11d9af5f9d2e5f19e682f2fe45c98ed7674702d5
[deliverable/linux.git] / mm / slab.c
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'slab_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
87 */
88
89 #include <linux/slab.h>
90 #include "slab.h"
91 #include <linux/mm.h>
92 #include <linux/poison.h>
93 #include <linux/swap.h>
94 #include <linux/cache.h>
95 #include <linux/interrupt.h>
96 #include <linux/init.h>
97 #include <linux/compiler.h>
98 #include <linux/cpuset.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/notifier.h>
102 #include <linux/kallsyms.h>
103 #include <linux/cpu.h>
104 #include <linux/sysctl.h>
105 #include <linux/module.h>
106 #include <linux/rcupdate.h>
107 #include <linux/string.h>
108 #include <linux/uaccess.h>
109 #include <linux/nodemask.h>
110 #include <linux/kmemleak.h>
111 #include <linux/mempolicy.h>
112 #include <linux/mutex.h>
113 #include <linux/fault-inject.h>
114 #include <linux/rtmutex.h>
115 #include <linux/reciprocal_div.h>
116 #include <linux/debugobjects.h>
117 #include <linux/kmemcheck.h>
118 #include <linux/memory.h>
119 #include <linux/prefetch.h>
120
121 #include <net/sock.h>
122
123 #include <asm/cacheflush.h>
124 #include <asm/tlbflush.h>
125 #include <asm/page.h>
126
127 #include <trace/events/kmem.h>
128
129 #include "internal.h"
130
131 /*
132 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
133 * 0 for faster, smaller code (especially in the critical paths).
134 *
135 * STATS - 1 to collect stats for /proc/slabinfo.
136 * 0 for faster, smaller code (especially in the critical paths).
137 *
138 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
139 */
140
141 #ifdef CONFIG_DEBUG_SLAB
142 #define DEBUG 1
143 #define STATS 1
144 #define FORCED_DEBUG 1
145 #else
146 #define DEBUG 0
147 #define STATS 0
148 #define FORCED_DEBUG 0
149 #endif
150
151 /* Shouldn't this be in a header file somewhere? */
152 #define BYTES_PER_WORD sizeof(void *)
153 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
154
155 #ifndef ARCH_KMALLOC_FLAGS
156 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
157 #endif
158
159 /*
160 * true if a page was allocated from pfmemalloc reserves for network-based
161 * swap
162 */
163 static bool pfmemalloc_active __read_mostly;
164
165 /* Legal flag mask for kmem_cache_create(). */
166 #if DEBUG
167 # define CREATE_MASK (SLAB_RED_ZONE | \
168 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
169 SLAB_CACHE_DMA | \
170 SLAB_STORE_USER | \
171 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
172 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
173 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
174 #else
175 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
176 SLAB_CACHE_DMA | \
177 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
178 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
179 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
180 #endif
181
182 /*
183 * kmem_bufctl_t:
184 *
185 * Bufctl's are used for linking objs within a slab
186 * linked offsets.
187 *
188 * This implementation relies on "struct page" for locating the cache &
189 * slab an object belongs to.
190 * This allows the bufctl structure to be small (one int), but limits
191 * the number of objects a slab (not a cache) can contain when off-slab
192 * bufctls are used. The limit is the size of the largest general cache
193 * that does not use off-slab slabs.
194 * For 32bit archs with 4 kB pages, is this 56.
195 * This is not serious, as it is only for large objects, when it is unwise
196 * to have too many per slab.
197 * Note: This limit can be raised by introducing a general cache whose size
198 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
199 */
200
201 typedef unsigned int kmem_bufctl_t;
202 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
203 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
204 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
205 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
206
207 /*
208 * struct slab_rcu
209 *
210 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
211 * arrange for kmem_freepages to be called via RCU. This is useful if
212 * we need to approach a kernel structure obliquely, from its address
213 * obtained without the usual locking. We can lock the structure to
214 * stabilize it and check it's still at the given address, only if we
215 * can be sure that the memory has not been meanwhile reused for some
216 * other kind of object (which our subsystem's lock might corrupt).
217 *
218 * rcu_read_lock before reading the address, then rcu_read_unlock after
219 * taking the spinlock within the structure expected at that address.
220 */
221 struct slab_rcu {
222 struct rcu_head head;
223 struct kmem_cache *cachep;
224 void *addr;
225 };
226
227 /*
228 * struct slab
229 *
230 * Manages the objs in a slab. Placed either at the beginning of mem allocated
231 * for a slab, or allocated from an general cache.
232 * Slabs are chained into three list: fully used, partial, fully free slabs.
233 */
234 struct slab {
235 union {
236 struct {
237 struct list_head list;
238 unsigned long colouroff;
239 void *s_mem; /* including colour offset */
240 unsigned int inuse; /* num of objs active in slab */
241 kmem_bufctl_t free;
242 unsigned short nodeid;
243 };
244 struct slab_rcu __slab_cover_slab_rcu;
245 };
246 };
247
248 /*
249 * struct array_cache
250 *
251 * Purpose:
252 * - LIFO ordering, to hand out cache-warm objects from _alloc
253 * - reduce the number of linked list operations
254 * - reduce spinlock operations
255 *
256 * The limit is stored in the per-cpu structure to reduce the data cache
257 * footprint.
258 *
259 */
260 struct array_cache {
261 unsigned int avail;
262 unsigned int limit;
263 unsigned int batchcount;
264 unsigned int touched;
265 spinlock_t lock;
266 void *entry[]; /*
267 * Must have this definition in here for the proper
268 * alignment of array_cache. Also simplifies accessing
269 * the entries.
270 *
271 * Entries should not be directly dereferenced as
272 * entries belonging to slabs marked pfmemalloc will
273 * have the lower bits set SLAB_OBJ_PFMEMALLOC
274 */
275 };
276
277 #define SLAB_OBJ_PFMEMALLOC 1
278 static inline bool is_obj_pfmemalloc(void *objp)
279 {
280 return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
281 }
282
283 static inline void set_obj_pfmemalloc(void **objp)
284 {
285 *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
286 return;
287 }
288
289 static inline void clear_obj_pfmemalloc(void **objp)
290 {
291 *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
292 }
293
294 /*
295 * bootstrap: The caches do not work without cpuarrays anymore, but the
296 * cpuarrays are allocated from the generic caches...
297 */
298 #define BOOT_CPUCACHE_ENTRIES 1
299 struct arraycache_init {
300 struct array_cache cache;
301 void *entries[BOOT_CPUCACHE_ENTRIES];
302 };
303
304 /*
305 * The slab lists for all objects.
306 */
307 struct kmem_list3 {
308 struct list_head slabs_partial; /* partial list first, better asm code */
309 struct list_head slabs_full;
310 struct list_head slabs_free;
311 unsigned long free_objects;
312 unsigned int free_limit;
313 unsigned int colour_next; /* Per-node cache coloring */
314 spinlock_t list_lock;
315 struct array_cache *shared; /* shared per node */
316 struct array_cache **alien; /* on other nodes */
317 unsigned long next_reap; /* updated without locking */
318 int free_touched; /* updated without locking */
319 };
320
321 /*
322 * Need this for bootstrapping a per node allocator.
323 */
324 #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
325 static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
326 #define CACHE_CACHE 0
327 #define SIZE_AC MAX_NUMNODES
328 #define SIZE_L3 (2 * MAX_NUMNODES)
329
330 static int drain_freelist(struct kmem_cache *cache,
331 struct kmem_list3 *l3, int tofree);
332 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
333 int node);
334 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
335 static void cache_reap(struct work_struct *unused);
336
337 /*
338 * This function must be completely optimized away if a constant is passed to
339 * it. Mostly the same as what is in linux/slab.h except it returns an index.
340 */
341 static __always_inline int index_of(const size_t size)
342 {
343 extern void __bad_size(void);
344
345 if (__builtin_constant_p(size)) {
346 int i = 0;
347
348 #define CACHE(x) \
349 if (size <=x) \
350 return i; \
351 else \
352 i++;
353 #include <linux/kmalloc_sizes.h>
354 #undef CACHE
355 __bad_size();
356 } else
357 __bad_size();
358 return 0;
359 }
360
361 static int slab_early_init = 1;
362
363 #define INDEX_AC index_of(sizeof(struct arraycache_init))
364 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
365
366 static void kmem_list3_init(struct kmem_list3 *parent)
367 {
368 INIT_LIST_HEAD(&parent->slabs_full);
369 INIT_LIST_HEAD(&parent->slabs_partial);
370 INIT_LIST_HEAD(&parent->slabs_free);
371 parent->shared = NULL;
372 parent->alien = NULL;
373 parent->colour_next = 0;
374 spin_lock_init(&parent->list_lock);
375 parent->free_objects = 0;
376 parent->free_touched = 0;
377 }
378
379 #define MAKE_LIST(cachep, listp, slab, nodeid) \
380 do { \
381 INIT_LIST_HEAD(listp); \
382 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
383 } while (0)
384
385 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
386 do { \
387 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
388 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
389 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
390 } while (0)
391
392 #define CFLGS_OFF_SLAB (0x80000000UL)
393 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
394
395 #define BATCHREFILL_LIMIT 16
396 /*
397 * Optimization question: fewer reaps means less probability for unnessary
398 * cpucache drain/refill cycles.
399 *
400 * OTOH the cpuarrays can contain lots of objects,
401 * which could lock up otherwise freeable slabs.
402 */
403 #define REAPTIMEOUT_CPUC (2*HZ)
404 #define REAPTIMEOUT_LIST3 (4*HZ)
405
406 #if STATS
407 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
408 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
409 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
410 #define STATS_INC_GROWN(x) ((x)->grown++)
411 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
412 #define STATS_SET_HIGH(x) \
413 do { \
414 if ((x)->num_active > (x)->high_mark) \
415 (x)->high_mark = (x)->num_active; \
416 } while (0)
417 #define STATS_INC_ERR(x) ((x)->errors++)
418 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
419 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
420 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
421 #define STATS_SET_FREEABLE(x, i) \
422 do { \
423 if ((x)->max_freeable < i) \
424 (x)->max_freeable = i; \
425 } while (0)
426 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
427 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
428 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
429 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
430 #else
431 #define STATS_INC_ACTIVE(x) do { } while (0)
432 #define STATS_DEC_ACTIVE(x) do { } while (0)
433 #define STATS_INC_ALLOCED(x) do { } while (0)
434 #define STATS_INC_GROWN(x) do { } while (0)
435 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
436 #define STATS_SET_HIGH(x) do { } while (0)
437 #define STATS_INC_ERR(x) do { } while (0)
438 #define STATS_INC_NODEALLOCS(x) do { } while (0)
439 #define STATS_INC_NODEFREES(x) do { } while (0)
440 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
441 #define STATS_SET_FREEABLE(x, i) do { } while (0)
442 #define STATS_INC_ALLOCHIT(x) do { } while (0)
443 #define STATS_INC_ALLOCMISS(x) do { } while (0)
444 #define STATS_INC_FREEHIT(x) do { } while (0)
445 #define STATS_INC_FREEMISS(x) do { } while (0)
446 #endif
447
448 #if DEBUG
449
450 /*
451 * memory layout of objects:
452 * 0 : objp
453 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
454 * the end of an object is aligned with the end of the real
455 * allocation. Catches writes behind the end of the allocation.
456 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
457 * redzone word.
458 * cachep->obj_offset: The real object.
459 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
460 * cachep->size - 1* BYTES_PER_WORD: last caller address
461 * [BYTES_PER_WORD long]
462 */
463 static int obj_offset(struct kmem_cache *cachep)
464 {
465 return cachep->obj_offset;
466 }
467
468 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
469 {
470 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
471 return (unsigned long long*) (objp + obj_offset(cachep) -
472 sizeof(unsigned long long));
473 }
474
475 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
476 {
477 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
478 if (cachep->flags & SLAB_STORE_USER)
479 return (unsigned long long *)(objp + cachep->size -
480 sizeof(unsigned long long) -
481 REDZONE_ALIGN);
482 return (unsigned long long *) (objp + cachep->size -
483 sizeof(unsigned long long));
484 }
485
486 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
487 {
488 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
489 return (void **)(objp + cachep->size - BYTES_PER_WORD);
490 }
491
492 #else
493
494 #define obj_offset(x) 0
495 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
496 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
497 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
498
499 #endif
500
501 #ifdef CONFIG_TRACING
502 size_t slab_buffer_size(struct kmem_cache *cachep)
503 {
504 return cachep->size;
505 }
506 EXPORT_SYMBOL(slab_buffer_size);
507 #endif
508
509 /*
510 * Do not go above this order unless 0 objects fit into the slab or
511 * overridden on the command line.
512 */
513 #define SLAB_MAX_ORDER_HI 1
514 #define SLAB_MAX_ORDER_LO 0
515 static int slab_max_order = SLAB_MAX_ORDER_LO;
516 static bool slab_max_order_set __initdata;
517
518 static inline struct kmem_cache *virt_to_cache(const void *obj)
519 {
520 struct page *page = virt_to_head_page(obj);
521 return page->slab_cache;
522 }
523
524 static inline struct slab *virt_to_slab(const void *obj)
525 {
526 struct page *page = virt_to_head_page(obj);
527
528 VM_BUG_ON(!PageSlab(page));
529 return page->slab_page;
530 }
531
532 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
533 unsigned int idx)
534 {
535 return slab->s_mem + cache->size * idx;
536 }
537
538 /*
539 * We want to avoid an expensive divide : (offset / cache->size)
540 * Using the fact that size is a constant for a particular cache,
541 * we can replace (offset / cache->size) by
542 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
543 */
544 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
545 const struct slab *slab, void *obj)
546 {
547 u32 offset = (obj - slab->s_mem);
548 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
549 }
550
551 /*
552 * These are the default caches for kmalloc. Custom caches can have other sizes.
553 */
554 struct cache_sizes malloc_sizes[] = {
555 #define CACHE(x) { .cs_size = (x) },
556 #include <linux/kmalloc_sizes.h>
557 CACHE(ULONG_MAX)
558 #undef CACHE
559 };
560 EXPORT_SYMBOL(malloc_sizes);
561
562 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
563 struct cache_names {
564 char *name;
565 char *name_dma;
566 };
567
568 static struct cache_names __initdata cache_names[] = {
569 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
570 #include <linux/kmalloc_sizes.h>
571 {NULL,}
572 #undef CACHE
573 };
574
575 static struct arraycache_init initarray_cache __initdata =
576 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
577 static struct arraycache_init initarray_generic =
578 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
579
580 /* internal cache of cache description objs */
581 static struct kmem_list3 *kmem_cache_nodelists[MAX_NUMNODES];
582 static struct kmem_cache kmem_cache_boot = {
583 .nodelists = kmem_cache_nodelists,
584 .batchcount = 1,
585 .limit = BOOT_CPUCACHE_ENTRIES,
586 .shared = 1,
587 .size = sizeof(struct kmem_cache),
588 .name = "kmem_cache",
589 };
590
591 #define BAD_ALIEN_MAGIC 0x01020304ul
592
593 #ifdef CONFIG_LOCKDEP
594
595 /*
596 * Slab sometimes uses the kmalloc slabs to store the slab headers
597 * for other slabs "off slab".
598 * The locking for this is tricky in that it nests within the locks
599 * of all other slabs in a few places; to deal with this special
600 * locking we put on-slab caches into a separate lock-class.
601 *
602 * We set lock class for alien array caches which are up during init.
603 * The lock annotation will be lost if all cpus of a node goes down and
604 * then comes back up during hotplug
605 */
606 static struct lock_class_key on_slab_l3_key;
607 static struct lock_class_key on_slab_alc_key;
608
609 static struct lock_class_key debugobj_l3_key;
610 static struct lock_class_key debugobj_alc_key;
611
612 static void slab_set_lock_classes(struct kmem_cache *cachep,
613 struct lock_class_key *l3_key, struct lock_class_key *alc_key,
614 int q)
615 {
616 struct array_cache **alc;
617 struct kmem_list3 *l3;
618 int r;
619
620 l3 = cachep->nodelists[q];
621 if (!l3)
622 return;
623
624 lockdep_set_class(&l3->list_lock, l3_key);
625 alc = l3->alien;
626 /*
627 * FIXME: This check for BAD_ALIEN_MAGIC
628 * should go away when common slab code is taught to
629 * work even without alien caches.
630 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
631 * for alloc_alien_cache,
632 */
633 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
634 return;
635 for_each_node(r) {
636 if (alc[r])
637 lockdep_set_class(&alc[r]->lock, alc_key);
638 }
639 }
640
641 static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
642 {
643 slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
644 }
645
646 static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
647 {
648 int node;
649
650 for_each_online_node(node)
651 slab_set_debugobj_lock_classes_node(cachep, node);
652 }
653
654 static void init_node_lock_keys(int q)
655 {
656 struct cache_sizes *s = malloc_sizes;
657
658 if (slab_state < UP)
659 return;
660
661 for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
662 struct kmem_list3 *l3;
663
664 l3 = s->cs_cachep->nodelists[q];
665 if (!l3 || OFF_SLAB(s->cs_cachep))
666 continue;
667
668 slab_set_lock_classes(s->cs_cachep, &on_slab_l3_key,
669 &on_slab_alc_key, q);
670 }
671 }
672
673 static inline void init_lock_keys(void)
674 {
675 int node;
676
677 for_each_node(node)
678 init_node_lock_keys(node);
679 }
680 #else
681 static void init_node_lock_keys(int q)
682 {
683 }
684
685 static inline void init_lock_keys(void)
686 {
687 }
688
689 static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
690 {
691 }
692
693 static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
694 {
695 }
696 #endif
697
698 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
699
700 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
701 {
702 return cachep->array[smp_processor_id()];
703 }
704
705 static inline struct kmem_cache *__find_general_cachep(size_t size,
706 gfp_t gfpflags)
707 {
708 struct cache_sizes *csizep = malloc_sizes;
709
710 #if DEBUG
711 /* This happens if someone tries to call
712 * kmem_cache_create(), or __kmalloc(), before
713 * the generic caches are initialized.
