slab: remove kmem_bufctl_t
[deliverable/linux.git] / mm / slab.c
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'slab_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
87 */
88
89 #include <linux/slab.h>
90 #include <linux/mm.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/notifier.h>
101 #include <linux/kallsyms.h>
102 #include <linux/cpu.h>
103 #include <linux/sysctl.h>
104 #include <linux/module.h>
105 #include <linux/rcupdate.h>
106 #include <linux/string.h>
107 #include <linux/uaccess.h>
108 #include <linux/nodemask.h>
109 #include <linux/kmemleak.h>
110 #include <linux/mempolicy.h>
111 #include <linux/mutex.h>
112 #include <linux/fault-inject.h>
113 #include <linux/rtmutex.h>
114 #include <linux/reciprocal_div.h>
115 #include <linux/debugobjects.h>
116 #include <linux/kmemcheck.h>
117 #include <linux/memory.h>
118 #include <linux/prefetch.h>
119
120 #include <net/sock.h>
121
122 #include <asm/cacheflush.h>
123 #include <asm/tlbflush.h>
124 #include <asm/page.h>
125
126 #include <trace/events/kmem.h>
127
128 #include "internal.h"
129
130 #include "slab.h"
131
132 /*
133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
134 * 0 for faster, smaller code (especially in the critical paths).
135 *
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
138 *
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140 */
141
142 #ifdef CONFIG_DEBUG_SLAB
143 #define DEBUG 1
144 #define STATS 1
145 #define FORCED_DEBUG 1
146 #else
147 #define DEBUG 0
148 #define STATS 0
149 #define FORCED_DEBUG 0
150 #endif
151
152 /* Shouldn't this be in a header file somewhere? */
153 #define BYTES_PER_WORD sizeof(void *)
154 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
155
156 #ifndef ARCH_KMALLOC_FLAGS
157 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158 #endif
159
160 /*
161 * true if a page was allocated from pfmemalloc reserves for network-based
162 * swap
163 */
164 static bool pfmemalloc_active __read_mostly;
165
166 #define SLAB_LIMIT (((unsigned int)(~0U))-1)
167
168 /*
169 * struct slab
170 *
171 * Manages the objs in a slab. Placed either at the beginning of mem allocated
172 * for a slab, or allocated from an general cache.
173 * Slabs are chained into three list: fully used, partial, fully free slabs.
174 */
175 struct slab {
176 struct {
177 struct list_head list;
178 void *s_mem; /* including colour offset */
179 unsigned int inuse; /* num of objs active in slab */
180 unsigned int free;
181 };
182 };
183
184 /*
185 * struct array_cache
186 *
187 * Purpose:
188 * - LIFO ordering, to hand out cache-warm objects from _alloc
189 * - reduce the number of linked list operations
190 * - reduce spinlock operations
191 *
192 * The limit is stored in the per-cpu structure to reduce the data cache
193 * footprint.
194 *
195 */
196 struct array_cache {
197 unsigned int avail;
198 unsigned int limit;
199 unsigned int batchcount;
200 unsigned int touched;
201 spinlock_t lock;
202 void *entry[]; /*
203 * Must have this definition in here for the proper
204 * alignment of array_cache. Also simplifies accessing
205 * the entries.
206 *
207 * Entries should not be directly dereferenced as
208 * entries belonging to slabs marked pfmemalloc will
209 * have the lower bits set SLAB_OBJ_PFMEMALLOC
210 */
211 };
212
213 #define SLAB_OBJ_PFMEMALLOC 1
214 static inline bool is_obj_pfmemalloc(void *objp)
215 {
216 return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
217 }
218
219 static inline void set_obj_pfmemalloc(void **objp)
220 {
221 *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
222 return;
223 }
224
225 static inline void clear_obj_pfmemalloc(void **objp)
226 {
227 *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
228 }
229
230 /*
231 * bootstrap: The caches do not work without cpuarrays anymore, but the
232 * cpuarrays are allocated from the generic caches...
233 */
234 #define BOOT_CPUCACHE_ENTRIES 1
235 struct arraycache_init {
236 struct array_cache cache;
237 void *entries[BOOT_CPUCACHE_ENTRIES];
238 };
239
240 /*
241 * Need this for bootstrapping a per node allocator.
242 */
243 #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
244 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
245 #define CACHE_CACHE 0
246 #define SIZE_AC MAX_NUMNODES
247 #define SIZE_NODE (2 * MAX_NUMNODES)
248
249 static int drain_freelist(struct kmem_cache *cache,
250 struct kmem_cache_node *n, int tofree);
251 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
252 int node);
253 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
254 static void cache_reap(struct work_struct *unused);
255
256 static int slab_early_init = 1;
257
258 #define INDEX_AC kmalloc_index(sizeof(struct arraycache_init))
259 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
260
261 static void kmem_cache_node_init(struct kmem_cache_node *parent)
262 {
263 INIT_LIST_HEAD(&parent->slabs_full);
264 INIT_LIST_HEAD(&parent->slabs_partial);
265 INIT_LIST_HEAD(&parent->slabs_free);
266 parent->shared = NULL;
267 parent->alien = NULL;
268 parent->colour_next = 0;
269 spin_lock_init(&parent->list_lock);
270 parent->free_objects = 0;
271 parent->free_touched = 0;
272 }
273
274 #define MAKE_LIST(cachep, listp, slab, nodeid) \
275 do { \
276 INIT_LIST_HEAD(listp); \
277 list_splice(&(cachep->node[nodeid]->slab), listp); \
278 } while (0)
279
280 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
281 do { \
282 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
283 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
284 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
285 } while (0)
286
287 #define CFLGS_OFF_SLAB (0x80000000UL)
288 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
289
290 #define BATCHREFILL_LIMIT 16
291 /*
292 * Optimization question: fewer reaps means less probability for unnessary
293 * cpucache drain/refill cycles.
294 *
295 * OTOH the cpuarrays can contain lots of objects,
296 * which could lock up otherwise freeable slabs.
297 */
298 #define REAPTIMEOUT_CPUC (2*HZ)
299 #define REAPTIMEOUT_LIST3 (4*HZ)
300
301 #if STATS
302 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
303 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
304 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
305 #define STATS_INC_GROWN(x) ((x)->grown++)
306 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
307 #define STATS_SET_HIGH(x) \
308 do { \
309 if ((x)->num_active > (x)->high_mark) \
310 (x)->high_mark = (x)->num_active; \
311 } while (0)
312 #define STATS_INC_ERR(x) ((x)->errors++)
313 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
314 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
315 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
316 #define STATS_SET_FREEABLE(x, i) \
317 do { \
318 if ((x)->max_freeable < i) \
319 (x)->max_freeable = i; \
320 } while (0)
321 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
322 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
323 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
324 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
325 #else
326 #define STATS_INC_ACTIVE(x) do { } while (0)
327 #define STATS_DEC_ACTIVE(x) do { } while (0)
328 #define STATS_INC_ALLOCED(x) do { } while (0)
329 #define STATS_INC_GROWN(x) do { } while (0)
330 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
331 #define STATS_SET_HIGH(x) do { } while (0)
332 #define STATS_INC_ERR(x) do { } while (0)
333 #define STATS_INC_NODEALLOCS(x) do { } while (0)
334 #define STATS_INC_NODEFREES(x) do { } while (0)
335 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
336 #define STATS_SET_FREEABLE(x, i) do { } while (0)
337 #define STATS_INC_ALLOCHIT(x) do { } while (0)
338 #define STATS_INC_ALLOCMISS(x) do { } while (0)
339 #define STATS_INC_FREEHIT(x) do { } while (0)
340 #define STATS_INC_FREEMISS(x) do { } while (0)
341 #endif
342
343 #if DEBUG
344
345 /*
346 * memory layout of objects:
347 * 0 : objp
348 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
349 * the end of an object is aligned with the end of the real
350 * allocation. Catches writes behind the end of the allocation.
351 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
352 * redzone word.
353 * cachep->obj_offset: The real object.
354 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
355 * cachep->size - 1* BYTES_PER_WORD: last caller address
356 * [BYTES_PER_WORD long]
357 */
358 static int obj_offset(struct kmem_cache *cachep)
359 {
360 return cachep->obj_offset;
361 }
362
363 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
364 {
365 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
366 return (unsigned long long*) (objp + obj_offset(cachep) -
367 sizeof(unsigned long long));
368 }
369
370 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
371 {
372 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
373 if (cachep->flags & SLAB_STORE_USER)
374 return (unsigned long long *)(objp + cachep->size -
375 sizeof(unsigned long long) -
376 REDZONE_ALIGN);
377 return (unsigned long long *) (objp + cachep->size -
378 sizeof(unsigned long long));
379 }
380
381 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
382 {
383 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
384 return (void **)(objp + cachep->size - BYTES_PER_WORD);
385 }
386
387 #else
388
389 #define obj_offset(x) 0
390 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
391 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
392 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
393
394 #endif
395
396 /*
397 * Do not go above this order unless 0 objects fit into the slab or
398 * overridden on the command line.
399 */
400 #define SLAB_MAX_ORDER_HI 1
401 #define SLAB_MAX_ORDER_LO 0
402 static int slab_max_order = SLAB_MAX_ORDER_LO;
403 static bool slab_max_order_set __initdata;
404
405 static inline struct kmem_cache *virt_to_cache(const void *obj)
406 {
407 struct page *page = virt_to_head_page(obj);
408 return page->slab_cache;
409 }
410
411 static inline struct slab *virt_to_slab(const void *obj)
412 {
413 struct page *page = virt_to_head_page(obj);
414
415 VM_BUG_ON(!PageSlab(page));
416 return page->slab_page;
417 }
418
419 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
420 unsigned int idx)
421 {
422 return slab->s_mem + cache->size * idx;
423 }
424
425 /*
426 * We want to avoid an expensive divide : (offset / cache->size)
427 * Using the fact that size is a constant for a particular cache,
428 * we can replace (offset / cache->size) by
429 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
430 */
431 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
432 const struct slab *slab, void *obj)
433 {
434 u32 offset = (obj - slab->s_mem);
435 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
436 }
437
438 static struct arraycache_init initarray_generic =
439 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
440
441 /* internal cache of cache description objs */
442 static struct kmem_cache kmem_cache_boot = {
443 .batchcount = 1,
444 .limit = BOOT_CPUCACHE_ENTRIES,
445 .shared = 1,
446 .size = sizeof(struct kmem_cache),
447 .name = "kmem_cache",
448 };
449
450 #define BAD_ALIEN_MAGIC 0x01020304ul
451
452 #ifdef CONFIG_LOCKDEP
453
454 /*
455 * Slab sometimes uses the kmalloc slabs to store the slab headers
456 * for other slabs "off slab".
457 * The locking for this is tricky in that it nests within the locks
458 * of all other slabs in a few places; to deal with this special
459 * locking we put on-slab caches into a separate lock-class.
460 *
461 * We set lock class for alien array caches which are up during init.
462 * The lock annotation will be lost if all cpus of a node goes down and
463 * then comes back up during hotplug
464 */
465 static struct lock_class_key on_slab_l3_key;
466 static struct lock_class_key on_slab_alc_key;
467
468 static struct lock_class_key debugobj_l3_key;
469 static struct lock_class_key debugobj_alc_key;
470
471 static void slab_set_lock_classes(struct kmem_cache *cachep,
472 struct lock_class_key *l3_key, struct lock_class_key *alc_key,
473 int q)
474 {
475 struct array_cache **alc;
476 struct kmem_cache_node *n;
477 int r;
478
479 n = cachep->node[q];
480 if (!n)
481 return;
482
483 lockdep_set_class(&n->list_lock, l3_key);
484 alc = n->alien;
485 /*
486 * FIXME: This check for BAD_ALIEN_MAGIC
487 * should go away when common slab code is taught to
488 * work even without alien caches.
489 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
490 * for alloc_alien_cache,
491 */
492 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
493 return;
494 for_each_node(r) {
495 if (alc[r])
496 lockdep_set_class(&alc[r]->lock, alc_key);
497 }
498 }
499
500 static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
501 {
502 slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
503 }
504
505 static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
506 {
507 int node;
508
509 for_each_online_node(node)
510 slab_set_debugobj_lock_classes_node(cachep, node);
511 }
512
513 static void init_node_lock_keys(int q)
514 {
515 int i;
516
517 if (slab_state < UP)
518 return;
519
520 for (i = 1; i <= KMALLOC_SHIFT_HIGH; i++) {
521 struct kmem_cache_node *n;
522 struct kmem_cache *cache = kmalloc_caches[i];
523
524 if (!cache)
525 continue;
526
527 n = cache->node[q];
528 if (!n || OFF_SLAB(cache))
529 continue;
530
531 slab_set_lock_classes(cache, &on_slab_l3_key,
532 &on_slab_alc_key, q);
533 }
534 }
535
536 static void on_slab_lock_classes_node(struct kmem_cache *cachep, int q)
537 {
538 if (!cachep->node[q])
539 return;
540
541 slab_set_lock_classes(cachep, &on_slab_l3_key,
542 &on_slab_alc_key, q);
543 }
544
545 static inline void on_slab_lock_classes(struct kmem_cache *cachep)
546 {
547 int node;
548
549 VM_BUG_ON(OFF_SLAB(cachep));
550 for_each_node(node)
551 on_slab_lock_classes_node(cachep, node);
552 }
553
554 static inline void init_lock_keys(void)
555 {
556 int node;
557
558 for_each_node(node)
559 init_node_lock_keys(node);
560 }
561 #else
562 static void init_node_lock_keys(int q)
563 {
564 }
565
566 static inline void init_lock_keys(void)
567 {
568 }
569
570 static inline void on_slab_lock_classes(struct kmem_cache *cachep)
571 {
572 }
573
574 static inline void on_slab_lock_classes_node(struct kmem_cache *cachep, int node)
575 {
576 }
577
578 static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
579 {
580 }
581
582 static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
583 {
584 }
585 #endif
586
587 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
588
589 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
590 {
591 return cachep->array[smp_processor_id()];
592 }
593
594 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
595 {
596 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(unsigned int), align);
597 }
598
599 /*
600 * Calculate the number of objects and left-over bytes for a given buffer size.
601 */
602 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
603 size_t align, int flags, size_t *left_over,
604 unsigned int *num)
605 {
606 int nr_objs;
607 size_t mgmt_size;
608 size_t slab_size = PAGE_SIZE << gfporder;
609
610 /*
611 * The slab management structure can be either off the slab or
612 * on it. For the latter case, the memory allocated for a
613 * slab is used for:
614 *
615 * - The struct slab
616 * - One unsigned int for each object
617 * - Padding to respect alignment of @align
618 * - @buffer_size bytes for each object
619 *
620 * If the slab management structure is off the slab, then the
621 * alignment will already be calculated into the size. Because
622 * the slabs are all pages aligned, the objects will be at the
623 * correct alignment when allocated.
624 */
625 if (flags & CFLGS_OFF_SLAB) {
626 mgmt_size = 0;
627 nr_objs = slab_size / buffer_size;
628
629 if (nr_objs > SLAB_LIMIT)
630 nr_objs = SLAB_LIMIT;
631 } else {
632 /*
633 * Ignore padding for the initial guess. The padding
634 * is at most @align-1 bytes, and @buffer_size is at
635 * least @align. In the worst case, this result will
636 * be one greater than the number of objects that fit
637 * into the memory allocation when taking the padding
638 * into account.
639 */
640 nr_objs = (slab_size - sizeof(struct slab)) /
641 (buffer_size + sizeof(unsigned int));
642
643 /*
644 * This calculated number will be either the right
645 * amount, or one greater than what we want.
