mm/sl[aou]b: Extract a common function for kmem_cache_destroy
[deliverable/linux.git] / mm / slab.c
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'slab_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
87 */
88
89 #include <linux/slab.h>
90 #include "slab.h"
91 #include <linux/mm.h>
92 #include <linux/poison.h>
93 #include <linux/swap.h>
94 #include <linux/cache.h>
95 #include <linux/interrupt.h>
96 #include <linux/init.h>
97 #include <linux/compiler.h>
98 #include <linux/cpuset.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/notifier.h>
102 #include <linux/kallsyms.h>
103 #include <linux/cpu.h>
104 #include <linux/sysctl.h>
105 #include <linux/module.h>
106 #include <linux/rcupdate.h>
107 #include <linux/string.h>
108 #include <linux/uaccess.h>
109 #include <linux/nodemask.h>
110 #include <linux/kmemleak.h>
111 #include <linux/mempolicy.h>
112 #include <linux/mutex.h>
113 #include <linux/fault-inject.h>
114 #include <linux/rtmutex.h>
115 #include <linux/reciprocal_div.h>
116 #include <linux/debugobjects.h>
117 #include <linux/kmemcheck.h>
118 #include <linux/memory.h>
119 #include <linux/prefetch.h>
120
121 #include <net/sock.h>
122
123 #include <asm/cacheflush.h>
124 #include <asm/tlbflush.h>
125 #include <asm/page.h>
126
127 #include <trace/events/kmem.h>
128
129 #include "internal.h"
130
131 /*
132 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
133 * 0 for faster, smaller code (especially in the critical paths).
134 *
135 * STATS - 1 to collect stats for /proc/slabinfo.
136 * 0 for faster, smaller code (especially in the critical paths).
137 *
138 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
139 */
140
141 #ifdef CONFIG_DEBUG_SLAB
142 #define DEBUG 1
143 #define STATS 1
144 #define FORCED_DEBUG 1
145 #else
146 #define DEBUG 0
147 #define STATS 0
148 #define FORCED_DEBUG 0
149 #endif
150
151 /* Shouldn't this be in a header file somewhere? */
152 #define BYTES_PER_WORD sizeof(void *)
153 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
154
155 #ifndef ARCH_KMALLOC_FLAGS
156 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
157 #endif
158
159 /*
160 * true if a page was allocated from pfmemalloc reserves for network-based
161 * swap
162 */
163 static bool pfmemalloc_active __read_mostly;
164
165 /* Legal flag mask for kmem_cache_create(). */
166 #if DEBUG
167 # define CREATE_MASK (SLAB_RED_ZONE | \
168 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
169 SLAB_CACHE_DMA | \
170 SLAB_STORE_USER | \
171 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
172 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
173 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
174 #else
175 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
176 SLAB_CACHE_DMA | \
177 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
178 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
179 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
180 #endif
181
182 /*
183 * kmem_bufctl_t:
184 *
185 * Bufctl's are used for linking objs within a slab
186 * linked offsets.
187 *
188 * This implementation relies on "struct page" for locating the cache &
189 * slab an object belongs to.
190 * This allows the bufctl structure to be small (one int), but limits
191 * the number of objects a slab (not a cache) can contain when off-slab
192 * bufctls are used. The limit is the size of the largest general cache
193 * that does not use off-slab slabs.
194 * For 32bit archs with 4 kB pages, is this 56.
195 * This is not serious, as it is only for large objects, when it is unwise
196 * to have too many per slab.
197 * Note: This limit can be raised by introducing a general cache whose size
198 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
199 */
200
201 typedef unsigned int kmem_bufctl_t;
202 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
203 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
204 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
205 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
206
207 /*
208 * struct slab_rcu
209 *
210 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
211 * arrange for kmem_freepages to be called via RCU. This is useful if
212 * we need to approach a kernel structure obliquely, from its address
213 * obtained without the usual locking. We can lock the structure to
214 * stabilize it and check it's still at the given address, only if we
215 * can be sure that the memory has not been meanwhile reused for some
216 * other kind of object (which our subsystem's lock might corrupt).
217 *
218 * rcu_read_lock before reading the address, then rcu_read_unlock after
219 * taking the spinlock within the structure expected at that address.
220 */
221 struct slab_rcu {
222 struct rcu_head head;
223 struct kmem_cache *cachep;
224 void *addr;
225 };
226
227 /*
228 * struct slab
229 *
230 * Manages the objs in a slab. Placed either at the beginning of mem allocated
231 * for a slab, or allocated from an general cache.
232 * Slabs are chained into three list: fully used, partial, fully free slabs.
233 */
234 struct slab {
235 union {
236 struct {
237 struct list_head list;
238 unsigned long colouroff;
239 void *s_mem; /* including colour offset */
240 unsigned int inuse; /* num of objs active in slab */
241 kmem_bufctl_t free;
242 unsigned short nodeid;
243 };
244 struct slab_rcu __slab_cover_slab_rcu;
245 };
246 };
247
248 /*
249 * struct array_cache
250 *
251 * Purpose:
252 * - LIFO ordering, to hand out cache-warm objects from _alloc
253 * - reduce the number of linked list operations
254 * - reduce spinlock operations
255 *
256 * The limit is stored in the per-cpu structure to reduce the data cache
257 * footprint.
258 *
259 */
260 struct array_cache {
261 unsigned int avail;
262 unsigned int limit;
263 unsigned int batchcount;
264 unsigned int touched;
265 spinlock_t lock;
266 void *entry[]; /*
267 * Must have this definition in here for the proper
268 * alignment of array_cache. Also simplifies accessing
269 * the entries.
270 *
271 * Entries should not be directly dereferenced as
272 * entries belonging to slabs marked pfmemalloc will
273 * have the lower bits set SLAB_OBJ_PFMEMALLOC
274 */
275 };
276
277 #define SLAB_OBJ_PFMEMALLOC 1
278 static inline bool is_obj_pfmemalloc(void *objp)
279 {
280 return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
281 }
282
283 static inline void set_obj_pfmemalloc(void **objp)
284 {
285 *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
286 return;
287 }
288
289 static inline void clear_obj_pfmemalloc(void **objp)
290 {
291 *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
292 }
293
294 /*
295 * bootstrap: The caches do not work without cpuarrays anymore, but the
296 * cpuarrays are allocated from the generic caches...
297 */
298 #define BOOT_CPUCACHE_ENTRIES 1
299 struct arraycache_init {
300 struct array_cache cache;
301 void *entries[BOOT_CPUCACHE_ENTRIES];
302 };
303
304 /*
305 * The slab lists for all objects.
306 */
307 struct kmem_list3 {
308 struct list_head slabs_partial; /* partial list first, better asm code */
309 struct list_head slabs_full;
310 struct list_head slabs_free;
311 unsigned long free_objects;
312 unsigned int free_limit;
313 unsigned int colour_next; /* Per-node cache coloring */
314 spinlock_t list_lock;
315 struct array_cache *shared; /* shared per node */
316 struct array_cache **alien; /* on other nodes */
317 unsigned long next_reap; /* updated without locking */
318 int free_touched; /* updated without locking */
319 };
320
321 /*
322 * Need this for bootstrapping a per node allocator.
323 */
324 #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
325 static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
326 #define CACHE_CACHE 0
327 #define SIZE_AC MAX_NUMNODES
328 #define SIZE_L3 (2 * MAX_NUMNODES)
329
330 static int drain_freelist(struct kmem_cache *cache,
331 struct kmem_list3 *l3, int tofree);
332 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
333 int node);
334 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
335 static void cache_reap(struct work_struct *unused);
336
337 /*
338 * This function must be completely optimized away if a constant is passed to
339 * it. Mostly the same as what is in linux/slab.h except it returns an index.
340 */
341 static __always_inline int index_of(const size_t size)
342 {
343 extern void __bad_size(void);
344
345 if (__builtin_constant_p(size)) {
346 int i = 0;
347
348 #define CACHE(x) \
349 if (size <=x) \
350 return i; \
351 else \
352 i++;
353 #include <linux/kmalloc_sizes.h>
354 #undef CACHE
355 __bad_size();
356 } else
357 __bad_size();
358 return 0;
359 }
360
361 static int slab_early_init = 1;
362
363 #define INDEX_AC index_of(sizeof(struct arraycache_init))
364 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
365
366 static void kmem_list3_init(struct kmem_list3 *parent)
367 {
368 INIT_LIST_HEAD(&parent->slabs_full);
369 INIT_LIST_HEAD(&parent->slabs_partial);
370 INIT_LIST_HEAD(&parent->slabs_free);
371 parent->shared = NULL;
372 parent->alien = NULL;
373 parent->colour_next = 0;
374 spin_lock_init(&parent->list_lock);
375 parent->free_objects = 0;
376 parent->free_touched = 0;
377 }
378
379 #define MAKE_LIST(cachep, listp, slab, nodeid) \
380 do { \
381 INIT_LIST_HEAD(listp); \
382 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
383 } while (0)
384
385 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
386 do { \
387 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
388 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
389 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
390 } while (0)
391
392 #define CFLGS_OFF_SLAB (0x80000000UL)
393 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
394
395 #define BATCHREFILL_LIMIT 16
396 /*
397 * Optimization question: fewer reaps means less probability for unnessary
398 * cpucache drain/refill cycles.
399 *
400 * OTOH the cpuarrays can contain lots of objects,
401 * which could lock up otherwise freeable slabs.
402 */
403 #define REAPTIMEOUT_CPUC (2*HZ)
404 #define REAPTIMEOUT_LIST3 (4*HZ)
405
406 #if STATS
407 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
408 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
409 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
410 #define STATS_INC_GROWN(x) ((x)->grown++)
411 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
412 #define STATS_SET_HIGH(x) \
413 do { \
414 if ((x)->num_active > (x)->high_mark) \
415 (x)->high_mark = (x)->num_active; \
416 } while (0)
417 #define STATS_INC_ERR(x) ((x)->errors++)
418 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
419 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
420 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
421 #define STATS_SET_FREEABLE(x, i) \
422 do { \
423 if ((x)->max_freeable < i) \
424 (x)->max_freeable = i; \
425 } while (0)
426 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
427 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
428 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
429 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
430 #else
431 #define STATS_INC_ACTIVE(x) do { } while (0)
432 #define STATS_DEC_ACTIVE(x) do { } while (0)
433 #define STATS_INC_ALLOCED(x) do { } while (0)
434 #define STATS_INC_GROWN(x) do { } while (0)
435 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
436 #define STATS_SET_HIGH(x) do { } while (0)
437 #define STATS_INC_ERR(x) do { } while (0)
438 #define STATS_INC_NODEALLOCS(x) do { } while (0)
439 #define STATS_INC_NODEFREES(x) do { } while (0)
440 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
441 #define STATS_SET_FREEABLE(x, i) do { } while (0)
442 #define STATS_INC_ALLOCHIT(x) do { } while (0)
443 #define STATS_INC_ALLOCMISS(x) do { } while (0)
444 #define STATS_INC_FREEHIT(x) do { } while (0)
445 #define STATS_INC_FREEMISS(x) do { } while (0)
446 #endif
447
448 #if DEBUG
449
450 /*
451 * memory layout of objects:
452 * 0 : objp
453 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
454 * the end of an object is aligned with the end of the real
455 * allocation. Catches writes behind the end of the allocation.
456 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
457 * redzone word.
458 * cachep->obj_offset: The real object.
459 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
460 * cachep->size - 1* BYTES_PER_WORD: last caller address
461 * [BYTES_PER_WORD long]
462 */
463 static int obj_offset(struct kmem_cache *cachep)
464 {
465 return cachep->obj_offset;
466 }
467
468 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
469 {
470 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
471 return (unsigned long long*) (objp + obj_offset(cachep) -
472 sizeof(unsigned long long));
473 }
474
475 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
476 {
477 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
478 if (cachep->flags & SLAB_STORE_USER)
479 return (unsigned long long *)(objp + cachep->size -
480 sizeof(unsigned long long) -
481 REDZONE_ALIGN);
482 return (unsigned long long *) (objp + cachep->size -
483 sizeof(unsigned long long));
484 }
485
486 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
487 {
488 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
489 return (void **)(objp + cachep->size - BYTES_PER_WORD);
490 }
491
492 #else
493
494 #define obj_offset(x) 0
495 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
496 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
497 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
498
499 #endif
500
501 #ifdef CONFIG_TRACING
502 size_t slab_buffer_size(struct kmem_cache *cachep)
503 {
504 return cachep->size;
505 }
506 EXPORT_SYMBOL(slab_buffer_size);
507 #endif
508
509 /*
510 * Do not go above this order unless 0 objects fit into the slab or
511 * overridden on the command line.
512 */
513 #define SLAB_MAX_ORDER_HI 1
514 #define SLAB_MAX_ORDER_LO 0
515 static int slab_max_order = SLAB_MAX_ORDER_LO;
516 static bool slab_max_order_set __initdata;
517
518 static inline struct kmem_cache *virt_to_cache(const void *obj)
519 {
520 struct page *page = virt_to_head_page(obj);
521 return page->slab_cache;
522 }
523
524 static inline struct slab *virt_to_slab(const void *obj)
525 {
526 struct page *page = virt_to_head_page(obj);
527
528 VM_BUG_ON(!PageSlab(page));
529 return page->slab_page;
530 }
531
532 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
533 unsigned int idx)
534 {
535 return slab->s_mem + cache->size * idx;
536 }
537
538 /*
539 * We want to avoid an expensive divide : (offset / cache->size)
540 * Using the fact that size is a constant for a particular cache,
541 * we can replace (offset / cache->size) by
542 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
543 */
544 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
545 const struct slab *slab, void *obj)
546 {
547 u32 offset = (obj - slab->s_mem);
548 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
549 }
550
551 /*
552 * These are the default caches for kmalloc. Custom caches can have other sizes.
553 */
554 struct cache_sizes malloc_sizes[] = {
555 #define CACHE(x) { .cs_size = (x) },
556 #include <linux/kmalloc_sizes.h>
557 CACHE(ULONG_MAX)
558 #undef CACHE
559 };
560 EXPORT_SYMBOL(malloc_sizes);
561
562 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
563 struct cache_names {
564 char *name;
565 char *name_dma;
566 };
567
568 static struct cache_names __initdata cache_names[] = {
569 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
570 #include <linux/kmalloc_sizes.h>
571 {NULL,}
572 #undef CACHE
573 };
574
575 static struct arraycache_init initarray_cache __initdata =
576 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
577 static struct arraycache_init initarray_generic =
578 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
579
580 /* internal cache of cache description objs */
581 static struct kmem_list3 *cache_cache_nodelists[MAX_NUMNODES];
582 static struct kmem_cache cache_cache = {
583 .nodelists = cache_cache_nodelists,
584 .batchcount = 1,
585 .limit = BOOT_CPUCACHE_ENTRIES,
586 .shared = 1,
587 .size = sizeof(struct kmem_cache),
588 .name = "kmem_cache",
589 };
590
591 #define BAD_ALIEN_MAGIC 0x01020304ul
592
593 #ifdef CONFIG_LOCKDEP
594
595 /*
596 * Slab sometimes uses the kmalloc slabs to store the slab headers
597 * for other slabs "off slab".
598 * The locking for this is tricky in that it nests within the locks
599 * of all other slabs in a few places; to deal with this special
600 * locking we put on-slab caches into a separate lock-class.
601 *
602 * We set lock class for alien array caches which are up during init.
603 * The lock annotation will be lost if all cpus of a node goes down and
604 * then comes back up during hotplug
605 */
606 static struct lock_class_key on_slab_l3_key;
607 static struct lock_class_key on_slab_alc_key;
608
609 static struct lock_class_key debugobj_l3_key;
610 static struct lock_class_key debugobj_alc_key;
611
612 static void slab_set_lock_classes(struct kmem_cache *cachep,
613 struct lock_class_key *l3_key, struct lock_class_key *alc_key,
614 int q)
615 {
616 struct array_cache **alc;
617 struct kmem_list3 *l3;
618 int r;
619
620 l3 = cachep->nodelists[q];
621 if (!l3)
622 return;
623
624 lockdep_set_class(&l3->list_lock, l3_key);
625 alc = l3->alien;
626 /*
627 * FIXME: This check for BAD_ALIEN_MAGIC
628 * should go away when common slab code is taught to
629 * work even without alien caches.
630 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
631 * for alloc_alien_cache,
632 */
633 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
634 return;
635 for_each_node(r) {
636 if (alc[r])
637 lockdep_set_class(&alc[r]->lock, alc_key);
638 }
639 }
640
641 static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
642 {
643 slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
644 }
645
646 static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
647 {
648 int node;
649
650 for_each_online_node(node)
651 slab_set_debugobj_lock_classes_node(cachep, node);
652 }
653
654 static void init_node_lock_keys(int q)
655 {
656 struct cache_sizes *s = malloc_sizes;
657
658 if (slab_state < UP)
659 return;
660
661 for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
662 struct kmem_list3 *l3;
663
664 l3 = s->cs_cachep->nodelists[q];
665 if (!l3 || OFF_SLAB(s->cs_cachep))
666 continue;
667
668 slab_set_lock_classes(s->cs_cachep, &on_slab_l3_key,
669 &on_slab_alc_key, q);
670 }
671 }
672
673 static inline void init_lock_keys(void)
674 {
675 int node;
676
677 for_each_node(node)
678 init_node_lock_keys(node);
679 }
680 #else
681 static void init_node_lock_keys(int q)
682 {
683 }
684
685 static inline void init_lock_keys(void)
686 {
687 }
688
689 static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
690 {
691 }
692
693 static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
694 {
695 }
696 #endif
697
698 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
699
700 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
701 {
702 return cachep->array[smp_processor_id()];
703 }
704
705 static inline struct kmem_cache *__find_general_cachep(size_t size,
706 gfp_t gfpflags)
707 {
708 struct cache_sizes *csizep = malloc_sizes;
709
710 #if DEBUG
711 /* This happens if someone tries to call
712 * kmem_cache_create(), or __kmalloc(), before
713 * the generic caches are initialized.