714 */
715 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
716 #endif
717 if (!size)
718 return ZERO_SIZE_PTR;
719
720 while (size > csizep->cs_size)
721 csizep++;
722
723 /*
724 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
725 * has cs_{dma,}cachep==NULL. Thus no special case
726 * for large kmalloc calls required.
727 */
728 #ifdef CONFIG_ZONE_DMA
729 if (unlikely(gfpflags & GFP_DMA))
730 return csizep->cs_dmacachep;
731 #endif
732 return csizep->cs_cachep;
733 }
734
735 static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
736 {
737 return __find_general_cachep(size, gfpflags);
738 }
739
740 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
741 {
742 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
743 }
744
745 /*
746 * Calculate the number of objects and left-over bytes for a given buffer size.
747 */
748 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
749 size_t align, int flags, size_t *left_over,
750 unsigned int *num)
751 {
752 int nr_objs;
753 size_t mgmt_size;
754 size_t slab_size = PAGE_SIZE << gfporder;
755
756 /*
757 * The slab management structure can be either off the slab or
758 * on it. For the latter case, the memory allocated for a
759 * slab is used for:
760 *
761 * - The struct slab
762 * - One kmem_bufctl_t for each object
763 * - Padding to respect alignment of @align
764 * - @buffer_size bytes for each object
765 *
766 * If the slab management structure is off the slab, then the
767 * alignment will already be calculated into the size. Because
768 * the slabs are all pages aligned, the objects will be at the
769 * correct alignment when allocated.
770 */
771 if (flags & CFLGS_OFF_SLAB) {
772 mgmt_size = 0;
773 nr_objs = slab_size / buffer_size;
774
775 if (nr_objs > SLAB_LIMIT)
776 nr_objs = SLAB_LIMIT;
777 } else {
778 /*
779 * Ignore padding for the initial guess. The padding
780 * is at most @align-1 bytes, and @buffer_size is at
781 * least @align. In the worst case, this result will
782 * be one greater than the number of objects that fit
783 * into the memory allocation when taking the padding
784 * into account.
785 */
786 nr_objs = (slab_size - sizeof(struct slab)) /
787 (buffer_size + sizeof(kmem_bufctl_t));
788
789 /*
790 * This calculated number will be either the right
791 * amount, or one greater than what we want.
792 */
793 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
794 > slab_size)
795 nr_objs--;
796
797 if (nr_objs > SLAB_LIMIT)
798 nr_objs = SLAB_LIMIT;
799
800 mgmt_size = slab_mgmt_size(nr_objs, align);
801 }
802 *num = nr_objs;
803 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
804 }
805
806 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
807
808 static void __slab_error(const char *function, struct kmem_cache *cachep,
809 char *msg)
810 {
811 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
812 function, cachep->name, msg);
813 dump_stack();
814 }
815
816 /*
817 * By default on NUMA we use alien caches to stage the freeing of
818 * objects allocated from other nodes. This causes massive memory
819 * inefficiencies when using fake NUMA setup to split memory into a
820 * large number of small nodes, so it can be disabled on the command
821 * line
822 */
823
824 static int use_alien_caches __read_mostly = 1;
825 static int __init noaliencache_setup(char *s)
826 {
827 use_alien_caches = 0;
828 return 1;
829 }
830 __setup("noaliencache", noaliencache_setup);
831
832 static int __init slab_max_order_setup(char *str)
833 {
834 get_option(&str, &slab_max_order);
835 slab_max_order = slab_max_order < 0 ? 0 :
836 min(slab_max_order, MAX_ORDER - 1);
837 slab_max_order_set = true;
838
839 return 1;
840 }
841 __setup("slab_max_order=", slab_max_order_setup);
842
843 #ifdef CONFIG_NUMA
844 /*
845 * Special reaping functions for NUMA systems called from cache_reap().
846 * These take care of doing round robin flushing of alien caches (containing
847 * objects freed on different nodes from which they were allocated) and the
848 * flushing of remote pcps by calling drain_node_pages.
849 */
850 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
851
852 static void init_reap_node(int cpu)
853 {
854 int node;
855
856 node = next_node(cpu_to_mem(cpu), node_online_map);
857 if (node == MAX_NUMNODES)
858 node = first_node(node_online_map);
859
860 per_cpu(slab_reap_node, cpu) = node;
861 }
862
863 static void next_reap_node(void)
864 {
865 int node = __this_cpu_read(slab_reap_node);
866
867 node = next_node(node, node_online_map);
868 if (unlikely(node >= MAX_NUMNODES))
869 node = first_node(node_online_map);
870 __this_cpu_write(slab_reap_node, node);
871 }
872
873 #else
874 #define init_reap_node(cpu) do { } while (0)
875 #define next_reap_node(void) do { } while (0)
876 #endif
877
878 /*
879 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
880 * via the workqueue/eventd.
881 * Add the CPU number into the expiration time to minimize the possibility of
882 * the CPUs getting into lockstep and contending for the global cache chain
883 * lock.
884 */
885 static void __cpuinit start_cpu_timer(int cpu)
886 {
887 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
888
889 /*
890 * When this gets called from do_initcalls via cpucache_init(),
891 * init_workqueues() has already run, so keventd will be setup
892 * at that time.
893 */
894 if (keventd_up() && reap_work->work.func == NULL) {
895 init_reap_node(cpu);
896 INIT_DELAYED_WORK_DEFERRABLE(reap_work, cache_reap);
897 schedule_delayed_work_on(cpu, reap_work,
898 __round_jiffies_relative(HZ, cpu));
899 }
900 }
901
902 static struct array_cache *alloc_arraycache(int node, int entries,
903 int batchcount, gfp_t gfp)
904 {
905 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
906 struct array_cache *nc = NULL;
907
908 nc = kmalloc_node(memsize, gfp, node);
909 /*
910 * The array_cache structures contain pointers to free object.
911 * However, when such objects are allocated or transferred to another
912 * cache the pointers are not cleared and they could be counted as
913 * valid references during a kmemleak scan. Therefore, kmemleak must
914 * not scan such objects.
915 */
916 kmemleak_no_scan(nc);
917 if (nc) {
918 nc->avail = 0;
919 nc->limit = entries;
920 nc->batchcount = batchcount;
921 nc->touched = 0;
922 spin_lock_init(&nc->lock);
923 }
924 return nc;
925 }
926
927 static inline bool is_slab_pfmemalloc(struct slab *slabp)
928 {
929 struct page *page = virt_to_page(slabp->s_mem);
930
931 return PageSlabPfmemalloc(page);
932 }
933
934 /* Clears pfmemalloc_active if no slabs have pfmalloc set */
935 static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
936 struct array_cache *ac)
937 {
938 struct kmem_list3 *l3 = cachep->nodelists[numa_mem_id()];
939 struct slab *slabp;
940 unsigned long flags;
941
942 if (!pfmemalloc_active)
943 return;
944
945 spin_lock_irqsave(&l3->list_lock, flags);
946 list_for_each_entry(slabp, &l3->slabs_full, list)
947 if (is_slab_pfmemalloc(slabp))
948 goto out;
949
950 list_for_each_entry(slabp, &l3->slabs_partial, list)
951 if (is_slab_pfmemalloc(slabp))
952 goto out;
953
954 list_for_each_entry(slabp, &l3->slabs_free, list)
955 if (is_slab_pfmemalloc(slabp))
956 goto out;
957
958 pfmemalloc_active = false;
959 out:
960 spin_unlock_irqrestore(&l3->list_lock, flags);
961 }
962
963 static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
964 gfp_t flags, bool force_refill)
965 {
966 int i;
967 void *objp = ac->entry[--ac->avail];
968
969 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
970 if (unlikely(is_obj_pfmemalloc(objp))) {
971 struct kmem_list3 *l3;
972
973 if (gfp_pfmemalloc_allowed(flags)) {
974 clear_obj_pfmemalloc(&objp);
975 return objp;
976 }
977
978 /* The caller cannot use PFMEMALLOC objects, find another one */
979 for (i = 1; i < ac->avail; i++) {
980 /* If a !PFMEMALLOC object is found, swap them */
981 if (!is_obj_pfmemalloc(ac->entry[i])) {
982 objp = ac->entry[i];
983 ac->entry[i] = ac->entry[ac->avail];
984 ac->entry[ac->avail] = objp;
985 return objp;
986 }
987 }
988
989 /*
990 * If there are empty slabs on the slabs_free list and we are
991 * being forced to refill the cache, mark this one !pfmemalloc.
992 */
993 l3 = cachep->nodelists[numa_mem_id()];
994 if (!list_empty(&l3->slabs_free) && force_refill) {
995 struct slab *slabp = virt_to_slab(objp);
996 ClearPageSlabPfmemalloc(virt_to_page(slabp->s_mem));
997 clear_obj_pfmemalloc(&objp);
998 recheck_pfmemalloc_active(cachep, ac);
999 return objp;
1000 }
1001
1002 /* No !PFMEMALLOC objects available */
1003 ac->avail++;
1004 objp = NULL;
1005 }
1006
1007 return objp;
1008 }
1009
1010 static inline void *ac_get_obj(struct kmem_cache *cachep,
1011 struct array_cache *ac, gfp_t flags, bool force_refill)
1012 {
1013 void *objp;
1014
1015 if (unlikely(sk_memalloc_socks()))
1016 objp = __ac_get_obj(cachep, ac, flags, force_refill);
1017 else
1018 objp = ac->entry[--ac->avail];
1019
1020 return objp;
1021 }
1022
1023 static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
1024 void *objp)
1025 {
1026 if (unlikely(pfmemalloc_active)) {
1027 /* Some pfmemalloc slabs exist, check if this is one */
1028 struct page *page = virt_to_page(objp);
1029 if (PageSlabPfmemalloc(page))
1030 set_obj_pfmemalloc(&objp);
1031 }
1032
1033 return objp;
1034 }
1035
1036 static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
1037 void *objp)
1038 {
1039 if (unlikely(sk_memalloc_socks()))
1040 objp = __ac_put_obj(cachep, ac, objp);
1041
1042 ac->entry[ac->avail++] = objp;
1043 }
1044
1045 /*
1046 * Transfer objects in one arraycache to another.
1047 * Locking must be handled by the caller.
1048 *
1049 * Return the number of entries transferred.
1050 */
1051 static int transfer_objects(struct array_cache *to,
1052 struct array_cache *from, unsigned int max)
1053 {
1054 /* Figure out how many entries to transfer */
1055 int nr = min3(from->avail, max, to->limit - to->avail);
1056
1057 if (!nr)
1058 return 0;
1059
1060 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
1061 sizeof(void *) *nr);
1062
1063 from->avail -= nr;
1064 to->avail += nr;
1065 return nr;
1066 }
1067
1068 #ifndef CONFIG_NUMA
1069
1070 #define drain_alien_cache(cachep, alien) do { } while (0)
1071 #define reap_alien(cachep, l3) do { } while (0)
1072
1073 static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1074 {
1075 return (struct array_cache **)BAD_ALIEN_MAGIC;
1076 }
1077
1078 static inline void free_alien_cache(struct array_cache **ac_ptr)
1079 {
1080 }
1081
1082 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1083 {
1084 return 0;
1085 }
1086
1087 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1088 gfp_t flags)
1089 {
1090 return NULL;
1091 }
1092
1093 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1094 gfp_t flags, int nodeid)
1095 {
1096 return NULL;
1097 }
1098
1099 #else /* CONFIG_NUMA */
1100
1101 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1102 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1103
1104 static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1105 {
1106 struct array_cache **ac_ptr;
1107 int memsize = sizeof(void *) * nr_node_ids;
1108 int i;
1109
1110 if (limit > 1)
1111 limit = 12;
1112 ac_ptr = kzalloc_node(memsize, gfp, node);
1113 if (ac_ptr) {
1114 for_each_node(i) {
1115 if (i == node || !node_online(i))
1116 continue;
1117 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
1118 if (!ac_ptr[i]) {
1119 for (i--; i >= 0; i--)
1120 kfree(ac_ptr[i]);
1121 kfree(ac_ptr);
1122 return NULL;
1123 }
1124 }
1125 }
1126 return ac_ptr;
1127 }
1128
1129 static void free_alien_cache(struct array_cache **ac_ptr)
1130 {
1131 int i;
1132
1133 if (!ac_ptr)
1134 return;
1135 for_each_node(i)
1136 kfree(ac_ptr[i]);
1137 kfree(ac_ptr);
1138 }
1139
1140 static void __drain_alien_cache(struct kmem_cache *cachep,
1141 struct array_cache *ac, int node)
1142 {
1143 struct kmem_list3 *rl3 = cachep->nodelists[node];
1144
1145 if (ac->avail) {
1146 spin_lock(&rl3->list_lock);
1147 /*
1148 * Stuff objects into the remote nodes shared array first.
1149 * That way we could avoid the overhead of putting the objects
1150 * into the free lists and getting them back later.
1151 */
1152 if (rl3->shared)
1153 transfer_objects(rl3->shared, ac, ac->limit);
1154
1155 free_block(cachep, ac->entry, ac->avail, node);
1156 ac->avail = 0;
1157 spin_unlock(&rl3->list_lock);
1158 }
1159 }
1160
1161 /*
1162 * Called from cache_reap() to regularly drain alien caches round robin.
1163 */
1164 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1165 {
1166 int node = __this_cpu_read(slab_reap_node);
1167
1168 if (l3->alien) {
1169 struct array_cache *ac = l3->alien[node];
1170
1171 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1172 __drain_alien_cache(cachep, ac, node);
1173 spin_unlock_irq(&ac->lock);
1174 }
1175 }
1176 }
1177
1178 static void drain_alien_cache(struct kmem_cache *cachep,
1179 struct array_cache **alien)
1180 {
1181 int i = 0;
1182 struct array_cache *ac;
1183 unsigned long flags;
1184
1185 for_each_online_node(i) {
1186 ac = alien[i];
1187 if (ac) {
1188 spin_lock_irqsave(&ac->lock, flags);
1189 __drain_alien_cache(cachep, ac, i);
1190 spin_unlock_irqrestore(&ac->lock, flags);
1191 }
1192 }
1193 }
1194
1195 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1196 {
1197 struct slab *slabp = virt_to_slab(objp);
1198 int nodeid = slabp->nodeid;
1199 struct kmem_list3 *l3;
1200 struct array_cache *alien = NULL;
1201 int node;
1202
1203 node = numa_mem_id();
1204
1205 /*
1206 * Make sure we are not freeing a object from another node to the array
1207 * cache on this cpu.
1208 */
1209 if (likely(slabp->nodeid == node))
1210 return 0;
1211
1212 l3 = cachep->nodelists[node];
1213 STATS_INC_NODEFREES(cachep);
1214 if (l3->alien && l3->alien[nodeid]) {
1215 alien = l3->alien[nodeid];
1216 spin_lock(&alien->lock);
1217 if (unlikely(alien->avail == alien->limit)) {
1218 STATS_INC_ACOVERFLOW(cachep);
1219 __drain_alien_cache(cachep, alien, nodeid);
1220 }
1221 ac_put_obj(cachep, alien, objp);
1222 spin_unlock(&alien->lock);
1223 } else {
1224 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1225 free_block(cachep, &objp, 1, nodeid);
1226 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1227 }
1228 return 1;
1229 }
1230 #endif
1231
1232 /*
1233 * Allocates and initializes nodelists for a node on each slab cache, used for
1234 * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3
1235 * will be allocated off-node since memory is not yet online for the new node.
1236 * When hotplugging memory or a cpu, existing nodelists are not replaced if
1237 * already in use.
1238 *
1239 * Must hold slab_mutex.
1240 */
1241 static int init_cache_nodelists_node(int node)
1242 {
1243 struct kmem_cache *cachep;
1244 struct kmem_list3 *l3;
1245 const int memsize = sizeof(struct kmem_list3);
1246
1247 list_for_each_entry(cachep, &slab_caches, list) {
1248 /*
1249 * Set up the size64 kmemlist for cpu before we can
1250 * begin anything. Make sure some other cpu on this
1251 * node has not already allocated this
1252 */
1253 if (!cachep->nodelists[node]) {
1254 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1255 if (!l3)
1256 return -ENOMEM;
1257 kmem_list3_init(l3);
1258 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1259 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1260
1261 /*
1262 * The l3s don't come and go as CPUs come and
1263 * go. slab_mutex is sufficient
1264 * protection here.
1265 */
1266 cachep->nodelists[node] = l3;
1267 }
1268
1269 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1270 cachep->nodelists[node]->free_limit =
1271 (1 + nr_cpus_node(node)) *
1272 cachep->batchcount + cachep->num;
1273 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1274 }
1275 return 0;
1276 }
1277
1278 static void __cpuinit cpuup_canceled(long cpu)
1279 {
1280 struct kmem_cache *cachep;
1281 struct kmem_list3 *l3 = NULL;
1282 int node = cpu_to_mem(cpu);
1283 const struct cpumask *mask = cpumask_of_node(node);
1284
1285 list_for_each_entry(cachep, &slab_caches, list) {
1286 struct array_cache *nc;
1287 struct array_cache *shared;
1288 struct array_cache **alien;
1289
1290 /* cpu is dead; no one can alloc from it. */
1291 nc = cachep->array[cpu];
1292 cachep->array[cpu] = NULL;
1293 l3 = cachep->nodelists[node];
1294
1295 if (!l3)
1296 goto free_array_cache;
1297
1298 spin_lock_irq(&l3->list_lock);
1299
1300 /* Free limit for this kmem_list3 */
1301 l3->free_limit -= cachep->batchcount;
1302 if (nc)
1303 free_block(cachep, nc->entry, nc->avail, node);
1304
1305 if (!cpumask_empty(mask)) {
1306 spin_unlock_irq(&l3->list_lock);
1307 goto free_array_cache;
1308 }
1309
1310 shared = l3->shared;
1311 if (shared) {
1312 free_block(cachep, shared->entry,
1313 shared->avail, node);
1314 l3->shared = NULL;
1315 }
1316
1317 alien = l3->alien;
1318 l3->alien = NULL;
1319
1320 spin_unlock_irq(&l3->list_lock);
1321
1322 kfree(shared);
1323 if (alien) {
1324 drain_alien_cache(cachep, alien);
1325 free_alien_cache(alien);
1326 }
1327 free_array_cache:
1328 kfree(nc);
1329 }
1330 /*
1331 * In the previous loop, all the objects were freed to
1332 * the respective cache's slabs, now we can go ahead and
1333 * shrink each nodelist to its limit.
