
2781
2782 /*
2783 * Get mem for the objs. Attempt to allocate a physical page from
2784 * 'nodeid'.
2785 */
2786 if (!objp)
2787 objp = kmem_getpages(cachep, flags, nodeid);
2788 if (!objp)
2789 goto failed;
2790
2791 /* Get slab management. */
2792 slabp = alloc_slabmgmt(cachep, objp, offset,
2793 local_flags & ~GFP_THISNODE, nodeid);
2794 if (!slabp)
2795 goto opps1;
2796
2797 slabp->nodeid = nodeid;
2798 slab_map_pages(cachep, slabp, objp);
2799
2800 cache_init_objs(cachep, slabp, ctor_flags);
2801
2802 if (local_flags & __GFP_WAIT)
2803 local_irq_disable();
2804 check_irq_off();
2805 spin_lock(&l3->list_lock);
2806
2807 /* Make slab active. */
2808 list_add_tail(&slabp->list, &(l3->slabs_free));
2809 STATS_INC_GROWN(cachep);
2810 l3->free_objects += cachep->num;
2811 spin_unlock(&l3->list_lock);
2812 return 1;
2813 opps1:
2814 kmem_freepages(cachep, objp);
2815 failed:
2816 if (local_flags & __GFP_WAIT)
2817 local_irq_disable();
2818 return 0;
2819 }
2820
2821 #if DEBUG
2822
2823 /*
2824 * Perform extra freeing checks:
2825 * - detect bad pointers.
2826 * - POISON/RED_ZONE checking
2827 * - destructor calls, for caches with POISON+dtor
2828 */
2829 static void kfree_debugcheck(const void *objp)
2830 {
2831 if (!virt_addr_valid(objp)) {
2832 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2833 (unsigned long)objp);
2834 BUG();
2835 }
2836 }
2837
2838 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2839 {
2840 unsigned long long redzone1, redzone2;
2841
2842 redzone1 = *dbg_redzone1(cache, obj);
2843 redzone2 = *dbg_redzone2(cache, obj);
2844
2845 /*
2846 * Redzone is ok.
2847 */
2848 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2849 return;
2850
2851 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2852 slab_error(cache, "double free detected");
2853 else
2854 slab_error(cache, "memory outside object was overwritten");
2855
2856 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2857 obj, redzone1, redzone2);
2858 }
2859
2860 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2861 void *caller)
2862 {
2863 struct page *page;
2864 unsigned int objnr;
2865 struct slab *slabp;
2866
2867 objp -= obj_offset(cachep);
2868 kfree_debugcheck(objp);
2869 page = virt_to_head_page(objp);
2870
2871 slabp = page_get_slab(page);
2872
2873 if (cachep->flags & SLAB_RED_ZONE) {
2874 verify_redzone_free(cachep, objp);
2875 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2876 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2877 }
2878 if (cachep->flags & SLAB_STORE_USER)
2879 *dbg_userword(cachep, objp) = caller;
2880
2881 objnr = obj_to_index(cachep, slabp, objp);
2882
2883 BUG_ON(objnr >= cachep->num);
2884 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2885
2886 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2887 /* we want to cache poison the object,
2888 * call the destruction callback
2889 */
2890 cachep->dtor(objp + obj_offset(cachep), cachep, 0);
2891 }
2892 #ifdef CONFIG_DEBUG_SLAB_LEAK
2893 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2894 #endif
2895 if (cachep->flags & SLAB_POISON) {
2896 #ifdef CONFIG_DEBUG_PAGEALLOC
2897 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2898 store_stackinfo(cachep, objp, (unsigned long)caller);
2899 kernel_map_pages(virt_to_page(objp),
2900 cachep->buffer_size / PAGE_SIZE, 0);
2901 } else {
2902 poison_obj(cachep, objp, POISON_FREE);
2903 }
2904 #else
2905 poison_obj(cachep, objp, POISON_FREE);
2906 #endif
2907 }
2908 return objp;
2909 }
2910
2911 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2912 {
2913 kmem_bufctl_t i;
2914 int entries = 0;
2915
2916 /* Check slab's freelist to see if this obj is there. */
2917 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2918 entries++;
2919 if (entries > cachep->num || i >= cachep->num)
2920 goto bad;
2921 }
2922 if (entries != cachep->num - slabp->inuse) {
2923 bad:
2924 printk(KERN_ERR "slab: Internal list corruption detected in "
2925 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2926 cachep->name, cachep->num, slabp, slabp->inuse);
2927 for (i = 0;
2928 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
2929 i++) {
2930 if (i % 16 == 0)
2931 printk("\n%03x:", i);
2932 printk(" %02x", ((unsigned char *)slabp)[i]);
2933 }
2934 printk("\n");
2935 BUG();
2936 }
2937 }
2938 #else
2939 #define kfree_debugcheck(x) do { } while(0)
2940 #define cache_free_debugcheck(x,objp,z) (objp)
2941 #define check_slabp(x,y) do { } while(0)
2942 #endif
2943
2944 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2945 {
2946 int batchcount;
2947 struct kmem_list3 *l3;
2948 struct array_cache *ac;
2949 int node;
2950
2951 node = numa_node_id();
2952
2953 check_irq_off();
2954 ac = cpu_cache_get(cachep);
2955 retry:
2956 batchcount = ac->batchcount;
2957 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2958 /*
2959 * If there was little recent activity on this cache, then
2960 * perform only a partial refill. Otherwise we could generate
2961 * refill bouncing.
2962 */
2963 batchcount = BATCHREFILL_LIMIT;
2964 }
2965 l3 = cachep->nodelists[node];
2966
2967 BUG_ON(ac->avail > 0 || !l3);
2968 spin_lock(&l3->list_lock);
2969
2970 /* See if we can refill from the shared array */
2971 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2972 goto alloc_done;
2973
2974 while (batchcount > 0) {
2975 struct list_head *entry;
2976 struct slab *slabp;
2977 /* Get slab alloc is to come from. */
2978 entry = l3->slabs_partial.next;
2979 if (entry == &l3->slabs_partial) {
2980 l3->free_touched = 1;
2981 entry = l3->slabs_free.next;
2982 if (entry == &l3->slabs_free)
2983 goto must_grow;
2984 }
2985
2986 slabp = list_entry(entry, struct slab, list);
2987 check_slabp(cachep, slabp);
2988 check_spinlock_acquired(cachep);
2989
2990 /*
2991 * The slab was either on partial or free list so
2992 * there must be at least one object available for
2993 * allocation.