714 */
715 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
716 #endif
717 if (!size)
718 return ZERO_SIZE_PTR;
719
720 while (size > csizep->cs_size)
721 csizep++;
722
723 /*
724 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
725 * has cs_{dma,}cachep==NULL. Thus no special case
726 * for large kmalloc calls required.
727 */
728 #ifdef CONFIG_ZONE_DMA
729 if (unlikely(gfpflags & GFP_DMA))
730 return csizep->cs_dmacachep;
731 #endif
732 return csizep->cs_cachep;
733 }
734
735 static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
736 {
737 return __find_general_cachep(size, gfpflags);
738 }
739
740 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
741 {
742 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
743 }
744
745 /*
746 * Calculate the number of objects and left-over bytes for a given buffer size.
747 */
748 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
749 size_t align, int flags, size_t *left_over,
750 unsigned int *num)
751 {
752 int nr_objs;
753 size_t mgmt_size;
754 size_t slab_size = PAGE_SIZE << gfporder;
755
756 /*
757 * The slab management structure can be either off the slab or
758 * on it. For the latter case, the memory allocated for a
759 * slab is used for:
760 *
761 * - The struct slab
762 * - One kmem_bufctl_t for each object
763 * - Padding to respect alignment of @align
764 * - @buffer_size bytes for each object
765 *
766 * If the slab management structure is off the slab, then the
767 * alignment will already be calculated into the size. Because
768 * the slabs are all pages aligned, the objects will be at the
769 * correct alignment when allocated.
770 */
771 if (flags & CFLGS_OFF_SLAB) {
772 mgmt_size = 0;
773 nr_objs = slab_size / buffer_size;
774
775 if (nr_objs > SLAB_LIMIT)
776 nr_objs = SLAB_LIMIT;
777 } else {
778 /*
779 * Ignore padding for the initial guess. The padding
780 * is at most @align-1 bytes, and @buffer_size is at
781 * least @align. In the worst case, this result will
782 * be one greater than the number of objects that fit
783 * into the memory allocation when taking the padding
784 * into account.
785 */
786 nr_objs = (slab_size - sizeof(struct slab)) /
787 (buffer_size + sizeof(kmem_bufctl_t));
788
789 /*
790 * This calculated number will be either the right
791 * amount, or one greater than what we want.
792 */
793 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
794 > slab_size)
795 nr_objs--;
796
797 if (nr_objs > SLAB_LIMIT)
798 nr_objs = SLAB_LIMIT;
799
800 mgmt_size = slab_mgmt_size(nr_objs, align);
801 }
802 *num = nr_objs;
803 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
804 }
805
806 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
807
808 static void __slab_error(const char *function, struct kmem_cache *cachep,
809 char *msg)
810 {
811 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
812 function, cachep->name, msg);
813 dump_stack();
814 }
815
816 /*
817 * By default on NUMA we use alien caches to stage the freeing of
818 * objects allocated from other nodes. This causes massive memory
819 * inefficiencies when using fake NUMA setup to split memory into a
820 * large number of small nodes, so it can be disabled on the command
821 * line
822 */
823
824 static int use_alien_caches __read_mostly = 1;
825 static int __init noaliencache_setup(char *s)
826 {
827 use_alien_caches = 0;
828 return 1;
829 }
830 __setup("noaliencache", noaliencache_setup);
831
832 static int __init slab_max_order_setup(char *str)
833 {
834 get_option(&str, &slab_max_order);
835 slab_max_order = slab_max_order < 0 ? 0 :
836 min(slab_max_order, MAX_ORDER - 1);
837 slab_max_order_set = true;
838
839 return 1;
840 }
841 __setup("slab_max_order=", slab_max_order_setup);
842
843 #ifdef CONFIG_NUMA
844 /*
845 * Special reaping functions for NUMA systems called from cache_reap().
846 * These take care of doing round robin flushing of alien caches (containing
847 * objects freed on different nodes from which they were allocated) and the
848 * flushing of remote pcps by calling drain_node_pages.
849 */
850 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
851
852 static void init_reap_node(int cpu)
853 {
854 int node;
855
856 node = next_node(cpu_to_mem(cpu), node_online_map);
857 if (node == MAX_NUMNODES)
858 node = first_node(node_online_map);
859
860 per_cpu(slab_reap_node, cpu) = node;
861 }
862
863 static void next_reap_node(void)
864 {
865 int node = __this_cpu_read(slab_reap_node);
866
867 node = next_node(node, node_online_map);
868 if (unlikely(node >= MAX_NUMNODES))
869 node = first_node(node_online_map);
870 __this_cpu_write(slab_reap_node, node);
871 }
872
873 #else
874 #define init_reap_node(cpu) do { } while (0)
875 #define next_reap_node(void) do { } while (0)
876 #endif
877
878 /*
879 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
880 * via the workqueue/eventd.
881 * Add the CPU number into the expiration time to minimize the possibility of
882 * the CPUs getting into lockstep and contending for the global cache chain
883 * lock.
884 */
885 static void __cpuinit start_cpu_timer(int cpu)
886 {
887 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
888
889 /*
890 * When this gets called from do_initcalls via cpucache_init(),
891 * init_workqueues() has already run, so keventd will be setup
892 * at that time.
893 */
894 if (keventd_up() && reap_work->work.func == NULL) {
895 init_reap_node(cpu);
896 INIT_DELAYED_WORK_DEFERRABLE(reap_work, cache_reap);
897 schedule_delayed_work_on(cpu, reap_work,
898 __round_jiffies_relative(HZ, cpu));
899 }
900 }
901
902 static struct array_cache *alloc_arraycache(int node, int entries,
903 int batchcount, gfp_t gfp)
904 {
905 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
906 struct array_cache *nc = NULL;
907
908 nc = kmalloc_node(memsize, gfp, node);
909 /*
910 * The array_cache structures contain pointers to free object.
911 * However, when such objects are allocated or transferred to another
912 * cache the pointers are not cleared and they could be counted as
913 * valid references during a kmemleak scan. Therefore, kmemleak must
914 * not scan such objects.
915 */
916 kmemleak_no_scan(nc);
917 if (nc) {
918 nc->avail = 0;
919 nc->limit = entries;
920 nc->batchcount = batchcount;
921 nc->touched = 0;
922 spin_lock_init(&nc->lock);
923 }
924 return nc;
925 }
926
927 static inline bool is_slab_pfmemalloc(struct slab *slabp)
928 {
929 struct page *page = virt_to_page(slabp->s_mem);
930
931 return PageSlabPfmemalloc(page);
932 }
933
934 /* Clears pfmemalloc_active if no slabs have pfmalloc set */
935 static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
936 struct array_cache *ac)
937 {
938 struct kmem_list3 *l3 = cachep->nodelists[numa_mem_id()];
939 struct slab *slabp;
940 unsigned long flags;
941
942 if (!pfmemalloc_active)
943 return;
944
945 spin_lock_irqsave(&l3->list_lock, flags);
946 list_for_each_entry(slabp, &l3->slabs_full, list)
947 if (is_slab_pfmemalloc(slabp))
948 goto out;
949
950 list_for_each_entry(slabp, &l3->slabs_partial, list)
951 if (is_slab_pfmemalloc(slabp))
952 goto out;
953
954 list_for_each_entry(slabp, &l3->slabs_free, list)
955 if (is_slab_pfmemalloc(slabp))
956 goto out;
957
958 pfmemalloc_active = false;
959 out:
960 spin_unlock_irqrestore(&l3->list_lock, flags);
961 }
962
963 static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
964 gfp_t flags, bool force_refill)
965 {
966 int i;
967 void *objp = ac->entry[--ac->avail];
968
969 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
970 if (unlikely(is_obj_pfmemalloc(objp))) {
971 struct kmem_list3 *l3;
972
973 if (gfp_pfmemalloc_allowed(flags)) {
974 clear_obj_pfmemalloc(&objp);
975 return objp;
976 }
977
978 /* The caller cannot use PFMEMALLOC objects, find another one */
979 for (i = 1; i < ac->avail; i++) {
980 /* If a !PFMEMALLOC object is found, swap them */
981 if (!is_obj_pfmemalloc(ac->entry[i])) {
982 objp = ac->entry[i];
983 ac->entry[i] = ac->entry[ac->avail];
984 ac->entry[ac->avail] = objp;
985 return objp;
986 }
987 }
988
989 /*
990 * If there are empty slabs on the slabs_free list and we are
991 * being forced to refill the cache, mark this one !pfmemalloc.
992 */
993 l3 = cachep->nodelists[numa_mem_id()];
994 if (!list_empty(&l3->slabs_free) && force_refill) {
995 struct slab *slabp = virt_to_slab(objp);
996 ClearPageSlabPfmemalloc(virt_to_page(slabp->s_mem));
997 clear_obj_pfmemalloc(&objp);
998 recheck_pfmemalloc_active(cachep, ac);
999 return objp;
1000 }
1001
1002 /* No !PFMEMALLOC objects available */
1003 ac->avail++;
1004 objp = NULL;
1005 }
1006
1007 return objp;
1008 }
1009
1010 static inline void *ac_get_obj(struct kmem_cache *cachep,
1011 struct array_cache *ac, gfp_t flags, bool force_refill)
1012 {
1013 void *objp;
1014
1015 if (unlikely(sk_memalloc_socks()))
1016 objp = __ac_get_obj(cachep, ac, flags, force_refill);
1017 else
1018 objp = ac->entry[--ac->avail];
1019
1020 return objp;
1021 }
1022
1023 static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
1024 void *objp)
1025 {
1026 if (unlikely(pfmemalloc_active)) {
1027 /* Some pfmemalloc slabs exist, check if this is one */
1028 struct page *page = virt_to_page(objp);
1029 if (PageSlabPfmemalloc(page))
1030 set_obj_pfmemalloc(&objp);
1031 }
1032
1033 return objp;
1034 }
1035
1036 static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
1037 void *objp)
1038 {
1039 if (unlikely(sk_memalloc_socks()))
1040 objp = __ac_put_obj(cachep, ac, objp);
1041
1042 ac->entry[ac->avail++] = objp;
1043 }
1044
1045 /*
1046 * Transfer objects in one arraycache to another.
1047 * Locking must be handled by the caller.
1048 *
1049 * Return the number of entries transferred.
1050 */
1051 static int transfer_objects(struct array_cache *to,
1052 struct array_cache *from, unsigned int max)
1053 {
1054 /* Figure out how many entries to transfer */
1055 int nr = min3(from->avail, max, to->limit - to->avail);
1056
1057 if (!nr)
1058 return 0;
1059
1060 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
1061 sizeof(void *) *nr);
1062
1063 from->avail -= nr;
1064 to->avail += nr;
1065 return nr;
1066 }
1067
1068 #ifndef CONFIG_NUMA
1069
1070 #define drain_alien_cache(cachep, alien) do { } while (0)
1071 #define reap_alien(cachep, l3) do { } while (0)
1072
1073 static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1074 {
1075 return (struct array_cache **)BAD_ALIEN_MAGIC;
1076 }
1077
1078 static inline void free_alien_cache(struct array_cache **ac_ptr)
1079 {
1080 }
1081
1082 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1083 {
1084 return 0;
1085 }
1086
1087 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1088 gfp_t flags)
1089 {
1090 return NULL;
1091 }
1092
1093 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1094 gfp_t flags, int nodeid)
1095 {
1096 return NULL;
1097 }
1098
1099 #else /* CONFIG_NUMA */
1100
1101 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1102 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1103
1104 static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1105 {
1106 struct array_cache **ac_ptr;
1107 int memsize = sizeof(void *) * nr_node_ids;
1108 int i;
1109
1110 if (limit > 1)
1111 limit = 12;
1112 ac_ptr = kzalloc_node(memsize, gfp, node);
1113 if (ac_ptr) {
1114 for_each_node(i) {
1115 if (i == node || !node_online(i))
1116 continue;
1117 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
1118 if (!ac_ptr[i]) {
1119 for (i--; i >= 0; i--)
1120 kfree(ac_ptr[i]);
1121 kfree(ac_ptr);
1122 return NULL;
1123 }
1124 }
1125 }
1126 return ac_ptr;
1127 }
1128
1129 static void free_alien_cache(struct array_cache **ac_ptr)
1130 {
1131 int i;
1132
1133 if (!ac_ptr)
1134 return;
1135 for_each_node(i)
1136 kfree(ac_ptr[i]);
1137 kfree(ac_ptr);
1138 }
1139
1140 static void __drain_alien_cache(struct kmem_cache *cachep,
1141 struct array_cache *ac, int node)
1142 {
1143 struct kmem_list3 *rl3 = cachep->nodelists[node];
1144
1145 if (ac->avail) {
1146 spin_lock(&rl3->list_lock);
1147 /*
1148 * Stuff objects into the remote nodes shared array first.
1149 * That way we could avoid the overhead of putting the objects
1150 * into the free lists and getting them back later.
1151 */
1152 if (rl3->shared)
1153 transfer_objects(rl3->shared, ac, ac->limit);
1154
1155 free_block(cachep, ac->entry, ac->avail, node);
1156 ac->avail = 0;
1157 spin_unlock(&rl3->list_lock);
1158 }
1159 }
1160
1161 /*
1162 * Called from cache_reap() to regularly drain alien caches round robin.
1163 */
1164 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1165 {
1166 int node = __this_cpu_read(slab_reap_node);
1167
1168 if (l3->alien) {
1169 struct array_cache *ac = l3->alien[node];
1170
1171 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1172 __drain_alien_cache(cachep, ac, node);
1173 spin_unlock_irq(&ac->lock);
1174 }
1175 }
1176 }
1177
1178 static void drain_alien_cache(struct kmem_cache *cachep,
1179 struct array_cache **alien)
1180 {
1181 int i = 0;
1182 struct array_cache *ac;
1183 unsigned long flags;
1184
1185 for_each_online_node(i) {
1186 ac = alien[i];
1187 if (ac) {
1188 spin_lock_irqsave(&ac->lock, flags);
1189 __drain_alien_cache(cachep, ac, i);
1190 spin_unlock_irqrestore(&ac->lock, flags);
1191 }
1192 }
1193 }
1194
1195 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1196 {
1197 struct slab *slabp = virt_to_slab(objp);
1198 int nodeid = slabp->nodeid;
1199 struct kmem_list3 *l3;
1200 struct array_cache *alien = NULL;
1201 int node;
1202
1203 node = numa_mem_id();
1204
1205 /*
1206 * Make sure we are not freeing a object from another node to the array
1207 * cache on this cpu.
1208 */
1209 if (likely(slabp->nodeid == node))
1210 return 0;
1211
1212 l3 = cachep->nodelists[node];
1213 STATS_INC_NODEFREES(cachep);
1214 if (l3->alien && l3->alien[nodeid]) {
1215 alien = l3->alien[nodeid];
1216 spin_lock(&alien->lock);
1217 if (unlikely(alien->avail == alien->limit)) {
1218 STATS_INC_ACOVERFLOW(cachep);
1219 __drain_alien_cache(cachep, alien, nodeid);
1220 }
1221 ac_put_obj(cachep, alien, objp);
1222 spin_unlock(&alien->lock);
1223 } else {
1224 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1225 free_block(cachep, &objp, 1, nodeid);
1226 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1227 }
1228 return 1;
1229 }
1230 #endif
1231
1232 /*
1233 * Allocates and initializes nodelists for a node on each slab cache, used for
1234 * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3
1235 * will be allocated off-node since memory is not yet online for the new node.
1236 * When hotplugging memory or a cpu, existing nodelists are not replaced if
1237 * already in use.
1238 *
1239 * Must hold slab_mutex.
1240 */
1241 static int init_cache_nodelists_node(int node)
1242 {
1243 struct kmem_cache *cachep;
1244 struct kmem_list3 *l3;
1245 const int memsize = sizeof(struct kmem_list3);
1246
1247 list_for_each_entry(cachep, &slab_caches, list) {
1248 /*
1249 * Set up the size64 kmemlist for cpu before we can
1250 * begin anything. Make sure some other cpu on this
1251 * node has not already allocated this
1252 */
1253 if (!cachep->nodelists[node]) {
1254 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1255 if (!l3)
1256 return -ENOMEM;
1257 kmem_list3_init(l3);
1258 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1259 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1260
1261 /*
1262 * The l3s don't come and go as CPUs come and
1263 * go. slab_mutex is sufficient
1264 * protection here.