1334 */
1335 list_for_each_entry(cachep, &slab_caches, list) {
1336 l3 = cachep->nodelists[node];
1337 if (!l3)
1338 continue;
1339 drain_freelist(cachep, l3, l3->free_objects);
1340 }
1341 }
1342
1343 static int __cpuinit cpuup_prepare(long cpu)
1344 {
1345 struct kmem_cache *cachep;
1346 struct kmem_list3 *l3 = NULL;
1347 int node = cpu_to_mem(cpu);
1348 int err;
1349
1350 /*
1351 * We need to do this right in the beginning since
1352 * alloc_arraycache's are going to use this list.
1353 * kmalloc_node allows us to add the slab to the right
1354 * kmem_list3 and not this cpu's kmem_list3
1355 */
1356 err = init_cache_nodelists_node(node);
1357 if (err < 0)
1358 goto bad;
1359
1360 /*
1361 * Now we can go ahead with allocating the shared arrays and
1362 * array caches
1363 */
1364 list_for_each_entry(cachep, &slab_caches, list) {
1365 struct array_cache *nc;
1366 struct array_cache *shared = NULL;
1367 struct array_cache **alien = NULL;
1368
1369 nc = alloc_arraycache(node, cachep->limit,
1370 cachep->batchcount, GFP_KERNEL);
1371 if (!nc)
1372 goto bad;
1373 if (cachep->shared) {
1374 shared = alloc_arraycache(node,
1375 cachep->shared * cachep->batchcount,
1376 0xbaadf00d, GFP_KERNEL);
1377 if (!shared) {
1378 kfree(nc);
1379 goto bad;
1380 }
1381 }
1382 if (use_alien_caches) {
1383 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1384 if (!alien) {
1385 kfree(shared);
1386 kfree(nc);
1387 goto bad;
1388 }
1389 }
1390 cachep->array[cpu] = nc;
1391 l3 = cachep->nodelists[node];
1392 BUG_ON(!l3);
1393
1394 spin_lock_irq(&l3->list_lock);
1395 if (!l3->shared) {
1396 /*
1397 * We are serialised from CPU_DEAD or
1398 * CPU_UP_CANCELLED by the cpucontrol lock
1399 */
1400 l3->shared = shared;
1401 shared = NULL;
1402 }
1403 #ifdef CONFIG_NUMA
1404 if (!l3->alien) {
1405 l3->alien = alien;
1406 alien = NULL;
1407 }
1408 #endif
1409 spin_unlock_irq(&l3->list_lock);
1410 kfree(shared);
1411 free_alien_cache(alien);
1412 if (cachep->flags & SLAB_DEBUG_OBJECTS)
1413 slab_set_debugobj_lock_classes_node(cachep, node);
1414 }
1415 init_node_lock_keys(node);
1416
1417 return 0;
1418 bad:
1419 cpuup_canceled(cpu);
1420 return -ENOMEM;
1421 }
1422
1423 static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1424 unsigned long action, void *hcpu)
1425 {
1426 long cpu = (long)hcpu;
1427 int err = 0;
1428
1429 switch (action) {
1430 case CPU_UP_PREPARE:
1431 case CPU_UP_PREPARE_FROZEN:
1432 mutex_lock(&slab_mutex);
1433 err = cpuup_prepare(cpu);
1434 mutex_unlock(&slab_mutex);
1435 break;
1436 case CPU_ONLINE:
1437 case CPU_ONLINE_FROZEN:
1438 start_cpu_timer(cpu);
1439 break;
1440 #ifdef CONFIG_HOTPLUG_CPU
1441 case CPU_DOWN_PREPARE:
1442 case CPU_DOWN_PREPARE_FROZEN:
1443 /*
1444 * Shutdown cache reaper. Note that the slab_mutex is
1445 * held so that if cache_reap() is invoked it cannot do
1446 * anything expensive but will only modify reap_work
1447 * and reschedule the timer.
1448 */
1449 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1450 /* Now the cache_reaper is guaranteed to be not running. */
1451 per_cpu(slab_reap_work, cpu).work.func = NULL;
1452 break;
1453 case CPU_DOWN_FAILED:
1454 case CPU_DOWN_FAILED_FROZEN:
1455 start_cpu_timer(cpu);
1456 break;
1457 case CPU_DEAD:
1458 case CPU_DEAD_FROZEN:
1459 /*
1460 * Even if all the cpus of a node are down, we don't free the
1461 * kmem_list3 of any cache. This to avoid a race between
1462 * cpu_down, and a kmalloc allocation from another cpu for
1463 * memory from the node of the cpu going down. The list3
1464 * structure is usually allocated from kmem_cache_create() and
1465 * gets destroyed at kmem_cache_destroy().
1466 */
1467 /* fall through */
1468 #endif
1469 case CPU_UP_CANCELED:
1470 case CPU_UP_CANCELED_FROZEN:
1471 mutex_lock(&slab_mutex);
1472 cpuup_canceled(cpu);
1473 mutex_unlock(&slab_mutex);
1474 break;
1475 }
1476 return notifier_from_errno(err);
1477 }
1478
1479 static struct notifier_block __cpuinitdata cpucache_notifier = {
1480 &cpuup_callback, NULL, 0
1481 };
1482
1483 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1484 /*
1485 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1486 * Returns -EBUSY if all objects cannot be drained so that the node is not
1487 * removed.
1488 *
1489 * Must hold slab_mutex.
1490 */
1491 static int __meminit drain_cache_nodelists_node(int node)
1492 {
1493 struct kmem_cache *cachep;
1494 int ret = 0;
1495
1496 list_for_each_entry(cachep, &slab_caches, list) {
1497 struct kmem_list3 *l3;
1498
1499 l3 = cachep->nodelists[node];
1500 if (!l3)
1501 continue;
1502
1503 drain_freelist(cachep, l3, l3->free_objects);
1504
1505 if (!list_empty(&l3->slabs_full) ||
1506 !list_empty(&l3->slabs_partial)) {
1507 ret = -EBUSY;
1508 break;
1509 }
1510 }
1511 return ret;
1512 }
1513
1514 static int __meminit slab_memory_callback(struct notifier_block *self,
1515 unsigned long action, void *arg)
1516 {
1517 struct memory_notify *mnb = arg;
1518 int ret = 0;
1519 int nid;
1520
1521 nid = mnb->status_change_nid;
1522 if (nid < 0)
1523 goto out;
1524
1525 switch (action) {
1526 case MEM_GOING_ONLINE:
1527 mutex_lock(&slab_mutex);
1528 ret = init_cache_nodelists_node(nid);
1529 mutex_unlock(&slab_mutex);
1530 break;
1531 case MEM_GOING_OFFLINE:
1532 mutex_lock(&slab_mutex);
1533 ret = drain_cache_nodelists_node(nid);
1534 mutex_unlock(&slab_mutex);
1535 break;
1536 case MEM_ONLINE:
1537 case MEM_OFFLINE:
1538 case MEM_CANCEL_ONLINE:
1539 case MEM_CANCEL_OFFLINE:
1540 break;
1541 }
1542 out:
1543 return notifier_from_errno(ret);
1544 }
1545 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1546
1547 /*
1548 * swap the static kmem_list3 with kmalloced memory
1549 */
1550 static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1551 int nodeid)
1552 {
1553 struct kmem_list3 *ptr;
1554
1555 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
1556 BUG_ON(!ptr);
1557
1558 memcpy(ptr, list, sizeof(struct kmem_list3));
1559 /*
1560 * Do not assume that spinlocks can be initialized via memcpy:
1561 */
1562 spin_lock_init(&ptr->list_lock);
1563
1564 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1565 cachep->nodelists[nodeid] = ptr;
1566 }
1567
1568 /*
1569 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1570 * size of kmem_list3.
1571 */
1572 static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1573 {
1574 int node;
1575
1576 for_each_online_node(node) {
1577 cachep->nodelists[node] = &initkmem_list3[index + node];
1578 cachep->nodelists[node]->next_reap = jiffies +
1579 REAPTIMEOUT_LIST3 +
1580 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1581 }
1582 }
1583
1584 /*
1585 * Initialisation. Called after the page allocator have been initialised and
1586 * before smp_init().
1587 */
1588 void __init kmem_cache_init(void)
1589 {
1590 size_t left_over;
1591 struct cache_sizes *sizes;
1592 struct cache_names *names;
1593 int i;
1594 int order;
1595 int node;
1596
1597 kmem_cache = &kmem_cache_boot;
1598
1599 if (num_possible_nodes() == 1)
1600 use_alien_caches = 0;
1601
1602 for (i = 0; i < NUM_INIT_LISTS; i++) {
1603 kmem_list3_init(&initkmem_list3[i]);
1604 if (i < MAX_NUMNODES)
1605 kmem_cache->nodelists[i] = NULL;
1606 }
1607 set_up_list3s(kmem_cache, CACHE_CACHE);
1608
1609 /*
1610 * Fragmentation resistance on low memory - only use bigger
1611 * page orders on machines with more than 32MB of memory if
1612 * not overridden on the command line.
1613 */
1614 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1615 slab_max_order = SLAB_MAX_ORDER_HI;
1616
1617 /* Bootstrap is tricky, because several objects are allocated
1618 * from caches that do not exist yet:
1619 * 1) initialize the kmem_cache cache: it contains the struct
1620 * kmem_cache structures of all caches, except kmem_cache itself:
1621 * kmem_cache is statically allocated.
1622 * Initially an __init data area is used for the head array and the
1623 * kmem_list3 structures, it's replaced with a kmalloc allocated
1624 * array at the end of the bootstrap.
1625 * 2) Create the first kmalloc cache.
1626 * The struct kmem_cache for the new cache is allocated normally.
1627 * An __init data area is used for the head array.
1628 * 3) Create the remaining kmalloc caches, with minimally sized
1629 * head arrays.
1630 * 4) Replace the __init data head arrays for kmem_cache and the first
1631 * kmalloc cache with kmalloc allocated arrays.
1632 * 5) Replace the __init data for kmem_list3 for kmem_cache and
1633 * the other cache's with kmalloc allocated memory.
1634 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1635 */
1636
1637 node = numa_mem_id();
1638
1639 /* 1) create the kmem_cache */
1640 INIT_LIST_HEAD(&slab_caches);
1641 list_add(&kmem_cache->list, &slab_caches);
1642 kmem_cache->colour_off = cache_line_size();
1643 kmem_cache->array[smp_processor_id()] = &initarray_cache.cache;
1644 kmem_cache->nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
1645
1646 /*
1647 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1648 */
1649 kmem_cache->size = offsetof(struct kmem_cache, array[nr_cpu_ids]) +
1650 nr_node_ids * sizeof(struct kmem_list3 *);
1651 kmem_cache->object_size = kmem_cache->size;
1652 kmem_cache->size = ALIGN(kmem_cache->object_size,
1653 cache_line_size());
1654 kmem_cache->reciprocal_buffer_size =
1655 reciprocal_value(kmem_cache->size);
1656
1657 for (order = 0; order < MAX_ORDER; order++) {
1658 cache_estimate(order, kmem_cache->size,
1659 cache_line_size(), 0, &left_over, &kmem_cache->num);
1660 if (kmem_cache->num)
1661 break;
1662 }
1663 BUG_ON(!kmem_cache->num);
1664 kmem_cache->gfporder = order;
1665 kmem_cache->colour = left_over / kmem_cache->colour_off;
1666 kmem_cache->slab_size = ALIGN(kmem_cache->num * sizeof(kmem_bufctl_t) +
1667 sizeof(struct slab), cache_line_size());
1668
1669 /* 2+3) create the kmalloc caches */
1670 sizes = malloc_sizes;
1671 names = cache_names;
1672
1673 /*
1674 * Initialize the caches that provide memory for the array cache and the
1675 * kmem_list3 structures first. Without this, further allocations will
1676 * bug.
1677 */
1678
1679 sizes[INDEX_AC].cs_cachep = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
1680 sizes[INDEX_AC].cs_cachep->name = names[INDEX_AC].name;
1681 sizes[INDEX_AC].cs_cachep->size = sizes[INDEX_AC].cs_size;
1682 sizes[INDEX_AC].cs_cachep->object_size = sizes[INDEX_AC].cs_size;
1683 sizes[INDEX_AC].cs_cachep->align = ARCH_KMALLOC_MINALIGN;
1684 __kmem_cache_create(sizes[INDEX_AC].cs_cachep, ARCH_KMALLOC_FLAGS|SLAB_PANIC);
1685 list_add(&sizes[INDEX_AC].cs_cachep->list, &slab_caches);
1686
1687 if (INDEX_AC != INDEX_L3) {
1688 sizes[INDEX_L3].cs_cachep = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
1689 sizes[INDEX_L3].cs_cachep->name = names[INDEX_L3].name;
1690 sizes[INDEX_L3].cs_cachep->size = sizes[INDEX_L3].cs_size;
1691 sizes[INDEX_L3].cs_cachep->object_size = sizes[INDEX_L3].cs_size;
1692 sizes[INDEX_L3].cs_cachep->align = ARCH_KMALLOC_MINALIGN;
1693 __kmem_cache_create(sizes[INDEX_L3].cs_cachep, ARCH_KMALLOC_FLAGS|SLAB_PANIC);
1694 list_add(&sizes[INDEX_L3].cs_cachep->list, &slab_caches);
1695 }
1696
1697 slab_early_init = 0;
1698
1699 while (sizes->cs_size != ULONG_MAX) {
1700 /*
1701 * For performance, all the general caches are L1 aligned.
1702 * This should be particularly beneficial on SMP boxes, as it
1703 * eliminates "false sharing".
1704 * Note for systems short on memory removing the alignment will
1705 * allow tighter packing of the smaller caches.
1706 */
1707 if (!sizes->cs_cachep) {
1708 sizes->cs_cachep = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
1709 sizes->cs_cachep->name = names->name;
1710 sizes->cs_cachep->size = sizes->cs_size;
1711 sizes->cs_cachep->object_size = sizes->cs_size;
1712 sizes->cs_cachep->align = ARCH_KMALLOC_MINALIGN;
1713 __kmem_cache_create(sizes->cs_cachep, ARCH_KMALLOC_FLAGS|SLAB_PANIC);
1714 list_add(&sizes->cs_cachep->list, &slab_caches);
1715 }
1716 #ifdef CONFIG_ZONE_DMA
1717 sizes->cs_dmacachep = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
1718 sizes->cs_dmacachep->name = names->name_dma;
1719 sizes->cs_dmacachep->size = sizes->cs_size;
1720 sizes->cs_dmacachep->object_size = sizes->cs_size;
1721 sizes->cs_dmacachep->align = ARCH_KMALLOC_MINALIGN;
1722 __kmem_cache_create(sizes->cs_dmacachep,
1723 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA| SLAB_PANIC);
1724 list_add(&sizes->cs_dmacachep->list, &slab_caches);
1725 #endif
1726 sizes++;
1727 names++;
1728 }
1729 /* 4) Replace the bootstrap head arrays */
1730 {
1731 struct array_cache *ptr;
1732
1733 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1734
1735 BUG_ON(cpu_cache_get(kmem_cache) != &initarray_cache.cache);
1736 memcpy(ptr, cpu_cache_get(kmem_cache),
1737 sizeof(struct arraycache_init));
1738 /*
1739 * Do not assume that spinlocks can be initialized via memcpy:
1740 */
1741 spin_lock_init(&ptr->lock);
1742
1743 kmem_cache->array[smp_processor_id()] = ptr;
1744
1745 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1746
1747 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1748 != &initarray_generic.cache);
1749 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1750 sizeof(struct arraycache_init));
1751 /*
1752 * Do not assume that spinlocks can be initialized via memcpy:
1753 */
1754 spin_lock_init(&ptr->lock);
1755
1756 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1757 ptr;
1758 }
1759 /* 5) Replace the bootstrap kmem_list3's */
1760 {
1761 int nid;
1762
1763 for_each_online_node(nid) {
1764 init_list(kmem_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
1765
1766 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1767 &initkmem_list3[SIZE_AC + nid], nid);
1768
1769 if (INDEX_AC != INDEX_L3) {
1770 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1771 &initkmem_list3[SIZE_L3 + nid], nid);
1772 }
1773 }
1774 }
1775
1776 slab_state = UP;
1777 }
1778
1779 void __init kmem_cache_init_late(void)
1780 {
1781 struct kmem_cache *cachep;
1782
1783 slab_state = UP;
1784
1785 /* Annotate slab for lockdep -- annotate the malloc caches */
1786 init_lock_keys();
1787
1788 /* 6) resize the head arrays to their final sizes */
1789 mutex_lock(&slab_mutex);
1790 list_for_each_entry(cachep, &slab_caches, list)
1791 if (enable_cpucache(cachep, GFP_NOWAIT))
1792 BUG();
1793 mutex_unlock(&slab_mutex);
1794
1795 /* Done! */
1796 slab_state = FULL;
1797
1798 /*
1799 * Register a cpu startup notifier callback that initializes
1800 * cpu_cache_get for all new cpus
1801 */
1802 register_cpu_notifier(&cpucache_notifier);
1803
1804 #ifdef CONFIG_NUMA
1805 /*
1806 * Register a memory hotplug callback that initializes and frees
1807 * nodelists.