646 */
647 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
648 > slab_size)
649 nr_objs--;
650
651 if (nr_objs > SLAB_LIMIT)
652 nr_objs = SLAB_LIMIT;
653
654 mgmt_size = slab_mgmt_size(nr_objs, align);
655 }
656 *num = nr_objs;
657 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
658 }
659
660 #if DEBUG
661 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
662
663 static void __slab_error(const char *function, struct kmem_cache *cachep,
664 char *msg)
665 {
666 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
667 function, cachep->name, msg);
668 dump_stack();
669 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
670 }
671 #endif
672
673 /*
674 * By default on NUMA we use alien caches to stage the freeing of
675 * objects allocated from other nodes. This causes massive memory
676 * inefficiencies when using fake NUMA setup to split memory into a
677 * large number of small nodes, so it can be disabled on the command
678 * line
679 */
680
681 static int use_alien_caches __read_mostly = 1;
682 static int __init noaliencache_setup(char *s)
683 {
684 use_alien_caches = 0;
685 return 1;
686 }
687 __setup("noaliencache", noaliencache_setup);
688
689 static int __init slab_max_order_setup(char *str)
690 {
691 get_option(&str, &slab_max_order);
692 slab_max_order = slab_max_order < 0 ? 0 :
693 min(slab_max_order, MAX_ORDER - 1);
694 slab_max_order_set = true;
695
696 return 1;
697 }
698 __setup("slab_max_order=", slab_max_order_setup);
699
700 #ifdef CONFIG_NUMA
701 /*
702 * Special reaping functions for NUMA systems called from cache_reap().
703 * These take care of doing round robin flushing of alien caches (containing
704 * objects freed on different nodes from which they were allocated) and the
705 * flushing of remote pcps by calling drain_node_pages.
706 */
707 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
708
709 static void init_reap_node(int cpu)
710 {
711 int node;
712
713 node = next_node(cpu_to_mem(cpu), node_online_map);
714 if (node == MAX_NUMNODES)
715 node = first_node(node_online_map);
716
717 per_cpu(slab_reap_node, cpu) = node;
718 }
719
720 static void next_reap_node(void)
721 {
722 int node = __this_cpu_read(slab_reap_node);
723
724 node = next_node(node, node_online_map);
725 if (unlikely(node >= MAX_NUMNODES))
726 node = first_node(node_online_map);
727 __this_cpu_write(slab_reap_node, node);
728 }
729
730 #else
731 #define init_reap_node(cpu) do { } while (0)
732 #define next_reap_node(void) do { } while (0)
733 #endif
734
735 /*
736 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
737 * via the workqueue/eventd.
738 * Add the CPU number into the expiration time to minimize the possibility of
739 * the CPUs getting into lockstep and contending for the global cache chain
740 * lock.
741 */
742 static void start_cpu_timer(int cpu)
743 {
744 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
745
746 /*
747 * When this gets called from do_initcalls via cpucache_init(),
748 * init_workqueues() has already run, so keventd will be setup
749 * at that time.
750 */
751 if (keventd_up() && reap_work->work.func == NULL) {
752 init_reap_node(cpu);
753 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
754 schedule_delayed_work_on(cpu, reap_work,
755 __round_jiffies_relative(HZ, cpu));
756 }
757 }
758
759 static struct array_cache *alloc_arraycache(int node, int entries,
760 int batchcount, gfp_t gfp)
761 {
762 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
763 struct array_cache *nc = NULL;
764
765 nc = kmalloc_node(memsize, gfp, node);
766 /*
767 * The array_cache structures contain pointers to free object.
768 * However, when such objects are allocated or transferred to another
769 * cache the pointers are not cleared and they could be counted as
770 * valid references during a kmemleak scan. Therefore, kmemleak must
771 * not scan such objects.
772 */
773 kmemleak_no_scan(nc);
774 if (nc) {
775 nc->avail = 0;
776 nc->limit = entries;
777 nc->batchcount = batchcount;
778 nc->touched = 0;
779 spin_lock_init(&nc->lock);
780 }
781 return nc;
782 }
783
784 static inline bool is_slab_pfmemalloc(struct slab *slabp)
785 {
786 struct page *page = virt_to_page(slabp->s_mem);
787
788 return PageSlabPfmemalloc(page);
789 }
790
791 /* Clears pfmemalloc_active if no slabs have pfmalloc set */
792 static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
793 struct array_cache *ac)
794 {
795 struct kmem_cache_node *n = cachep->node[numa_mem_id()];
796 struct slab *slabp;
797 unsigned long flags;
798
799 if (!pfmemalloc_active)
800 return;
801
802 spin_lock_irqsave(&n->list_lock, flags);
803 list_for_each_entry(slabp, &n->slabs_full, list)
804 if (is_slab_pfmemalloc(slabp))
805 goto out;
806
807 list_for_each_entry(slabp, &n->slabs_partial, list)
808 if (is_slab_pfmemalloc(slabp))
809 goto out;
810
811 list_for_each_entry(slabp, &n->slabs_free, list)
812 if (is_slab_pfmemalloc(slabp))
813 goto out;
814
815 pfmemalloc_active = false;
816 out:
817 spin_unlock_irqrestore(&n->list_lock, flags);
818 }
819
820 static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
821 gfp_t flags, bool force_refill)
822 {
823 int i;
824 void *objp = ac->entry[--ac->avail];
825
826 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
827 if (unlikely(is_obj_pfmemalloc(objp))) {
828 struct kmem_cache_node *n;
829
830 if (gfp_pfmemalloc_allowed(flags)) {
831 clear_obj_pfmemalloc(&objp);
832 return objp;
833 }
834
835 /* The caller cannot use PFMEMALLOC objects, find another one */
836 for (i = 0; i < ac->avail; i++) {
837 /* If a !PFMEMALLOC object is found, swap them */
838 if (!is_obj_pfmemalloc(ac->entry[i])) {
839 objp = ac->entry[i];
840 ac->entry[i] = ac->entry[ac->avail];
841 ac->entry[ac->avail] = objp;
842 return objp;
843 }
844 }
845
846 /*
847 * If there are empty slabs on the slabs_free list and we are
848 * being forced to refill the cache, mark this one !pfmemalloc.
849 */
850 n = cachep->node[numa_mem_id()];
851 if (!list_empty(&n->slabs_free) && force_refill) {
852 struct slab *slabp = virt_to_slab(objp);
853 ClearPageSlabPfmemalloc(virt_to_head_page(slabp->s_mem));
854 clear_obj_pfmemalloc(&objp);
855 recheck_pfmemalloc_active(cachep, ac);
856 return objp;
857 }
858
859 /* No !PFMEMALLOC objects available */
860 ac->avail++;
861 objp = NULL;
862 }
863
864 return objp;
865 }
866
867 static inline void *ac_get_obj(struct kmem_cache *cachep,
868 struct array_cache *ac, gfp_t flags, bool force_refill)
869 {
870 void *objp;
871
872 if (unlikely(sk_memalloc_socks()))
873 objp = __ac_get_obj(cachep, ac, flags, force_refill);
874 else
875 objp = ac->entry[--ac->avail];
876
877 return objp;
878 }
879
880 static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
881 void *objp)
882 {
883 if (unlikely(pfmemalloc_active)) {
884 /* Some pfmemalloc slabs exist, check if this is one */
885 struct slab *slabp = virt_to_slab(objp);
886 struct page *page = virt_to_head_page(slabp->s_mem);
887 if (PageSlabPfmemalloc(page))
888 set_obj_pfmemalloc(&objp);
889 }
890
891 return objp;
892 }
893
894 static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
895 void *objp)
896 {
897 if (unlikely(sk_memalloc_socks()))
898 objp = __ac_put_obj(cachep, ac, objp);
899
900 ac->entry[ac->avail++] = objp;
901 }
902
903 /*
904 * Transfer objects in one arraycache to another.
905 * Locking must be handled by the caller.
906 *
907 * Return the number of entries transferred.
908 */
909 static int transfer_objects(struct array_cache *to,
910 struct array_cache *from, unsigned int max)
911 {
912 /* Figure out how many entries to transfer */
913 int nr = min3(from->avail, max, to->limit - to->avail);
914
915 if (!nr)
916 return 0;
917
918 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
919 sizeof(void *) *nr);
920
921 from->avail -= nr;
922 to->avail += nr;
923 return nr;
924 }
925
926 #ifndef CONFIG_NUMA
927
928 #define drain_alien_cache(cachep, alien) do { } while (0)
929 #define reap_alien(cachep, n) do { } while (0)
930
931 static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
932 {
933 return (struct array_cache **)BAD_ALIEN_MAGIC;
934 }
935
936 static inline void free_alien_cache(struct array_cache **ac_ptr)
937 {
938 }
939
940 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
941 {
942 return 0;
943 }
944
945 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
946 gfp_t flags)
947 {
948 return NULL;
949 }
950
951 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
952 gfp_t flags, int nodeid)
953 {
954 return NULL;
955 }
956
957 #else /* CONFIG_NUMA */
958
959 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
960 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
961
962 static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
963 {
964 struct array_cache **ac_ptr;
965 int memsize = sizeof(void *) * nr_node_ids;
966 int i;
967
968 if (limit > 1)
969 limit = 12;
970 ac_ptr = kzalloc_node(memsize, gfp, node);
971 if (ac_ptr) {
972 for_each_node(i) {
973 if (i == node || !node_online(i))
974 continue;
975 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
976 if (!ac_ptr[i]) {
977 for (i--; i >= 0; i--)
978 kfree(ac_ptr[i]);
979 kfree(ac_ptr);
980 return NULL;
981 }
982 }
983 }
984 return ac_ptr;
985 }
986
987 static void free_alien_cache(struct array_cache **ac_ptr)
988 {
989 int i;
990
991 if (!ac_ptr)
992 return;
993 for_each_node(i)
994 kfree(ac_ptr[i]);
995 kfree(ac_ptr);
996 }
997
998 static void __drain_alien_cache(struct kmem_cache *cachep,
999 struct array_cache *ac, int node)
1000 {
1001 struct kmem_cache_node *n = cachep->node[node];
1002
1003 if (ac->avail) {
1004 spin_lock(&n->list_lock);
1005 /*
1006 * Stuff objects into the remote nodes shared array first.
1007 * That way we could avoid the overhead of putting the objects
1008 * into the free lists and getting them back later.
1009 */
1010 if (n->shared)
1011 transfer_objects(n->shared, ac, ac->limit);
1012
1013 free_block(cachep, ac->entry, ac->avail, node);
1014 ac->avail = 0;
1015 spin_unlock(&n->list_lock);
1016 }
1017 }
1018
1019 /*
1020 * Called from cache_reap() to regularly drain alien caches round robin.
1021 */
1022 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
1023 {
1024 int node = __this_cpu_read(slab_reap_node);
1025
1026 if (n->alien) {
1027 struct array_cache *ac = n->alien[node];
1028
1029 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1030 __drain_alien_cache(cachep, ac, node);
1031 spin_unlock_irq(&ac->lock);
1032 }
1033 }
1034 }
1035
1036 static void drain_alien_cache(struct kmem_cache *cachep,
1037 struct array_cache **alien)
1038 {
1039 int i = 0;
1040 struct array_cache *ac;
1041 unsigned long flags;
1042
1043 for_each_online_node(i) {
1044 ac = alien[i];
1045 if (ac) {
1046 spin_lock_irqsave(&ac->lock, flags);
1047 __drain_alien_cache(cachep, ac, i);
1048 spin_unlock_irqrestore(&ac->lock, flags);
1049 }
1050 }
1051 }
1052
1053 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1054 {
1055 int nodeid = page_to_nid(virt_to_page(objp));
1056 struct kmem_cache_node *n;
1057 struct array_cache *alien = NULL;
1058 int node;
1059
1060 node = numa_mem_id();
1061
1062 /*
1063 * Make sure we are not freeing a object from another node to the array
1064 * cache on this cpu.
1065 */
1066 if (likely(nodeid == node))
1067 return 0;
1068
1069 n = cachep->node[node];
1070 STATS_INC_NODEFREES(cachep);
1071 if (n->alien && n->alien[nodeid]) {
1072 alien = n->alien[nodeid];
1073 spin_lock(&alien->lock);
1074 if (unlikely(alien->avail == alien->limit)) {
1075 STATS_INC_ACOVERFLOW(cachep);
1076 __drain_alien_cache(cachep, alien, nodeid);
1077 }
1078 ac_put_obj(cachep, alien, objp);
1079 spin_unlock(&alien->lock);
1080 } else {
1081 spin_lock(&(cachep->node[nodeid])->list_lock);
1082 free_block(cachep, &objp, 1, nodeid);
1083 spin_unlock(&(cachep->node[nodeid])->list_lock);
1084 }
1085 return 1;
1086 }
1087 #endif
1088
1089 /*
1090 * Allocates and initializes node for a node on each slab cache, used for
1091 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
1092 * will be allocated off-node since memory is not yet online for the new node.
1093 * When hotplugging memory or a cpu, existing node are not replaced if
1094 * already in use.
1095 *
1096 * Must hold slab_mutex.
1097 */
1098 static int init_cache_node_node(int node)
1099 {
1100 struct kmem_cache *cachep;
1101 struct kmem_cache_node *n;
1102 const int memsize = sizeof(struct kmem_cache_node);
1103
1104 list_for_each_entry(cachep, &slab_caches, list) {
1105 /*
1106 * Set up the size64 kmemlist for cpu before we can
1107 * begin anything. Make sure some other cpu on this
1108 * node has not already allocated this
1109 */
1110 if (!cachep->node[node]) {
1111 n = kmalloc_node(memsize, GFP_KERNEL, node);
1112 if (!n)
1113 return -ENOMEM;
1114 kmem_cache_node_init(n);
1115 n->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1116 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1117
1118 /*
1119 * The l3s don't come and go as CPUs come and
1120 * go. slab_mutex is sufficient
1121 * protection here.
1122 */
1123 cachep->node[node] = n;
1124 }
1125
1126 spin_lock_irq(&cachep->node[node]->list_lock);
1127 cachep->node[node]->free_limit =
1128 (1 + nr_cpus_node(node)) *
1129 cachep->batchcount + cachep->num;
1130 spin_unlock_irq(&cachep->node[node]->list_lock);
1131 }
1132 return 0;
1133 }
1134
1135 static inline int slabs_tofree(struct kmem_cache *cachep,
1136 struct kmem_cache_node *n)
1137 {
1138 return (n->free_objects + cachep->num - 1) / cachep->num;
1139 }
1140
1141 static void cpuup_canceled(long cpu)
1142 {
1143 struct kmem_cache *cachep;
1144 struct kmem_cache_node *n = NULL;
1145 int node = cpu_to_mem(cpu);
1146 const struct cpumask *mask = cpumask_of_node(node);
1147
1148 list_for_each_entry(cachep, &slab_caches, list) {
1149 struct array_cache *nc;
1150 struct array_cache *shared;
1151 struct array_cache **alien;
1152
1153 /* cpu is dead; no one can alloc from it. */
1154 nc = cachep->array[cpu];
1155 cachep->array[cpu] = NULL;
1156 n = cachep->node[node];
1157
1158 if (!n)
1159 goto free_array_cache;
1160
1161 spin_lock_irq(&n->list_lock);
1162
1163 /* Free limit for this kmem_cache_node */
1164 n->free_limit -= cachep->batchcount;
1165 if (nc)
1166 free_block(cachep, nc->entry, nc->avail, node);
1167
1168 if (!cpumask_empty(mask)) {
1169 spin_unlock_irq(&n->list_lock);
1170 goto free_array_cache;
1171 }
1172
1173 shared = n->shared;
1174 if (shared) {
1175 free_block(cachep, shared->entry,
1176 shared->avail, node);
1177 n->shared = NULL;
1178 }
1179
1180 alien = n->alien;
1181 n->alien = NULL;
1182
1183 spin_unlock_irq(&n->list_lock);
1184
1185 kfree(shared);
1186 if (alien) {
1187 drain_alien_cache(cachep, alien);
1188 free_alien_cache(alien);
1189 }
1190 free_array_cache:
1191 kfree(nc);
1192 }
1193 /*
1194 * In the previous loop, all the objects were freed to
1195 * the respective cache's slabs, now we can go ahead and
1196 * shrink each nodelist to its limit.
1197 */
1198 list_for_each_entry(cachep, &slab_caches, list) {
1199 n = cachep->node[node];
1200 if (!n)
1201 continue;
1202 drain_freelist(cachep, n, slabs_tofree(cachep, n));
1203 }
1204 }
1205
1206 static int cpuup_prepare(long cpu)
1207 {
1208 struct kmem_cache *cachep;
1209 struct kmem_cache_node *n = NULL;
1210 int node = cpu_to_mem(cpu);
1211 int err;
1212
1213 /*
1214 * We need to do this right in the beginning since
1215 * alloc_arraycache's are going to use this list.
