mm: simplify filemap_nopage
[deliverable/linux.git] / mm / slab.c
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
87 */
88
89 #include <linux/slab.h>
90 #include <linux/mm.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/seq_file.h>
99 #include <linux/notifier.h>
100 #include <linux/kallsyms.h>
101 #include <linux/cpu.h>
102 #include <linux/sysctl.h>
103 #include <linux/module.h>
104 #include <linux/rcupdate.h>
105 #include <linux/string.h>
106 #include <linux/uaccess.h>
107 #include <linux/nodemask.h>
108 #include <linux/mempolicy.h>
109 #include <linux/mutex.h>
110 #include <linux/fault-inject.h>
111 #include <linux/rtmutex.h>
112 #include <linux/reciprocal_div.h>
113
114 #include <asm/cacheflush.h>
115 #include <asm/tlbflush.h>
116 #include <asm/page.h>
117
118 /*
119 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
120 * SLAB_RED_ZONE & SLAB_POISON.
121 * 0 for faster, smaller code (especially in the critical paths).
122 *
123 * STATS - 1 to collect stats for /proc/slabinfo.
124 * 0 for faster, smaller code (especially in the critical paths).
125 *
126 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
127 */
128
129 #ifdef CONFIG_DEBUG_SLAB
130 #define DEBUG 1
131 #define STATS 1
132 #define FORCED_DEBUG 1
133 #else
134 #define DEBUG 0
135 #define STATS 0
136 #define FORCED_DEBUG 0
137 #endif
138
139 /* Shouldn't this be in a header file somewhere? */
140 #define BYTES_PER_WORD sizeof(void *)
141
142 #ifndef cache_line_size
143 #define cache_line_size() L1_CACHE_BYTES
144 #endif
145
146 #ifndef ARCH_KMALLOC_MINALIGN
147 /*
148 * Enforce a minimum alignment for the kmalloc caches.
149 * Usually, the kmalloc caches are cache_line_size() aligned, except when
150 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
151 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
152 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
153 * Note that this flag disables some debug features.
154 */
155 #define ARCH_KMALLOC_MINALIGN 0
156 #endif
157
158 #ifndef ARCH_SLAB_MINALIGN
159 /*
160 * Enforce a minimum alignment for all caches.
161 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
162 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
163 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
164 * some debug features.
165 */
166 #define ARCH_SLAB_MINALIGN 0
167 #endif
168
169 #ifndef ARCH_KMALLOC_FLAGS
170 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
171 #endif
172
173 /* Legal flag mask for kmem_cache_create(). */
174 #if DEBUG
175 # define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
176 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
177 SLAB_CACHE_DMA | \
178 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
179 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
180 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
181 #else
182 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
183 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
184 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
185 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
186 #endif
187
188 /*
189 * kmem_bufctl_t:
190 *
191 * Bufctl's are used for linking objs within a slab
192 * linked offsets.
193 *
194 * This implementation relies on "struct page" for locating the cache &
195 * slab an object belongs to.
196 * This allows the bufctl structure to be small (one int), but limits
197 * the number of objects a slab (not a cache) can contain when off-slab
198 * bufctls are used. The limit is the size of the largest general cache
199 * that does not use off-slab slabs.
200 * For 32bit archs with 4 kB pages, is this 56.
201 * This is not serious, as it is only for large objects, when it is unwise
202 * to have too many per slab.
203 * Note: This limit can be raised by introducing a general cache whose size
204 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
205 */
206
207 typedef unsigned int kmem_bufctl_t;
208 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
209 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
210 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
211 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
212
213 /*
214 * struct slab
215 *
216 * Manages the objs in a slab. Placed either at the beginning of mem allocated
217 * for a slab, or allocated from an general cache.
218 * Slabs are chained into three list: fully used, partial, fully free slabs.
219 */
220 struct slab {
221 struct list_head list;
222 unsigned long colouroff;
223 void *s_mem; /* including colour offset */
224 unsigned int inuse; /* num of objs active in slab */
225 kmem_bufctl_t free;
226 unsigned short nodeid;
227 };
228
229 /*
230 * struct slab_rcu
231 *
232 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
233 * arrange for kmem_freepages to be called via RCU. This is useful if
234 * we need to approach a kernel structure obliquely, from its address
235 * obtained without the usual locking. We can lock the structure to
236 * stabilize it and check it's still at the given address, only if we
237 * can be sure that the memory has not been meanwhile reused for some
238 * other kind of object (which our subsystem's lock might corrupt).
239 *
240 * rcu_read_lock before reading the address, then rcu_read_unlock after
241 * taking the spinlock within the structure expected at that address.
242 *
243 * We assume struct slab_rcu can overlay struct slab when destroying.
244 */
245 struct slab_rcu {
246 struct rcu_head head;
247 struct kmem_cache *cachep;
248 void *addr;
249 };
250
251 /*
252 * struct array_cache
253 *
254 * Purpose:
255 * - LIFO ordering, to hand out cache-warm objects from _alloc
256 * - reduce the number of linked list operations
257 * - reduce spinlock operations
258 *
259 * The limit is stored in the per-cpu structure to reduce the data cache
260 * footprint.
261 *
262 */
263 struct array_cache {
264 unsigned int avail;
265 unsigned int limit;
266 unsigned int batchcount;
267 unsigned int touched;
268 spinlock_t lock;
269 void *entry[0]; /*
270 * Must have this definition in here for the proper
271 * alignment of array_cache. Also simplifies accessing
272 * the entries.
273 * [0] is for gcc 2.95. It should really be [].
274 */
275 };
276
277 /*
278 * bootstrap: The caches do not work without cpuarrays anymore, but the
279 * cpuarrays are allocated from the generic caches...
280 */
281 #define BOOT_CPUCACHE_ENTRIES 1
282 struct arraycache_init {
283 struct array_cache cache;
284 void *entries[BOOT_CPUCACHE_ENTRIES];
285 };
286
287 /*
288 * The slab lists for all objects.
289 */
290 struct kmem_list3 {
291 struct list_head slabs_partial; /* partial list first, better asm code */
292 struct list_head slabs_full;
293 struct list_head slabs_free;
294 unsigned long free_objects;
295 unsigned int free_limit;
296 unsigned int colour_next; /* Per-node cache coloring */
297 spinlock_t list_lock;
298 struct array_cache *shared; /* shared per node */
299 struct array_cache **alien; /* on other nodes */
300 unsigned long next_reap; /* updated without locking */
301 int free_touched; /* updated without locking */
302 };
303
304 /*
305 * Need this for bootstrapping a per node allocator.
306 */
307 #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
308 struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
309 #define CACHE_CACHE 0
310 #define SIZE_AC 1
311 #define SIZE_L3 (1 + MAX_NUMNODES)
312
313 static int drain_freelist(struct kmem_cache *cache,
314 struct kmem_list3 *l3, int tofree);
315 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
316 int node);
317 static int enable_cpucache(struct kmem_cache *cachep);
318 static void cache_reap(struct work_struct *unused);
319
320 /*
321 * This function must be completely optimized away if a constant is passed to
322 * it. Mostly the same as what is in linux/slab.h except it returns an index.
323 */
324 static __always_inline int index_of(const size_t size)
325 {
326 extern void __bad_size(void);
327
328 if (__builtin_constant_p(size)) {
329 int i = 0;
330
331 #define CACHE(x) \
332 if (size <=x) \
333 return i; \
334 else \
335 i++;
336 #include "linux/kmalloc_sizes.h"
337 #undef CACHE
338 __bad_size();
339 } else
340 __bad_size();
341 return 0;
342 }
343
344 static int slab_early_init = 1;
345
346 #define INDEX_AC index_of(sizeof(struct arraycache_init))
347 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
348
349 static void kmem_list3_init(struct kmem_list3 *parent)
350 {
351 INIT_LIST_HEAD(&parent->slabs_full);
352 INIT_LIST_HEAD(&parent->slabs_partial);
353 INIT_LIST_HEAD(&parent->slabs_free);
354 parent->shared = NULL;
355 parent->alien = NULL;
356 parent->colour_next = 0;
357 spin_lock_init(&parent->list_lock);
358 parent->free_objects = 0;
359 parent->free_touched = 0;
360 }
361
362 #define MAKE_LIST(cachep, listp, slab, nodeid) \
363 do { \
364 INIT_LIST_HEAD(listp); \
365 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
366 } while (0)
367
368 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
369 do { \
370 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
371 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
372 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
373 } while (0)
374
375 /*
376 * struct kmem_cache
377 *
378 * manages a cache.
379 */
380
381 struct kmem_cache {
382 /* 1) per-cpu data, touched during every alloc/free */
383 struct array_cache *array[NR_CPUS];
384 /* 2) Cache tunables. Protected by cache_chain_mutex */
385 unsigned int batchcount;
386 unsigned int limit;
387 unsigned int shared;
388
389 unsigned int buffer_size;
390 u32 reciprocal_buffer_size;
391 /* 3) touched by every alloc & free from the backend */
392 struct kmem_list3 *nodelists[MAX_NUMNODES];
393
394 unsigned int flags; /* constant flags */
395 unsigned int num; /* # of objs per slab */
396
397 /* 4) cache_grow/shrink */
398 /* order of pgs per slab (2^n) */
399 unsigned int gfporder;
400
401 /* force GFP flags, e.g. GFP_DMA */
402 gfp_t gfpflags;
403
404 size_t colour; /* cache colouring range */
405 unsigned int colour_off; /* colour offset */
406 struct kmem_cache *slabp_cache;
407 unsigned int slab_size;
408 unsigned int dflags; /* dynamic flags */
409
410 /* constructor func */
411 void (*ctor) (void *, struct kmem_cache *, unsigned long);
412
413 /* de-constructor func */
414 void (*dtor) (void *, struct kmem_cache *, unsigned long);
415
416 /* 5) cache creation/removal */
417 const char *name;
418 struct list_head next;
419
420 /* 6) statistics */
421 #if STATS
422 unsigned long num_active;
423 unsigned long num_allocations;
424 unsigned long high_mark;
425 unsigned long grown;
426 unsigned long reaped;
427 unsigned long errors;
428 unsigned long max_freeable;
429 unsigned long node_allocs;
430 unsigned long node_frees;
431 unsigned long node_overflow;
432 atomic_t allochit;
433 atomic_t allocmiss;
434 atomic_t freehit;
435 atomic_t freemiss;
436 #endif
437 #if DEBUG
438 /*
439 * If debugging is enabled, then the allocator can add additional
440 * fields and/or padding to every object. buffer_size contains the total
441 * object size including these internal fields, the following two
442 * variables contain the offset to the user object and its size.
443 */
444 int obj_offset;
445 int obj_size;
446 #endif
447 };
448
449 #define CFLGS_OFF_SLAB (0x80000000UL)
450 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
451
452 #define BATCHREFILL_LIMIT 16
453 /*
454 * Optimization question: fewer reaps means less probability for unnessary
455 * cpucache drain/refill cycles.
456 *
457 * OTOH the cpuarrays can contain lots of objects,
458 * which could lock up otherwise freeable slabs.
459 */
460 #define REAPTIMEOUT_CPUC (2*HZ)
461 #define REAPTIMEOUT_LIST3 (4*HZ)
462
463 #if STATS
464 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
465 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
466 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
467 #define STATS_INC_GROWN(x) ((x)->grown++)
468 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
469 #define STATS_SET_HIGH(x) \
470 do { \
471 if ((x)->num_active > (x)->high_mark) \
472 (x)->high_mark = (x)->num_active; \
473 } while (0)
474 #define STATS_INC_ERR(x) ((x)->errors++)
475 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
476 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
477 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
478 #define STATS_SET_FREEABLE(x, i) \
479 do { \
480 if ((x)->max_freeable < i) \
481 (x)->max_freeable = i; \
482 } while (0)
483 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
484 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
485 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
486 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
487 #else
488 #define STATS_INC_ACTIVE(x) do { } while (0)
489 #define STATS_DEC_ACTIVE(x) do { } while (0)
490 #define STATS_INC_ALLOCED(x) do { } while (0)
491 #define STATS_INC_GROWN(x) do { } while (0)
492 #define STATS_ADD_REAPED(x,y) do { } while (0)
493 #define STATS_SET_HIGH(x) do { } while (0)
494 #define STATS_INC_ERR(x) do { } while (0)
495 #define STATS_INC_NODEALLOCS(x) do { } while (0)
496 #define STATS_INC_NODEFREES(x) do { } while (0)
497 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
498 #define STATS_SET_FREEABLE(x, i) do { } while (0)
499 #define STATS_INC_ALLOCHIT(x) do { } while (0)
500 #define STATS_INC_ALLOCMISS(x) do { } while (0)
501 #define STATS_INC_FREEHIT(x) do { } while (0)
502 #define STATS_INC_FREEMISS(x) do { } while (0)
503 #endif
504
505 #if DEBUG
506
507 /*
508 * memory layout of objects:
509 * 0 : objp
510 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
511 * the end of an object is aligned with the end of the real
512 * allocation. Catches writes behind the end of the allocation.
513 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
514 * redzone word.
515 * cachep->obj_offset: The real object.
516 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
517 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
518 * [BYTES_PER_WORD long]
519 */
520 static int obj_offset(struct kmem_cache *cachep)
521 {
522 return cachep->obj_offset;
523 }
524
525 static int obj_size(struct kmem_cache *cachep)
526 {
527 return cachep->obj_size;
528 }
529
530 static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
531 {
532 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
533 return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
534 }
535
536 static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
537 {
538 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
539 if (cachep->flags & SLAB_STORE_USER)
540 return (unsigned long *)(objp + cachep->buffer_size -
541 2 * BYTES_PER_WORD);
542 return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
543 }
544
545 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
546 {
547 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
548 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
549 }
550
551 #else
552
553 #define obj_offset(x) 0
554 #define obj_size(cachep) (cachep->buffer_size)
555 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
556 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
557 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
558
559 #endif
560
561 /*
562 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
563 * order.
564 */
565 #if defined(CONFIG_LARGE_ALLOCS)
566 #define MAX_OBJ_ORDER 13 /* up to 32Mb */
567 #define MAX_GFP_ORDER 13 /* up to 32Mb */
568 #elif defined(CONFIG_MMU)
569 #define MAX_OBJ_ORDER 5 /* 32 pages */
570 #define MAX_GFP_ORDER 5 /* 32 pages */
571 #else
572 #define MAX_OBJ_ORDER 8 /* up to 1Mb */
573 #define MAX_GFP_ORDER 8 /* up to 1Mb */
574 #endif
575
576 /*
577 * Do not go above this order unless 0 objects fit into the slab.
578 */
579 #define BREAK_GFP_ORDER_HI 1
580 #define BREAK_GFP_ORDER_LO 0
581 static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
582
583 /*
584 * Functions for storing/retrieving the cachep and or slab from the page
585 * allocator. These are used to find the slab an obj belongs to. With kfree(),
586 * these are used to find the cache which an obj belongs to.
587 */
588 static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
589 {
590 page->lru.next = (struct list_head *)cache;
591 }
592
593 static inline struct kmem_cache *page_get_cache(struct page *page)
594 {
595 if (unlikely(PageCompound(page)))
596 page = (struct page *)page_private(page);
597 BUG_ON(!PageSlab(page));
598 return (struct kmem_cache *)page->lru.next;
599 }
600
601 static inline void page_set_slab(struct page *page, struct slab *slab)
602 {
603 page->lru.prev = (struct list_head *)slab;
604 }
605
606 static inline struct slab *page_get_slab(struct page *page)
607 {
608 if (unlikely(PageCompound(page)))
609 page = (struct page *)page_private(page);
610 BUG_ON(!PageSlab(page));
611 return (struct slab *)page->lru.prev;
612 }
613
614 static inline struct kmem_cache *virt_to_cache(const void *obj)
615 {
616 struct page *page = virt_to_page(obj);
617 return page_get_cache(page);
618 }
619
620 static inline struct slab *virt_to_slab(const void *obj)
621 {
622 struct page *page = virt_to_page(obj);
623 return page_get_slab(page);
624 }
625
626 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
627 unsigned int idx)
628 {
629 return slab->s_mem + cache->buffer_size * idx;
630 }
631
632 /*
633 * We want to avoid an expensive divide : (offset / cache->buffer_size)
634 * Using the fact that buffer_size is a constant for a particular cache,
635 * we can replace (offset / cache->buffer_size) by
636 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
637 */
638 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
639 const struct slab *slab, void *obj)
640 {
641 u32 offset = (obj - slab->s_mem);
642 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
643 }
644
645 /*
646 * These are the default caches for kmalloc. Custom caches can have other sizes.