1808 */
1809 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1810 #endif
1811
1812 /*
1813 * The reap timers are started later, with a module init call: That part
1814 * of the kernel is not yet operational.
1815 */
1816 }
1817
1818 static int __init cpucache_init(void)
1819 {
1820 int cpu;
1821
1822 /*
1823 * Register the timers that return unneeded pages to the page allocator
1824 */
1825 for_each_online_cpu(cpu)
1826 start_cpu_timer(cpu);
1827
1828 /* Done! */
1829 slab_state = FULL;
1830 return 0;
1831 }
1832 __initcall(cpucache_init);
1833
1834 static noinline void
1835 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1836 {
1837 struct kmem_list3 *l3;
1838 struct slab *slabp;
1839 unsigned long flags;
1840 int node;
1841
1842 printk(KERN_WARNING
1843 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1844 nodeid, gfpflags);
1845 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
1846 cachep->name, cachep->size, cachep->gfporder);
1847
1848 for_each_online_node(node) {
1849 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1850 unsigned long active_slabs = 0, num_slabs = 0;
1851
1852 l3 = cachep->nodelists[node];
1853 if (!l3)
1854 continue;
1855
1856 spin_lock_irqsave(&l3->list_lock, flags);
1857 list_for_each_entry(slabp, &l3->slabs_full, list) {
1858 active_objs += cachep->num;
1859 active_slabs++;
1860 }
1861 list_for_each_entry(slabp, &l3->slabs_partial, list) {
1862 active_objs += slabp->inuse;
1863 active_slabs++;
1864 }
1865 list_for_each_entry(slabp, &l3->slabs_free, list)
1866 num_slabs++;
1867
1868 free_objects += l3->free_objects;
1869 spin_unlock_irqrestore(&l3->list_lock, flags);
1870
1871 num_slabs += active_slabs;
1872 num_objs = num_slabs * cachep->num;
1873 printk(KERN_WARNING
1874 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1875 node, active_slabs, num_slabs, active_objs, num_objs,
1876 free_objects);
1877 }
1878 }
1879
1880 /*
1881 * Interface to system's page allocator. No need to hold the cache-lock.
1882 *
1883 * If we requested dmaable memory, we will get it. Even if we
1884 * did not request dmaable memory, we might get it, but that
1885 * would be relatively rare and ignorable.
1886 */
1887 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1888 {
1889 struct page *page;
1890 int nr_pages;
1891 int i;
1892
1893 #ifndef CONFIG_MMU
1894 /*
1895 * Nommu uses slab's for process anonymous memory allocations, and thus
1896 * requires __GFP_COMP to properly refcount higher order allocations
1897 */
1898 flags |= __GFP_COMP;
1899 #endif
1900
1901 flags |= cachep->allocflags;
1902 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1903 flags |= __GFP_RECLAIMABLE;
1904
1905 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1906 if (!page) {
1907 if (!(flags & __GFP_NOWARN) && printk_ratelimit())
1908 slab_out_of_memory(cachep, flags, nodeid);
1909 return NULL;
1910 }
1911
1912 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1913 if (unlikely(page->pfmemalloc))
1914 pfmemalloc_active = true;
1915
1916 nr_pages = (1 << cachep->gfporder);
1917 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1918 add_zone_page_state(page_zone(page),
1919 NR_SLAB_RECLAIMABLE, nr_pages);
1920 else
1921 add_zone_page_state(page_zone(page),
1922 NR_SLAB_UNRECLAIMABLE, nr_pages);
1923 for (i = 0; i < nr_pages; i++) {
1924 __SetPageSlab(page + i);
1925
1926 if (page->pfmemalloc)
1927 SetPageSlabPfmemalloc(page + i);
1928 }
1929
1930 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1931 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1932
1933 if (cachep->ctor)
1934 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1935 else
1936 kmemcheck_mark_unallocated_pages(page, nr_pages);
1937 }
1938
1939 return page_address(page);
1940 }
1941
1942 /*
1943 * Interface to system's page release.
1944 */
1945 static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1946 {
1947 unsigned long i = (1 << cachep->gfporder);
1948 struct page *page = virt_to_page(addr);
1949 const unsigned long nr_freed = i;
1950
1951 kmemcheck_free_shadow(page, cachep->gfporder);
1952
1953 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1954 sub_zone_page_state(page_zone(page),
1955 NR_SLAB_RECLAIMABLE, nr_freed);
1956 else
1957 sub_zone_page_state(page_zone(page),
1958 NR_SLAB_UNRECLAIMABLE, nr_freed);
1959 while (i--) {
1960 BUG_ON(!PageSlab(page));
1961 __ClearPageSlabPfmemalloc(page);
1962 __ClearPageSlab(page);
1963 page++;
1964 }
1965 if (current->reclaim_state)
1966 current->reclaim_state->reclaimed_slab += nr_freed;
1967 free_pages((unsigned long)addr, cachep->gfporder);
1968 }
1969
1970 static void kmem_rcu_free(struct rcu_head *head)
1971 {
1972 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1973 struct kmem_cache *cachep = slab_rcu->cachep;
1974
1975 kmem_freepages(cachep, slab_rcu->addr);
1976 if (OFF_SLAB(cachep))
1977 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1978 }
1979
1980 #if DEBUG
1981
1982 #ifdef CONFIG_DEBUG_PAGEALLOC
1983 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1984 unsigned long caller)
1985 {
1986 int size = cachep->object_size;
1987
1988 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1989
1990 if (size < 5 * sizeof(unsigned long))
1991 return;
1992
1993 *addr++ = 0x12345678;
1994 *addr++ = caller;
1995 *addr++ = smp_processor_id();
1996 size -= 3 * sizeof(unsigned long);
1997 {
1998 unsigned long *sptr = &caller;
1999 unsigned long svalue;
2000
2001 while (!kstack_end(sptr)) {
2002 svalue = *sptr++;
2003 if (kernel_text_address(svalue)) {
2004 *addr++ = svalue;
2005 size -= sizeof(unsigned long);
2006 if (size <= sizeof(unsigned long))
2007 break;
2008 }
2009 }
2010
2011 }
2012 *addr++ = 0x87654321;
2013 }
2014 #endif
2015
2016 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
2017 {
2018 int size = cachep->object_size;
2019 addr = &((char *)addr)[obj_offset(cachep)];
2020
2021 memset(addr, val, size);
2022 *(unsigned char *)(addr + size - 1) = POISON_END;
2023 }
2024
2025 static void dump_line(char *data, int offset, int limit)
2026 {
2027 int i;
2028 unsigned char error = 0;
2029 int bad_count = 0;
2030
2031 printk(KERN_ERR "%03x: ", offset);
2032 for (i = 0; i < limit; i++) {
2033 if (data[offset + i] != POISON_FREE) {
2034 error = data[offset + i];
2035 bad_count++;
2036 }
2037 }
2038 print_hex_dump(KERN_CONT, "", 0, 16, 1,
2039 &data[offset], limit, 1);
2040
2041 if (bad_count == 1) {
2042 error ^= POISON_FREE;
2043 if (!(error & (error - 1))) {
2044 printk(KERN_ERR "Single bit error detected. Probably "
2045 "bad RAM.\n");
2046 #ifdef CONFIG_X86
2047 printk(KERN_ERR "Run memtest86+ or a similar memory "
2048 "test tool.\n");
2049 #else
2050 printk(KERN_ERR "Run a memory test tool.\n");
2051 #endif
2052 }
2053 }
2054 }
2055 #endif
2056
2057 #if DEBUG
2058
2059 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
2060 {
2061 int i, size;
2062 char *realobj;
2063
2064 if (cachep->flags & SLAB_RED_ZONE) {
2065 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
2066 *dbg_redzone1(cachep, objp),
2067 *dbg_redzone2(cachep, objp));
2068 }
2069
2070 if (cachep->flags & SLAB_STORE_USER) {
2071 printk(KERN_ERR "Last user: [<%p>]",
2072 *dbg_userword(cachep, objp));
2073 print_symbol("(%s)",
2074 (unsigned long)*dbg_userword(cachep, objp));
2075 printk("\n");
2076 }
2077 realobj = (char *)objp + obj_offset(cachep);
2078 size = cachep->object_size;
2079 for (i = 0; i < size && lines; i += 16, lines--) {
2080 int limit;
2081 limit = 16;
2082 if (i + limit > size)
2083 limit = size - i;
2084 dump_line(realobj, i, limit);
2085 }
2086 }
2087
2088 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
2089 {
2090 char *realobj;
2091 int size, i;
2092 int lines = 0;
2093
2094 realobj = (char *)objp + obj_offset(cachep);
2095 size = cachep->object_size;
2096
2097 for (i = 0; i < size; i++) {
2098 char exp = POISON_FREE;
2099 if (i == size - 1)
2100 exp = POISON_END;
2101 if (realobj[i] != exp) {
2102 int limit;
2103 /* Mismatch ! */
2104 /* Print header */
2105 if (lines == 0) {
2106 printk(KERN_ERR
2107 "Slab corruption (%s): %s start=%p, len=%d\n",
2108 print_tainted(), cachep->name, realobj, size);
2109 print_objinfo(cachep, objp, 0);
2110 }
2111 /* Hexdump the affected line */
2112 i = (i / 16) * 16;
2113 limit = 16;
2114 if (i + limit > size)
2115 limit = size - i;
2116 dump_line(realobj, i, limit);
2117 i += 16;
2118 lines++;
2119 /* Limit to 5 lines */
2120 if (lines > 5)
2121 break;
2122 }
2123 }
2124 if (lines != 0) {
2125 /* Print some data about the neighboring objects, if they
2126 * exist:
2127 */
2128 struct slab *slabp = virt_to_slab(objp);
2129 unsigned int objnr;
2130
2131 objnr = obj_to_index(cachep, slabp, objp);
2132 if (objnr) {
2133 objp = index_to_obj(cachep, slabp, objnr - 1);
2134 realobj = (char *)objp + obj_offset(cachep);
2135 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
2136 realobj, size);
2137 print_objinfo(cachep, objp, 2);
2138 }
2139 if (objnr + 1 < cachep->num) {
2140 objp = index_to_obj(cachep, slabp, objnr + 1);
2141 realobj = (char *)objp + obj_offset(cachep);
2142 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
2143 realobj, size);
2144 print_objinfo(cachep, objp, 2);
2145 }
2146 }
2147 }
2148 #endif
2149
2150 #if DEBUG
2151 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
2152 {
2153 int i;
2154 for (i = 0; i < cachep->num; i++) {
2155 void *objp = index_to_obj(cachep, slabp, i);
2156
2157 if (cachep->flags & SLAB_POISON) {
2158 #ifdef CONFIG_DEBUG_PAGEALLOC
2159 if (cachep->size % PAGE_SIZE == 0 &&
2160 OFF_SLAB(cachep))
2161 kernel_map_pages(virt_to_page(objp),
2162 cachep->size / PAGE_SIZE, 1);
2163 else
2164 check_poison_obj(cachep, objp);
2165 #else
2166 check_poison_obj(cachep, objp);
2167 #endif
2168 }
2169 if (cachep->flags & SLAB_RED_ZONE) {
2170 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2171 slab_error(cachep, "start of a freed object "
2172 "was overwritten");
2173 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2174 slab_error(cachep, "end of a freed object "
2175 "was overwritten");
2176 }
2177 }
2178 }
2179 #else
2180 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
2181 {
2182 }
2183 #endif
2184
2185 /**
2186 * slab_destroy - destroy and release all objects in a slab
2187 * @cachep: cache pointer being destroyed
2188 * @slabp: slab pointer being destroyed
2189 *
2190 * Destroy all the objs in a slab, and release the mem back to the system.
2191 * Before calling the slab must have been unlinked from the cache. The
2192 * cache-lock is not held/needed.
2193 */
2194 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
2195 {
2196 void *addr = slabp->s_mem - slabp->colouroff;
2197
2198 slab_destroy_debugcheck(cachep, slabp);
2199 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
2200 struct slab_rcu *slab_rcu;
2201
2202 slab_rcu = (struct slab_rcu *)slabp;
2203 slab_rcu->cachep = cachep;
2204 slab_rcu->addr = addr;
2205 call_rcu(&slab_rcu->head, kmem_rcu_free);
2206 } else {
2207 kmem_freepages(cachep, addr);
2208 if (OFF_SLAB(cachep))
2209 kmem_cache_free(cachep->slabp_cache, slabp);
2210 }
2211 }
2212
2213 /**
2214 * calculate_slab_order - calculate size (page order) of slabs
2215 * @cachep: pointer to the cache that is being created
2216 * @size: size of objects to be created in this cache.
2217 * @align: required alignment for the objects.
2218 * @flags: slab allocation flags
2219 *
2220 * Also calculates the number of objects per slab.
2221 *
2222 * This could be made much more intelligent. For now, try to avoid using
2223 * high order pages for slabs. When the gfp() functions are more friendly
2224 * towards high-order requests, this should be changed.
2225 */
2226 static size_t calculate_slab_order(struct kmem_cache *cachep,
2227 size_t size, size_t align, unsigned long flags)
2228 {
2229 unsigned long offslab_limit;
2230 size_t left_over = 0;
2231 int gfporder;
2232
2233 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2234 unsigned int num;
2235 size_t remainder;
2236
2237 cache_estimate(gfporder, size, align, flags, &remainder, &num);
2238 if (!num)
2239 continue;
2240
2241 if (flags & CFLGS_OFF_SLAB) {
2242 /*
2243 * Max number of objs-per-slab for caches which
2244 * use off-slab slabs. Needed to avoid a possible
2245 * looping condition in cache_grow().
2246 */
2247 offslab_limit = size - sizeof(struct slab);
2248 offslab_limit /= sizeof(kmem_bufctl_t);
2249
2250 if (num > offslab_limit)
2251 break;
2252 }
2253
2254 /* Found something acceptable - save it away */
2255 cachep->num = num;
2256 cachep->gfporder = gfporder;
2257 left_over = remainder;
2258
2259 /*
2260 * A VFS-reclaimable slab tends to have most allocations
2261 * as GFP_NOFS and we really don't want to have to be allocating
2262 * higher-order pages when we are unable to shrink dcache.
2263 */
2264 if (flags & SLAB_RECLAIM_ACCOUNT)
2265 break;
2266
2267 /*
2268 * Large number of objects is good, but very large slabs are
2269 * currently bad for the gfp()s.
2270 */
2271 if (gfporder >= slab_max_order)
2272 break;
2273
2274 /*
2275 * Acceptable internal fragmentation?
2276 */
2277 if (left_over * 8 <= (PAGE_SIZE << gfporder))
2278 break;
2279 }
2280 return left_over;
2281 }
2282
2283 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2284 {
2285 if (slab_state >= FULL)
2286 return enable_cpucache(cachep, gfp);
2287
2288 if (slab_state == DOWN) {
2289 /*
2290 * Note: the first kmem_cache_create must create the cache
2291 * that's used by kmalloc(24), otherwise the creation of
2292 * further caches will BUG().
2293 */
2294 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2295
2296 /*
2297 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2298 * the first cache, then we need to set up all its list3s,
2299 * otherwise the creation of further caches will BUG().
2300 */
2301 set_up_list3s(cachep, SIZE_AC);
2302 if (INDEX_AC == INDEX_L3)
2303 slab_state = PARTIAL_L3;
2304 else
2305 slab_state = PARTIAL_ARRAYCACHE;
2306 } else {
2307 cachep->array[smp_processor_id()] =
2308 kmalloc(sizeof(struct arraycache_init), gfp);
2309
2310 if (slab_state == PARTIAL_ARRAYCACHE) {
2311 set_up_list3s(cachep, SIZE_L3);
2312 slab_state = PARTIAL_L3;
2313 } else {
2314 int node;
2315 for_each_online_node(node) {
2316 cachep->nodelists[node] =
2317 kmalloc_node(sizeof(struct kmem_list3),
2318 gfp, node);
2319 BUG_ON(!cachep->nodelists[node]);
2320 kmem_list3_init(cachep->nodelists[node]);
2321 }
2322 }
2323 }
2324 cachep->nodelists[numa_mem_id()]->next_reap =
2325 jiffies + REAPTIMEOUT_LIST3 +
2326 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2327
2328 cpu_cache_get(cachep)->avail = 0;
2329 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2330 cpu_cache_get(cachep)->batchcount = 1;
2331 cpu_cache_get(cachep)->touched = 0;
2332 cachep->batchcount = 1;
2333 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2334 return 0;
2335 }
2336
2337 /**
2338 * __kmem_cache_create - Create a cache.
2339 * @name: A string which is used in /proc/slabinfo to identify this cache.
2340 * @size: The size of objects to be created in this cache.
2341 * @align: The required alignment for the objects.
2342 * @flags: SLAB flags
2343 * @ctor: A constructor for the objects.
2344 *
2345 * Returns a ptr to the cache on success, NULL on failure.
2346 * Cannot be called within a int, but can be interrupted.
2347 * The @ctor is run when new pages are allocated by the cache.
2348 *
2349 * The flags are
2350 *
2351 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2352 * to catch references to uninitialised memory.
2353 *
2354 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2355 * for buffer overruns.
2356 *
2357 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2358 * cacheline. This can be beneficial if you're counting cycles as closely
2359 * as davem.