1216 * kmalloc_node allows us to add the slab to the right
1217 * kmem_cache_node and not this cpu's kmem_cache_node
1218 */
1219 err = init_cache_node_node(node);
1220 if (err < 0)
1221 goto bad;
1222
1223 /*
1224 * Now we can go ahead with allocating the shared arrays and
1225 * array caches
1226 */
1227 list_for_each_entry(cachep, &slab_caches, list) {
1228 struct array_cache *nc;
1229 struct array_cache *shared = NULL;
1230 struct array_cache **alien = NULL;
1231
1232 nc = alloc_arraycache(node, cachep->limit,
1233 cachep->batchcount, GFP_KERNEL);
1234 if (!nc)
1235 goto bad;
1236 if (cachep->shared) {
1237 shared = alloc_arraycache(node,
1238 cachep->shared * cachep->batchcount,
1239 0xbaadf00d, GFP_KERNEL);
1240 if (!shared) {
1241 kfree(nc);
1242 goto bad;
1243 }
1244 }
1245 if (use_alien_caches) {
1246 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1247 if (!alien) {
1248 kfree(shared);
1249 kfree(nc);
1250 goto bad;
1251 }
1252 }
1253 cachep->array[cpu] = nc;
1254 n = cachep->node[node];
1255 BUG_ON(!n);
1256
1257 spin_lock_irq(&n->list_lock);
1258 if (!n->shared) {
1259 /*
1260 * We are serialised from CPU_DEAD or
1261 * CPU_UP_CANCELLED by the cpucontrol lock
1262 */
1263 n->shared = shared;
1264 shared = NULL;
1265 }
1266 #ifdef CONFIG_NUMA
1267 if (!n->alien) {
1268 n->alien = alien;
1269 alien = NULL;
1270 }
1271 #endif
1272 spin_unlock_irq(&n->list_lock);
1273 kfree(shared);
1274 free_alien_cache(alien);
1275 if (cachep->flags & SLAB_DEBUG_OBJECTS)
1276 slab_set_debugobj_lock_classes_node(cachep, node);
1277 else if (!OFF_SLAB(cachep) &&
1278 !(cachep->flags & SLAB_DESTROY_BY_RCU))
1279 on_slab_lock_classes_node(cachep, node);
1280 }
1281 init_node_lock_keys(node);
1282
1283 return 0;
1284 bad:
1285 cpuup_canceled(cpu);
1286 return -ENOMEM;
1287 }
1288
1289 static int cpuup_callback(struct notifier_block *nfb,
1290 unsigned long action, void *hcpu)
1291 {
1292 long cpu = (long)hcpu;
1293 int err = 0;
1294
1295 switch (action) {
1296 case CPU_UP_PREPARE:
1297 case CPU_UP_PREPARE_FROZEN:
1298 mutex_lock(&slab_mutex);
1299 err = cpuup_prepare(cpu);
1300 mutex_unlock(&slab_mutex);
1301 break;
1302 case CPU_ONLINE:
1303 case CPU_ONLINE_FROZEN:
1304 start_cpu_timer(cpu);
1305 break;
1306 #ifdef CONFIG_HOTPLUG_CPU
1307 case CPU_DOWN_PREPARE:
1308 case CPU_DOWN_PREPARE_FROZEN:
1309 /*
1310 * Shutdown cache reaper. Note that the slab_mutex is
1311 * held so that if cache_reap() is invoked it cannot do
1312 * anything expensive but will only modify reap_work
1313 * and reschedule the timer.
1314 */
1315 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1316 /* Now the cache_reaper is guaranteed to be not running. */
1317 per_cpu(slab_reap_work, cpu).work.func = NULL;
1318 break;
1319 case CPU_DOWN_FAILED:
1320 case CPU_DOWN_FAILED_FROZEN:
1321 start_cpu_timer(cpu);
1322 break;
1323 case CPU_DEAD:
1324 case CPU_DEAD_FROZEN:
1325 /*
1326 * Even if all the cpus of a node are down, we don't free the
1327 * kmem_cache_node of any cache. This to avoid a race between
1328 * cpu_down, and a kmalloc allocation from another cpu for
1329 * memory from the node of the cpu going down. The node
1330 * structure is usually allocated from kmem_cache_create() and
1331 * gets destroyed at kmem_cache_destroy().
1332 */
1333 /* fall through */
1334 #endif
1335 case CPU_UP_CANCELED:
1336 case CPU_UP_CANCELED_FROZEN:
1337 mutex_lock(&slab_mutex);
1338 cpuup_canceled(cpu);
1339 mutex_unlock(&slab_mutex);
1340 break;
1341 }
1342 return notifier_from_errno(err);
1343 }
1344
1345 static struct notifier_block cpucache_notifier = {
1346 &cpuup_callback, NULL, 0
1347 };
1348
1349 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1350 /*
1351 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1352 * Returns -EBUSY if all objects cannot be drained so that the node is not
1353 * removed.
1354 *
1355 * Must hold slab_mutex.
1356 */
1357 static int __meminit drain_cache_node_node(int node)
1358 {
1359 struct kmem_cache *cachep;
1360 int ret = 0;
1361
1362 list_for_each_entry(cachep, &slab_caches, list) {
1363 struct kmem_cache_node *n;
1364
1365 n = cachep->node[node];
1366 if (!n)
1367 continue;
1368
1369 drain_freelist(cachep, n, slabs_tofree(cachep, n));
1370
1371 if (!list_empty(&n->slabs_full) ||
1372 !list_empty(&n->slabs_partial)) {
1373 ret = -EBUSY;
1374 break;
1375 }
1376 }
1377 return ret;
1378 }
1379
1380 static int __meminit slab_memory_callback(struct notifier_block *self,
1381 unsigned long action, void *arg)
1382 {
1383 struct memory_notify *mnb = arg;
1384 int ret = 0;
1385 int nid;
1386
1387 nid = mnb->status_change_nid;
1388 if (nid < 0)
1389 goto out;
1390
1391 switch (action) {
1392 case MEM_GOING_ONLINE:
1393 mutex_lock(&slab_mutex);
1394 ret = init_cache_node_node(nid);
1395 mutex_unlock(&slab_mutex);
1396 break;
1397 case MEM_GOING_OFFLINE:
1398 mutex_lock(&slab_mutex);
1399 ret = drain_cache_node_node(nid);
1400 mutex_unlock(&slab_mutex);
1401 break;
1402 case MEM_ONLINE:
1403 case MEM_OFFLINE:
1404 case MEM_CANCEL_ONLINE:
1405 case MEM_CANCEL_OFFLINE:
1406 break;
1407 }
1408 out:
1409 return notifier_from_errno(ret);
1410 }
1411 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1412
1413 /*
1414 * swap the static kmem_cache_node with kmalloced memory
1415 */
1416 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1417 int nodeid)
1418 {
1419 struct kmem_cache_node *ptr;
1420
1421 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1422 BUG_ON(!ptr);
1423
1424 memcpy(ptr, list, sizeof(struct kmem_cache_node));
1425 /*
1426 * Do not assume that spinlocks can be initialized via memcpy:
1427 */
1428 spin_lock_init(&ptr->list_lock);
1429
1430 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1431 cachep->node[nodeid] = ptr;
1432 }
1433
1434 /*
1435 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1436 * size of kmem_cache_node.
1437 */
1438 static void __init set_up_node(struct kmem_cache *cachep, int index)
1439 {
1440 int node;
1441
1442 for_each_online_node(node) {
1443 cachep->node[node] = &init_kmem_cache_node[index + node];
1444 cachep->node[node]->next_reap = jiffies +
1445 REAPTIMEOUT_LIST3 +
1446 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1447 }
1448 }
1449
1450 /*
1451 * The memory after the last cpu cache pointer is used for the
1452 * the node pointer.
1453 */
1454 static void setup_node_pointer(struct kmem_cache *cachep)
1455 {
1456 cachep->node = (struct kmem_cache_node **)&cachep->array[nr_cpu_ids];
1457 }
1458
1459 /*
1460 * Initialisation. Called after the page allocator have been initialised and
1461 * before smp_init().
1462 */
1463 void __init kmem_cache_init(void)
1464 {
1465 int i;
1466
1467 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1468 sizeof(struct rcu_head));
1469 kmem_cache = &kmem_cache_boot;
1470 setup_node_pointer(kmem_cache);
1471
1472 if (num_possible_nodes() == 1)
1473 use_alien_caches = 0;
1474
1475 for (i = 0; i < NUM_INIT_LISTS; i++)
1476 kmem_cache_node_init(&init_kmem_cache_node[i]);
1477
1478 set_up_node(kmem_cache, CACHE_CACHE);
1479
1480 /*
1481 * Fragmentation resistance on low memory - only use bigger
1482 * page orders on machines with more than 32MB of memory if
1483 * not overridden on the command line.
1484 */
1485 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1486 slab_max_order = SLAB_MAX_ORDER_HI;
1487
1488 /* Bootstrap is tricky, because several objects are allocated
1489 * from caches that do not exist yet:
1490 * 1) initialize the kmem_cache cache: it contains the struct
1491 * kmem_cache structures of all caches, except kmem_cache itself:
1492 * kmem_cache is statically allocated.
1493 * Initially an __init data area is used for the head array and the
1494 * kmem_cache_node structures, it's replaced with a kmalloc allocated
1495 * array at the end of the bootstrap.
1496 * 2) Create the first kmalloc cache.
1497 * The struct kmem_cache for the new cache is allocated normally.
1498 * An __init data area is used for the head array.
1499 * 3) Create the remaining kmalloc caches, with minimally sized
1500 * head arrays.
1501 * 4) Replace the __init data head arrays for kmem_cache and the first
1502 * kmalloc cache with kmalloc allocated arrays.
1503 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1504 * the other cache's with kmalloc allocated memory.
1505 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1506 */
1507
1508 /* 1) create the kmem_cache */
1509
1510 /*
1511 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1512 */
1513 create_boot_cache(kmem_cache, "kmem_cache",
1514 offsetof(struct kmem_cache, array[nr_cpu_ids]) +
1515 nr_node_ids * sizeof(struct kmem_cache_node *),
1516 SLAB_HWCACHE_ALIGN);
1517 list_add(&kmem_cache->list, &slab_caches);
1518
1519 /* 2+3) create the kmalloc caches */
1520
1521 /*
1522 * Initialize the caches that provide memory for the array cache and the
1523 * kmem_cache_node structures first. Without this, further allocations will
1524 * bug.
1525 */
1526
1527 kmalloc_caches[INDEX_AC] = create_kmalloc_cache("kmalloc-ac",
1528 kmalloc_size(INDEX_AC), ARCH_KMALLOC_FLAGS);
1529
1530 if (INDEX_AC != INDEX_NODE)
1531 kmalloc_caches[INDEX_NODE] =
1532 create_kmalloc_cache("kmalloc-node",
1533 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1534
1535 slab_early_init = 0;
1536
1537 /* 4) Replace the bootstrap head arrays */
1538 {
1539 struct array_cache *ptr;
1540
1541 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1542
1543 memcpy(ptr, cpu_cache_get(kmem_cache),
1544 sizeof(struct arraycache_init));
1545 /*
1546 * Do not assume that spinlocks can be initialized via memcpy:
1547 */
1548 spin_lock_init(&ptr->lock);
1549
1550 kmem_cache->array[smp_processor_id()] = ptr;
1551
1552 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1553
1554 BUG_ON(cpu_cache_get(kmalloc_caches[INDEX_AC])
1555 != &initarray_generic.cache);
1556 memcpy(ptr, cpu_cache_get(kmalloc_caches[INDEX_AC]),
1557 sizeof(struct arraycache_init));
1558 /*
1559 * Do not assume that spinlocks can be initialized via memcpy:
1560 */
1561 spin_lock_init(&ptr->lock);
1562
1563 kmalloc_caches[INDEX_AC]->array[smp_processor_id()] = ptr;
1564 }
1565 /* 5) Replace the bootstrap kmem_cache_node */
1566 {
1567 int nid;
1568
1569 for_each_online_node(nid) {
1570 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1571
1572 init_list(kmalloc_caches[INDEX_AC],
1573 &init_kmem_cache_node[SIZE_AC + nid], nid);
1574
1575 if (INDEX_AC != INDEX_NODE) {
1576 init_list(kmalloc_caches[INDEX_NODE],
1577 &init_kmem_cache_node[SIZE_NODE + nid], nid);
1578 }
1579 }
1580 }
1581
1582 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1583 }
1584
1585 void __init kmem_cache_init_late(void)
1586 {
1587 struct kmem_cache *cachep;
1588
1589 slab_state = UP;
1590
1591 /* 6) resize the head arrays to their final sizes */
1592 mutex_lock(&slab_mutex);
1593 list_for_each_entry(cachep, &slab_caches, list)
1594 if (enable_cpucache(cachep, GFP_NOWAIT))
1595 BUG();
1596 mutex_unlock(&slab_mutex);
1597
1598 /* Annotate slab for lockdep -- annotate the malloc caches */
1599 init_lock_keys();
1600
1601 /* Done! */
1602 slab_state = FULL;
1603
1604 /*
1605 * Register a cpu startup notifier callback that initializes
1606 * cpu_cache_get for all new cpus
1607 */
1608 register_cpu_notifier(&cpucache_notifier);
1609
1610 #ifdef CONFIG_NUMA
1611 /*
1612 * Register a memory hotplug callback that initializes and frees
1613 * node.
1614 */
1615 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1616 #endif
1617
1618 /*
1619 * The reap timers are started later, with a module init call: That part
1620 * of the kernel is not yet operational.
1621 */
1622 }
1623
1624 static int __init cpucache_init(void)
1625 {
1626 int cpu;
1627
1628 /*
1629 * Register the timers that return unneeded pages to the page allocator
1630 */
1631 for_each_online_cpu(cpu)
1632 start_cpu_timer(cpu);
1633
1634 /* Done! */
1635 slab_state = FULL;
1636 return 0;
1637 }
1638 __initcall(cpucache_init);
1639
1640 static noinline void
1641 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1642 {
1643 struct kmem_cache_node *n;
1644 struct slab *slabp;
1645 unsigned long flags;
1646 int node;
1647
1648 printk(KERN_WARNING
1649 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1650 nodeid, gfpflags);
1651 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
1652 cachep->name, cachep->size, cachep->gfporder);
1653
1654 for_each_online_node(node) {
1655 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1656 unsigned long active_slabs = 0, num_slabs = 0;
1657
1658 n = cachep->node[node];
1659 if (!n)
1660 continue;
1661
1662 spin_lock_irqsave(&n->list_lock, flags);
1663 list_for_each_entry(slabp, &n->slabs_full, list) {
1664 active_objs += cachep->num;
1665 active_slabs++;
1666 }
1667 list_for_each_entry(slabp, &n->slabs_partial, list) {
1668 active_objs += slabp->inuse;
1669 active_slabs++;
1670 }
1671 list_for_each_entry(slabp, &n->slabs_free, list)
1672 num_slabs++;
1673
1674 free_objects += n->free_objects;
1675 spin_unlock_irqrestore(&n->list_lock, flags);
1676
1677 num_slabs += active_slabs;
1678 num_objs = num_slabs * cachep->num;
1679 printk(KERN_WARNING
1680 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1681 node, active_slabs, num_slabs, active_objs, num_objs,
1682 free_objects);
1683 }
1684 }
1685
1686 /*
1687 * Interface to system's page allocator. No need to hold the cache-lock.
1688 *
1689 * If we requested dmaable memory, we will get it. Even if we
1690 * did not request dmaable memory, we might get it, but that
1691 * would be relatively rare and ignorable.
1692 */
1693 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1694 int nodeid)
1695 {
1696 struct page *page;
1697 int nr_pages;
1698
1699 flags |= cachep->allocflags;
1700 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1701 flags |= __GFP_RECLAIMABLE;
1702
1703 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1704 if (!page) {
1705 if (!(flags & __GFP_NOWARN) && printk_ratelimit())
1706 slab_out_of_memory(cachep, flags, nodeid);
1707 return NULL;
1708 }
1709
1710 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1711 if (unlikely(page->pfmemalloc))
1712 pfmemalloc_active = true;
1713
1714 nr_pages = (1 << cachep->gfporder);
1715 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1716 add_zone_page_state(page_zone(page),
1717 NR_SLAB_RECLAIMABLE, nr_pages);
1718 else
1719 add_zone_page_state(page_zone(page),
1720 NR_SLAB_UNRECLAIMABLE, nr_pages);
1721 __SetPageSlab(page);
1722 if (page->pfmemalloc)
1723 SetPageSlabPfmemalloc(page);
1724 memcg_bind_pages(cachep, cachep->gfporder);
1725
1726 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1727 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1728
1729 if (cachep->ctor)
1730 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1731 else
1732 kmemcheck_mark_unallocated_pages(page, nr_pages);
1733 }
1734
1735 return page;
1736 }
1737
1738 /*
1739 * Interface to system's page release.