1265 */
1266 cachep->nodelists[node] = l3;
1267 }
1268
1269 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1270 cachep->nodelists[node]->free_limit =
1271 (1 + nr_cpus_node(node)) *
1272 cachep->batchcount + cachep->num;
1273 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1274 }
1275 return 0;
1276 }
1277
1278 static void __cpuinit cpuup_canceled(long cpu)
1279 {
1280 struct kmem_cache *cachep;
1281 struct kmem_list3 *l3 = NULL;
1282 int node = cpu_to_mem(cpu);
1283 const struct cpumask *mask = cpumask_of_node(node);
1284
1285 list_for_each_entry(cachep, &slab_caches, list) {
1286 struct array_cache *nc;
1287 struct array_cache *shared;
1288 struct array_cache **alien;
1289
1290 /* cpu is dead; no one can alloc from it. */
1291 nc = cachep->array[cpu];
1292 cachep->array[cpu] = NULL;
1293 l3 = cachep->nodelists[node];
1294
1295 if (!l3)
1296 goto free_array_cache;
1297
1298 spin_lock_irq(&l3->list_lock);
1299
1300 /* Free limit for this kmem_list3 */
1301 l3->free_limit -= cachep->batchcount;
1302 if (nc)
1303 free_block(cachep, nc->entry, nc->avail, node);
1304
1305 if (!cpumask_empty(mask)) {
1306 spin_unlock_irq(&l3->list_lock);
1307 goto free_array_cache;
1308 }
1309
1310 shared = l3->shared;
1311 if (shared) {
1312 free_block(cachep, shared->entry,
1313 shared->avail, node);
1314 l3->shared = NULL;
1315 }
1316
1317 alien = l3->alien;
1318 l3->alien = NULL;
1319
1320 spin_unlock_irq(&l3->list_lock);
1321
1322 kfree(shared);
1323 if (alien) {
1324 drain_alien_cache(cachep, alien);
1325 free_alien_cache(alien);
1326 }
1327 free_array_cache:
1328 kfree(nc);
1329 }
1330 /*
1331 * In the previous loop, all the objects were freed to
1332 * the respective cache's slabs, now we can go ahead and
1333 * shrink each nodelist to its limit.
1334 */
1335 list_for_each_entry(cachep, &slab_caches, list) {
1336 l3 = cachep->nodelists[node];
1337 if (!l3)
1338 continue;
1339 drain_freelist(cachep, l3, l3->free_objects);
1340 }
1341 }
1342
1343 static int __cpuinit cpuup_prepare(long cpu)
1344 {
1345 struct kmem_cache *cachep;
1346 struct kmem_list3 *l3 = NULL;
1347 int node = cpu_to_mem(cpu);
1348 int err;
1349
1350 /*
1351 * We need to do this right in the beginning since
1352 * alloc_arraycache's are going to use this list.
1353 * kmalloc_node allows us to add the slab to the right
1354 * kmem_list3 and not this cpu's kmem_list3
1355 */
1356 err = init_cache_nodelists_node(node);
1357 if (err < 0)
1358 goto bad;
1359
1360 /*
1361 * Now we can go ahead with allocating the shared arrays and
1362 * array caches
1363 */
1364 list_for_each_entry(cachep, &slab_caches, list) {
1365 struct array_cache *nc;
1366 struct array_cache *shared = NULL;
1367 struct array_cache **alien = NULL;
1368
1369 nc = alloc_arraycache(node, cachep->limit,
1370 cachep->batchcount, GFP_KERNEL);
1371 if (!nc)
1372 goto bad;
1373 if (cachep->shared) {
1374 shared = alloc_arraycache(node,
1375 cachep->shared * cachep->batchcount,
1376 0xbaadf00d, GFP_KERNEL);
1377 if (!shared) {
1378 kfree(nc);
1379 goto bad;
1380 }
1381 }
1382 if (use_alien_caches) {
1383 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1384 if (!alien) {
1385 kfree(shared);
1386 kfree(nc);
1387 goto bad;
1388 }
1389 }
1390 cachep->array[cpu] = nc;
1391 l3 = cachep->nodelists[node];
1392 BUG_ON(!l3);
1393
1394 spin_lock_irq(&l3->list_lock);
1395 if (!l3->shared) {
1396 /*
1397 * We are serialised from CPU_DEAD or
1398 * CPU_UP_CANCELLED by the cpucontrol lock
1399 */
1400 l3->shared = shared;
1401 shared = NULL;
1402 }
1403 #ifdef CONFIG_NUMA
1404 if (!l3->alien) {
1405 l3->alien = alien;
1406 alien = NULL;
1407 }
1408 #endif
1409 spin_unlock_irq(&l3->list_lock);
1410 kfree(shared);
1411 free_alien_cache(alien);
1412 if (cachep->flags & SLAB_DEBUG_OBJECTS)
1413 slab_set_debugobj_lock_classes_node(cachep, node);
1414 }
1415 init_node_lock_keys(node);
1416
1417 return 0;
1418 bad:
1419 cpuup_canceled(cpu);
1420 return -ENOMEM;
1421 }
1422
1423 static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1424 unsigned long action, void *hcpu)
1425 {
1426 long cpu = (long)hcpu;
1427 int err = 0;
1428
1429 switch (action) {
1430 case CPU_UP_PREPARE:
1431 case CPU_UP_PREPARE_FROZEN:
1432 mutex_lock(&slab_mutex);
1433 err = cpuup_prepare(cpu);
1434 mutex_unlock(&slab_mutex);
1435 break;
1436 case CPU_ONLINE:
1437 case CPU_ONLINE_FROZEN:
1438 start_cpu_timer(cpu);
1439 break;
1440 #ifdef CONFIG_HOTPLUG_CPU
1441 case CPU_DOWN_PREPARE:
1442 case CPU_DOWN_PREPARE_FROZEN:
1443 /*
1444 * Shutdown cache reaper. Note that the slab_mutex is
1445 * held so that if cache_reap() is invoked it cannot do
1446 * anything expensive but will only modify reap_work
1447 * and reschedule the timer.
1448 */
1449 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1450 /* Now the cache_reaper is guaranteed to be not running. */
1451 per_cpu(slab_reap_work, cpu).work.func = NULL;
1452 break;
1453 case CPU_DOWN_FAILED:
1454 case CPU_DOWN_FAILED_FROZEN:
1455 start_cpu_timer(cpu);
1456 break;
1457 case CPU_DEAD:
1458 case CPU_DEAD_FROZEN:
1459 /*
1460 * Even if all the cpus of a node are down, we don't free the
1461 * kmem_list3 of any cache. This to avoid a race between
1462 * cpu_down, and a kmalloc allocation from another cpu for
1463 * memory from the node of the cpu going down. The list3
1464 * structure is usually allocated from kmem_cache_create() and
1465 * gets destroyed at kmem_cache_destroy().
1466 */
1467 /* fall through */
1468 #endif
1469 case CPU_UP_CANCELED:
1470 case CPU_UP_CANCELED_FROZEN:
1471 mutex_lock(&slab_mutex);
1472 cpuup_canceled(cpu);
1473 mutex_unlock(&slab_mutex);
1474 break;
1475 }
1476 return notifier_from_errno(err);
1477 }
1478
1479 static struct notifier_block __cpuinitdata cpucache_notifier = {
1480 &cpuup_callback, NULL, 0
1481 };
1482
1483 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1484 /*
1485 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1486 * Returns -EBUSY if all objects cannot be drained so that the node is not
1487 * removed.
1488 *
1489 * Must hold slab_mutex.
1490 */
1491 static int __meminit drain_cache_nodelists_node(int node)
1492 {
1493 struct kmem_cache *cachep;
1494 int ret = 0;
1495
1496 list_for_each_entry(cachep, &slab_caches, list) {
1497 struct kmem_list3 *l3;
1498
1499 l3 = cachep->nodelists[node];
1500 if (!l3)
1501 continue;
1502
1503 drain_freelist(cachep, l3, l3->free_objects);
1504
1505 if (!list_empty(&l3->slabs_full) ||
1506 !list_empty(&l3->slabs_partial)) {
1507 ret = -EBUSY;
1508 break;
1509 }
1510 }
1511 return ret;
1512 }
1513
1514 static int __meminit slab_memory_callback(struct notifier_block *self,
1515 unsigned long action, void *arg)
1516 {
1517 struct memory_notify *mnb = arg;
1518 int ret = 0;
1519 int nid;
1520
1521 nid = mnb->status_change_nid;
1522 if (nid < 0)
1523 goto out;
1524
1525 switch (action) {
1526 case MEM_GOING_ONLINE:
1527 mutex_lock(&slab_mutex);
1528 ret = init_cache_nodelists_node(nid);
1529 mutex_unlock(&slab_mutex);
1530 break;
1531 case MEM_GOING_OFFLINE:
1532 mutex_lock(&slab_mutex);
1533 ret = drain_cache_nodelists_node(nid);
1534 mutex_unlock(&slab_mutex);
1535 break;
1536 case MEM_ONLINE:
1537 case MEM_OFFLINE:
1538 case MEM_CANCEL_ONLINE:
1539 case MEM_CANCEL_OFFLINE:
1540 break;
1541 }
1542 out:
1543 return notifier_from_errno(ret);
1544 }
1545 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1546
1547 /*
1548 * swap the static kmem_list3 with kmalloced memory
1549 */
1550 static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1551 int nodeid)
1552 {
1553 struct kmem_list3 *ptr;
1554
1555 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
1556 BUG_ON(!ptr);
1557
1558 memcpy(ptr, list, sizeof(struct kmem_list3));
1559 /*
1560 * Do not assume that spinlocks can be initialized via memcpy:
1561 */
1562 spin_lock_init(&ptr->list_lock);
1563
1564 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1565 cachep->nodelists[nodeid] = ptr;
1566 }
1567
1568 /*
1569 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1570 * size of kmem_list3.
1571 */
1572 static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1573 {
1574 int node;
1575
1576 for_each_online_node(node) {
1577 cachep->nodelists[node] = &initkmem_list3[index + node];
1578 cachep->nodelists[node]->next_reap = jiffies +
1579 REAPTIMEOUT_LIST3 +
1580 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1581 }
1582 }
1583
1584 /*
1585 * Initialisation. Called after the page allocator have been initialised and
1586 * before smp_init().
1587 */
1588 void __init kmem_cache_init(void)
1589 {
1590 size_t left_over;
1591 struct cache_sizes *sizes;
1592 struct cache_names *names;
1593 int i;
1594 int order;
1595 int node;
1596
1597 if (num_possible_nodes() == 1)
1598 use_alien_caches = 0;
1599
1600 for (i = 0; i < NUM_INIT_LISTS; i++) {
1601 kmem_list3_init(&initkmem_list3[i]);
1602 if (i < MAX_NUMNODES)
1603 cache_cache.nodelists[i] = NULL;
1604 }
1605 set_up_list3s(&cache_cache, CACHE_CACHE);
1606
1607 /*
1608 * Fragmentation resistance on low memory - only use bigger
1609 * page orders on machines with more than 32MB of memory if
1610 * not overridden on the command line.
1611 */
1612 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1613 slab_max_order = SLAB_MAX_ORDER_HI;
1614
1615 /* Bootstrap is tricky, because several objects are allocated
1616 * from caches that do not exist yet:
1617 * 1) initialize the cache_cache cache: it contains the struct
1618 * kmem_cache structures of all caches, except cache_cache itself:
1619 * cache_cache is statically allocated.
1620 * Initially an __init data area is used for the head array and the
1621 * kmem_list3 structures, it's replaced with a kmalloc allocated
1622 * array at the end of the bootstrap.
1623 * 2) Create the first kmalloc cache.
1624 * The struct kmem_cache for the new cache is allocated normally.
1625 * An __init data area is used for the head array.
1626 * 3) Create the remaining kmalloc caches, with minimally sized
1627 * head arrays.
1628 * 4) Replace the __init data head arrays for cache_cache and the first
1629 * kmalloc cache with kmalloc allocated arrays.
1630 * 5) Replace the __init data for kmem_list3 for cache_cache and
1631 * the other cache's with kmalloc allocated memory.
1632 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1633 */
1634
1635 node = numa_mem_id();
1636
1637 /* 1) create the cache_cache */
1638 INIT_LIST_HEAD(&slab_caches);
1639 list_add(&cache_cache.list, &slab_caches);
1640 cache_cache.colour_off = cache_line_size();
1641 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1642 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
1643
1644 /*
1645 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1646 */
1647 cache_cache.size = offsetof(struct kmem_cache, array[nr_cpu_ids]) +
1648 nr_node_ids * sizeof(struct kmem_list3 *);
1649 cache_cache.object_size = cache_cache.size;
1650 cache_cache.size = ALIGN(cache_cache.size,
1651 cache_line_size());
1652 cache_cache.reciprocal_buffer_size =
1653 reciprocal_value(cache_cache.size);
1654
1655 for (order = 0; order < MAX_ORDER; order++) {
1656 cache_estimate(order, cache_cache.size,
1657 cache_line_size(), 0, &left_over, &cache_cache.num);
1658 if (cache_cache.num)
1659 break;
1660 }
1661 BUG_ON(!cache_cache.num);
1662 cache_cache.gfporder = order;
1663 cache_cache.colour = left_over / cache_cache.colour_off;
1664 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1665 sizeof(struct slab), cache_line_size());
1666
1667 /* 2+3) create the kmalloc caches */
1668 sizes = malloc_sizes;
1669 names = cache_names;
1670
1671 /*
1672 * Initialize the caches that provide memory for the array cache and the
1673 * kmem_list3 structures first. Without this, further allocations will
1674 * bug.
1675 */
1676
1677 sizes[INDEX_AC].cs_cachep = __kmem_cache_create(names[INDEX_AC].name,
1678 sizes[INDEX_AC].cs_size,
1679 ARCH_KMALLOC_MINALIGN,
1680 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1681 NULL);
1682
1683 list_add(&sizes[INDEX_AC].cs_cachep->list, &slab_caches);
1684 if (INDEX_AC != INDEX_L3) {
1685 sizes[INDEX_L3].cs_cachep =
1686 __kmem_cache_create(names[INDEX_L3].name,
1687 sizes[INDEX_L3].cs_size,
1688 ARCH_KMALLOC_MINALIGN,
1689 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1690 NULL);
1691 list_add(&sizes[INDEX_L3].cs_cachep->list, &slab_caches);
1692 }
1693
1694 slab_early_init = 0;
1695
1696 while (sizes->cs_size != ULONG_MAX) {
1697 /*
1698 * For performance, all the general caches are L1 aligned.
1699 * This should be particularly beneficial on SMP boxes, as it
1700 * eliminates "false sharing".
1701 * Note for systems short on memory removing the alignment will
1702 * allow tighter packing of the smaller caches.
1703 */
1704 if (!sizes->cs_cachep) {
1705 sizes->cs_cachep = __kmem_cache_create(names->name,
1706 sizes->cs_size,
1707 ARCH_KMALLOC_MINALIGN,
1708 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1709 NULL);
1710 list_add(&sizes->cs_cachep->list, &slab_caches);
1711 }
1712 #ifdef CONFIG_ZONE_DMA
1713 sizes->cs_dmacachep = __kmem_cache_create(
1714 names->name_dma,
1715 sizes->cs_size,
1716 ARCH_KMALLOC_MINALIGN,
1717 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1718 SLAB_PANIC,
1719 NULL);
1720 list_add(&sizes->cs_dmacachep->list, &slab_caches);
1721 #endif
1722 sizes++;
1723 names++;
1724 }
1725 /* 4) Replace the bootstrap head arrays */
1726 {
1727 struct array_cache *ptr;
1728
1729 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1730
1731 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1732 memcpy(ptr, cpu_cache_get(&cache_cache),
1733 sizeof(struct arraycache_init));
1734 /*
1735 * Do not assume that spinlocks can be initialized via memcpy:
1736 */
1737 spin_lock_init(&ptr->lock);
1738
1739 cache_cache.array[smp_processor_id()] = ptr;
1740
1741 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1742
1743 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1744 != &initarray_generic.cache);
1745 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1746 sizeof(struct arraycache_init));
1747 /*
1748 * Do not assume that spinlocks can be initialized via memcpy:
1749 */
1750 spin_lock_init(&ptr->lock);
1751
1752 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1753 ptr;
1754 }
1755 /* 5) Replace the bootstrap kmem_list3's */
1756 {
1757 int nid;
1758
1759 for_each_online_node(nid) {
1760 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
1761
1762 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1763 &initkmem_list3[SIZE_AC + nid], nid);
1764
1765 if (INDEX_AC != INDEX_L3) {
1766 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1767 &initkmem_list3[SIZE_L3 + nid], nid);
1768 }
1769 }
1770 }
1771
1772 slab_state = UP;
1773 }
1774
1775 void __init kmem_cache_init_late(void)
1776 {
1777 struct kmem_cache *cachep;
1778
1779 slab_state = UP;
1780
1781 /* Annotate slab for lockdep -- annotate the malloc caches */
1782 init_lock_keys();
1783
1784 /* 6) resize the head arrays to their final sizes */
1785 mutex_lock(&slab_mutex);
1786 list_for_each_entry(cachep, &slab_caches, list)
1787 if (enable_cpucache(cachep, GFP_NOWAIT))
1788 BUG();
1789 mutex_unlock(&slab_mutex);
1790
1791 /* Done! */
1792 slab_state = FULL;
1793
1794 /*
1795 * Register a cpu startup notifier callback that initializes
1796 * cpu_cache_get for all new cpus
1797 */
1798 register_cpu_notifier(&cpucache_notifier);
1799
1800 #ifdef CONFIG_NUMA
1801 /*
1802 * Register a memory hotplug callback that initializes and frees
1803 * nodelists.
1804 */
1805 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1806 #endif
1807
1808 /*
1809 * The reap timers are started later, with a module init call: That part
1810 * of the kernel is not yet operational.