2360 */
2361 int
2362 __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2363 {
2364 size_t left_over, slab_size, ralign;
2365 gfp_t gfp;
2366 int err;
2367 size_t size = cachep->size;
2368
2369 #if DEBUG
2370 #if FORCED_DEBUG
2371 /*
2372 * Enable redzoning and last user accounting, except for caches with
2373 * large objects, if the increased size would increase the object size
2374 * above the next power of two: caches with object sizes just above a
2375 * power of two have a significant amount of internal fragmentation.
2376 */
2377 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2378 2 * sizeof(unsigned long long)))
2379 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2380 if (!(flags & SLAB_DESTROY_BY_RCU))
2381 flags |= SLAB_POISON;
2382 #endif
2383 if (flags & SLAB_DESTROY_BY_RCU)
2384 BUG_ON(flags & SLAB_POISON);
2385 #endif
2386 /*
2387 * Always checks flags, a caller might be expecting debug support which
2388 * isn't available.
2389 */
2390 BUG_ON(flags & ~CREATE_MASK);
2391
2392 /*
2393 * Check that size is in terms of words. This is needed to avoid
2394 * unaligned accesses for some archs when redzoning is used, and makes
2395 * sure any on-slab bufctl's are also correctly aligned.
2396 */
2397 if (size & (BYTES_PER_WORD - 1)) {
2398 size += (BYTES_PER_WORD - 1);
2399 size &= ~(BYTES_PER_WORD - 1);
2400 }
2401
2402 /* calculate the final buffer alignment: */
2403
2404 /* 1) arch recommendation: can be overridden for debug */
2405 if (flags & SLAB_HWCACHE_ALIGN) {
2406 /*
2407 * Default alignment: as specified by the arch code. Except if
2408 * an object is really small, then squeeze multiple objects into
2409 * one cacheline.
2410 */
2411 ralign = cache_line_size();
2412 while (size <= ralign / 2)
2413 ralign /= 2;
2414 } else {
2415 ralign = BYTES_PER_WORD;
2416 }
2417
2418 /*
2419 * Redzoning and user store require word alignment or possibly larger.
2420 * Note this will be overridden by architecture or caller mandated
2421 * alignment if either is greater than BYTES_PER_WORD.
2422 */
2423 if (flags & SLAB_STORE_USER)
2424 ralign = BYTES_PER_WORD;
2425
2426 if (flags & SLAB_RED_ZONE) {
2427 ralign = REDZONE_ALIGN;
2428 /* If redzoning, ensure that the second redzone is suitably
2429 * aligned, by adjusting the object size accordingly. */
2430 size += REDZONE_ALIGN - 1;
2431 size &= ~(REDZONE_ALIGN - 1);
2432 }
2433
2434 /* 2) arch mandated alignment */
2435 if (ralign < ARCH_SLAB_MINALIGN) {
2436 ralign = ARCH_SLAB_MINALIGN;
2437 }
2438 /* 3) caller mandated alignment */
2439 if (ralign < cachep->align) {
2440 ralign = cachep->align;
2441 }
2442 /* disable debug if necessary */
2443 if (ralign > __alignof__(unsigned long long))
2444 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2445 /*
2446 * 4) Store it.
2447 */
2448 cachep->align = ralign;
2449
2450 if (slab_is_available())
2451 gfp = GFP_KERNEL;
2452 else
2453 gfp = GFP_NOWAIT;
2454
2455 cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids];
2456 #if DEBUG
2457
2458 /*
2459 * Both debugging options require word-alignment which is calculated
2460 * into align above.
2461 */
2462 if (flags & SLAB_RED_ZONE) {
2463 /* add space for red zone words */
2464 cachep->obj_offset += sizeof(unsigned long long);
2465 size += 2 * sizeof(unsigned long long);
2466 }
2467 if (flags & SLAB_STORE_USER) {
2468 /* user store requires one word storage behind the end of
2469 * the real object. But if the second red zone needs to be
2470 * aligned to 64 bits, we must allow that much space.
2471 */
2472 if (flags & SLAB_RED_ZONE)
2473 size += REDZONE_ALIGN;
2474 else
2475 size += BYTES_PER_WORD;
2476 }
2477 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2478 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2479 && cachep->object_size > cache_line_size() && ALIGN(size, align) < PAGE_SIZE) {
2480 cachep->obj_offset += PAGE_SIZE - ALIGN(size, align);
2481 size = PAGE_SIZE;
2482 }
2483 #endif
2484 #endif
2485
2486 /*
2487 * Determine if the slab management is 'on' or 'off' slab.
2488 * (bootstrapping cannot cope with offslab caches so don't do
2489 * it too early on. Always use on-slab management when
2490 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2491 */
2492 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
2493 !(flags & SLAB_NOLEAKTRACE))
2494 /*
2495 * Size is large, assume best to place the slab management obj
2496 * off-slab (should allow better packing of objs).
2497 */
2498 flags |= CFLGS_OFF_SLAB;
2499
2500 size = ALIGN(size, cachep->align);
2501
2502 left_over = calculate_slab_order(cachep, size, cachep->align, flags);
2503
2504 if (!cachep->num)
2505 return -E2BIG;
2506
2507 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2508 + sizeof(struct slab), cachep->align);
2509
2510 /*
2511 * If the slab has been placed off-slab, and we have enough space then
2512 * move it on-slab. This is at the expense of any extra colouring.
2513 */
2514 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2515 flags &= ~CFLGS_OFF_SLAB;
2516 left_over -= slab_size;
2517 }
2518
2519 if (flags & CFLGS_OFF_SLAB) {
2520 /* really off slab. No need for manual alignment */
2521 slab_size =
2522 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2523
2524 #ifdef CONFIG_PAGE_POISONING
2525 /* If we're going to use the generic kernel_map_pages()
2526 * poisoning, then it's going to smash the contents of
2527 * the redzone and userword anyhow, so switch them off.
2528 */
2529 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2530 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2531 #endif
2532 }
2533
2534 cachep->colour_off = cache_line_size();
2535 /* Offset must be a multiple of the alignment. */
2536 if (cachep->colour_off < cachep->align)
2537 cachep->colour_off = cachep->align;
2538 cachep->colour = left_over / cachep->colour_off;
2539 cachep->slab_size = slab_size;
2540 cachep->flags = flags;
2541 cachep->allocflags = 0;
2542 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2543 cachep->allocflags |= GFP_DMA;
2544 cachep->size = size;
2545 cachep->reciprocal_buffer_size = reciprocal_value(size);
2546
2547 if (flags & CFLGS_OFF_SLAB) {
2548 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2549 /*
2550 * This is a possibility for one of the malloc_sizes caches.
2551 * But since we go off slab only for object size greater than
2552 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2553 * this should not happen at all.
2554 * But leave a BUG_ON for some lucky dude.
2555 */
2556 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2557 }
2558
2559 err = setup_cpu_cache(cachep, gfp);
2560 if (err) {
2561 __kmem_cache_shutdown(cachep);
2562 return err;
2563 }
2564
2565 if (flags & SLAB_DEBUG_OBJECTS) {
2566 /*
2567 * Would deadlock through slab_destroy()->call_rcu()->
2568 * debug_object_activate()->kmem_cache_alloc().
2569 */
2570 WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);
2571
2572 slab_set_debugobj_lock_classes(cachep);
2573 }
2574
2575 return 0;
2576 }
2577
2578 #if DEBUG
2579 static void check_irq_off(void)
2580 {
2581 BUG_ON(!irqs_disabled());
2582 }
2583
2584 static void check_irq_on(void)
2585 {
2586 BUG_ON(irqs_disabled());
2587 }
2588
2589 static void check_spinlock_acquired(struct kmem_cache *cachep)
2590 {
2591 #ifdef CONFIG_SMP
2592 check_irq_off();
2593 assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
2594 #endif
2595 }
2596
2597 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2598 {
2599 #ifdef CONFIG_SMP
2600 check_irq_off();
2601 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2602 #endif
2603 }
2604
2605 #else
2606 #define check_irq_off() do { } while(0)
2607 #define check_irq_on() do { } while(0)
2608 #define check_spinlock_acquired(x) do { } while(0)
2609 #define check_spinlock_acquired_node(x, y) do { } while(0)
2610 #endif
2611
2612 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2613 struct array_cache *ac,
2614 int force, int node);
2615
2616 static void do_drain(void *arg)
2617 {
2618 struct kmem_cache *cachep = arg;
2619 struct array_cache *ac;
2620 int node = numa_mem_id();
2621
2622 check_irq_off();
2623 ac = cpu_cache_get(cachep);
2624 spin_lock(&cachep->nodelists[node]->list_lock);
2625 free_block(cachep, ac->entry, ac->avail, node);
2626 spin_unlock(&cachep->nodelists[node]->list_lock);
2627 ac->avail = 0;
2628 }
2629
2630 static void drain_cpu_caches(struct kmem_cache *cachep)
2631 {
2632 struct kmem_list3 *l3;
2633 int node;
2634
2635 on_each_cpu(do_drain, cachep, 1);
2636 check_irq_on();
2637 for_each_online_node(node) {
2638 l3 = cachep->nodelists[node];
2639 if (l3 && l3->alien)
2640 drain_alien_cache(cachep, l3->alien);
2641 }
2642
2643 for_each_online_node(node) {
2644 l3 = cachep->nodelists[node];
2645 if (l3)
2646 drain_array(cachep, l3, l3->shared, 1, node);
2647 }
2648 }
2649
2650 /*
2651 * Remove slabs from the list of free slabs.
2652 * Specify the number of slabs to drain in tofree.
2653 *
2654 * Returns the actual number of slabs released.
2655 */
2656 static int drain_freelist(struct kmem_cache *cache,
2657 struct kmem_list3 *l3, int tofree)
2658 {
2659 struct list_head *p;
2660 int nr_freed;
2661 struct slab *slabp;
2662
2663 nr_freed = 0;
2664 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
2665
2666 spin_lock_irq(&l3->list_lock);
2667 p = l3->slabs_free.prev;
2668 if (p == &l3->slabs_free) {
2669 spin_unlock_irq(&l3->list_lock);
2670 goto out;
2671 }
2672
2673 slabp = list_entry(p, struct slab, list);
2674 #if DEBUG
2675 BUG_ON(slabp->inuse);
2676 #endif
2677 list_del(&slabp->list);
2678 /*
2679 * Safe to drop the lock. The slab is no longer linked
2680 * to the cache.
2681 */
2682 l3->free_objects -= cache->num;
2683 spin_unlock_irq(&l3->list_lock);
2684 slab_destroy(cache, slabp);
2685 nr_freed++;
2686 }
2687 out:
2688 return nr_freed;
2689 }
2690
2691 /* Called with slab_mutex held to protect against cpu hotplug */
2692 static int __cache_shrink(struct kmem_cache *cachep)
2693 {
2694 int ret = 0, i = 0;
2695 struct kmem_list3 *l3;
2696
2697 drain_cpu_caches(cachep);
2698
2699 check_irq_on();
2700 for_each_online_node(i) {
2701 l3 = cachep->nodelists[i];
2702 if (!l3)
2703 continue;
2704
2705 drain_freelist(cachep, l3, l3->free_objects);
2706
2707 ret += !list_empty(&l3->slabs_full) ||
2708 !list_empty(&l3->slabs_partial);
2709 }
2710 return (ret ? 1 : 0);
2711 }
2712
2713 /**
2714 * kmem_cache_shrink - Shrink a cache.
2715 * @cachep: The cache to shrink.
2716 *
2717 * Releases as many slabs as possible for a cache.
2718 * To help debugging, a zero exit status indicates all slabs were released.
2719 */
2720 int kmem_cache_shrink(struct kmem_cache *cachep)
2721 {
2722 int ret;
2723 BUG_ON(!cachep || in_interrupt());
2724
2725 get_online_cpus();
2726 mutex_lock(&slab_mutex);
2727 ret = __cache_shrink(cachep);
2728 mutex_unlock(&slab_mutex);
2729 put_online_cpus();
2730 return ret;
2731 }
2732 EXPORT_SYMBOL(kmem_cache_shrink);
2733
2734 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2735 {
2736 int i;
2737 struct kmem_list3 *l3;
2738 int rc = __cache_shrink(cachep);
2739
2740 if (rc)
2741 return rc;
2742
2743 for_each_online_cpu(i)
2744 kfree(cachep->array[i]);
2745
2746 /* NUMA: free the list3 structures */
2747 for_each_online_node(i) {
2748 l3 = cachep->nodelists[i];
2749 if (l3) {
2750 kfree(l3->shared);
2751 free_alien_cache(l3->alien);
2752 kfree(l3);
2753 }
2754 }
2755 return 0;
2756 }
2757
2758 /*
2759 * Get the memory for a slab management obj.
2760 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2761 * always come from malloc_sizes caches. The slab descriptor cannot
2762 * come from the same cache which is getting created because,
2763 * when we are searching for an appropriate cache for these
2764 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2765 * If we are creating a malloc_sizes cache here it would not be visible to
2766 * kmem_find_general_cachep till the initialization is complete.
2767 * Hence we cannot have slabp_cache same as the original cache.
2768 */
2769 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2770 int colour_off, gfp_t local_flags,
2771 int nodeid)
2772 {
2773 struct slab *slabp;
2774
2775 if (OFF_SLAB(cachep)) {
2776 /* Slab management obj is off-slab. */
2777 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2778 local_flags, nodeid);
2779 /*
2780 * If the first object in the slab is leaked (it's allocated
2781 * but no one has a reference to it), we want to make sure
2782 * kmemleak does not treat the ->s_mem pointer as a reference
2783 * to the object. Otherwise we will not report the leak.
2784 */
2785 kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
2786 local_flags);
2787 if (!slabp)
2788 return NULL;
2789 } else {
2790 slabp = objp + colour_off;
2791 colour_off += cachep->slab_size;
2792 }
2793 slabp->inuse = 0;
2794 slabp->colouroff = colour_off;
2795 slabp->s_mem = objp + colour_off;
2796 slabp->nodeid = nodeid;
2797 slabp->free = 0;
2798 return slabp;
2799 }
2800
2801 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2802 {
2803 return (kmem_bufctl_t *) (slabp + 1);
2804 }
2805
2806 static void cache_init_objs(struct kmem_cache *cachep,
2807 struct slab *slabp)
2808 {
2809 int i;
2810
2811 for (i = 0; i < cachep->num; i++) {
2812 void *objp = index_to_obj(cachep, slabp, i);
2813 #if DEBUG
2814 /* need to poison the objs? */
2815 if (cachep->flags & SLAB_POISON)
2816 poison_obj(cachep, objp, POISON_FREE);
2817 if (cachep->flags & SLAB_STORE_USER)
2818 *dbg_userword(cachep, objp) = NULL;
2819
2820 if (cachep->flags & SLAB_RED_ZONE) {
2821 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2822 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2823 }
2824 /*
2825 * Constructors are not allowed to allocate memory from the same
2826 * cache which they are a constructor for. Otherwise, deadlock.
2827 * They must also be threaded.
2828 */
2829 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2830 cachep->ctor(objp + obj_offset(cachep));
2831
2832 if (cachep->flags & SLAB_RED_ZONE) {
2833 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2834 slab_error(cachep, "constructor overwrote the"
2835 " end of an object");
2836 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2837 slab_error(cachep, "constructor overwrote the"
2838 " start of an object");
2839 }
2840 if ((cachep->size % PAGE_SIZE) == 0 &&
2841 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2842 kernel_map_pages(virt_to_page(objp),
2843 cachep->size / PAGE_SIZE, 0);
2844 #else
2845 if (cachep->ctor)
2846 cachep->ctor(objp);
2847 #endif
2848 slab_bufctl(slabp)[i] = i + 1;
2849 }
2850 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2851 }
2852
2853 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2854 {
2855 if (CONFIG_ZONE_DMA_FLAG) {
2856 if (flags & GFP_DMA)
2857 BUG_ON(!(cachep->allocflags & GFP_DMA));
2858 else
2859 BUG_ON(cachep->allocflags & GFP_DMA);
2860 }
2861 }
2862
2863 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2864 int nodeid)
2865 {
2866 void *objp = index_to_obj(cachep, slabp, slabp->free);
2867 kmem_bufctl_t next;
2868
2869 slabp->inuse++;
2870 next = slab_bufctl(slabp)[slabp->free];
2871 #if DEBUG
2872 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2873 WARN_ON(slabp->nodeid != nodeid);
2874 #endif
2875 slabp->free = next;
2876
2877 return objp;
2878 }
2879
2880 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2881 void *objp, int nodeid)
2882 {
2883 unsigned int objnr = obj_to_index(cachep, slabp, objp);
2884
2885 #if DEBUG
2886 /* Verify that the slab belongs to the intended node */
2887 WARN_ON(slabp->nodeid != nodeid);
2888
2889 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2890 printk(KERN_ERR "slab: double free detected in cache "
2891 "'%s', objp %p\n", cachep->name, objp);
2892 BUG();
2893 }
2894 #endif
2895 slab_bufctl(slabp)[objnr] = slabp->free;
2896 slabp->free = objnr;
2897 slabp->inuse--;
2898 }
2899
2900 /*
2901 * Map pages beginning at addr to the given cache and slab. This is required
2902 * for the slab allocator to be able to lookup the cache and slab of a
2903 * virtual address for kfree, ksize, and slab debugging.
2904 */
2905 static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2906 void *addr)
2907 {
2908 int nr_pages;
2909 struct page *page;
2910
2911 page = virt_to_page(addr);
2912
2913 nr_pages = 1;
2914 if (likely(!PageCompound(page)))
2915 nr_pages <<= cache->gfporder;
2916
2917 do {
2918 page->slab_cache = cache;
2919 page->slab_page = slab;
2920 page++;
2921 } while (--nr_pages);
2922 }
2923
2924 /*
2925 * Grow (by 1) the number of slabs within a cache. This is called by
2926 * kmem_cache_alloc() when there are no active objs left in a cache.