2994 */
2995 BUG_ON(slabp->inuse < 0 || slabp->inuse >= cachep->num);
2996
2997 while (slabp->inuse < cachep->num && batchcount--) {
2998 STATS_INC_ALLOCED(cachep);
2999 STATS_INC_ACTIVE(cachep);
3000 STATS_SET_HIGH(cachep);
3001
3002 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
3003 node);
3004 }
3005 check_slabp(cachep, slabp);
3006
3007 /* move slabp to correct slabp list: */
3008 list_del(&slabp->list);
3009 if (slabp->free == BUFCTL_END)
3010 list_add(&slabp->list, &l3->slabs_full);
3011 else
3012 list_add(&slabp->list, &l3->slabs_partial);
3013 }
3014
3015 must_grow:
3016 l3->free_objects -= ac->avail;
3017 alloc_done:
3018 spin_unlock(&l3->list_lock);
3019
3020 if (unlikely(!ac->avail)) {
3021 int x;
3022 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3023
3024 /* cache_grow can reenable interrupts, then ac could change. */
3025 ac = cpu_cache_get(cachep);
3026 if (!x && ac->avail == 0) /* no objects in sight? abort */
3027 return NULL;
3028
3029 if (!ac->avail) /* objects refilled by interrupt? */
3030 goto retry;
3031 }
3032 ac->touched = 1;
3033 return ac->entry[--ac->avail];
3034 }
3035
3036 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3037 gfp_t flags)
3038 {
3039 might_sleep_if(flags & __GFP_WAIT);
3040 #if DEBUG
3041 kmem_flagcheck(cachep, flags);
3042 #endif
3043 }
3044
3045 #if DEBUG
3046 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3047 gfp_t flags, void *objp, void *caller)
3048 {
3049 if (!objp)
3050 return objp;
3051 if (cachep->flags & SLAB_POISON) {
3052 #ifdef CONFIG_DEBUG_PAGEALLOC
3053 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3054 kernel_map_pages(virt_to_page(objp),
3055 cachep->buffer_size / PAGE_SIZE, 1);
3056 else
3057 check_poison_obj(cachep, objp);
3058 #else
3059 check_poison_obj(cachep, objp);
3060 #endif
3061 poison_obj(cachep, objp, POISON_INUSE);
3062 }
3063 if (cachep->flags & SLAB_STORE_USER)
3064 *dbg_userword(cachep, objp) = caller;
3065
3066 if (cachep->flags & SLAB_RED_ZONE) {
3067 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3068 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3069 slab_error(cachep, "double free, or memory outside"
3070 " object was overwritten");
3071 printk(KERN_ERR
3072 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3073 objp, *dbg_redzone1(cachep, objp),
3074 *dbg_redzone2(cachep, objp));
3075 }
3076 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3077 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3078 }
3079 #ifdef CONFIG_DEBUG_SLAB_LEAK
3080 {
3081 struct slab *slabp;
3082 unsigned objnr;
3083
3084 slabp = page_get_slab(virt_to_head_page(objp));
3085 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3086 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3087 }
3088 #endif
3089 objp += obj_offset(cachep);
3090 if (cachep->ctor && cachep->flags & SLAB_POISON)
3091 cachep->ctor(objp, cachep, SLAB_CTOR_CONSTRUCTOR);
3092 #if ARCH_SLAB_MINALIGN
3093 if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3094 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3095 objp, ARCH_SLAB_MINALIGN);
3096 }
3097 #endif
3098 return objp;
3099 }
3100 #else
3101 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3102 #endif
3103
3104 #ifdef CONFIG_FAILSLAB
3105
3106 static struct failslab_attr {
3107
3108 struct fault_attr attr;
3109
3110 u32 ignore_gfp_wait;
3111 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3112 struct dentry *ignore_gfp_wait_file;
3113 #endif
3114
3115 } failslab = {
3116 .attr = FAULT_ATTR_INITIALIZER,
3117 .ignore_gfp_wait = 1,
3118 };
3119
3120 static int __init setup_failslab(char *str)
3121 {
3122 return setup_fault_attr(&failslab.attr, str);
3123 }
3124 __setup("failslab=", setup_failslab);
3125
3126 static int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3127 {
3128 if (cachep == &cache_cache)
3129 return 0;
3130 if (flags & __GFP_NOFAIL)
3131 return 0;
3132 if (failslab.ignore_gfp_wait && (flags & __GFP_WAIT))
3133 return 0;
3134
3135 return should_fail(&failslab.attr, obj_size(cachep));
3136 }
3137
3138 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3139
3140 static int __init failslab_debugfs(void)
3141 {
3142 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
3143 struct dentry *dir;
3144 int err;
3145
3146 err = init_fault_attr_dentries(&failslab.attr, "failslab");
3147 if (err)
3148 return err;
3149 dir = failslab.attr.dentries.dir;
3150
3151 failslab.ignore_gfp_wait_file =
3152 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3153 &failslab.ignore_gfp_wait);
3154
3155 if (!failslab.ignore_gfp_wait_file) {
3156 err = -ENOMEM;
3157 debugfs_remove(failslab.ignore_gfp_wait_file);
3158 cleanup_fault_attr_dentries(&failslab.attr);
3159 }
3160
3161 return err;
3162 }
3163
3164 late_initcall(failslab_debugfs);
3165
3166 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3167
3168 #else /* CONFIG_FAILSLAB */
3169
3170 static inline int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3171 {
3172 return 0;
3173 }
3174
3175 #endif /* CONFIG_FAILSLAB */
3176
3177 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3178 {
3179 void *objp;
3180 struct array_cache *ac;
3181
3182 check_irq_off();
3183
3184 ac = cpu_cache_get(cachep);
3185 if (likely(ac->avail)) {
3186 STATS_INC_ALLOCHIT(cachep);
3187 ac->touched = 1;
3188 objp = ac->entry[--ac->avail];
3189 } else {
3190 STATS_INC_ALLOCMISS(cachep);
3191 objp = cache_alloc_refill(cachep, flags);
3192 }
3193 return objp;
3194 }
3195
3196 #ifdef CONFIG_NUMA
3197 /*
3198 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3199 *
3200 * If we are in_interrupt, then process context, including cpusets and
3201 * mempolicy, may not apply and should not be used for allocation policy.
3202 */
3203 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3204 {
3205 int nid_alloc, nid_here;
3206
3207 if (in_interrupt() || (flags & __GFP_THISNODE))
3208 return NULL;
3209 nid_alloc = nid_here = numa_node_id();
3210 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3211 nid_alloc = cpuset_mem_spread_node();
3212 else if (current->mempolicy)
3213 nid_alloc = slab_node(current->mempolicy);
3214 if (nid_alloc != nid_here)
3215 return ____cache_alloc_node(cachep, flags, nid_alloc);
3216 return NULL;
3217 }
3218
3219 /*
3220 * Fallback function if there was no memory available and no objects on a
3221 * certain node and fall back is permitted. First we scan all the
3222 * available nodelists for available objects. If that fails then we
3223 * perform an allocation without specifying a node. This allows the page
3224 * allocator to do its reclaim / fallback magic. We then insert the
3225 * slab into the proper nodelist and then allocate from it.