1811 */
1812 }
1813
1814 static int __init cpucache_init(void)
1815 {
1816 int cpu;
1817
1818 /*
1819 * Register the timers that return unneeded pages to the page allocator
1820 */
1821 for_each_online_cpu(cpu)
1822 start_cpu_timer(cpu);
1823
1824 /* Done! */
1825 slab_state = FULL;
1826 return 0;
1827 }
1828 __initcall(cpucache_init);
1829
1830 static noinline void
1831 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1832 {
1833 struct kmem_list3 *l3;
1834 struct slab *slabp;
1835 unsigned long flags;
1836 int node;
1837
1838 printk(KERN_WARNING
1839 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1840 nodeid, gfpflags);
1841 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
1842 cachep->name, cachep->size, cachep->gfporder);
1843
1844 for_each_online_node(node) {
1845 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1846 unsigned long active_slabs = 0, num_slabs = 0;
1847
1848 l3 = cachep->nodelists[node];
1849 if (!l3)
1850 continue;
1851
1852 spin_lock_irqsave(&l3->list_lock, flags);
1853 list_for_each_entry(slabp, &l3->slabs_full, list) {
1854 active_objs += cachep->num;
1855 active_slabs++;
1856 }
1857 list_for_each_entry(slabp, &l3->slabs_partial, list) {
1858 active_objs += slabp->inuse;
1859 active_slabs++;
1860 }
1861 list_for_each_entry(slabp, &l3->slabs_free, list)
1862 num_slabs++;
1863
1864 free_objects += l3->free_objects;
1865 spin_unlock_irqrestore(&l3->list_lock, flags);
1866
1867 num_slabs += active_slabs;
1868 num_objs = num_slabs * cachep->num;
1869 printk(KERN_WARNING
1870 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1871 node, active_slabs, num_slabs, active_objs, num_objs,
1872 free_objects);
1873 }
1874 }
1875
1876 /*
1877 * Interface to system's page allocator. No need to hold the cache-lock.
1878 *
1879 * If we requested dmaable memory, we will get it. Even if we
1880 * did not request dmaable memory, we might get it, but that
1881 * would be relatively rare and ignorable.
1882 */
1883 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1884 {
1885 struct page *page;
1886 int nr_pages;
1887 int i;
1888
1889 #ifndef CONFIG_MMU
1890 /*
1891 * Nommu uses slab's for process anonymous memory allocations, and thus
1892 * requires __GFP_COMP to properly refcount higher order allocations
1893 */
1894 flags |= __GFP_COMP;
1895 #endif
1896
1897 flags |= cachep->allocflags;
1898 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1899 flags |= __GFP_RECLAIMABLE;
1900
1901 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1902 if (!page) {
1903 if (!(flags & __GFP_NOWARN) && printk_ratelimit())
1904 slab_out_of_memory(cachep, flags, nodeid);
1905 return NULL;
1906 }
1907
1908 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1909 if (unlikely(page->pfmemalloc))
1910 pfmemalloc_active = true;
1911
1912 nr_pages = (1 << cachep->gfporder);
1913 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1914 add_zone_page_state(page_zone(page),
1915 NR_SLAB_RECLAIMABLE, nr_pages);
1916 else
1917 add_zone_page_state(page_zone(page),
1918 NR_SLAB_UNRECLAIMABLE, nr_pages);
1919 for (i = 0; i < nr_pages; i++) {
1920 __SetPageSlab(page + i);
1921
1922 if (page->pfmemalloc)
1923 SetPageSlabPfmemalloc(page + i);
1924 }
1925
1926 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1927 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1928
1929 if (cachep->ctor)
1930 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1931 else
1932 kmemcheck_mark_unallocated_pages(page, nr_pages);
1933 }
1934
1935 return page_address(page);
1936 }
1937
1938 /*
1939 * Interface to system's page release.
1940 */
1941 static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1942 {
1943 unsigned long i = (1 << cachep->gfporder);
1944 struct page *page = virt_to_page(addr);
1945 const unsigned long nr_freed = i;
1946
1947 kmemcheck_free_shadow(page, cachep->gfporder);
1948
1949 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1950 sub_zone_page_state(page_zone(page),
1951 NR_SLAB_RECLAIMABLE, nr_freed);
1952 else
1953 sub_zone_page_state(page_zone(page),
1954 NR_SLAB_UNRECLAIMABLE, nr_freed);
1955 while (i--) {
1956 BUG_ON(!PageSlab(page));
1957 __ClearPageSlabPfmemalloc(page);
1958 __ClearPageSlab(page);
1959 page++;
1960 }
1961 if (current->reclaim_state)
1962 current->reclaim_state->reclaimed_slab += nr_freed;
1963 free_pages((unsigned long)addr, cachep->gfporder);
1964 }
1965
1966 static void kmem_rcu_free(struct rcu_head *head)
1967 {
1968 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1969 struct kmem_cache *cachep = slab_rcu->cachep;
1970
1971 kmem_freepages(cachep, slab_rcu->addr);
1972 if (OFF_SLAB(cachep))
1973 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1974 }
1975
1976 #if DEBUG
1977
1978 #ifdef CONFIG_DEBUG_PAGEALLOC
1979 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1980 unsigned long caller)
1981 {
1982 int size = cachep->object_size;
1983
1984 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1985
1986 if (size < 5 * sizeof(unsigned long))
1987 return;
1988
1989 *addr++ = 0x12345678;
1990 *addr++ = caller;
1991 *addr++ = smp_processor_id();
1992 size -= 3 * sizeof(unsigned long);
1993 {
1994 unsigned long *sptr = &caller;
1995 unsigned long svalue;
1996
1997 while (!kstack_end(sptr)) {
1998 svalue = *sptr++;
1999 if (kernel_text_address(svalue)) {
2000 *addr++ = svalue;
2001 size -= sizeof(unsigned long);
2002 if (size <= sizeof(unsigned long))
2003 break;
2004 }
2005 }
2006
2007 }
2008 *addr++ = 0x87654321;
2009 }
2010 #endif
2011
2012 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
2013 {
2014 int size = cachep->object_size;
2015 addr = &((char *)addr)[obj_offset(cachep)];
2016
2017 memset(addr, val, size);
2018 *(unsigned char *)(addr + size - 1) = POISON_END;
2019 }
2020
2021 static void dump_line(char *data, int offset, int limit)
2022 {
2023 int i;
2024 unsigned char error = 0;
2025 int bad_count = 0;
2026
2027 printk(KERN_ERR "%03x: ", offset);
2028 for (i = 0; i < limit; i++) {
2029 if (data[offset + i] != POISON_FREE) {
2030 error = data[offset + i];
2031 bad_count++;
2032 }
2033 }
2034 print_hex_dump(KERN_CONT, "", 0, 16, 1,
2035 &data[offset], limit, 1);
2036
2037 if (bad_count == 1) {
2038 error ^= POISON_FREE;
2039 if (!(error & (error - 1))) {
2040 printk(KERN_ERR "Single bit error detected. Probably "
2041 "bad RAM.\n");
2042 #ifdef CONFIG_X86
2043 printk(KERN_ERR "Run memtest86+ or a similar memory "
2044 "test tool.\n");
2045 #else
2046 printk(KERN_ERR "Run a memory test tool.\n");
2047 #endif
2048 }
2049 }
2050 }
2051 #endif
2052
2053 #if DEBUG
2054
2055 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
2056 {
2057 int i, size;
2058 char *realobj;
2059
2060 if (cachep->flags & SLAB_RED_ZONE) {
2061 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
2062 *dbg_redzone1(cachep, objp),
2063 *dbg_redzone2(cachep, objp));
2064 }
2065
2066 if (cachep->flags & SLAB_STORE_USER) {
2067 printk(KERN_ERR "Last user: [<%p>]",
2068 *dbg_userword(cachep, objp));
2069 print_symbol("(%s)",
2070 (unsigned long)*dbg_userword(cachep, objp));
2071 printk("\n");
2072 }
2073 realobj = (char *)objp + obj_offset(cachep);
2074 size = cachep->object_size;
2075 for (i = 0; i < size && lines; i += 16, lines--) {
2076 int limit;
2077 limit = 16;
2078 if (i + limit > size)
2079 limit = size - i;
2080 dump_line(realobj, i, limit);
2081 }
2082 }
2083
2084 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
2085 {
2086 char *realobj;
2087 int size, i;
2088 int lines = 0;
2089
2090 realobj = (char *)objp + obj_offset(cachep);
2091 size = cachep->object_size;
2092
2093 for (i = 0; i < size; i++) {
2094 char exp = POISON_FREE;
2095 if (i == size - 1)
2096 exp = POISON_END;
2097 if (realobj[i] != exp) {
2098 int limit;
2099 /* Mismatch ! */
2100 /* Print header */
2101 if (lines == 0) {
2102 printk(KERN_ERR
2103 "Slab corruption (%s): %s start=%p, len=%d\n",
2104 print_tainted(), cachep->name, realobj, size);
2105 print_objinfo(cachep, objp, 0);
2106 }
2107 /* Hexdump the affected line */
2108 i = (i / 16) * 16;
2109 limit = 16;
2110 if (i + limit > size)
2111 limit = size - i;
2112 dump_line(realobj, i, limit);
2113 i += 16;
2114 lines++;
2115 /* Limit to 5 lines */
2116 if (lines > 5)
2117 break;
2118 }
2119 }
2120 if (lines != 0) {
2121 /* Print some data about the neighboring objects, if they
2122 * exist:
2123 */
2124 struct slab *slabp = virt_to_slab(objp);
2125 unsigned int objnr;
2126
2127 objnr = obj_to_index(cachep, slabp, objp);
2128 if (objnr) {
2129 objp = index_to_obj(cachep, slabp, objnr - 1);
2130 realobj = (char *)objp + obj_offset(cachep);
2131 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
2132 realobj, size);
2133 print_objinfo(cachep, objp, 2);
2134 }
2135 if (objnr + 1 < cachep->num) {
2136 objp = index_to_obj(cachep, slabp, objnr + 1);
2137 realobj = (char *)objp + obj_offset(cachep);
2138 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
2139 realobj, size);
2140 print_objinfo(cachep, objp, 2);
2141 }
2142 }
2143 }
2144 #endif
2145
2146 #if DEBUG
2147 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
2148 {
2149 int i;
2150 for (i = 0; i < cachep->num; i++) {
2151 void *objp = index_to_obj(cachep, slabp, i);
2152
2153 if (cachep->flags & SLAB_POISON) {
2154 #ifdef CONFIG_DEBUG_PAGEALLOC
2155 if (cachep->size % PAGE_SIZE == 0 &&
2156 OFF_SLAB(cachep))
2157 kernel_map_pages(virt_to_page(objp),
2158 cachep->size / PAGE_SIZE, 1);
2159 else
2160 check_poison_obj(cachep, objp);
2161 #else
2162 check_poison_obj(cachep, objp);
2163 #endif
2164 }
2165 if (cachep->flags & SLAB_RED_ZONE) {
2166 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2167 slab_error(cachep, "start of a freed object "
2168 "was overwritten");
2169 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2170 slab_error(cachep, "end of a freed object "
2171 "was overwritten");
2172 }
2173 }
2174 }
2175 #else
2176 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
2177 {
2178 }
2179 #endif
2180
2181 /**
2182 * slab_destroy - destroy and release all objects in a slab
2183 * @cachep: cache pointer being destroyed
2184 * @slabp: slab pointer being destroyed
2185 *
2186 * Destroy all the objs in a slab, and release the mem back to the system.
2187 * Before calling the slab must have been unlinked from the cache. The
2188 * cache-lock is not held/needed.
2189 */
2190 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
2191 {
2192 void *addr = slabp->s_mem - slabp->colouroff;
2193
2194 slab_destroy_debugcheck(cachep, slabp);
2195 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
2196 struct slab_rcu *slab_rcu;
2197
2198 slab_rcu = (struct slab_rcu *)slabp;
2199 slab_rcu->cachep = cachep;
2200 slab_rcu->addr = addr;
2201 call_rcu(&slab_rcu->head, kmem_rcu_free);
2202 } else {
2203 kmem_freepages(cachep, addr);
2204 if (OFF_SLAB(cachep))
2205 kmem_cache_free(cachep->slabp_cache, slabp);
2206 }
2207 }
2208
2209 void __kmem_cache_destroy(struct kmem_cache *cachep)
2210 {
2211 int i;
2212 struct kmem_list3 *l3;
2213
2214 for_each_online_cpu(i)
2215 kfree(cachep->array[i]);
2216
2217 /* NUMA: free the list3 structures */
2218 for_each_online_node(i) {
2219 l3 = cachep->nodelists[i];
2220 if (l3) {
2221 kfree(l3->shared);
2222 free_alien_cache(l3->alien);
2223 kfree(l3);
2224 }
2225 }
2226 kmem_cache_free(&cache_cache, cachep);
2227 }
2228
2229
2230 /**
2231 * calculate_slab_order - calculate size (page order) of slabs
2232 * @cachep: pointer to the cache that is being created
2233 * @size: size of objects to be created in this cache.
2234 * @align: required alignment for the objects.
2235 * @flags: slab allocation flags
2236 *
2237 * Also calculates the number of objects per slab.
2238 *
2239 * This could be made much more intelligent. For now, try to avoid using
2240 * high order pages for slabs. When the gfp() functions are more friendly
2241 * towards high-order requests, this should be changed.
2242 */
2243 static size_t calculate_slab_order(struct kmem_cache *cachep,
2244 size_t size, size_t align, unsigned long flags)
2245 {
2246 unsigned long offslab_limit;
2247 size_t left_over = 0;
2248 int gfporder;
2249
2250 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2251 unsigned int num;
2252 size_t remainder;
2253
2254 cache_estimate(gfporder, size, align, flags, &remainder, &num);
2255 if (!num)
2256 continue;
2257
2258 if (flags & CFLGS_OFF_SLAB) {
2259 /*
2260 * Max number of objs-per-slab for caches which
2261 * use off-slab slabs. Needed to avoid a possible
2262 * looping condition in cache_grow().
2263 */
2264 offslab_limit = size - sizeof(struct slab);
2265 offslab_limit /= sizeof(kmem_bufctl_t);
2266
2267 if (num > offslab_limit)
2268 break;
2269 }
2270
2271 /* Found something acceptable - save it away */
2272 cachep->num = num;
2273 cachep->gfporder = gfporder;
2274 left_over = remainder;
2275
2276 /*
2277 * A VFS-reclaimable slab tends to have most allocations
2278 * as GFP_NOFS and we really don't want to have to be allocating
2279 * higher-order pages when we are unable to shrink dcache.
2280 */
2281 if (flags & SLAB_RECLAIM_ACCOUNT)
2282 break;
2283
2284 /*
2285 * Large number of objects is good, but very large slabs are
2286 * currently bad for the gfp()s.
2287 */
2288 if (gfporder >= slab_max_order)
2289 break;
2290
2291 /*
2292 * Acceptable internal fragmentation?
2293 */
2294 if (left_over * 8 <= (PAGE_SIZE << gfporder))
2295 break;
2296 }
2297 return left_over;
2298 }
2299
2300 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2301 {
2302 if (slab_state >= FULL)
2303 return enable_cpucache(cachep, gfp);
2304
2305 if (slab_state == DOWN) {
2306 /*
2307 * Note: the first kmem_cache_create must create the cache
2308 * that's used by kmalloc(24), otherwise the creation of
2309 * further caches will BUG().
2310 */
2311 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2312
2313 /*
2314 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2315 * the first cache, then we need to set up all its list3s,
2316 * otherwise the creation of further caches will BUG().
2317 */
2318 set_up_list3s(cachep, SIZE_AC);
2319 if (INDEX_AC == INDEX_L3)
2320 slab_state = PARTIAL_L3;
2321 else
2322 slab_state = PARTIAL_ARRAYCACHE;
2323 } else {
2324 cachep->array[smp_processor_id()] =
2325 kmalloc(sizeof(struct arraycache_init), gfp);
2326
2327 if (slab_state == PARTIAL_ARRAYCACHE) {
2328 set_up_list3s(cachep, SIZE_L3);
2329 slab_state = PARTIAL_L3;
2330 } else {
2331 int node;
2332 for_each_online_node(node) {
2333 cachep->nodelists[node] =
2334 kmalloc_node(sizeof(struct kmem_list3),
2335 gfp, node);
2336 BUG_ON(!cachep->nodelists[node]);
2337 kmem_list3_init(cachep->nodelists[node]);
2338 }
2339 }
2340 }
2341 cachep->nodelists[numa_mem_id()]->next_reap =
2342 jiffies + REAPTIMEOUT_LIST3 +
2343 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2344
2345 cpu_cache_get(cachep)->avail = 0;
2346 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2347 cpu_cache_get(cachep)->batchcount = 1;
2348 cpu_cache_get(cachep)->touched = 0;
2349 cachep->batchcount = 1;
2350 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2351 return 0;
2352 }
2353
2354 /**
2355 * __kmem_cache_create - Create a cache.
2356 * @name: A string which is used in /proc/slabinfo to identify this cache.
2357 * @size: The size of objects to be created in this cache.
2358 * @align: The required alignment for the objects.
2359 * @flags: SLAB flags
2360 * @ctor: A constructor for the objects.
2361 *
2362 * Returns a ptr to the cache on success, NULL on failure.
2363 * Cannot be called within a int, but can be interrupted.
2364 * The @ctor is run when new pages are allocated by the cache.
2365 *
2366 * @name must be valid until the cache is destroyed. This implies that
2367 * the module calling this has to destroy the cache before getting unloaded.
2368 *
2369 * The flags are
2370 *
2371 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2372 * to catch references to uninitialised memory.
2373 *
2374 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2375 * for buffer overruns.
2376 *
2377 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2378 * cacheline. This can be beneficial if you're counting cycles as closely
2379 * as davem.
2380 */
2381 struct kmem_cache *
2382 __kmem_cache_create (const char *name, size_t size, size_t align,
2383 unsigned long flags, void (*ctor)(void *))
2384 {
2385 size_t left_over, slab_size, ralign;
2386 struct kmem_cache *cachep = NULL;
2387 gfp_t gfp;
2388
2389 #if DEBUG
2390 #if FORCED_DEBUG
2391 /*
2392 * Enable redzoning and last user accounting, except for caches with
2393 * large objects, if the increased size would increase the object size
2394 * above the next power of two: caches with object sizes just above a
2395 * power of two have a significant amount of internal fragmentation.