2927 */
2928 static int cache_grow(struct kmem_cache *cachep,
2929 gfp_t flags, int nodeid, void *objp)
2930 {
2931 struct slab *slabp;
2932 size_t offset;
2933 gfp_t local_flags;
2934 struct kmem_list3 *l3;
2935
2936 /*
2937 * Be lazy and only check for valid flags here, keeping it out of the
2938 * critical path in kmem_cache_alloc().
2939 */
2940 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2941 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2942
2943 /* Take the l3 list lock to change the colour_next on this node */
2944 check_irq_off();
2945 l3 = cachep->nodelists[nodeid];
2946 spin_lock(&l3->list_lock);
2947
2948 /* Get colour for the slab, and cal the next value. */
2949 offset = l3->colour_next;
2950 l3->colour_next++;
2951 if (l3->colour_next >= cachep->colour)
2952 l3->colour_next = 0;
2953 spin_unlock(&l3->list_lock);
2954
2955 offset *= cachep->colour_off;
2956
2957 if (local_flags & __GFP_WAIT)
2958 local_irq_enable();
2959
2960 /*
2961 * The test for missing atomic flag is performed here, rather than
2962 * the more obvious place, simply to reduce the critical path length
2963 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2964 * will eventually be caught here (where it matters).
2965 */
2966 kmem_flagcheck(cachep, flags);
2967
2968 /*
2969 * Get mem for the objs. Attempt to allocate a physical page from
2970 * 'nodeid'.
2971 */
2972 if (!objp)
2973 objp = kmem_getpages(cachep, local_flags, nodeid);
2974 if (!objp)
2975 goto failed;
2976
2977 /* Get slab management. */
2978 slabp = alloc_slabmgmt(cachep, objp, offset,
2979 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2980 if (!slabp)
2981 goto opps1;
2982
2983 slab_map_pages(cachep, slabp, objp);
2984
2985 cache_init_objs(cachep, slabp);
2986
2987 if (local_flags & __GFP_WAIT)
2988 local_irq_disable();
2989 check_irq_off();
2990 spin_lock(&l3->list_lock);
2991
2992 /* Make slab active. */
2993 list_add_tail(&slabp->list, &(l3->slabs_free));
2994 STATS_INC_GROWN(cachep);
2995 l3->free_objects += cachep->num;
2996 spin_unlock(&l3->list_lock);
2997 return 1;
2998 opps1:
2999 kmem_freepages(cachep, objp);
3000 failed:
3001 if (local_flags & __GFP_WAIT)
3002 local_irq_disable();
3003 return 0;
3004 }
3005
3006 #if DEBUG
3007
3008 /*
3009 * Perform extra freeing checks:
3010 * - detect bad pointers.
3011 * - POISON/RED_ZONE checking
3012 */
3013 static void kfree_debugcheck(const void *objp)
3014 {
3015 if (!virt_addr_valid(objp)) {
3016 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
3017 (unsigned long)objp);
3018 BUG();
3019 }
3020 }
3021
3022 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
3023 {
3024 unsigned long long redzone1, redzone2;
3025
3026 redzone1 = *dbg_redzone1(cache, obj);
3027 redzone2 = *dbg_redzone2(cache, obj);
3028
3029 /*
3030 * Redzone is ok.
3031 */
3032 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
3033 return;
3034
3035 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
3036 slab_error(cache, "double free detected");
3037 else
3038 slab_error(cache, "memory outside object was overwritten");
3039
3040 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
3041 obj, redzone1, redzone2);
3042 }
3043
3044 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
3045 void *caller)
3046 {
3047 struct page *page;
3048 unsigned int objnr;
3049 struct slab *slabp;
3050
3051 BUG_ON(virt_to_cache(objp) != cachep);
3052
3053 objp -= obj_offset(cachep);
3054 kfree_debugcheck(objp);
3055 page = virt_to_head_page(objp);
3056
3057 slabp = page->slab_page;
3058
3059 if (cachep->flags & SLAB_RED_ZONE) {
3060 verify_redzone_free(cachep, objp);
3061 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
3062 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
3063 }
3064 if (cachep->flags & SLAB_STORE_USER)
3065 *dbg_userword(cachep, objp) = caller;
3066
3067 objnr = obj_to_index(cachep, slabp, objp);
3068
3069 BUG_ON(objnr >= cachep->num);
3070 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
3071
3072 #ifdef CONFIG_DEBUG_SLAB_LEAK
3073 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
3074 #endif
3075 if (cachep->flags & SLAB_POISON) {
3076 #ifdef CONFIG_DEBUG_PAGEALLOC
3077 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
3078 store_stackinfo(cachep, objp, (unsigned long)caller);
3079 kernel_map_pages(virt_to_page(objp),
3080 cachep->size / PAGE_SIZE, 0);
3081 } else {
3082 poison_obj(cachep, objp, POISON_FREE);
3083 }
3084 #else
3085 poison_obj(cachep, objp, POISON_FREE);
3086 #endif
3087 }
3088 return objp;
3089 }
3090
3091 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
3092 {
3093 kmem_bufctl_t i;
3094 int entries = 0;
3095
3096 /* Check slab's freelist to see if this obj is there. */
3097 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
3098 entries++;
3099 if (entries > cachep->num || i >= cachep->num)
3100 goto bad;
3101 }
3102 if (entries != cachep->num - slabp->inuse) {
3103 bad:
3104 printk(KERN_ERR "slab: Internal list corruption detected in "
3105 "cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n",
3106 cachep->name, cachep->num, slabp, slabp->inuse,
3107 print_tainted());
3108 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp,
3109 sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t),
3110 1);
3111 BUG();
3112 }
3113 }
3114 #else
3115 #define kfree_debugcheck(x) do { } while(0)
3116 #define cache_free_debugcheck(x,objp,z) (objp)
3117 #define check_slabp(x,y) do { } while(0)
3118 #endif
3119
3120 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
3121 bool force_refill)
3122 {
3123 int batchcount;
3124 struct kmem_list3 *l3;
3125 struct array_cache *ac;
3126 int node;
3127
3128 check_irq_off();
3129 node = numa_mem_id();
3130 if (unlikely(force_refill))
3131 goto force_grow;
3132 retry:
3133 ac = cpu_cache_get(cachep);
3134 batchcount = ac->batchcount;
3135 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
3136 /*
3137 * If there was little recent activity on this cache, then
3138 * perform only a partial refill. Otherwise we could generate
3139 * refill bouncing.
3140 */
3141 batchcount = BATCHREFILL_LIMIT;
3142 }
3143 l3 = cachep->nodelists[node];
3144
3145 BUG_ON(ac->avail > 0 || !l3);
3146 spin_lock(&l3->list_lock);
3147
3148 /* See if we can refill from the shared array */
3149 if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
3150 l3->shared->touched = 1;
3151 goto alloc_done;
3152 }
3153
3154 while (batchcount > 0) {
3155 struct list_head *entry;
3156 struct slab *slabp;
3157 /* Get slab alloc is to come from. */
3158 entry = l3->slabs_partial.next;
3159 if (entry == &l3->slabs_partial) {
3160 l3->free_touched = 1;
3161 entry = l3->slabs_free.next;
3162 if (entry == &l3->slabs_free)
3163 goto must_grow;
3164 }
3165
3166 slabp = list_entry(entry, struct slab, list);
3167 check_slabp(cachep, slabp);
3168 check_spinlock_acquired(cachep);
3169
3170 /*
3171 * The slab was either on partial or free list so
3172 * there must be at least one object available for
3173 * allocation.
3174 */
3175 BUG_ON(slabp->inuse >= cachep->num);
3176
3177 while (slabp->inuse < cachep->num && batchcount--) {
3178 STATS_INC_ALLOCED(cachep);
3179 STATS_INC_ACTIVE(cachep);
3180 STATS_SET_HIGH(cachep);
3181
3182 ac_put_obj(cachep, ac, slab_get_obj(cachep, slabp,
3183 node));
3184 }
3185 check_slabp(cachep, slabp);
3186
3187 /* move slabp to correct slabp list: */
3188 list_del(&slabp->list);
3189 if (slabp->free == BUFCTL_END)
3190 list_add(&slabp->list, &l3->slabs_full);
3191 else
3192 list_add(&slabp->list, &l3->slabs_partial);
3193 }
3194
3195 must_grow:
3196 l3->free_objects -= ac->avail;
3197 alloc_done:
3198 spin_unlock(&l3->list_lock);
3199
3200 if (unlikely(!ac->avail)) {
3201 int x;
3202 force_grow:
3203 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3204
3205 /* cache_grow can reenable interrupts, then ac could change. */
3206 ac = cpu_cache_get(cachep);
3207
3208 /* no objects in sight? abort */
3209 if (!x && (ac->avail == 0 || force_refill))
3210 return NULL;
3211
3212 if (!ac->avail) /* objects refilled by interrupt? */
3213 goto retry;
3214 }
3215 ac->touched = 1;
3216
3217 return ac_get_obj(cachep, ac, flags, force_refill);
3218 }
3219
3220 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3221 gfp_t flags)
3222 {
3223 might_sleep_if(flags & __GFP_WAIT);
3224 #if DEBUG
3225 kmem_flagcheck(cachep, flags);
3226 #endif
3227 }
3228
3229 #if DEBUG
3230 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3231 gfp_t flags, void *objp, void *caller)
3232 {
3233 if (!objp)
3234 return objp;
3235 if (cachep->flags & SLAB_POISON) {
3236 #ifdef CONFIG_DEBUG_PAGEALLOC
3237 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3238 kernel_map_pages(virt_to_page(objp),
3239 cachep->size / PAGE_SIZE, 1);
3240 else
3241 check_poison_obj(cachep, objp);
3242 #else
3243 check_poison_obj(cachep, objp);
3244 #endif
3245 poison_obj(cachep, objp, POISON_INUSE);
3246 }
3247 if (cachep->flags & SLAB_STORE_USER)
3248 *dbg_userword(cachep, objp) = caller;
3249
3250 if (cachep->flags & SLAB_RED_ZONE) {
3251 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3252 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3253 slab_error(cachep, "double free, or memory outside"
3254 " object was overwritten");
3255 printk(KERN_ERR
3256 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3257 objp, *dbg_redzone1(cachep, objp),
3258 *dbg_redzone2(cachep, objp));
3259 }
3260 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3261 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3262 }
3263 #ifdef CONFIG_DEBUG_SLAB_LEAK
3264 {
3265 struct slab *slabp;
3266 unsigned objnr;
3267
3268 slabp = virt_to_head_page(objp)->slab_page;
3269 objnr = (unsigned)(objp - slabp->s_mem) / cachep->size;
3270 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3271 }
3272 #endif
3273 objp += obj_offset(cachep);
3274 if (cachep->ctor && cachep->flags & SLAB_POISON)
3275 cachep->ctor(objp);
3276 if (ARCH_SLAB_MINALIGN &&
3277 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3278 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3279 objp, (int)ARCH_SLAB_MINALIGN);
3280 }
3281 return objp;
3282 }
3283 #else
3284 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3285 #endif
3286
3287 static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3288 {
3289 if (cachep == kmem_cache)
3290 return false;
3291
3292 return should_failslab(cachep->object_size, flags, cachep->flags);
3293 }
3294
3295 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3296 {
3297 void *objp;
3298 struct array_cache *ac;
3299 bool force_refill = false;
3300
3301 check_irq_off();
3302
3303 ac = cpu_cache_get(cachep);
3304 if (likely(ac->avail)) {
3305 ac->touched = 1;
3306 objp = ac_get_obj(cachep, ac, flags, false);
3307
3308 /*
3309 * Allow for the possibility all avail objects are not allowed
3310 * by the current flags
3311 */
3312 if (objp) {
3313 STATS_INC_ALLOCHIT(cachep);
3314 goto out;
3315 }
3316 force_refill = true;
3317 }
3318
3319 STATS_INC_ALLOCMISS(cachep);
3320 objp = cache_alloc_refill(cachep, flags, force_refill);
3321 /*
3322 * the 'ac' may be updated by cache_alloc_refill(),
3323 * and kmemleak_erase() requires its correct value.
3324 */
3325 ac = cpu_cache_get(cachep);
3326
3327 out:
3328 /*
3329 * To avoid a false negative, if an object that is in one of the
3330 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3331 * treat the array pointers as a reference to the object.
3332 */
3333 if (objp)
3334 kmemleak_erase(&ac->entry[ac->avail]);
3335 return objp;
3336 }
3337
3338 #ifdef CONFIG_NUMA
3339 /*
3340 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3341 *
3342 * If we are in_interrupt, then process context, including cpusets and
3343 * mempolicy, may not apply and should not be used for allocation policy.
3344 */
3345 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3346 {
3347 int nid_alloc, nid_here;
3348
3349 if (in_interrupt() || (flags & __GFP_THISNODE))
3350 return NULL;
3351 nid_alloc = nid_here = numa_mem_id();
3352 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3353 nid_alloc = cpuset_slab_spread_node();
3354 else if (current->mempolicy)
3355 nid_alloc = slab_node();
3356 if (nid_alloc != nid_here)
3357 return ____cache_alloc_node(cachep, flags, nid_alloc);
3358 return NULL;
3359 }
3360
3361 /*
3362 * Fallback function if there was no memory available and no objects on a
3363 * certain node and fall back is permitted. First we scan all the
3364 * available nodelists for available objects. If that fails then we
3365 * perform an allocation without specifying a node. This allows the page
3366 * allocator to do its reclaim / fallback magic. We then insert the
3367 * slab into the proper nodelist and then allocate from it.
3368 */
3369 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3370 {
3371 struct zonelist *zonelist;
3372 gfp_t local_flags;
3373 struct zoneref *z;
3374 struct zone *zone;
3375 enum zone_type high_zoneidx = gfp_zone(flags);
3376 void *obj = NULL;
3377 int nid;
3378 unsigned int cpuset_mems_cookie;
3379
3380 if (flags & __GFP_THISNODE)
3381 return NULL;
3382
3383 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3384
3385 retry_cpuset:
3386 cpuset_mems_cookie = get_mems_allowed();
3387 zonelist = node_zonelist(slab_node(), flags);
3388
3389 retry:
3390 /*
3391 * Look through allowed nodes for objects available
3392 * from existing per node queues.
3393 */
3394 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3395 nid = zone_to_nid(zone);
3396
3397 if (cpuset_zone_allowed_hardwall(zone, flags) &&
3398 cache->nodelists[nid] &&
3399 cache->nodelists[nid]->free_objects) {
3400 obj = ____cache_alloc_node(cache,
3401 flags | GFP_THISNODE, nid);
3402 if (obj)
3403 break;
3404 }
3405 }
3406
3407 if (!obj) {
3408 /*
3409 * This allocation will be performed within the constraints
3410 * of the current cpuset / memory policy requirements.
3411 * We may trigger various forms of reclaim on the allowed
3412 * set and go into memory reserves if necessary.
3413 */
3414 if (local_flags & __GFP_WAIT)
3415 local_irq_enable();
3416 kmem_flagcheck(cache, flags);
3417 obj = kmem_getpages(cache, local_flags, numa_mem_id());
3418 if (local_flags & __GFP_WAIT)
3419 local_irq_disable();
3420 if (obj) {
3421 /*
3422 * Insert into the appropriate per node queues
3423 */
3424 nid = page_to_nid(virt_to_page(obj));
3425 if (cache_grow(cache, flags, nid, obj)) {
3426 obj = ____cache_alloc_node(cache,
3427 flags | GFP_THISNODE, nid);
3428 if (!obj)
3429 /*
3430 * Another processor may allocate the
3431 * objects in the slab since we are
3432 * not holding any locks.
3433 */
3434 goto retry;
3435 } else {
3436 /* cache_grow already freed obj */
3437 obj = NULL;
3438 }
3439 }
3440 }
3441
3442 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
3443 goto retry_cpuset;
3444 return obj;
3445 }
3446
3447 /*
3448 * A interface to enable slab creation on nodeid
3449 */
3450 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3451 int nodeid)
3452 {
3453 struct list_head *entry;
3454 struct slab *slabp;
3455 struct kmem_list3 *l3;
3456 void *obj;
3457 int x;
3458
3459 l3 = cachep->nodelists[nodeid];
3460 BUG_ON(!l3);
3461
3462 retry:
3463 check_irq_off();
3464 spin_lock(&l3->list_lock);
3465 entry = l3->slabs_partial.next;
3466 if (entry == &l3->slabs_partial) {
3467 l3->free_touched = 1;
3468 entry = l3->slabs_free.next;
3469 if (entry == &l3->slabs_free)
3470 goto must_grow;
3471 }
3472
3473 slabp = list_entry(entry, struct slab, list);
3474 check_spinlock_acquired_node(cachep, nodeid);
3475 check_slabp(cachep, slabp);
3476
3477 STATS_INC_NODEALLOCS(cachep);
3478 STATS_INC_ACTIVE(cachep);
3479 STATS_SET_HIGH(cachep);
3480
3481 BUG_ON(slabp->inuse == cachep->num);
3482
3483 obj = slab_get_obj(cachep, slabp, nodeid);
3484 check_slabp(cachep, slabp);
3485 l3->free_objects--;
3486 /* move slabp to correct slabp list: */
3487 list_del(&slabp->list);
3488
3489 if (slabp->free == BUFCTL_END)
3490 list_add(&slabp->list, &l3->slabs_full);
3491 else
3492 list_add(&slabp->list, &l3->slabs_partial);
3493
3494 spin_unlock(&l3->list_lock);
3495 goto done;
3496
3497 must_grow:
3498 spin_unlock(&l3->list_lock);
3499 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3500 if (x)
3501 goto retry;
3502
3503 return fallback_alloc(cachep, flags);
3504
3505 done:
3506 return obj;
3507 }
3508
3509 /**
3510 * kmem_cache_alloc_node - Allocate an object on the specified node
3511 * @cachep: The cache to allocate from.