647 */
648 struct cache_sizes malloc_sizes[] = {
649 #define CACHE(x) { .cs_size = (x) },
650 #include <linux/kmalloc_sizes.h>
651 CACHE(ULONG_MAX)
652 #undef CACHE
653 };
654 EXPORT_SYMBOL(malloc_sizes);
655
656 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
657 struct cache_names {
658 char *name;
659 char *name_dma;
660 };
661
662 static struct cache_names __initdata cache_names[] = {
663 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
664 #include <linux/kmalloc_sizes.h>
665 {NULL,}
666 #undef CACHE
667 };
668
669 static struct arraycache_init initarray_cache __initdata =
670 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
671 static struct arraycache_init initarray_generic =
672 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
673
674 /* internal cache of cache description objs */
675 static struct kmem_cache cache_cache = {
676 .batchcount = 1,
677 .limit = BOOT_CPUCACHE_ENTRIES,
678 .shared = 1,
679 .buffer_size = sizeof(struct kmem_cache),
680 .name = "kmem_cache",
681 #if DEBUG
682 .obj_size = sizeof(struct kmem_cache),
683 #endif
684 };
685
686 #define BAD_ALIEN_MAGIC 0x01020304ul
687
688 #ifdef CONFIG_LOCKDEP
689
690 /*
691 * Slab sometimes uses the kmalloc slabs to store the slab headers
692 * for other slabs "off slab".
693 * The locking for this is tricky in that it nests within the locks
694 * of all other slabs in a few places; to deal with this special
695 * locking we put on-slab caches into a separate lock-class.
696 *
697 * We set lock class for alien array caches which are up during init.
698 * The lock annotation will be lost if all cpus of a node goes down and
699 * then comes back up during hotplug
700 */
701 static struct lock_class_key on_slab_l3_key;
702 static struct lock_class_key on_slab_alc_key;
703
704 static inline void init_lock_keys(void)
705
706 {
707 int q;
708 struct cache_sizes *s = malloc_sizes;
709
710 while (s->cs_size != ULONG_MAX) {
711 for_each_node(q) {
712 struct array_cache **alc;
713 int r;
714 struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
715 if (!l3 || OFF_SLAB(s->cs_cachep))
716 continue;
717 lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
718 alc = l3->alien;
719 /*
720 * FIXME: This check for BAD_ALIEN_MAGIC
721 * should go away when common slab code is taught to
722 * work even without alien caches.
723 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
724 * for alloc_alien_cache,
725 */
726 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
727 continue;
728 for_each_node(r) {
729 if (alc[r])
730 lockdep_set_class(&alc[r]->lock,
731 &on_slab_alc_key);
732 }
733 }
734 s++;
735 }
736 }
737 #else
738 static inline void init_lock_keys(void)
739 {
740 }
741 #endif
742
743 /*
744 * 1. Guard access to the cache-chain.
745 * 2. Protect sanity of cpu_online_map against cpu hotplug events
746 */
747 static DEFINE_MUTEX(cache_chain_mutex);
748 static struct list_head cache_chain;
749
750 /*
751 * chicken and egg problem: delay the per-cpu array allocation
752 * until the general caches are up.
753 */
754 static enum {
755 NONE,
756 PARTIAL_AC,
757 PARTIAL_L3,
758 FULL
759 } g_cpucache_up;
760
761 /*
762 * used by boot code to determine if it can use slab based allocator
763 */
764 int slab_is_available(void)
765 {
766 return g_cpucache_up == FULL;
767 }
768
769 static DEFINE_PER_CPU(struct delayed_work, reap_work);
770
771 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
772 {
773 return cachep->array[smp_processor_id()];
774 }
775
776 static inline struct kmem_cache *__find_general_cachep(size_t size,
777 gfp_t gfpflags)
778 {
779 struct cache_sizes *csizep = malloc_sizes;
780
781 #if DEBUG
782 /* This happens if someone tries to call
783 * kmem_cache_create(), or __kmalloc(), before
784 * the generic caches are initialized.
785 */
786 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
787 #endif
788 while (size > csizep->cs_size)
789 csizep++;
790
791 /*
792 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
793 * has cs_{dma,}cachep==NULL. Thus no special case
794 * for large kmalloc calls required.
795 */
796 #ifdef CONFIG_ZONE_DMA
797 if (unlikely(gfpflags & GFP_DMA))
798 return csizep->cs_dmacachep;
799 #endif
800 return csizep->cs_cachep;
801 }
802
803 static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
804 {
805 return __find_general_cachep(size, gfpflags);
806 }
807
808 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
809 {
810 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
811 }
812
813 /*
814 * Calculate the number of objects and left-over bytes for a given buffer size.
815 */
816 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
817 size_t align, int flags, size_t *left_over,
818 unsigned int *num)
819 {
820 int nr_objs;
821 size_t mgmt_size;
822 size_t slab_size = PAGE_SIZE << gfporder;
823
824 /*
825 * The slab management structure can be either off the slab or
826 * on it. For the latter case, the memory allocated for a
827 * slab is used for:
828 *
829 * - The struct slab
830 * - One kmem_bufctl_t for each object
831 * - Padding to respect alignment of @align
832 * - @buffer_size bytes for each object
833 *
834 * If the slab management structure is off the slab, then the
835 * alignment will already be calculated into the size. Because
836 * the slabs are all pages aligned, the objects will be at the
837 * correct alignment when allocated.
838 */
839 if (flags & CFLGS_OFF_SLAB) {
840 mgmt_size = 0;
841 nr_objs = slab_size / buffer_size;
842
843 if (nr_objs > SLAB_LIMIT)
844 nr_objs = SLAB_LIMIT;
845 } else {
846 /*
847 * Ignore padding for the initial guess. The padding
848 * is at most @align-1 bytes, and @buffer_size is at
849 * least @align. In the worst case, this result will
850 * be one greater than the number of objects that fit
851 * into the memory allocation when taking the padding
852 * into account.
853 */
854 nr_objs = (slab_size - sizeof(struct slab)) /
855 (buffer_size + sizeof(kmem_bufctl_t));
856
857 /*
858 * This calculated number will be either the right
859 * amount, or one greater than what we want.
860 */
861 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
862 > slab_size)
863 nr_objs--;
864
865 if (nr_objs > SLAB_LIMIT)
866 nr_objs = SLAB_LIMIT;
867
868 mgmt_size = slab_mgmt_size(nr_objs, align);
869 }
870 *num = nr_objs;
871 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
872 }
873
874 #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
875
876 static void __slab_error(const char *function, struct kmem_cache *cachep,
877 char *msg)
878 {
879 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
880 function, cachep->name, msg);
881 dump_stack();
882 }
883
884 /*
885 * By default on NUMA we use alien caches to stage the freeing of
886 * objects allocated from other nodes. This causes massive memory
887 * inefficiencies when using fake NUMA setup to split memory into a
888 * large number of small nodes, so it can be disabled on the command
889 * line
890 */
891
892 static int use_alien_caches __read_mostly = 1;
893 static int __init noaliencache_setup(char *s)
894 {
895 use_alien_caches = 0;
896 return 1;
897 }
898 __setup("noaliencache", noaliencache_setup);
899
900 #ifdef CONFIG_NUMA
901 /*
902 * Special reaping functions for NUMA systems called from cache_reap().
903 * These take care of doing round robin flushing of alien caches (containing
904 * objects freed on different nodes from which they were allocated) and the
905 * flushing of remote pcps by calling drain_node_pages.
906 */
907 static DEFINE_PER_CPU(unsigned long, reap_node);
908
909 static void init_reap_node(int cpu)
910 {
911 int node;
912
913 node = next_node(cpu_to_node(cpu), node_online_map);
914 if (node == MAX_NUMNODES)
915 node = first_node(node_online_map);
916
917 per_cpu(reap_node, cpu) = node;
918 }
919
920 static void next_reap_node(void)
921 {
922 int node = __get_cpu_var(reap_node);
923
924 /*
925 * Also drain per cpu pages on remote zones
926 */
927 if (node != numa_node_id())
928 drain_node_pages(node);
929
930 node = next_node(node, node_online_map);
931 if (unlikely(node >= MAX_NUMNODES))
932 node = first_node(node_online_map);
933 __get_cpu_var(reap_node) = node;
934 }
935
936 #else
937 #define init_reap_node(cpu) do { } while (0)
938 #define next_reap_node(void) do { } while (0)
939 #endif
940
941 /*
942 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
943 * via the workqueue/eventd.
944 * Add the CPU number into the expiration time to minimize the possibility of
945 * the CPUs getting into lockstep and contending for the global cache chain
946 * lock.
947 */
948 static void __devinit start_cpu_timer(int cpu)
949 {
950 struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
951
952 /*
953 * When this gets called from do_initcalls via cpucache_init(),
954 * init_workqueues() has already run, so keventd will be setup
955 * at that time.
956 */
957 if (keventd_up() && reap_work->work.func == NULL) {
958 init_reap_node(cpu);
959 INIT_DELAYED_WORK(reap_work, cache_reap);
960 schedule_delayed_work_on(cpu, reap_work,
961 __round_jiffies_relative(HZ, cpu));
962 }
963 }
964
965 static struct array_cache *alloc_arraycache(int node, int entries,
966 int batchcount)
967 {
968 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
969 struct array_cache *nc = NULL;
970
971 nc = kmalloc_node(memsize, GFP_KERNEL, node);
972 if (nc) {
973 nc->avail = 0;
974 nc->limit = entries;
975 nc->batchcount = batchcount;
976 nc->touched = 0;
977 spin_lock_init(&nc->lock);
978 }
979 return nc;
980 }
981
982 /*
983 * Transfer objects in one arraycache to another.
984 * Locking must be handled by the caller.
985 *
986 * Return the number of entries transferred.
987 */
988 static int transfer_objects(struct array_cache *to,
989 struct array_cache *from, unsigned int max)
990 {
991 /* Figure out how many entries to transfer */
992 int nr = min(min(from->avail, max), to->limit - to->avail);
993
994 if (!nr)
995 return 0;
996
997 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
998 sizeof(void *) *nr);
999
1000 from->avail -= nr;
1001 to->avail += nr;
1002 to->touched = 1;
1003 return nr;
1004 }
1005
1006 #ifndef CONFIG_NUMA
1007
1008 #define drain_alien_cache(cachep, alien) do { } while (0)
1009 #define reap_alien(cachep, l3) do { } while (0)
1010
1011 static inline struct array_cache **alloc_alien_cache(int node, int limit)
1012 {
1013 return (struct array_cache **)BAD_ALIEN_MAGIC;
1014 }
1015
1016 static inline void free_alien_cache(struct array_cache **ac_ptr)
1017 {
1018 }
1019
1020 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1021 {
1022 return 0;
1023 }
1024
1025 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1026 gfp_t flags)
1027 {
1028 return NULL;
1029 }
1030
1031 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1032 gfp_t flags, int nodeid)
1033 {
1034 return NULL;
1035 }
1036
1037 #else /* CONFIG_NUMA */
1038
1039 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1040 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1041
1042 static struct array_cache **alloc_alien_cache(int node, int limit)
1043 {
1044 struct array_cache **ac_ptr;
1045 int memsize = sizeof(void *) * nr_node_ids;
1046 int i;
1047
1048 if (limit > 1)
1049 limit = 12;
1050 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
1051 if (ac_ptr) {
1052 for_each_node(i) {
1053 if (i == node || !node_online(i)) {
1054 ac_ptr[i] = NULL;
1055 continue;
1056 }
1057 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
1058 if (!ac_ptr[i]) {
1059 for (i--; i <= 0; i--)
1060 kfree(ac_ptr[i]);
1061 kfree(ac_ptr);
1062 return NULL;
1063 }
1064 }
1065 }
1066 return ac_ptr;
1067 }
1068
1069 static void free_alien_cache(struct array_cache **ac_ptr)
1070 {
1071 int i;
1072
1073 if (!ac_ptr)
1074 return;
1075 for_each_node(i)
1076 kfree(ac_ptr[i]);
1077 kfree(ac_ptr);
1078 }
1079
1080 static void __drain_alien_cache(struct kmem_cache *cachep,
1081 struct array_cache *ac, int node)
1082 {
1083 struct kmem_list3 *rl3 = cachep->nodelists[node];
1084
1085 if (ac->avail) {
1086 spin_lock(&rl3->list_lock);
1087 /*
1088 * Stuff objects into the remote nodes shared array first.
1089 * That way we could avoid the overhead of putting the objects
1090 * into the free lists and getting them back later.
1091 */
1092 if (rl3->shared)
1093 transfer_objects(rl3->shared, ac, ac->limit);
1094
1095 free_block(cachep, ac->entry, ac->avail, node);
1096 ac->avail = 0;
1097 spin_unlock(&rl3->list_lock);
1098 }
1099 }
1100
1101 /*
1102 * Called from cache_reap() to regularly drain alien caches round robin.
1103 */
1104 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1105 {
1106 int node = __get_cpu_var(reap_node);
1107
1108 if (l3->alien) {
1109 struct array_cache *ac = l3->alien[node];
1110
1111 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1112 __drain_alien_cache(cachep, ac, node);
1113 spin_unlock_irq(&ac->lock);
1114 }
1115 }
1116 }
1117
1118 static void drain_alien_cache(struct kmem_cache *cachep,
1119 struct array_cache **alien)
1120 {
1121 int i = 0;
1122 struct array_cache *ac;
1123 unsigned long flags;
1124
1125 for_each_online_node(i) {
1126 ac = alien[i];
1127 if (ac) {
1128 spin_lock_irqsave(&ac->lock, flags);
1129 __drain_alien_cache(cachep, ac, i);
1130 spin_unlock_irqrestore(&ac->lock, flags);
1131 }
1132 }
1133 }
1134
1135 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1136 {
1137 struct slab *slabp = virt_to_slab(objp);
1138 int nodeid = slabp->nodeid;
1139 struct kmem_list3 *l3;
1140 struct array_cache *alien = NULL;
1141 int node;
1142
1143 node = numa_node_id();
1144
1145 /*
1146 * Make sure we are not freeing a object from another node to the array
1147 * cache on this cpu.
1148 */
1149 if (likely(slabp->nodeid == node))
1150 return 0;
1151
1152 l3 = cachep->nodelists[node];
1153 STATS_INC_NODEFREES(cachep);
1154 if (l3->alien && l3->alien[nodeid]) {
1155 alien = l3->alien[nodeid];
1156 spin_lock(&alien->lock);
1157 if (unlikely(alien->avail == alien->limit)) {
1158 STATS_INC_ACOVERFLOW(cachep);
1159 __drain_alien_cache(cachep, alien, nodeid);
1160 }
1161 alien->entry[alien->avail++] = objp;
1162 spin_unlock(&alien->lock);
1163 } else {
1164 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1165 free_block(cachep, &objp, 1, nodeid);
1166 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1167 }
1168 return 1;
1169 }
1170 #endif
1171
1172 static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1173 unsigned long action, void *hcpu)
1174 {
1175 long cpu = (long)hcpu;
1176 struct kmem_cache *cachep;
1177 struct kmem_list3 *l3 = NULL;
1178 int node = cpu_to_node(cpu);
1179 int memsize = sizeof(struct kmem_list3);
1180
1181 switch (action) {
1182 case CPU_UP_PREPARE:
1183 mutex_lock(&cache_chain_mutex);
1184 /*
1185 * We need to do this right in the beginning since
1186 * alloc_arraycache's are going to use this list.
1187 * kmalloc_node allows us to add the slab to the right
1188 * kmem_list3 and not this cpu's kmem_list3
1189 */
1190
1191 list_for_each_entry(cachep, &cache_chain, next) {
1192 /*
1193 * Set up the size64 kmemlist for cpu before we can
1194 * begin anything. Make sure some other cpu on this
1195 * node has not already allocated this
1196 */
1197 if (!cachep->nodelists[node]) {
1198 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1199 if (!l3)
1200 goto bad;
1201 kmem_list3_init(l3);
1202 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1203 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1204
1205 /*
1206 * The l3s don't come and go as CPUs come and
1207 * go. cache_chain_mutex is sufficient
1208 * protection here.
1209 */
1210 cachep->nodelists[node] = l3;
1211 }
1212
1213 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1214 cachep->nodelists[node]->free_limit =
1215 (1 + nr_cpus_node(node)) *
1216 cachep->batchcount + cachep->num;
1217 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1218 }
1219
1220 /*
1221 * Now we can go ahead with allocating the shared arrays and
1222 * array caches
1223 */
1224 list_for_each_entry(cachep, &cache_chain, next) {
1225 struct array_cache *nc;
1226 struct array_cache *shared;
1227 struct array_cache **alien = NULL;
1228
1229 nc = alloc_arraycache(node, cachep->limit,
1230 cachep->batchcount);
1231 if (!nc)
1232 goto bad;
1233 shared = alloc_arraycache(node,
1234 cachep->shared * cachep->batchcount,
1235 0xbaadf00d);
1236 if (!shared)
1237 goto bad;
1238
1239 if (use_alien_caches) {
1240 alien = alloc_alien_cache(node, cachep->limit);
1241 if (!alien)
1242 goto bad;
1243 }
1244 cachep->array[cpu] = nc;
1245 l3 = cachep->nodelists[node];
1246 BUG_ON(!l3);
1247
1248 spin_lock_irq(&l3->list_lock);
1249 if (!l3->shared) {
1250 /*
1251 * We are serialised from CPU_DEAD or
1252 * CPU_UP_CANCELLED by the cpucontrol lock
1253 */
1254 l3->shared = shared;
1255 shared = NULL;
1256 }
1257 #ifdef CONFIG_NUMA
1258 if (!l3->alien) {
1259 l3->alien = alien;
1260 alien = NULL;
1261 }
1262 #endif
1263 spin_unlock_irq(&l3->list_lock);
1264 kfree(shared);
1265 free_alien_cache(alien);
1266 }
1267 break;
1268 case CPU_ONLINE:
1269 mutex_unlock(&cache_chain_mutex);
1270 start_cpu_timer(cpu);
1271 break;
1272 #ifdef CONFIG_HOTPLUG_CPU
1273 case CPU_DOWN_PREPARE:
1274 mutex_lock(&cache_chain_mutex);
1275 break;
1276 case CPU_DOWN_FAILED:
1277 mutex_unlock(&cache_chain_mutex);
1278 break;
1279 case CPU_DEAD:
1280 /*
1281 * Even if all the cpus of a node are down, we don't free the
1282 * kmem_list3 of any cache. This to avoid a race between
1283 * cpu_down, and a kmalloc allocation from another cpu for
1284 * memory from the node of the cpu going down. The list3
1285 * structure is usually allocated from kmem_cache_create() and
1286 * gets destroyed at kmem_cache_destroy().
