slab: overloading the RCU head over the LRU for RCU free
[deliverable/linux.git] / mm / slab.c
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'slab_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
87 */
88
89 #include <linux/slab.h>
90 #include <linux/mm.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/notifier.h>
101 #include <linux/kallsyms.h>
102 #include <linux/cpu.h>
103 #include <linux/sysctl.h>
104 #include <linux/module.h>
105 #include <linux/rcupdate.h>
106 #include <linux/string.h>
107 #include <linux/uaccess.h>
108 #include <linux/nodemask.h>
109 #include <linux/kmemleak.h>
110 #include <linux/mempolicy.h>
111 #include <linux/mutex.h>
112 #include <linux/fault-inject.h>
113 #include <linux/rtmutex.h>
114 #include <linux/reciprocal_div.h>
115 #include <linux/debugobjects.h>
116 #include <linux/kmemcheck.h>
117 #include <linux/memory.h>
118 #include <linux/prefetch.h>
119
120 #include <net/sock.h>
121
122 #include <asm/cacheflush.h>
123 #include <asm/tlbflush.h>
124 #include <asm/page.h>
125
126 #include <trace/events/kmem.h>
127
128 #include "internal.h"
129
130 #include "slab.h"
131
132 /*
133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
134 * 0 for faster, smaller code (especially in the critical paths).
135 *
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
138 *
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140 */
141
142 #ifdef CONFIG_DEBUG_SLAB
143 #define DEBUG 1
144 #define STATS 1
145 #define FORCED_DEBUG 1
146 #else
147 #define DEBUG 0
148 #define STATS 0
149 #define FORCED_DEBUG 0
150 #endif
151
152 /* Shouldn't this be in a header file somewhere? */
153 #define BYTES_PER_WORD sizeof(void *)
154 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
155
156 #ifndef ARCH_KMALLOC_FLAGS
157 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158 #endif
159
160 /*
161 * true if a page was allocated from pfmemalloc reserves for network-based
162 * swap
163 */
164 static bool pfmemalloc_active __read_mostly;
165
166 /*
167 * kmem_bufctl_t:
168 *
169 * Bufctl's are used for linking objs within a slab
170 * linked offsets.
171 *
172 * This implementation relies on "struct page" for locating the cache &
173 * slab an object belongs to.
174 * This allows the bufctl structure to be small (one int), but limits
175 * the number of objects a slab (not a cache) can contain when off-slab
176 * bufctls are used. The limit is the size of the largest general cache
177 * that does not use off-slab slabs.
178 * For 32bit archs with 4 kB pages, is this 56.
179 * This is not serious, as it is only for large objects, when it is unwise
180 * to have too many per slab.
181 * Note: This limit can be raised by introducing a general cache whose size
182 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
183 */
184
185 typedef unsigned int kmem_bufctl_t;
186 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
187 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
188 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
189 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
190
191 /*
192 * struct slab
193 *
194 * Manages the objs in a slab. Placed either at the beginning of mem allocated
195 * for a slab, or allocated from an general cache.
196 * Slabs are chained into three list: fully used, partial, fully free slabs.
197 */
198 struct slab {
199 struct {
200 struct list_head list;
201 void *s_mem; /* including colour offset */
202 unsigned int inuse; /* num of objs active in slab */
203 kmem_bufctl_t free;
204 };
205 };
206
207 /*
208 * struct array_cache
209 *
210 * Purpose:
211 * - LIFO ordering, to hand out cache-warm objects from _alloc
212 * - reduce the number of linked list operations
213 * - reduce spinlock operations
214 *
215 * The limit is stored in the per-cpu structure to reduce the data cache
216 * footprint.
217 *
218 */
219 struct array_cache {
220 unsigned int avail;
221 unsigned int limit;
222 unsigned int batchcount;
223 unsigned int touched;
224 spinlock_t lock;
225 void *entry[]; /*
226 * Must have this definition in here for the proper
227 * alignment of array_cache. Also simplifies accessing
228 * the entries.
229 *
230 * Entries should not be directly dereferenced as
231 * entries belonging to slabs marked pfmemalloc will
232 * have the lower bits set SLAB_OBJ_PFMEMALLOC
233 */
234 };
235
236 #define SLAB_OBJ_PFMEMALLOC 1
237 static inline bool is_obj_pfmemalloc(void *objp)
238 {
239 return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
240 }
241
242 static inline void set_obj_pfmemalloc(void **objp)
243 {
244 *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
245 return;
246 }
247
248 static inline void clear_obj_pfmemalloc(void **objp)
249 {
250 *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
251 }
252
253 /*
254 * bootstrap: The caches do not work without cpuarrays anymore, but the
255 * cpuarrays are allocated from the generic caches...
256 */
257 #define BOOT_CPUCACHE_ENTRIES 1
258 struct arraycache_init {
259 struct array_cache cache;
260 void *entries[BOOT_CPUCACHE_ENTRIES];
261 };
262
263 /*
264 * Need this for bootstrapping a per node allocator.
265 */
266 #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
267 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
268 #define CACHE_CACHE 0
269 #define SIZE_AC MAX_NUMNODES
270 #define SIZE_NODE (2 * MAX_NUMNODES)
271
272 static int drain_freelist(struct kmem_cache *cache,
273 struct kmem_cache_node *n, int tofree);
274 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
275 int node);
276 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
277 static void cache_reap(struct work_struct *unused);
278
279 static int slab_early_init = 1;
280
281 #define INDEX_AC kmalloc_index(sizeof(struct arraycache_init))
282 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
283
284 static void kmem_cache_node_init(struct kmem_cache_node *parent)
285 {
286 INIT_LIST_HEAD(&parent->slabs_full);
287 INIT_LIST_HEAD(&parent->slabs_partial);
288 INIT_LIST_HEAD(&parent->slabs_free);
289 parent->shared = NULL;
290 parent->alien = NULL;
291 parent->colour_next = 0;
292 spin_lock_init(&parent->list_lock);
293 parent->free_objects = 0;
294 parent->free_touched = 0;
295 }
296
297 #define MAKE_LIST(cachep, listp, slab, nodeid) \
298 do { \
299 INIT_LIST_HEAD(listp); \
300 list_splice(&(cachep->node[nodeid]->slab), listp); \
301 } while (0)
302
303 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
304 do { \
305 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
306 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
307 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
308 } while (0)
309
310 #define CFLGS_OFF_SLAB (0x80000000UL)
311 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
312
313 #define BATCHREFILL_LIMIT 16
314 /*
315 * Optimization question: fewer reaps means less probability for unnessary
316 * cpucache drain/refill cycles.
317 *
318 * OTOH the cpuarrays can contain lots of objects,
319 * which could lock up otherwise freeable slabs.
320 */
321 #define REAPTIMEOUT_CPUC (2*HZ)
322 #define REAPTIMEOUT_LIST3 (4*HZ)
323
324 #if STATS
325 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
326 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
327 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
328 #define STATS_INC_GROWN(x) ((x)->grown++)
329 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
330 #define STATS_SET_HIGH(x) \
331 do { \
332 if ((x)->num_active > (x)->high_mark) \
333 (x)->high_mark = (x)->num_active; \
334 } while (0)
335 #define STATS_INC_ERR(x) ((x)->errors++)
336 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
337 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
338 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
339 #define STATS_SET_FREEABLE(x, i) \
340 do { \
341 if ((x)->max_freeable < i) \
342 (x)->max_freeable = i; \
343 } while (0)
344 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
345 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
346 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
347 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
348 #else
349 #define STATS_INC_ACTIVE(x) do { } while (0)
350 #define STATS_DEC_ACTIVE(x) do { } while (0)
351 #define STATS_INC_ALLOCED(x) do { } while (0)
352 #define STATS_INC_GROWN(x) do { } while (0)
353 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
354 #define STATS_SET_HIGH(x) do { } while (0)
355 #define STATS_INC_ERR(x) do { } while (0)
356 #define STATS_INC_NODEALLOCS(x) do { } while (0)
357 #define STATS_INC_NODEFREES(x) do { } while (0)
358 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
359 #define STATS_SET_FREEABLE(x, i) do { } while (0)
360 #define STATS_INC_ALLOCHIT(x) do { } while (0)
361 #define STATS_INC_ALLOCMISS(x) do { } while (0)
362 #define STATS_INC_FREEHIT(x) do { } while (0)
363 #define STATS_INC_FREEMISS(x) do { } while (0)
364 #endif
365
366 #if DEBUG
367
368 /*
369 * memory layout of objects:
370 * 0 : objp
371 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
372 * the end of an object is aligned with the end of the real
373 * allocation. Catches writes behind the end of the allocation.
374 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
375 * redzone word.
376 * cachep->obj_offset: The real object.
377 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
378 * cachep->size - 1* BYTES_PER_WORD: last caller address
379 * [BYTES_PER_WORD long]
380 */
381 static int obj_offset(struct kmem_cache *cachep)
382 {
383 return cachep->obj_offset;
384 }
385
386 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
387 {
388 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
389 return (unsigned long long*) (objp + obj_offset(cachep) -
390 sizeof(unsigned long long));
391 }
392
393 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
394 {
395 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
396 if (cachep->flags & SLAB_STORE_USER)
397 return (unsigned long long *)(objp + cachep->size -
398 sizeof(unsigned long long) -
399 REDZONE_ALIGN);
400 return (unsigned long long *) (objp + cachep->size -
401 sizeof(unsigned long long));
402 }
403
404 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
405 {
406 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
407 return (void **)(objp + cachep->size - BYTES_PER_WORD);
408 }
409
410 #else
411
412 #define obj_offset(x) 0
413 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
414 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
415 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
416
417 #endif
418
419 /*
420 * Do not go above this order unless 0 objects fit into the slab or
421 * overridden on the command line.
422 */
423 #define SLAB_MAX_ORDER_HI 1
424 #define SLAB_MAX_ORDER_LO 0
425 static int slab_max_order = SLAB_MAX_ORDER_LO;
426 static bool slab_max_order_set __initdata;
427
428 static inline struct kmem_cache *virt_to_cache(const void *obj)
429 {
430 struct page *page = virt_to_head_page(obj);
431 return page->slab_cache;
432 }
433
434 static inline struct slab *virt_to_slab(const void *obj)
435 {
436 struct page *page = virt_to_head_page(obj);
437
438 VM_BUG_ON(!PageSlab(page));
439 return page->slab_page;
440 }
441
442 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
443 unsigned int idx)
444 {
445 return slab->s_mem + cache->size * idx;
446 }
447
448 /*
449 * We want to avoid an expensive divide : (offset / cache->size)
450 * Using the fact that size is a constant for a particular cache,
451 * we can replace (offset / cache->size) by
452 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
453 */
454 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
455 const struct slab *slab, void *obj)
456 {
457 u32 offset = (obj - slab->s_mem);
458 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
459 }
460
461 static struct arraycache_init initarray_generic =
462 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
463
464 /* internal cache of cache description objs */
465 static struct kmem_cache kmem_cache_boot = {
466 .batchcount = 1,
467 .limit = BOOT_CPUCACHE_ENTRIES,
468 .shared = 1,
469 .size = sizeof(struct kmem_cache),
470 .name = "kmem_cache",
471 };
472
473 #define BAD_ALIEN_MAGIC 0x01020304ul
474
475 #ifdef CONFIG_LOCKDEP
476
477 /*
478 * Slab sometimes uses the kmalloc slabs to store the slab headers
479 * for other slabs "off slab".
480 * The locking for this is tricky in that it nests within the locks
481 * of all other slabs in a few places; to deal with this special
482 * locking we put on-slab caches into a separate lock-class.
483 *
484 * We set lock class for alien array caches which are up during init.