1740 */
1741 static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1742 {
1743 const unsigned long nr_freed = (1 << cachep->gfporder);
1744
1745 kmemcheck_free_shadow(page, cachep->gfporder);
1746
1747 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1748 sub_zone_page_state(page_zone(page),
1749 NR_SLAB_RECLAIMABLE, nr_freed);
1750 else
1751 sub_zone_page_state(page_zone(page),
1752 NR_SLAB_UNRECLAIMABLE, nr_freed);
1753
1754 BUG_ON(!PageSlab(page));
1755 __ClearPageSlabPfmemalloc(page);
1756 __ClearPageSlab(page);
1757
1758 memcg_release_pages(cachep, cachep->gfporder);
1759 if (current->reclaim_state)
1760 current->reclaim_state->reclaimed_slab += nr_freed;
1761 __free_memcg_kmem_pages(page, cachep->gfporder);
1762 }
1763
1764 static void kmem_rcu_free(struct rcu_head *head)
1765 {
1766 struct kmem_cache *cachep;
1767 struct page *page;
1768
1769 page = container_of(head, struct page, rcu_head);
1770 cachep = page->slab_cache;
1771
1772 kmem_freepages(cachep, page);
1773 }
1774
1775 #if DEBUG
1776
1777 #ifdef CONFIG_DEBUG_PAGEALLOC
1778 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1779 unsigned long caller)
1780 {
1781 int size = cachep->object_size;
1782
1783 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1784
1785 if (size < 5 * sizeof(unsigned long))
1786 return;
1787
1788 *addr++ = 0x12345678;
1789 *addr++ = caller;
1790 *addr++ = smp_processor_id();
1791 size -= 3 * sizeof(unsigned long);
1792 {
1793 unsigned long *sptr = &caller;
1794 unsigned long svalue;
1795
1796 while (!kstack_end(sptr)) {
1797 svalue = *sptr++;
1798 if (kernel_text_address(svalue)) {
1799 *addr++ = svalue;
1800 size -= sizeof(unsigned long);
1801 if (size <= sizeof(unsigned long))
1802 break;
1803 }
1804 }
1805
1806 }
1807 *addr++ = 0x87654321;
1808 }
1809 #endif
1810
1811 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1812 {
1813 int size = cachep->object_size;
1814 addr = &((char *)addr)[obj_offset(cachep)];
1815
1816 memset(addr, val, size);
1817 *(unsigned char *)(addr + size - 1) = POISON_END;
1818 }
1819
1820 static void dump_line(char *data, int offset, int limit)
1821 {
1822 int i;
1823 unsigned char error = 0;
1824 int bad_count = 0;
1825
1826 printk(KERN_ERR "%03x: ", offset);
1827 for (i = 0; i < limit; i++) {
1828 if (data[offset + i] != POISON_FREE) {
1829 error = data[offset + i];
1830 bad_count++;
1831 }
1832 }
1833 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1834 &data[offset], limit, 1);
1835
1836 if (bad_count == 1) {
1837 error ^= POISON_FREE;
1838 if (!(error & (error - 1))) {
1839 printk(KERN_ERR "Single bit error detected. Probably "
1840 "bad RAM.\n");
1841 #ifdef CONFIG_X86
1842 printk(KERN_ERR "Run memtest86+ or a similar memory "
1843 "test tool.\n");
1844 #else
1845 printk(KERN_ERR "Run a memory test tool.\n");
1846 #endif
1847 }
1848 }
1849 }
1850 #endif
1851
1852 #if DEBUG
1853
1854 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1855 {
1856 int i, size;
1857 char *realobj;
1858
1859 if (cachep->flags & SLAB_RED_ZONE) {
1860 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1861 *dbg_redzone1(cachep, objp),
1862 *dbg_redzone2(cachep, objp));
1863 }
1864
1865 if (cachep->flags & SLAB_STORE_USER) {
1866 printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
1867 *dbg_userword(cachep, objp),
1868 *dbg_userword(cachep, objp));
1869 }
1870 realobj = (char *)objp + obj_offset(cachep);
1871 size = cachep->object_size;
1872 for (i = 0; i < size && lines; i += 16, lines--) {
1873 int limit;
1874 limit = 16;
1875 if (i + limit > size)
1876 limit = size - i;
1877 dump_line(realobj, i, limit);
1878 }
1879 }
1880
1881 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1882 {
1883 char *realobj;
1884 int size, i;
1885 int lines = 0;
1886
1887 realobj = (char *)objp + obj_offset(cachep);
1888 size = cachep->object_size;
1889
1890 for (i = 0; i < size; i++) {
1891 char exp = POISON_FREE;
1892 if (i == size - 1)
1893 exp = POISON_END;
1894 if (realobj[i] != exp) {
1895 int limit;
1896 /* Mismatch ! */
1897 /* Print header */
1898 if (lines == 0) {
1899 printk(KERN_ERR
1900 "Slab corruption (%s): %s start=%p, len=%d\n",
1901 print_tainted(), cachep->name, realobj, size);
1902 print_objinfo(cachep, objp, 0);
1903 }
1904 /* Hexdump the affected line */
1905 i = (i / 16) * 16;
1906 limit = 16;
1907 if (i + limit > size)
1908 limit = size - i;
1909 dump_line(realobj, i, limit);
1910 i += 16;
1911 lines++;
1912 /* Limit to 5 lines */
1913 if (lines > 5)
1914 break;
1915 }
1916 }
1917 if (lines != 0) {
1918 /* Print some data about the neighboring objects, if they
1919 * exist:
1920 */
1921 struct slab *slabp = virt_to_slab(objp);
1922 unsigned int objnr;
1923
1924 objnr = obj_to_index(cachep, slabp, objp);
1925 if (objnr) {
1926 objp = index_to_obj(cachep, slabp, objnr - 1);
1927 realobj = (char *)objp + obj_offset(cachep);
1928 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1929 realobj, size);
1930 print_objinfo(cachep, objp, 2);
1931 }
1932 if (objnr + 1 < cachep->num) {
1933 objp = index_to_obj(cachep, slabp, objnr + 1);
1934 realobj = (char *)objp + obj_offset(cachep);
1935 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1936 realobj, size);
1937 print_objinfo(cachep, objp, 2);
1938 }
1939 }
1940 }
1941 #endif
1942
1943 #if DEBUG
1944 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1945 {
1946 int i;
1947 for (i = 0; i < cachep->num; i++) {
1948 void *objp = index_to_obj(cachep, slabp, i);
1949
1950 if (cachep->flags & SLAB_POISON) {
1951 #ifdef CONFIG_DEBUG_PAGEALLOC
1952 if (cachep->size % PAGE_SIZE == 0 &&
1953 OFF_SLAB(cachep))
1954 kernel_map_pages(virt_to_page(objp),
1955 cachep->size / PAGE_SIZE, 1);
1956 else
1957 check_poison_obj(cachep, objp);
1958 #else
1959 check_poison_obj(cachep, objp);
1960 #endif
1961 }
1962 if (cachep->flags & SLAB_RED_ZONE) {
1963 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1964 slab_error(cachep, "start of a freed object "
1965 "was overwritten");
1966 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1967 slab_error(cachep, "end of a freed object "
1968 "was overwritten");
1969 }
1970 }
1971 }
1972 #else
1973 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1974 {
1975 }
1976 #endif
1977
1978 /**
1979 * slab_destroy - destroy and release all objects in a slab
1980 * @cachep: cache pointer being destroyed
1981 * @slabp: slab pointer being destroyed
1982 *
1983 * Destroy all the objs in a slab, and release the mem back to the system.
1984 * Before calling the slab must have been unlinked from the cache. The
1985 * cache-lock is not held/needed.
1986 */
1987 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1988 {
1989 struct page *page = virt_to_head_page(slabp->s_mem);
1990
1991 slab_destroy_debugcheck(cachep, slabp);
1992 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1993 struct rcu_head *head;
1994
1995 /*
1996 * RCU free overloads the RCU head over the LRU.
1997 * slab_page has been overloeaded over the LRU,
1998 * however it is not used from now on so that
1999 * we can use it safely.
2000 */
2001 head = (void *)&page->rcu_head;
2002 call_rcu(head, kmem_rcu_free);
2003
2004 } else {
2005 kmem_freepages(cachep, page);
2006 }
2007
2008 /*
2009 * From now on, we don't use slab management
2010 * although actual page can be freed in rcu context
2011 */
2012 if (OFF_SLAB(cachep))
2013 kmem_cache_free(cachep->slabp_cache, slabp);
2014 }
2015
2016 /**
2017 * calculate_slab_order - calculate size (page order) of slabs
2018 * @cachep: pointer to the cache that is being created
2019 * @size: size of objects to be created in this cache.
2020 * @align: required alignment for the objects.
2021 * @flags: slab allocation flags
2022 *
2023 * Also calculates the number of objects per slab.
2024 *
2025 * This could be made much more intelligent. For now, try to avoid using
2026 * high order pages for slabs. When the gfp() functions are more friendly
2027 * towards high-order requests, this should be changed.
2028 */
2029 static size_t calculate_slab_order(struct kmem_cache *cachep,
2030 size_t size, size_t align, unsigned long flags)
2031 {
2032 unsigned long offslab_limit;
2033 size_t left_over = 0;
2034 int gfporder;
2035
2036 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2037 unsigned int num;
2038 size_t remainder;
2039
2040 cache_estimate(gfporder, size, align, flags, &remainder, &num);
2041 if (!num)
2042 continue;
2043
2044 if (flags & CFLGS_OFF_SLAB) {
2045 /*
2046 * Max number of objs-per-slab for caches which
2047 * use off-slab slabs. Needed to avoid a possible
2048 * looping condition in cache_grow().
2049 */
2050 offslab_limit = size - sizeof(struct slab);
2051 offslab_limit /= sizeof(unsigned int);
2052
2053 if (num > offslab_limit)
2054 break;
2055 }
2056
2057 /* Found something acceptable - save it away */
2058 cachep->num = num;
2059 cachep->gfporder = gfporder;
2060 left_over = remainder;
2061
2062 /*
2063 * A VFS-reclaimable slab tends to have most allocations
2064 * as GFP_NOFS and we really don't want to have to be allocating
2065 * higher-order pages when we are unable to shrink dcache.
2066 */
2067 if (flags & SLAB_RECLAIM_ACCOUNT)
2068 break;
2069
2070 /*
2071 * Large number of objects is good, but very large slabs are
2072 * currently bad for the gfp()s.
2073 */
2074 if (gfporder >= slab_max_order)
2075 break;
2076
2077 /*
2078 * Acceptable internal fragmentation?
2079 */
2080 if (left_over * 8 <= (PAGE_SIZE << gfporder))
2081 break;
2082 }
2083 return left_over;
2084 }
2085
2086 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2087 {
2088 if (slab_state >= FULL)
2089 return enable_cpucache(cachep, gfp);
2090
2091 if (slab_state == DOWN) {
2092 /*
2093 * Note: Creation of first cache (kmem_cache).
2094 * The setup_node is taken care
2095 * of by the caller of __kmem_cache_create
2096 */
2097 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2098 slab_state = PARTIAL;
2099 } else if (slab_state == PARTIAL) {
2100 /*
2101 * Note: the second kmem_cache_create must create the cache
2102 * that's used by kmalloc(24), otherwise the creation of
2103 * further caches will BUG().
2104 */
2105 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2106
2107 /*
2108 * If the cache that's used by kmalloc(sizeof(kmem_cache_node)) is
2109 * the second cache, then we need to set up all its node/,
2110 * otherwise the creation of further caches will BUG().
2111 */
2112 set_up_node(cachep, SIZE_AC);
2113 if (INDEX_AC == INDEX_NODE)
2114 slab_state = PARTIAL_NODE;
2115 else
2116 slab_state = PARTIAL_ARRAYCACHE;
2117 } else {
2118 /* Remaining boot caches */
2119 cachep->array[smp_processor_id()] =
2120 kmalloc(sizeof(struct arraycache_init), gfp);
2121
2122 if (slab_state == PARTIAL_ARRAYCACHE) {
2123 set_up_node(cachep, SIZE_NODE);
2124 slab_state = PARTIAL_NODE;
2125 } else {
2126 int node;
2127 for_each_online_node(node) {
2128 cachep->node[node] =
2129 kmalloc_node(sizeof(struct kmem_cache_node),
2130 gfp, node);
2131 BUG_ON(!cachep->node[node]);
2132 kmem_cache_node_init(cachep->node[node]);
2133 }
2134 }
2135 }
2136 cachep->node[numa_mem_id()]->next_reap =
2137 jiffies + REAPTIMEOUT_LIST3 +
2138 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2139
2140 cpu_cache_get(cachep)->avail = 0;
2141 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2142 cpu_cache_get(cachep)->batchcount = 1;
2143 cpu_cache_get(cachep)->touched = 0;
2144 cachep->batchcount = 1;
2145 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2146 return 0;
2147 }
2148
2149 /**
2150 * __kmem_cache_create - Create a cache.
2151 * @cachep: cache management descriptor
2152 * @flags: SLAB flags
2153 *
2154 * Returns a ptr to the cache on success, NULL on failure.
2155 * Cannot be called within a int, but can be interrupted.
2156 * The @ctor is run when new pages are allocated by the cache.
2157 *
2158 * The flags are
2159 *
2160 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2161 * to catch references to uninitialised memory.
2162 *
2163 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2164 * for buffer overruns.
2165 *
2166 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2167 * cacheline. This can be beneficial if you're counting cycles as closely
2168 * as davem.
2169 */
2170 int
2171 __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2172 {
2173 size_t left_over, slab_size, ralign;
2174 gfp_t gfp;
2175 int err;
2176 size_t size = cachep->size;
2177
2178 #if DEBUG
2179 #if FORCED_DEBUG
2180 /*
2181 * Enable redzoning and last user accounting, except for caches with
2182 * large objects, if the increased size would increase the object size
2183 * above the next power of two: caches with object sizes just above a
2184 * power of two have a significant amount of internal fragmentation.
2185 */
2186 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2187 2 * sizeof(unsigned long long)))
2188 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2189 if (!(flags & SLAB_DESTROY_BY_RCU))
2190 flags |= SLAB_POISON;
2191 #endif
2192 if (flags & SLAB_DESTROY_BY_RCU)
2193 BUG_ON(flags & SLAB_POISON);
2194 #endif
2195
2196 /*
2197 * Check that size is in terms of words. This is needed to avoid
2198 * unaligned accesses for some archs when redzoning is used, and makes
2199 * sure any on-slab bufctl's are also correctly aligned.
2200 */
2201 if (size & (BYTES_PER_WORD - 1)) {
2202 size += (BYTES_PER_WORD - 1);
2203 size &= ~(BYTES_PER_WORD - 1);
2204 }
2205
2206 /*
2207 * Redzoning and user store require word alignment or possibly larger.
2208 * Note this will be overridden by architecture or caller mandated
2209 * alignment if either is greater than BYTES_PER_WORD.
2210 */
2211 if (flags & SLAB_STORE_USER)
2212 ralign = BYTES_PER_WORD;
2213
2214 if (flags & SLAB_RED_ZONE) {
2215 ralign = REDZONE_ALIGN;
2216 /* If redzoning, ensure that the second redzone is suitably
2217 * aligned, by adjusting the object size accordingly. */
2218 size += REDZONE_ALIGN - 1;
2219 size &= ~(REDZONE_ALIGN - 1);
2220 }
2221
2222 /* 3) caller mandated alignment */
2223 if (ralign < cachep->align) {
2224 ralign = cachep->align;
2225 }
2226 /* disable debug if necessary */
2227 if (ralign > __alignof__(unsigned long long))
2228 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2229 /*
2230 * 4) Store it.
2231 */
2232 cachep->align = ralign;
2233
2234 if (slab_is_available())
2235 gfp = GFP_KERNEL;
2236 else
2237 gfp = GFP_NOWAIT;
2238
2239 setup_node_pointer(cachep);
2240 #if DEBUG
2241
2242 /*
2243 * Both debugging options require word-alignment which is calculated
2244 * into align above.