3226 */
3227 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3228 {
3229 struct zonelist *zonelist;
3230 gfp_t local_flags;
3231 struct zone **z;
3232 void *obj = NULL;
3233 int nid;
3234
3235 if (flags & __GFP_THISNODE)
3236 return NULL;
3237
3238 zonelist = &NODE_DATA(slab_node(current->mempolicy))
3239 ->node_zonelists[gfp_zone(flags)];
3240 local_flags = (flags & GFP_LEVEL_MASK);
3241
3242 retry:
3243 /*
3244 * Look through allowed nodes for objects available
3245 * from existing per node queues.
3246 */
3247 for (z = zonelist->zones; *z && !obj; z++) {
3248 nid = zone_to_nid(*z);
3249
3250 if (cpuset_zone_allowed_hardwall(*z, flags) &&
3251 cache->nodelists[nid] &&
3252 cache->nodelists[nid]->free_objects)
3253 obj = ____cache_alloc_node(cache,
3254 flags | GFP_THISNODE, nid);
3255 }
3256
3257 if (!obj) {
3258 /*
3259 * This allocation will be performed within the constraints
3260 * of the current cpuset / memory policy requirements.
3261 * We may trigger various forms of reclaim on the allowed
3262 * set and go into memory reserves if necessary.
3263 */
3264 if (local_flags & __GFP_WAIT)
3265 local_irq_enable();
3266 kmem_flagcheck(cache, flags);
3267 obj = kmem_getpages(cache, flags, -1);
3268 if (local_flags & __GFP_WAIT)
3269 local_irq_disable();
3270 if (obj) {
3271 /*
3272 * Insert into the appropriate per node queues
3273 */
3274 nid = page_to_nid(virt_to_page(obj));
3275 if (cache_grow(cache, flags, nid, obj)) {
3276 obj = ____cache_alloc_node(cache,
3277 flags | GFP_THISNODE, nid);
3278 if (!obj)
3279 /*
3280 * Another processor may allocate the
3281 * objects in the slab since we are
3282 * not holding any locks.
3283 */
3284 goto retry;
3285 } else {
3286 /* cache_grow already freed obj */
3287 obj = NULL;
3288 }
3289 }
3290 }
3291 return obj;
3292 }
3293
3294 /*
3295 * A interface to enable slab creation on nodeid
3296 */
3297 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3298 int nodeid)
3299 {
3300 struct list_head *entry;
3301 struct slab *slabp;
3302 struct kmem_list3 *l3;
3303 void *obj;
3304 int x;
3305
3306 l3 = cachep->nodelists[nodeid];
3307 BUG_ON(!l3);
3308
3309 retry:
3310 check_irq_off();
3311 spin_lock(&l3->list_lock);
3312 entry = l3->slabs_partial.next;
3313 if (entry == &l3->slabs_partial) {
3314 l3->free_touched = 1;
3315 entry = l3->slabs_free.next;
3316 if (entry == &l3->slabs_free)
3317 goto must_grow;
3318 }
3319
3320 slabp = list_entry(entry, struct slab, list);
3321 check_spinlock_acquired_node(cachep, nodeid);
3322 check_slabp(cachep, slabp);
3323
3324 STATS_INC_NODEALLOCS(cachep);
3325 STATS_INC_ACTIVE(cachep);
3326 STATS_SET_HIGH(cachep);
3327
3328 BUG_ON(slabp->inuse == cachep->num);
3329
3330 obj = slab_get_obj(cachep, slabp, nodeid);
3331 check_slabp(cachep, slabp);
3332 l3->free_objects--;
3333 /* move slabp to correct slabp list: */
3334 list_del(&slabp->list);
3335
3336 if (slabp->free == BUFCTL_END)
3337 list_add(&slabp->list, &l3->slabs_full);
3338 else
3339 list_add(&slabp->list, &l3->slabs_partial);
3340
3341 spin_unlock(&l3->list_lock);
3342 goto done;
3343
3344 must_grow:
3345 spin_unlock(&l3->list_lock);
3346 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3347 if (x)
3348 goto retry;
3349
3350 return fallback_alloc(cachep, flags);
3351
3352 done:
3353 return obj;
3354 }
3355
3356 /**
3357 * kmem_cache_alloc_node - Allocate an object on the specified node
3358 * @cachep: The cache to allocate from.
3359 * @flags: See kmalloc().
3360 * @nodeid: node number of the target node.
3361 * @caller: return address of caller, used for debug information
3362 *
3363 * Identical to kmem_cache_alloc but it will allocate memory on the given
3364 * node, which can improve the performance for cpu bound structures.
3365 *
3366 * Fallback to other node is possible if __GFP_THISNODE is not set.
3367 */
3368 static __always_inline void *
3369 __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3370 void *caller)
3371 {
3372 unsigned long save_flags;
3373 void *ptr;
3374
3375 if (should_failslab(cachep, flags))
3376 return NULL;
3377
3378 cache_alloc_debugcheck_before(cachep, flags);
3379 local_irq_save(save_flags);
3380
3381 if (unlikely(nodeid == -1))
3382 nodeid = numa_node_id();
3383
3384 if (unlikely(!cachep->nodelists[nodeid])) {
3385 /* Node not bootstrapped yet */
3386 ptr = fallback_alloc(cachep, flags);
3387 goto out;
3388 }
3389
3390 if (nodeid == numa_node_id()) {
3391 /*
3392 * Use the locally cached objects if possible.
3393 * However ____cache_alloc does not allow fallback
3394 * to other nodes. It may fail while we still have
3395 * objects on other nodes available.
3396 */
3397 ptr = ____cache_alloc(cachep, flags);
3398 if (ptr)
3399 goto out;
3400 }
3401 /* ___cache_alloc_node can fall back to other nodes */
3402 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3403 out:
3404 local_irq_restore(save_flags);
3405 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3406
3407 return ptr;
3408 }
3409
3410 static __always_inline void *
3411 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3412 {
3413 void *objp;
3414
3415 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3416 objp = alternate_node_alloc(cache, flags);
3417 if (objp)
3418 goto out;
3419 }
3420 objp = ____cache_alloc(cache, flags);
3421
3422 /*
3423 * We may just have run out of memory on the local node.