485 * The lock annotation will be lost if all cpus of a node goes down and
486 * then comes back up during hotplug
487 */
488 static struct lock_class_key on_slab_l3_key;
489 static struct lock_class_key on_slab_alc_key;
490
491 static struct lock_class_key debugobj_l3_key;
492 static struct lock_class_key debugobj_alc_key;
493
494 static void slab_set_lock_classes(struct kmem_cache *cachep,
495 struct lock_class_key *l3_key, struct lock_class_key *alc_key,
496 int q)
497 {
498 struct array_cache **alc;
499 struct kmem_cache_node *n;
500 int r;
501
502 n = cachep->node[q];
503 if (!n)
504 return;
505
506 lockdep_set_class(&n->list_lock, l3_key);
507 alc = n->alien;
508 /*
509 * FIXME: This check for BAD_ALIEN_MAGIC
510 * should go away when common slab code is taught to
511 * work even without alien caches.
512 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
513 * for alloc_alien_cache,
514 */
515 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
516 return;
517 for_each_node(r) {
518 if (alc[r])
519 lockdep_set_class(&alc[r]->lock, alc_key);
520 }
521 }
522
523 static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
524 {
525 slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
526 }
527
528 static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
529 {
530 int node;
531
532 for_each_online_node(node)
533 slab_set_debugobj_lock_classes_node(cachep, node);
534 }
535
536 static void init_node_lock_keys(int q)
537 {
538 int i;
539
540 if (slab_state < UP)
541 return;
542
543 for (i = 1; i <= KMALLOC_SHIFT_HIGH; i++) {
544 struct kmem_cache_node *n;
545 struct kmem_cache *cache = kmalloc_caches[i];
546
547 if (!cache)
548 continue;
549
550 n = cache->node[q];
551 if (!n || OFF_SLAB(cache))
552 continue;
553
554 slab_set_lock_classes(cache, &on_slab_l3_key,
555 &on_slab_alc_key, q);
556 }
557 }
558
559 static void on_slab_lock_classes_node(struct kmem_cache *cachep, int q)
560 {
561 if (!cachep->node[q])
562 return;
563
564 slab_set_lock_classes(cachep, &on_slab_l3_key,
565 &on_slab_alc_key, q);
566 }
567
568 static inline void on_slab_lock_classes(struct kmem_cache *cachep)
569 {
570 int node;
571
572 VM_BUG_ON(OFF_SLAB(cachep));
573 for_each_node(node)
574 on_slab_lock_classes_node(cachep, node);
575 }
576
577 static inline void init_lock_keys(void)
578 {
579 int node;
580
581 for_each_node(node)
582 init_node_lock_keys(node);
583 }
584 #else
585 static void init_node_lock_keys(int q)
586 {
587 }
588
589 static inline void init_lock_keys(void)
590 {
591 }
592
593 static inline void on_slab_lock_classes(struct kmem_cache *cachep)
594 {
595 }
596
597 static inline void on_slab_lock_classes_node(struct kmem_cache *cachep, int node)
598 {
599 }
600
601 static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
602 {
603 }
604
605 static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
606 {
607 }
608 #endif
609
610 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
611
612 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
613 {
614 return cachep->array[smp_processor_id()];
615 }
616
617 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
618 {
619 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
620 }
621
622 /*
623 * Calculate the number of objects and left-over bytes for a given buffer size.
624 */
625 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
626 size_t align, int flags, size_t *left_over,
627 unsigned int *num)
628 {
629 int nr_objs;
630 size_t mgmt_size;
631 size_t slab_size = PAGE_SIZE << gfporder;
632
633 /*
634 * The slab management structure can be either off the slab or
635 * on it. For the latter case, the memory allocated for a
636 * slab is used for:
637 *
638 * - The struct slab
639 * - One kmem_bufctl_t for each object
640 * - Padding to respect alignment of @align
641 * - @buffer_size bytes for each object
642 *
643 * If the slab management structure is off the slab, then the
644 * alignment will already be calculated into the size. Because
645 * the slabs are all pages aligned, the objects will be at the
646 * correct alignment when allocated.
647 */
648 if (flags & CFLGS_OFF_SLAB) {
649 mgmt_size = 0;
650 nr_objs = slab_size / buffer_size;
651
652 if (nr_objs > SLAB_LIMIT)
653 nr_objs = SLAB_LIMIT;
654 } else {
655 /*
656 * Ignore padding for the initial guess. The padding
657 * is at most @align-1 bytes, and @buffer_size is at
658 * least @align. In the worst case, this result will
659 * be one greater than the number of objects that fit
660 * into the memory allocation when taking the padding
661 * into account.
662 */
663 nr_objs = (slab_size - sizeof(struct slab)) /
664 (buffer_size + sizeof(kmem_bufctl_t));
665
666 /*
667 * This calculated number will be either the right
668 * amount, or one greater than what we want.
669 */
670 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
671 > slab_size)
672 nr_objs--;
673
674 if (nr_objs > SLAB_LIMIT)
675 nr_objs = SLAB_LIMIT;
676
677 mgmt_size = slab_mgmt_size(nr_objs, align);
678 }
679 *num = nr_objs;
680 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
681 }
682
683 #if DEBUG
684 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
685
686 static void __slab_error(const char *function, struct kmem_cache *cachep,
687 char *msg)
688 {
689 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
690 function, cachep->name, msg);
691 dump_stack();
692 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
693 }
694 #endif
695
696 /*
697 * By default on NUMA we use alien caches to stage the freeing of
698 * objects allocated from other nodes. This causes massive memory
699 * inefficiencies when using fake NUMA setup to split memory into a
700 * large number of small nodes, so it can be disabled on the command
701 * line
702 */
703
704 static int use_alien_caches __read_mostly = 1;
705 static int __init noaliencache_setup(char *s)
706 {
707 use_alien_caches = 0;
708 return 1;
709 }
710 __setup("noaliencache", noaliencache_setup);
711
712 static int __init slab_max_order_setup(char *str)
713 {
714 get_option(&str, &slab_max_order);
715 slab_max_order = slab_max_order < 0 ? 0 :
716 min(slab_max_order, MAX_ORDER - 1);
717 slab_max_order_set = true;
718
719 return 1;
720 }
721 __setup("slab_max_order=", slab_max_order_setup);
722
723 #ifdef CONFIG_NUMA
724 /*
725 * Special reaping functions for NUMA systems called from cache_reap().
726 * These take care of doing round robin flushing of alien caches (containing
727 * objects freed on different nodes from which they were allocated) and the
728 * flushing of remote pcps by calling drain_node_pages.
729 */
730 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
731
732 static void init_reap_node(int cpu)
733 {
734 int node;
735
736 node = next_node(cpu_to_mem(cpu), node_online_map);
737 if (node == MAX_NUMNODES)
738 node = first_node(node_online_map);
739
740 per_cpu(slab_reap_node, cpu) = node;
741 }
742
743 static void next_reap_node(void)
744 {
745 int node = __this_cpu_read(slab_reap_node);
746
747 node = next_node(node, node_online_map);
748 if (unlikely(node >= MAX_NUMNODES))
749 node = first_node(node_online_map);
750 __this_cpu_write(slab_reap_node, node);
751 }
752
753 #else
754 #define init_reap_node(cpu) do { } while (0)
755 #define next_reap_node(void) do { } while (0)
756 #endif
757
758 /*
759 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
760 * via the workqueue/eventd.
761 * Add the CPU number into the expiration time to minimize the possibility of
762 * the CPUs getting into lockstep and contending for the global cache chain
763 * lock.
764 */
765 static void start_cpu_timer(int cpu)
766 {
767 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
768
769 /*
770 * When this gets called from do_initcalls via cpucache_init(),
771 * init_workqueues() has already run, so keventd will be setup
772 * at that time.
773 */
774 if (keventd_up() && reap_work->work.func == NULL) {
775 init_reap_node(cpu);
776 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
777 schedule_delayed_work_on(cpu, reap_work,
778 __round_jiffies_relative(HZ, cpu));
779 }
780 }
781
782 static struct array_cache *alloc_arraycache(int node, int entries,
783 int batchcount, gfp_t gfp)
784 {
785 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
786 struct array_cache *nc = NULL;
787
788 nc = kmalloc_node(memsize, gfp, node);
789 /*
790 * The array_cache structures contain pointers to free object.
791 * However, when such objects are allocated or transferred to another
792 * cache the pointers are not cleared and they could be counted as
793 * valid references during a kmemleak scan. Therefore, kmemleak must
794 * not scan such objects.
795 */
796 kmemleak_no_scan(nc);
797 if (nc) {
798 nc->avail = 0;
799 nc->limit = entries;
800 nc->batchcount = batchcount;
801 nc->touched = 0;
802 spin_lock_init(&nc->lock);
803 }
804 return nc;
805 }
806
807 static inline bool is_slab_pfmemalloc(struct slab *slabp)
808 {
809 struct page *page = virt_to_page(slabp->s_mem);
810
811 return PageSlabPfmemalloc(page);
812 }
813
814 /* Clears pfmemalloc_active if no slabs have pfmalloc set */
815 static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
816 struct array_cache *ac)
817 {
818 struct kmem_cache_node *n = cachep->node[numa_mem_id()];
819 struct slab *slabp;
820 unsigned long flags;
821
822 if (!pfmemalloc_active)
823 return;
824
825 spin_lock_irqsave(&n->list_lock, flags);
826 list_for_each_entry(slabp, &n->slabs_full, list)
827 if (is_slab_pfmemalloc(slabp))
828 goto out;
829
830 list_for_each_entry(slabp, &n->slabs_partial, list)
831 if (is_slab_pfmemalloc(slabp))
832 goto out;
833
834 list_for_each_entry(slabp, &n->slabs_free, list)
835 if (is_slab_pfmemalloc(slabp))
836 goto out;
837
838 pfmemalloc_active = false;
839 out:
840 spin_unlock_irqrestore(&n->list_lock, flags);
841 }
842
843 static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
844 gfp_t flags, bool force_refill)
845 {
846 int i;
847 void *objp = ac->entry[--ac->avail];
848
849 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
850 if (unlikely(is_obj_pfmemalloc(objp))) {
851 struct kmem_cache_node *n;
852
853 if (gfp_pfmemalloc_allowed(flags)) {
854 clear_obj_pfmemalloc(&objp);
855 return objp;
856 }
857
858 /* The caller cannot use PFMEMALLOC objects, find another one */
859 for (i = 0; i < ac->avail; i++) {
860 /* If a !PFMEMALLOC object is found, swap them */
861 if (!is_obj_pfmemalloc(ac->entry[i])) {
862 objp = ac->entry[i];
863 ac->entry[i] = ac->entry[ac->avail];
864 ac->entry[ac->avail] = objp;
865 return objp;
866 }
867 }
868
869 /*
870 * If there are empty slabs on the slabs_free list and we are
871 * being forced to refill the cache, mark this one !pfmemalloc.
872 */
873 n = cachep->node[numa_mem_id()];
874 if (!list_empty(&n->slabs_free) && force_refill) {
875 struct slab *slabp = virt_to_slab(objp);
876 ClearPageSlabPfmemalloc(virt_to_head_page(slabp->s_mem));
877 clear_obj_pfmemalloc(&objp);
878 recheck_pfmemalloc_active(cachep, ac);
879 return objp;
880 }
881
882 /* No !PFMEMALLOC objects available */
883 ac->avail++;
884 objp = NULL;
885 }
886
887 return objp;
888 }
889
890 static inline void *ac_get_obj(struct kmem_cache *cachep,
891 struct array_cache *ac, gfp_t flags, bool force_refill)
892 {
893 void *objp;
894
895 if (unlikely(sk_memalloc_socks()))
896 objp = __ac_get_obj(cachep, ac, flags, force_refill);
897 else
898 objp = ac->entry[--ac->avail];
899
900 return objp;
901 }
902
903 static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
904 void *objp)
905 {
906 if (unlikely(pfmemalloc_active)) {
907 /* Some pfmemalloc slabs exist, check if this is one */
908 struct slab *slabp = virt_to_slab(objp);
909 struct page *page = virt_to_head_page(slabp->s_mem);
910 if (PageSlabPfmemalloc(page))
911 set_obj_pfmemalloc(&objp);
912 }
913
914 return objp;
915 }
916
917 static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
918 void *objp)
919 {
920 if (unlikely(sk_memalloc_socks()))
921 objp = __ac_put_obj(cachep, ac, objp);
922
923 ac->entry[ac->avail++] = objp;
924 }
925
926 /*
927 * Transfer objects in one arraycache to another.