2245 */
2246 if (flags & SLAB_RED_ZONE) {
2247 /* add space for red zone words */
2248 cachep->obj_offset += sizeof(unsigned long long);
2249 size += 2 * sizeof(unsigned long long);
2250 }
2251 if (flags & SLAB_STORE_USER) {
2252 /* user store requires one word storage behind the end of
2253 * the real object. But if the second red zone needs to be
2254 * aligned to 64 bits, we must allow that much space.
2255 */
2256 if (flags & SLAB_RED_ZONE)
2257 size += REDZONE_ALIGN;
2258 else
2259 size += BYTES_PER_WORD;
2260 }
2261 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2262 if (size >= kmalloc_size(INDEX_NODE + 1)
2263 && cachep->object_size > cache_line_size()
2264 && ALIGN(size, cachep->align) < PAGE_SIZE) {
2265 cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
2266 size = PAGE_SIZE;
2267 }
2268 #endif
2269 #endif
2270
2271 /*
2272 * Determine if the slab management is 'on' or 'off' slab.
2273 * (bootstrapping cannot cope with offslab caches so don't do
2274 * it too early on. Always use on-slab management when
2275 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2276 */
2277 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
2278 !(flags & SLAB_NOLEAKTRACE))
2279 /*
2280 * Size is large, assume best to place the slab management obj
2281 * off-slab (should allow better packing of objs).
2282 */
2283 flags |= CFLGS_OFF_SLAB;
2284
2285 size = ALIGN(size, cachep->align);
2286
2287 left_over = calculate_slab_order(cachep, size, cachep->align, flags);
2288
2289 if (!cachep->num)
2290 return -E2BIG;
2291
2292 slab_size = ALIGN(cachep->num * sizeof(unsigned int)
2293 + sizeof(struct slab), cachep->align);
2294
2295 /*
2296 * If the slab has been placed off-slab, and we have enough space then
2297 * move it on-slab. This is at the expense of any extra colouring.
2298 */
2299 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2300 flags &= ~CFLGS_OFF_SLAB;
2301 left_over -= slab_size;
2302 }
2303
2304 if (flags & CFLGS_OFF_SLAB) {
2305 /* really off slab. No need for manual alignment */
2306 slab_size =
2307 cachep->num * sizeof(unsigned int) + sizeof(struct slab);
2308
2309 #ifdef CONFIG_PAGE_POISONING
2310 /* If we're going to use the generic kernel_map_pages()
2311 * poisoning, then it's going to smash the contents of
2312 * the redzone and userword anyhow, so switch them off.
2313 */
2314 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2315 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2316 #endif
2317 }
2318
2319 cachep->colour_off = cache_line_size();
2320 /* Offset must be a multiple of the alignment. */
2321 if (cachep->colour_off < cachep->align)
2322 cachep->colour_off = cachep->align;
2323 cachep->colour = left_over / cachep->colour_off;
2324 cachep->slab_size = slab_size;
2325 cachep->flags = flags;
2326 cachep->allocflags = __GFP_COMP;
2327 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2328 cachep->allocflags |= GFP_DMA;
2329 cachep->size = size;
2330 cachep->reciprocal_buffer_size = reciprocal_value(size);
2331
2332 if (flags & CFLGS_OFF_SLAB) {
2333 cachep->slabp_cache = kmalloc_slab(slab_size, 0u);
2334 /*
2335 * This is a possibility for one of the malloc_sizes caches.
2336 * But since we go off slab only for object size greater than
2337 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2338 * this should not happen at all.
2339 * But leave a BUG_ON for some lucky dude.
2340 */
2341 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2342 }
2343
2344 err = setup_cpu_cache(cachep, gfp);
2345 if (err) {
2346 __kmem_cache_shutdown(cachep);
2347 return err;
2348 }
2349
2350 if (flags & SLAB_DEBUG_OBJECTS) {
2351 /*
2352 * Would deadlock through slab_destroy()->call_rcu()->
2353 * debug_object_activate()->kmem_cache_alloc().
2354 */
2355 WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);
2356
2357 slab_set_debugobj_lock_classes(cachep);
2358 } else if (!OFF_SLAB(cachep) && !(flags & SLAB_DESTROY_BY_RCU))
2359 on_slab_lock_classes(cachep);
2360
2361 return 0;
2362 }
2363
2364 #if DEBUG
2365 static void check_irq_off(void)
2366 {
2367 BUG_ON(!irqs_disabled());
2368 }
2369
2370 static void check_irq_on(void)
2371 {
2372 BUG_ON(irqs_disabled());
2373 }
2374
2375 static void check_spinlock_acquired(struct kmem_cache *cachep)
2376 {
2377 #ifdef CONFIG_SMP
2378 check_irq_off();
2379 assert_spin_locked(&cachep->node[numa_mem_id()]->list_lock);
2380 #endif
2381 }
2382
2383 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2384 {
2385 #ifdef CONFIG_SMP
2386 check_irq_off();
2387 assert_spin_locked(&cachep->node[node]->list_lock);
2388 #endif
2389 }
2390
2391 #else
2392 #define check_irq_off() do { } while(0)
2393 #define check_irq_on() do { } while(0)
2394 #define check_spinlock_acquired(x) do { } while(0)
2395 #define check_spinlock_acquired_node(x, y) do { } while(0)
2396 #endif
2397
2398 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
2399 struct array_cache *ac,
2400 int force, int node);
2401
2402 static void do_drain(void *arg)
2403 {
2404 struct kmem_cache *cachep = arg;
2405 struct array_cache *ac;
2406 int node = numa_mem_id();
2407
2408 check_irq_off();
2409 ac = cpu_cache_get(cachep);
2410 spin_lock(&cachep->node[node]->list_lock);
2411 free_block(cachep, ac->entry, ac->avail, node);
2412 spin_unlock(&cachep->node[node]->list_lock);
2413 ac->avail = 0;
2414 }
2415
2416 static void drain_cpu_caches(struct kmem_cache *cachep)
2417 {
2418 struct kmem_cache_node *n;
2419 int node;
2420
2421 on_each_cpu(do_drain, cachep, 1);
2422 check_irq_on();
2423 for_each_online_node(node) {
2424 n = cachep->node[node];
2425 if (n && n->alien)
2426 drain_alien_cache(cachep, n->alien);
2427 }
2428
2429 for_each_online_node(node) {
2430 n = cachep->node[node];
2431 if (n)
2432 drain_array(cachep, n, n->shared, 1, node);
2433 }
2434 }
2435
2436 /*
2437 * Remove slabs from the list of free slabs.
2438 * Specify the number of slabs to drain in tofree.
2439 *
2440 * Returns the actual number of slabs released.
2441 */
2442 static int drain_freelist(struct kmem_cache *cache,
2443 struct kmem_cache_node *n, int tofree)
2444 {
2445 struct list_head *p;
2446 int nr_freed;
2447 struct slab *slabp;
2448
2449 nr_freed = 0;
2450 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2451
2452 spin_lock_irq(&n->list_lock);
2453 p = n->slabs_free.prev;
2454 if (p == &n->slabs_free) {
2455 spin_unlock_irq(&n->list_lock);
2456 goto out;
2457 }
2458
2459 slabp = list_entry(p, struct slab, list);
2460 #if DEBUG
2461 BUG_ON(slabp->inuse);
2462 #endif
2463 list_del(&slabp->list);
2464 /*
2465 * Safe to drop the lock. The slab is no longer linked
2466 * to the cache.
2467 */
2468 n->free_objects -= cache->num;
2469 spin_unlock_irq(&n->list_lock);
2470 slab_destroy(cache, slabp);
2471 nr_freed++;
2472 }
2473 out:
2474 return nr_freed;
2475 }
2476
2477 /* Called with slab_mutex held to protect against cpu hotplug */
2478 static int __cache_shrink(struct kmem_cache *cachep)
2479 {
2480 int ret = 0, i = 0;
2481 struct kmem_cache_node *n;
2482
2483 drain_cpu_caches(cachep);
2484
2485 check_irq_on();
2486 for_each_online_node(i) {
2487 n = cachep->node[i];
2488 if (!n)
2489 continue;
2490
2491 drain_freelist(cachep, n, slabs_tofree(cachep, n));
2492
2493 ret += !list_empty(&n->slabs_full) ||
2494 !list_empty(&n->slabs_partial);
2495 }
2496 return (ret ? 1 : 0);
2497 }
2498
2499 /**
2500 * kmem_cache_shrink - Shrink a cache.
2501 * @cachep: The cache to shrink.
2502 *
2503 * Releases as many slabs as possible for a cache.
2504 * To help debugging, a zero exit status indicates all slabs were released.
2505 */
2506 int kmem_cache_shrink(struct kmem_cache *cachep)
2507 {
2508 int ret;
2509 BUG_ON(!cachep || in_interrupt());
2510
2511 get_online_cpus();
2512 mutex_lock(&slab_mutex);
2513 ret = __cache_shrink(cachep);
2514 mutex_unlock(&slab_mutex);
2515 put_online_cpus();
2516 return ret;
2517 }
2518 EXPORT_SYMBOL(kmem_cache_shrink);
2519
2520 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2521 {
2522 int i;
2523 struct kmem_cache_node *n;
2524 int rc = __cache_shrink(cachep);
2525
2526 if (rc)
2527 return rc;
2528
2529 for_each_online_cpu(i)
2530 kfree(cachep->array[i]);
2531
2532 /* NUMA: free the node structures */
2533 for_each_online_node(i) {
2534 n = cachep->node[i];
2535 if (n) {
2536 kfree(n->shared);
2537 free_alien_cache(n->alien);
2538 kfree(n);
2539 }
2540 }
2541 return 0;
2542 }
2543
2544 /*
2545 * Get the memory for a slab management obj.
2546 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2547 * always come from malloc_sizes caches. The slab descriptor cannot
2548 * come from the same cache which is getting created because,
2549 * when we are searching for an appropriate cache for these
2550 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2551 * If we are creating a malloc_sizes cache here it would not be visible to
2552 * kmem_find_general_cachep till the initialization is complete.
2553 * Hence we cannot have slabp_cache same as the original cache.
2554 */
2555 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep,
2556 struct page *page, int colour_off,
2557 gfp_t local_flags, int nodeid)
2558 {
2559 struct slab *slabp;
2560 void *addr = page_address(page);
2561
2562 if (OFF_SLAB(cachep)) {
2563 /* Slab management obj is off-slab. */
2564 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2565 local_flags, nodeid);
2566 /*
2567 * If the first object in the slab is leaked (it's allocated
2568 * but no one has a reference to it), we want to make sure
2569 * kmemleak does not treat the ->s_mem pointer as a reference
2570 * to the object. Otherwise we will not report the leak.
2571 */
2572 kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
2573 local_flags);
2574 if (!slabp)
2575 return NULL;
2576 } else {
2577 slabp = addr + colour_off;
2578 colour_off += cachep->slab_size;
2579 }
2580 slabp->inuse = 0;
2581 slabp->s_mem = addr + colour_off;
2582 slabp->free = 0;
2583 return slabp;
2584 }
2585
2586 static inline unsigned int *slab_bufctl(struct slab *slabp)
2587 {
2588 return (unsigned int *) (slabp + 1);
2589 }
2590
2591 static void cache_init_objs(struct kmem_cache *cachep,
2592 struct slab *slabp)
2593 {
2594 int i;
2595
2596 for (i = 0; i < cachep->num; i++) {
2597 void *objp = index_to_obj(cachep, slabp, i);
2598 #if DEBUG
2599 /* need to poison the objs? */
2600 if (cachep->flags & SLAB_POISON)
2601 poison_obj(cachep, objp, POISON_FREE);
2602 if (cachep->flags & SLAB_STORE_USER)
2603 *dbg_userword(cachep, objp) = NULL;
2604
2605 if (cachep->flags & SLAB_RED_ZONE) {
2606 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2607 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2608 }
2609 /*
2610 * Constructors are not allowed to allocate memory from the same
2611 * cache which they are a constructor for. Otherwise, deadlock.
2612 * They must also be threaded.
2613 */
2614 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2615 cachep->ctor(objp + obj_offset(cachep));
2616
2617 if (cachep->flags & SLAB_RED_ZONE) {
2618 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2619 slab_error(cachep, "constructor overwrote the"
2620 " end of an object");
2621 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2622 slab_error(cachep, "constructor overwrote the"
2623 " start of an object");
2624 }
2625 if ((cachep->size % PAGE_SIZE) == 0 &&
2626 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2627 kernel_map_pages(virt_to_page(objp),
2628 cachep->size / PAGE_SIZE, 0);
2629 #else
2630 if (cachep->ctor)
2631 cachep->ctor(objp);
2632 #endif
2633 slab_bufctl(slabp)[i] = i;
2634 }
2635 }
2636
2637 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2638 {
2639 if (CONFIG_ZONE_DMA_FLAG) {
2640 if (flags & GFP_DMA)
2641 BUG_ON(!(cachep->allocflags & GFP_DMA));
2642 else
2643 BUG_ON(cachep->allocflags & GFP_DMA);
2644 }
2645 }
2646
2647 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2648 int nodeid)
2649 {
2650 void *objp;
2651
2652 slabp->inuse++;
2653 objp = index_to_obj(cachep, slabp, slab_bufctl(slabp)[slabp->free]);
2654 #if DEBUG
2655 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2656 #endif
2657 slabp->free++;
2658
2659 return objp;
2660 }
2661
2662 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2663 void *objp, int nodeid)
2664 {
2665 unsigned int objnr = obj_to_index(cachep, slabp, objp);
2666 #if DEBUG
2667 unsigned int i;
2668
2669 /* Verify that the slab belongs to the intended node */
2670 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2671
2672 /* Verify double free bug */
2673 for (i = slabp->free; i < cachep->num; i++) {
2674 if (slab_bufctl(slabp)[i] == objnr) {
2675 printk(KERN_ERR "slab: double free detected in cache "
2676 "'%s', objp %p\n", cachep->name, objp);
2677 BUG();
2678 }
2679 }
2680 #endif
2681 slabp->free--;
2682 slab_bufctl(slabp)[slabp->free] = objnr;
2683 slabp->inuse--;
2684 }
2685
2686 /*
2687 * Map pages beginning at addr to the given cache and slab. This is required
2688 * for the slab allocator to be able to lookup the cache and slab of a
2689 * virtual address for kfree, ksize, and slab debugging.
2690 */
2691 static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2692 struct page *page)
2693 {
2694 page->slab_cache = cache;
2695 page->slab_page = slab;
2696 }
2697
2698 /*
2699 * Grow (by 1) the number of slabs within a cache. This is called by
2700 * kmem_cache_alloc() when there are no active objs left in a cache.
2701 */
2702 static int cache_grow(struct kmem_cache *cachep,
2703 gfp_t flags, int nodeid, struct page *page)
2704 {
2705 struct slab *slabp;
2706 size_t offset;
2707 gfp_t local_flags;
2708 struct kmem_cache_node *n;
2709
2710 /*
2711 * Be lazy and only check for valid flags here, keeping it out of the
2712 * critical path in kmem_cache_alloc().
2713 */
2714 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2715 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2716
2717 /* Take the node list lock to change the colour_next on this node */
2718 check_irq_off();
2719 n = cachep->node[nodeid];
2720 spin_lock(&n->list_lock);
2721
2722 /* Get colour for the slab, and cal the next value. */
2723 offset = n->colour_next;
2724 n->colour_next++;
2725 if (n->colour_next >= cachep->colour)
2726 n->colour_next = 0;
2727 spin_unlock(&n->list_lock);
2728
2729 offset *= cachep->colour_off;
2730
2731 if (local_flags & __GFP_WAIT)
2732 local_irq_enable();
2733
2734 /*
2735 * The test for missing atomic flag is performed here, rather than
2736 * the more obvious place, simply to reduce the critical path length
2737 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2738 * will eventually be caught here (where it matters).
2739 */
2740 kmem_flagcheck(cachep, flags);
2741
2742 /*
2743 * Get mem for the objs. Attempt to allocate a physical page from
2744 * 'nodeid'.