3424 * ____cache_alloc_node() knows how to locate memory on other nodes
3425 */
3426 if (!objp)
3427 objp = ____cache_alloc_node(cache, flags, numa_node_id());
3428
3429 out:
3430 return objp;
3431 }
3432 #else
3433
3434 static __always_inline void *
3435 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3436 {
3437 return ____cache_alloc(cachep, flags);
3438 }
3439
3440 #endif /* CONFIG_NUMA */
3441
3442 static __always_inline void *
3443 __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3444 {
3445 unsigned long save_flags;
3446 void *objp;
3447
3448 if (should_failslab(cachep, flags))
3449 return NULL;
3450
3451 cache_alloc_debugcheck_before(cachep, flags);
3452 local_irq_save(save_flags);
3453 objp = __do_cache_alloc(cachep, flags);
3454 local_irq_restore(save_flags);
3455 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3456 prefetchw(objp);
3457
3458 return objp;
3459 }
3460
3461 /*
3462 * Caller needs to acquire correct kmem_list's list_lock
3463 */
3464 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3465 int node)
3466 {
3467 int i;
3468 struct kmem_list3 *l3;
3469
3470 for (i = 0; i < nr_objects; i++) {
3471 void *objp = objpp[i];
3472 struct slab *slabp;
3473
3474 slabp = virt_to_slab(objp);
3475 l3 = cachep->nodelists[node];
3476 list_del(&slabp->list);
3477 check_spinlock_acquired_node(cachep, node);
3478 check_slabp(cachep, slabp);
3479 slab_put_obj(cachep, slabp, objp, node);
3480 STATS_DEC_ACTIVE(cachep);
3481 l3->free_objects++;
3482 check_slabp(cachep, slabp);
3483
3484 /* fixup slab chains */
3485 if (slabp->inuse == 0) {
3486 if (l3->free_objects > l3->free_limit) {
3487 l3->free_objects -= cachep->num;
3488 /* No need to drop any previously held
3489 * lock here, even if we have a off-slab slab
3490 * descriptor it is guaranteed to come from
3491 * a different cache, refer to comments before
3492 * alloc_slabmgmt.
3493 */
3494 slab_destroy(cachep, slabp);
3495 } else {
3496 list_add(&slabp->list, &l3->slabs_free);
3497 }
3498 } else {
3499 /* Unconditionally move a slab to the end of the
3500 * partial list on free - maximum time for the
3501 * other objects to be freed, too.
3502 */
3503 list_add_tail(&slabp->list, &l3->slabs_partial);
3504 }
3505 }
3506 }
3507
3508 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3509 {
3510 int batchcount;
3511 struct kmem_list3 *l3;
3512 int node = numa_node_id();
3513
3514 batchcount = ac->batchcount;
3515 #if DEBUG
3516 BUG_ON(!batchcount || batchcount > ac->avail);
3517 #endif
3518 check_irq_off();
3519 l3 = cachep->nodelists[node];
3520 spin_lock(&l3->list_lock);
3521 if (l3->shared) {
3522 struct array_cache *shared_array = l3->shared;
3523 int max = shared_array->limit - shared_array->avail;
3524 if (max) {
3525 if (batchcount > max)
3526 batchcount = max;
3527 memcpy(&(shared_array->entry[shared_array->avail]),
3528 ac->entry, sizeof(void *) * batchcount);
3529 shared_array->avail += batchcount;
3530 goto free_done;
3531 }
3532 }
3533
3534 free_block(cachep, ac->entry, batchcount, node);
3535 free_done:
3536 #if STATS
3537 {
3538 int i = 0;
3539 struct list_head *p;
3540
3541 p = l3->slabs_free.next;
3542 while (p != &(l3->slabs_free)) {
3543 struct slab *slabp;
3544
3545 slabp = list_entry(p, struct slab, list);
3546 BUG_ON(slabp->inuse);
3547
3548 i++;
3549 p = p->next;
3550 }
3551 STATS_SET_FREEABLE(cachep, i);
3552 }
3553 #endif
3554 spin_unlock(&l3->list_lock);
3555 ac->avail -= batchcount;
3556 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3557 }
3558
3559 /*
3560 * Release an obj back to its cache. If the obj has a constructed state, it must
3561 * be in this state _before_ it is released. Called with disabled ints.
3562 */
3563 static inline void __cache_free(struct kmem_cache *cachep, void *objp)
3564 {
3565 struct array_cache *ac = cpu_cache_get(cachep);
3566
3567 check_irq_off();
3568 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3569
3570 if (use_alien_caches && cache_free_alien(cachep, objp))
3571 return;
3572
3573 if (likely(ac->avail < ac->limit)) {
3574 STATS_INC_FREEHIT(cachep);
3575 ac->entry[ac->avail++] = objp;
3576 return;
3577 } else {
3578 STATS_INC_FREEMISS(cachep);
3579 cache_flusharray(cachep, ac);
3580 ac->entry[ac->avail++] = objp;
3581 }
3582 }
3583
3584 /**
3585 * kmem_cache_alloc - Allocate an object
3586 * @cachep: The cache to allocate from.
3587 * @flags: See kmalloc().
3588 *
3589 * Allocate an object from this cache. The flags are only relevant
3590 * if the cache has no available objects.
3591 */
3592 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3593 {
3594 return __cache_alloc(cachep, flags, __builtin_return_address(0));
3595 }
3596 EXPORT_SYMBOL(kmem_cache_alloc);
3597
3598 /**
3599 * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
3600 * @cache: The cache to allocate from.
3601 * @flags: See kmalloc().
3602 *
3603 * Allocate an object from this cache and set the allocated memory to zero.
3604 * The flags are only relevant if the cache has no available objects.
3605 */
3606 void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
3607 {
3608 void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
3609 if (ret)
3610 memset(ret, 0, obj_size(cache));
3611 return ret;
3612 }
3613 EXPORT_SYMBOL(kmem_cache_zalloc);
3614
3615 /**
3616 * kmem_ptr_validate - check if an untrusted pointer might
3617 * be a slab entry.
3618 * @cachep: the cache we're checking against
3619 * @ptr: pointer to validate
3620 *
3621 * This verifies that the untrusted pointer looks sane:
3622 * it is _not_ a guarantee that the pointer is actually
3623 * part of the slab cache in question, but it at least
3624 * validates that the pointer can be dereferenced and
3625 * looks half-way sane.
3626 *
3627 * Currently only used for dentry validation.