928 * Locking must be handled by the caller.
929 *
930 * Return the number of entries transferred.
931 */
932 static int transfer_objects(struct array_cache *to,
933 struct array_cache *from, unsigned int max)
934 {
935 /* Figure out how many entries to transfer */
936 int nr = min3(from->avail, max, to->limit - to->avail);
937
938 if (!nr)
939 return 0;
940
941 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
942 sizeof(void *) *nr);
943
944 from->avail -= nr;
945 to->avail += nr;
946 return nr;
947 }
948
949 #ifndef CONFIG_NUMA
950
951 #define drain_alien_cache(cachep, alien) do { } while (0)
952 #define reap_alien(cachep, n) do { } while (0)
953
954 static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
955 {
956 return (struct array_cache **)BAD_ALIEN_MAGIC;
957 }
958
959 static inline void free_alien_cache(struct array_cache **ac_ptr)
960 {
961 }
962
963 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
964 {
965 return 0;
966 }
967
968 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
969 gfp_t flags)
970 {
971 return NULL;
972 }
973
974 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
975 gfp_t flags, int nodeid)
976 {
977 return NULL;
978 }
979
980 #else /* CONFIG_NUMA */
981
982 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
983 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
984
985 static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
986 {
987 struct array_cache **ac_ptr;
988 int memsize = sizeof(void *) * nr_node_ids;
989 int i;
990
991 if (limit > 1)
992 limit = 12;
993 ac_ptr = kzalloc_node(memsize, gfp, node);
994 if (ac_ptr) {
995 for_each_node(i) {
996 if (i == node || !node_online(i))
997 continue;
998 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
999 if (!ac_ptr[i]) {
1000 for (i--; i >= 0; i--)
1001 kfree(ac_ptr[i]);
1002 kfree(ac_ptr);
1003 return NULL;
1004 }
1005 }
1006 }
1007 return ac_ptr;
1008 }
1009
1010 static void free_alien_cache(struct array_cache **ac_ptr)
1011 {
1012 int i;
1013
1014 if (!ac_ptr)
1015 return;
1016 for_each_node(i)
1017 kfree(ac_ptr[i]);
1018 kfree(ac_ptr);
1019 }
1020
1021 static void __drain_alien_cache(struct kmem_cache *cachep,
1022 struct array_cache *ac, int node)
1023 {
1024 struct kmem_cache_node *n = cachep->node[node];
1025
1026 if (ac->avail) {
1027 spin_lock(&n->list_lock);
1028 /*
1029 * Stuff objects into the remote nodes shared array first.
1030 * That way we could avoid the overhead of putting the objects
1031 * into the free lists and getting them back later.
1032 */
1033 if (n->shared)
1034 transfer_objects(n->shared, ac, ac->limit);
1035
1036 free_block(cachep, ac->entry, ac->avail, node);
1037 ac->avail = 0;
1038 spin_unlock(&n->list_lock);
1039 }
1040 }
1041
1042 /*
1043 * Called from cache_reap() to regularly drain alien caches round robin.
1044 */
1045 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
1046 {
1047 int node = __this_cpu_read(slab_reap_node);
1048
1049 if (n->alien) {
1050 struct array_cache *ac = n->alien[node];
1051
1052 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1053 __drain_alien_cache(cachep, ac, node);
1054 spin_unlock_irq(&ac->lock);
1055 }
1056 }
1057 }
1058
1059 static void drain_alien_cache(struct kmem_cache *cachep,
1060 struct array_cache **alien)
1061 {
1062 int i = 0;
1063 struct array_cache *ac;
1064 unsigned long flags;
1065
1066 for_each_online_node(i) {
1067 ac = alien[i];
1068 if (ac) {
1069 spin_lock_irqsave(&ac->lock, flags);
1070 __drain_alien_cache(cachep, ac, i);
1071 spin_unlock_irqrestore(&ac->lock, flags);
1072 }
1073 }
1074 }
1075
1076 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1077 {
1078 int nodeid = page_to_nid(virt_to_page(objp));
1079 struct kmem_cache_node *n;
1080 struct array_cache *alien = NULL;
1081 int node;
1082
1083 node = numa_mem_id();
1084
1085 /*
1086 * Make sure we are not freeing a object from another node to the array
1087 * cache on this cpu.
1088 */
1089 if (likely(nodeid == node))
1090 return 0;
1091
1092 n = cachep->node[node];
1093 STATS_INC_NODEFREES(cachep);
1094 if (n->alien && n->alien[nodeid]) {
1095 alien = n->alien[nodeid];
1096 spin_lock(&alien->lock);
1097 if (unlikely(alien->avail == alien->limit)) {
1098 STATS_INC_ACOVERFLOW(cachep);
1099 __drain_alien_cache(cachep, alien, nodeid);
1100 }
1101 ac_put_obj(cachep, alien, objp);
1102 spin_unlock(&alien->lock);
1103 } else {
1104 spin_lock(&(cachep->node[nodeid])->list_lock);
1105 free_block(cachep, &objp, 1, nodeid);
1106 spin_unlock(&(cachep->node[nodeid])->list_lock);
1107 }
1108 return 1;
1109 }
1110 #endif
1111
1112 /*
1113 * Allocates and initializes node for a node on each slab cache, used for
1114 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
1115 * will be allocated off-node since memory is not yet online for the new node.
1116 * When hotplugging memory or a cpu, existing node are not replaced if
1117 * already in use.
1118 *
1119 * Must hold slab_mutex.
1120 */
1121 static int init_cache_node_node(int node)
1122 {
1123 struct kmem_cache *cachep;
1124 struct kmem_cache_node *n;
1125 const int memsize = sizeof(struct kmem_cache_node);
1126
1127 list_for_each_entry(cachep, &slab_caches, list) {
1128 /*
1129 * Set up the size64 kmemlist for cpu before we can
1130 * begin anything. Make sure some other cpu on this
1131 * node has not already allocated this
1132 */
1133 if (!cachep->node[node]) {
1134 n = kmalloc_node(memsize, GFP_KERNEL, node);
1135 if (!n)
1136 return -ENOMEM;
1137 kmem_cache_node_init(n);
1138 n->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1139 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1140
1141 /*
1142 * The l3s don't come and go as CPUs come and
1143 * go. slab_mutex is sufficient
1144 * protection here.
1145 */
1146 cachep->node[node] = n;
1147 }
1148
1149 spin_lock_irq(&cachep->node[node]->list_lock);
1150 cachep->node[node]->free_limit =
1151 (1 + nr_cpus_node(node)) *
1152 cachep->batchcount + cachep->num;
1153 spin_unlock_irq(&cachep->node[node]->list_lock);
1154 }
1155 return 0;
1156 }
1157
1158 static inline int slabs_tofree(struct kmem_cache *cachep,
1159 struct kmem_cache_node *n)
1160 {
1161 return (n->free_objects + cachep->num - 1) / cachep->num;
1162 }
1163
1164 static void cpuup_canceled(long cpu)
1165 {
1166 struct kmem_cache *cachep;
1167 struct kmem_cache_node *n = NULL;
1168 int node = cpu_to_mem(cpu);
1169 const struct cpumask *mask = cpumask_of_node(node);
1170
1171 list_for_each_entry(cachep, &slab_caches, list) {
1172 struct array_cache *nc;
1173 struct array_cache *shared;
1174 struct array_cache **alien;
1175
1176 /* cpu is dead; no one can alloc from it. */
1177 nc = cachep->array[cpu];
1178 cachep->array[cpu] = NULL;
1179 n = cachep->node[node];
1180
1181 if (!n)
1182 goto free_array_cache;
1183
1184 spin_lock_irq(&n->list_lock);
1185
1186 /* Free limit for this kmem_cache_node */
1187 n->free_limit -= cachep->batchcount;
1188 if (nc)
1189 free_block(cachep, nc->entry, nc->avail, node);
1190
1191 if (!cpumask_empty(mask)) {
1192 spin_unlock_irq(&n->list_lock);
1193 goto free_array_cache;
1194 }
1195
1196 shared = n->shared;
1197 if (shared) {
1198 free_block(cachep, shared->entry,
1199 shared->avail, node);
1200 n->shared = NULL;
1201 }
1202
1203 alien = n->alien;
1204 n->alien = NULL;
1205
1206 spin_unlock_irq(&n->list_lock);
1207
1208 kfree(shared);
1209 if (alien) {
1210 drain_alien_cache(cachep, alien);
1211 free_alien_cache(alien);
1212 }
1213 free_array_cache:
1214 kfree(nc);
1215 }
1216 /*
1217 * In the previous loop, all the objects were freed to
1218 * the respective cache's slabs, now we can go ahead and
1219 * shrink each nodelist to its limit.
1220 */
1221 list_for_each_entry(cachep, &slab_caches, list) {
1222 n = cachep->node[node];
1223 if (!n)
1224 continue;
1225 drain_freelist(cachep, n, slabs_tofree(cachep, n));
1226 }
1227 }
1228
1229 static int cpuup_prepare(long cpu)
1230 {
1231 struct kmem_cache *cachep;
1232 struct kmem_cache_node *n = NULL;
1233 int node = cpu_to_mem(cpu);
1234 int err;
1235
1236 /*
1237 * We need to do this right in the beginning since
1238 * alloc_arraycache's are going to use this list.
1239 * kmalloc_node allows us to add the slab to the right
1240 * kmem_cache_node and not this cpu's kmem_cache_node
1241 */
1242 err = init_cache_node_node(node);
1243 if (err < 0)
1244 goto bad;
1245
1246 /*
1247 * Now we can go ahead with allocating the shared arrays and
1248 * array caches
1249 */
1250 list_for_each_entry(cachep, &slab_caches, list) {
1251 struct array_cache *nc;
1252 struct array_cache *shared = NULL;
1253 struct array_cache **alien = NULL;
1254
1255 nc = alloc_arraycache(node, cachep->limit,
1256 cachep->batchcount, GFP_KERNEL);
1257 if (!nc)
1258 goto bad;
1259 if (cachep->shared) {
1260 shared = alloc_arraycache(node,
1261 cachep->shared * cachep->batchcount,
1262 0xbaadf00d, GFP_KERNEL);
1263 if (!shared) {
1264 kfree(nc);
1265 goto bad;
1266 }
1267 }
1268 if (use_alien_caches) {
1269 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1270 if (!alien) {
1271 kfree(shared);
1272 kfree(nc);
1273 goto bad;
1274 }
1275 }
1276 cachep->array[cpu] = nc;
1277 n = cachep->node[node];
1278 BUG_ON(!n);
1279
1280 spin_lock_irq(&n->list_lock);
1281 if (!n->shared) {
1282 /*
1283 * We are serialised from CPU_DEAD or
1284 * CPU_UP_CANCELLED by the cpucontrol lock
1285 */
1286 n->shared = shared;
1287 shared = NULL;
1288 }
1289 #ifdef CONFIG_NUMA
1290 if (!n->alien) {
1291 n->alien = alien;
1292 alien = NULL;
1293 }
1294 #endif
1295 spin_unlock_irq(&n->list_lock);
1296 kfree(shared);
1297 free_alien_cache(alien);
1298 if (cachep->flags & SLAB_DEBUG_OBJECTS)
1299 slab_set_debugobj_lock_classes_node(cachep, node);
1300 else if (!OFF_SLAB(cachep) &&
1301 !(cachep->flags & SLAB_DESTROY_BY_RCU))
1302 on_slab_lock_classes_node(cachep, node);
1303 }
1304 init_node_lock_keys(node);
1305
1306 return 0;
1307 bad:
1308 cpuup_canceled(cpu);
1309 return -ENOMEM;
1310 }
1311
1312 static int cpuup_callback(struct notifier_block *nfb,
1313 unsigned long action, void *hcpu)
1314 {
1315 long cpu = (long)hcpu;
1316 int err = 0;
1317
1318 switch (action) {
1319 case CPU_UP_PREPARE:
1320 case CPU_UP_PREPARE_FROZEN:
1321 mutex_lock(&slab_mutex);
1322 err = cpuup_prepare(cpu);
1323 mutex_unlock(&slab_mutex);
1324 break;
1325 case CPU_ONLINE:
1326 case CPU_ONLINE_FROZEN:
1327 start_cpu_timer(cpu);
1328 break;
1329 #ifdef CONFIG_HOTPLUG_CPU
1330 case CPU_DOWN_PREPARE:
1331 case CPU_DOWN_PREPARE_FROZEN:
1332 /*
1333 * Shutdown cache reaper. Note that the slab_mutex is
1334 * held so that if cache_reap() is invoked it cannot do
1335 * anything expensive but will only modify reap_work
1336 * and reschedule the timer.