2745 */
2746 if (!page)
2747 page = kmem_getpages(cachep, local_flags, nodeid);
2748 if (!page)
2749 goto failed;
2750
2751 /* Get slab management. */
2752 slabp = alloc_slabmgmt(cachep, page, offset,
2753 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2754 if (!slabp)
2755 goto opps1;
2756
2757 slab_map_pages(cachep, slabp, page);
2758
2759 cache_init_objs(cachep, slabp);
2760
2761 if (local_flags & __GFP_WAIT)
2762 local_irq_disable();
2763 check_irq_off();
2764 spin_lock(&n->list_lock);
2765
2766 /* Make slab active. */
2767 list_add_tail(&slabp->list, &(n->slabs_free));
2768 STATS_INC_GROWN(cachep);
2769 n->free_objects += cachep->num;
2770 spin_unlock(&n->list_lock);
2771 return 1;
2772 opps1:
2773 kmem_freepages(cachep, page);
2774 failed:
2775 if (local_flags & __GFP_WAIT)
2776 local_irq_disable();
2777 return 0;
2778 }
2779
2780 #if DEBUG
2781
2782 /*
2783 * Perform extra freeing checks:
2784 * - detect bad pointers.
2785 * - POISON/RED_ZONE checking
2786 */
2787 static void kfree_debugcheck(const void *objp)
2788 {
2789 if (!virt_addr_valid(objp)) {
2790 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2791 (unsigned long)objp);
2792 BUG();
2793 }
2794 }
2795
2796 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2797 {
2798 unsigned long long redzone1, redzone2;
2799
2800 redzone1 = *dbg_redzone1(cache, obj);
2801 redzone2 = *dbg_redzone2(cache, obj);
2802
2803 /*
2804 * Redzone is ok.
2805 */
2806 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2807 return;
2808
2809 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2810 slab_error(cache, "double free detected");
2811 else
2812 slab_error(cache, "memory outside object was overwritten");
2813
2814 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2815 obj, redzone1, redzone2);
2816 }
2817
2818 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2819 unsigned long caller)
2820 {
2821 unsigned int objnr;
2822 struct slab *slabp;
2823
2824 BUG_ON(virt_to_cache(objp) != cachep);
2825
2826 objp -= obj_offset(cachep);
2827 kfree_debugcheck(objp);
2828 slabp = virt_to_slab(objp);
2829
2830 if (cachep->flags & SLAB_RED_ZONE) {
2831 verify_redzone_free(cachep, objp);
2832 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2833 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2834 }
2835 if (cachep->flags & SLAB_STORE_USER)
2836 *dbg_userword(cachep, objp) = (void *)caller;
2837
2838 objnr = obj_to_index(cachep, slabp, objp);
2839
2840 BUG_ON(objnr >= cachep->num);
2841 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2842
2843 if (cachep->flags & SLAB_POISON) {
2844 #ifdef CONFIG_DEBUG_PAGEALLOC
2845 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2846 store_stackinfo(cachep, objp, caller);
2847 kernel_map_pages(virt_to_page(objp),
2848 cachep->size / PAGE_SIZE, 0);
2849 } else {
2850 poison_obj(cachep, objp, POISON_FREE);
2851 }
2852 #else
2853 poison_obj(cachep, objp, POISON_FREE);
2854 #endif
2855 }
2856 return objp;
2857 }
2858
2859 #else
2860 #define kfree_debugcheck(x) do { } while(0)
2861 #define cache_free_debugcheck(x,objp,z) (objp)
2862 #endif
2863
2864 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
2865 bool force_refill)
2866 {
2867 int batchcount;
2868 struct kmem_cache_node *n;
2869 struct array_cache *ac;
2870 int node;
2871
2872 check_irq_off();
2873 node = numa_mem_id();
2874 if (unlikely(force_refill))
2875 goto force_grow;
2876 retry:
2877 ac = cpu_cache_get(cachep);
2878 batchcount = ac->batchcount;
2879 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2880 /*
2881 * If there was little recent activity on this cache, then
2882 * perform only a partial refill. Otherwise we could generate
2883 * refill bouncing.
2884 */
2885 batchcount = BATCHREFILL_LIMIT;
2886 }
2887 n = cachep->node[node];
2888
2889 BUG_ON(ac->avail > 0 || !n);
2890 spin_lock(&n->list_lock);
2891
2892 /* See if we can refill from the shared array */
2893 if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2894 n->shared->touched = 1;
2895 goto alloc_done;
2896 }
2897
2898 while (batchcount > 0) {
2899 struct list_head *entry;
2900 struct slab *slabp;
2901 /* Get slab alloc is to come from. */
2902 entry = n->slabs_partial.next;
2903 if (entry == &n->slabs_partial) {
2904 n->free_touched = 1;
2905 entry = n->slabs_free.next;
2906 if (entry == &n->slabs_free)
2907 goto must_grow;
2908 }
2909
2910 slabp = list_entry(entry, struct slab, list);
2911 check_spinlock_acquired(cachep);
2912
2913 /*
2914 * The slab was either on partial or free list so
2915 * there must be at least one object available for
2916 * allocation.
2917 */
2918 BUG_ON(slabp->inuse >= cachep->num);
2919
2920 while (slabp->inuse < cachep->num && batchcount--) {
2921 STATS_INC_ALLOCED(cachep);
2922 STATS_INC_ACTIVE(cachep);
2923 STATS_SET_HIGH(cachep);
2924
2925 ac_put_obj(cachep, ac, slab_get_obj(cachep, slabp,
2926 node));
2927 }
2928
2929 /* move slabp to correct slabp list: */
2930 list_del(&slabp->list);
2931 if (slabp->free == cachep->num)
2932 list_add(&slabp->list, &n->slabs_full);
2933 else
2934 list_add(&slabp->list, &n->slabs_partial);
2935 }
2936
2937 must_grow:
2938 n->free_objects -= ac->avail;
2939 alloc_done:
2940 spin_unlock(&n->list_lock);
2941
2942 if (unlikely(!ac->avail)) {
2943 int x;
2944 force_grow:
2945 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
2946
2947 /* cache_grow can reenable interrupts, then ac could change. */
2948 ac = cpu_cache_get(cachep);
2949 node = numa_mem_id();
2950
2951 /* no objects in sight? abort */
2952 if (!x && (ac->avail == 0 || force_refill))
2953 return NULL;
2954
2955 if (!ac->avail) /* objects refilled by interrupt? */
2956 goto retry;
2957 }
2958 ac->touched = 1;
2959
2960 return ac_get_obj(cachep, ac, flags, force_refill);
2961 }
2962
2963 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2964 gfp_t flags)
2965 {
2966 might_sleep_if(flags & __GFP_WAIT);
2967 #if DEBUG
2968 kmem_flagcheck(cachep, flags);
2969 #endif
2970 }
2971
2972 #if DEBUG
2973 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2974 gfp_t flags, void *objp, unsigned long caller)
2975 {
2976 if (!objp)
2977 return objp;
2978 if (cachep->flags & SLAB_POISON) {
2979 #ifdef CONFIG_DEBUG_PAGEALLOC
2980 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
2981 kernel_map_pages(virt_to_page(objp),
2982 cachep->size / PAGE_SIZE, 1);
2983 else
2984 check_poison_obj(cachep, objp);
2985 #else
2986 check_poison_obj(cachep, objp);
2987 #endif
2988 poison_obj(cachep, objp, POISON_INUSE);
2989 }
2990 if (cachep->flags & SLAB_STORE_USER)
2991 *dbg_userword(cachep, objp) = (void *)caller;
2992
2993 if (cachep->flags & SLAB_RED_ZONE) {
2994 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2995 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2996 slab_error(cachep, "double free, or memory outside"
2997 " object was overwritten");
2998 printk(KERN_ERR
2999 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3000 objp, *dbg_redzone1(cachep, objp),
3001 *dbg_redzone2(cachep, objp));
3002 }
3003 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3004 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3005 }
3006 objp += obj_offset(cachep);
3007 if (cachep->ctor && cachep->flags & SLAB_POISON)
3008 cachep->ctor(objp);
3009 if (ARCH_SLAB_MINALIGN &&
3010 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3011 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3012 objp, (int)ARCH_SLAB_MINALIGN);
3013 }
3014 return objp;
3015 }
3016 #else
3017 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3018 #endif
3019
3020 static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3021 {
3022 if (cachep == kmem_cache)
3023 return false;
3024
3025 return should_failslab(cachep->object_size, flags, cachep->flags);
3026 }
3027
3028 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3029 {
3030 void *objp;
3031 struct array_cache *ac;
3032 bool force_refill = false;
3033
3034 check_irq_off();
3035
3036 ac = cpu_cache_get(cachep);
3037 if (likely(ac->avail)) {
3038 ac->touched = 1;
3039 objp = ac_get_obj(cachep, ac, flags, false);
3040
3041 /*
3042 * Allow for the possibility all avail objects are not allowed
3043 * by the current flags
3044 */
3045 if (objp) {
3046 STATS_INC_ALLOCHIT(cachep);
3047 goto out;
3048 }
3049 force_refill = true;
3050 }
3051
3052 STATS_INC_ALLOCMISS(cachep);
3053 objp = cache_alloc_refill(cachep, flags, force_refill);
3054 /*
3055 * the 'ac' may be updated by cache_alloc_refill(),
3056 * and kmemleak_erase() requires its correct value.
3057 */
3058 ac = cpu_cache_get(cachep);
3059
3060 out:
3061 /*
3062 * To avoid a false negative, if an object that is in one of the
3063 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3064 * treat the array pointers as a reference to the object.
3065 */
3066 if (objp)
3067 kmemleak_erase(&ac->entry[ac->avail]);
3068 return objp;
3069 }
3070
3071 #ifdef CONFIG_NUMA
3072 /*
3073 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3074 *
3075 * If we are in_interrupt, then process context, including cpusets and
3076 * mempolicy, may not apply and should not be used for allocation policy.
3077 */
3078 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3079 {
3080 int nid_alloc, nid_here;
3081
3082 if (in_interrupt() || (flags & __GFP_THISNODE))
3083 return NULL;
3084 nid_alloc = nid_here = numa_mem_id();
3085 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3086 nid_alloc = cpuset_slab_spread_node();
3087 else if (current->mempolicy)
3088 nid_alloc = slab_node();
3089 if (nid_alloc != nid_here)
3090 return ____cache_alloc_node(cachep, flags, nid_alloc);
3091 return NULL;
3092 }
3093
3094 /*
3095 * Fallback function if there was no memory available and no objects on a
3096 * certain node and fall back is permitted. First we scan all the
3097 * available node for available objects. If that fails then we
3098 * perform an allocation without specifying a node. This allows the page
3099 * allocator to do its reclaim / fallback magic. We then insert the
3100 * slab into the proper nodelist and then allocate from it.
3101 */
3102 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3103 {
3104 struct zonelist *zonelist;
3105 gfp_t local_flags;
3106 struct zoneref *z;
3107 struct zone *zone;
3108 enum zone_type high_zoneidx = gfp_zone(flags);
3109 void *obj = NULL;
3110 int nid;
3111 unsigned int cpuset_mems_cookie;
3112
3113 if (flags & __GFP_THISNODE)
3114 return NULL;
3115
3116 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3117
3118 retry_cpuset:
3119 cpuset_mems_cookie = get_mems_allowed();
3120 zonelist = node_zonelist(slab_node(), flags);
3121
3122 retry:
3123 /*
3124 * Look through allowed nodes for objects available
3125 * from existing per node queues.
3126 */
3127 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3128 nid = zone_to_nid(zone);
3129
3130 if (cpuset_zone_allowed_hardwall(zone, flags) &&
3131 cache->node[nid] &&
3132 cache->node[nid]->free_objects) {
3133 obj = ____cache_alloc_node(cache,
3134 flags | GFP_THISNODE, nid);
3135 if (obj)
3136 break;
3137 }
3138 }
3139
3140 if (!obj) {
3141 /*
3142 * This allocation will be performed within the constraints
3143 * of the current cpuset / memory policy requirements.
3144 * We may trigger various forms of reclaim on the allowed
3145 * set and go into memory reserves if necessary.
3146 */
3147 struct page *page;
3148
3149 if (local_flags & __GFP_WAIT)
3150 local_irq_enable();
3151 kmem_flagcheck(cache, flags);
3152 page = kmem_getpages(cache, local_flags, numa_mem_id());
3153 if (local_flags & __GFP_WAIT)
3154 local_irq_disable();
3155 if (page) {
3156 /*
3157 * Insert into the appropriate per node queues
3158 */
3159 nid = page_to_nid(page);
3160 if (cache_grow(cache, flags, nid, page)) {
3161 obj = ____cache_alloc_node(cache,
3162 flags | GFP_THISNODE, nid);
3163 if (!obj)
3164 /*
3165 * Another processor may allocate the
3166 * objects in the slab since we are
3167 * not holding any locks.
3168 */
3169 goto retry;
3170 } else {
3171 /* cache_grow already freed obj */
3172 obj = NULL;
3173 }
3174 }
3175 }
3176
3177 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
3178 goto retry_cpuset;
3179 return obj;
3180 }
3181
3182 /*
3183 * A interface to enable slab creation on nodeid
3184 */
3185 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3186 int nodeid)
3187 {
3188 struct list_head *entry;
3189 struct slab *slabp;
3190 struct kmem_cache_node *n;
3191 void *obj;
3192 int x;
3193
3194 VM_BUG_ON(nodeid > num_online_nodes());
3195 n = cachep->node[nodeid];
3196 BUG_ON(!n);
3197
3198 retry:
3199 check_irq_off();
3200 spin_lock(&n->list_lock);
3201 entry = n->slabs_partial.next;
3202 if (entry == &n->slabs_partial) {
3203 n->free_touched = 1;
3204 entry = n->slabs_free.next;
3205 if (entry == &n->slabs_free)
3206 goto must_grow;
3207 }
3208
3209 slabp = list_entry(entry, struct slab, list);
3210 check_spinlock_acquired_node(cachep, nodeid);
3211
3212 STATS_INC_NODEALLOCS(cachep);
3213 STATS_INC_ACTIVE(cachep);
3214 STATS_SET_HIGH(cachep);
3215
3216 BUG_ON(slabp->inuse == cachep->num);
3217
3218 obj = slab_get_obj(cachep, slabp, nodeid);
3219 n->free_objects--;
3220 /* move slabp to correct slabp list: */
3221 list_del(&slabp->list);
3222
3223 if (slabp->free == cachep->num)
3224 list_add(&slabp->list, &n->slabs_full);
3225 else
3226 list_add(&slabp->list, &n->slabs_partial);
3227
3228 spin_unlock(&n->list_lock);
3229 goto done;
3230
3231 must_grow:
3232 spin_unlock(&n->list_lock);
3233 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3234 if (x)
3235 goto retry;
3236
3237 return fallback_alloc(cachep, flags);
3238
3239 done:
3240 return obj;
3241 }
3242
3243 static __always_inline void *
3244 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3245 unsigned long caller)
3246 {
3247 unsigned long save_flags;
3248 void *ptr;
3249 int slab_node = numa_mem_id();
3250
3251 flags &= gfp_allowed_mask;
3252
3253 lockdep_trace_alloc(flags);
3254
3255 if (slab_should_failslab(cachep, flags))
3256 return NULL;
3257
3258 cachep = memcg_kmem_get_cache(cachep, flags);
3259
3260 cache_alloc_debugcheck_before(cachep, flags);
3261 local_irq_save(save_flags);
3262
3263 if (nodeid == NUMA_NO_NODE)
3264 nodeid = slab_node;
3265
3266 if (unlikely(!cachep->node[nodeid])) {
3267 /* Node not bootstrapped yet */
3268 ptr = fallback_alloc(cachep, flags);
3269 goto out;
3270 }
3271
3272 if (nodeid == slab_node) {
3273 /*
3274 * Use the locally cached objects if possible.
3275 * However ____cache_alloc does not allow fallback
3276 * to other nodes. It may fail while we still have
3277 * objects on other nodes available.
3278 */
3279 ptr = ____cache_alloc(cachep, flags);
3280 if (ptr)
3281 goto out;
3282 }
3283 /* ___cache_alloc_node can fall back to other nodes */
3284 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3285 out:
3286 local_irq_restore(save_flags);
3287 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3288 kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3289 flags);
3290
3291 if (likely(ptr))
3292 kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
3293
3294 if (unlikely((flags & __GFP_ZERO) && ptr))
3295 memset(ptr, 0, cachep->object_size);
3296
3297 return ptr;
3298 }
3299
3300 static __always_inline void *
3301 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3302 {
3303 void *objp;
3304
3305 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3306 objp = alternate_node_alloc(cache, flags);
3307 if (objp)
3308 goto out;
3309 }
3310 objp = ____cache_alloc(cache, flags);
3311
3312 /*
3313 * We may just have run out of memory on the local node.