3512 * @flags: See kmalloc().
3513 * @nodeid: node number of the target node.
3514 * @caller: return address of caller, used for debug information
3515 *
3516 * Identical to kmem_cache_alloc but it will allocate memory on the given
3517 * node, which can improve the performance for cpu bound structures.
3518 *
3519 * Fallback to other node is possible if __GFP_THISNODE is not set.
3520 */
3521 static __always_inline void *
3522 __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3523 void *caller)
3524 {
3525 unsigned long save_flags;
3526 void *ptr;
3527 int slab_node = numa_mem_id();
3528
3529 flags &= gfp_allowed_mask;
3530
3531 lockdep_trace_alloc(flags);
3532
3533 if (slab_should_failslab(cachep, flags))
3534 return NULL;
3535
3536 cache_alloc_debugcheck_before(cachep, flags);
3537 local_irq_save(save_flags);
3538
3539 if (nodeid == NUMA_NO_NODE)
3540 nodeid = slab_node;
3541
3542 if (unlikely(!cachep->nodelists[nodeid])) {
3543 /* Node not bootstrapped yet */
3544 ptr = fallback_alloc(cachep, flags);
3545 goto out;
3546 }
3547
3548 if (nodeid == slab_node) {
3549 /*
3550 * Use the locally cached objects if possible.
3551 * However ____cache_alloc does not allow fallback
3552 * to other nodes. It may fail while we still have
3553 * objects on other nodes available.
3554 */
3555 ptr = ____cache_alloc(cachep, flags);
3556 if (ptr)
3557 goto out;
3558 }
3559 /* ___cache_alloc_node can fall back to other nodes */
3560 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3561 out:
3562 local_irq_restore(save_flags);
3563 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3564 kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3565 flags);
3566
3567 if (likely(ptr))
3568 kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
3569
3570 if (unlikely((flags & __GFP_ZERO) && ptr))
3571 memset(ptr, 0, cachep->object_size);
3572
3573 return ptr;
3574 }
3575
3576 static __always_inline void *
3577 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3578 {
3579 void *objp;
3580
3581 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3582 objp = alternate_node_alloc(cache, flags);
3583 if (objp)
3584 goto out;
3585 }
3586 objp = ____cache_alloc(cache, flags);
3587
3588 /*
3589 * We may just have run out of memory on the local node.
3590 * ____cache_alloc_node() knows how to locate memory on other nodes
3591 */
3592 if (!objp)
3593 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3594
3595 out:
3596 return objp;
3597 }
3598 #else
3599
3600 static __always_inline void *
3601 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3602 {
3603 return ____cache_alloc(cachep, flags);
3604 }
3605
3606 #endif /* CONFIG_NUMA */
3607
3608 static __always_inline void *
3609 __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3610 {
3611 unsigned long save_flags;
3612 void *objp;
3613
3614 flags &= gfp_allowed_mask;
3615
3616 lockdep_trace_alloc(flags);
3617
3618 if (slab_should_failslab(cachep, flags))
3619 return NULL;
3620
3621 cache_alloc_debugcheck_before(cachep, flags);
3622 local_irq_save(save_flags);
3623 objp = __do_cache_alloc(cachep, flags);
3624 local_irq_restore(save_flags);
3625 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3626 kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3627 flags);
3628 prefetchw(objp);
3629
3630 if (likely(objp))
3631 kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
3632
3633 if (unlikely((flags & __GFP_ZERO) && objp))
3634 memset(objp, 0, cachep->object_size);
3635
3636 return objp;
3637 }
3638
3639 /*
3640 * Caller needs to acquire correct kmem_list's list_lock
3641 */
3642 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3643 int node)
3644 {
3645 int i;
3646 struct kmem_list3 *l3;
3647
3648 for (i = 0; i < nr_objects; i++) {
3649 void *objp;
3650 struct slab *slabp;
3651
3652 clear_obj_pfmemalloc(&objpp[i]);
3653 objp = objpp[i];
3654
3655 slabp = virt_to_slab(objp);
3656 l3 = cachep->nodelists[node];
3657 list_del(&slabp->list);
3658 check_spinlock_acquired_node(cachep, node);
3659 check_slabp(cachep, slabp);
3660 slab_put_obj(cachep, slabp, objp, node);
3661 STATS_DEC_ACTIVE(cachep);
3662 l3->free_objects++;
3663 check_slabp(cachep, slabp);
3664
3665 /* fixup slab chains */
3666 if (slabp->inuse == 0) {
3667 if (l3->free_objects > l3->free_limit) {
3668 l3->free_objects -= cachep->num;
3669 /* No need to drop any previously held
3670 * lock here, even if we have a off-slab slab
3671 * descriptor it is guaranteed to come from
3672 * a different cache, refer to comments before
3673 * alloc_slabmgmt.
3674 */
3675 slab_destroy(cachep, slabp);
3676 } else {
3677 list_add(&slabp->list, &l3->slabs_free);
3678 }
3679 } else {
3680 /* Unconditionally move a slab to the end of the
3681 * partial list on free - maximum time for the
3682 * other objects to be freed, too.
3683 */
3684 list_add_tail(&slabp->list, &l3->slabs_partial);
3685 }
3686 }
3687 }
3688
3689 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3690 {
3691 int batchcount;
3692 struct kmem_list3 *l3;
3693 int node = numa_mem_id();
3694
3695 batchcount = ac->batchcount;
3696 #if DEBUG
3697 BUG_ON(!batchcount || batchcount > ac->avail);
3698 #endif
3699 check_irq_off();
3700 l3 = cachep->nodelists[node];
3701 spin_lock(&l3->list_lock);
3702 if (l3->shared) {
3703 struct array_cache *shared_array = l3->shared;
3704 int max = shared_array->limit - shared_array->avail;
3705 if (max) {
3706 if (batchcount > max)
3707 batchcount = max;
3708 memcpy(&(shared_array->entry[shared_array->avail]),
3709 ac->entry, sizeof(void *) * batchcount);
3710 shared_array->avail += batchcount;
3711 goto free_done;
3712 }
3713 }
3714
3715 free_block(cachep, ac->entry, batchcount, node);
3716 free_done:
3717 #if STATS
3718 {
3719 int i = 0;
3720 struct list_head *p;
3721
3722 p = l3->slabs_free.next;
3723 while (p != &(l3->slabs_free)) {
3724 struct slab *slabp;
3725
3726 slabp = list_entry(p, struct slab, list);
3727 BUG_ON(slabp->inuse);
3728
3729 i++;
3730 p = p->next;
3731 }
3732 STATS_SET_FREEABLE(cachep, i);
3733 }
3734 #endif
3735 spin_unlock(&l3->list_lock);
3736 ac->avail -= batchcount;
3737 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3738 }
3739
3740 /*
3741 * Release an obj back to its cache. If the obj has a constructed state, it must
3742 * be in this state _before_ it is released. Called with disabled ints.
3743 */
3744 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3745 void *caller)
3746 {
3747 struct array_cache *ac = cpu_cache_get(cachep);
3748
3749 check_irq_off();
3750 kmemleak_free_recursive(objp, cachep->flags);
3751 objp = cache_free_debugcheck(cachep, objp, caller);
3752
3753 kmemcheck_slab_free(cachep, objp, cachep->object_size);
3754
3755 /*
3756 * Skip calling cache_free_alien() when the platform is not numa.
3757 * This will avoid cache misses that happen while accessing slabp (which
3758 * is per page memory reference) to get nodeid. Instead use a global
3759 * variable to skip the call, which is mostly likely to be present in
3760 * the cache.
3761 */
3762 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3763 return;
3764
3765 if (likely(ac->avail < ac->limit)) {
3766 STATS_INC_FREEHIT(cachep);
3767 } else {
3768 STATS_INC_FREEMISS(cachep);
3769 cache_flusharray(cachep, ac);
3770 }
3771
3772 ac_put_obj(cachep, ac, objp);
3773 }
3774
3775 /**
3776 * kmem_cache_alloc - Allocate an object
3777 * @cachep: The cache to allocate from.
3778 * @flags: See kmalloc().
3779 *
3780 * Allocate an object from this cache. The flags are only relevant
3781 * if the cache has no available objects.
3782 */
3783 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3784 {
3785 void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3786
3787 trace_kmem_cache_alloc(_RET_IP_, ret,
3788 cachep->object_size, cachep->size, flags);
3789
3790 return ret;
3791 }
3792 EXPORT_SYMBOL(kmem_cache_alloc);
3793
3794 #ifdef CONFIG_TRACING
3795 void *
3796 kmem_cache_alloc_trace(size_t size, struct kmem_cache *cachep, gfp_t flags)
3797 {
3798 void *ret;
3799
3800 ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3801
3802 trace_kmalloc(_RET_IP_, ret,
3803 size, slab_buffer_size(cachep), flags);
3804 return ret;
3805 }
3806 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3807 #endif
3808
3809 #ifdef CONFIG_NUMA
3810 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3811 {
3812 void *ret = __cache_alloc_node(cachep, flags, nodeid,
3813 __builtin_return_address(0));
3814
3815 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3816 cachep->object_size, cachep->size,
3817 flags, nodeid);
3818
3819 return ret;
3820 }
3821 EXPORT_SYMBOL(kmem_cache_alloc_node);
3822
3823 #ifdef CONFIG_TRACING
3824 void *kmem_cache_alloc_node_trace(size_t size,
3825 struct kmem_cache *cachep,
3826 gfp_t flags,
3827 int nodeid)
3828 {
3829 void *ret;
3830
3831 ret = __cache_alloc_node(cachep, flags, nodeid,
3832 __builtin_return_address(0));
3833 trace_kmalloc_node(_RET_IP_, ret,
3834 size, slab_buffer_size(cachep),
3835 flags, nodeid);
3836 return ret;
3837 }
3838 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3839 #endif
3840
3841 static __always_inline void *
3842 __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3843 {
3844 struct kmem_cache *cachep;
3845
3846 cachep = kmem_find_general_cachep(size, flags);
3847 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3848 return cachep;
3849 return kmem_cache_alloc_node_trace(size, cachep, flags, node);
3850 }
3851
3852 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3853 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3854 {
3855 return __do_kmalloc_node(size, flags, node,
3856 __builtin_return_address(0));
3857 }
3858 EXPORT_SYMBOL(__kmalloc_node);
3859
3860 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3861 int node, unsigned long caller)
3862 {
3863 return __do_kmalloc_node(size, flags, node, (void *)caller);
3864 }
3865 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3866 #else
3867 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3868 {
3869 return __do_kmalloc_node(size, flags, node, NULL);
3870 }
3871 EXPORT_SYMBOL(__kmalloc_node);
3872 #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3873 #endif /* CONFIG_NUMA */
3874
3875 /**
3876 * __do_kmalloc - allocate memory
3877 * @size: how many bytes of memory are required.
3878 * @flags: the type of memory to allocate (see kmalloc).
3879 * @caller: function caller for debug tracking of the caller
3880 */
3881 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3882 void *caller)
3883 {
3884 struct kmem_cache *cachep;
3885 void *ret;
3886
3887 /* If you want to save a few bytes .text space: replace
3888 * __ with kmem_.
3889 * Then kmalloc uses the uninlined functions instead of the inline
3890 * functions.
3891 */
3892 cachep = __find_general_cachep(size, flags);
3893 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3894 return cachep;
3895 ret = __cache_alloc(cachep, flags, caller);
3896
3897 trace_kmalloc((unsigned long) caller, ret,
3898 size, cachep->size, flags);
3899
3900 return ret;
3901 }
3902
3903
3904 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3905 void *__kmalloc(size_t size, gfp_t flags)
3906 {
3907 return __do_kmalloc(size, flags, __builtin_return_address(0));
3908 }
3909 EXPORT_SYMBOL(__kmalloc);
3910
3911 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3912 {
3913 return __do_kmalloc(size, flags, (void *)caller);
3914 }
3915 EXPORT_SYMBOL(__kmalloc_track_caller);
3916
3917 #else
3918 void *__kmalloc(size_t size, gfp_t flags)
3919 {
3920 return __do_kmalloc(size, flags, NULL);
3921 }
3922 EXPORT_SYMBOL(__kmalloc);
3923 #endif
3924
3925 /**
3926 * kmem_cache_free - Deallocate an object
3927 * @cachep: The cache the allocation was from.
3928 * @objp: The previously allocated object.
3929 *
3930 * Free an object which was previously allocated from this
3931 * cache.
3932 */
3933 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3934 {
3935 unsigned long flags;
3936
3937 local_irq_save(flags);
3938 debug_check_no_locks_freed(objp, cachep->object_size);
3939 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3940 debug_check_no_obj_freed(objp, cachep->object_size);
3941 __cache_free(cachep, objp, __builtin_return_address(0));
3942 local_irq_restore(flags);
3943
3944 trace_kmem_cache_free(_RET_IP_, objp);
3945 }
3946 EXPORT_SYMBOL(kmem_cache_free);
3947
3948 /**
3949 * kfree - free previously allocated memory
3950 * @objp: pointer returned by kmalloc.
3951 *
3952 * If @objp is NULL, no operation is performed.
3953 *
3954 * Don't free memory not originally allocated by kmalloc()
3955 * or you will run into trouble.
3956 */
3957 void kfree(const void *objp)
3958 {
3959 struct kmem_cache *c;
3960 unsigned long flags;
3961
3962 trace_kfree(_RET_IP_, objp);
3963
3964 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3965 return;
3966 local_irq_save(flags);
3967 kfree_debugcheck(objp);
3968 c = virt_to_cache(objp);
3969 debug_check_no_locks_freed(objp, c->object_size);
3970
3971 debug_check_no_obj_freed(objp, c->object_size);
3972 __cache_free(c, (void *)objp, __builtin_return_address(0));
3973 local_irq_restore(flags);
3974 }
3975 EXPORT_SYMBOL(kfree);
3976
3977 unsigned int kmem_cache_size(struct kmem_cache *cachep)
3978 {
3979 return cachep->object_size;
3980 }
3981 EXPORT_SYMBOL(kmem_cache_size);
3982
3983 /*
3984 * This initializes kmem_list3 or resizes various caches for all nodes.
3985 */
3986 static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
3987 {
3988 int node;
3989 struct kmem_list3 *l3;
3990 struct array_cache *new_shared;
3991 struct array_cache **new_alien = NULL;
3992
3993 for_each_online_node(node) {
3994
3995 if (use_alien_caches) {
3996 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3997 if (!new_alien)
3998 goto fail;
3999 }
4000
4001 new_shared = NULL;
4002 if (cachep->shared) {
4003 new_shared = alloc_arraycache(node,
4004 cachep->shared*cachep->batchcount,
4005 0xbaadf00d, gfp);
4006 if (!new_shared) {
4007 free_alien_cache(new_alien);
4008 goto fail;
4009 }
4010 }
4011
4012 l3 = cachep->nodelists[node];
4013 if (l3) {
4014 struct array_cache *shared = l3->shared;
4015
4016 spin_lock_irq(&l3->list_lock);
4017
4018 if (shared)
4019 free_block(cachep, shared->entry,
4020 shared->avail, node);
4021
4022 l3->shared = new_shared;
4023 if (!l3->alien) {
4024 l3->alien = new_alien;
4025 new_alien = NULL;
4026 }
4027 l3->free_limit = (1 + nr_cpus_node(node)) *
4028 cachep->batchcount + cachep->num;
4029 spin_unlock_irq(&l3->list_lock);
4030 kfree(shared);
4031 free_alien_cache(new_alien);
4032 continue;
4033 }
4034 l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
4035 if (!l3) {
4036 free_alien_cache(new_alien);
4037 kfree(new_shared);
4038 goto fail;
4039 }
4040
4041 kmem_list3_init(l3);
4042 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
4043 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
4044 l3->shared = new_shared;
4045 l3->alien = new_alien;
4046 l3->free_limit = (1 + nr_cpus_node(node)) *
4047 cachep->batchcount + cachep->num;
4048 cachep->nodelists[node] = l3;
4049 }
4050 return 0;
4051
4052 fail:
4053 if (!cachep->list.next) {
4054 /* Cache is not active yet. Roll back what we did */
4055 node--;
4056 while (node >= 0) {
4057 if (cachep->nodelists[node]) {
4058 l3 = cachep->nodelists[node];
4059
4060 kfree(l3->shared);
4061 free_alien_cache(l3->alien);
4062 kfree(l3);
4063 cachep->nodelists[node] = NULL;
4064 }
4065 node--;
4066 }
4067 }
4068 return -ENOMEM;
4069 }
4070
4071 struct ccupdate_struct {
4072 struct kmem_cache *cachep;
4073 struct array_cache *new[0];
4074 };
4075
4076 static void do_ccupdate_local(void *info)
4077 {
4078 struct ccupdate_struct *new = info;
4079 struct array_cache *old;
4080
4081 check_irq_off();
4082 old = cpu_cache_get(new->cachep);
4083
4084 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
4085 new->new[smp_processor_id()] = old;
4086 }
4087
4088 /* Always called with the slab_mutex held */
4089 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
4090 int batchcount, int shared, gfp_t gfp)
4091 {
4092 struct ccupdate_struct *new;
4093 int i;
4094
4095 new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
4096 gfp);
4097 if (!new)
4098 return -ENOMEM;
4099
4100 for_each_online_cpu(i) {
4101 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
4102 batchcount, gfp);
4103 if (!new->new[i]) {
4104 for (i--; i >= 0; i--)
4105 kfree(new->new[i]);
4106 kfree(new);
4107 return -ENOMEM;
4108 }
4109 }
4110 new->cachep = cachep;
4111
4112 on_each_cpu(do_ccupdate_local, (void *)new, 1);
4113
4114 check_irq_on();
4115 cachep->batchcount = batchcount;
4116 cachep->limit = limit;
4117 cachep->shared = shared;
4118
4119 for_each_online_cpu(i) {
4120 struct array_cache *ccold = new->new[i];
4121 if (!ccold)
4122 continue;
4123 spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
4124 free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
4125 spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
4126 kfree(ccold);
4127 }
4128 kfree(new);
4129 return alloc_kmemlist(cachep, gfp);
4130 }
4131
4132 /* Called with slab_mutex held always */
4133 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
4134 {
4135 int err;
4136 int limit, shared;
4137
4138 /*
4139 * The head array serves three purposes:
4140 * - create a LIFO ordering, i.e. return objects that are cache-warm
4141 * - reduce the number of spinlock operations.