1287 */
1288 /* fall thru */
1289 #endif
1290 case CPU_UP_CANCELED:
1291 list_for_each_entry(cachep, &cache_chain, next) {
1292 struct array_cache *nc;
1293 struct array_cache *shared;
1294 struct array_cache **alien;
1295 cpumask_t mask;
1296
1297 mask = node_to_cpumask(node);
1298 /* cpu is dead; no one can alloc from it. */
1299 nc = cachep->array[cpu];
1300 cachep->array[cpu] = NULL;
1301 l3 = cachep->nodelists[node];
1302
1303 if (!l3)
1304 goto free_array_cache;
1305
1306 spin_lock_irq(&l3->list_lock);
1307
1308 /* Free limit for this kmem_list3 */
1309 l3->free_limit -= cachep->batchcount;
1310 if (nc)
1311 free_block(cachep, nc->entry, nc->avail, node);
1312
1313 if (!cpus_empty(mask)) {
1314 spin_unlock_irq(&l3->list_lock);
1315 goto free_array_cache;
1316 }
1317
1318 shared = l3->shared;
1319 if (shared) {
1320 free_block(cachep, l3->shared->entry,
1321 l3->shared->avail, node);
1322 l3->shared = NULL;
1323 }
1324
1325 alien = l3->alien;
1326 l3->alien = NULL;
1327
1328 spin_unlock_irq(&l3->list_lock);
1329
1330 kfree(shared);
1331 if (alien) {
1332 drain_alien_cache(cachep, alien);
1333 free_alien_cache(alien);
1334 }
1335 free_array_cache:
1336 kfree(nc);
1337 }
1338 /*
1339 * In the previous loop, all the objects were freed to
1340 * the respective cache's slabs, now we can go ahead and
1341 * shrink each nodelist to its limit.
1342 */
1343 list_for_each_entry(cachep, &cache_chain, next) {
1344 l3 = cachep->nodelists[node];
1345 if (!l3)
1346 continue;
1347 drain_freelist(cachep, l3, l3->free_objects);
1348 }
1349 mutex_unlock(&cache_chain_mutex);
1350 break;
1351 }
1352 return NOTIFY_OK;
1353 bad:
1354 return NOTIFY_BAD;
1355 }
1356
1357 static struct notifier_block __cpuinitdata cpucache_notifier = {
1358 &cpuup_callback, NULL, 0
1359 };
1360
1361 /*
1362 * swap the static kmem_list3 with kmalloced memory
1363 */
1364 static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1365 int nodeid)
1366 {
1367 struct kmem_list3 *ptr;
1368
1369 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1370 BUG_ON(!ptr);
1371
1372 local_irq_disable();
1373 memcpy(ptr, list, sizeof(struct kmem_list3));
1374 /*
1375 * Do not assume that spinlocks can be initialized via memcpy:
1376 */
1377 spin_lock_init(&ptr->list_lock);
1378
1379 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1380 cachep->nodelists[nodeid] = ptr;
1381 local_irq_enable();
1382 }
1383
1384 /*
1385 * Initialisation. Called after the page allocator have been initialised and
1386 * before smp_init().
1387 */
1388 void __init kmem_cache_init(void)
1389 {
1390 size_t left_over;
1391 struct cache_sizes *sizes;
1392 struct cache_names *names;
1393 int i;
1394 int order;
1395 int node;
1396
1397 if (num_possible_nodes() == 1)
1398 use_alien_caches = 0;
1399
1400 for (i = 0; i < NUM_INIT_LISTS; i++) {
1401 kmem_list3_init(&initkmem_list3[i]);
1402 if (i < MAX_NUMNODES)
1403 cache_cache.nodelists[i] = NULL;
1404 }
1405
1406 /*
1407 * Fragmentation resistance on low memory - only use bigger
1408 * page orders on machines with more than 32MB of memory.
1409 */
1410 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1411 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1412
1413 /* Bootstrap is tricky, because several objects are allocated
1414 * from caches that do not exist yet:
1415 * 1) initialize the cache_cache cache: it contains the struct
1416 * kmem_cache structures of all caches, except cache_cache itself:
1417 * cache_cache is statically allocated.
1418 * Initially an __init data area is used for the head array and the
1419 * kmem_list3 structures, it's replaced with a kmalloc allocated
1420 * array at the end of the bootstrap.
1421 * 2) Create the first kmalloc cache.
1422 * The struct kmem_cache for the new cache is allocated normally.
1423 * An __init data area is used for the head array.
1424 * 3) Create the remaining kmalloc caches, with minimally sized
1425 * head arrays.
1426 * 4) Replace the __init data head arrays for cache_cache and the first
1427 * kmalloc cache with kmalloc allocated arrays.
1428 * 5) Replace the __init data for kmem_list3 for cache_cache and
1429 * the other cache's with kmalloc allocated memory.
1430 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1431 */
1432
1433 node = numa_node_id();
1434
1435 /* 1) create the cache_cache */
1436 INIT_LIST_HEAD(&cache_chain);
1437 list_add(&cache_cache.next, &cache_chain);
1438 cache_cache.colour_off = cache_line_size();
1439 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1440 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE];
1441
1442 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1443 cache_line_size());
1444 cache_cache.reciprocal_buffer_size =
1445 reciprocal_value(cache_cache.buffer_size);
1446
1447 for (order = 0; order < MAX_ORDER; order++) {
1448 cache_estimate(order, cache_cache.buffer_size,
1449 cache_line_size(), 0, &left_over, &cache_cache.num);
1450 if (cache_cache.num)
1451 break;
1452 }
1453 BUG_ON(!cache_cache.num);
1454 cache_cache.gfporder = order;
1455 cache_cache.colour = left_over / cache_cache.colour_off;
1456 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1457 sizeof(struct slab), cache_line_size());
1458
1459 /* 2+3) create the kmalloc caches */
1460 sizes = malloc_sizes;
1461 names = cache_names;
1462
1463 /*
1464 * Initialize the caches that provide memory for the array cache and the
1465 * kmem_list3 structures first. Without this, further allocations will
1466 * bug.
1467 */
1468
1469 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1470 sizes[INDEX_AC].cs_size,
1471 ARCH_KMALLOC_MINALIGN,
1472 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1473 NULL, NULL);
1474
1475 if (INDEX_AC != INDEX_L3) {
1476 sizes[INDEX_L3].cs_cachep =
1477 kmem_cache_create(names[INDEX_L3].name,
1478 sizes[INDEX_L3].cs_size,
1479 ARCH_KMALLOC_MINALIGN,
1480 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1481 NULL, NULL);
1482 }
1483
1484 slab_early_init = 0;
1485
1486 while (sizes->cs_size != ULONG_MAX) {
1487 /*
1488 * For performance, all the general caches are L1 aligned.
1489 * This should be particularly beneficial on SMP boxes, as it
1490 * eliminates "false sharing".
1491 * Note for systems short on memory removing the alignment will
1492 * allow tighter packing of the smaller caches.
1493 */
1494 if (!sizes->cs_cachep) {
1495 sizes->cs_cachep = kmem_cache_create(names->name,
1496 sizes->cs_size,
1497 ARCH_KMALLOC_MINALIGN,
1498 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1499 NULL, NULL);
1500 }
1501 #ifdef CONFIG_ZONE_DMA
1502 sizes->cs_dmacachep = kmem_cache_create(
1503 names->name_dma,
1504 sizes->cs_size,
1505 ARCH_KMALLOC_MINALIGN,
1506 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1507 SLAB_PANIC,
1508 NULL, NULL);
1509 #endif
1510 sizes++;
1511 names++;
1512 }
1513 /* 4) Replace the bootstrap head arrays */
1514 {
1515 struct array_cache *ptr;
1516
1517 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1518
1519 local_irq_disable();
1520 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1521 memcpy(ptr, cpu_cache_get(&cache_cache),
1522 sizeof(struct arraycache_init));
1523 /*
1524 * Do not assume that spinlocks can be initialized via memcpy:
1525 */
1526 spin_lock_init(&ptr->lock);
1527
1528 cache_cache.array[smp_processor_id()] = ptr;
1529 local_irq_enable();
1530
1531 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1532
1533 local_irq_disable();
1534 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1535 != &initarray_generic.cache);
1536 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1537 sizeof(struct arraycache_init));
1538 /*
1539 * Do not assume that spinlocks can be initialized via memcpy:
1540 */
1541 spin_lock_init(&ptr->lock);
1542
1543 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1544 ptr;
1545 local_irq_enable();
1546 }
1547 /* 5) Replace the bootstrap kmem_list3's */
1548 {
1549 int nid;
1550
1551 /* Replace the static kmem_list3 structures for the boot cpu */
1552 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], node);
1553
1554 for_each_online_node(nid) {
1555 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1556 &initkmem_list3[SIZE_AC + nid], nid);
1557
1558 if (INDEX_AC != INDEX_L3) {
1559 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1560 &initkmem_list3[SIZE_L3 + nid], nid);
1561 }
1562 }
1563 }
1564
1565 /* 6) resize the head arrays to their final sizes */
1566 {
1567 struct kmem_cache *cachep;
1568 mutex_lock(&cache_chain_mutex);
1569 list_for_each_entry(cachep, &cache_chain, next)
1570 if (enable_cpucache(cachep))
1571 BUG();
1572 mutex_unlock(&cache_chain_mutex);
1573 }
1574
1575 /* Annotate slab for lockdep -- annotate the malloc caches */
1576 init_lock_keys();
1577
1578
1579 /* Done! */
1580 g_cpucache_up = FULL;
1581
1582 /*
1583 * Register a cpu startup notifier callback that initializes
1584 * cpu_cache_get for all new cpus
1585 */
1586 register_cpu_notifier(&cpucache_notifier);
1587
1588 /*
1589 * The reap timers are started later, with a module init call: That part
1590 * of the kernel is not yet operational.
1591 */
1592 }
1593
1594 static int __init cpucache_init(void)
1595 {
1596 int cpu;
1597
1598 /*
1599 * Register the timers that return unneeded pages to the page allocator
1600 */
1601 for_each_online_cpu(cpu)
1602 start_cpu_timer(cpu);
1603 return 0;
1604 }
1605 __initcall(cpucache_init);
1606
1607 /*
1608 * Interface to system's page allocator. No need to hold the cache-lock.
1609 *
1610 * If we requested dmaable memory, we will get it. Even if we
1611 * did not request dmaable memory, we might get it, but that
1612 * would be relatively rare and ignorable.
1613 */
1614 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1615 {
1616 struct page *page;
1617 int nr_pages;
1618 int i;
1619
1620 #ifndef CONFIG_MMU
1621 /*
1622 * Nommu uses slab's for process anonymous memory allocations, and thus
1623 * requires __GFP_COMP to properly refcount higher order allocations
1624 */
1625 flags |= __GFP_COMP;
1626 #endif
1627
1628 flags |= cachep->gfpflags;
1629
1630 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1631 if (!page)
1632 return NULL;
1633
1634 nr_pages = (1 << cachep->gfporder);
1635 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1636 add_zone_page_state(page_zone(page),
1637 NR_SLAB_RECLAIMABLE, nr_pages);
1638 else
1639 add_zone_page_state(page_zone(page),
1640 NR_SLAB_UNRECLAIMABLE, nr_pages);
1641 for (i = 0; i < nr_pages; i++)
1642 __SetPageSlab(page + i);
1643 return page_address(page);
1644 }
1645
1646 /*
1647 * Interface to system's page release.
1648 */
1649 static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1650 {
1651 unsigned long i = (1 << cachep->gfporder);
1652 struct page *page = virt_to_page(addr);
1653 const unsigned long nr_freed = i;
1654
1655 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1656 sub_zone_page_state(page_zone(page),
1657 NR_SLAB_RECLAIMABLE, nr_freed);
1658 else
1659 sub_zone_page_state(page_zone(page),
1660 NR_SLAB_UNRECLAIMABLE, nr_freed);
1661 while (i--) {
1662 BUG_ON(!PageSlab(page));
1663 __ClearPageSlab(page);
1664 page++;
1665 }
1666 if (current->reclaim_state)
1667 current->reclaim_state->reclaimed_slab += nr_freed;
1668 free_pages((unsigned long)addr, cachep->gfporder);
1669 }
1670
1671 static void kmem_rcu_free(struct rcu_head *head)
1672 {
1673 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1674 struct kmem_cache *cachep = slab_rcu->cachep;
1675
1676 kmem_freepages(cachep, slab_rcu->addr);
1677 if (OFF_SLAB(cachep))
1678 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1679 }
1680
1681 #if DEBUG
1682
1683 #ifdef CONFIG_DEBUG_PAGEALLOC
1684 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1685 unsigned long caller)
1686 {
1687 int size = obj_size(cachep);
1688
1689 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1690
1691 if (size < 5 * sizeof(unsigned long))
1692 return;
1693
1694 *addr++ = 0x12345678;
1695 *addr++ = caller;
1696 *addr++ = smp_processor_id();
1697 size -= 3 * sizeof(unsigned long);
1698 {
1699 unsigned long *sptr = &caller;
1700 unsigned long svalue;
1701
1702 while (!kstack_end(sptr)) {
1703 svalue = *sptr++;
1704 if (kernel_text_address(svalue)) {
1705 *addr++ = svalue;
1706 size -= sizeof(unsigned long);
1707 if (size <= sizeof(unsigned long))
1708 break;
1709 }
1710 }
1711
1712 }
1713 *addr++ = 0x87654321;
1714 }
1715 #endif
1716
1717 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1718 {
1719 int size = obj_size(cachep);
1720 addr = &((char *)addr)[obj_offset(cachep)];
1721
1722 memset(addr, val, size);
1723 *(unsigned char *)(addr + size - 1) = POISON_END;
1724 }
1725
1726 static void dump_line(char *data, int offset, int limit)
1727 {
1728 int i;
1729 unsigned char error = 0;
1730 int bad_count = 0;
1731
1732 printk(KERN_ERR "%03x:", offset);
1733 for (i = 0; i < limit; i++) {
1734 if (data[offset + i] != POISON_FREE) {
1735 error = data[offset + i];
1736 bad_count++;
1737 }
1738 printk(" %02x", (unsigned char)data[offset + i]);
1739 }
1740 printk("\n");
1741
1742 if (bad_count == 1) {
1743 error ^= POISON_FREE;
1744 if (!(error & (error - 1))) {
1745 printk(KERN_ERR "Single bit error detected. Probably "
1746 "bad RAM.\n");
1747 #ifdef CONFIG_X86
1748 printk(KERN_ERR "Run memtest86+ or a similar memory "
1749 "test tool.\n");
1750 #else
1751 printk(KERN_ERR "Run a memory test tool.\n");
1752 #endif
1753 }
1754 }
1755 }
1756 #endif
1757
1758 #if DEBUG
1759
1760 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1761 {
1762 int i, size;
1763 char *realobj;
1764
1765 if (cachep->flags & SLAB_RED_ZONE) {
1766 printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
1767 *dbg_redzone1(cachep, objp),
1768 *dbg_redzone2(cachep, objp));
1769 }
1770
1771 if (cachep->flags & SLAB_STORE_USER) {
1772 printk(KERN_ERR "Last user: [<%p>]",
1773 *dbg_userword(cachep, objp));
1774 print_symbol("(%s)",
1775 (unsigned long)*dbg_userword(cachep, objp));
1776 printk("\n");
1777 }
1778 realobj = (char *)objp + obj_offset(cachep);
1779 size = obj_size(cachep);
1780 for (i = 0; i < size && lines; i += 16, lines--) {
1781 int limit;
1782 limit = 16;
1783 if (i + limit > size)
1784 limit = size - i;
1785 dump_line(realobj, i, limit);
1786 }
1787 }
1788
1789 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1790 {
1791 char *realobj;
1792 int size, i;
1793 int lines = 0;
1794
1795 realobj = (char *)objp + obj_offset(cachep);
1796 size = obj_size(cachep);
1797
1798 for (i = 0; i < size; i++) {
1799 char exp = POISON_FREE;
1800 if (i == size - 1)
1801 exp = POISON_END;
1802 if (realobj[i] != exp) {
1803 int limit;
1804 /* Mismatch ! */
1805 /* Print header */
1806 if (lines == 0) {
1807 printk(KERN_ERR
1808 "Slab corruption: %s start=%p, len=%d\n",
1809 cachep->name, realobj, size);
1810 print_objinfo(cachep, objp, 0);
1811 }
1812 /* Hexdump the affected line */
1813 i = (i / 16) * 16;
1814 limit = 16;
1815 if (i + limit > size)
1816 limit = size - i;
1817 dump_line(realobj, i, limit);
1818 i += 16;
1819 lines++;
1820 /* Limit to 5 lines */
1821 if (lines > 5)
1822 break;
1823 }
1824 }
1825 if (lines != 0) {
1826 /* Print some data about the neighboring objects, if they
1827 * exist:
1828 */
1829 struct slab *slabp = virt_to_slab(objp);
1830 unsigned int objnr;
1831
1832 objnr = obj_to_index(cachep, slabp, objp);
1833 if (objnr) {
1834 objp = index_to_obj(cachep, slabp, objnr - 1);
1835 realobj = (char *)objp + obj_offset(cachep);
1836 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1837 realobj, size);
1838 print_objinfo(cachep, objp, 2);
1839 }
1840 if (objnr + 1 < cachep->num) {
1841 objp = index_to_obj(cachep, slabp, objnr + 1);
1842 realobj = (char *)objp + obj_offset(cachep);
1843 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1844 realobj, size);
1845 print_objinfo(cachep, objp, 2);
1846 }
1847 }
1848 }
1849 #endif
1850
1851 #if DEBUG
1852 /**
1853 * slab_destroy_objs - destroy a slab and its objects
1854 * @cachep: cache pointer being destroyed
1855 * @slabp: slab pointer being destroyed
1856 *
1857 * Call the registered destructor for each object in a slab that is being
1858 * destroyed.