3314 * ____cache_alloc_node() knows how to locate memory on other nodes
3315 */
3316 if (!objp)
3317 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3318
3319 out:
3320 return objp;
3321 }
3322 #else
3323
3324 static __always_inline void *
3325 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3326 {
3327 return ____cache_alloc(cachep, flags);
3328 }
3329
3330 #endif /* CONFIG_NUMA */
3331
3332 static __always_inline void *
3333 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3334 {
3335 unsigned long save_flags;
3336 void *objp;
3337
3338 flags &= gfp_allowed_mask;
3339
3340 lockdep_trace_alloc(flags);
3341
3342 if (slab_should_failslab(cachep, flags))
3343 return NULL;
3344
3345 cachep = memcg_kmem_get_cache(cachep, flags);
3346
3347 cache_alloc_debugcheck_before(cachep, flags);
3348 local_irq_save(save_flags);
3349 objp = __do_cache_alloc(cachep, flags);
3350 local_irq_restore(save_flags);
3351 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3352 kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3353 flags);
3354 prefetchw(objp);
3355
3356 if (likely(objp))
3357 kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
3358
3359 if (unlikely((flags & __GFP_ZERO) && objp))
3360 memset(objp, 0, cachep->object_size);
3361
3362 return objp;
3363 }
3364
3365 /*
3366 * Caller needs to acquire correct kmem_list's list_lock
3367 */
3368 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3369 int node)
3370 {
3371 int i;
3372 struct kmem_cache_node *n;
3373
3374 for (i = 0; i < nr_objects; i++) {
3375 void *objp;
3376 struct slab *slabp;
3377
3378 clear_obj_pfmemalloc(&objpp[i]);
3379 objp = objpp[i];
3380
3381 slabp = virt_to_slab(objp);
3382 n = cachep->node[node];
3383 list_del(&slabp->list);
3384 check_spinlock_acquired_node(cachep, node);
3385 slab_put_obj(cachep, slabp, objp, node);
3386 STATS_DEC_ACTIVE(cachep);
3387 n->free_objects++;
3388
3389 /* fixup slab chains */
3390 if (slabp->inuse == 0) {
3391 if (n->free_objects > n->free_limit) {
3392 n->free_objects -= cachep->num;
3393 /* No need to drop any previously held
3394 * lock here, even if we have a off-slab slab
3395 * descriptor it is guaranteed to come from
3396 * a different cache, refer to comments before
3397 * alloc_slabmgmt.
3398 */
3399 slab_destroy(cachep, slabp);
3400 } else {
3401 list_add(&slabp->list, &n->slabs_free);
3402 }
3403 } else {
3404 /* Unconditionally move a slab to the end of the
3405 * partial list on free - maximum time for the
3406 * other objects to be freed, too.
3407 */
3408 list_add_tail(&slabp->list, &n->slabs_partial);
3409 }
3410 }
3411 }
3412
3413 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3414 {
3415 int batchcount;
3416 struct kmem_cache_node *n;
3417 int node = numa_mem_id();
3418
3419 batchcount = ac->batchcount;
3420 #if DEBUG
3421 BUG_ON(!batchcount || batchcount > ac->avail);
3422 #endif
3423 check_irq_off();
3424 n = cachep->node[node];
3425 spin_lock(&n->list_lock);
3426 if (n->shared) {
3427 struct array_cache *shared_array = n->shared;
3428 int max = shared_array->limit - shared_array->avail;
3429 if (max) {
3430 if (batchcount > max)
3431 batchcount = max;
3432 memcpy(&(shared_array->entry[shared_array->avail]),
3433 ac->entry, sizeof(void *) * batchcount);
3434 shared_array->avail += batchcount;
3435 goto free_done;
3436 }
3437 }
3438
3439 free_block(cachep, ac->entry, batchcount, node);
3440 free_done:
3441 #if STATS
3442 {
3443 int i = 0;
3444 struct list_head *p;
3445
3446 p = n->slabs_free.next;
3447 while (p != &(n->slabs_free)) {
3448 struct slab *slabp;
3449
3450 slabp = list_entry(p, struct slab, list);
3451 BUG_ON(slabp->inuse);
3452
3453 i++;
3454 p = p->next;
3455 }
3456 STATS_SET_FREEABLE(cachep, i);
3457 }
3458 #endif
3459 spin_unlock(&n->list_lock);
3460 ac->avail -= batchcount;
3461 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3462 }
3463
3464 /*
3465 * Release an obj back to its cache. If the obj has a constructed state, it must
3466 * be in this state _before_ it is released. Called with disabled ints.
3467 */
3468 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3469 unsigned long caller)
3470 {
3471 struct array_cache *ac = cpu_cache_get(cachep);
3472
3473 check_irq_off();
3474 kmemleak_free_recursive(objp, cachep->flags);
3475 objp = cache_free_debugcheck(cachep, objp, caller);
3476
3477 kmemcheck_slab_free(cachep, objp, cachep->object_size);
3478
3479 /*
3480 * Skip calling cache_free_alien() when the platform is not numa.
3481 * This will avoid cache misses that happen while accessing slabp (which
3482 * is per page memory reference) to get nodeid. Instead use a global
3483 * variable to skip the call, which is mostly likely to be present in
3484 * the cache.
3485 */
3486 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3487 return;
3488
3489 if (likely(ac->avail < ac->limit)) {
3490 STATS_INC_FREEHIT(cachep);
3491 } else {
3492 STATS_INC_FREEMISS(cachep);
3493 cache_flusharray(cachep, ac);
3494 }
3495
3496 ac_put_obj(cachep, ac, objp);
3497 }
3498
3499 /**
3500 * kmem_cache_alloc - Allocate an object
3501 * @cachep: The cache to allocate from.
3502 * @flags: See kmalloc().
3503 *
3504 * Allocate an object from this cache. The flags are only relevant
3505 * if the cache has no available objects.
3506 */
3507 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3508 {
3509 void *ret = slab_alloc(cachep, flags, _RET_IP_);
3510
3511 trace_kmem_cache_alloc(_RET_IP_, ret,
3512 cachep->object_size, cachep->size, flags);
3513
3514 return ret;
3515 }
3516 EXPORT_SYMBOL(kmem_cache_alloc);
3517
3518 #ifdef CONFIG_TRACING
3519 void *
3520 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3521 {
3522 void *ret;
3523
3524 ret = slab_alloc(cachep, flags, _RET_IP_);
3525
3526 trace_kmalloc(_RET_IP_, ret,
3527 size, cachep->size, flags);
3528 return ret;
3529 }
3530 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3531 #endif
3532
3533 #ifdef CONFIG_NUMA
3534 /**
3535 * kmem_cache_alloc_node - Allocate an object on the specified node
3536 * @cachep: The cache to allocate from.
3537 * @flags: See kmalloc().
3538 * @nodeid: node number of the target node.
3539 *
3540 * Identical to kmem_cache_alloc but it will allocate memory on the given
3541 * node, which can improve the performance for cpu bound structures.
3542 *
3543 * Fallback to other node is possible if __GFP_THISNODE is not set.
3544 */
3545 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3546 {
3547 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3548
3549 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3550 cachep->object_size, cachep->size,
3551 flags, nodeid);
3552
3553 return ret;
3554 }
3555 EXPORT_SYMBOL(kmem_cache_alloc_node);
3556
3557 #ifdef CONFIG_TRACING
3558 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3559 gfp_t flags,
3560 int nodeid,
3561 size_t size)
3562 {
3563 void *ret;
3564
3565 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3566
3567 trace_kmalloc_node(_RET_IP_, ret,
3568 size, cachep->size,
3569 flags, nodeid);
3570 return ret;
3571 }
3572 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3573 #endif
3574
3575 static __always_inline void *
3576 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3577 {
3578 struct kmem_cache *cachep;
3579
3580 cachep = kmalloc_slab(size, flags);
3581 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3582 return cachep;
3583 return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3584 }
3585
3586 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3587 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3588 {
3589 return __do_kmalloc_node(size, flags, node, _RET_IP_);
3590 }
3591 EXPORT_SYMBOL(__kmalloc_node);
3592
3593 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3594 int node, unsigned long caller)
3595 {
3596 return __do_kmalloc_node(size, flags, node, caller);
3597 }
3598 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3599 #else
3600 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3601 {
3602 return __do_kmalloc_node(size, flags, node, 0);
3603 }
3604 EXPORT_SYMBOL(__kmalloc_node);
3605 #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3606 #endif /* CONFIG_NUMA */
3607
3608 /**
3609 * __do_kmalloc - allocate memory
3610 * @size: how many bytes of memory are required.
3611 * @flags: the type of memory to allocate (see kmalloc).
3612 * @caller: function caller for debug tracking of the caller
3613 */
3614 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3615 unsigned long caller)
3616 {
3617 struct kmem_cache *cachep;
3618 void *ret;
3619
3620 /* If you want to save a few bytes .text space: replace
3621 * __ with kmem_.
3622 * Then kmalloc uses the uninlined functions instead of the inline
3623 * functions.
3624 */
3625 cachep = kmalloc_slab(size, flags);
3626 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3627 return cachep;
3628 ret = slab_alloc(cachep, flags, caller);
3629
3630 trace_kmalloc(caller, ret,
3631 size, cachep->size, flags);
3632
3633 return ret;
3634 }
3635
3636
3637 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3638 void *__kmalloc(size_t size, gfp_t flags)
3639 {
3640 return __do_kmalloc(size, flags, _RET_IP_);
3641 }
3642 EXPORT_SYMBOL(__kmalloc);
3643
3644 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3645 {
3646 return __do_kmalloc(size, flags, caller);
3647 }
3648 EXPORT_SYMBOL(__kmalloc_track_caller);
3649
3650 #else
3651 void *__kmalloc(size_t size, gfp_t flags)
3652 {
3653 return __do_kmalloc(size, flags, 0);
3654 }
3655 EXPORT_SYMBOL(__kmalloc);
3656 #endif
3657
3658 /**
3659 * kmem_cache_free - Deallocate an object
3660 * @cachep: The cache the allocation was from.
3661 * @objp: The previously allocated object.
3662 *
3663 * Free an object which was previously allocated from this
3664 * cache.
3665 */
3666 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3667 {
3668 unsigned long flags;
3669 cachep = cache_from_obj(cachep, objp);
3670 if (!cachep)
3671 return;
3672
3673 local_irq_save(flags);
3674 debug_check_no_locks_freed(objp, cachep->object_size);
3675 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3676 debug_check_no_obj_freed(objp, cachep->object_size);
3677 __cache_free(cachep, objp, _RET_IP_);
3678 local_irq_restore(flags);
3679
3680 trace_kmem_cache_free(_RET_IP_, objp);
3681 }
3682 EXPORT_SYMBOL(kmem_cache_free);
3683
3684 /**
3685 * kfree - free previously allocated memory
3686 * @objp: pointer returned by kmalloc.
3687 *
3688 * If @objp is NULL, no operation is performed.
3689 *
3690 * Don't free memory not originally allocated by kmalloc()
3691 * or you will run into trouble.
3692 */
3693 void kfree(const void *objp)
3694 {
3695 struct kmem_cache *c;
3696 unsigned long flags;
3697
3698 trace_kfree(_RET_IP_, objp);
3699
3700 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3701 return;
3702 local_irq_save(flags);
3703 kfree_debugcheck(objp);
3704 c = virt_to_cache(objp);
3705 debug_check_no_locks_freed(objp, c->object_size);
3706
3707 debug_check_no_obj_freed(objp, c->object_size);
3708 __cache_free(c, (void *)objp, _RET_IP_);
3709 local_irq_restore(flags);
3710 }
3711 EXPORT_SYMBOL(kfree);
3712
3713 /*
3714 * This initializes kmem_cache_node or resizes various caches for all nodes.
3715 */
3716 static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
3717 {
3718 int node;
3719 struct kmem_cache_node *n;
3720 struct array_cache *new_shared;
3721 struct array_cache **new_alien = NULL;
3722
3723 for_each_online_node(node) {
3724
3725 if (use_alien_caches) {
3726 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3727 if (!new_alien)
3728 goto fail;
3729 }
3730
3731 new_shared = NULL;
3732 if (cachep->shared) {
3733 new_shared = alloc_arraycache(node,
3734 cachep->shared*cachep->batchcount,
3735 0xbaadf00d, gfp);
3736 if (!new_shared) {
3737 free_alien_cache(new_alien);
3738 goto fail;
3739 }
3740 }
3741
3742 n = cachep->node[node];
3743 if (n) {
3744 struct array_cache *shared = n->shared;
3745
3746 spin_lock_irq(&n->list_lock);
3747
3748 if (shared)
3749 free_block(cachep, shared->entry,
3750 shared->avail, node);
3751
3752 n->shared = new_shared;
3753 if (!n->alien) {
3754 n->alien = new_alien;
3755 new_alien = NULL;
3756 }
3757 n->free_limit = (1 + nr_cpus_node(node)) *
3758 cachep->batchcount + cachep->num;
3759 spin_unlock_irq(&n->list_lock);
3760 kfree(shared);
3761 free_alien_cache(new_alien);
3762 continue;
3763 }
3764 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3765 if (!n) {
3766 free_alien_cache(new_alien);
3767 kfree(new_shared);
3768 goto fail;
3769 }
3770
3771 kmem_cache_node_init(n);
3772 n->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3773 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3774 n->shared = new_shared;
3775 n->alien = new_alien;
3776 n->free_limit = (1 + nr_cpus_node(node)) *
3777 cachep->batchcount + cachep->num;
3778 cachep->node[node] = n;
3779 }
3780 return 0;
3781
3782 fail:
3783 if (!cachep->list.next) {
3784 /* Cache is not active yet. Roll back what we did */
3785 node--;
3786 while (node >= 0) {
3787 if (cachep->node[node]) {
3788 n = cachep->node[node];
3789
3790 kfree(n->shared);
3791 free_alien_cache(n->alien);
3792 kfree(n);
3793 cachep->node[node] = NULL;
3794 }
3795 node--;
3796 }
3797 }
3798 return -ENOMEM;
3799 }
3800
3801 struct ccupdate_struct {
3802 struct kmem_cache *cachep;
3803 struct array_cache *new[0];
3804 };
3805
3806 static void do_ccupdate_local(void *info)
3807 {
3808 struct ccupdate_struct *new = info;
3809 struct array_cache *old;
3810
3811 check_irq_off();
3812 old = cpu_cache_get(new->cachep);
3813
3814 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3815 new->new[smp_processor_id()] = old;
3816 }
3817
3818 /* Always called with the slab_mutex held */
3819 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3820 int batchcount, int shared, gfp_t gfp)
3821 {
3822 struct ccupdate_struct *new;
3823 int i;
3824
3825 new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
3826 gfp);
3827 if (!new)
3828 return -ENOMEM;
3829
3830 for_each_online_cpu(i) {
3831 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
3832 batchcount, gfp);
3833 if (!new->new[i]) {
3834 for (i--; i >= 0; i--)
3835 kfree(new->new[i]);
3836 kfree(new);
3837 return -ENOMEM;
3838 }
3839 }
3840 new->cachep = cachep;
3841
3842 on_each_cpu(do_ccupdate_local, (void *)new, 1);
3843
3844 check_irq_on();
3845 cachep->batchcount = batchcount;
3846 cachep->limit = limit;
3847 cachep->shared = shared;
3848
3849 for_each_online_cpu(i) {
3850 struct array_cache *ccold = new->new[i];
3851 if (!ccold)
3852 continue;
3853 spin_lock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
3854 free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
3855 spin_unlock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
3856 kfree(ccold);
3857 }
3858 kfree(new);
3859 return alloc_kmemlist(cachep, gfp);
3860 }
3861
3862 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3863 int batchcount, int shared, gfp_t gfp)
3864 {
3865 int ret;
3866 struct kmem_cache *c = NULL;
3867 int i = 0;
3868
3869 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3870
3871 if (slab_state < FULL)
3872 return ret;
3873
3874 if ((ret < 0) || !is_root_cache(cachep))
3875 return ret;
3876
3877 VM_BUG_ON(!mutex_is_locked(&slab_mutex));
3878 for_each_memcg_cache_index(i) {
3879 c = cache_from_memcg(cachep, i);
3880 if (c)
3881 /* return value determined by the parent cache only */
3882 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3883 }
3884
3885 return ret;
3886 }
3887
3888 /* Called with slab_mutex held always */
3889 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3890 {
3891 int err;
3892 int limit = 0;
3893 int shared = 0;
3894 int batchcount = 0;
3895
3896 if (!is_root_cache(cachep)) {
3897 struct kmem_cache *root = memcg_root_cache(cachep);
3898 limit = root->limit;
3899 shared = root->shared;
3900 batchcount = root->batchcount;
3901 }
3902
3903 if (limit && shared && batchcount)
3904 goto skip_setup;
3905 /*
3906 * The head array serves three purposes:
3907 * - create a LIFO ordering, i.e. return objects that are cache-warm
3908 * - reduce the number of spinlock operations.