3628 */
3629 int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
3630 {
3631 unsigned long addr = (unsigned long)ptr;
3632 unsigned long min_addr = PAGE_OFFSET;
3633 unsigned long align_mask = BYTES_PER_WORD - 1;
3634 unsigned long size = cachep->buffer_size;
3635 struct page *page;
3636
3637 if (unlikely(addr < min_addr))
3638 goto out;
3639 if (unlikely(addr > (unsigned long)high_memory - size))
3640 goto out;
3641 if (unlikely(addr & align_mask))
3642 goto out;
3643 if (unlikely(!kern_addr_valid(addr)))
3644 goto out;
3645 if (unlikely(!kern_addr_valid(addr + size - 1)))
3646 goto out;
3647 page = virt_to_page(ptr);
3648 if (unlikely(!PageSlab(page)))
3649 goto out;
3650 if (unlikely(page_get_cache(page) != cachep))
3651 goto out;
3652 return 1;
3653 out:
3654 return 0;
3655 }
3656
3657 #ifdef CONFIG_NUMA
3658 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3659 {
3660 return __cache_alloc_node(cachep, flags, nodeid,
3661 __builtin_return_address(0));
3662 }
3663 EXPORT_SYMBOL(kmem_cache_alloc_node);
3664
3665 static __always_inline void *
3666 __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3667 {
3668 struct kmem_cache *cachep;
3669
3670 cachep = kmem_find_general_cachep(size, flags);
3671 if (unlikely(cachep == NULL))
3672 return NULL;
3673 return kmem_cache_alloc_node(cachep, flags, node);
3674 }
3675
3676 #ifdef CONFIG_DEBUG_SLAB
3677 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3678 {
3679 return __do_kmalloc_node(size, flags, node,
3680 __builtin_return_address(0));
3681 }
3682 EXPORT_SYMBOL(__kmalloc_node);
3683
3684 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3685 int node, void *caller)
3686 {
3687 return __do_kmalloc_node(size, flags, node, caller);
3688 }
3689 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3690 #else
3691 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3692 {
3693 return __do_kmalloc_node(size, flags, node, NULL);
3694 }
3695 EXPORT_SYMBOL(__kmalloc_node);
3696 #endif /* CONFIG_DEBUG_SLAB */
3697 #endif /* CONFIG_NUMA */
3698
3699 /**
3700 * __do_kmalloc - allocate memory
3701 * @size: how many bytes of memory are required.
3702 * @flags: the type of memory to allocate (see kmalloc).
3703 * @caller: function caller for debug tracking of the caller
3704 */
3705 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3706 void *caller)
3707 {
3708 struct kmem_cache *cachep;
3709
3710 /* If you want to save a few bytes .text space: replace
3711 * __ with kmem_.
3712 * Then kmalloc uses the uninlined functions instead of the inline
3713 * functions.
3714 */
3715 cachep = __find_general_cachep(size, flags);
3716 if (unlikely(cachep == NULL))
3717 return NULL;
3718 return __cache_alloc(cachep, flags, caller);
3719 }
3720
3721
3722 #ifdef CONFIG_DEBUG_SLAB
3723 void *__kmalloc(size_t size, gfp_t flags)
3724 {
3725 return __do_kmalloc(size, flags, __builtin_return_address(0));
3726 }
3727 EXPORT_SYMBOL(__kmalloc);
3728
3729 void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3730 {
3731 return __do_kmalloc(size, flags, caller);
3732 }
3733 EXPORT_SYMBOL(__kmalloc_track_caller);
3734
3735 #else
3736 void *__kmalloc(size_t size, gfp_t flags)
3737 {
3738 return __do_kmalloc(size, flags, NULL);
3739 }
3740 EXPORT_SYMBOL(__kmalloc);
3741 #endif
3742
3743 /**
3744 * krealloc - reallocate memory. The contents will remain unchanged.
3745 * @p: object to reallocate memory for.
3746 * @new_size: how many bytes of memory are required.
3747 * @flags: the type of memory to allocate.
3748 *
3749 * The contents of the object pointed to are preserved up to the
3750 * lesser of the new and old sizes. If @p is %NULL, krealloc()
3751 * behaves exactly like kmalloc(). If @size is 0 and @p is not a
3752 * %NULL pointer, the object pointed to is freed.
3753 */
3754 void *krealloc(const void *p, size_t new_size, gfp_t flags)
3755 {
3756 struct kmem_cache *cache, *new_cache;
3757 void *ret;
3758
3759 if (unlikely(!p))
3760 return kmalloc_track_caller(new_size, flags);
3761
3762 if (unlikely(!new_size)) {
3763 kfree(p);
3764 return NULL;
3765 }
3766
3767 cache = virt_to_cache(p);
3768 new_cache = __find_general_cachep(new_size, flags);
3769
3770 /*
3771 * If new size fits in the current cache, bail out.
3772 */
3773 if (likely(cache == new_cache))
3774 return (void *)p;
3775
3776 /*
3777 * We are on the slow-path here so do not use __cache_alloc
3778 * because it bloats kernel text.
3779 */
3780 ret = kmalloc_track_caller(new_size, flags);
3781 if (ret) {
3782 memcpy(ret, p, min(new_size, ksize(p)));
3783 kfree(p);
3784 }
3785 return ret;
3786 }
3787 EXPORT_SYMBOL(krealloc);
3788
3789 /**
3790 * kmem_cache_free - Deallocate an object
3791 * @cachep: The cache the allocation was from.
3792 * @objp: The previously allocated object.
3793 *
3794 * Free an object which was previously allocated from this
3795 * cache.
3796 */
3797 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3798 {
3799 unsigned long flags;
3800
3801 BUG_ON(virt_to_cache(objp) != cachep);
3802
3803 local_irq_save(flags);
3804 debug_check_no_locks_freed(objp, obj_size(cachep));
3805 __cache_free(cachep, objp);
3806 local_irq_restore(flags);
3807 }
3808 EXPORT_SYMBOL(kmem_cache_free);
3809
3810 /**
3811 * kfree - free previously allocated memory
3812 * @objp: pointer returned by kmalloc.
3813 *
3814 * If @objp is NULL, no operation is performed.
3815 *
3816 * Don't free memory not originally allocated by kmalloc()
3817 * or you will run into trouble.
3818 */
3819 void kfree(const void *objp)
3820 {
3821 struct kmem_cache *c;
3822 unsigned long flags;
3823
3824 if (unlikely(!objp))
3825 return;
3826 local_irq_save(flags);
3827 kfree_debugcheck(objp);
3828 c = virt_to_cache(objp);
3829 debug_check_no_locks_freed(objp, obj_size(c));
3830 __cache_free(c, (void *)objp);
3831 local_irq_restore(flags);
3832 }
3833 EXPORT_SYMBOL(kfree);
3834
3835 unsigned int kmem_cache_size(struct kmem_cache *cachep)
3836 {
3837 return obj_size(cachep);
3838 }
3839 EXPORT_SYMBOL(kmem_cache_size);
3840
3841 const char *kmem_cache_name(struct kmem_cache *cachep)
3842 {
3843 return cachep->name;
3844 }
3845 EXPORT_SYMBOL_GPL(kmem_cache_name);
3846
3847 /*
3848 * This initializes kmem_list3 or resizes varioius caches for all nodes.