1859 */
1860 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1861 {
1862 int i;
1863 for (i = 0; i < cachep->num; i++) {
1864 void *objp = index_to_obj(cachep, slabp, i);
1865
1866 if (cachep->flags & SLAB_POISON) {
1867 #ifdef CONFIG_DEBUG_PAGEALLOC
1868 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1869 OFF_SLAB(cachep))
1870 kernel_map_pages(virt_to_page(objp),
1871 cachep->buffer_size / PAGE_SIZE, 1);
1872 else
1873 check_poison_obj(cachep, objp);
1874 #else
1875 check_poison_obj(cachep, objp);
1876 #endif
1877 }
1878 if (cachep->flags & SLAB_RED_ZONE) {
1879 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1880 slab_error(cachep, "start of a freed object "
1881 "was overwritten");
1882 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1883 slab_error(cachep, "end of a freed object "
1884 "was overwritten");
1885 }
1886 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
1887 (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
1888 }
1889 }
1890 #else
1891 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1892 {
1893 if (cachep->dtor) {
1894 int i;
1895 for (i = 0; i < cachep->num; i++) {
1896 void *objp = index_to_obj(cachep, slabp, i);
1897 (cachep->dtor) (objp, cachep, 0);
1898 }
1899 }
1900 }
1901 #endif
1902
1903 /**
1904 * slab_destroy - destroy and release all objects in a slab
1905 * @cachep: cache pointer being destroyed
1906 * @slabp: slab pointer being destroyed
1907 *
1908 * Destroy all the objs in a slab, and release the mem back to the system.
1909 * Before calling the slab must have been unlinked from the cache. The
1910 * cache-lock is not held/needed.
1911 */
1912 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1913 {
1914 void *addr = slabp->s_mem - slabp->colouroff;
1915
1916 slab_destroy_objs(cachep, slabp);
1917 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1918 struct slab_rcu *slab_rcu;
1919
1920 slab_rcu = (struct slab_rcu *)slabp;
1921 slab_rcu->cachep = cachep;
1922 slab_rcu->addr = addr;
1923 call_rcu(&slab_rcu->head, kmem_rcu_free);
1924 } else {
1925 kmem_freepages(cachep, addr);
1926 if (OFF_SLAB(cachep))
1927 kmem_cache_free(cachep->slabp_cache, slabp);
1928 }
1929 }
1930
1931 /*
1932 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1933 * size of kmem_list3.
1934 */
1935 static void set_up_list3s(struct kmem_cache *cachep, int index)
1936 {
1937 int node;
1938
1939 for_each_online_node(node) {
1940 cachep->nodelists[node] = &initkmem_list3[index + node];
1941 cachep->nodelists[node]->next_reap = jiffies +
1942 REAPTIMEOUT_LIST3 +
1943 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1944 }
1945 }
1946
1947 static void __kmem_cache_destroy(struct kmem_cache *cachep)
1948 {
1949 int i;
1950 struct kmem_list3 *l3;
1951
1952 for_each_online_cpu(i)
1953 kfree(cachep->array[i]);
1954
1955 /* NUMA: free the list3 structures */
1956 for_each_online_node(i) {
1957 l3 = cachep->nodelists[i];
1958 if (l3) {
1959 kfree(l3->shared);
1960 free_alien_cache(l3->alien);
1961 kfree(l3);
1962 }
1963 }
1964 kmem_cache_free(&cache_cache, cachep);
1965 }
1966
1967
1968 /**
1969 * calculate_slab_order - calculate size (page order) of slabs
1970 * @cachep: pointer to the cache that is being created
1971 * @size: size of objects to be created in this cache.
1972 * @align: required alignment for the objects.
1973 * @flags: slab allocation flags
1974 *
1975 * Also calculates the number of objects per slab.
1976 *
1977 * This could be made much more intelligent. For now, try to avoid using
1978 * high order pages for slabs. When the gfp() functions are more friendly
1979 * towards high-order requests, this should be changed.
1980 */
1981 static size_t calculate_slab_order(struct kmem_cache *cachep,
1982 size_t size, size_t align, unsigned long flags)
1983 {
1984 unsigned long offslab_limit;
1985 size_t left_over = 0;
1986 int gfporder;
1987
1988 for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
1989 unsigned int num;
1990 size_t remainder;
1991
1992 cache_estimate(gfporder, size, align, flags, &remainder, &num);
1993 if (!num)
1994 continue;
1995
1996 if (flags & CFLGS_OFF_SLAB) {
1997 /*
1998 * Max number of objs-per-slab for caches which
1999 * use off-slab slabs. Needed to avoid a possible
2000 * looping condition in cache_grow().
2001 */
2002 offslab_limit = size - sizeof(struct slab);
2003 offslab_limit /= sizeof(kmem_bufctl_t);
2004
2005 if (num > offslab_limit)
2006 break;
2007 }
2008
2009 /* Found something acceptable - save it away */
2010 cachep->num = num;
2011 cachep->gfporder = gfporder;
2012 left_over = remainder;
2013
2014 /*
2015 * A VFS-reclaimable slab tends to have most allocations
2016 * as GFP_NOFS and we really don't want to have to be allocating
2017 * higher-order pages when we are unable to shrink dcache.
2018 */
2019 if (flags & SLAB_RECLAIM_ACCOUNT)
2020 break;
2021
2022 /*
2023 * Large number of objects is good, but very large slabs are
2024 * currently bad for the gfp()s.
2025 */
2026 if (gfporder >= slab_break_gfp_order)
2027 break;
2028
2029 /*
2030 * Acceptable internal fragmentation?
2031 */
2032 if (left_over * 8 <= (PAGE_SIZE << gfporder))
2033 break;
2034 }
2035 return left_over;
2036 }
2037
2038 static int setup_cpu_cache(struct kmem_cache *cachep)
2039 {
2040 if (g_cpucache_up == FULL)
2041 return enable_cpucache(cachep);
2042
2043 if (g_cpucache_up == NONE) {
2044 /*
2045 * Note: the first kmem_cache_create must create the cache
2046 * that's used by kmalloc(24), otherwise the creation of
2047 * further caches will BUG().
2048 */
2049 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2050
2051 /*
2052 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2053 * the first cache, then we need to set up all its list3s,
2054 * otherwise the creation of further caches will BUG().
2055 */
2056 set_up_list3s(cachep, SIZE_AC);
2057 if (INDEX_AC == INDEX_L3)
2058 g_cpucache_up = PARTIAL_L3;
2059 else
2060 g_cpucache_up = PARTIAL_AC;
2061 } else {
2062 cachep->array[smp_processor_id()] =
2063 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
2064
2065 if (g_cpucache_up == PARTIAL_AC) {
2066 set_up_list3s(cachep, SIZE_L3);
2067 g_cpucache_up = PARTIAL_L3;
2068 } else {
2069 int node;
2070 for_each_online_node(node) {
2071 cachep->nodelists[node] =
2072 kmalloc_node(sizeof(struct kmem_list3),
2073 GFP_KERNEL, node);
2074 BUG_ON(!cachep->nodelists[node]);
2075 kmem_list3_init(cachep->nodelists[node]);
2076 }
2077 }
2078 }
2079 cachep->nodelists[numa_node_id()]->next_reap =
2080 jiffies + REAPTIMEOUT_LIST3 +
2081 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2082
2083 cpu_cache_get(cachep)->avail = 0;
2084 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2085 cpu_cache_get(cachep)->batchcount = 1;
2086 cpu_cache_get(cachep)->touched = 0;
2087 cachep->batchcount = 1;
2088 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2089 return 0;
2090 }
2091
2092 /**
2093 * kmem_cache_create - Create a cache.
2094 * @name: A string which is used in /proc/slabinfo to identify this cache.
2095 * @size: The size of objects to be created in this cache.
2096 * @align: The required alignment for the objects.
2097 * @flags: SLAB flags
2098 * @ctor: A constructor for the objects.
2099 * @dtor: A destructor for the objects.
2100 *
2101 * Returns a ptr to the cache on success, NULL on failure.
2102 * Cannot be called within a int, but can be interrupted.
2103 * The @ctor is run when new pages are allocated by the cache
2104 * and the @dtor is run before the pages are handed back.
2105 *
2106 * @name must be valid until the cache is destroyed. This implies that
2107 * the module calling this has to destroy the cache before getting unloaded.
2108 *
2109 * The flags are
2110 *
2111 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2112 * to catch references to uninitialised memory.
2113 *
2114 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2115 * for buffer overruns.
2116 *
2117 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2118 * cacheline. This can be beneficial if you're counting cycles as closely
2119 * as davem.
2120 */
2121 struct kmem_cache *
2122 kmem_cache_create (const char *name, size_t size, size_t align,
2123 unsigned long flags,
2124 void (*ctor)(void*, struct kmem_cache *, unsigned long),
2125 void (*dtor)(void*, struct kmem_cache *, unsigned long))
2126 {
2127 size_t left_over, slab_size, ralign;
2128 struct kmem_cache *cachep = NULL, *pc;
2129
2130 /*
2131 * Sanity checks... these are all serious usage bugs.
2132 */
2133 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2134 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
2135 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
2136 name);
2137 BUG();
2138 }
2139
2140 /*
2141 * We use cache_chain_mutex to ensure a consistent view of
2142 * cpu_online_map as well. Please see cpuup_callback
2143 */
2144 mutex_lock(&cache_chain_mutex);
2145
2146 list_for_each_entry(pc, &cache_chain, next) {
2147 char tmp;
2148 int res;
2149
2150 /*
2151 * This happens when the module gets unloaded and doesn't
2152 * destroy its slab cache and no-one else reuses the vmalloc
2153 * area of the module. Print a warning.
2154 */
2155 res = probe_kernel_address(pc->name, tmp);
2156 if (res) {
2157 printk("SLAB: cache with size %d has lost its name\n",
2158 pc->buffer_size);
2159 continue;
2160 }
2161
2162 if (!strcmp(pc->name, name)) {
2163 printk("kmem_cache_create: duplicate cache %s\n", name);
2164 dump_stack();
2165 goto oops;
2166 }
2167 }
2168
2169 #if DEBUG
2170 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
2171 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
2172 /* No constructor, but inital state check requested */
2173 printk(KERN_ERR "%s: No con, but init state check "
2174 "requested - %s\n", __FUNCTION__, name);
2175 flags &= ~SLAB_DEBUG_INITIAL;
2176 }
2177 #if FORCED_DEBUG
2178 /*
2179 * Enable redzoning and last user accounting, except for caches with
2180 * large objects, if the increased size would increase the object size
2181 * above the next power of two: caches with object sizes just above a
2182 * power of two have a significant amount of internal fragmentation.
2183 */
2184 if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
2185 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2186 if (!(flags & SLAB_DESTROY_BY_RCU))
2187 flags |= SLAB_POISON;
2188 #endif
2189 if (flags & SLAB_DESTROY_BY_RCU)
2190 BUG_ON(flags & SLAB_POISON);
2191 #endif
2192 if (flags & SLAB_DESTROY_BY_RCU)
2193 BUG_ON(dtor);
2194
2195 /*
2196 * Always checks flags, a caller might be expecting debug support which
2197 * isn't available.
2198 */
2199 BUG_ON(flags & ~CREATE_MASK);
2200
2201 /*
2202 * Check that size is in terms of words. This is needed to avoid
2203 * unaligned accesses for some archs when redzoning is used, and makes
2204 * sure any on-slab bufctl's are also correctly aligned.
2205 */
2206 if (size & (BYTES_PER_WORD - 1)) {
2207 size += (BYTES_PER_WORD - 1);
2208 size &= ~(BYTES_PER_WORD - 1);
2209 }
2210
2211 /* calculate the final buffer alignment: */
2212
2213 /* 1) arch recommendation: can be overridden for debug */
2214 if (flags & SLAB_HWCACHE_ALIGN) {
2215 /*
2216 * Default alignment: as specified by the arch code. Except if
2217 * an object is really small, then squeeze multiple objects into
2218 * one cacheline.
2219 */
2220 ralign = cache_line_size();
2221 while (size <= ralign / 2)
2222 ralign /= 2;
2223 } else {
2224 ralign = BYTES_PER_WORD;
2225 }
2226
2227 /*
2228 * Redzoning and user store require word alignment. Note this will be
2229 * overridden by architecture or caller mandated alignment if either
2230 * is greater than BYTES_PER_WORD.
2231 */
2232 if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER)
2233 ralign = BYTES_PER_WORD;
2234
2235 /* 2) arch mandated alignment */
2236 if (ralign < ARCH_SLAB_MINALIGN) {
2237 ralign = ARCH_SLAB_MINALIGN;
2238 }
2239 /* 3) caller mandated alignment */
2240 if (ralign < align) {
2241 ralign = align;
2242 }
2243 /* disable debug if necessary */
2244 if (ralign > BYTES_PER_WORD)
2245 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2246 /*
2247 * 4) Store it.
2248 */
2249 align = ralign;
2250
2251 /* Get cache's description obj. */
2252 cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
2253 if (!cachep)
2254 goto oops;
2255
2256 #if DEBUG
2257 cachep->obj_size = size;
2258
2259 /*
2260 * Both debugging options require word-alignment which is calculated
2261 * into align above.
2262 */
2263 if (flags & SLAB_RED_ZONE) {
2264 /* add space for red zone words */
2265 cachep->obj_offset += BYTES_PER_WORD;
2266 size += 2 * BYTES_PER_WORD;
2267 }
2268 if (flags & SLAB_STORE_USER) {
2269 /* user store requires one word storage behind the end of
2270 * the real object.
2271 */
2272 size += BYTES_PER_WORD;
2273 }
2274 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2275 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2276 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2277 cachep->obj_offset += PAGE_SIZE - size;
2278 size = PAGE_SIZE;
2279 }
2280 #endif
2281 #endif
2282
2283 /*
2284 * Determine if the slab management is 'on' or 'off' slab.
2285 * (bootstrapping cannot cope with offslab caches so don't do
2286 * it too early on.)
2287 */
2288 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
2289 /*
2290 * Size is large, assume best to place the slab management obj
2291 * off-slab (should allow better packing of objs).
2292 */
2293 flags |= CFLGS_OFF_SLAB;
2294
2295 size = ALIGN(size, align);
2296
2297 left_over = calculate_slab_order(cachep, size, align, flags);
2298
2299 if (!cachep->num) {
2300 printk("kmem_cache_create: couldn't create cache %s.\n", name);
2301 kmem_cache_free(&cache_cache, cachep);
2302 cachep = NULL;
2303 goto oops;
2304 }
2305 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2306 + sizeof(struct slab), align);
2307
2308 /*
2309 * If the slab has been placed off-slab, and we have enough space then
2310 * move it on-slab. This is at the expense of any extra colouring.
2311 */
2312 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2313 flags &= ~CFLGS_OFF_SLAB;
2314 left_over -= slab_size;
2315 }
2316
2317 if (flags & CFLGS_OFF_SLAB) {
2318 /* really off slab. No need for manual alignment */
2319 slab_size =
2320 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2321 }
2322
2323 cachep->colour_off = cache_line_size();
2324 /* Offset must be a multiple of the alignment. */
2325 if (cachep->colour_off < align)
2326 cachep->colour_off = align;
2327 cachep->colour = left_over / cachep->colour_off;
2328 cachep->slab_size = slab_size;
2329 cachep->flags = flags;
2330 cachep->gfpflags = 0;
2331 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2332 cachep->gfpflags |= GFP_DMA;
2333 cachep->buffer_size = size;
2334 cachep->reciprocal_buffer_size = reciprocal_value(size);
2335
2336 if (flags & CFLGS_OFF_SLAB) {
2337 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2338 /*
2339 * This is a possibility for one of the malloc_sizes caches.