3909 * - reduce the number of linked list operations on the slab and
3910 * bufctl chains: array operations are cheaper.
3911 * The numbers are guessed, we should auto-tune as described by
3912 * Bonwick.
3913 */
3914 if (cachep->size > 131072)
3915 limit = 1;
3916 else if (cachep->size > PAGE_SIZE)
3917 limit = 8;
3918 else if (cachep->size > 1024)
3919 limit = 24;
3920 else if (cachep->size > 256)
3921 limit = 54;
3922 else
3923 limit = 120;
3924
3925 /*
3926 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3927 * allocation behaviour: Most allocs on one cpu, most free operations
3928 * on another cpu. For these cases, an efficient object passing between
3929 * cpus is necessary. This is provided by a shared array. The array
3930 * replaces Bonwick's magazine layer.
3931 * On uniprocessor, it's functionally equivalent (but less efficient)
3932 * to a larger limit. Thus disabled by default.
3933 */
3934 shared = 0;
3935 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3936 shared = 8;
3937
3938 #if DEBUG
3939 /*
3940 * With debugging enabled, large batchcount lead to excessively long
3941 * periods with disabled local interrupts. Limit the batchcount
3942 */
3943 if (limit > 32)
3944 limit = 32;
3945 #endif
3946 batchcount = (limit + 1) / 2;
3947 skip_setup:
3948 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3949 if (err)
3950 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3951 cachep->name, -err);
3952 return err;
3953 }
3954
3955 /*
3956 * Drain an array if it contains any elements taking the node lock only if
3957 * necessary. Note that the node listlock also protects the array_cache
3958 * if drain_array() is used on the shared array.
3959 */
3960 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3961 struct array_cache *ac, int force, int node)
3962 {
3963 int tofree;
3964
3965 if (!ac || !ac->avail)
3966 return;
3967 if (ac->touched && !force) {
3968 ac->touched = 0;
3969 } else {
3970 spin_lock_irq(&n->list_lock);
3971 if (ac->avail) {
3972 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3973 if (tofree > ac->avail)
3974 tofree = (ac->avail + 1) / 2;
3975 free_block(cachep, ac->entry, tofree, node);
3976 ac->avail -= tofree;
3977 memmove(ac->entry, &(ac->entry[tofree]),
3978 sizeof(void *) * ac->avail);
3979 }
3980 spin_unlock_irq(&n->list_lock);
3981 }
3982 }
3983
3984 /**
3985 * cache_reap - Reclaim memory from caches.
3986 * @w: work descriptor
3987 *
3988 * Called from workqueue/eventd every few seconds.
3989 * Purpose:
3990 * - clear the per-cpu caches for this CPU.
3991 * - return freeable pages to the main free memory pool.
3992 *
3993 * If we cannot acquire the cache chain mutex then just give up - we'll try
3994 * again on the next iteration.
3995 */
3996 static void cache_reap(struct work_struct *w)
3997 {
3998 struct kmem_cache *searchp;
3999 struct kmem_cache_node *n;
4000 int node = numa_mem_id();
4001 struct delayed_work *work = to_delayed_work(w);
4002
4003 if (!mutex_trylock(&slab_mutex))
4004 /* Give up. Setup the next iteration. */
4005 goto out;
4006
4007 list_for_each_entry(searchp, &slab_caches, list) {
4008 check_irq_on();
4009
4010 /*
4011 * We only take the node lock if absolutely necessary and we
4012 * have established with reasonable certainty that
4013 * we can do some work if the lock was obtained.
4014 */
4015 n = searchp->node[node];
4016
4017 reap_alien(searchp, n);
4018
4019 drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
4020
4021 /*
4022 * These are racy checks but it does not matter
4023 * if we skip one check or scan twice.
4024 */
4025 if (time_after(n->next_reap, jiffies))
4026 goto next;
4027
4028 n->next_reap = jiffies + REAPTIMEOUT_LIST3;
4029
4030 drain_array(searchp, n, n->shared, 0, node);
4031
4032 if (n->free_touched)
4033 n->free_touched = 0;
4034 else {
4035 int freed;
4036
4037 freed = drain_freelist(searchp, n, (n->free_limit +
4038 5 * searchp->num - 1) / (5 * searchp->num));
4039 STATS_ADD_REAPED(searchp, freed);
4040 }
4041 next:
4042 cond_resched();
4043 }
4044 check_irq_on();
4045 mutex_unlock(&slab_mutex);
4046 next_reap_node();
4047 out:
4048 /* Set up the next iteration */
4049 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
4050 }
4051
4052 #ifdef CONFIG_SLABINFO
4053 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4054 {
4055 struct slab *slabp;
4056 unsigned long active_objs;
4057 unsigned long num_objs;
4058 unsigned long active_slabs = 0;
4059 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4060 const char *name;
4061 char *error = NULL;
4062 int node;
4063 struct kmem_cache_node *n;
4064
4065 active_objs = 0;
4066 num_slabs = 0;
4067 for_each_online_node(node) {
4068 n = cachep->node[node];
4069 if (!n)
4070 continue;
4071
4072 check_irq_on();
4073 spin_lock_irq(&n->list_lock);
4074
4075 list_for_each_entry(slabp, &n->slabs_full, list) {
4076 if (slabp->inuse != cachep->num && !error)
4077 error = "slabs_full accounting error";
4078 active_objs += cachep->num;
4079 active_slabs++;
4080 }
4081 list_for_each_entry(slabp, &n->slabs_partial, list) {
4082 if (slabp->inuse == cachep->num && !error)
4083 error = "slabs_partial inuse accounting error";
4084 if (!slabp->inuse && !error)
4085 error = "slabs_partial/inuse accounting error";
4086 active_objs += slabp->inuse;
4087 active_slabs++;
4088 }
4089 list_for_each_entry(slabp, &n->slabs_free, list) {
4090 if (slabp->inuse && !error)
4091 error = "slabs_free/inuse accounting error";
4092 num_slabs++;
4093 }
4094 free_objects += n->free_objects;
4095 if (n->shared)
4096 shared_avail += n->shared->avail;
4097
4098 spin_unlock_irq(&n->list_lock);
4099 }
4100 num_slabs += active_slabs;
4101 num_objs = num_slabs * cachep->num;
4102 if (num_objs - active_objs != free_objects && !error)
4103 error = "free_objects accounting error";
4104
4105 name = cachep->name;
4106 if (error)
4107 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4108
4109 sinfo->active_objs = active_objs;
4110 sinfo->num_objs = num_objs;
4111 sinfo->active_slabs = active_slabs;
4112 sinfo->num_slabs = num_slabs;
4113 sinfo->shared_avail = shared_avail;
4114 sinfo->limit = cachep->limit;
4115 sinfo->batchcount = cachep->batchcount;
4116 sinfo->shared = cachep->shared;
4117 sinfo->objects_per_slab = cachep->num;
4118 sinfo->cache_order = cachep->gfporder;
4119 }
4120
4121 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4122 {
4123 #if STATS
4124 { /* node stats */
4125 unsigned long high = cachep->high_mark;
4126 unsigned long allocs = cachep->num_allocations;
4127 unsigned long grown = cachep->grown;
4128 unsigned long reaped = cachep->reaped;
4129 unsigned long errors = cachep->errors;
4130 unsigned long max_freeable = cachep->max_freeable;
4131 unsigned long node_allocs = cachep->node_allocs;
4132 unsigned long node_frees = cachep->node_frees;
4133 unsigned long overflows = cachep->node_overflow;
4134
4135 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4136 "%4lu %4lu %4lu %4lu %4lu",
4137 allocs, high, grown,
4138 reaped, errors, max_freeable, node_allocs,
4139 node_frees, overflows);
4140 }
4141 /* cpu stats */
4142 {
4143 unsigned long allochit = atomic_read(&cachep->allochit);
4144 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4145 unsigned long freehit = atomic_read(&cachep->freehit);
4146 unsigned long freemiss = atomic_read(&cachep->freemiss);
4147
4148 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4149 allochit, allocmiss, freehit, freemiss);
4150 }
4151 #endif
4152 }
4153
4154 #define MAX_SLABINFO_WRITE 128
4155 /**
4156 * slabinfo_write - Tuning for the slab allocator
4157 * @file: unused
4158 * @buffer: user buffer
4159 * @count: data length
4160 * @ppos: unused
4161 */
4162 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4163 size_t count, loff_t *ppos)
4164 {
4165 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4166 int limit, batchcount, shared, res;
4167 struct kmem_cache *cachep;
4168
4169 if (count > MAX_SLABINFO_WRITE)
4170 return -EINVAL;
4171 if (copy_from_user(&kbuf, buffer, count))
4172 return -EFAULT;
4173 kbuf[MAX_SLABINFO_WRITE] = '\0';
4174
4175 tmp = strchr(kbuf, ' ');
4176 if (!tmp)
4177 return -EINVAL;
4178 *tmp = '\0';
4179 tmp++;
4180 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4181 return -EINVAL;
4182
4183 /* Find the cache in the chain of caches. */
4184 mutex_lock(&slab_mutex);
4185 res = -EINVAL;
4186 list_for_each_entry(cachep, &slab_caches, list) {
4187 if (!strcmp(cachep->name, kbuf)) {
4188 if (limit < 1 || batchcount < 1 ||
4189 batchcount > limit || shared < 0) {
4190 res = 0;
4191 } else {
4192 res = do_tune_cpucache(cachep, limit,
4193 batchcount, shared,
4194 GFP_KERNEL);
4195 }
4196 break;
4197 }
4198 }
4199 mutex_unlock(&slab_mutex);
4200 if (res >= 0)
4201 res = count;
4202 return res;
4203 }
4204
4205 #ifdef CONFIG_DEBUG_SLAB_LEAK
4206
4207 static void *leaks_start(struct seq_file *m, loff_t *pos)
4208 {
4209 mutex_lock(&slab_mutex);
4210 return seq_list_start(&slab_caches, *pos);
4211 }
4212
4213 static inline int add_caller(unsigned long *n, unsigned long v)
4214 {
4215 unsigned long *p;
4216 int l;
4217 if (!v)
4218 return 1;
4219 l = n[1];
4220 p = n + 2;
4221 while (l) {
4222 int i = l/2;
4223 unsigned long *q = p + 2 * i;
4224 if (*q == v) {
4225 q[1]++;
4226 return 1;
4227 }
4228 if (*q > v) {
4229 l = i;
4230 } else {
4231 p = q + 2;
4232 l -= i + 1;
4233 }
4234 }
4235 if (++n[1] == n[0])
4236 return 0;
4237 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4238 p[0] = v;
4239 p[1] = 1;
4240 return 1;
4241 }
4242
4243 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4244 {
4245 void *p;
4246 int i, j;
4247
4248 if (n[0] == n[1])
4249 return;
4250 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->size) {
4251 bool active = true;
4252
4253 for (j = s->free; j < c->num; j++) {
4254 /* Skip freed item */
4255 if (slab_bufctl(s)[j] == i) {
4256 active = false;
4257 break;
4258 }
4259 }
4260 if (!active)
4261 continue;
4262
4263 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4264 return;
4265 }
4266 }
4267
4268 static void show_symbol(struct seq_file *m, unsigned long address)
4269 {
4270 #ifdef CONFIG_KALLSYMS
4271 unsigned long offset, size;
4272 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4273
4274 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4275 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4276 if (modname[0])
4277 seq_printf(m, " [%s]", modname);
4278 return;
4279 }
4280 #endif
4281 seq_printf(m, "%p", (void *)address);
4282 }
4283
4284 static int leaks_show(struct seq_file *m, void *p)
4285 {
4286 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4287 struct slab *slabp;
4288 struct kmem_cache_node *n;
4289 const char *name;
4290 unsigned long *x = m->private;
4291 int node;
4292 int i;
4293
4294 if (!(cachep->flags & SLAB_STORE_USER))
4295 return 0;
4296 if (!(cachep->flags & SLAB_RED_ZONE))
4297 return 0;
4298
4299 /* OK, we can do it */
4300
4301 x[1] = 0;
4302
4303 for_each_online_node(node) {
4304 n = cachep->node[node];
4305 if (!n)
4306 continue;
4307
4308 check_irq_on();
4309 spin_lock_irq(&n->list_lock);
4310
4311 list_for_each_entry(slabp, &n->slabs_full, list)
4312 handle_slab(x, cachep, slabp);
4313 list_for_each_entry(slabp, &n->slabs_partial, list)
4314 handle_slab(x, cachep, slabp);
4315 spin_unlock_irq(&n->list_lock);
4316 }
4317 name = cachep->name;
4318 if (x[0] == x[1]) {
4319 /* Increase the buffer size */
4320 mutex_unlock(&slab_mutex);
4321 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4322 if (!m->private) {
4323 /* Too bad, we are really out */
4324 m->private = x;
4325 mutex_lock(&slab_mutex);
4326 return -ENOMEM;
4327 }
4328 *(unsigned long *)m->private = x[0] * 2;
4329 kfree(x);
4330 mutex_lock(&slab_mutex);
4331 /* Now make sure this entry will be retried */
4332 m->count = m->size;
4333 return 0;
4334 }
4335 for (i = 0; i < x[1]; i++) {
4336 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4337 show_symbol(m, x[2*i+2]);
4338 seq_putc(m, '\n');
4339 }
4340
4341 return 0;
4342 }
4343
4344 static const struct seq_operations slabstats_op = {
4345 .start = leaks_start,
4346 .next = slab_next,
4347 .stop = slab_stop,
4348 .show = leaks_show,
4349 };
4350
4351 static int slabstats_open(struct inode *inode, struct file *file)
4352 {
4353 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4354 int ret = -ENOMEM;
4355 if (n) {
4356 ret = seq_open(file, &slabstats_op);
4357 if (!ret) {
4358 struct seq_file *m = file->private_data;
4359 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4360 m->private = n;
4361 n = NULL;
4362 }
4363 kfree(n);
4364 }
4365 return ret;
4366 }
4367
4368 static const struct file_operations proc_slabstats_operations = {
4369 .open = slabstats_open,
4370 .read = seq_read,
4371 .llseek = seq_lseek,
4372 .release = seq_release_private,
4373 };
4374 #endif
4375
4376 static int __init slab_proc_init(void)
4377 {
4378 #ifdef CONFIG_DEBUG_SLAB_LEAK
4379 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4380 #endif
4381 return 0;
4382 }
4383 module_init(slab_proc_init);
4384 #endif
4385
4386 /**
4387 * ksize - get the actual amount of memory allocated for a given object
4388 * @objp: Pointer to the object
4389 *
4390 * kmalloc may internally round up allocations and return more memory
4391 * than requested. ksize() can be used to determine the actual amount of
4392 * memory allocated. The caller may use this additional memory, even though
4393 * a smaller amount of memory was initially specified with the kmalloc call.
4394 * The caller must guarantee that objp points to a valid object previously
4395 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4396 * must not be freed during the duration of the call.
4397 */
4398 size_t ksize(const void *objp)
4399 {
4400 BUG_ON(!objp);
4401 if (unlikely(objp == ZERO_SIZE_PTR))
4402 return 0;
4403
4404 return virt_to_cache(objp)->object_size;
4405 }
4406 EXPORT_SYMBOL(ksize);
This page took 0.175487 seconds and 5 git commands to generate.