1337 */
1338 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1339 /* Now the cache_reaper is guaranteed to be not running. */
1340 per_cpu(slab_reap_work, cpu).work.func = NULL;
1341 break;
1342 case CPU_DOWN_FAILED:
1343 case CPU_DOWN_FAILED_FROZEN:
1344 start_cpu_timer(cpu);
1345 break;
1346 case CPU_DEAD:
1347 case CPU_DEAD_FROZEN:
1348 /*
1349 * Even if all the cpus of a node are down, we don't free the
1350 * kmem_cache_node of any cache. This to avoid a race between
1351 * cpu_down, and a kmalloc allocation from another cpu for
1352 * memory from the node of the cpu going down. The node
1353 * structure is usually allocated from kmem_cache_create() and
1354 * gets destroyed at kmem_cache_destroy().
1355 */
1356 /* fall through */
1357 #endif
1358 case CPU_UP_CANCELED:
1359 case CPU_UP_CANCELED_FROZEN:
1360 mutex_lock(&slab_mutex);
1361 cpuup_canceled(cpu);
1362 mutex_unlock(&slab_mutex);
1363 break;
1364 }
1365 return notifier_from_errno(err);
1366 }
1367
1368 static struct notifier_block cpucache_notifier = {
1369 &cpuup_callback, NULL, 0
1370 };
1371
1372 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1373 /*
1374 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1375 * Returns -EBUSY if all objects cannot be drained so that the node is not
1376 * removed.
1377 *
1378 * Must hold slab_mutex.
1379 */
1380 static int __meminit drain_cache_node_node(int node)
1381 {
1382 struct kmem_cache *cachep;
1383 int ret = 0;
1384
1385 list_for_each_entry(cachep, &slab_caches, list) {
1386 struct kmem_cache_node *n;
1387
1388 n = cachep->node[node];
1389 if (!n)
1390 continue;
1391
1392 drain_freelist(cachep, n, slabs_tofree(cachep, n));
1393
1394 if (!list_empty(&n->slabs_full) ||
1395 !list_empty(&n->slabs_partial)) {
1396 ret = -EBUSY;
1397 break;
1398 }
1399 }
1400 return ret;
1401 }
1402
1403 static int __meminit slab_memory_callback(struct notifier_block *self,
1404 unsigned long action, void *arg)
1405 {
1406 struct memory_notify *mnb = arg;
1407 int ret = 0;
1408 int nid;
1409
1410 nid = mnb->status_change_nid;
1411 if (nid < 0)
1412 goto out;
1413
1414 switch (action) {
1415 case MEM_GOING_ONLINE:
1416 mutex_lock(&slab_mutex);
1417 ret = init_cache_node_node(nid);
1418 mutex_unlock(&slab_mutex);
1419 break;
1420 case MEM_GOING_OFFLINE:
1421 mutex_lock(&slab_mutex);
1422 ret = drain_cache_node_node(nid);
1423 mutex_unlock(&slab_mutex);
1424 break;
1425 case MEM_ONLINE:
1426 case MEM_OFFLINE:
1427 case MEM_CANCEL_ONLINE:
1428 case MEM_CANCEL_OFFLINE:
1429 break;
1430 }
1431 out:
1432 return notifier_from_errno(ret);
1433 }
1434 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1435
1436 /*
1437 * swap the static kmem_cache_node with kmalloced memory
1438 */
1439 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1440 int nodeid)
1441 {
1442 struct kmem_cache_node *ptr;
1443
1444 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1445 BUG_ON(!ptr);
1446
1447 memcpy(ptr, list, sizeof(struct kmem_cache_node));
1448 /*
1449 * Do not assume that spinlocks can be initialized via memcpy:
1450 */
1451 spin_lock_init(&ptr->list_lock);
1452
1453 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1454 cachep->node[nodeid] = ptr;
1455 }
1456
1457 /*
1458 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1459 * size of kmem_cache_node.
1460 */
1461 static void __init set_up_node(struct kmem_cache *cachep, int index)
1462 {
1463 int node;
1464
1465 for_each_online_node(node) {
1466 cachep->node[node] = &init_kmem_cache_node[index + node];
1467 cachep->node[node]->next_reap = jiffies +
1468 REAPTIMEOUT_LIST3 +
1469 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1470 }
1471 }
1472
1473 /*
1474 * The memory after the last cpu cache pointer is used for the
1475 * the node pointer.
1476 */
1477 static void setup_node_pointer(struct kmem_cache *cachep)
1478 {
1479 cachep->node = (struct kmem_cache_node **)&cachep->array[nr_cpu_ids];
1480 }
1481
1482 /*
1483 * Initialisation. Called after the page allocator have been initialised and
1484 * before smp_init().
1485 */
1486 void __init kmem_cache_init(void)
1487 {
1488 int i;
1489
1490 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1491 sizeof(struct rcu_head));
1492 kmem_cache = &kmem_cache_boot;
1493 setup_node_pointer(kmem_cache);
1494
1495 if (num_possible_nodes() == 1)
1496 use_alien_caches = 0;
1497
1498 for (i = 0; i < NUM_INIT_LISTS; i++)
1499 kmem_cache_node_init(&init_kmem_cache_node[i]);
1500
1501 set_up_node(kmem_cache, CACHE_CACHE);
1502
1503 /*
1504 * Fragmentation resistance on low memory - only use bigger
1505 * page orders on machines with more than 32MB of memory if
1506 * not overridden on the command line.
1507 */
1508 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1509 slab_max_order = SLAB_MAX_ORDER_HI;
1510
1511 /* Bootstrap is tricky, because several objects are allocated
1512 * from caches that do not exist yet:
1513 * 1) initialize the kmem_cache cache: it contains the struct
1514 * kmem_cache structures of all caches, except kmem_cache itself:
1515 * kmem_cache is statically allocated.
1516 * Initially an __init data area is used for the head array and the
1517 * kmem_cache_node structures, it's replaced with a kmalloc allocated
1518 * array at the end of the bootstrap.
1519 * 2) Create the first kmalloc cache.
1520 * The struct kmem_cache for the new cache is allocated normally.
1521 * An __init data area is used for the head array.
1522 * 3) Create the remaining kmalloc caches, with minimally sized
1523 * head arrays.
1524 * 4) Replace the __init data head arrays for kmem_cache and the first
1525 * kmalloc cache with kmalloc allocated arrays.
1526 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1527 * the other cache's with kmalloc allocated memory.
1528 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1529 */
1530
1531 /* 1) create the kmem_cache */
1532
1533 /*
1534 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1535 */
1536 create_boot_cache(kmem_cache, "kmem_cache",
1537 offsetof(struct kmem_cache, array[nr_cpu_ids]) +
1538 nr_node_ids * sizeof(struct kmem_cache_node *),
1539 SLAB_HWCACHE_ALIGN);
1540 list_add(&kmem_cache->list, &slab_caches);
1541
1542 /* 2+3) create the kmalloc caches */
1543
1544 /*
1545 * Initialize the caches that provide memory for the array cache and the
1546 * kmem_cache_node structures first. Without this, further allocations will
1547 * bug.
1548 */
1549
1550 kmalloc_caches[INDEX_AC] = create_kmalloc_cache("kmalloc-ac",
1551 kmalloc_size(INDEX_AC), ARCH_KMALLOC_FLAGS);
1552
1553 if (INDEX_AC != INDEX_NODE)
1554 kmalloc_caches[INDEX_NODE] =
1555 create_kmalloc_cache("kmalloc-node",
1556 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1557
1558 slab_early_init = 0;
1559
1560 /* 4) Replace the bootstrap head arrays */
1561 {
1562 struct array_cache *ptr;
1563
1564 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1565
1566 memcpy(ptr, cpu_cache_get(kmem_cache),
1567 sizeof(struct arraycache_init));
1568 /*
1569 * Do not assume that spinlocks can be initialized via memcpy:
1570 */
1571 spin_lock_init(&ptr->lock);
1572
1573 kmem_cache->array[smp_processor_id()] = ptr;
1574
1575 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1576
1577 BUG_ON(cpu_cache_get(kmalloc_caches[INDEX_AC])
1578 != &initarray_generic.cache);
1579 memcpy(ptr, cpu_cache_get(kmalloc_caches[INDEX_AC]),
1580 sizeof(struct arraycache_init));
1581 /*
1582 * Do not assume that spinlocks can be initialized via memcpy:
1583 */
1584 spin_lock_init(&ptr->lock);
1585
1586 kmalloc_caches[INDEX_AC]->array[smp_processor_id()] = ptr;
1587 }
1588 /* 5) Replace the bootstrap kmem_cache_node */
1589 {
1590 int nid;
1591
1592 for_each_online_node(nid) {
1593 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1594
1595 init_list(kmalloc_caches[INDEX_AC],
1596 &init_kmem_cache_node[SIZE_AC + nid], nid);
1597
1598 if (INDEX_AC != INDEX_NODE) {
1599 init_list(kmalloc_caches[INDEX_NODE],
1600 &init_kmem_cache_node[SIZE_NODE + nid], nid);
1601 }
1602 }
1603 }
1604
1605 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1606 }
1607
1608 void __init kmem_cache_init_late(void)
1609 {
1610 struct kmem_cache *cachep;
1611
1612 slab_state = UP;
1613
1614 /* 6) resize the head arrays to their final sizes */
1615 mutex_lock(&slab_mutex);
1616 list_for_each_entry(cachep, &slab_caches, list)
1617 if (enable_cpucache(cachep, GFP_NOWAIT))
1618 BUG();
1619 mutex_unlock(&slab_mutex);
1620
1621 /* Annotate slab for lockdep -- annotate the malloc caches */
1622 init_lock_keys();
1623
1624 /* Done! */
1625 slab_state = FULL;
1626
1627 /*
1628 * Register a cpu startup notifier callback that initializes
1629 * cpu_cache_get for all new cpus
1630 */
1631 register_cpu_notifier(&cpucache_notifier);
1632
1633 #ifdef CONFIG_NUMA
1634 /*
1635 * Register a memory hotplug callback that initializes and frees
1636 * node.
1637 */
1638 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1639 #endif
1640
1641 /*
1642 * The reap timers are started later, with a module init call: That part
1643 * of the kernel is not yet operational.