2340 * But since we go off slab only for object size greater than
2341 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2342 * this should not happen at all.
2343 * But leave a BUG_ON for some lucky dude.
2344 */
2345 BUG_ON(!cachep->slabp_cache);
2346 }
2347 cachep->ctor = ctor;
2348 cachep->dtor = dtor;
2349 cachep->name = name;
2350
2351 if (setup_cpu_cache(cachep)) {
2352 __kmem_cache_destroy(cachep);
2353 cachep = NULL;
2354 goto oops;
2355 }
2356
2357 /* cache setup completed, link it into the list */
2358 list_add(&cachep->next, &cache_chain);
2359 oops:
2360 if (!cachep && (flags & SLAB_PANIC))
2361 panic("kmem_cache_create(): failed to create slab `%s'\n",
2362 name);
2363 mutex_unlock(&cache_chain_mutex);
2364 return cachep;
2365 }
2366 EXPORT_SYMBOL(kmem_cache_create);
2367
2368 #if DEBUG
2369 static void check_irq_off(void)
2370 {
2371 BUG_ON(!irqs_disabled());
2372 }
2373
2374 static void check_irq_on(void)
2375 {
2376 BUG_ON(irqs_disabled());
2377 }
2378
2379 static void check_spinlock_acquired(struct kmem_cache *cachep)
2380 {
2381 #ifdef CONFIG_SMP
2382 check_irq_off();
2383 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
2384 #endif
2385 }
2386
2387 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2388 {
2389 #ifdef CONFIG_SMP
2390 check_irq_off();
2391 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2392 #endif
2393 }
2394
2395 #else
2396 #define check_irq_off() do { } while(0)
2397 #define check_irq_on() do { } while(0)
2398 #define check_spinlock_acquired(x) do { } while(0)
2399 #define check_spinlock_acquired_node(x, y) do { } while(0)
2400 #endif
2401
2402 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2403 struct array_cache *ac,
2404 int force, int node);
2405
2406 static void do_drain(void *arg)
2407 {
2408 struct kmem_cache *cachep = arg;
2409 struct array_cache *ac;
2410 int node = numa_node_id();
2411
2412 check_irq_off();
2413 ac = cpu_cache_get(cachep);
2414 spin_lock(&cachep->nodelists[node]->list_lock);
2415 free_block(cachep, ac->entry, ac->avail, node);
2416 spin_unlock(&cachep->nodelists[node]->list_lock);
2417 ac->avail = 0;
2418 }
2419
2420 static void drain_cpu_caches(struct kmem_cache *cachep)
2421 {
2422 struct kmem_list3 *l3;
2423 int node;
2424
2425 on_each_cpu(do_drain, cachep, 1, 1);
2426 check_irq_on();
2427 for_each_online_node(node) {
2428 l3 = cachep->nodelists[node];
2429 if (l3 && l3->alien)
2430 drain_alien_cache(cachep, l3->alien);
2431 }
2432
2433 for_each_online_node(node) {
2434 l3 = cachep->nodelists[node];
2435 if (l3)
2436 drain_array(cachep, l3, l3->shared, 1, node);
2437 }
2438 }
2439
2440 /*
2441 * Remove slabs from the list of free slabs.
2442 * Specify the number of slabs to drain in tofree.
2443 *
2444 * Returns the actual number of slabs released.
2445 */
2446 static int drain_freelist(struct kmem_cache *cache,
2447 struct kmem_list3 *l3, int tofree)
2448 {
2449 struct list_head *p;
2450 int nr_freed;
2451 struct slab *slabp;
2452
2453 nr_freed = 0;
2454 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
2455
2456 spin_lock_irq(&l3->list_lock);
2457 p = l3->slabs_free.prev;
2458 if (p == &l3->slabs_free) {
2459 spin_unlock_irq(&l3->list_lock);
2460 goto out;
2461 }
2462
2463 slabp = list_entry(p, struct slab, list);
2464 #if DEBUG
2465 BUG_ON(slabp->inuse);
2466 #endif
2467 list_del(&slabp->list);
2468 /*
2469 * Safe to drop the lock. The slab is no longer linked
2470 * to the cache.
2471 */
2472 l3->free_objects -= cache->num;
2473 spin_unlock_irq(&l3->list_lock);
2474 slab_destroy(cache, slabp);
2475 nr_freed++;
2476 }
2477 out:
2478 return nr_freed;
2479 }
2480
2481 /* Called with cache_chain_mutex held to protect against cpu hotplug */
2482 static int __cache_shrink(struct kmem_cache *cachep)
2483 {
2484 int ret = 0, i = 0;
2485 struct kmem_list3 *l3;
2486
2487 drain_cpu_caches(cachep);
2488
2489 check_irq_on();
2490 for_each_online_node(i) {
2491 l3 = cachep->nodelists[i];
2492 if (!l3)
2493 continue;
2494
2495 drain_freelist(cachep, l3, l3->free_objects);
2496
2497 ret += !list_empty(&l3->slabs_full) ||
2498 !list_empty(&l3->slabs_partial);
2499 }
2500 return (ret ? 1 : 0);
2501 }
2502
2503 /**
2504 * kmem_cache_shrink - Shrink a cache.
2505 * @cachep: The cache to shrink.
2506 *
2507 * Releases as many slabs as possible for a cache.
2508 * To help debugging, a zero exit status indicates all slabs were released.
2509 */
2510 int kmem_cache_shrink(struct kmem_cache *cachep)
2511 {
2512 int ret;
2513 BUG_ON(!cachep || in_interrupt());
2514
2515 mutex_lock(&cache_chain_mutex);
2516 ret = __cache_shrink(cachep);
2517 mutex_unlock(&cache_chain_mutex);
2518 return ret;
2519 }
2520 EXPORT_SYMBOL(kmem_cache_shrink);
2521
2522 /**
2523 * kmem_cache_destroy - delete a cache
2524 * @cachep: the cache to destroy
2525 *
2526 * Remove a &struct kmem_cache object from the slab cache.
2527 *
2528 * It is expected this function will be called by a module when it is
2529 * unloaded. This will remove the cache completely, and avoid a duplicate
2530 * cache being allocated each time a module is loaded and unloaded, if the
2531 * module doesn't have persistent in-kernel storage across loads and unloads.
2532 *
2533 * The cache must be empty before calling this function.
2534 *
2535 * The caller must guarantee that noone will allocate memory from the cache
2536 * during the kmem_cache_destroy().
2537 */
2538 void kmem_cache_destroy(struct kmem_cache *cachep)
2539 {
2540 BUG_ON(!cachep || in_interrupt());
2541
2542 /* Find the cache in the chain of caches. */
2543 mutex_lock(&cache_chain_mutex);
2544 /*
2545 * the chain is never empty, cache_cache is never destroyed
2546 */
2547 list_del(&cachep->next);
2548 if (__cache_shrink(cachep)) {
2549 slab_error(cachep, "Can't free all objects");
2550 list_add(&cachep->next, &cache_chain);
2551 mutex_unlock(&cache_chain_mutex);
2552 return;
2553 }
2554
2555 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2556 synchronize_rcu();
2557
2558 __kmem_cache_destroy(cachep);
2559 mutex_unlock(&cache_chain_mutex);
2560 }
2561 EXPORT_SYMBOL(kmem_cache_destroy);
2562
2563 /*
2564 * Get the memory for a slab management obj.
2565 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2566 * always come from malloc_sizes caches. The slab descriptor cannot
2567 * come from the same cache which is getting created because,
2568 * when we are searching for an appropriate cache for these
2569 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2570 * If we are creating a malloc_sizes cache here it would not be visible to
2571 * kmem_find_general_cachep till the initialization is complete.
2572 * Hence we cannot have slabp_cache same as the original cache.
2573 */
2574 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2575 int colour_off, gfp_t local_flags,
2576 int nodeid)
2577 {
2578 struct slab *slabp;
2579
2580 if (OFF_SLAB(cachep)) {
2581 /* Slab management obj is off-slab. */
2582 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2583 local_flags & ~GFP_THISNODE, nodeid);
2584 if (!slabp)
2585 return NULL;
2586 } else {
2587 slabp = objp + colour_off;
2588 colour_off += cachep->slab_size;
2589 }
2590 slabp->inuse = 0;
2591 slabp->colouroff = colour_off;
2592 slabp->s_mem = objp + colour_off;
2593 slabp->nodeid = nodeid;
2594 return slabp;
2595 }
2596
2597 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2598 {
2599 return (kmem_bufctl_t *) (slabp + 1);
2600 }
2601
2602 static void cache_init_objs(struct kmem_cache *cachep,
2603 struct slab *slabp, unsigned long ctor_flags)
2604 {
2605 int i;
2606
2607 for (i = 0; i < cachep->num; i++) {
2608 void *objp = index_to_obj(cachep, slabp, i);
2609 #if DEBUG
2610 /* need to poison the objs? */
2611 if (cachep->flags & SLAB_POISON)
2612 poison_obj(cachep, objp, POISON_FREE);
2613 if (cachep->flags & SLAB_STORE_USER)
2614 *dbg_userword(cachep, objp) = NULL;
2615
2616 if (cachep->flags & SLAB_RED_ZONE) {
2617 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2618 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2619 }
2620 /*
2621 * Constructors are not allowed to allocate memory from the same
2622 * cache which they are a constructor for. Otherwise, deadlock.
2623 * They must also be threaded.
2624 */
2625 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2626 cachep->ctor(objp + obj_offset(cachep), cachep,
2627 ctor_flags);
2628
2629 if (cachep->flags & SLAB_RED_ZONE) {
2630 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2631 slab_error(cachep, "constructor overwrote the"
2632 " end of an object");
2633 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2634 slab_error(cachep, "constructor overwrote the"
2635 " start of an object");
2636 }
2637 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2638 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2639 kernel_map_pages(virt_to_page(objp),
2640 cachep->buffer_size / PAGE_SIZE, 0);
2641 #else
2642 if (cachep->ctor)
2643 cachep->ctor(objp, cachep, ctor_flags);
2644 #endif
2645 slab_bufctl(slabp)[i] = i + 1;
2646 }
2647 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2648 slabp->free = 0;
2649 }
2650
2651 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2652 {
2653 if (CONFIG_ZONE_DMA_FLAG) {
2654 if (flags & GFP_DMA)
2655 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2656 else
2657 BUG_ON(cachep->gfpflags & GFP_DMA);
2658 }
2659 }
2660
2661 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2662 int nodeid)
2663 {
2664 void *objp = index_to_obj(cachep, slabp, slabp->free);
2665 kmem_bufctl_t next;
2666
2667 slabp->inuse++;
2668 next = slab_bufctl(slabp)[slabp->free];
2669 #if DEBUG
2670 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2671 WARN_ON(slabp->nodeid != nodeid);
2672 #endif
2673 slabp->free = next;
2674
2675 return objp;
2676 }
2677
2678 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2679 void *objp, int nodeid)
2680 {
2681 unsigned int objnr = obj_to_index(cachep, slabp, objp);
2682
2683 #if DEBUG
2684 /* Verify that the slab belongs to the intended node */
2685 WARN_ON(slabp->nodeid != nodeid);
2686
2687 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2688 printk(KERN_ERR "slab: double free detected in cache "
2689 "'%s', objp %p\n", cachep->name, objp);
2690 BUG();
2691 }
2692 #endif
2693 slab_bufctl(slabp)[objnr] = slabp->free;
2694 slabp->free = objnr;
2695 slabp->inuse--;
2696 }
2697
2698 /*
2699 * Map pages beginning at addr to the given cache and slab. This is required
2700 * for the slab allocator to be able to lookup the cache and slab of a
2701 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2702 */
2703 static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2704 void *addr)
2705 {
2706 int nr_pages;
2707 struct page *page;
2708
2709 page = virt_to_page(addr);
2710
2711 nr_pages = 1;
2712 if (likely(!PageCompound(page)))
2713 nr_pages <<= cache->gfporder;
2714
2715 do {
2716 page_set_cache(page, cache);
2717 page_set_slab(page, slab);
2718 page++;
2719 } while (--nr_pages);
2720 }
2721
2722 /*
2723 * Grow (by 1) the number of slabs within a cache. This is called by
2724 * kmem_cache_alloc() when there are no active objs left in a cache.
2725 */
2726 static int cache_grow(struct kmem_cache *cachep,
2727 gfp_t flags, int nodeid, void *objp)
2728 {
2729 struct slab *slabp;
2730 size_t offset;
2731 gfp_t local_flags;
2732 unsigned long ctor_flags;
2733 struct kmem_list3 *l3;
2734
2735 /*
2736 * Be lazy and only check for valid flags here, keeping it out of the
2737 * critical path in kmem_cache_alloc().
2738 */
2739 BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK | __GFP_NO_GROW));
2740 if (flags & __GFP_NO_GROW)
2741 return 0;
2742
2743 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2744 local_flags = (flags & GFP_LEVEL_MASK);
2745 if (!(local_flags & __GFP_WAIT))
2746 /*
2747 * Not allowed to sleep. Need to tell a constructor about
2748 * this - it might need to know...
2749 */
2750 ctor_flags |= SLAB_CTOR_ATOMIC;
2751
2752 /* Take the l3 list lock to change the colour_next on this node */
2753 check_irq_off();
2754 l3 = cachep->nodelists[nodeid];
2755 spin_lock(&l3->list_lock);
2756
2757 /* Get colour for the slab, and cal the next value. */
2758 offset = l3->colour_next;
2759 l3->colour_next++;
2760 if (l3->colour_next >= cachep->colour)
2761 l3->colour_next = 0;
2762 spin_unlock(&l3->list_lock);
2763
2764 offset *= cachep->colour_off;
2765
2766 if (local_flags & __GFP_WAIT)
2767 local_irq_enable();
2768
2769 /*
2770 * The test for missing atomic flag is performed here, rather than
2771 * the more obvious place, simply to reduce the critical path length
2772 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2773 * will eventually be caught here (where it matters).
2774 */
2775 kmem_flagcheck(cachep, flags);
2776
2777 /*
2778 * Get mem for the objs. Attempt to allocate a physical page from
2779 * 'nodeid'.
2780 */
2781 if (!objp)
2782 objp = kmem_getpages(cachep, flags, nodeid);
2783 if (!objp)
2784 goto failed;
2785
2786 /* Get slab management. */
2787 slabp = alloc_slabmgmt(cachep, objp, offset,
2788 local_flags & ~GFP_THISNODE, nodeid);
2789 if (!slabp)
2790 goto opps1;
2791
2792 slabp->nodeid = nodeid;
2793 slab_map_pages(cachep, slabp, objp);
2794
2795 cache_init_objs(cachep, slabp, ctor_flags);
2796
2797 if (local_flags & __GFP_WAIT)
2798 local_irq_disable();
2799 check_irq_off();
2800 spin_lock(&l3->list_lock);
2801
2802 /* Make slab active. */
2803 list_add_tail(&slabp->list, &(l3->slabs_free));
2804 STATS_INC_GROWN(cachep);
2805 l3->free_objects += cachep->num;
2806 spin_unlock(&l3->list_lock);
2807 return 1;
2808 opps1:
2809 kmem_freepages(cachep, objp);
2810 failed:
2811 if (local_flags & __GFP_WAIT)
2812 local_irq_disable();
2813 return 0;
2814 }
2815
2816 #if DEBUG
2817
2818 /*
2819 * Perform extra freeing checks:
2820 * - detect bad pointers.
2821 * - POISON/RED_ZONE checking
2822 * - destructor calls, for caches with POISON+dtor
2823 */
2824 static void kfree_debugcheck(const void *objp)
2825 {
2826 if (!virt_addr_valid(objp)) {
2827 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2828 (unsigned long)objp);
2829 BUG();
2830 }
2831 }
2832
2833 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2834 {
2835 unsigned long redzone1, redzone2;
2836
2837 redzone1 = *dbg_redzone1(cache, obj);
2838 redzone2 = *dbg_redzone2(cache, obj);
2839
2840 /*
2841 * Redzone is ok.
2842 */
2843 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2844 return;
2845
2846 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2847 slab_error(cache, "double free detected");
2848 else
2849 slab_error(cache, "memory outside object was overwritten");
2850
2851 printk(KERN_ERR "%p: redzone 1:0x%lx, redzone 2:0x%lx.\n",
2852 obj, redzone1, redzone2);
2853 }
2854
2855 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2856 void *caller)
2857 {
2858 struct page *page;
2859 unsigned int objnr;
2860 struct slab *slabp;
2861
2862 objp -= obj_offset(cachep);
2863 kfree_debugcheck(objp);
2864 page = virt_to_page(objp);
2865
2866 slabp = page_get_slab(page);
2867
2868 if (cachep->flags & SLAB_RED_ZONE) {
2869 verify_redzone_free(cachep, objp);
2870 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2871 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2872 }
2873 if (cachep->flags & SLAB_STORE_USER)
2874 *dbg_userword(cachep, objp) = caller;
2875
2876 objnr = obj_to_index(cachep, slabp, objp);
2877
2878 BUG_ON(objnr >= cachep->num);
2879 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2880
2881 if (cachep->flags & SLAB_DEBUG_INITIAL) {
2882 /*
2883 * Need to call the slab's constructor so the caller can
2884 * perform a verify of its state (debugging). Called without
2885 * the cache-lock held.