4142 * - reduce the number of linked list operations on the slab and
4143 * bufctl chains: array operations are cheaper.
4144 * The numbers are guessed, we should auto-tune as described by
4145 * Bonwick.
4146 */
4147 if (cachep->size > 131072)
4148 limit = 1;
4149 else if (cachep->size > PAGE_SIZE)
4150 limit = 8;
4151 else if (cachep->size > 1024)
4152 limit = 24;
4153 else if (cachep->size > 256)
4154 limit = 54;
4155 else
4156 limit = 120;
4157
4158 /*
4159 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
4160 * allocation behaviour: Most allocs on one cpu, most free operations
4161 * on another cpu. For these cases, an efficient object passing between
4162 * cpus is necessary. This is provided by a shared array. The array
4163 * replaces Bonwick's magazine layer.
4164 * On uniprocessor, it's functionally equivalent (but less efficient)
4165 * to a larger limit. Thus disabled by default.
4166 */
4167 shared = 0;
4168 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
4169 shared = 8;
4170
4171 #if DEBUG
4172 /*
4173 * With debugging enabled, large batchcount lead to excessively long
4174 * periods with disabled local interrupts. Limit the batchcount
4175 */
4176 if (limit > 32)
4177 limit = 32;
4178 #endif
4179 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
4180 if (err)
4181 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
4182 cachep->name, -err);
4183 return err;
4184 }
4185
4186 /*
4187 * Drain an array if it contains any elements taking the l3 lock only if
4188 * necessary. Note that the l3 listlock also protects the array_cache
4189 * if drain_array() is used on the shared array.
4190 */
4191 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4192 struct array_cache *ac, int force, int node)
4193 {
4194 int tofree;
4195
4196 if (!ac || !ac->avail)
4197 return;
4198 if (ac->touched && !force) {
4199 ac->touched = 0;
4200 } else {
4201 spin_lock_irq(&l3->list_lock);
4202 if (ac->avail) {
4203 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4204 if (tofree > ac->avail)
4205 tofree = (ac->avail + 1) / 2;
4206 free_block(cachep, ac->entry, tofree, node);
4207 ac->avail -= tofree;
4208 memmove(ac->entry, &(ac->entry[tofree]),
4209 sizeof(void *) * ac->avail);
4210 }
4211 spin_unlock_irq(&l3->list_lock);
4212 }
4213 }
4214
4215 /**
4216 * cache_reap - Reclaim memory from caches.
4217 * @w: work descriptor
4218 *
4219 * Called from workqueue/eventd every few seconds.
4220 * Purpose:
4221 * - clear the per-cpu caches for this CPU.
4222 * - return freeable pages to the main free memory pool.
4223 *
4224 * If we cannot acquire the cache chain mutex then just give up - we'll try
4225 * again on the next iteration.
4226 */
4227 static void cache_reap(struct work_struct *w)
4228 {
4229 struct kmem_cache *searchp;
4230 struct kmem_list3 *l3;
4231 int node = numa_mem_id();
4232 struct delayed_work *work = to_delayed_work(w);
4233
4234 if (!mutex_trylock(&slab_mutex))
4235 /* Give up. Setup the next iteration. */
4236 goto out;
4237
4238 list_for_each_entry(searchp, &slab_caches, list) {
4239 check_irq_on();
4240
4241 /*
4242 * We only take the l3 lock if absolutely necessary and we
4243 * have established with reasonable certainty that
4244 * we can do some work if the lock was obtained.
4245 */
4246 l3 = searchp->nodelists[node];
4247
4248 reap_alien(searchp, l3);
4249
4250 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
4251
4252 /*
4253 * These are racy checks but it does not matter
4254 * if we skip one check or scan twice.
4255 */
4256 if (time_after(l3->next_reap, jiffies))
4257 goto next;
4258
4259 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
4260
4261 drain_array(searchp, l3, l3->shared, 0, node);
4262
4263 if (l3->free_touched)
4264 l3->free_touched = 0;
4265 else {
4266 int freed;
4267
4268 freed = drain_freelist(searchp, l3, (l3->free_limit +
4269 5 * searchp->num - 1) / (5 * searchp->num));
4270 STATS_ADD_REAPED(searchp, freed);
4271 }
4272 next:
4273 cond_resched();
4274 }
4275 check_irq_on();
4276 mutex_unlock(&slab_mutex);
4277 next_reap_node();
4278 out:
4279 /* Set up the next iteration */
4280 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
4281 }
4282
4283 #ifdef CONFIG_SLABINFO
4284
4285 static void print_slabinfo_header(struct seq_file *m)
4286 {
4287 /*
4288 * Output format version, so at least we can change it
4289 * without _too_ many complaints.
4290 */
4291 #if STATS
4292 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
4293 #else
4294 seq_puts(m, "slabinfo - version: 2.1\n");
4295 #endif
4296 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4297 "<objperslab> <pagesperslab>");
4298 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4299 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4300 #if STATS
4301 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4302 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4303 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4304 #endif
4305 seq_putc(m, '\n');
4306 }
4307
4308 static void *s_start(struct seq_file *m, loff_t *pos)
4309 {
4310 loff_t n = *pos;
4311
4312 mutex_lock(&slab_mutex);
4313 if (!n)
4314 print_slabinfo_header(m);
4315
4316 return seq_list_start(&slab_caches, *pos);
4317 }
4318
4319 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4320 {
4321 return seq_list_next(p, &slab_caches, pos);
4322 }
4323
4324 static void s_stop(struct seq_file *m, void *p)
4325 {
4326 mutex_unlock(&slab_mutex);
4327 }
4328
4329 static int s_show(struct seq_file *m, void *p)
4330 {
4331 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4332 struct slab *slabp;
4333 unsigned long active_objs;
4334 unsigned long num_objs;
4335 unsigned long active_slabs = 0;
4336 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4337 const char *name;
4338 char *error = NULL;
4339 int node;
4340 struct kmem_list3 *l3;
4341
4342 active_objs = 0;
4343 num_slabs = 0;
4344 for_each_online_node(node) {
4345 l3 = cachep->nodelists[node];
4346 if (!l3)
4347 continue;
4348
4349 check_irq_on();
4350 spin_lock_irq(&l3->list_lock);
4351
4352 list_for_each_entry(slabp, &l3->slabs_full, list) {
4353 if (slabp->inuse != cachep->num && !error)
4354 error = "slabs_full accounting error";
4355 active_objs += cachep->num;
4356 active_slabs++;
4357 }
4358 list_for_each_entry(slabp, &l3->slabs_partial, list) {
4359 if (slabp->inuse == cachep->num && !error)
4360 error = "slabs_partial inuse accounting error";
4361 if (!slabp->inuse && !error)
4362 error = "slabs_partial/inuse accounting error";
4363 active_objs += slabp->inuse;
4364 active_slabs++;
4365 }
4366 list_for_each_entry(slabp, &l3->slabs_free, list) {
4367 if (slabp->inuse && !error)
4368 error = "slabs_free/inuse accounting error";
4369 num_slabs++;
4370 }
4371 free_objects += l3->free_objects;
4372 if (l3->shared)
4373 shared_avail += l3->shared->avail;
4374
4375 spin_unlock_irq(&l3->list_lock);
4376 }
4377 num_slabs += active_slabs;
4378 num_objs = num_slabs * cachep->num;
4379 if (num_objs - active_objs != free_objects && !error)
4380 error = "free_objects accounting error";
4381
4382 name = cachep->name;
4383 if (error)
4384 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4385
4386 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4387 name, active_objs, num_objs, cachep->size,
4388 cachep->num, (1 << cachep->gfporder));
4389 seq_printf(m, " : tunables %4u %4u %4u",
4390 cachep->limit, cachep->batchcount, cachep->shared);
4391 seq_printf(m, " : slabdata %6lu %6lu %6lu",
4392 active_slabs, num_slabs, shared_avail);
4393 #if STATS
4394 { /* list3 stats */
4395 unsigned long high = cachep->high_mark;
4396 unsigned long allocs = cachep->num_allocations;
4397 unsigned long grown = cachep->grown;
4398 unsigned long reaped = cachep->reaped;
4399 unsigned long errors = cachep->errors;
4400 unsigned long max_freeable = cachep->max_freeable;
4401 unsigned long node_allocs = cachep->node_allocs;
4402 unsigned long node_frees = cachep->node_frees;
4403 unsigned long overflows = cachep->node_overflow;
4404
4405 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4406 "%4lu %4lu %4lu %4lu %4lu",
4407 allocs, high, grown,
4408 reaped, errors, max_freeable, node_allocs,
4409 node_frees, overflows);
4410 }
4411 /* cpu stats */
4412 {
4413 unsigned long allochit = atomic_read(&cachep->allochit);
4414 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4415 unsigned long freehit = atomic_read(&cachep->freehit);
4416 unsigned long freemiss = atomic_read(&cachep->freemiss);
4417
4418 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4419 allochit, allocmiss, freehit, freemiss);
4420 }
4421 #endif
4422 seq_putc(m, '\n');
4423 return 0;
4424 }
4425
4426 /*
4427 * slabinfo_op - iterator that generates /proc/slabinfo
4428 *
4429 * Output layout:
4430 * cache-name
4431 * num-active-objs
4432 * total-objs
4433 * object size
4434 * num-active-slabs
4435 * total-slabs
4436 * num-pages-per-slab
4437 * + further values on SMP and with statistics enabled
4438 */
4439
4440 static const struct seq_operations slabinfo_op = {
4441 .start = s_start,
4442 .next = s_next,
4443 .stop = s_stop,
4444 .show = s_show,
4445 };
4446
4447 #define MAX_SLABINFO_WRITE 128
4448 /**
4449 * slabinfo_write - Tuning for the slab allocator
4450 * @file: unused
4451 * @buffer: user buffer
4452 * @count: data length
4453 * @ppos: unused
4454 */
4455 static ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4456 size_t count, loff_t *ppos)
4457 {
4458 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4459 int limit, batchcount, shared, res;
4460 struct kmem_cache *cachep;
4461
4462 if (count > MAX_SLABINFO_WRITE)
4463 return -EINVAL;
4464 if (copy_from_user(&kbuf, buffer, count))
4465 return -EFAULT;
4466 kbuf[MAX_SLABINFO_WRITE] = '\0';
4467
4468 tmp = strchr(kbuf, ' ');
4469 if (!tmp)
4470 return -EINVAL;
4471 *tmp = '\0';
4472 tmp++;
4473 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4474 return -EINVAL;
4475
4476 /* Find the cache in the chain of caches. */
4477 mutex_lock(&slab_mutex);
4478 res = -EINVAL;
4479 list_for_each_entry(cachep, &slab_caches, list) {
4480 if (!strcmp(cachep->name, kbuf)) {
4481 if (limit < 1 || batchcount < 1 ||
4482 batchcount > limit || shared < 0) {
4483 res = 0;
4484 } else {
4485 res = do_tune_cpucache(cachep, limit,
4486 batchcount, shared,
4487 GFP_KERNEL);
4488 }
4489 break;
4490 }
4491 }
4492 mutex_unlock(&slab_mutex);
4493 if (res >= 0)
4494 res = count;
4495 return res;
4496 }
4497
4498 static int slabinfo_open(struct inode *inode, struct file *file)
4499 {
4500 return seq_open(file, &slabinfo_op);
4501 }
4502
4503 static const struct file_operations proc_slabinfo_operations = {
4504 .open = slabinfo_open,
4505 .read = seq_read,
4506 .write = slabinfo_write,
4507 .llseek = seq_lseek,
4508 .release = seq_release,
4509 };
4510
4511 #ifdef CONFIG_DEBUG_SLAB_LEAK
4512
4513 static void *leaks_start(struct seq_file *m, loff_t *pos)
4514 {
4515 mutex_lock(&slab_mutex);
4516 return seq_list_start(&slab_caches, *pos);
4517 }
4518
4519 static inline int add_caller(unsigned long *n, unsigned long v)
4520 {
4521 unsigned long *p;
4522 int l;
4523 if (!v)
4524 return 1;
4525 l = n[1];
4526 p = n + 2;
4527 while (l) {
4528 int i = l/2;
4529 unsigned long *q = p + 2 * i;
4530 if (*q == v) {
4531 q[1]++;
4532 return 1;
4533 }
4534 if (*q > v) {
4535 l = i;
4536 } else {
4537 p = q + 2;
4538 l -= i + 1;
4539 }
4540 }
4541 if (++n[1] == n[0])
4542 return 0;
4543 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4544 p[0] = v;
4545 p[1] = 1;
4546 return 1;
4547 }
4548
4549 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4550 {
4551 void *p;
4552 int i;
4553 if (n[0] == n[1])
4554 return;
4555 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->size) {
4556 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4557 continue;
4558 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4559 return;
4560 }
4561 }
4562
4563 static void show_symbol(struct seq_file *m, unsigned long address)
4564 {
4565 #ifdef CONFIG_KALLSYMS
4566 unsigned long offset, size;
4567 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4568
4569 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4570 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4571 if (modname[0])
4572 seq_printf(m, " [%s]", modname);
4573 return;
4574 }
4575 #endif
4576 seq_printf(m, "%p", (void *)address);
4577 }
4578
4579 static int leaks_show(struct seq_file *m, void *p)
4580 {
4581 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4582 struct slab *slabp;
4583 struct kmem_list3 *l3;
4584 const char *name;
4585 unsigned long *n = m->private;
4586 int node;
4587 int i;
4588
4589 if (!(cachep->flags & SLAB_STORE_USER))
4590 return 0;
4591 if (!(cachep->flags & SLAB_RED_ZONE))
4592 return 0;
4593
4594 /* OK, we can do it */
4595
4596 n[1] = 0;
4597
4598 for_each_online_node(node) {
4599 l3 = cachep->nodelists[node];
4600 if (!l3)
4601 continue;
4602
4603 check_irq_on();
4604 spin_lock_irq(&l3->list_lock);
4605
4606 list_for_each_entry(slabp, &l3->slabs_full, list)
4607 handle_slab(n, cachep, slabp);
4608 list_for_each_entry(slabp, &l3->slabs_partial, list)
4609 handle_slab(n, cachep, slabp);
4610 spin_unlock_irq(&l3->list_lock);
4611 }
4612 name = cachep->name;
4613 if (n[0] == n[1]) {
4614 /* Increase the buffer size */
4615 mutex_unlock(&slab_mutex);
4616 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4617 if (!m->private) {
4618 /* Too bad, we are really out */
4619 m->private = n;
4620 mutex_lock(&slab_mutex);
4621 return -ENOMEM;
4622 }
4623 *(unsigned long *)m->private = n[0] * 2;
4624 kfree(n);
4625 mutex_lock(&slab_mutex);
4626 /* Now make sure this entry will be retried */
4627 m->count = m->size;
4628 return 0;
4629 }
4630 for (i = 0; i < n[1]; i++) {
4631 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4632 show_symbol(m, n[2*i+2]);
4633 seq_putc(m, '\n');
4634 }
4635
4636 return 0;
4637 }
4638
4639 static const struct seq_operations slabstats_op = {
4640 .start = leaks_start,
4641 .next = s_next,
4642 .stop = s_stop,
4643 .show = leaks_show,
4644 };
4645
4646 static int slabstats_open(struct inode *inode, struct file *file)
4647 {
4648 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4649 int ret = -ENOMEM;
4650 if (n) {
4651 ret = seq_open(file, &slabstats_op);
4652 if (!ret) {
4653 struct seq_file *m = file->private_data;
4654 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4655 m->private = n;
4656 n = NULL;
4657 }
4658 kfree(n);
4659 }
4660 return ret;
4661 }
4662
4663 static const struct file_operations proc_slabstats_operations = {
4664 .open = slabstats_open,
4665 .read = seq_read,
4666 .llseek = seq_lseek,
4667 .release = seq_release_private,
4668 };
4669 #endif
4670
4671 static int __init slab_proc_init(void)
4672 {
4673 proc_create("slabinfo",S_IWUSR|S_IRUSR,NULL,&proc_slabinfo_operations);
4674 #ifdef CONFIG_DEBUG_SLAB_LEAK
4675 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4676 #endif
4677 return 0;
4678 }
4679 module_init(slab_proc_init);
4680 #endif
4681
4682 /**
4683 * ksize - get the actual amount of memory allocated for a given object
4684 * @objp: Pointer to the object
4685 *
4686 * kmalloc may internally round up allocations and return more memory
4687 * than requested. ksize() can be used to determine the actual amount of
4688 * memory allocated. The caller may use this additional memory, even though
4689 * a smaller amount of memory was initially specified with the kmalloc call.
4690 * The caller must guarantee that objp points to a valid object previously
4691 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4692 * must not be freed during the duration of the call.
4693 */
4694 size_t ksize(const void *objp)
4695 {
4696 BUG_ON(!objp);
4697 if (unlikely(objp == ZERO_SIZE_PTR))
4698 return 0;
4699
4700 return virt_to_cache(objp)->object_size;
4701 }
4702 EXPORT_SYMBOL(ksize);
This page took 0.183696 seconds and 5 git commands to generate.