3849 */
3850 static int alloc_kmemlist(struct kmem_cache *cachep)
3851 {
3852 int node;
3853 struct kmem_list3 *l3;
3854 struct array_cache *new_shared;
3855 struct array_cache **new_alien = NULL;
3856
3857 for_each_online_node(node) {
3858
3859 if (use_alien_caches) {
3860 new_alien = alloc_alien_cache(node, cachep->limit);
3861 if (!new_alien)
3862 goto fail;
3863 }
3864
3865 new_shared = NULL;
3866 if (cachep->shared) {
3867 new_shared = alloc_arraycache(node,
3868 cachep->shared*cachep->batchcount,
3869 0xbaadf00d);
3870 if (!new_shared) {
3871 free_alien_cache(new_alien);
3872 goto fail;
3873 }
3874 }
3875
3876 l3 = cachep->nodelists[node];
3877 if (l3) {
3878 struct array_cache *shared = l3->shared;
3879
3880 spin_lock_irq(&l3->list_lock);
3881
3882 if (shared)
3883 free_block(cachep, shared->entry,
3884 shared->avail, node);
3885
3886 l3->shared = new_shared;
3887 if (!l3->alien) {
3888 l3->alien = new_alien;
3889 new_alien = NULL;
3890 }
3891 l3->free_limit = (1 + nr_cpus_node(node)) *
3892 cachep->batchcount + cachep->num;
3893 spin_unlock_irq(&l3->list_lock);
3894 kfree(shared);
3895 free_alien_cache(new_alien);
3896 continue;
3897 }
3898 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3899 if (!l3) {
3900 free_alien_cache(new_alien);
3901 kfree(new_shared);
3902 goto fail;
3903 }
3904
3905 kmem_list3_init(l3);
3906 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3907 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3908 l3->shared = new_shared;
3909 l3->alien = new_alien;
3910 l3->free_limit = (1 + nr_cpus_node(node)) *
3911 cachep->batchcount + cachep->num;
3912 cachep->nodelists[node] = l3;
3913 }
3914 return 0;
3915
3916 fail:
3917 if (!cachep->next.next) {
3918 /* Cache is not active yet. Roll back what we did */
3919 node--;
3920 while (node >= 0) {
3921 if (cachep->nodelists[node]) {
3922 l3 = cachep->nodelists[node];
3923
3924 kfree(l3->shared);
3925 free_alien_cache(l3->alien);
3926 kfree(l3);
3927 cachep->nodelists[node] = NULL;
3928 }
3929 node--;
3930 }
3931 }
3932 return -ENOMEM;
3933 }
3934
3935 struct ccupdate_struct {
3936 struct kmem_cache *cachep;
3937 struct array_cache *new[NR_CPUS];
3938 };
3939
3940 static void do_ccupdate_local(void *info)
3941 {
3942 struct ccupdate_struct *new = info;
3943 struct array_cache *old;
3944
3945 check_irq_off();
3946 old = cpu_cache_get(new->cachep);
3947
3948 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3949 new->new[smp_processor_id()] = old;
3950 }
3951
3952 /* Always called with the cache_chain_mutex held */
3953 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3954 int batchcount, int shared)
3955 {
3956 struct ccupdate_struct *new;
3957 int i;
3958
3959 new = kzalloc(sizeof(*new), GFP_KERNEL);
3960 if (!new)
3961 return -ENOMEM;
3962
3963 for_each_online_cpu(i) {
3964 new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
3965 batchcount);
3966 if (!new->new[i]) {
3967 for (i--; i >= 0; i--)
3968 kfree(new->new[i]);
3969 kfree(new);
3970 return -ENOMEM;
3971 }
3972 }
3973 new->cachep = cachep;
3974
3975 on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
3976
3977 check_irq_on();
3978 cachep->batchcount = batchcount;
3979 cachep->limit = limit;
3980 cachep->shared = shared;
3981
3982 for_each_online_cpu(i) {
3983 struct array_cache *ccold = new->new[i];
3984 if (!ccold)
3985 continue;
3986 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3987 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3988 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3989 kfree(ccold);
3990 }
3991 kfree(new);
3992 return alloc_kmemlist(cachep);
3993 }
3994
3995 /* Called with cache_chain_mutex held always */
3996 static int enable_cpucache(struct kmem_cache *cachep)
3997 {
3998 int err;
3999 int limit, shared;
4000
4001 /*
4002 * The head array serves three purposes:
4003 * - create a LIFO ordering, i.e. return objects that are cache-warm
4004 * - reduce the number of spinlock operations.
4005 * - reduce the number of linked list operations on the slab and
4006 * bufctl chains: array operations are cheaper.
4007 * The numbers are guessed, we should auto-tune as described by
4008 * Bonwick.
4009 */
4010 if (cachep->buffer_size > 131072)
4011 limit = 1;
4012 else if (cachep->buffer_size > PAGE_SIZE)
4013 limit = 8;
4014 else if (cachep->buffer_size > 1024)
4015 limit = 24;
4016 else if (cachep->buffer_size > 256)
4017 limit = 54;
4018 else
4019 limit = 120;
4020
4021 /*
4022 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
4023 * allocation behaviour: Most allocs on one cpu, most free operations
4024 * on another cpu. For these cases, an efficient object passing between
4025 * cpus is necessary. This is provided by a shared array. The array
4026 * replaces Bonwick's magazine layer.
4027 * On uniprocessor, it's functionally equivalent (but less efficient)
4028 * to a larger limit. Thus disabled by default.
4029 */
4030 shared = 0;
4031 if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
4032 shared = 8;
4033
4034 #if DEBUG
4035 /*
4036 * With debugging enabled, large batchcount lead to excessively long
4037 * periods with disabled local interrupts. Limit the batchcount
4038 */
4039 if (limit > 32)
4040 limit = 32;
4041 #endif
4042 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
4043 if (err)
4044 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
4045 cachep->name, -err);
4046 return err;
4047 }
4048
4049 /*
4050 * Drain an array if it contains any elements taking the l3 lock only if
4051 * necessary. Note that the l3 listlock also protects the array_cache
4052 * if drain_array() is used on the shared array.
4053 */
4054 void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4055 struct array_cache *ac, int force, int node)
4056 {
4057 int tofree;
4058
4059 if (!ac || !ac->avail)
4060 return;
4061 if (ac->touched && !force) {
4062 ac->touched = 0;
4063 } else {
4064 spin_lock_irq(&l3->list_lock);
4065 if (ac->avail) {
4066 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4067 if (tofree > ac->avail)
4068 tofree = (ac->avail + 1) / 2;
4069 free_block(cachep, ac->entry, tofree, node);
4070 ac->avail -= tofree;
4071 memmove(ac->entry, &(ac->entry[tofree]),
4072 sizeof(void *) * ac->avail);
4073 }
4074 spin_unlock_irq(&l3->list_lock);
4075 }
4076 }
4077
4078 /**
4079 * cache_reap - Reclaim memory from caches.
4080 * @w: work descriptor
4081 *
4082 * Called from workqueue/eventd every few seconds.
4083 * Purpose:
4084 * - clear the per-cpu caches for this CPU.
4085 * - return freeable pages to the main free memory pool.
4086 *
4087 * If we cannot acquire the cache chain mutex then just give up - we'll try
4088 * again on the next iteration.