2886 */
2887 cachep->ctor(objp + obj_offset(cachep),
2888 cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
2889 }
2890 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2891 /* we want to cache poison the object,
2892 * call the destruction callback
2893 */
2894 cachep->dtor(objp + obj_offset(cachep), cachep, 0);
2895 }
2896 #ifdef CONFIG_DEBUG_SLAB_LEAK
2897 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2898 #endif
2899 if (cachep->flags & SLAB_POISON) {
2900 #ifdef CONFIG_DEBUG_PAGEALLOC
2901 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2902 store_stackinfo(cachep, objp, (unsigned long)caller);
2903 kernel_map_pages(virt_to_page(objp),
2904 cachep->buffer_size / PAGE_SIZE, 0);
2905 } else {
2906 poison_obj(cachep, objp, POISON_FREE);
2907 }
2908 #else
2909 poison_obj(cachep, objp, POISON_FREE);
2910 #endif
2911 }
2912 return objp;
2913 }
2914
2915 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2916 {
2917 kmem_bufctl_t i;
2918 int entries = 0;
2919
2920 /* Check slab's freelist to see if this obj is there. */
2921 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2922 entries++;
2923 if (entries > cachep->num || i >= cachep->num)
2924 goto bad;
2925 }
2926 if (entries != cachep->num - slabp->inuse) {
2927 bad:
2928 printk(KERN_ERR "slab: Internal list corruption detected in "
2929 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2930 cachep->name, cachep->num, slabp, slabp->inuse);
2931 for (i = 0;
2932 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
2933 i++) {
2934 if (i % 16 == 0)
2935 printk("\n%03x:", i);
2936 printk(" %02x", ((unsigned char *)slabp)[i]);
2937 }
2938 printk("\n");
2939 BUG();
2940 }
2941 }
2942 #else
2943 #define kfree_debugcheck(x) do { } while(0)
2944 #define cache_free_debugcheck(x,objp,z) (objp)
2945 #define check_slabp(x,y) do { } while(0)
2946 #endif
2947
2948 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2949 {
2950 int batchcount;
2951 struct kmem_list3 *l3;
2952 struct array_cache *ac;
2953 int node;
2954
2955 node = numa_node_id();
2956
2957 check_irq_off();
2958 ac = cpu_cache_get(cachep);
2959 retry:
2960 batchcount = ac->batchcount;
2961 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2962 /*
2963 * If there was little recent activity on this cache, then
2964 * perform only a partial refill. Otherwise we could generate
2965 * refill bouncing.
2966 */
2967 batchcount = BATCHREFILL_LIMIT;
2968 }
2969 l3 = cachep->nodelists[node];
2970
2971 BUG_ON(ac->avail > 0 || !l3);
2972 spin_lock(&l3->list_lock);
2973
2974 /* See if we can refill from the shared array */
2975 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2976 goto alloc_done;
2977
2978 while (batchcount > 0) {
2979 struct list_head *entry;
2980 struct slab *slabp;
2981 /* Get slab alloc is to come from. */
2982 entry = l3->slabs_partial.next;
2983 if (entry == &l3->slabs_partial) {
2984 l3->free_touched = 1;
2985 entry = l3->slabs_free.next;
2986 if (entry == &l3->slabs_free)
2987 goto must_grow;
2988 }
2989
2990 slabp = list_entry(entry, struct slab, list);
2991 check_slabp(cachep, slabp);
2992 check_spinlock_acquired(cachep);
2993
2994 /*
2995 * The slab was either on partial or free list so
2996 * there must be at least one object available for
2997 * allocation.
2998 */
2999 BUG_ON(slabp->inuse < 0 || slabp->inuse >= cachep->num);
3000
3001 while (slabp->inuse < cachep->num && batchcount--) {
3002 STATS_INC_ALLOCED(cachep);
3003 STATS_INC_ACTIVE(cachep);
3004 STATS_SET_HIGH(cachep);
3005
3006 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
3007 node);
3008 }
3009 check_slabp(cachep, slabp);
3010
3011 /* move slabp to correct slabp list: */
3012 list_del(&slabp->list);
3013 if (slabp->free == BUFCTL_END)
3014 list_add(&slabp->list, &l3->slabs_full);
3015 else
3016 list_add(&slabp->list, &l3->slabs_partial);
3017 }
3018
3019 must_grow:
3020 l3->free_objects -= ac->avail;
3021 alloc_done:
3022 spin_unlock(&l3->list_lock);
3023
3024 if (unlikely(!ac->avail)) {
3025 int x;
3026 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3027
3028 /* cache_grow can reenable interrupts, then ac could change. */
3029 ac = cpu_cache_get(cachep);
3030 if (!x && ac->avail == 0) /* no objects in sight? abort */
3031 return NULL;
3032
3033 if (!ac->avail) /* objects refilled by interrupt? */
3034 goto retry;
3035 }
3036 ac->touched = 1;
3037 return ac->entry[--ac->avail];
3038 }
3039
3040 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3041 gfp_t flags)
3042 {
3043 might_sleep_if(flags & __GFP_WAIT);
3044 #if DEBUG
3045 kmem_flagcheck(cachep, flags);
3046 #endif
3047 }
3048
3049 #if DEBUG
3050 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3051 gfp_t flags, void *objp, void *caller)
3052 {
3053 if (!objp)
3054 return objp;
3055 if (cachep->flags & SLAB_POISON) {
3056 #ifdef CONFIG_DEBUG_PAGEALLOC
3057 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3058 kernel_map_pages(virt_to_page(objp),
3059 cachep->buffer_size / PAGE_SIZE, 1);
3060 else
3061 check_poison_obj(cachep, objp);
3062 #else
3063 check_poison_obj(cachep, objp);
3064 #endif
3065 poison_obj(cachep, objp, POISON_INUSE);
3066 }
3067 if (cachep->flags & SLAB_STORE_USER)
3068 *dbg_userword(cachep, objp) = caller;
3069
3070 if (cachep->flags & SLAB_RED_ZONE) {
3071 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3072 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3073 slab_error(cachep, "double free, or memory outside"
3074 " object was overwritten");
3075 printk(KERN_ERR
3076 "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
3077 objp, *dbg_redzone1(cachep, objp),
3078 *dbg_redzone2(cachep, objp));
3079 }
3080 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3081 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3082 }
3083 #ifdef CONFIG_DEBUG_SLAB_LEAK
3084 {
3085 struct slab *slabp;
3086 unsigned objnr;
3087
3088 slabp = page_get_slab(virt_to_page(objp));
3089 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3090 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3091 }
3092 #endif
3093 objp += obj_offset(cachep);
3094 if (cachep->ctor && cachep->flags & SLAB_POISON) {
3095 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
3096
3097 if (!(flags & __GFP_WAIT))
3098 ctor_flags |= SLAB_CTOR_ATOMIC;
3099
3100 cachep->ctor(objp, cachep, ctor_flags);
3101 }
3102 #if ARCH_SLAB_MINALIGN
3103 if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3104 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3105 objp, ARCH_SLAB_MINALIGN);
3106 }
3107 #endif
3108 return objp;
3109 }
3110 #else
3111 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3112 #endif
3113
3114 #ifdef CONFIG_FAILSLAB
3115
3116 static struct failslab_attr {
3117
3118 struct fault_attr attr;
3119
3120 u32 ignore_gfp_wait;
3121 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3122 struct dentry *ignore_gfp_wait_file;
3123 #endif
3124
3125 } failslab = {
3126 .attr = FAULT_ATTR_INITIALIZER,
3127 .ignore_gfp_wait = 1,
3128 };
3129
3130 static int __init setup_failslab(char *str)
3131 {
3132 return setup_fault_attr(&failslab.attr, str);
3133 }
3134 __setup("failslab=", setup_failslab);
3135
3136 static int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3137 {
3138 if (cachep == &cache_cache)
3139 return 0;
3140 if (flags & __GFP_NOFAIL)
3141 return 0;
3142 if (failslab.ignore_gfp_wait && (flags & __GFP_WAIT))
3143 return 0;
3144
3145 return should_fail(&failslab.attr, obj_size(cachep));
3146 }
3147
3148 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3149
3150 static int __init failslab_debugfs(void)
3151 {
3152 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
3153 struct dentry *dir;
3154 int err;
3155
3156 err = init_fault_attr_dentries(&failslab.attr, "failslab");
3157 if (err)
3158 return err;
3159 dir = failslab.attr.dentries.dir;
3160
3161 failslab.ignore_gfp_wait_file =
3162 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3163 &failslab.ignore_gfp_wait);
3164
3165 if (!failslab.ignore_gfp_wait_file) {
3166 err = -ENOMEM;
3167 debugfs_remove(failslab.ignore_gfp_wait_file);
3168 cleanup_fault_attr_dentries(&failslab.attr);
3169 }
3170
3171 return err;
3172 }
3173
3174 late_initcall(failslab_debugfs);
3175
3176 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3177
3178 #else /* CONFIG_FAILSLAB */
3179
3180 static inline int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3181 {
3182 return 0;
3183 }
3184
3185 #endif /* CONFIG_FAILSLAB */
3186
3187 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3188 {
3189 void *objp;
3190 struct array_cache *ac;
3191
3192 check_irq_off();
3193
3194 if (should_failslab(cachep, flags))
3195 return NULL;
3196
3197 ac = cpu_cache_get(cachep);
3198 if (likely(ac->avail)) {
3199 STATS_INC_ALLOCHIT(cachep);
3200 ac->touched = 1;
3201 objp = ac->entry[--ac->avail];
3202 } else {
3203 STATS_INC_ALLOCMISS(cachep);
3204 objp = cache_alloc_refill(cachep, flags);
3205 }
3206 return objp;
3207 }
3208
3209 #ifdef CONFIG_NUMA
3210 /*
3211 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3212 *
3213 * If we are in_interrupt, then process context, including cpusets and
3214 * mempolicy, may not apply and should not be used for allocation policy.
3215 */
3216 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3217 {
3218 int nid_alloc, nid_here;
3219
3220 if (in_interrupt() || (flags & __GFP_THISNODE))
3221 return NULL;
3222 nid_alloc = nid_here = numa_node_id();
3223 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3224 nid_alloc = cpuset_mem_spread_node();
3225 else if (current->mempolicy)
3226 nid_alloc = slab_node(current->mempolicy);
3227 if (nid_alloc != nid_here)
3228 return ____cache_alloc_node(cachep, flags, nid_alloc);
3229 return NULL;
3230 }
3231
3232 /*
3233 * Fallback function if there was no memory available and no objects on a
3234 * certain node and fall back is permitted. First we scan all the
3235 * available nodelists for available objects. If that fails then we
3236 * perform an allocation without specifying a node. This allows the page
3237 * allocator to do its reclaim / fallback magic. We then insert the
3238 * slab into the proper nodelist and then allocate from it.
3239 */
3240 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3241 {
3242 struct zonelist *zonelist;
3243 gfp_t local_flags;
3244 struct zone **z;
3245 void *obj = NULL;
3246 int nid;
3247
3248 if (flags & __GFP_THISNODE)
3249 return NULL;
3250
3251 zonelist = &NODE_DATA(slab_node(current->mempolicy))
3252 ->node_zonelists[gfp_zone(flags)];
3253 local_flags = (flags & GFP_LEVEL_MASK);
3254
3255 retry:
3256 /*
3257 * Look through allowed nodes for objects available
3258 * from existing per node queues.
3259 */
3260 for (z = zonelist->zones; *z && !obj; z++) {
3261 nid = zone_to_nid(*z);
3262
3263 if (cpuset_zone_allowed_hardwall(*z, flags) &&
3264 cache->nodelists[nid] &&
3265 cache->nodelists[nid]->free_objects)
3266 obj = ____cache_alloc_node(cache,
3267 flags | GFP_THISNODE, nid);
3268 }
3269
3270 if (!obj && !(flags & __GFP_NO_GROW)) {
3271 /*
3272 * This allocation will be performed within the constraints
3273 * of the current cpuset / memory policy requirements.
3274 * We may trigger various forms of reclaim on the allowed
3275 * set and go into memory reserves if necessary.
3276 */
3277 if (local_flags & __GFP_WAIT)
3278 local_irq_enable();
3279 kmem_flagcheck(cache, flags);
3280 obj = kmem_getpages(cache, flags, -1);
3281 if (local_flags & __GFP_WAIT)
3282 local_irq_disable();
3283 if (obj) {
3284 /*
3285 * Insert into the appropriate per node queues
3286 */
3287 nid = page_to_nid(virt_to_page(obj));
3288 if (cache_grow(cache, flags, nid, obj)) {
3289 obj = ____cache_alloc_node(cache,
3290 flags | GFP_THISNODE, nid);
3291 if (!obj)
3292 /*
3293 * Another processor may allocate the
3294 * objects in the slab since we are
3295 * not holding any locks.
3296 */
3297 goto retry;
3298 } else {
3299 /* cache_grow already freed obj */
3300 obj = NULL;
3301 }
3302 }
3303 }
3304 return obj;
3305 }
3306
3307 /*
3308 * A interface to enable slab creation on nodeid
3309 */
3310 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3311 int nodeid)
3312 {
3313 struct list_head *entry;
3314 struct slab *slabp;
3315 struct kmem_list3 *l3;
3316 void *obj;
3317 int x;
3318
3319 l3 = cachep->nodelists[nodeid];
3320 BUG_ON(!l3);
3321
3322 retry:
3323 check_irq_off();
3324 spin_lock(&l3->list_lock);
3325 entry = l3->slabs_partial.next;
3326 if (entry == &l3->slabs_partial) {
3327 l3->free_touched = 1;
3328 entry = l3->slabs_free.next;
3329 if (entry == &l3->slabs_free)
3330 goto must_grow;
3331 }
3332
3333 slabp = list_entry(entry, struct slab, list);
3334 check_spinlock_acquired_node(cachep, nodeid);
3335 check_slabp(cachep, slabp);
3336
3337 STATS_INC_NODEALLOCS(cachep);
3338 STATS_INC_ACTIVE(cachep);
3339 STATS_SET_HIGH(cachep);
3340
3341 BUG_ON(slabp->inuse == cachep->num);
3342
3343 obj = slab_get_obj(cachep, slabp, nodeid);
3344 check_slabp(cachep, slabp);
3345 l3->free_objects--;
3346 /* move slabp to correct slabp list: */
3347 list_del(&slabp->list);
3348
3349 if (slabp->free == BUFCTL_END)
3350 list_add(&slabp->list, &l3->slabs_full);
3351 else
3352 list_add(&slabp->list, &l3->slabs_partial);
3353
3354 spin_unlock(&l3->list_lock);
3355 goto done;
3356
3357 must_grow:
3358 spin_unlock(&l3->list_lock);
3359 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3360 if (x)
3361 goto retry;
3362
3363 return fallback_alloc(cachep, flags);
3364
3365 done:
3366 return obj;
3367 }
3368
3369 /**
3370 * kmem_cache_alloc_node - Allocate an object on the specified node
3371 * @cachep: The cache to allocate from.
3372 * @flags: See kmalloc().
3373 * @nodeid: node number of the target node.
3374 * @caller: return address of caller, used for debug information
3375 *
3376 * Identical to kmem_cache_alloc but it will allocate memory on the given
3377 * node, which can improve the performance for cpu bound structures.
3378 *
3379 * Fallback to other node is possible if __GFP_THISNODE is not set.
3380 */
3381 static __always_inline void *
3382 __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3383 void *caller)
3384 {
3385 unsigned long save_flags;
3386 void *ptr;
3387
3388 cache_alloc_debugcheck_before(cachep, flags);
3389 local_irq_save(save_flags);
3390
3391 if (unlikely(nodeid == -1))
3392 nodeid = numa_node_id();
3393
3394 if (unlikely(!cachep->nodelists[nodeid])) {
3395 /* Node not bootstrapped yet */
3396 ptr = fallback_alloc(cachep, flags);
3397 goto out;
3398 }
3399
3400 if (nodeid == numa_node_id()) {
3401 /*
3402 * Use the locally cached objects if possible.
3403 * However ____cache_alloc does not allow fallback
3404 * to other nodes. It may fail while we still have
3405 * objects on other nodes available.
3406 */
3407 ptr = ____cache_alloc(cachep, flags);
3408 if (ptr)
3409 goto out;
3410 }
3411 /* ___cache_alloc_node can fall back to other nodes */
3412 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3413 out:
3414 local_irq_restore(save_flags);
3415 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3416
3417 return ptr;
3418 }
3419
3420 static __always_inline void *
3421 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3422 {
3423 void *objp;
3424
3425 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3426 objp = alternate_node_alloc(cache, flags);
3427 if (objp)
3428 goto out;
3429 }
3430 objp = ____cache_alloc(cache, flags);
3431
3432 /*
3433 * We may just have run out of memory on the local node.