2396 */
2397 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2398 2 * sizeof(unsigned long long)))
2399 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2400 if (!(flags & SLAB_DESTROY_BY_RCU))
2401 flags |= SLAB_POISON;
2402 #endif
2403 if (flags & SLAB_DESTROY_BY_RCU)
2404 BUG_ON(flags & SLAB_POISON);
2405 #endif
2406 /*
2407 * Always checks flags, a caller might be expecting debug support which
2408 * isn't available.
2409 */
2410 BUG_ON(flags & ~CREATE_MASK);
2411
2412 /*
2413 * Check that size is in terms of words. This is needed to avoid
2414 * unaligned accesses for some archs when redzoning is used, and makes
2415 * sure any on-slab bufctl's are also correctly aligned.
2416 */
2417 if (size & (BYTES_PER_WORD - 1)) {
2418 size += (BYTES_PER_WORD - 1);
2419 size &= ~(BYTES_PER_WORD - 1);
2420 }
2421
2422 /* calculate the final buffer alignment: */
2423
2424 /* 1) arch recommendation: can be overridden for debug */
2425 if (flags & SLAB_HWCACHE_ALIGN) {
2426 /*
2427 * Default alignment: as specified by the arch code. Except if
2428 * an object is really small, then squeeze multiple objects into
2429 * one cacheline.
2430 */
2431 ralign = cache_line_size();
2432 while (size <= ralign / 2)
2433 ralign /= 2;
2434 } else {
2435 ralign = BYTES_PER_WORD;
2436 }
2437
2438 /*
2439 * Redzoning and user store require word alignment or possibly larger.
2440 * Note this will be overridden by architecture or caller mandated
2441 * alignment if either is greater than BYTES_PER_WORD.
2442 */
2443 if (flags & SLAB_STORE_USER)
2444 ralign = BYTES_PER_WORD;
2445
2446 if (flags & SLAB_RED_ZONE) {
2447 ralign = REDZONE_ALIGN;
2448 /* If redzoning, ensure that the second redzone is suitably
2449 * aligned, by adjusting the object size accordingly. */
2450 size += REDZONE_ALIGN - 1;
2451 size &= ~(REDZONE_ALIGN - 1);
2452 }
2453
2454 /* 2) arch mandated alignment */
2455 if (ralign < ARCH_SLAB_MINALIGN) {
2456 ralign = ARCH_SLAB_MINALIGN;
2457 }
2458 /* 3) caller mandated alignment */
2459 if (ralign < align) {
2460 ralign = align;
2461 }
2462 /* disable debug if necessary */
2463 if (ralign > __alignof__(unsigned long long))
2464 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2465 /*
2466 * 4) Store it.
2467 */
2468 align = ralign;
2469
2470 if (slab_is_available())
2471 gfp = GFP_KERNEL;
2472 else
2473 gfp = GFP_NOWAIT;
2474
2475 /* Get cache's description obj. */
2476 cachep = kmem_cache_zalloc(&cache_cache, gfp);
2477 if (!cachep)
2478 return NULL;
2479
2480 cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids];
2481 cachep->object_size = size;
2482 cachep->align = align;
2483 #if DEBUG
2484
2485 /*
2486 * Both debugging options require word-alignment which is calculated
2487 * into align above.
2488 */
2489 if (flags & SLAB_RED_ZONE) {
2490 /* add space for red zone words */
2491 cachep->obj_offset += sizeof(unsigned long long);
2492 size += 2 * sizeof(unsigned long long);
2493 }
2494 if (flags & SLAB_STORE_USER) {
2495 /* user store requires one word storage behind the end of
2496 * the real object. But if the second red zone needs to be
2497 * aligned to 64 bits, we must allow that much space.
2498 */
2499 if (flags & SLAB_RED_ZONE)
2500 size += REDZONE_ALIGN;
2501 else
2502 size += BYTES_PER_WORD;
2503 }
2504 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2505 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2506 && cachep->object_size > cache_line_size() && ALIGN(size, align) < PAGE_SIZE) {
2507 cachep->obj_offset += PAGE_SIZE - ALIGN(size, align);
2508 size = PAGE_SIZE;
2509 }
2510 #endif
2511 #endif
2512
2513 /*
2514 * Determine if the slab management is 'on' or 'off' slab.
2515 * (bootstrapping cannot cope with offslab caches so don't do
2516 * it too early on. Always use on-slab management when
2517 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2518 */
2519 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
2520 !(flags & SLAB_NOLEAKTRACE))
2521 /*
2522 * Size is large, assume best to place the slab management obj
2523 * off-slab (should allow better packing of objs).
2524 */
2525 flags |= CFLGS_OFF_SLAB;
2526
2527 size = ALIGN(size, align);
2528
2529 left_over = calculate_slab_order(cachep, size, align, flags);
2530
2531 if (!cachep->num) {
2532 printk(KERN_ERR
2533 "kmem_cache_create: couldn't create cache %s.\n", name);
2534 kmem_cache_free(&cache_cache, cachep);
2535 return NULL;
2536 }
2537 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2538 + sizeof(struct slab), align);
2539
2540 /*
2541 * If the slab has been placed off-slab, and we have enough space then
2542 * move it on-slab. This is at the expense of any extra colouring.
2543 */
2544 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2545 flags &= ~CFLGS_OFF_SLAB;
2546 left_over -= slab_size;
2547 }
2548
2549 if (flags & CFLGS_OFF_SLAB) {
2550 /* really off slab. No need for manual alignment */
2551 slab_size =
2552 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2553
2554 #ifdef CONFIG_PAGE_POISONING
2555 /* If we're going to use the generic kernel_map_pages()
2556 * poisoning, then it's going to smash the contents of
2557 * the redzone and userword anyhow, so switch them off.
2558 */
2559 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2560 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2561 #endif
2562 }
2563
2564 cachep->colour_off = cache_line_size();
2565 /* Offset must be a multiple of the alignment. */
2566 if (cachep->colour_off < align)
2567 cachep->colour_off = align;
2568 cachep->colour = left_over / cachep->colour_off;
2569 cachep->slab_size = slab_size;
2570 cachep->flags = flags;
2571 cachep->allocflags = 0;
2572 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2573 cachep->allocflags |= GFP_DMA;
2574 cachep->size = size;
2575 cachep->reciprocal_buffer_size = reciprocal_value(size);
2576
2577 if (flags & CFLGS_OFF_SLAB) {
2578 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2579 /*
2580 * This is a possibility for one of the malloc_sizes caches.
2581 * But since we go off slab only for object size greater than
2582 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2583 * this should not happen at all.
2584 * But leave a BUG_ON for some lucky dude.
2585 */
2586 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2587 }
2588 cachep->ctor = ctor;
2589 cachep->name = name;
2590 cachep->refcount = 1;
2591
2592 if (setup_cpu_cache(cachep, gfp)) {
2593 __kmem_cache_destroy(cachep);
2594 return NULL;
2595 }
2596
2597 if (flags & SLAB_DEBUG_OBJECTS) {
2598 /*
2599 * Would deadlock through slab_destroy()->call_rcu()->
2600 * debug_object_activate()->kmem_cache_alloc().
2601 */
2602 WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);
2603
2604 slab_set_debugobj_lock_classes(cachep);
2605 }
2606
2607 return cachep;
2608 }
2609
2610 #if DEBUG
2611 static void check_irq_off(void)
2612 {
2613 BUG_ON(!irqs_disabled());
2614 }
2615
2616 static void check_irq_on(void)
2617 {
2618 BUG_ON(irqs_disabled());
2619 }
2620
2621 static void check_spinlock_acquired(struct kmem_cache *cachep)
2622 {
2623 #ifdef CONFIG_SMP
2624 check_irq_off();
2625 assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
2626 #endif
2627 }
2628
2629 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2630 {
2631 #ifdef CONFIG_SMP
2632 check_irq_off();
2633 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2634 #endif
2635 }
2636
2637 #else
2638 #define check_irq_off() do { } while(0)
2639 #define check_irq_on() do { } while(0)
2640 #define check_spinlock_acquired(x) do { } while(0)
2641 #define check_spinlock_acquired_node(x, y) do { } while(0)
2642 #endif
2643
2644 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2645 struct array_cache *ac,
2646 int force, int node);
2647
2648 static void do_drain(void *arg)
2649 {
2650 struct kmem_cache *cachep = arg;
2651 struct array_cache *ac;
2652 int node = numa_mem_id();
2653
2654 check_irq_off();
2655 ac = cpu_cache_get(cachep);
2656 spin_lock(&cachep->nodelists[node]->list_lock);
2657 free_block(cachep, ac->entry, ac->avail, node);
2658 spin_unlock(&cachep->nodelists[node]->list_lock);
2659 ac->avail = 0;
2660 }
2661
2662 static void drain_cpu_caches(struct kmem_cache *cachep)
2663 {
2664 struct kmem_list3 *l3;
2665 int node;
2666
2667 on_each_cpu(do_drain, cachep, 1);
2668 check_irq_on();
2669 for_each_online_node(node) {
2670 l3 = cachep->nodelists[node];
2671 if (l3 && l3->alien)
2672 drain_alien_cache(cachep, l3->alien);
2673 }
2674
2675 for_each_online_node(node) {
2676 l3 = cachep->nodelists[node];
2677 if (l3)
2678 drain_array(cachep, l3, l3->shared, 1, node);
2679 }
2680 }
2681
2682 /*
2683 * Remove slabs from the list of free slabs.
2684 * Specify the number of slabs to drain in tofree.
2685 *
2686 * Returns the actual number of slabs released.
2687 */
2688 static int drain_freelist(struct kmem_cache *cache,
2689 struct kmem_list3 *l3, int tofree)
2690 {
2691 struct list_head *p;
2692 int nr_freed;
2693 struct slab *slabp;
2694
2695 nr_freed = 0;
2696 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
2697
2698 spin_lock_irq(&l3->list_lock);
2699 p = l3->slabs_free.prev;
2700 if (p == &l3->slabs_free) {
2701 spin_unlock_irq(&l3->list_lock);
2702 goto out;
2703 }
2704
2705 slabp = list_entry(p, struct slab, list);
2706 #if DEBUG
2707 BUG_ON(slabp->inuse);
2708 #endif
2709 list_del(&slabp->list);
2710 /*
2711 * Safe to drop the lock. The slab is no longer linked
2712 * to the cache.
2713 */
2714 l3->free_objects -= cache->num;
2715 spin_unlock_irq(&l3->list_lock);
2716 slab_destroy(cache, slabp);
2717 nr_freed++;
2718 }
2719 out:
2720 return nr_freed;
2721 }
2722
2723 /* Called with slab_mutex held to protect against cpu hotplug */
2724 static int __cache_shrink(struct kmem_cache *cachep)
2725 {
2726 int ret = 0, i = 0;
2727 struct kmem_list3 *l3;
2728
2729 drain_cpu_caches(cachep);
2730
2731 check_irq_on();
2732 for_each_online_node(i) {
2733 l3 = cachep->nodelists[i];
2734 if (!l3)
2735 continue;
2736
2737 drain_freelist(cachep, l3, l3->free_objects);
2738
2739 ret += !list_empty(&l3->slabs_full) ||
2740 !list_empty(&l3->slabs_partial);
2741 }
2742 return (ret ? 1 : 0);
2743 }
2744
2745 /**
2746 * kmem_cache_shrink - Shrink a cache.
2747 * @cachep: The cache to shrink.
2748 *
2749 * Releases as many slabs as possible for a cache.
2750 * To help debugging, a zero exit status indicates all slabs were released.
2751 */
2752 int kmem_cache_shrink(struct kmem_cache *cachep)
2753 {
2754 int ret;
2755 BUG_ON(!cachep || in_interrupt());
2756
2757 get_online_cpus();
2758 mutex_lock(&slab_mutex);
2759 ret = __cache_shrink(cachep);
2760 mutex_unlock(&slab_mutex);
2761 put_online_cpus();
2762 return ret;
2763 }
2764 EXPORT_SYMBOL(kmem_cache_shrink);
2765
2766 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2767 {
2768 return __cache_shrink(cachep);
2769 }
2770
2771 /*
2772 * Get the memory for a slab management obj.
2773 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2774 * always come from malloc_sizes caches. The slab descriptor cannot
2775 * come from the same cache which is getting created because,
2776 * when we are searching for an appropriate cache for these
2777 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2778 * If we are creating a malloc_sizes cache here it would not be visible to
2779 * kmem_find_general_cachep till the initialization is complete.
2780 * Hence we cannot have slabp_cache same as the original cache.
2781 */
2782 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2783 int colour_off, gfp_t local_flags,
2784 int nodeid)
2785 {
2786 struct slab *slabp;
2787
2788 if (OFF_SLAB(cachep)) {
2789 /* Slab management obj is off-slab. */
2790 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2791 local_flags, nodeid);
2792 /*
2793 * If the first object in the slab is leaked (it's allocated
2794 * but no one has a reference to it), we want to make sure
2795 * kmemleak does not treat the ->s_mem pointer as a reference
2796 * to the object. Otherwise we will not report the leak.
2797 */
2798 kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
2799 local_flags);
2800 if (!slabp)
2801 return NULL;
2802 } else {
2803 slabp = objp + colour_off;
2804 colour_off += cachep->slab_size;
2805 }
2806 slabp->inuse = 0;
2807 slabp->colouroff = colour_off;
2808 slabp->s_mem = objp + colour_off;
2809 slabp->nodeid = nodeid;
2810 slabp->free = 0;
2811 return slabp;
2812 }
2813
2814 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2815 {
2816 return (kmem_bufctl_t *) (slabp + 1);
2817 }
2818
2819 static void cache_init_objs(struct kmem_cache *cachep,
2820 struct slab *slabp)
2821 {
2822 int i;
2823
2824 for (i = 0; i < cachep->num; i++) {
2825 void *objp = index_to_obj(cachep, slabp, i);
2826 #if DEBUG
2827 /* need to poison the objs? */
2828 if (cachep->flags & SLAB_POISON)
2829 poison_obj(cachep, objp, POISON_FREE);
2830 if (cachep->flags & SLAB_STORE_USER)
2831 *dbg_userword(cachep, objp) = NULL;
2832
2833 if (cachep->flags & SLAB_RED_ZONE) {
2834 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2835 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2836 }
2837 /*
2838 * Constructors are not allowed to allocate memory from the same
2839 * cache which they are a constructor for. Otherwise, deadlock.
2840 * They must also be threaded.
2841 */
2842 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2843 cachep->ctor(objp + obj_offset(cachep));
2844
2845 if (cachep->flags & SLAB_RED_ZONE) {
2846 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2847 slab_error(cachep, "constructor overwrote the"
2848 " end of an object");
2849 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2850 slab_error(cachep, "constructor overwrote the"
2851 " start of an object");
2852 }
2853 if ((cachep->size % PAGE_SIZE) == 0 &&
2854 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2855 kernel_map_pages(virt_to_page(objp),
2856 cachep->size / PAGE_SIZE, 0);
2857 #else
2858 if (cachep->ctor)
2859 cachep->ctor(objp);
2860 #endif
2861 slab_bufctl(slabp)[i] = i + 1;
2862 }
2863 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2864 }
2865
2866 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2867 {
2868 if (CONFIG_ZONE_DMA_FLAG) {
2869 if (flags & GFP_DMA)
2870 BUG_ON(!(cachep->allocflags & GFP_DMA));
2871 else
2872 BUG_ON(cachep->allocflags & GFP_DMA);
2873 }
2874 }
2875
2876 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2877 int nodeid)
2878 {
2879 void *objp = index_to_obj(cachep, slabp, slabp->free);
2880 kmem_bufctl_t next;
2881
2882 slabp->inuse++;
2883 next = slab_bufctl(slabp)[slabp->free];
2884 #if DEBUG
2885 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2886 WARN_ON(slabp->nodeid != nodeid);
2887 #endif
2888 slabp->free = next;
2889
2890 return objp;
2891 }
2892
2893 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2894 void *objp, int nodeid)
2895 {
2896 unsigned int objnr = obj_to_index(cachep, slabp, objp);
2897
2898 #if DEBUG
2899 /* Verify that the slab belongs to the intended node */
2900 WARN_ON(slabp->nodeid != nodeid);
2901
2902 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2903 printk(KERN_ERR "slab: double free detected in cache "
2904 "'%s', objp %p\n", cachep->name, objp);
2905 BUG();
2906 }
2907 #endif
2908 slab_bufctl(slabp)[objnr] = slabp->free;
2909 slabp->free = objnr;
2910 slabp->inuse--;
2911 }
2912
2913 /*
2914 * Map pages beginning at addr to the given cache and slab. This is required
2915 * for the slab allocator to be able to lookup the cache and slab of a
2916 * virtual address for kfree, ksize, and slab debugging.
2917 */
2918 static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2919 void *addr)
2920 {
2921 int nr_pages;
2922 struct page *page;
2923
2924 page = virt_to_page(addr);
2925
2926 nr_pages = 1;
2927 if (likely(!PageCompound(page)))
2928 nr_pages <<= cache->gfporder;
2929
2930 do {
2931 page->slab_cache = cache;
2932 page->slab_page = slab;
2933 page++;
2934 } while (--nr_pages);
2935 }
2936
2937 /*
2938 * Grow (by 1) the number of slabs within a cache. This is called by
2939 * kmem_cache_alloc() when there are no active objs left in a cache.
2940 */
2941 static int cache_grow(struct kmem_cache *cachep,
2942 gfp_t flags, int nodeid, void *objp)
2943 {
2944 struct slab *slabp;
2945 size_t offset;
2946 gfp_t local_flags;
2947 struct kmem_list3 *l3;
2948
2949 /*
2950 * Be lazy and only check for valid flags here, keeping it out of the
2951 * critical path in kmem_cache_alloc().