1644 */
1645 }
1646
1647 static int __init cpucache_init(void)
1648 {
1649 int cpu;
1650
1651 /*
1652 * Register the timers that return unneeded pages to the page allocator
1653 */
1654 for_each_online_cpu(cpu)
1655 start_cpu_timer(cpu);
1656
1657 /* Done! */
1658 slab_state = FULL;
1659 return 0;
1660 }
1661 __initcall(cpucache_init);
1662
1663 static noinline void
1664 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1665 {
1666 struct kmem_cache_node *n;
1667 struct slab *slabp;
1668 unsigned long flags;
1669 int node;
1670
1671 printk(KERN_WARNING
1672 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1673 nodeid, gfpflags);
1674 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
1675 cachep->name, cachep->size, cachep->gfporder);
1676
1677 for_each_online_node(node) {
1678 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1679 unsigned long active_slabs = 0, num_slabs = 0;
1680
1681 n = cachep->node[node];
1682 if (!n)
1683 continue;
1684
1685 spin_lock_irqsave(&n->list_lock, flags);
1686 list_for_each_entry(slabp, &n->slabs_full, list) {
1687 active_objs += cachep->num;
1688 active_slabs++;
1689 }
1690 list_for_each_entry(slabp, &n->slabs_partial, list) {
1691 active_objs += slabp->inuse;
1692 active_slabs++;
1693 }
1694 list_for_each_entry(slabp, &n->slabs_free, list)
1695 num_slabs++;
1696
1697 free_objects += n->free_objects;
1698 spin_unlock_irqrestore(&n->list_lock, flags);
1699
1700 num_slabs += active_slabs;
1701 num_objs = num_slabs * cachep->num;
1702 printk(KERN_WARNING
1703 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1704 node, active_slabs, num_slabs, active_objs, num_objs,
1705 free_objects);
1706 }
1707 }
1708
1709 /*
1710 * Interface to system's page allocator. No need to hold the cache-lock.
1711 *
1712 * If we requested dmaable memory, we will get it. Even if we
1713 * did not request dmaable memory, we might get it, but that
1714 * would be relatively rare and ignorable.
1715 */
1716 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1717 int nodeid)
1718 {
1719 struct page *page;
1720 int nr_pages;
1721 int i;
1722
1723 #ifndef CONFIG_MMU
1724 /*
1725 * Nommu uses slab's for process anonymous memory allocations, and thus
1726 * requires __GFP_COMP to properly refcount higher order allocations
1727 */
1728 flags |= __GFP_COMP;
1729 #endif
1730
1731 flags |= cachep->allocflags;
1732 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1733 flags |= __GFP_RECLAIMABLE;
1734
1735 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1736 if (!page) {
1737 if (!(flags & __GFP_NOWARN) && printk_ratelimit())
1738 slab_out_of_memory(cachep, flags, nodeid);
1739 return NULL;
1740 }
1741
1742 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1743 if (unlikely(page->pfmemalloc))
1744 pfmemalloc_active = true;
1745
1746 nr_pages = (1 << cachep->gfporder);
1747 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1748 add_zone_page_state(page_zone(page),
1749 NR_SLAB_RECLAIMABLE, nr_pages);
1750 else
1751 add_zone_page_state(page_zone(page),
1752 NR_SLAB_UNRECLAIMABLE, nr_pages);
1753 for (i = 0; i < nr_pages; i++) {
1754 __SetPageSlab(page + i);
1755
1756 if (page->pfmemalloc)
1757 SetPageSlabPfmemalloc(page);
1758 }
1759 memcg_bind_pages(cachep, cachep->gfporder);
1760
1761 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1762 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1763
1764 if (cachep->ctor)
1765 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1766 else
1767 kmemcheck_mark_unallocated_pages(page, nr_pages);
1768 }
1769
1770 return page;
1771 }
1772
1773 /*
1774 * Interface to system's page release.
1775 */
1776 static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1777 {
1778 unsigned long i = (1 << cachep->gfporder);
1779 const unsigned long nr_freed = i;
1780
1781 kmemcheck_free_shadow(page, cachep->gfporder);
1782
1783 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1784 sub_zone_page_state(page_zone(page),
1785 NR_SLAB_RECLAIMABLE, nr_freed);
1786 else
1787 sub_zone_page_state(page_zone(page),
1788 NR_SLAB_UNRECLAIMABLE, nr_freed);
1789
1790 __ClearPageSlabPfmemalloc(page);
1791 while (i--) {
1792 BUG_ON(!PageSlab(page));
1793 __ClearPageSlab(page);
1794 page++;
1795 }
1796
1797 memcg_release_pages(cachep, cachep->gfporder);
1798 if (current->reclaim_state)
1799 current->reclaim_state->reclaimed_slab += nr_freed;
1800 __free_memcg_kmem_pages(page, cachep->gfporder);
1801 }
1802
1803 static void kmem_rcu_free(struct rcu_head *head)
1804 {
1805 struct kmem_cache *cachep;
1806 struct page *page;
1807
1808 page = container_of(head, struct page, rcu_head);
1809 cachep = page->slab_cache;
1810
1811 kmem_freepages(cachep, page);
1812 }
1813
1814 #if DEBUG
1815
1816 #ifdef CONFIG_DEBUG_PAGEALLOC
1817 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1818 unsigned long caller)
1819 {
1820 int size = cachep->object_size;
1821
1822 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1823
1824 if (size < 5 * sizeof(unsigned long))
1825 return;
1826
1827 *addr++ = 0x12345678;
1828 *addr++ = caller;
1829 *addr++ = smp_processor_id();
1830 size -= 3 * sizeof(unsigned long);
1831 {
1832 unsigned long *sptr = &caller;
1833 unsigned long svalue;
1834
1835 while (!kstack_end(sptr)) {
1836 svalue = *sptr++;
1837 if (kernel_text_address(svalue)) {
1838 *addr++ = svalue;
1839 size -= sizeof(unsigned long);
1840 if (size <= sizeof(unsigned long))
1841 break;
1842 }
1843 }
1844
1845 }
1846 *addr++ = 0x87654321;
1847 }
1848 #endif
1849
1850 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1851 {
1852 int size = cachep->object_size;
1853 addr = &((char *)addr)[obj_offset(cachep)];
1854
1855 memset(addr, val, size);
1856 *(unsigned char *)(addr + size - 1) = POISON_END;
1857 }
1858
1859 static void dump_line(char *data, int offset, int limit)
1860 {
1861 int i;
1862 unsigned char error = 0;
1863 int bad_count = 0;
1864
1865 printk(KERN_ERR "%03x: ", offset);
1866 for (i = 0; i < limit; i++) {
1867 if (data[offset + i] != POISON_FREE) {
1868 error = data[offset + i];
1869 bad_count++;
1870 }
1871 }
1872 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1873 &data[offset], limit, 1);
1874
1875 if (bad_count == 1) {
1876 error ^= POISON_FREE;
1877 if (!(error & (error - 1))) {
1878 printk(KERN_ERR "Single bit error detected. Probably "
1879 "bad RAM.\n");
1880 #ifdef CONFIG_X86
1881 printk(KERN_ERR "Run memtest86+ or a similar memory "
1882 "test tool.\n");
1883 #else
1884 printk(KERN_ERR "Run a memory test tool.\n");
1885 #endif
1886 }
1887 }
1888 }
1889 #endif
1890
1891 #if DEBUG
1892
1893 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1894 {
1895 int i, size;
1896 char *realobj;
1897
1898 if (cachep->flags & SLAB_RED_ZONE) {
1899 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1900 *dbg_redzone1(cachep, objp),
1901 *dbg_redzone2(cachep, objp));
1902 }
1903
1904 if (cachep->flags & SLAB_STORE_USER) {
1905 printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
1906 *dbg_userword(cachep, objp),
1907 *dbg_userword(cachep, objp));
1908 }
1909 realobj = (char *)objp + obj_offset(cachep);
1910 size = cachep->object_size;
1911 for (i = 0; i < size && lines; i += 16, lines--) {
1912 int limit;
1913 limit = 16;
1914 if (i + limit > size)
1915 limit = size - i;
1916 dump_line(realobj, i, limit);
1917 }
1918 }
1919
1920 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1921 {
1922 char *realobj;
1923 int size, i;
1924 int lines = 0;
1925
1926 realobj = (char *)objp + obj_offset(cachep);
1927 size = cachep->object_size;
1928
1929 for (i = 0; i < size; i++) {
1930 char exp = POISON_FREE;
1931 if (i == size - 1)
1932 exp = POISON_END;
1933 if (realobj[i] != exp) {
1934 int limit;
1935 /* Mismatch ! */
1936 /* Print header */
1937 if (lines == 0) {
1938 printk(KERN_ERR
1939 "Slab corruption (%s): %s start=%p, len=%d\n",
1940 print_tainted(), cachep->name, realobj, size);
1941 print_objinfo(cachep, objp, 0);
1942 }
1943 /* Hexdump the affected line */
1944 i = (i / 16) * 16;
1945 limit = 16;
1946 if (i + limit > size)
1947 limit = size - i;
1948 dump_line(realobj, i, limit);
1949 i += 16;
1950 lines++;
1951 /* Limit to 5 lines */
1952 if (lines > 5)
1953 break;
1954 }
1955 }
1956 if (lines != 0) {
1957 /* Print some data about the neighboring objects, if they
1958 * exist:
1959 */
1960 struct slab *slabp = virt_to_slab(objp);
1961 unsigned int objnr;
1962
1963 objnr = obj_to_index(cachep, slabp, objp);
1964 if (objnr) {
1965 objp = index_to_obj(cachep, slabp, objnr - 1);
1966 realobj = (char *)objp + obj_offset(cachep);
1967 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1968 realobj, size);
1969 print_objinfo(cachep, objp, 2);
1970 }
1971 if (objnr + 1 < cachep->num) {
1972 objp = index_to_obj(cachep, slabp, objnr + 1);
1973 realobj = (char *)objp + obj_offset(cachep);
1974 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1975 realobj, size);
1976 print_objinfo(cachep, objp, 2);
1977 }
1978 }
1979 }
1980 #endif
1981
1982 #if DEBUG
1983 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1984 {
1985 int i;
1986 for (i = 0; i < cachep->num; i++) {
1987 void *objp = index_to_obj(cachep, slabp, i);
1988
1989 if (cachep->flags & SLAB_POISON) {
1990 #ifdef CONFIG_DEBUG_PAGEALLOC
1991 if (cachep->size % PAGE_SIZE == 0 &&
1992 OFF_SLAB(cachep))
1993 kernel_map_pages(virt_to_page(objp),
1994 cachep->size / PAGE_SIZE, 1);
1995 else
1996 check_poison_obj(cachep, objp);
1997 #else
1998 check_poison_obj(cachep, objp);
1999 #endif
2000 }
2001 if (cachep->flags & SLAB_RED_ZONE) {
2002 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2003 slab_error(cachep, "start of a freed object "
2004 "was overwritten");
2005 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2006 slab_error(cachep, "end of a freed object "
2007 "was overwritten");
2008 }
2009 }
2010 }
2011 #else
2012 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
2013 {
2014 }
2015 #endif
2016
2017 /**
2018 * slab_destroy - destroy and release all objects in a slab
2019 * @cachep: cache pointer being destroyed
2020 * @slabp: slab pointer being destroyed
2021 *
2022 * Destroy all the objs in a slab, and release the mem back to the system.
2023 * Before calling the slab must have been unlinked from the cache. The
2024 * cache-lock is not held/needed.
2025 */
2026 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
2027 {
2028 struct page *page = virt_to_head_page(slabp->s_mem);
2029
2030 slab_destroy_debugcheck(cachep, slabp);
2031 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
2032 struct rcu_head *head;
2033
2034 /*
2035 * RCU free overloads the RCU head over the LRU.