3434 * ____cache_alloc_node() knows how to locate memory on other nodes
3435 */
3436 if (!objp)
3437 objp = ____cache_alloc_node(cache, flags, numa_node_id());
3438
3439 out:
3440 return objp;
3441 }
3442 #else
3443
3444 static __always_inline void *
3445 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3446 {
3447 return ____cache_alloc(cachep, flags);
3448 }
3449
3450 #endif /* CONFIG_NUMA */
3451
3452 static __always_inline void *
3453 __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3454 {
3455 unsigned long save_flags;
3456 void *objp;
3457
3458 cache_alloc_debugcheck_before(cachep, flags);
3459 local_irq_save(save_flags);
3460 objp = __do_cache_alloc(cachep, flags);
3461 local_irq_restore(save_flags);
3462 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3463 prefetchw(objp);
3464
3465 return objp;
3466 }
3467
3468 /*
3469 * Caller needs to acquire correct kmem_list's list_lock
3470 */
3471 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3472 int node)
3473 {
3474 int i;
3475 struct kmem_list3 *l3;
3476
3477 for (i = 0; i < nr_objects; i++) {
3478 void *objp = objpp[i];
3479 struct slab *slabp;
3480
3481 slabp = virt_to_slab(objp);
3482 l3 = cachep->nodelists[node];
3483 list_del(&slabp->list);
3484 check_spinlock_acquired_node(cachep, node);
3485 check_slabp(cachep, slabp);
3486 slab_put_obj(cachep, slabp, objp, node);
3487 STATS_DEC_ACTIVE(cachep);
3488 l3->free_objects++;
3489 check_slabp(cachep, slabp);
3490
3491 /* fixup slab chains */
3492 if (slabp->inuse == 0) {
3493 if (l3->free_objects > l3->free_limit) {
3494 l3->free_objects -= cachep->num;
3495 /* No need to drop any previously held
3496 * lock here, even if we have a off-slab slab
3497 * descriptor it is guaranteed to come from
3498 * a different cache, refer to comments before
3499 * alloc_slabmgmt.
3500 */
3501 slab_destroy(cachep, slabp);
3502 } else {
3503 list_add(&slabp->list, &l3->slabs_free);
3504 }
3505 } else {
3506 /* Unconditionally move a slab to the end of the
3507 * partial list on free - maximum time for the
3508 * other objects to be freed, too.
3509 */
3510 list_add_tail(&slabp->list, &l3->slabs_partial);
3511 }
3512 }
3513 }
3514
3515 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3516 {
3517 int batchcount;
3518 struct kmem_list3 *l3;
3519 int node = numa_node_id();
3520
3521 batchcount = ac->batchcount;
3522 #if DEBUG
3523 BUG_ON(!batchcount || batchcount > ac->avail);
3524 #endif
3525 check_irq_off();
3526 l3 = cachep->nodelists[node];
3527 spin_lock(&l3->list_lock);
3528 if (l3->shared) {
3529 struct array_cache *shared_array = l3->shared;
3530 int max = shared_array->limit - shared_array->avail;
3531 if (max) {
3532 if (batchcount > max)
3533 batchcount = max;
3534 memcpy(&(shared_array->entry[shared_array->avail]),
3535 ac->entry, sizeof(void *) * batchcount);
3536 shared_array->avail += batchcount;
3537 goto free_done;
3538 }
3539 }
3540
3541 free_block(cachep, ac->entry, batchcount, node);
3542 free_done:
3543 #if STATS
3544 {
3545 int i = 0;
3546 struct list_head *p;
3547
3548 p = l3->slabs_free.next;
3549 while (p != &(l3->slabs_free)) {
3550 struct slab *slabp;
3551
3552 slabp = list_entry(p, struct slab, list);
3553 BUG_ON(slabp->inuse);
3554
3555 i++;
3556 p = p->next;
3557 }
3558 STATS_SET_FREEABLE(cachep, i);
3559 }
3560 #endif
3561 spin_unlock(&l3->list_lock);
3562 ac->avail -= batchcount;
3563 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3564 }
3565
3566 /*
3567 * Release an obj back to its cache. If the obj has a constructed state, it must
3568 * be in this state _before_ it is released. Called with disabled ints.
3569 */
3570 static inline void __cache_free(struct kmem_cache *cachep, void *objp)
3571 {
3572 struct array_cache *ac = cpu_cache_get(cachep);
3573
3574 check_irq_off();
3575 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3576
3577 if (use_alien_caches && cache_free_alien(cachep, objp))
3578 return;
3579
3580 if (likely(ac->avail < ac->limit)) {
3581 STATS_INC_FREEHIT(cachep);
3582 ac->entry[ac->avail++] = objp;
3583 return;
3584 } else {
3585 STATS_INC_FREEMISS(cachep);
3586 cache_flusharray(cachep, ac);
3587 ac->entry[ac->avail++] = objp;
3588 }
3589 }
3590
3591 /**
3592 * kmem_cache_alloc - Allocate an object
3593 * @cachep: The cache to allocate from.
3594 * @flags: See kmalloc().
3595 *
3596 * Allocate an object from this cache. The flags are only relevant
3597 * if the cache has no available objects.
3598 */
3599 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3600 {
3601 return __cache_alloc(cachep, flags, __builtin_return_address(0));
3602 }
3603 EXPORT_SYMBOL(kmem_cache_alloc);
3604
3605 /**
3606 * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
3607 * @cache: The cache to allocate from.
3608 * @flags: See kmalloc().
3609 *
3610 * Allocate an object from this cache and set the allocated memory to zero.
3611 * The flags are only relevant if the cache has no available objects.
3612 */
3613 void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
3614 {
3615 void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
3616 if (ret)
3617 memset(ret, 0, obj_size(cache));
3618 return ret;
3619 }
3620 EXPORT_SYMBOL(kmem_cache_zalloc);
3621
3622 /**
3623 * kmem_ptr_validate - check if an untrusted pointer might
3624 * be a slab entry.
3625 * @cachep: the cache we're checking against
3626 * @ptr: pointer to validate
3627 *
3628 * This verifies that the untrusted pointer looks sane:
3629 * it is _not_ a guarantee that the pointer is actually
3630 * part of the slab cache in question, but it at least
3631 * validates that the pointer can be dereferenced and
3632 * looks half-way sane.
3633 *
3634 * Currently only used for dentry validation.
3635 */
3636 int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
3637 {
3638 unsigned long addr = (unsigned long)ptr;
3639 unsigned long min_addr = PAGE_OFFSET;
3640 unsigned long align_mask = BYTES_PER_WORD - 1;
3641 unsigned long size = cachep->buffer_size;
3642 struct page *page;
3643
3644 if (unlikely(addr < min_addr))
3645 goto out;
3646 if (unlikely(addr > (unsigned long)high_memory - size))
3647 goto out;
3648 if (unlikely(addr & align_mask))
3649 goto out;
3650 if (unlikely(!kern_addr_valid(addr)))
3651 goto out;
3652 if (unlikely(!kern_addr_valid(addr + size - 1)))
3653 goto out;
3654 page = virt_to_page(ptr);
3655 if (unlikely(!PageSlab(page)))
3656 goto out;
3657 if (unlikely(page_get_cache(page) != cachep))
3658 goto out;
3659 return 1;
3660 out:
3661 return 0;
3662 }
3663
3664 #ifdef CONFIG_NUMA
3665 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3666 {
3667 return __cache_alloc_node(cachep, flags, nodeid,
3668 __builtin_return_address(0));
3669 }
3670 EXPORT_SYMBOL(kmem_cache_alloc_node);
3671
3672 static __always_inline void *
3673 __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3674 {
3675 struct kmem_cache *cachep;
3676
3677 cachep = kmem_find_general_cachep(size, flags);
3678 if (unlikely(cachep == NULL))
3679 return NULL;
3680 return kmem_cache_alloc_node(cachep, flags, node);
3681 }
3682
3683 #ifdef CONFIG_DEBUG_SLAB
3684 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3685 {
3686 return __do_kmalloc_node(size, flags, node,
3687 __builtin_return_address(0));
3688 }
3689 EXPORT_SYMBOL(__kmalloc_node);
3690
3691 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3692 int node, void *caller)
3693 {
3694 return __do_kmalloc_node(size, flags, node, caller);
3695 }
3696 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3697 #else
3698 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3699 {
3700 return __do_kmalloc_node(size, flags, node, NULL);
3701 }
3702 EXPORT_SYMBOL(__kmalloc_node);
3703 #endif /* CONFIG_DEBUG_SLAB */
3704 #endif /* CONFIG_NUMA */
3705
3706 /**
3707 * __do_kmalloc - allocate memory
3708 * @size: how many bytes of memory are required.
3709 * @flags: the type of memory to allocate (see kmalloc).
3710 * @caller: function caller for debug tracking of the caller
3711 */
3712 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3713 void *caller)
3714 {
3715 struct kmem_cache *cachep;
3716
3717 /* If you want to save a few bytes .text space: replace
3718 * __ with kmem_.
3719 * Then kmalloc uses the uninlined functions instead of the inline
3720 * functions.
3721 */
3722 cachep = __find_general_cachep(size, flags);
3723 if (unlikely(cachep == NULL))
3724 return NULL;
3725 return __cache_alloc(cachep, flags, caller);
3726 }
3727
3728
3729 #ifdef CONFIG_DEBUG_SLAB
3730 void *__kmalloc(size_t size, gfp_t flags)
3731 {
3732 return __do_kmalloc(size, flags, __builtin_return_address(0));
3733 }
3734 EXPORT_SYMBOL(__kmalloc);
3735
3736 void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3737 {
3738 return __do_kmalloc(size, flags, caller);
3739 }
3740 EXPORT_SYMBOL(__kmalloc_track_caller);
3741
3742 #else
3743 void *__kmalloc(size_t size, gfp_t flags)
3744 {
3745 return __do_kmalloc(size, flags, NULL);
3746 }
3747 EXPORT_SYMBOL(__kmalloc);
3748 #endif
3749
3750 /**
3751 * krealloc - reallocate memory. The contents will remain unchanged.
3752 *
3753 * @p: object to reallocate memory for.
3754 * @new_size: how many bytes of memory are required.
3755 * @flags: the type of memory to allocate.
3756 *
3757 * The contents of the object pointed to are preserved up to the
3758 * lesser of the new and old sizes. If @p is %NULL, krealloc()
3759 * behaves exactly like kmalloc(). If @size is 0 and @p is not a
3760 * %NULL pointer, the object pointed to is freed.
3761 */
3762 void *krealloc(const void *p, size_t new_size, gfp_t flags)
3763 {
3764 struct kmem_cache *cache, *new_cache;
3765 void *ret;
3766
3767 if (unlikely(!p))
3768 return kmalloc_track_caller(new_size, flags);
3769
3770 if (unlikely(!new_size)) {
3771 kfree(p);
3772 return NULL;
3773 }
3774
3775 cache = virt_to_cache(p);
3776 new_cache = __find_general_cachep(new_size, flags);
3777
3778 /*
3779 * If new size fits in the current cache, bail out.
3780 */
3781 if (likely(cache == new_cache))
3782 return (void *)p;
3783
3784 /*
3785 * We are on the slow-path here so do not use __cache_alloc
3786 * because it bloats kernel text.
3787 */
3788 ret = kmalloc_track_caller(new_size, flags);
3789 if (ret) {
3790 memcpy(ret, p, min(new_size, ksize(p)));
3791 kfree(p);
3792 }
3793 return ret;
3794 }
3795 EXPORT_SYMBOL(krealloc);
3796
3797 /**
3798 * kmem_cache_free - Deallocate an object
3799 * @cachep: The cache the allocation was from.
3800 * @objp: The previously allocated object.
3801 *
3802 * Free an object which was previously allocated from this
3803 * cache.
3804 */
3805 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3806 {
3807 unsigned long flags;
3808
3809 BUG_ON(virt_to_cache(objp) != cachep);
3810
3811 local_irq_save(flags);
3812 debug_check_no_locks_freed(objp, obj_size(cachep));
3813 __cache_free(cachep, objp);
3814 local_irq_restore(flags);
3815 }
3816 EXPORT_SYMBOL(kmem_cache_free);
3817
3818 /**
3819 * kfree - free previously allocated memory
3820 * @objp: pointer returned by kmalloc.
3821 *
3822 * If @objp is NULL, no operation is performed.
3823 *
3824 * Don't free memory not originally allocated by kmalloc()
3825 * or you will run into trouble.
3826 */
3827 void kfree(const void *objp)
3828 {
3829 struct kmem_cache *c;
3830 unsigned long flags;
3831
3832 if (unlikely(!objp))
3833 return;
3834 local_irq_save(flags);
3835 kfree_debugcheck(objp);
3836 c = virt_to_cache(objp);
3837 debug_check_no_locks_freed(objp, obj_size(c));
3838 __cache_free(c, (void *)objp);
3839 local_irq_restore(flags);
3840 }
3841 EXPORT_SYMBOL(kfree);
3842
3843 unsigned int kmem_cache_size(struct kmem_cache *cachep)
3844 {
3845 return obj_size(cachep);
3846 }
3847 EXPORT_SYMBOL(kmem_cache_size);
3848
3849 const char *kmem_cache_name(struct kmem_cache *cachep)
3850 {
3851 return cachep->name;
3852 }
3853 EXPORT_SYMBOL_GPL(kmem_cache_name);
3854
3855 /*
3856 * This initializes kmem_list3 or resizes varioius caches for all nodes.
3857 */
3858 static int alloc_kmemlist(struct kmem_cache *cachep)
3859 {
3860 int node;
3861 struct kmem_list3 *l3;
3862 struct array_cache *new_shared;
3863 struct array_cache **new_alien = NULL;
3864
3865 for_each_online_node(node) {
3866
3867 if (use_alien_caches) {
3868 new_alien = alloc_alien_cache(node, cachep->limit);
3869 if (!new_alien)
3870 goto fail;
3871 }
3872
3873 new_shared = alloc_arraycache(node,
3874 cachep->shared*cachep->batchcount,
3875 0xbaadf00d);
3876 if (!new_shared) {
3877 free_alien_cache(new_alien);
3878 goto fail;
3879 }
3880
3881 l3 = cachep->nodelists[node];
3882 if (l3) {
3883 struct array_cache *shared = l3->shared;
3884
3885 spin_lock_irq(&l3->list_lock);
3886
3887 if (shared)
3888 free_block(cachep, shared->entry,
3889 shared->avail, node);
3890
3891 l3->shared = new_shared;
3892 if (!l3->alien) {
3893 l3->alien = new_alien;
3894 new_alien = NULL;
3895 }
3896 l3->free_limit = (1 + nr_cpus_node(node)) *
3897 cachep->batchcount + cachep->num;
3898 spin_unlock_irq(&l3->list_lock);
3899 kfree(shared);
3900 free_alien_cache(new_alien);
3901 continue;
3902 }
3903 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3904 if (!l3) {
3905 free_alien_cache(new_alien);
3906 kfree(new_shared);
3907 goto fail;
3908 }
3909
3910 kmem_list3_init(l3);
3911 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3912 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3913 l3->shared = new_shared;
3914 l3->alien = new_alien;
3915 l3->free_limit = (1 + nr_cpus_node(node)) *
3916 cachep->batchcount + cachep->num;
3917 cachep->nodelists[node] = l3;
3918 }
3919 return 0;
3920
3921 fail:
3922 if (!cachep->next.next) {
3923 /* Cache is not active yet. Roll back what we did */
3924 node--;
3925 while (node >= 0) {
3926 if (cachep->nodelists[node]) {
3927 l3 = cachep->nodelists[node];
3928
3929 kfree(l3->shared);
3930 free_alien_cache(l3->alien);
3931 kfree(l3);
3932 cachep->nodelists[node] = NULL;
3933 }
3934 node--;
3935 }
3936 }
3937 return -ENOMEM;
3938 }
3939
3940 struct ccupdate_struct {
3941 struct kmem_cache *cachep;
3942 struct array_cache *new[NR_CPUS];
3943 };
3944
3945 static void do_ccupdate_local(void *info)
3946 {
3947 struct ccupdate_struct *new = info;
3948 struct array_cache *old;
3949
3950 check_irq_off();
3951 old = cpu_cache_get(new->cachep);
3952
3953 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3954 new->new[smp_processor_id()] = old;
3955 }
3956
3957 /* Always called with the cache_chain_mutex held */
3958 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3959 int batchcount, int shared)
3960 {
3961 struct ccupdate_struct *new;
3962 int i;
3963
3964 new = kzalloc(sizeof(*new), GFP_KERNEL);
3965 if (!new)
3966 return -ENOMEM;
3967
3968 for_each_online_cpu(i) {
3969 new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
3970 batchcount);
3971 if (!new->new[i]) {
3972 for (i--; i >= 0; i--)
3973 kfree(new->new[i]);
3974 kfree(new);
3975 return -ENOMEM;
3976 }
3977 }
3978 new->cachep = cachep;
3979
3980 on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
3981
3982 check_irq_on();
3983 cachep->batchcount = batchcount;
3984 cachep->limit = limit;
3985 cachep->shared = shared;
3986
3987 for_each_online_cpu(i) {
3988 struct array_cache *ccold = new->new[i];
3989 if (!ccold)
3990 continue;
3991 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3992 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3993 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3994 kfree(ccold);
3995 }
3996 kfree(new);
3997 return alloc_kmemlist(cachep);
3998 }
3999
4000 /* Called with cache_chain_mutex held always */
4001 static int enable_cpucache(struct kmem_cache *cachep)
4002 {
4003 int err;
4004 int limit, shared;
4005
4006 /*
4007 * The head array serves three purposes:
4008 * - create a LIFO ordering, i.e. return objects that are cache-warm
4009 * - reduce the number of spinlock operations.