2952 */
2953 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2954 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2955
2956 /* Take the l3 list lock to change the colour_next on this node */
2957 check_irq_off();
2958 l3 = cachep->nodelists[nodeid];
2959 spin_lock(&l3->list_lock);
2960
2961 /* Get colour for the slab, and cal the next value. */
2962 offset = l3->colour_next;
2963 l3->colour_next++;
2964 if (l3->colour_next >= cachep->colour)
2965 l3->colour_next = 0;
2966 spin_unlock(&l3->list_lock);
2967
2968 offset *= cachep->colour_off;
2969
2970 if (local_flags & __GFP_WAIT)
2971 local_irq_enable();
2972
2973 /*
2974 * The test for missing atomic flag is performed here, rather than
2975 * the more obvious place, simply to reduce the critical path length
2976 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2977 * will eventually be caught here (where it matters).
2978 */
2979 kmem_flagcheck(cachep, flags);
2980
2981 /*
2982 * Get mem for the objs. Attempt to allocate a physical page from
2983 * 'nodeid'.
2984 */
2985 if (!objp)
2986 objp = kmem_getpages(cachep, local_flags, nodeid);
2987 if (!objp)
2988 goto failed;
2989
2990 /* Get slab management. */
2991 slabp = alloc_slabmgmt(cachep, objp, offset,
2992 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2993 if (!slabp)
2994 goto opps1;
2995
2996 slab_map_pages(cachep, slabp, objp);
2997
2998 cache_init_objs(cachep, slabp);
2999
3000 if (local_flags & __GFP_WAIT)
3001 local_irq_disable();
3002 check_irq_off();
3003 spin_lock(&l3->list_lock);
3004
3005 /* Make slab active. */
3006 list_add_tail(&slabp->list, &(l3->slabs_free));
3007 STATS_INC_GROWN(cachep);
3008 l3->free_objects += cachep->num;
3009 spin_unlock(&l3->list_lock);
3010 return 1;
3011 opps1:
3012 kmem_freepages(cachep, objp);
3013 failed:
3014 if (local_flags & __GFP_WAIT)
3015 local_irq_disable();
3016 return 0;
3017 }
3018
3019 #if DEBUG
3020
3021 /*
3022 * Perform extra freeing checks:
3023 * - detect bad pointers.
3024 * - POISON/RED_ZONE checking
3025 */
3026 static void kfree_debugcheck(const void *objp)
3027 {
3028 if (!virt_addr_valid(objp)) {
3029 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
3030 (unsigned long)objp);
3031 BUG();
3032 }
3033 }
3034
3035 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
3036 {
3037 unsigned long long redzone1, redzone2;
3038
3039 redzone1 = *dbg_redzone1(cache, obj);
3040 redzone2 = *dbg_redzone2(cache, obj);
3041
3042 /*
3043 * Redzone is ok.
3044 */
3045 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
3046 return;
3047
3048 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
3049 slab_error(cache, "double free detected");
3050 else
3051 slab_error(cache, "memory outside object was overwritten");
3052
3053 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
3054 obj, redzone1, redzone2);
3055 }
3056
3057 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
3058 void *caller)
3059 {
3060 struct page *page;
3061 unsigned int objnr;
3062 struct slab *slabp;
3063
3064 BUG_ON(virt_to_cache(objp) != cachep);
3065
3066 objp -= obj_offset(cachep);
3067 kfree_debugcheck(objp);
3068 page = virt_to_head_page(objp);
3069
3070 slabp = page->slab_page;
3071
3072 if (cachep->flags & SLAB_RED_ZONE) {
3073 verify_redzone_free(cachep, objp);
3074 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
3075 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
3076 }
3077 if (cachep->flags & SLAB_STORE_USER)
3078 *dbg_userword(cachep, objp) = caller;
3079
3080 objnr = obj_to_index(cachep, slabp, objp);
3081
3082 BUG_ON(objnr >= cachep->num);
3083 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
3084
3085 #ifdef CONFIG_DEBUG_SLAB_LEAK
3086 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
3087 #endif
3088 if (cachep->flags & SLAB_POISON) {
3089 #ifdef CONFIG_DEBUG_PAGEALLOC
3090 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
3091 store_stackinfo(cachep, objp, (unsigned long)caller);
3092 kernel_map_pages(virt_to_page(objp),
3093 cachep->size / PAGE_SIZE, 0);
3094 } else {
3095 poison_obj(cachep, objp, POISON_FREE);
3096 }
3097 #else
3098 poison_obj(cachep, objp, POISON_FREE);
3099 #endif
3100 }
3101 return objp;
3102 }
3103
3104 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
3105 {
3106 kmem_bufctl_t i;
3107 int entries = 0;
3108
3109 /* Check slab's freelist to see if this obj is there. */
3110 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
3111 entries++;
3112 if (entries > cachep->num || i >= cachep->num)
3113 goto bad;
3114 }
3115 if (entries != cachep->num - slabp->inuse) {
3116 bad:
3117 printk(KERN_ERR "slab: Internal list corruption detected in "
3118 "cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n",
3119 cachep->name, cachep->num, slabp, slabp->inuse,
3120 print_tainted());
3121 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp,
3122 sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t),
3123 1);
3124 BUG();
3125 }
3126 }
3127 #else
3128 #define kfree_debugcheck(x) do { } while(0)
3129 #define cache_free_debugcheck(x,objp,z) (objp)
3130 #define check_slabp(x,y) do { } while(0)
3131 #endif
3132
3133 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
3134 bool force_refill)
3135 {
3136 int batchcount;
3137 struct kmem_list3 *l3;
3138 struct array_cache *ac;
3139 int node;
3140
3141 check_irq_off();
3142 node = numa_mem_id();
3143 if (unlikely(force_refill))
3144 goto force_grow;
3145 retry:
3146 ac = cpu_cache_get(cachep);
3147 batchcount = ac->batchcount;
3148 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
3149 /*
3150 * If there was little recent activity on this cache, then
3151 * perform only a partial refill. Otherwise we could generate
3152 * refill bouncing.
3153 */
3154 batchcount = BATCHREFILL_LIMIT;
3155 }
3156 l3 = cachep->nodelists[node];
3157
3158 BUG_ON(ac->avail > 0 || !l3);
3159 spin_lock(&l3->list_lock);
3160
3161 /* See if we can refill from the shared array */
3162 if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
3163 l3->shared->touched = 1;
3164 goto alloc_done;
3165 }
3166
3167 while (batchcount > 0) {
3168 struct list_head *entry;
3169 struct slab *slabp;
3170 /* Get slab alloc is to come from. */
3171 entry = l3->slabs_partial.next;
3172 if (entry == &l3->slabs_partial) {
3173 l3->free_touched = 1;
3174 entry = l3->slabs_free.next;
3175 if (entry == &l3->slabs_free)
3176 goto must_grow;
3177 }
3178
3179 slabp = list_entry(entry, struct slab, list);
3180 check_slabp(cachep, slabp);
3181 check_spinlock_acquired(cachep);
3182
3183 /*
3184 * The slab was either on partial or free list so
3185 * there must be at least one object available for
3186 * allocation.
3187 */
3188 BUG_ON(slabp->inuse >= cachep->num);
3189
3190 while (slabp->inuse < cachep->num && batchcount--) {
3191 STATS_INC_ALLOCED(cachep);
3192 STATS_INC_ACTIVE(cachep);
3193 STATS_SET_HIGH(cachep);
3194
3195 ac_put_obj(cachep, ac, slab_get_obj(cachep, slabp,
3196 node));
3197 }
3198 check_slabp(cachep, slabp);
3199
3200 /* move slabp to correct slabp list: */
3201 list_del(&slabp->list);
3202 if (slabp->free == BUFCTL_END)
3203 list_add(&slabp->list, &l3->slabs_full);
3204 else
3205 list_add(&slabp->list, &l3->slabs_partial);
3206 }
3207
3208 must_grow:
3209 l3->free_objects -= ac->avail;
3210 alloc_done:
3211 spin_unlock(&l3->list_lock);
3212
3213 if (unlikely(!ac->avail)) {
3214 int x;
3215 force_grow:
3216 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3217
3218 /* cache_grow can reenable interrupts, then ac could change. */
3219 ac = cpu_cache_get(cachep);
3220
3221 /* no objects in sight? abort */
3222 if (!x && (ac->avail == 0 || force_refill))
3223 return NULL;
3224
3225 if (!ac->avail) /* objects refilled by interrupt? */
3226 goto retry;
3227 }
3228 ac->touched = 1;
3229
3230 return ac_get_obj(cachep, ac, flags, force_refill);
3231 }
3232
3233 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3234 gfp_t flags)
3235 {
3236 might_sleep_if(flags & __GFP_WAIT);
3237 #if DEBUG
3238 kmem_flagcheck(cachep, flags);
3239 #endif
3240 }
3241
3242 #if DEBUG
3243 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3244 gfp_t flags, void *objp, void *caller)
3245 {
3246 if (!objp)
3247 return objp;
3248 if (cachep->flags & SLAB_POISON) {
3249 #ifdef CONFIG_DEBUG_PAGEALLOC
3250 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3251 kernel_map_pages(virt_to_page(objp),
3252 cachep->size / PAGE_SIZE, 1);
3253 else
3254 check_poison_obj(cachep, objp);
3255 #else
3256 check_poison_obj(cachep, objp);
3257 #endif
3258 poison_obj(cachep, objp, POISON_INUSE);
3259 }
3260 if (cachep->flags & SLAB_STORE_USER)
3261 *dbg_userword(cachep, objp) = caller;
3262
3263 if (cachep->flags & SLAB_RED_ZONE) {
3264 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3265 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3266 slab_error(cachep, "double free, or memory outside"
3267 " object was overwritten");
3268 printk(KERN_ERR
3269 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3270 objp, *dbg_redzone1(cachep, objp),
3271 *dbg_redzone2(cachep, objp));
3272 }
3273 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3274 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3275 }
3276 #ifdef CONFIG_DEBUG_SLAB_LEAK
3277 {
3278 struct slab *slabp;
3279 unsigned objnr;
3280
3281 slabp = virt_to_head_page(objp)->slab_page;
3282 objnr = (unsigned)(objp - slabp->s_mem) / cachep->size;
3283 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3284 }
3285 #endif
3286 objp += obj_offset(cachep);
3287 if (cachep->ctor && cachep->flags & SLAB_POISON)
3288 cachep->ctor(objp);
3289 if (ARCH_SLAB_MINALIGN &&
3290 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3291 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3292 objp, (int)ARCH_SLAB_MINALIGN);
3293 }
3294 return objp;
3295 }
3296 #else
3297 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3298 #endif
3299
3300 static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3301 {
3302 if (cachep == &cache_cache)
3303 return false;
3304
3305 return should_failslab(cachep->object_size, flags, cachep->flags);
3306 }
3307
3308 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3309 {
3310 void *objp;
3311 struct array_cache *ac;
3312 bool force_refill = false;
3313
3314 check_irq_off();
3315
3316 ac = cpu_cache_get(cachep);
3317 if (likely(ac->avail)) {
3318 ac->touched = 1;
3319 objp = ac_get_obj(cachep, ac, flags, false);
3320
3321 /*
3322 * Allow for the possibility all avail objects are not allowed
3323 * by the current flags
3324 */
3325 if (objp) {
3326 STATS_INC_ALLOCHIT(cachep);
3327 goto out;
3328 }
3329 force_refill = true;
3330 }
3331
3332 STATS_INC_ALLOCMISS(cachep);
3333 objp = cache_alloc_refill(cachep, flags, force_refill);
3334 /*
3335 * the 'ac' may be updated by cache_alloc_refill(),
3336 * and kmemleak_erase() requires its correct value.
3337 */
3338 ac = cpu_cache_get(cachep);
3339
3340 out:
3341 /*
3342 * To avoid a false negative, if an object that is in one of the
3343 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3344 * treat the array pointers as a reference to the object.
3345 */
3346 if (objp)
3347 kmemleak_erase(&ac->entry[ac->avail]);
3348 return objp;
3349 }
3350
3351 #ifdef CONFIG_NUMA
3352 /*
3353 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3354 *
3355 * If we are in_interrupt, then process context, including cpusets and
3356 * mempolicy, may not apply and should not be used for allocation policy.
3357 */
3358 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3359 {
3360 int nid_alloc, nid_here;
3361
3362 if (in_interrupt() || (flags & __GFP_THISNODE))
3363 return NULL;
3364 nid_alloc = nid_here = numa_mem_id();
3365 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3366 nid_alloc = cpuset_slab_spread_node();
3367 else if (current->mempolicy)
3368 nid_alloc = slab_node();
3369 if (nid_alloc != nid_here)
3370 return ____cache_alloc_node(cachep, flags, nid_alloc);
3371 return NULL;
3372 }
3373
3374 /*
3375 * Fallback function if there was no memory available and no objects on a
3376 * certain node and fall back is permitted. First we scan all the
3377 * available nodelists for available objects. If that fails then we
3378 * perform an allocation without specifying a node. This allows the page
3379 * allocator to do its reclaim / fallback magic. We then insert the
3380 * slab into the proper nodelist and then allocate from it.
3381 */
3382 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3383 {
3384 struct zonelist *zonelist;
3385 gfp_t local_flags;
3386 struct zoneref *z;
3387 struct zone *zone;
3388 enum zone_type high_zoneidx = gfp_zone(flags);
3389 void *obj = NULL;
3390 int nid;
3391 unsigned int cpuset_mems_cookie;
3392
3393 if (flags & __GFP_THISNODE)
3394 return NULL;
3395
3396 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3397
3398 retry_cpuset:
3399 cpuset_mems_cookie = get_mems_allowed();
3400 zonelist = node_zonelist(slab_node(), flags);
3401
3402 retry:
3403 /*
3404 * Look through allowed nodes for objects available
3405 * from existing per node queues.
3406 */
3407 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3408 nid = zone_to_nid(zone);
3409
3410 if (cpuset_zone_allowed_hardwall(zone, flags) &&
3411 cache->nodelists[nid] &&
3412 cache->nodelists[nid]->free_objects) {
3413 obj = ____cache_alloc_node(cache,
3414 flags | GFP_THISNODE, nid);
3415 if (obj)
3416 break;
3417 }
3418 }
3419
3420 if (!obj) {
3421 /*
3422 * This allocation will be performed within the constraints
3423 * of the current cpuset / memory policy requirements.
3424 * We may trigger various forms of reclaim on the allowed
3425 * set and go into memory reserves if necessary.
3426 */
3427 if (local_flags & __GFP_WAIT)
3428 local_irq_enable();
3429 kmem_flagcheck(cache, flags);
3430 obj = kmem_getpages(cache, local_flags, numa_mem_id());
3431 if (local_flags & __GFP_WAIT)
3432 local_irq_disable();
3433 if (obj) {
3434 /*
3435 * Insert into the appropriate per node queues
3436 */
3437 nid = page_to_nid(virt_to_page(obj));
3438 if (cache_grow(cache, flags, nid, obj)) {
3439 obj = ____cache_alloc_node(cache,
3440 flags | GFP_THISNODE, nid);
3441 if (!obj)
3442 /*
3443 * Another processor may allocate the
3444 * objects in the slab since we are
3445 * not holding any locks.
3446 */
3447 goto retry;
3448 } else {
3449 /* cache_grow already freed obj */
3450 obj = NULL;
3451 }
3452 }
3453 }
3454
3455 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
3456 goto retry_cpuset;
3457 return obj;
3458 }
3459
3460 /*
3461 * A interface to enable slab creation on nodeid
3462 */
3463 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3464 int nodeid)
3465 {
3466 struct list_head *entry;
3467 struct slab *slabp;
3468 struct kmem_list3 *l3;
3469 void *obj;
3470 int x;
3471
3472 l3 = cachep->nodelists[nodeid];
3473 BUG_ON(!l3);
3474
3475 retry:
3476 check_irq_off();
3477 spin_lock(&l3->list_lock);
3478 entry = l3->slabs_partial.next;
3479 if (entry == &l3->slabs_partial) {
3480 l3->free_touched = 1;
3481 entry = l3->slabs_free.next;
3482 if (entry == &l3->slabs_free)
3483 goto must_grow;
3484 }
3485
3486 slabp = list_entry(entry, struct slab, list);
3487 check_spinlock_acquired_node(cachep, nodeid);
3488 check_slabp(cachep, slabp);
3489
3490 STATS_INC_NODEALLOCS(cachep);
3491 STATS_INC_ACTIVE(cachep);
3492 STATS_SET_HIGH(cachep);
3493
3494 BUG_ON(slabp->inuse == cachep->num);
3495
3496 obj = slab_get_obj(cachep, slabp, nodeid);
3497 check_slabp(cachep, slabp);
3498 l3->free_objects--;
3499 /* move slabp to correct slabp list: */
3500 list_del(&slabp->list);
3501
3502 if (slabp->free == BUFCTL_END)
3503 list_add(&slabp->list, &l3->slabs_full);
3504 else
3505 list_add(&slabp->list, &l3->slabs_partial);
3506
3507 spin_unlock(&l3->list_lock);
3508 goto done;
3509
3510 must_grow:
3511 spin_unlock(&l3->list_lock);
3512 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3513 if (x)
3514 goto retry;
3515
3516 return fallback_alloc(cachep, flags);
3517
3518 done:
3519 return obj;
3520 }
3521
3522 /**
3523 * kmem_cache_alloc_node - Allocate an object on the specified node
3524 * @cachep: The cache to allocate from.
3525 * @flags: See kmalloc().
3526 * @nodeid: node number of the target node.