4089 */
4090 static void cache_reap(struct work_struct *w)
4091 {
4092 struct kmem_cache *searchp;
4093 struct kmem_list3 *l3;
4094 int node = numa_node_id();
4095 struct delayed_work *work =
4096 container_of(w, struct delayed_work, work);
4097
4098 if (!mutex_trylock(&cache_chain_mutex))
4099 /* Give up. Setup the next iteration. */
4100 goto out;
4101
4102 list_for_each_entry(searchp, &cache_chain, next) {
4103 check_irq_on();
4104
4105 /*
4106 * We only take the l3 lock if absolutely necessary and we
4107 * have established with reasonable certainty that
4108 * we can do some work if the lock was obtained.
4109 */
4110 l3 = searchp->nodelists[node];
4111
4112 reap_alien(searchp, l3);
4113
4114 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
4115
4116 /*
4117 * These are racy checks but it does not matter
4118 * if we skip one check or scan twice.
4119 */
4120 if (time_after(l3->next_reap, jiffies))
4121 goto next;
4122
4123 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
4124
4125 drain_array(searchp, l3, l3->shared, 0, node);
4126
4127 if (l3->free_touched)
4128 l3->free_touched = 0;
4129 else {
4130 int freed;
4131
4132 freed = drain_freelist(searchp, l3, (l3->free_limit +
4133 5 * searchp->num - 1) / (5 * searchp->num));
4134 STATS_ADD_REAPED(searchp, freed);
4135 }
4136 next:
4137 cond_resched();
4138 }
4139 check_irq_on();
4140 mutex_unlock(&cache_chain_mutex);
4141 next_reap_node();
4142 refresh_cpu_vm_stats(smp_processor_id());
4143 out:
4144 /* Set up the next iteration */
4145 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
4146 }
4147
4148 #ifdef CONFIG_PROC_FS
4149
4150 static void print_slabinfo_header(struct seq_file *m)
4151 {
4152 /*
4153 * Output format version, so at least we can change it
4154 * without _too_ many complaints.
4155 */
4156 #if STATS
4157 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
4158 #else
4159 seq_puts(m, "slabinfo - version: 2.1\n");
4160 #endif
4161 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4162 "<objperslab> <pagesperslab>");
4163 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4164 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4165 #if STATS
4166 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4167 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4168 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4169 #endif
4170 seq_putc(m, '\n');
4171 }
4172
4173 static void *s_start(struct seq_file *m, loff_t *pos)
4174 {
4175 loff_t n = *pos;
4176 struct list_head *p;
4177
4178 mutex_lock(&cache_chain_mutex);
4179 if (!n)
4180 print_slabinfo_header(m);
4181 p = cache_chain.next;
4182 while (n--) {
4183 p = p->next;
4184 if (p == &cache_chain)
4185 return NULL;
4186 }
4187 return list_entry(p, struct kmem_cache, next);
4188 }
4189
4190 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4191 {
4192 struct kmem_cache *cachep = p;
4193 ++*pos;
4194 return cachep->next.next == &cache_chain ?
4195 NULL : list_entry(cachep->next.next, struct kmem_cache, next);
4196 }
4197
4198 static void s_stop(struct seq_file *m, void *p)
4199 {
4200 mutex_unlock(&cache_chain_mutex);
4201 }
4202
4203 static int s_show(struct seq_file *m, void *p)
4204 {
4205 struct kmem_cache *cachep = p;
4206 struct slab *slabp;
4207 unsigned long active_objs;
4208 unsigned long num_objs;
4209 unsigned long active_slabs = 0;
4210 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4211 const char *name;
4212 char *error = NULL;
4213 int node;
4214 struct kmem_list3 *l3;
4215
4216 active_objs = 0;
4217 num_slabs = 0;
4218 for_each_online_node(node) {
4219 l3 = cachep->nodelists[node];
4220 if (!l3)
4221 continue;
4222
4223 check_irq_on();
4224 spin_lock_irq(&l3->list_lock);
4225
4226 list_for_each_entry(slabp, &l3->slabs_full, list) {
4227 if (slabp->inuse != cachep->num && !error)
4228 error = "slabs_full accounting error";
4229 active_objs += cachep->num;
4230 active_slabs++;
4231 }
4232 list_for_each_entry(slabp, &l3->slabs_partial, list) {
4233 if (slabp->inuse == cachep->num && !error)
4234 error = "slabs_partial inuse accounting error";
4235 if (!slabp->inuse && !error)
4236 error = "slabs_partial/inuse accounting error";
4237 active_objs += slabp->inuse;
4238 active_slabs++;
4239 }
4240 list_for_each_entry(slabp, &l3->slabs_free, list) {
4241 if (slabp->inuse && !error)
4242 error = "slabs_free/inuse accounting error";
4243 num_slabs++;
4244 }
4245 free_objects += l3->free_objects;
4246 if (l3->shared)
4247 shared_avail += l3->shared->avail;
4248
4249 spin_unlock_irq(&l3->list_lock);
4250 }
4251 num_slabs += active_slabs;
4252 num_objs = num_slabs * cachep->num;
4253 if (num_objs - active_objs != free_objects && !error)
4254 error = "free_objects accounting error";
4255
4256 name = cachep->name;
4257 if (error)
4258 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4259
4260 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4261 name, active_objs, num_objs, cachep->buffer_size,
4262 cachep->num, (1 << cachep->gfporder));
4263 seq_printf(m, " : tunables %4u %4u %4u",
4264 cachep->limit, cachep->batchcount, cachep->shared);
4265 seq_printf(m, " : slabdata %6lu %6lu %6lu",
4266 active_slabs, num_slabs, shared_avail);
4267 #if STATS
4268 { /* list3 stats */
4269 unsigned long high = cachep->high_mark;
4270 unsigned long allocs = cachep->num_allocations;
4271 unsigned long grown = cachep->grown;
4272 unsigned long reaped = cachep->reaped;
4273 unsigned long errors = cachep->errors;
4274 unsigned long max_freeable = cachep->max_freeable;
4275 unsigned long node_allocs = cachep->node_allocs;
4276 unsigned long node_frees = cachep->node_frees;
4277 unsigned long overflows = cachep->node_overflow;
4278
4279 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
4280 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
4281 reaped, errors, max_freeable, node_allocs,
4282 node_frees, overflows);
4283 }
4284 /* cpu stats */
4285 {
4286 unsigned long allochit = atomic_read(&cachep->allochit);
4287 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4288 unsigned long freehit = atomic_read(&cachep->freehit);
4289 unsigned long freemiss = atomic_read(&cachep->freemiss);
4290