4010 * - reduce the number of linked list operations on the slab and
4011 * bufctl chains: array operations are cheaper.
4012 * The numbers are guessed, we should auto-tune as described by
4013 * Bonwick.
4014 */
4015 if (cachep->buffer_size > 131072)
4016 limit = 1;
4017 else if (cachep->buffer_size > PAGE_SIZE)
4018 limit = 8;
4019 else if (cachep->buffer_size > 1024)
4020 limit = 24;
4021 else if (cachep->buffer_size > 256)
4022 limit = 54;
4023 else
4024 limit = 120;
4025
4026 /*
4027 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
4028 * allocation behaviour: Most allocs on one cpu, most free operations
4029 * on another cpu. For these cases, an efficient object passing between
4030 * cpus is necessary. This is provided by a shared array. The array
4031 * replaces Bonwick's magazine layer.
4032 * On uniprocessor, it's functionally equivalent (but less efficient)
4033 * to a larger limit. Thus disabled by default.
4034 */
4035 shared = 0;
4036 #ifdef CONFIG_SMP
4037 if (cachep->buffer_size <= PAGE_SIZE)
4038 shared = 8;
4039 #endif
4040
4041 #if DEBUG
4042 /*
4043 * With debugging enabled, large batchcount lead to excessively long
4044 * periods with disabled local interrupts. Limit the batchcount
4045 */
4046 if (limit > 32)
4047 limit = 32;
4048 #endif
4049 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
4050 if (err)
4051 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
4052 cachep->name, -err);
4053 return err;
4054 }
4055
4056 /*
4057 * Drain an array if it contains any elements taking the l3 lock only if
4058 * necessary. Note that the l3 listlock also protects the array_cache
4059 * if drain_array() is used on the shared array.
4060 */
4061 void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4062 struct array_cache *ac, int force, int node)
4063 {
4064 int tofree;
4065
4066 if (!ac || !ac->avail)
4067 return;
4068 if (ac->touched && !force) {
4069 ac->touched = 0;
4070 } else {
4071 spin_lock_irq(&l3->list_lock);
4072 if (ac->avail) {
4073 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4074 if (tofree > ac->avail)
4075 tofree = (ac->avail + 1) / 2;
4076 free_block(cachep, ac->entry, tofree, node);
4077 ac->avail -= tofree;
4078 memmove(ac->entry, &(ac->entry[tofree]),
4079 sizeof(void *) * ac->avail);
4080 }
4081 spin_unlock_irq(&l3->list_lock);
4082 }
4083 }
4084
4085 /**
4086 * cache_reap - Reclaim memory from caches.
4087 * @w: work descriptor
4088 *
4089 * Called from workqueue/eventd every few seconds.
4090 * Purpose:
4091 * - clear the per-cpu caches for this CPU.
4092 * - return freeable pages to the main free memory pool.
4093 *
4094 * If we cannot acquire the cache chain mutex then just give up - we'll try
4095 * again on the next iteration.
4096 */
4097 static void cache_reap(struct work_struct *w)
4098 {
4099 struct kmem_cache *searchp;
4100 struct kmem_list3 *l3;
4101 int node = numa_node_id();
4102 struct delayed_work *work =
4103 container_of(w, struct delayed_work, work);
4104
4105 if (!mutex_trylock(&cache_chain_mutex))
4106 /* Give up. Setup the next iteration. */
4107 goto out;
4108
4109 list_for_each_entry(searchp, &cache_chain, next) {
4110 check_irq_on();
4111
4112 /*
4113 * We only take the l3 lock if absolutely necessary and we
4114 * have established with reasonable certainty that
4115 * we can do some work if the lock was obtained.
4116 */
4117 l3 = searchp->nodelists[node];
4118
4119 reap_alien(searchp, l3);
4120
4121 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
4122
4123 /*
4124 * These are racy checks but it does not matter
4125 * if we skip one check or scan twice.
4126 */
4127 if (time_after(l3->next_reap, jiffies))
4128 goto next;
4129
4130 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
4131
4132 drain_array(searchp, l3, l3->shared, 0, node);
4133
4134 if (l3->free_touched)
4135 l3->free_touched = 0;
4136 else {
4137 int freed;
4138
4139 freed = drain_freelist(searchp, l3, (l3->free_limit +
4140 5 * searchp->num - 1) / (5 * searchp->num));
4141 STATS_ADD_REAPED(searchp, freed);
4142 }
4143 next:
4144 cond_resched();
4145 }
4146 check_irq_on();
4147 mutex_unlock(&cache_chain_mutex);
4148 next_reap_node();
4149 refresh_cpu_vm_stats(smp_processor_id());
4150 out:
4151 /* Set up the next iteration */
4152 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
4153 }
4154
4155 #ifdef CONFIG_PROC_FS
4156
4157 static void print_slabinfo_header(struct seq_file *m)
4158 {
4159 /*
4160 * Output format version, so at least we can change it
4161 * without _too_ many complaints.
4162 */
4163 #if STATS
4164 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
4165 #else
4166 seq_puts(m, "slabinfo - version: 2.1\n");
4167 #endif
4168 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4169 "<objperslab> <pagesperslab>");
4170 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4171 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4172 #if STATS
4173 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4174 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4175 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4176 #endif
4177 seq_putc(m, '\n');
4178 }
4179
4180 static void *s_start(struct seq_file *m, loff_t *pos)
4181 {
4182 loff_t n = *pos;
4183 struct list_head *p;
4184
4185 mutex_lock(&cache_chain_mutex);
4186 if (!n)
4187 print_slabinfo_header(m);
4188 p = cache_chain.next;
4189 while (n--) {
4190 p = p->next;
4191 if (p == &cache_chain)
4192 return NULL;
4193 }
4194 return list_entry(p, struct kmem_cache, next);
4195 }
4196
4197 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4198 {
4199 struct kmem_cache *cachep = p;
4200 ++*pos;
4201 return cachep->next.next == &cache_chain ?
4202 NULL : list_entry(cachep->next.next, struct kmem_cache, next);
4203 }
4204
4205 static void s_stop(struct seq_file *m, void *p)
4206 {
4207 mutex_unlock(&cache_chain_mutex);
4208 }
4209
4210 static int s_show(struct seq_file *m, void *p)
4211 {
4212 struct kmem_cache *cachep = p;
4213 struct slab *slabp;
4214 unsigned long active_objs;
4215 unsigned long num_objs;
4216 unsigned long active_slabs = 0;
4217 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4218 const char *name;
4219 char *error = NULL;
4220 int node;
4221 struct kmem_list3 *l3;
4222
4223 active_objs = 0;
4224 num_slabs = 0;
4225 for_each_online_node(node) {
4226 l3 = cachep->nodelists[node];
4227 if (!l3)
4228 continue;
4229
4230 check_irq_on();
4231 spin_lock_irq(&l3->list_lock);
4232
4233 list_for_each_entry(slabp, &l3->slabs_full, list) {
4234 if (slabp->inuse != cachep->num && !error)
4235 error = "slabs_full accounting error";
4236 active_objs += cachep->num;
4237 active_slabs++;
4238 }
4239 list_for_each_entry(slabp, &l3->slabs_partial, list) {
4240 if (slabp->inuse == cachep->num && !error)
4241 error = "slabs_partial inuse accounting error";
4242 if (!slabp->inuse && !error)
4243 error = "slabs_partial/inuse accounting error";
4244 active_objs += slabp->inuse;
4245 active_slabs++;
4246 }
4247 list_for_each_entry(slabp, &l3->slabs_free, list) {
4248 if (slabp->inuse && !error)
4249 error = "slabs_free/inuse accounting error";
4250 num_slabs++;
4251 }
4252 free_objects += l3->free_objects;
4253 if (l3->shared)
4254 shared_avail += l3->shared->avail;
4255
4256 spin_unlock_irq(&l3->list_lock);
4257 }
4258 num_slabs += active_slabs;
4259 num_objs = num_slabs * cachep->num;
4260 if (num_objs - active_objs != free_objects && !error)
4261 error = "free_objects accounting error";
4262
4263 name = cachep->name;
4264 if (error)
4265 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4266
4267 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4268 name, active_objs, num_objs, cachep->buffer_size,
4269 cachep->num, (1 << cachep->gfporder));
4270 seq_printf(m, " : tunables %4u %4u %4u",
4271 cachep->limit, cachep->batchcount, cachep->shared);
4272 seq_printf(m, " : slabdata %6lu %6lu %6lu",
4273 active_slabs, num_slabs, shared_avail);
4274 #if STATS
4275 { /* list3 stats */
4276 unsigned long high = cachep->high_mark;
4277 unsigned long allocs = cachep->num_allocations;
4278 unsigned long grown = cachep->grown;
4279 unsigned long reaped = cachep->reaped;
4280 unsigned long errors = cachep->errors;
4281 unsigned long max_freeable = cachep->max_freeable;
4282 unsigned long node_allocs = cachep->node_allocs;
4283 unsigned long node_frees = cachep->node_frees;
4284 unsigned long overflows = cachep->node_overflow;
4285
4286 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
4287 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
4288 reaped, errors, max_freeable, node_allocs,
4289 node_frees, overflows);
4290 }
4291 /* cpu stats */
4292 {
4293 unsigned long allochit = atomic_read(&cachep->allochit);
4294 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4295 unsigned long freehit = atomic_read(&cachep->freehit);
4296 unsigned long freemiss = atomic_read(&cachep->freemiss);
4297
4298 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4299 allochit, allocmiss, freehit, freemiss);
4300 }
4301 #endif
4302 seq_putc(m, '\n');
4303 return 0;
4304 }
4305
4306 /*
4307 * slabinfo_op - iterator that generates /proc/slabinfo
4308 *
4309 * Output layout:
4310 * cache-name
4311 * num-active-objs
4312 * total-objs
4313 * object size
4314 * num-active-slabs
4315 * total-slabs
4316 * num-pages-per-slab
4317 * + further values on SMP and with statistics enabled
4318 */
4319
4320 const struct seq_operations slabinfo_op = {
4321 .start = s_start,
4322 .next = s_next,
4323 .stop = s_stop,
4324 .show = s_show,
4325 };
4326
4327 #define MAX_SLABINFO_WRITE 128
4328 /**
4329 * slabinfo_write - Tuning for the slab allocator
4330 * @file: unused
4331 * @buffer: user buffer
4332 * @count: data length
4333 * @ppos: unused
4334 */
4335 ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4336 size_t count, loff_t *ppos)
4337 {
4338 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4339 int limit, batchcount, shared, res;
4340 struct kmem_cache *cachep;
4341
4342 if (count > MAX_SLABINFO_WRITE)
4343 return -EINVAL;
4344 if (copy_from_user(&kbuf, buffer, count))
4345 return -EFAULT;
4346 kbuf[MAX_SLABINFO_WRITE] = '\0';
4347
4348 tmp = strchr(kbuf, ' ');
4349 if (!tmp)
4350 return -EINVAL;
4351 *tmp = '\0';
4352 tmp++;
4353 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4354 return -EINVAL;
4355
4356 /* Find the cache in the chain of caches. */
4357 mutex_lock(&cache_chain_mutex);
4358 res = -EINVAL;
4359 list_for_each_entry(cachep, &cache_chain, next) {
4360 if (!strcmp(cachep->name, kbuf)) {
4361 if (limit < 1 || batchcount < 1 ||
4362 batchcount > limit || shared < 0) {
4363 res = 0;
4364 } else {
4365 res = do_tune_cpucache(cachep, limit,
4366 batchcount, shared);
4367 }
4368 break;
4369 }
4370 }
4371 mutex_unlock(&cache_chain_mutex);
4372 if (res >= 0)
4373 res = count;
4374 return res;
4375 }
4376
4377 #ifdef CONFIG_DEBUG_SLAB_LEAK
4378
4379 static void *leaks_start(struct seq_file *m, loff_t *pos)
4380 {
4381 loff_t n = *pos;
4382 struct list_head *p;
4383
4384 mutex_lock(&cache_chain_mutex);
4385 p = cache_chain.next;
4386 while (n--) {
4387 p = p->next;
4388 if (p == &cache_chain)
4389 return NULL;
4390 }
4391 return list_entry(p, struct kmem_cache, next);
4392 }
4393
4394 static inline int add_caller(unsigned long *n, unsigned long v)
4395 {
4396 unsigned long *p;
4397 int l;
4398 if (!v)
4399 return 1;
4400 l = n[1];
4401 p = n + 2;
4402 while (l) {
4403 int i = l/2;
4404 unsigned long *q = p + 2 * i;
4405 if (*q == v) {
4406 q[1]++;
4407 return 1;
4408 }
4409 if (*q > v) {
4410 l = i;
4411 } else {
4412 p = q + 2;
4413 l -= i + 1;
4414 }
4415 }
4416 if (++n[1] == n[0])
4417 return 0;
4418 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4419 p[0] = v;
4420 p[1] = 1;
4421 return 1;
4422 }
4423
4424 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4425 {
4426 void *p;
4427 int i;
4428 if (n[0] == n[1])
4429 return;
4430 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4431 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4432 continue;
4433 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4434 return;
4435 }
4436 }
4437
4438 static void show_symbol(struct seq_file *m, unsigned long address)
4439 {
4440 #ifdef CONFIG_KALLSYMS
4441 char *modname;
4442 const char *name;
4443 unsigned long offset, size;
4444 char namebuf[KSYM_NAME_LEN+1];
4445
4446 name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);
4447
4448 if (name) {
4449 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4450 if (modname)
4451 seq_printf(m, " [%s]", modname);
4452 return;
4453 }
4454 #endif
4455 seq_printf(m, "%p", (void *)address);
4456 }
4457
4458 static int leaks_show(struct seq_file *m, void *p)
4459 {
4460 struct kmem_cache *cachep = p;
4461 struct slab *slabp;
4462 struct kmem_list3 *l3;
4463 const char *name;
4464 unsigned long *n = m->private;
4465 int node;
4466 int i;
4467
4468 if (!(cachep->flags & SLAB_STORE_USER))
4469 return 0;
4470 if (!(cachep->flags & SLAB_RED_ZONE))
4471 return 0;
4472
4473 /* OK, we can do it */
4474
4475 n[1] = 0;
4476
4477 for_each_online_node(node) {
4478 l3 = cachep->nodelists[node];
4479 if (!l3)
4480 continue;
4481
4482 check_irq_on();
4483 spin_lock_irq(&l3->list_lock);
4484
4485 list_for_each_entry(slabp, &l3->slabs_full, list)
4486 handle_slab(n, cachep, slabp);
4487 list_for_each_entry(slabp, &l3->slabs_partial, list)
4488 handle_slab(n, cachep, slabp);
4489 spin_unlock_irq(&l3->list_lock);
4490 }
4491 name = cachep->name;
4492 if (n[0] == n[1]) {
4493 /* Increase the buffer size */
4494 mutex_unlock(&cache_chain_mutex);
4495 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4496 if (!m->private) {
4497 /* Too bad, we are really out */
4498 m->private = n;
4499 mutex_lock(&cache_chain_mutex);
4500 return -ENOMEM;
4501 }
4502 *(unsigned long *)m->private = n[0] * 2;
4503 kfree(n);
4504 mutex_lock(&cache_chain_mutex);
4505 /* Now make sure this entry will be retried */
4506 m->count = m->size;
4507 return 0;
4508 }
4509 for (i = 0; i < n[1]; i++) {
4510 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4511 show_symbol(m, n[2*i+2]);
4512 seq_putc(m, '\n');
4513 }
4514
4515 return 0;
4516 }
4517
4518 const struct seq_operations slabstats_op = {
4519 .start = leaks_start,
4520 .next = s_next,
4521 .stop = s_stop,
4522 .show = leaks_show,
4523 };
4524 #endif
4525 #endif
4526
4527 /**
4528 * ksize - get the actual amount of memory allocated for a given object
4529 * @objp: Pointer to the object
4530 *
4531 * kmalloc may internally round up allocations and return more memory
4532 * than requested. ksize() can be used to determine the actual amount of
4533 * memory allocated. The caller may use this additional memory, even though
4534 * a smaller amount of memory was initially specified with the kmalloc call.
4535 * The caller must guarantee that objp points to a valid object previously
4536 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4537 * must not be freed during the duration of the call.
4538 */
4539 size_t ksize(const void *objp)
4540 {
4541 if (unlikely(objp == NULL))
4542 return 0;
4543
4544 return obj_size(virt_to_cache(objp));
4545 }
This page took 0.123627 seconds and 5 git commands to generate.