2036 * slab_page has been overloeaded over the LRU,
2037 * however it is not used from now on so that
2038 * we can use it safely.
2039 */
2040 head = (void *)&page->rcu_head;
2041 call_rcu(head, kmem_rcu_free);
2042
2043 } else {
2044 kmem_freepages(cachep, page);
2045 }
2046
2047 /*
2048 * From now on, we don't use slab management
2049 * although actual page can be freed in rcu context
2050 */
2051 if (OFF_SLAB(cachep))
2052 kmem_cache_free(cachep->slabp_cache, slabp);
2053 }
2054
2055 /**
2056 * calculate_slab_order - calculate size (page order) of slabs
2057 * @cachep: pointer to the cache that is being created
2058 * @size: size of objects to be created in this cache.
2059 * @align: required alignment for the objects.
2060 * @flags: slab allocation flags
2061 *
2062 * Also calculates the number of objects per slab.
2063 *
2064 * This could be made much more intelligent. For now, try to avoid using
2065 * high order pages for slabs. When the gfp() functions are more friendly
2066 * towards high-order requests, this should be changed.
2067 */
2068 static size_t calculate_slab_order(struct kmem_cache *cachep,
2069 size_t size, size_t align, unsigned long flags)
2070 {
2071 unsigned long offslab_limit;
2072 size_t left_over = 0;
2073 int gfporder;
2074
2075 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2076 unsigned int num;
2077 size_t remainder;
2078
2079 cache_estimate(gfporder, size, align, flags, &remainder, &num);
2080 if (!num)
2081 continue;
2082
2083 if (flags & CFLGS_OFF_SLAB) {
2084 /*
2085 * Max number of objs-per-slab for caches which
2086 * use off-slab slabs. Needed to avoid a possible
2087 * looping condition in cache_grow().
2088 */
2089 offslab_limit = size - sizeof(struct slab);
2090 offslab_limit /= sizeof(kmem_bufctl_t);
2091
2092 if (num > offslab_limit)
2093 break;
2094 }
2095
2096 /* Found something acceptable - save it away */
2097 cachep->num = num;
2098 cachep->gfporder = gfporder;
2099 left_over = remainder;
2100
2101 /*
2102 * A VFS-reclaimable slab tends to have most allocations
2103 * as GFP_NOFS and we really don't want to have to be allocating
2104 * higher-order pages when we are unable to shrink dcache.
2105 */
2106 if (flags & SLAB_RECLAIM_ACCOUNT)
2107 break;
2108
2109 /*
2110 * Large number of objects is good, but very large slabs are
2111 * currently bad for the gfp()s.
2112 */
2113 if (gfporder >= slab_max_order)
2114 break;
2115
2116 /*
2117 * Acceptable internal fragmentation?
2118 */
2119 if (left_over * 8 <= (PAGE_SIZE << gfporder))
2120 break;
2121 }
2122 return left_over;
2123 }
2124
2125 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2126 {
2127 if (slab_state >= FULL)
2128 return enable_cpucache(cachep, gfp);
2129
2130 if (slab_state == DOWN) {
2131 /*
2132 * Note: Creation of first cache (kmem_cache).
2133 * The setup_node is taken care
2134 * of by the caller of __kmem_cache_create
2135 */
2136 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2137 slab_state = PARTIAL;
2138 } else if (slab_state == PARTIAL) {
2139 /*
2140 * Note: the second kmem_cache_create must create the cache
2141 * that's used by kmalloc(24), otherwise the creation of
2142 * further caches will BUG().
2143 */
2144 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2145
2146 /*
2147 * If the cache that's used by kmalloc(sizeof(kmem_cache_node)) is
2148 * the second cache, then we need to set up all its node/,
2149 * otherwise the creation of further caches will BUG().
2150 */
2151 set_up_node(cachep, SIZE_AC);
2152 if (INDEX_AC == INDEX_NODE)
2153 slab_state = PARTIAL_NODE;
2154 else
2155 slab_state = PARTIAL_ARRAYCACHE;
2156 } else {
2157 /* Remaining boot caches */
2158 cachep->array[smp_processor_id()] =
2159 kmalloc(sizeof(struct arraycache_init), gfp);
2160
2161 if (slab_state == PARTIAL_ARRAYCACHE) {
2162 set_up_node(cachep, SIZE_NODE);
2163 slab_state = PARTIAL_NODE;
2164 } else {
2165 int node;
2166 for_each_online_node(node) {
2167 cachep->node[node] =
2168 kmalloc_node(sizeof(struct kmem_cache_node),
2169 gfp, node);
2170 BUG_ON(!cachep->node[node]);
2171 kmem_cache_node_init(cachep->node[node]);
2172 }
2173 }
2174 }
2175 cachep->node[numa_mem_id()]->next_reap =
2176 jiffies + REAPTIMEOUT_LIST3 +
2177 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2178
2179 cpu_cache_get(cachep)->avail = 0;
2180 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2181 cpu_cache_get(cachep)->batchcount = 1;
2182 cpu_cache_get(cachep)->touched = 0;
2183 cachep->batchcount = 1;
2184 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2185 return 0;
2186 }
2187
2188 /**
2189 * __kmem_cache_create - Create a cache.
2190 * @cachep: cache management descriptor
2191 * @flags: SLAB flags
2192 *
2193 * Returns a ptr to the cache on success, NULL on failure.
2194 * Cannot be called within a int, but can be interrupted.
2195 * The @ctor is run when new pages are allocated by the cache.
2196 *
2197 * The flags are
2198 *
2199 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2200 * to catch references to uninitialised memory.
2201 *
2202 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2203 * for buffer overruns.
2204 *
2205 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2206 * cacheline. This can be beneficial if you're counting cycles as closely
2207 * as davem.
2208 */
2209 int
2210 __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2211 {
2212 size_t left_over, slab_size, ralign;
2213 gfp_t gfp;
2214 int err;
2215 size_t size = cachep->size;
2216
2217 #if DEBUG
2218 #if FORCED_DEBUG
2219 /*
2220 * Enable redzoning and last user accounting, except for caches with
2221 * large objects, if the increased size would increase the object size
2222 * above the next power of two: caches with object sizes just above a
2223 * power of two have a significant amount of internal fragmentation.
2224 */
2225 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2226 2 * sizeof(unsigned long long)))
2227 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2228 if (!(flags & SLAB_DESTROY_BY_RCU))
2229 flags |= SLAB_POISON;
2230 #endif
2231 if (flags & SLAB_DESTROY_BY_RCU)
2232 BUG_ON(flags & SLAB_POISON);
2233 #endif
2234
2235 /*
2236 * Check that size is in terms of words. This is needed to avoid
2237 * unaligned accesses for some archs when redzoning is used, and makes
2238 * sure any on-slab bufctl's are also correctly aligned.
2239 */
2240 if (size & (BYTES_PER_WORD - 1)) {
2241 size += (BYTES_PER_WORD - 1);
2242 size &= ~(BYTES_PER_WORD - 1);
2243 }
2244
2245 /*
2246 * Redzoning and user store require word alignment or possibly larger.
2247 * Note this will be overridden by architecture or caller mandated
2248 * alignment if either is greater than BYTES_PER_WORD.
2249 */
2250 if (flags & SLAB_STORE_USER)
2251 ralign = BYTES_PER_WORD;
2252
2253 if (flags & SLAB_RED_ZONE) {
2254 ralign = REDZONE_ALIGN;
2255 /* If redzoning, ensure that the second redzone is suitably
2256 * aligned, by adjusting the object size accordingly. */
2257 size += REDZONE_ALIGN - 1;
2258 size &= ~(REDZONE_ALIGN - 1);
2259 }
2260
2261 /* 3) caller mandated alignment */
2262 if (ralign < cachep->align) {
2263 ralign = cachep->align;
2264 }
2265 /* disable debug if necessary */
2266 if (ralign > __alignof__(unsigned long long))
2267 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2268 /*
2269 * 4) Store it.
2270 */
2271 cachep->align = ralign;
2272
2273 if (slab_is_available())
2274 gfp = GFP_KERNEL;
2275 else
2276 gfp = GFP_NOWAIT;
2277
2278 setup_node_pointer(cachep);
2279 #if DEBUG
2280
2281 /*
2282 * Both debugging options require word-alignment which is calculated
2283 * into align above.
2284 */
2285 if (flags & SLAB_RED_ZONE) {
2286 /* add space for red zone words */
2287 cachep->obj_offset += sizeof(unsigned long long);
2288 size += 2 * sizeof(unsigned long long);
2289 }
2290 if (flags & SLAB_STORE_USER) {
2291 /* user store requires one word storage behind the end of
2292 * the real object. But if the second red zone needs to be
2293 * aligned to 64 bits, we must allow that much space.
2294 */
2295 if (flags & SLAB_RED_ZONE)
2296 size += REDZONE_ALIGN;
2297 else
2298 size += BYTES_PER_WORD;
2299 }
2300 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2301 if (size >= kmalloc_size(INDEX_NODE + 1)
2302 && cachep->object_size > cache_line_size()
2303 && ALIGN(size, cachep->align) < PAGE_SIZE) {
2304 cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
2305 size = PAGE_SIZE;
2306 }
2307 #endif
2308 #endif
2309
2310 /*
2311 * Determine if the slab management is 'on' or 'off' slab.
2312 * (bootstrapping cannot cope with offslab caches so don't do
2313 * it too early on. Always use on-slab management when
2314 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2315 */
2316 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
2317 !(flags & SLAB_NOLEAKTRACE))
2318 /*
2319 * Size is large, assume best to place the slab management obj
2320 * off-slab (should allow better packing of objs).
2321 */
2322 flags |= CFLGS_OFF_SLAB;
2323
2324 size = ALIGN(size, cachep->align);
2325
2326 left_over = calculate_slab_order(cachep, size, cachep->align, flags);
2327
2328 if (!cachep->num)
2329 return -E2BIG;
2330
2331 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2332 + sizeof(struct slab), cachep->align);
2333
2334 /*
2335 * If the slab has been placed off-slab, and we have enough space then
2336 * move it on-slab. This is at the expense of any extra colouring.
2337 */
2338 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2339 flags &= ~CFLGS_OFF_SLAB;
2340 left_over -= slab_size;
2341 }
2342
2343 if (flags & CFLGS_OFF_SLAB) {
2344 /* really off slab. No need for manual alignment */
2345 slab_size =
2346 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2347
2348 #ifdef CONFIG_PAGE_POISONING
2349 /* If we're going to use the generic kernel_map_pages()
2350 * poisoning, then it's going to smash the contents of
2351 * the redzone and userword anyhow, so switch them off.
2352 */
2353 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2354 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2355 #endif
2356 }
2357
2358 cachep->colour_off = cache_line_size();
2359 /* Offset must be a multiple of the alignment. */
2360 if (cachep->colour_off < cachep->align)
2361 cachep->colour_off = cachep->align;
2362 cachep->colour = left_over / cachep->colour_off;
2363 cachep->slab_size = slab_size;
2364 cachep->flags = flags;
2365 cachep->allocflags = 0;
2366 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2367 cachep->allocflags |= GFP_DMA;
2368 cachep->size = size;
2369 cachep->reciprocal_buffer_size = reciprocal_value(size);
2370
2371 if (flags & CFLGS_OFF_SLAB) {
2372 cachep->slabp_cache = kmalloc_slab(slab_size, 0u);
2373 /*
2374 * This is a possibility for one of the malloc_sizes caches.
2375 * But since we go off slab only for object size greater than
2376 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2377 * this should not happen at all.
2378 * But leave a BUG_ON for some lucky dude.