3527 * @caller: return address of caller, used for debug information
3528 *
3529 * Identical to kmem_cache_alloc but it will allocate memory on the given
3530 * node, which can improve the performance for cpu bound structures.
3531 *
3532 * Fallback to other node is possible if __GFP_THISNODE is not set.
3533 */
3534 static __always_inline void *
3535 __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3536 void *caller)
3537 {
3538 unsigned long save_flags;
3539 void *ptr;
3540 int slab_node = numa_mem_id();
3541
3542 flags &= gfp_allowed_mask;
3543
3544 lockdep_trace_alloc(flags);
3545
3546 if (slab_should_failslab(cachep, flags))
3547 return NULL;
3548
3549 cache_alloc_debugcheck_before(cachep, flags);
3550 local_irq_save(save_flags);
3551
3552 if (nodeid == NUMA_NO_NODE)
3553 nodeid = slab_node;
3554
3555 if (unlikely(!cachep->nodelists[nodeid])) {
3556 /* Node not bootstrapped yet */
3557 ptr = fallback_alloc(cachep, flags);
3558 goto out;
3559 }
3560
3561 if (nodeid == slab_node) {
3562 /*
3563 * Use the locally cached objects if possible.
3564 * However ____cache_alloc does not allow fallback
3565 * to other nodes. It may fail while we still have
3566 * objects on other nodes available.
3567 */
3568 ptr = ____cache_alloc(cachep, flags);
3569 if (ptr)
3570 goto out;
3571 }
3572 /* ___cache_alloc_node can fall back to other nodes */
3573 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3574 out:
3575 local_irq_restore(save_flags);
3576 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3577 kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3578 flags);
3579
3580 if (likely(ptr))
3581 kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
3582
3583 if (unlikely((flags & __GFP_ZERO) && ptr))
3584 memset(ptr, 0, cachep->object_size);
3585
3586 return ptr;
3587 }
3588
3589 static __always_inline void *
3590 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3591 {
3592 void *objp;
3593
3594 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3595 objp = alternate_node_alloc(cache, flags);
3596 if (objp)
3597 goto out;
3598 }
3599 objp = ____cache_alloc(cache, flags);
3600
3601 /*
3602 * We may just have run out of memory on the local node.
3603 * ____cache_alloc_node() knows how to locate memory on other nodes
3604 */
3605 if (!objp)
3606 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3607
3608 out:
3609 return objp;
3610 }
3611 #else
3612
3613 static __always_inline void *
3614 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3615 {
3616 return ____cache_alloc(cachep, flags);
3617 }
3618
3619 #endif /* CONFIG_NUMA */
3620
3621 static __always_inline void *
3622 __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3623 {
3624 unsigned long save_flags;
3625 void *objp;
3626
3627 flags &= gfp_allowed_mask;
3628
3629 lockdep_trace_alloc(flags);
3630
3631 if (slab_should_failslab(cachep, flags))
3632 return NULL;
3633
3634 cache_alloc_debugcheck_before(cachep, flags);
3635 local_irq_save(save_flags);
3636 objp = __do_cache_alloc(cachep, flags);
3637 local_irq_restore(save_flags);
3638 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3639 kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3640 flags);
3641 prefetchw(objp);
3642
3643 if (likely(objp))
3644 kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
3645
3646 if (unlikely((flags & __GFP_ZERO) && objp))
3647 memset(objp, 0, cachep->object_size);
3648
3649 return objp;
3650 }
3651
3652 /*
3653 * Caller needs to acquire correct kmem_list's list_lock
3654 */
3655 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3656 int node)
3657 {
3658 int i;
3659 struct kmem_list3 *l3;
3660
3661 for (i = 0; i < nr_objects; i++) {
3662 void *objp;
3663 struct slab *slabp;
3664
3665 clear_obj_pfmemalloc(&objpp[i]);
3666 objp = objpp[i];
3667
3668 slabp = virt_to_slab(objp);
3669 l3 = cachep->nodelists[node];
3670 list_del(&slabp->list);
3671 check_spinlock_acquired_node(cachep, node);
3672 check_slabp(cachep, slabp);
3673 slab_put_obj(cachep, slabp, objp, node);
3674 STATS_DEC_ACTIVE(cachep);
3675 l3->free_objects++;
3676 check_slabp(cachep, slabp);
3677
3678 /* fixup slab chains */
3679 if (slabp->inuse == 0) {
3680 if (l3->free_objects > l3->free_limit) {
3681 l3->free_objects -= cachep->num;
3682 /* No need to drop any previously held
3683 * lock here, even if we have a off-slab slab
3684 * descriptor it is guaranteed to come from
3685 * a different cache, refer to comments before
3686 * alloc_slabmgmt.
3687 */
3688 slab_destroy(cachep, slabp);
3689 } else {
3690 list_add(&slabp->list, &l3->slabs_free);
3691 }
3692 } else {
3693 /* Unconditionally move a slab to the end of the
3694 * partial list on free - maximum time for the
3695 * other objects to be freed, too.
3696 */
3697 list_add_tail(&slabp->list, &l3->slabs_partial);
3698 }
3699 }
3700 }
3701
3702 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3703 {
3704 int batchcount;
3705 struct kmem_list3 *l3;
3706 int node = numa_mem_id();
3707
3708 batchcount = ac->batchcount;
3709 #if DEBUG
3710 BUG_ON(!batchcount || batchcount > ac->avail);
3711 #endif
3712 check_irq_off();
3713 l3 = cachep->nodelists[node];
3714 spin_lock(&l3->list_lock);
3715 if (l3->shared) {
3716 struct array_cache *shared_array = l3->shared;
3717 int max = shared_array->limit - shared_array->avail;
3718 if (max) {
3719 if (batchcount > max)
3720 batchcount = max;
3721 memcpy(&(shared_array->entry[shared_array->avail]),
3722 ac->entry, sizeof(void *) * batchcount);
3723 shared_array->avail += batchcount;
3724 goto free_done;
3725 }
3726 }
3727
3728 free_block(cachep, ac->entry, batchcount, node);
3729 free_done:
3730 #if STATS
3731 {
3732 int i = 0;
3733 struct list_head *p;
3734
3735 p = l3->slabs_free.next;
3736 while (p != &(l3->slabs_free)) {
3737 struct slab *slabp;
3738
3739 slabp = list_entry(p, struct slab, list);
3740 BUG_ON(slabp->inuse);
3741
3742 i++;
3743 p = p->next;
3744 }
3745 STATS_SET_FREEABLE(cachep, i);
3746 }
3747 #endif
3748 spin_unlock(&l3->list_lock);
3749 ac->avail -= batchcount;
3750 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3751 }
3752
3753 /*
3754 * Release an obj back to its cache. If the obj has a constructed state, it must
3755 * be in this state _before_ it is released. Called with disabled ints.
3756 */
3757 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3758 void *caller)
3759 {
3760 struct array_cache *ac = cpu_cache_get(cachep);
3761
3762 check_irq_off();
3763 kmemleak_free_recursive(objp, cachep->flags);
3764 objp = cache_free_debugcheck(cachep, objp, caller);
3765
3766 kmemcheck_slab_free(cachep, objp, cachep->object_size);
3767
3768 /*
3769 * Skip calling cache_free_alien() when the platform is not numa.
3770 * This will avoid cache misses that happen while accessing slabp (which
3771 * is per page memory reference) to get nodeid. Instead use a global
3772 * variable to skip the call, which is mostly likely to be present in
3773 * the cache.
3774 */
3775 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3776 return;
3777
3778 if (likely(ac->avail < ac->limit)) {
3779 STATS_INC_FREEHIT(cachep);
3780 } else {
3781 STATS_INC_FREEMISS(cachep);
3782 cache_flusharray(cachep, ac);
3783 }
3784
3785 ac_put_obj(cachep, ac, objp);
3786 }
3787
3788 /**
3789 * kmem_cache_alloc - Allocate an object
3790 * @cachep: The cache to allocate from.
3791 * @flags: See kmalloc().
3792 *
3793 * Allocate an object from this cache. The flags are only relevant
3794 * if the cache has no available objects.
3795 */
3796 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3797 {
3798 void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3799
3800 trace_kmem_cache_alloc(_RET_IP_, ret,
3801 cachep->object_size, cachep->size, flags);
3802
3803 return ret;
3804 }
3805 EXPORT_SYMBOL(kmem_cache_alloc);
3806
3807 #ifdef CONFIG_TRACING
3808 void *
3809 kmem_cache_alloc_trace(size_t size, struct kmem_cache *cachep, gfp_t flags)
3810 {
3811 void *ret;
3812
3813 ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3814
3815 trace_kmalloc(_RET_IP_, ret,
3816 size, slab_buffer_size(cachep), flags);
3817 return ret;
3818 }
3819 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3820 #endif
3821
3822 #ifdef CONFIG_NUMA
3823 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3824 {
3825 void *ret = __cache_alloc_node(cachep, flags, nodeid,
3826 __builtin_return_address(0));
3827
3828 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3829 cachep->object_size, cachep->size,
3830 flags, nodeid);
3831
3832 return ret;
3833 }
3834 EXPORT_SYMBOL(kmem_cache_alloc_node);
3835
3836 #ifdef CONFIG_TRACING
3837 void *kmem_cache_alloc_node_trace(size_t size,
3838 struct kmem_cache *cachep,
3839 gfp_t flags,
3840 int nodeid)
3841 {
3842 void *ret;
3843
3844 ret = __cache_alloc_node(cachep, flags, nodeid,
3845 __builtin_return_address(0));
3846 trace_kmalloc_node(_RET_IP_, ret,
3847 size, slab_buffer_size(cachep),
3848 flags, nodeid);
3849 return ret;
3850 }
3851 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3852 #endif
3853
3854 static __always_inline void *
3855 __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3856 {
3857 struct kmem_cache *cachep;
3858
3859 cachep = kmem_find_general_cachep(size, flags);
3860 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3861 return cachep;
3862 return kmem_cache_alloc_node_trace(size, cachep, flags, node);
3863 }
3864
3865 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3866 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3867 {
3868 return __do_kmalloc_node(size, flags, node,
3869 __builtin_return_address(0));
3870 }
3871 EXPORT_SYMBOL(__kmalloc_node);
3872
3873 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3874 int node, unsigned long caller)
3875 {
3876 return __do_kmalloc_node(size, flags, node, (void *)caller);
3877 }
3878 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3879 #else
3880 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3881 {
3882 return __do_kmalloc_node(size, flags, node, NULL);
3883 }
3884 EXPORT_SYMBOL(__kmalloc_node);
3885 #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3886 #endif /* CONFIG_NUMA */
3887
3888 /**
3889 * __do_kmalloc - allocate memory
3890 * @size: how many bytes of memory are required.
3891 * @flags: the type of memory to allocate (see kmalloc).
3892 * @caller: function caller for debug tracking of the caller
3893 */
3894 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3895 void *caller)
3896 {
3897 struct kmem_cache *cachep;
3898 void *ret;
3899
3900 /* If you want to save a few bytes .text space: replace
3901 * __ with kmem_.
3902 * Then kmalloc uses the uninlined functions instead of the inline
3903 * functions.
3904 */
3905 cachep = __find_general_cachep(size, flags);
3906 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3907 return cachep;
3908 ret = __cache_alloc(cachep, flags, caller);
3909
3910 trace_kmalloc((unsigned long) caller, ret,
3911 size, cachep->size, flags);
3912
3913 return ret;
3914 }
3915
3916
3917 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3918 void *__kmalloc(size_t size, gfp_t flags)
3919 {
3920 return __do_kmalloc(size, flags, __builtin_return_address(0));
3921 }
3922 EXPORT_SYMBOL(__kmalloc);
3923
3924 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3925 {
3926 return __do_kmalloc(size, flags, (void *)caller);
3927 }
3928 EXPORT_SYMBOL(__kmalloc_track_caller);
3929
3930 #else
3931 void *__kmalloc(size_t size, gfp_t flags)
3932 {
3933 return __do_kmalloc(size, flags, NULL);
3934 }
3935 EXPORT_SYMBOL(__kmalloc);
3936 #endif
3937
3938 /**
3939 * kmem_cache_free - Deallocate an object
3940 * @cachep: The cache the allocation was from.
3941 * @objp: The previously allocated object.
3942 *
3943 * Free an object which was previously allocated from this
3944 * cache.
3945 */
3946 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3947 {
3948 unsigned long flags;
3949
3950 local_irq_save(flags);
3951 debug_check_no_locks_freed(objp, cachep->object_size);
3952 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3953 debug_check_no_obj_freed(objp, cachep->object_size);
3954 __cache_free(cachep, objp, __builtin_return_address(0));
3955 local_irq_restore(flags);
3956
3957 trace_kmem_cache_free(_RET_IP_, objp);
3958 }
3959 EXPORT_SYMBOL(kmem_cache_free);
3960
3961 /**
3962 * kfree - free previously allocated memory
3963 * @objp: pointer returned by kmalloc.
3964 *
3965 * If @objp is NULL, no operation is performed.
3966 *
3967 * Don't free memory not originally allocated by kmalloc()
3968 * or you will run into trouble.
3969 */
3970 void kfree(const void *objp)
3971 {
3972 struct kmem_cache *c;
3973 unsigned long flags;
3974
3975 trace_kfree(_RET_IP_, objp);
3976
3977 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3978 return;
3979 local_irq_save(flags);
3980 kfree_debugcheck(objp);
3981 c = virt_to_cache(objp);
3982 debug_check_no_locks_freed(objp, c->object_size);
3983
3984 debug_check_no_obj_freed(objp, c->object_size);
3985 __cache_free(c, (void *)objp, __builtin_return_address(0));
3986 local_irq_restore(flags);
3987 }
3988 EXPORT_SYMBOL(kfree);
3989
3990 unsigned int kmem_cache_size(struct kmem_cache *cachep)
3991 {
3992 return cachep->object_size;
3993 }
3994 EXPORT_SYMBOL(kmem_cache_size);
3995
3996 /*
3997 * This initializes kmem_list3 or resizes various caches for all nodes.
3998 */
3999 static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
4000 {
4001 int node;
4002 struct kmem_list3 *l3;
4003 struct array_cache *new_shared;
4004 struct array_cache **new_alien = NULL;
4005
4006 for_each_online_node(node) {
4007
4008 if (use_alien_caches) {
4009 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
4010 if (!new_alien)
4011 goto fail;
4012 }
4013
4014 new_shared = NULL;
4015 if (cachep->shared) {
4016 new_shared = alloc_arraycache(node,
4017 cachep->shared*cachep->batchcount,
4018 0xbaadf00d, gfp);
4019 if (!new_shared) {
4020 free_alien_cache(new_alien);
4021 goto fail;
4022 }
4023 }
4024
4025 l3 = cachep->nodelists[node];
4026 if (l3) {
4027 struct array_cache *shared = l3->shared;
4028
4029 spin_lock_irq(&l3->list_lock);
4030
4031 if (shared)
4032 free_block(cachep, shared->entry,
4033 shared->avail, node);
4034
4035 l3->shared = new_shared;
4036 if (!l3->alien) {
4037 l3->alien = new_alien;
4038 new_alien = NULL;
4039 }
4040 l3->free_limit = (1 + nr_cpus_node(node)) *
4041 cachep->batchcount + cachep->num;
4042 spin_unlock_irq(&l3->list_lock);
4043 kfree(shared);
4044 free_alien_cache(new_alien);
4045 continue;
4046 }
4047 l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
4048 if (!l3) {
4049 free_alien_cache(new_alien);
4050 kfree(new_shared);
4051 goto fail;
4052 }
4053
4054 kmem_list3_init(l3);
4055 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
4056 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
4057 l3->shared = new_shared;
4058 l3->alien = new_alien;
4059 l3->free_limit = (1 + nr_cpus_node(node)) *
4060 cachep->batchcount + cachep->num;
4061 cachep->nodelists[node] = l3;
4062 }
4063 return 0;
4064
4065 fail:
4066 if (!cachep->list.next) {
4067 /* Cache is not active yet. Roll back what we did */
4068 node--;
4069 while (node >= 0) {
4070 if (cachep->nodelists[node]) {
4071 l3 = cachep->nodelists[node];
4072
4073 kfree(l3->shared);
4074 free_alien_cache(l3->alien);
4075 kfree(l3);
4076 cachep->nodelists[node] = NULL;
4077 }
4078 node--;
4079 }
4080 }
4081 return -ENOMEM;
4082 }
4083
4084 struct ccupdate_struct {
4085 struct kmem_cache *cachep;
4086 struct array_cache *new[0];
4087 };
4088
4089 static void do_ccupdate_local(void *info)
4090 {
4091 struct ccupdate_struct *new = info;
4092 struct array_cache *old;
4093
4094 check_irq_off();
4095 old = cpu_cache_get(new->cachep);
4096
4097 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
4098 new->new[smp_processor_id()] = old;
4099 }
4100
4101 /* Always called with the slab_mutex held */
4102 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
4103 int batchcount, int shared, gfp_t gfp)
4104 {
4105 struct ccupdate_struct *new;
4106 int i;
4107
4108 new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
4109 gfp);
4110 if (!new)
4111 return -ENOMEM;
4112
4113 for_each_online_cpu(i) {
4114 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
4115 batchcount, gfp);
4116 if (!new->new[i]) {
4117 for (i--; i >= 0; i--)
4118 kfree(new->new[i]);
4119 kfree(new);
4120 return -ENOMEM;
4121 }
4122 }
4123 new->cachep = cachep;
4124
4125 on_each_cpu(do_ccupdate_local, (void *)new, 1);
4126
4127 check_irq_on();
4128 cachep->batchcount = batchcount;
4129 cachep->limit = limit;
4130 cachep->shared = shared;
4131
4132 for_each_online_cpu(i) {
4133 struct array_cache *ccold = new->new[i];
4134 if (!ccold)
4135 continue;
4136 spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
4137 free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
4138 spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
4139 kfree(ccold);
4140 }
4141 kfree(new);
4142 return alloc_kmemlist(cachep, gfp);
4143 }
4144
4145 /* Called with slab_mutex held always */
4146 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
4147 {
4148 int err;
4149 int limit, shared;
4150
4151 /*
4152 * The head array serves three purposes:
4153 * - create a LIFO ordering, i.e. return objects that are cache-warm
4154 * - reduce the number of spinlock operations.