4291 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4292 allochit, allocmiss, freehit, freemiss);
4293 }
4294 #endif
4295 seq_putc(m, '\n');
4296 return 0;
4297 }
4298
4299 /*
4300 * slabinfo_op - iterator that generates /proc/slabinfo
4301 *
4302 * Output layout:
4303 * cache-name
4304 * num-active-objs
4305 * total-objs
4306 * object size
4307 * num-active-slabs
4308 * total-slabs
4309 * num-pages-per-slab
4310 * + further values on SMP and with statistics enabled
4311 */
4312
4313 const struct seq_operations slabinfo_op = {
4314 .start = s_start,
4315 .next = s_next,
4316 .stop = s_stop,
4317 .show = s_show,
4318 };
4319
4320 #define MAX_SLABINFO_WRITE 128
4321 /**
4322 * slabinfo_write - Tuning for the slab allocator
4323 * @file: unused
4324 * @buffer: user buffer
4325 * @count: data length
4326 * @ppos: unused
4327 */
4328 ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4329 size_t count, loff_t *ppos)
4330 {
4331 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4332 int limit, batchcount, shared, res;
4333 struct kmem_cache *cachep;
4334
4335 if (count > MAX_SLABINFO_WRITE)
4336 return -EINVAL;
4337 if (copy_from_user(&kbuf, buffer, count))
4338 return -EFAULT;
4339 kbuf[MAX_SLABINFO_WRITE] = '\0';
4340
4341 tmp = strchr(kbuf, ' ');
4342 if (!tmp)
4343 return -EINVAL;
4344 *tmp = '\0';
4345 tmp++;
4346 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4347 return -EINVAL;
4348
4349 /* Find the cache in the chain of caches. */
4350 mutex_lock(&cache_chain_mutex);
4351 res = -EINVAL;
4352 list_for_each_entry(cachep, &cache_chain, next) {
4353 if (!strcmp(cachep->name, kbuf)) {
4354 if (limit < 1 || batchcount < 1 ||
4355 batchcount > limit || shared < 0) {
4356 res = 0;
4357 } else {
4358 res = do_tune_cpucache(cachep, limit,
4359 batchcount, shared);
4360 }
4361 break;
4362 }
4363 }
4364 mutex_unlock(&cache_chain_mutex);
4365 if (res >= 0)
4366 res = count;
4367 return res;
4368 }
4369
4370 #ifdef CONFIG_DEBUG_SLAB_LEAK
4371
4372 static void *leaks_start(struct seq_file *m, loff_t *pos)
4373 {
4374 loff_t n = *pos;
4375 struct list_head *p;
4376
4377 mutex_lock(&cache_chain_mutex);
4378 p = cache_chain.next;
4379 while (n--) {
4380 p = p->next;
4381 if (p == &cache_chain)
4382 return NULL;
4383 }
4384 return list_entry(p, struct kmem_cache, next);
4385 }
4386
4387 static inline int add_caller(unsigned long *n, unsigned long v)
4388 {
4389 unsigned long *p;
4390 int l;
4391 if (!v)
4392 return 1;
4393 l = n[1];
4394 p = n + 2;
4395 while (l) {
4396 int i = l/2;
4397 unsigned long *q = p + 2 * i;
4398 if (*q == v) {
4399 q[1]++;
4400 return 1;
4401 }
4402 if (*q > v) {
4403 l = i;
4404 } else {
4405 p = q + 2;
4406 l -= i + 1;
4407 }
4408 }
4409 if (++n[1] == n[0])
4410 return 0;
4411 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4412 p[0] = v;
4413 p[1] = 1;
4414 return 1;
4415 }
4416
4417 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4418 {
4419 void *p;
4420 int i;
4421 if (n[0] == n[1])
4422 return;
4423 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4424 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4425 continue;
4426 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4427 return;
4428 }
4429 }
4430
4431 static void show_symbol(struct seq_file *m, unsigned long address)
4432 {
4433 #ifdef CONFIG_KALLSYMS
4434 unsigned long offset, size;
4435 char modname[MODULE_NAME_LEN + 1], name[KSYM_NAME_LEN + 1];
4436
4437 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4438 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4439 if (modname[0])
4440 seq_printf(m, " [%s]", modname);
4441 return;
4442 }
4443 #endif
4444 seq_printf(m, "%p", (void *)address);
4445 }
4446
4447 static int leaks_show(struct seq_file *m, void *p)
4448 {
4449 struct kmem_cache *cachep = p;
4450 struct slab *slabp;
4451 struct kmem_list3 *l3;
4452 const char *name;
4453 unsigned long *n = m->private;
4454 int node;
4455 int i;
4456
4457 if (!(cachep->flags & SLAB_STORE_USER))
4458 return 0;
4459 if (!(cachep->flags & SLAB_RED_ZONE))
4460 return 0;
4461
4462 /* OK, we can do it */
4463
4464 n[1] = 0;
4465
4466 for_each_online_node(node) {
4467 l3 = cachep->nodelists[node];
4468 if (!l3)
4469 continue;
4470
4471 check_irq_on();
4472 spin_lock_irq(&l3->list_lock);
4473
4474 list_for_each_entry(slabp, &l3->slabs_full, list)
4475 handle_slab(n, cachep, slabp);
4476 list_for_each_entry(slabp, &l3->slabs_partial, list)
4477 handle_slab(n, cachep, slabp);
4478 spin_unlock_irq(&l3->list_lock);
4479 }
4480 name = cachep->name;
4481 if (n[0] == n[1]) {
4482 /* Increase the buffer size */
4483 mutex_unlock(&cache_chain_mutex);
4484 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4485 if (!m->private) {
4486 /* Too bad, we are really out */
4487 m->private = n;
4488 mutex_lock(&cache_chain_mutex);
4489 return -ENOMEM;
4490 }
4491 *(unsigned long *)m->private = n[0] * 2;
4492 kfree(n);
4493 mutex_lock(&cache_chain_mutex);
4494 /* Now make sure this entry will be retried */
4495 m->count = m->size;
4496 return 0;
4497 }
4498 for (i = 0; i < n[1]; i++) {
4499 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4500 show_symbol(m, n[2*i+2]);
4501 seq_putc(m, '\n');
4502 }
4503
4504 return 0;
4505 }
4506
4507 const struct seq_operations slabstats_op = {
4508 .start = leaks_start,
4509 .next = s_next,
4510 .stop = s_stop,
4511 .show = leaks_show,
4512 };
4513 #endif
4514 #endif
4515
4516 /**
4517 * ksize - get the actual amount of memory allocated for a given object
4518 * @objp: Pointer to the object
4519 *
4520 * kmalloc may internally round up allocations and return more memory
4521 * than requested. ksize() can be used to determine the actual amount of
4522 * memory allocated. The caller may use this additional memory, even though
4523 * a smaller amount of memory was initially specified with the kmalloc call.
4524 * The caller must guarantee that objp points to a valid object previously
4525 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4526 * must not be freed during the duration of the call.
4527 */
4528 size_t ksize(const void *objp)
4529 {
4530 if (unlikely(objp == NULL))
4531 return 0;
4532
4533 return obj_size(virt_to_cache(objp));
4534 }
This page took 0.13674 seconds and 5 git commands to generate.