2379 */
2380 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2381 }
2382
2383 err = setup_cpu_cache(cachep, gfp);
2384 if (err) {
2385 __kmem_cache_shutdown(cachep);
2386 return err;
2387 }
2388
2389 if (flags & SLAB_DEBUG_OBJECTS) {
2390 /*
2391 * Would deadlock through slab_destroy()->call_rcu()->
2392 * debug_object_activate()->kmem_cache_alloc().
2393 */
2394 WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);
2395
2396 slab_set_debugobj_lock_classes(cachep);
2397 } else if (!OFF_SLAB(cachep) && !(flags & SLAB_DESTROY_BY_RCU))
2398 on_slab_lock_classes(cachep);
2399
2400 return 0;
2401 }
2402
2403 #if DEBUG
2404 static void check_irq_off(void)
2405 {
2406 BUG_ON(!irqs_disabled());
2407 }
2408
2409 static void check_irq_on(void)
2410 {
2411 BUG_ON(irqs_disabled());
2412 }
2413
2414 static void check_spinlock_acquired(struct kmem_cache *cachep)
2415 {
2416 #ifdef CONFIG_SMP
2417 check_irq_off();
2418 assert_spin_locked(&cachep->node[numa_mem_id()]->list_lock);
2419 #endif
2420 }
2421
2422 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2423 {
2424 #ifdef CONFIG_SMP
2425 check_irq_off();
2426 assert_spin_locked(&cachep->node[node]->list_lock);
2427 #endif
2428 }
2429
2430 #else
2431 #define check_irq_off() do { } while(0)
2432 #define check_irq_on() do { } while(0)
2433 #define check_spinlock_acquired(x) do { } while(0)
2434 #define check_spinlock_acquired_node(x, y) do { } while(0)
2435 #endif
2436
2437 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
2438 struct array_cache *ac,
2439 int force, int node);
2440
2441 static void do_drain(void *arg)
2442 {
2443 struct kmem_cache *cachep = arg;
2444 struct array_cache *ac;
2445 int node = numa_mem_id();
2446
2447 check_irq_off();
2448 ac = cpu_cache_get(cachep);
2449 spin_lock(&cachep->node[node]->list_lock);
2450 free_block(cachep, ac->entry, ac->avail, node);
2451 spin_unlock(&cachep->node[node]->list_lock);
2452 ac->avail = 0;
2453 }
2454
2455 static void drain_cpu_caches(struct kmem_cache *cachep)
2456 {
2457 struct kmem_cache_node *n;
2458 int node;
2459
2460 on_each_cpu(do_drain, cachep, 1);
2461 check_irq_on();
2462 for_each_online_node(node) {
2463 n = cachep->node[node];
2464 if (n && n->alien)
2465 drain_alien_cache(cachep, n->alien);
2466 }
2467
2468 for_each_online_node(node) {
2469 n = cachep->node[node];
2470 if (n)
2471 drain_array(cachep, n, n->shared, 1, node);
2472 }
2473 }
2474
2475 /*
2476 * Remove slabs from the list of free slabs.
2477 * Specify the number of slabs to drain in tofree.
2478 *
2479 * Returns the actual number of slabs released.
2480 */
2481 static int drain_freelist(struct kmem_cache *cache,
2482 struct kmem_cache_node *n, int tofree)
2483 {
2484 struct list_head *p;
2485 int nr_freed;
2486 struct slab *slabp;
2487
2488 nr_freed = 0;
2489 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2490
2491 spin_lock_irq(&n->list_lock);
2492 p = n->slabs_free.prev;
2493 if (p == &n->slabs_free) {
2494 spin_unlock_irq(&n->list_lock);
2495 goto out;
2496 }
2497
2498 slabp = list_entry(p, struct slab, list);
2499 #if DEBUG
2500 BUG_ON(slabp->inuse);
2501 #endif
2502 list_del(&slabp->list);
2503 /*
2504 * Safe to drop the lock. The slab is no longer linked
2505 * to the cache.
2506 */
2507 n->free_objects -= cache->num;
2508 spin_unlock_irq(&n->list_lock);
2509 slab_destroy(cache, slabp);
2510 nr_freed++;
2511 }
2512 out:
2513 return nr_freed;
2514 }
2515
2516 /* Called with slab_mutex held to protect against cpu hotplug */
2517 static int __cache_shrink(struct kmem_cache *cachep)
2518 {
2519 int ret = 0, i = 0;
2520 struct kmem_cache_node *n;
2521
2522 drain_cpu_caches(cachep);
2523
2524 check_irq_on();
2525 for_each_online_node(i) {
2526 n = cachep->node[i];
2527 if (!n)
2528 continue;
2529
2530 drain_freelist(cachep, n, slabs_tofree(cachep, n));
2531
2532 ret += !list_empty(&n->slabs_full) ||
2533 !list_empty(&n->slabs_partial);
2534 }
2535 return (ret ? 1 : 0);
2536 }
2537
2538 /**
2539 * kmem_cache_shrink - Shrink a cache.
2540 * @cachep: The cache to shrink.
2541 *
2542 * Releases as many slabs as possible for a cache.
2543 * To help debugging, a zero exit status indicates all slabs were released.
2544 */
2545 int kmem_cache_shrink(struct kmem_cache *cachep)
2546 {
2547 int ret;
2548 BUG_ON(!cachep || in_interrupt());
2549
2550 get_online_cpus();
2551 mutex_lock(&slab_mutex);
2552 ret = __cache_shrink(cachep);
2553 mutex_unlock(&slab_mutex);
2554 put_online_cpus();
2555 return ret;
2556 }
2557 EXPORT_SYMBOL(kmem_cache_shrink);
2558
2559 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2560 {
2561 int i;
2562 struct kmem_cache_node *n;
2563 int rc = __cache_shrink(cachep);
2564
2565 if (rc)
2566 return rc;
2567
2568 for_each_online_cpu(i)
2569 kfree(cachep->array[i]);
2570
2571 /* NUMA: free the node structures */
2572 for_each_online_node(i) {
2573 n = cachep->node[i];
2574 if (n) {
2575 kfree(n->shared);
2576 free_alien_cache(n->alien);
2577 kfree(n);
2578 }
2579 }
2580 return 0;
2581 }
2582
2583 /*
2584 * Get the memory for a slab management obj.
2585 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2586 * always come from malloc_sizes caches. The slab descriptor cannot
2587 * come from the same cache which is getting created because,
2588 * when we are searching for an appropriate cache for these
2589 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2590 * If we are creating a malloc_sizes cache here it would not be visible to
2591 * kmem_find_general_cachep till the initialization is complete.
2592 * Hence we cannot have slabp_cache same as the original cache.
2593 */
2594 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep,
2595 struct page *page, int colour_off,
2596 gfp_t local_flags, int nodeid)
2597 {
2598 struct slab *slabp;
2599 void *addr = page_address(page);
2600
2601 if (OFF_SLAB(cachep)) {
2602 /* Slab management obj is off-slab. */
2603 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2604 local_flags, nodeid);
2605 /*
2606 * If the first object in the slab is leaked (it's allocated
2607 * but no one has a reference to it), we want to make sure
2608 * kmemleak does not treat the ->s_mem pointer as a reference
2609 * to the object. Otherwise we will not report the leak.
2610 */
2611 kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
2612 local_flags);
2613 if (!slabp)
2614 return NULL;
2615 } else {
2616 slabp = addr + colour_off;
2617 colour_off += cachep->slab_size;
2618 }
2619 slabp->inuse = 0;
2620 slabp->s_mem = addr + colour_off;
2621 slabp->free = 0;
2622 return slabp;
2623 }
2624
2625 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2626 {
2627 return (kmem_bufctl_t *) (slabp + 1);
2628 }
2629
2630 static void cache_init_objs(struct kmem_cache *cachep,
2631 struct slab *slabp)
2632 {
2633 int i;
2634
2635 for (i = 0; i < cachep->num; i++) {
2636 void *objp = index_to_obj(cachep, slabp, i);
2637 #if DEBUG
2638 /* need to poison the objs? */
2639 if (cachep->flags & SLAB_POISON)
2640 poison_obj(cachep, objp, POISON_FREE);
2641 if (cachep->flags & SLAB_STORE_USER)
2642 *dbg_userword(cachep, objp) = NULL;
2643
2644 if (cachep->flags & SLAB_RED_ZONE) {
2645 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2646 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2647 }
2648 /*
2649 * Constructors are not allowed to allocate memory from the same
2650 * cache which they are a constructor for. Otherwise, deadlock.
2651 * They must also be threaded.
2652 */
2653 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2654 cachep->ctor(objp + obj_offset(cachep));
2655
2656 if (cachep->flags & SLAB_RED_ZONE) {
2657 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2658 slab_error(cachep, "constructor overwrote the"
2659 " end of an object");
2660 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2661 slab_error(cachep, "constructor overwrote the"
2662 " start of an object");
2663 }
2664 if ((cachep->size % PAGE_SIZE) == 0 &&
2665 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2666 kernel_map_pages(virt_to_page(objp),
2667 cachep->size / PAGE_SIZE, 0);
2668 #else
2669 if (cachep->ctor)
2670 cachep->ctor(objp);
2671 #endif
2672 slab_bufctl(slabp)[i] = i + 1;
2673 }
2674 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2675 }
2676
2677 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2678 {
2679 if (CONFIG_ZONE_DMA_FLAG) {
2680 if (flags & GFP_DMA)
2681 BUG_ON(!(cachep->allocflags & GFP_DMA));
2682 else
2683 BUG_ON(cachep->allocflags & GFP_DMA);
2684 }
2685 }
2686
2687 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2688 int nodeid)
2689 {
2690 void *objp = index_to_obj(cachep, slabp, slabp->free);
2691 kmem_bufctl_t next;
2692
2693 slabp->inuse++;
2694 next = slab_bufctl(slabp)[slabp->free];
2695 #if DEBUG
2696 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2697 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2698 #endif
2699 slabp->free = next;
2700
2701 return objp;
2702 }
2703
2704 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2705 void *objp, int nodeid)
2706 {
2707 unsigned int objnr = obj_to_index(cachep, slabp, objp);
2708
2709 #if DEBUG
2710 /* Verify that the slab belongs to the intended node */
2711 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2712
2713 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2714 printk(KERN_ERR "slab: double free detected in cache "
2715 "'%s', objp %p\n", cachep->name, objp);
2716 BUG();
2717 }
2718 #endif
2719 slab_bufctl(slabp)[objnr] = slabp->free;
2720 slabp->free = objnr;
2721 slabp->inuse--;
2722 }
2723
2724 /*
2725 * Map pages beginning at addr to the given cache and slab. This is required
2726 * for the slab allocator to be able to lookup the cache and slab of a
2727 * virtual address for kfree, ksize, and slab debugging.
2728 */
2729 static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2730 struct page *page)
2731 {
2732 int nr_pages;
2733
2734 nr_pages = 1;
2735 if (likely(!PageCompound(page)))
2736 nr_pages <<= cache->gfporder;
2737
2738 do {
2739 page->slab_cache = cache;
2740 page->slab_page = slab;
2741 page++;
2742 } while (--nr_pages);
2743 }
2744
2745 /*
2746 * Grow (by 1) the number of slabs within a cache. This is called by
2747 * kmem_cache_alloc() when there are no active objs left in a cache.
2748 */
2749 static int cache_grow(struct kmem_cache *cachep,
2750 gfp_t flags, int nodeid, struct page *page)
2751 {
2752 struct slab *slabp;
2753 size_t offset;
2754 gfp_t local_flags;
2755 struct kmem_cache_node *n;
2756
2757 /*
2758 * Be lazy and only check for valid flags here, keeping it out of the
2759 * critical path in kmem_cache_alloc().