4155 * - reduce the number of linked list operations on the slab and
4156 * bufctl chains: array operations are cheaper.
4157 * The numbers are guessed, we should auto-tune as described by
4158 * Bonwick.
4159 */
4160 if (cachep->size > 131072)
4161 limit = 1;
4162 else if (cachep->size > PAGE_SIZE)
4163 limit = 8;
4164 else if (cachep->size > 1024)
4165 limit = 24;
4166 else if (cachep->size > 256)
4167 limit = 54;
4168 else
4169 limit = 120;
4170
4171 /*
4172 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
4173 * allocation behaviour: Most allocs on one cpu, most free operations
4174 * on another cpu. For these cases, an efficient object passing between
4175 * cpus is necessary. This is provided by a shared array. The array
4176 * replaces Bonwick's magazine layer.
4177 * On uniprocessor, it's functionally equivalent (but less efficient)
4178 * to a larger limit. Thus disabled by default.
4179 */
4180 shared = 0;
4181 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
4182 shared = 8;
4183
4184 #if DEBUG
4185 /*
4186 * With debugging enabled, large batchcount lead to excessively long
4187 * periods with disabled local interrupts. Limit the batchcount
4188 */
4189 if (limit > 32)
4190 limit = 32;
4191 #endif
4192 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
4193 if (err)
4194 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
4195 cachep->name, -err);
4196 return err;
4197 }
4198
4199 /*
4200 * Drain an array if it contains any elements taking the l3 lock only if
4201 * necessary. Note that the l3 listlock also protects the array_cache
4202 * if drain_array() is used on the shared array.
4203 */
4204 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4205 struct array_cache *ac, int force, int node)
4206 {
4207 int tofree;
4208
4209 if (!ac || !ac->avail)
4210 return;
4211 if (ac->touched && !force) {
4212 ac->touched = 0;
4213 } else {
4214 spin_lock_irq(&l3->list_lock);
4215 if (ac->avail) {
4216 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4217 if (tofree > ac->avail)
4218 tofree = (ac->avail + 1) / 2;
4219 free_block(cachep, ac->entry, tofree, node);
4220 ac->avail -= tofree;
4221 memmove(ac->entry, &(ac->entry[tofree]),
4222 sizeof(void *) * ac->avail);
4223 }
4224 spin_unlock_irq(&l3->list_lock);
4225 }
4226 }
4227
4228 /**
4229 * cache_reap - Reclaim memory from caches.
4230 * @w: work descriptor
4231 *
4232 * Called from workqueue/eventd every few seconds.
4233 * Purpose:
4234 * - clear the per-cpu caches for this CPU.
4235 * - return freeable pages to the main free memory pool.
4236 *
4237 * If we cannot acquire the cache chain mutex then just give up - we'll try
4238 * again on the next iteration.
4239 */
4240 static void cache_reap(struct work_struct *w)
4241 {
4242 struct kmem_cache *searchp;
4243 struct kmem_list3 *l3;
4244 int node = numa_mem_id();
4245 struct delayed_work *work = to_delayed_work(w);
4246
4247 if (!mutex_trylock(&slab_mutex))
4248 /* Give up. Setup the next iteration. */
4249 goto out;
4250
4251 list_for_each_entry(searchp, &slab_caches, list) {
4252 check_irq_on();
4253
4254 /*
4255 * We only take the l3 lock if absolutely necessary and we
4256 * have established with reasonable certainty that
4257 * we can do some work if the lock was obtained.
4258 */
4259 l3 = searchp->nodelists[node];
4260
4261 reap_alien(searchp, l3);
4262
4263 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
4264
4265 /*
4266 * These are racy checks but it does not matter
4267 * if we skip one check or scan twice.
4268 */
4269 if (time_after(l3->next_reap, jiffies))
4270 goto next;
4271
4272 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
4273
4274 drain_array(searchp, l3, l3->shared, 0, node);
4275
4276 if (l3->free_touched)
4277 l3->free_touched = 0;
4278 else {
4279 int freed;
4280
4281 freed = drain_freelist(searchp, l3, (l3->free_limit +
4282 5 * searchp->num - 1) / (5 * searchp->num));
4283 STATS_ADD_REAPED(searchp, freed);
4284 }
4285 next:
4286 cond_resched();
4287 }
4288 check_irq_on();
4289 mutex_unlock(&slab_mutex);
4290 next_reap_node();
4291 out:
4292 /* Set up the next iteration */
4293 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
4294 }
4295
4296 #ifdef CONFIG_SLABINFO
4297
4298 static void print_slabinfo_header(struct seq_file *m)
4299 {
4300 /*
4301 * Output format version, so at least we can change it
4302 * without _too_ many complaints.
4303 */
4304 #if STATS
4305 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
4306 #else
4307 seq_puts(m, "slabinfo - version: 2.1\n");
4308 #endif
4309 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4310 "<objperslab> <pagesperslab>");
4311 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4312 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4313 #if STATS
4314 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4315 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4316 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4317 #endif
4318 seq_putc(m, '\n');
4319 }
4320
4321 static void *s_start(struct seq_file *m, loff_t *pos)
4322 {
4323 loff_t n = *pos;
4324
4325 mutex_lock(&slab_mutex);
4326 if (!n)
4327 print_slabinfo_header(m);
4328
4329 return seq_list_start(&slab_caches, *pos);
4330 }
4331
4332 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4333 {
4334 return seq_list_next(p, &slab_caches, pos);
4335 }
4336
4337 static void s_stop(struct seq_file *m, void *p)
4338 {
4339 mutex_unlock(&slab_mutex);
4340 }
4341
4342 static int s_show(struct seq_file *m, void *p)
4343 {
4344 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4345 struct slab *slabp;
4346 unsigned long active_objs;
4347 unsigned long num_objs;
4348 unsigned long active_slabs = 0;
4349 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4350 const char *name;
4351 char *error = NULL;
4352 int node;
4353 struct kmem_list3 *l3;
4354
4355 active_objs = 0;
4356 num_slabs = 0;
4357 for_each_online_node(node) {
4358 l3 = cachep->nodelists[node];
4359 if (!l3)
4360 continue;
4361
4362 check_irq_on();
4363 spin_lock_irq(&l3->list_lock);
4364
4365 list_for_each_entry(slabp, &l3->slabs_full, list) {
4366 if (slabp->inuse != cachep->num && !error)
4367 error = "slabs_full accounting error";
4368 active_objs += cachep->num;
4369 active_slabs++;
4370 }
4371 list_for_each_entry(slabp, &l3->slabs_partial, list) {
4372 if (slabp->inuse == cachep->num && !error)
4373 error = "slabs_partial inuse accounting error";
4374 if (!slabp->inuse && !error)
4375 error = "slabs_partial/inuse accounting error";
4376 active_objs += slabp->inuse;
4377 active_slabs++;
4378 }
4379 list_for_each_entry(slabp, &l3->slabs_free, list) {
4380 if (slabp->inuse && !error)
4381 error = "slabs_free/inuse accounting error";
4382 num_slabs++;
4383 }
4384 free_objects += l3->free_objects;
4385 if (l3->shared)
4386 shared_avail += l3->shared->avail;
4387
4388 spin_unlock_irq(&l3->list_lock);
4389 }
4390 num_slabs += active_slabs;
4391 num_objs = num_slabs * cachep->num;
4392 if (num_objs - active_objs != free_objects && !error)
4393 error = "free_objects accounting error";
4394
4395 name = cachep->name;
4396 if (error)
4397 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4398
4399 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4400 name, active_objs, num_objs, cachep->size,
4401 cachep->num, (1 << cachep->gfporder));
4402 seq_printf(m, " : tunables %4u %4u %4u",
4403 cachep->limit, cachep->batchcount, cachep->shared);
4404 seq_printf(m, " : slabdata %6lu %6lu %6lu",
4405 active_slabs, num_slabs, shared_avail);
4406 #if STATS
4407 { /* list3 stats */
4408 unsigned long high = cachep->high_mark;
4409 unsigned long allocs = cachep->num_allocations;
4410 unsigned long grown = cachep->grown;
4411 unsigned long reaped = cachep->reaped;
4412 unsigned long errors = cachep->errors;
4413 unsigned long max_freeable = cachep->max_freeable;
4414 unsigned long node_allocs = cachep->node_allocs;
4415 unsigned long node_frees = cachep->node_frees;
4416 unsigned long overflows = cachep->node_overflow;
4417
4418 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4419 "%4lu %4lu %4lu %4lu %4lu",
4420 allocs, high, grown,
4421 reaped, errors, max_freeable, node_allocs,
4422 node_frees, overflows);
4423 }
4424 /* cpu stats */
4425 {
4426 unsigned long allochit = atomic_read(&cachep->allochit);
4427 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4428 unsigned long freehit = atomic_read(&cachep->freehit);
4429 unsigned long freemiss = atomic_read(&cachep->freemiss);
4430
4431 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4432 allochit, allocmiss, freehit, freemiss);
4433 }
4434 #endif
4435 seq_putc(m, '\n');
4436 return 0;
4437 }
4438
4439 /*
4440 * slabinfo_op - iterator that generates /proc/slabinfo
4441 *
4442 * Output layout:
4443 * cache-name
4444 * num-active-objs
4445 * total-objs
4446 * object size
4447 * num-active-slabs
4448 * total-slabs
4449 * num-pages-per-slab
4450 * + further values on SMP and with statistics enabled
4451 */
4452
4453 static const struct seq_operations slabinfo_op = {
4454 .start = s_start,
4455 .next = s_next,
4456 .stop = s_stop,
4457 .show = s_show,
4458 };
4459
4460 #define MAX_SLABINFO_WRITE 128
4461 /**
4462 * slabinfo_write - Tuning for the slab allocator
4463 * @file: unused
4464 * @buffer: user buffer
4465 * @count: data length
4466 * @ppos: unused
4467 */
4468 static ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4469 size_t count, loff_t *ppos)
4470 {
4471 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4472 int limit, batchcount, shared, res;
4473 struct kmem_cache *cachep;
4474
4475 if (count > MAX_SLABINFO_WRITE)
4476 return -EINVAL;
4477 if (copy_from_user(&kbuf, buffer, count))
4478 return -EFAULT;
4479 kbuf[MAX_SLABINFO_WRITE] = '\0';
4480
4481 tmp = strchr(kbuf, ' ');
4482 if (!tmp)
4483 return -EINVAL;
4484 *tmp = '\0';
4485 tmp++;
4486 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4487 return -EINVAL;
4488
4489 /* Find the cache in the chain of caches. */
4490 mutex_lock(&slab_mutex);
4491 res = -EINVAL;
4492 list_for_each_entry(cachep, &slab_caches, list) {
4493 if (!strcmp(cachep->name, kbuf)) {
4494 if (limit < 1 || batchcount < 1 ||
4495 batchcount > limit || shared < 0) {
4496 res = 0;
4497 } else {
4498 res = do_tune_cpucache(cachep, limit,
4499 batchcount, shared,
4500 GFP_KERNEL);
4501 }
4502 break;
4503 }
4504 }
4505 mutex_unlock(&slab_mutex);
4506 if (res >= 0)
4507 res = count;
4508 return res;
4509 }
4510
4511 static int slabinfo_open(struct inode *inode, struct file *file)
4512 {
4513 return seq_open(file, &slabinfo_op);
4514 }
4515
4516 static const struct file_operations proc_slabinfo_operations = {
4517 .open = slabinfo_open,
4518 .read = seq_read,
4519 .write = slabinfo_write,
4520 .llseek = seq_lseek,
4521 .release = seq_release,
4522 };
4523
4524 #ifdef CONFIG_DEBUG_SLAB_LEAK
4525
4526 static void *leaks_start(struct seq_file *m, loff_t *pos)
4527 {
4528 mutex_lock(&slab_mutex);
4529 return seq_list_start(&slab_caches, *pos);
4530 }
4531
4532 static inline int add_caller(unsigned long *n, unsigned long v)
4533 {
4534 unsigned long *p;
4535 int l;
4536 if (!v)
4537 return 1;
4538 l = n[1];
4539 p = n + 2;
4540 while (l) {
4541 int i = l/2;
4542 unsigned long *q = p + 2 * i;
4543 if (*q == v) {
4544 q[1]++;
4545 return 1;
4546 }
4547 if (*q > v) {
4548 l = i;
4549 } else {
4550 p = q + 2;
4551 l -= i + 1;
4552 }
4553 }
4554 if (++n[1] == n[0])
4555 return 0;
4556 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4557 p[0] = v;
4558 p[1] = 1;
4559 return 1;
4560 }
4561
4562 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4563 {
4564 void *p;
4565 int i;
4566 if (n[0] == n[1])
4567 return;
4568 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->size) {
4569 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4570 continue;
4571 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4572 return;
4573 }
4574 }
4575
4576 static void show_symbol(struct seq_file *m, unsigned long address)
4577 {
4578 #ifdef CONFIG_KALLSYMS
4579 unsigned long offset, size;
4580 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4581
4582 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4583 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4584 if (modname[0])
4585 seq_printf(m, " [%s]", modname);
4586 return;
4587 }
4588 #endif
4589 seq_printf(m, "%p", (void *)address);
4590 }
4591
4592 static int leaks_show(struct seq_file *m, void *p)
4593 {
4594 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4595 struct slab *slabp;
4596 struct kmem_list3 *l3;
4597 const char *name;
4598 unsigned long *n = m->private;
4599 int node;
4600 int i;
4601
4602 if (!(cachep->flags & SLAB_STORE_USER))
4603 return 0;
4604 if (!(cachep->flags & SLAB_RED_ZONE))
4605 return 0;
4606
4607 /* OK, we can do it */
4608
4609 n[1] = 0;
4610
4611 for_each_online_node(node) {
4612 l3 = cachep->nodelists[node];
4613 if (!l3)
4614 continue;
4615
4616 check_irq_on();
4617 spin_lock_irq(&l3->list_lock);
4618
4619 list_for_each_entry(slabp, &l3->slabs_full, list)
4620 handle_slab(n, cachep, slabp);
4621 list_for_each_entry(slabp, &l3->slabs_partial, list)
4622 handle_slab(n, cachep, slabp);
4623 spin_unlock_irq(&l3->list_lock);
4624 }
4625 name = cachep->name;
4626 if (n[0] == n[1]) {
4627 /* Increase the buffer size */
4628 mutex_unlock(&slab_mutex);
4629 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4630 if (!m->private) {
4631 /* Too bad, we are really out */
4632 m->private = n;
4633 mutex_lock(&slab_mutex);
4634 return -ENOMEM;
4635 }
4636 *(unsigned long *)m->private = n[0] * 2;
4637 kfree(n);
4638 mutex_lock(&slab_mutex);
4639 /* Now make sure this entry will be retried */
4640 m->count = m->size;
4641 return 0;
4642 }
4643 for (i = 0; i < n[1]; i++) {
4644 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4645 show_symbol(m, n[2*i+2]);
4646 seq_putc(m, '\n');
4647 }
4648
4649 return 0;
4650 }
4651
4652 static const struct seq_operations slabstats_op = {
4653 .start = leaks_start,
4654 .next = s_next,
4655 .stop = s_stop,
4656 .show = leaks_show,
4657 };
4658
4659 static int slabstats_open(struct inode *inode, struct file *file)
4660 {
4661 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4662 int ret = -ENOMEM;
4663 if (n) {
4664 ret = seq_open(file, &slabstats_op);
4665 if (!ret) {
4666 struct seq_file *m = file->private_data;
4667 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4668 m->private = n;
4669 n = NULL;
4670 }
4671 kfree(n);
4672 }
4673 return ret;
4674 }
4675
4676 static const struct file_operations proc_slabstats_operations = {
4677 .open = slabstats_open,
4678 .read = seq_read,
4679 .llseek = seq_lseek,
4680 .release = seq_release_private,
4681 };
4682 #endif
4683
4684 static int __init slab_proc_init(void)
4685 {
4686 proc_create("slabinfo",S_IWUSR|S_IRUSR,NULL,&proc_slabinfo_operations);
4687 #ifdef CONFIG_DEBUG_SLAB_LEAK
4688 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4689 #endif
4690 return 0;
4691 }
4692 module_init(slab_proc_init);
4693 #endif
4694
4695 /**
4696 * ksize - get the actual amount of memory allocated for a given object
4697 * @objp: Pointer to the object
4698 *
4699 * kmalloc may internally round up allocations and return more memory
4700 * than requested. ksize() can be used to determine the actual amount of
4701 * memory allocated. The caller may use this additional memory, even though
4702 * a smaller amount of memory was initially specified with the kmalloc call.
4703 * The caller must guarantee that objp points to a valid object previously
4704 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4705 * must not be freed during the duration of the call.
4706 */
4707 size_t ksize(const void *objp)
4708 {
4709 BUG_ON(!objp);
4710 if (unlikely(objp == ZERO_SIZE_PTR))
4711 return 0;
4712
4713 return virt_to_cache(objp)->object_size;
4714 }
4715 EXPORT_SYMBOL(ksize);
This page took 0.128009 seconds and 5 git commands to generate.