2760 */
2761 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2762 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2763
2764 /* Take the node list lock to change the colour_next on this node */
2765 check_irq_off();
2766 n = cachep->node[nodeid];
2767 spin_lock(&n->list_lock);
2768
2769 /* Get colour for the slab, and cal the next value. */
2770 offset = n->colour_next;
2771 n->colour_next++;
2772 if (n->colour_next >= cachep->colour)
2773 n->colour_next = 0;
2774 spin_unlock(&n->list_lock);
2775
2776 offset *= cachep->colour_off;
2777
2778 if (local_flags & __GFP_WAIT)
2779 local_irq_enable();
2780
2781 /*
2782 * The test for missing atomic flag is performed here, rather than
2783 * the more obvious place, simply to reduce the critical path length
2784 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2785 * will eventually be caught here (where it matters).
2786 */
2787 kmem_flagcheck(cachep, flags);
2788
2789 /*
2790 * Get mem for the objs. Attempt to allocate a physical page from
2791 * 'nodeid'.
2792 */
2793 if (!page)
2794 page = kmem_getpages(cachep, local_flags, nodeid);
2795 if (!page)
2796 goto failed;
2797
2798 /* Get slab management. */
2799 slabp = alloc_slabmgmt(cachep, page, offset,
2800 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2801 if (!slabp)
2802 goto opps1;
2803
2804 slab_map_pages(cachep, slabp, page);
2805
2806 cache_init_objs(cachep, slabp);
2807
2808 if (local_flags & __GFP_WAIT)
2809 local_irq_disable();
2810 check_irq_off();
2811 spin_lock(&n->list_lock);
2812
2813 /* Make slab active. */
2814 list_add_tail(&slabp->list, &(n->slabs_free));
2815 STATS_INC_GROWN(cachep);
2816 n->free_objects += cachep->num;
2817 spin_unlock(&n->list_lock);
2818 return 1;
2819 opps1:
2820 kmem_freepages(cachep, page);
2821 failed:
2822 if (local_flags & __GFP_WAIT)
2823 local_irq_disable();
2824 return 0;
2825 }
2826
2827 #if DEBUG
2828
2829 /*
2830 * Perform extra freeing checks:
2831 * - detect bad pointers.
2832 * - POISON/RED_ZONE checking
2833 */
2834 static void kfree_debugcheck(const void *objp)
2835 {
2836 if (!virt_addr_valid(objp)) {
2837 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2838 (unsigned long)objp);
2839 BUG();
2840 }
2841 }
2842
2843 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2844 {
2845 unsigned long long redzone1, redzone2;
2846
2847 redzone1 = *dbg_redzone1(cache, obj);
2848 redzone2 = *dbg_redzone2(cache, obj);
2849
2850 /*
2851 * Redzone is ok.
2852 */
2853 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2854 return;
2855
2856 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2857 slab_error(cache, "double free detected");
2858 else
2859 slab_error(cache, "memory outside object was overwritten");
2860
2861 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2862 obj, redzone1, redzone2);
2863 }
2864
2865 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2866 unsigned long caller)
2867 {
2868 struct page *page;
2869 unsigned int objnr;
2870 struct slab *slabp;
2871
2872 BUG_ON(virt_to_cache(objp) != cachep);
2873
2874 objp -= obj_offset(cachep);
2875 kfree_debugcheck(objp);
2876 page = virt_to_head_page(objp);
2877
2878 slabp = page->slab_page;
2879
2880 if (cachep->flags & SLAB_RED_ZONE) {
2881 verify_redzone_free(cachep, objp);
2882 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2883 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2884 }
2885 if (cachep->flags & SLAB_STORE_USER)
2886 *dbg_userword(cachep, objp) = (void *)caller;
2887
2888 objnr = obj_to_index(cachep, slabp, objp);
2889
2890 BUG_ON(objnr >= cachep->num);
2891 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2892
2893 #ifdef CONFIG_DEBUG_SLAB_LEAK
2894 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2895 #endif
2896 if (cachep->flags & SLAB_POISON) {
2897 #ifdef CONFIG_DEBUG_PAGEALLOC
2898 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2899 store_stackinfo(cachep, objp, caller);
2900 kernel_map_pages(virt_to_page(objp),
2901 cachep->size / PAGE_SIZE, 0);
2902 } else {
2903 poison_obj(cachep, objp, POISON_FREE);
2904 }
2905 #else
2906 poison_obj(cachep, objp, POISON_FREE);
2907 #endif
2908 }
2909 return objp;
2910 }
2911
2912 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2913 {
2914 kmem_bufctl_t i;
2915 int entries = 0;
2916
2917 /* Check slab's freelist to see if this obj is there. */
2918 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2919 entries++;
2920 if (entries > cachep->num || i >= cachep->num)
2921 goto bad;
2922 }
2923 if (entries != cachep->num - slabp->inuse) {
2924 bad:
2925 printk(KERN_ERR "slab: Internal list corruption detected in "
2926 "cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n",
2927 cachep->name, cachep->num, slabp, slabp->inuse,
2928 print_tainted());
2929 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp,
2930 sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t),
2931 1);
2932 BUG();
2933 }
2934 }
2935 #else
2936 #define kfree_debugcheck(x) do { } while(0)
2937 #define cache_free_debugcheck(x,objp,z) (objp)
2938 #define check_slabp(x,y) do { } while(0)
2939 #endif
2940
2941 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
2942 bool force_refill)
2943 {
2944 int batchcount;
2945 struct kmem_cache_node *n;
2946 struct array_cache *ac;
2947 int node;
2948
2949 check_irq_off();
2950 node = numa_mem_id();
2951 if (unlikely(force_refill))
2952 goto force_grow;
2953 retry:
2954 ac = cpu_cache_get(cachep);
2955 batchcount = ac->batchcount;
2956 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2957 /*
2958 * If there was little recent activity on this cache, then
2959 * perform only a partial refill. Otherwise we could generate
2960 * refill bouncing.
2961 */
2962 batchcount = BATCHREFILL_LIMIT;
2963 }
2964 n = cachep->node[node];
2965
2966 BUG_ON(ac->avail > 0 || !n);
2967 spin_lock(&n->list_lock);
2968
2969 /* See if we can refill from the shared array */
2970 if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2971 n->shared->touched = 1;
2972 goto alloc_done;
2973 }
2974
2975 while (batchcount > 0) {
2976 struct list_head *entry;
2977 struct slab *slabp;
2978 /* Get slab alloc is to come from. */
2979 entry = n->slabs_partial.next;
2980 if (entry == &n->slabs_partial) {
2981 n->free_touched = 1;
2982 entry = n->slabs_free.next;
2983 if (entry == &n->slabs_free)
2984 goto must_grow;
2985 }
2986
2987 slabp = list_entry(entry, struct slab, list);
2988 check_slabp(cachep, slabp);
2989 check_spinlock_acquired(cachep);
2990
2991 /*
2992 * The slab was either on partial or free list so
2993 * there must be at least one object available for
2994 * allocation.
2995 */
2996 BUG_ON(slabp->inuse >= cachep->num);
2997
2998 while (slabp->inuse < cachep->num && batchcount--) {
2999 STATS_INC_ALLOCED(cachep);
3000 STATS_INC_ACTIVE(cachep);
3001 STATS_SET_HIGH(cachep);
3002
3003 ac_put_obj(cachep, ac, slab_get_obj(cachep, slabp,
3004 node));
3005 }
3006 check_slabp(cachep, slabp);
3007
3008 /* move slabp to correct slabp list: */
3009 list_del(&slabp->list);
3010 if (slabp->free == BUFCTL_END)
3011 list_add(&slabp->list, &n->slabs_full);
3012 else
3013 list_add(&slabp->list, &n->slabs_partial);
3014 }
3015
3016 must_grow:
3017 n->free_objects -= ac->avail;
3018 alloc_done:
3019 spin_unlock(&n->list_lock);
3020
3021 if (unlikely(!ac->avail)) {
3022 int x;
3023 force_grow:
3024 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3025
3026 /* cache_grow can reenable interrupts, then ac could change. */
3027 ac = cpu_cache_get(cachep);
3028 node = numa_mem_id();
3029
3030 /* no objects in sight? abort */
3031 if (!x && (ac->avail == 0 || force_refill))
3032 return NULL;
3033
3034 if (!ac->avail) /* objects refilled by interrupt? */
3035 goto retry;
3036 }
3037 ac->touched = 1;
3038
3039 return ac_get_obj(cachep, ac, flags, force_refill);
3040 }
3041
3042 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3043 gfp_t flags)
3044 {
3045 might_sleep_if(flags & __GFP_WAIT);
3046 #if DEBUG
3047 kmem_flagcheck(cachep, flags);
3048 #endif
3049 }
3050
3051 #if DEBUG
3052 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3053 gfp_t flags, void *objp, unsigned long caller)
3054 {
3055 if (!objp)
3056 return objp;
3057 if (cachep->flags & SLAB_POISON) {
3058 #ifdef CONFIG_DEBUG_PAGEALLOC
3059 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3060 kernel_map_pages(virt_to_page(objp),
3061 cachep->size / PAGE_SIZE, 1);
3062 else
3063 check_poison_obj(cachep, objp);
3064 #else
3065 check_poison_obj(cachep, objp);
3066 #endif
3067 poison_obj(cachep, objp, POISON_INUSE);
3068 }
3069 if (cachep->flags & SLAB_STORE_USER)
3070 *dbg_userword(cachep, objp) = (void *)caller;
3071
3072 if (cachep->flags & SLAB_RED_ZONE) {
3073 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3074 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3075 slab_error(cachep, "double free, or memory outside"
3076 " object was overwritten");
3077 printk(KERN_ERR
3078 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3079 objp, *dbg_redzone1(cachep, objp),
3080 *dbg_redzone2(cachep, objp));
3081 }
3082 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3083 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3084 }
3085 #ifdef CONFIG_DEBUG_SLAB_LEAK
3086 {
3087 struct slab *slabp;
3088 unsigned objnr;
3089
3090 slabp = virt_to_head_page(objp)->slab_page;
3091 objnr = (unsigned)(objp - slabp->s_mem) / cachep->size;
3092 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3093 }
3094 #endif
3095 objp += obj_offset(cachep);
3096 if (cachep->ctor && cachep->flags & SLAB_POISON)
3097 cachep->ctor(objp);
3098 if (ARCH_SLAB_MINALIGN &&
3099 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3100 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3101 objp, (int)ARCH_SLAB_MINALIGN);
3102 }
3103 return objp;
3104 }
3105 #else
3106 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3107 #endif
3108
3109 static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3110 {
3111 if (cachep == kmem_cache)
3112 return false;
3113
3114 return should_failslab(cachep->object_size, flags, cachep->flags);
3115 }
3116
3117 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3118 {
3119 void *objp;
3120 struct array_cache *ac;
3121 bool force_refill = false;
3122
3123 check_irq_off();
3124
3125 ac = cpu_cache_get(cachep);
3126 if (likely(ac->avail)) {
3127 ac->touched = 1;
3128 objp = ac_get_obj(cachep, ac, flags, false);
3129
3130 /*
3131 * Allow for the possibility all avail objects are not allowed
3132 * by the current flags
3133 */
3134 if (objp) {
3135 STATS_INC_ALLOCHIT(cachep);
3136 goto out;
3137 }
3138 force_refill = true;
3139 }
3140
3141 STATS_INC_ALLOCMISS(cachep);
3142 objp = cache_alloc_refill(cachep, flags, force_refill);
3143 /*
3144 * the 'ac' may be updated by cache_alloc_refill(),
3145 * and kmemleak_erase() requires its correct value.
3146 */
3147 ac = cpu_cache_get(cachep);
3148
3149 out:
3150 /*
3151 * To avoid a false negative, if an object that is in one of the
3152 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3153 * treat the array pointers as a reference to the object.
3154 */
3155 if (objp)
3156 kmemleak_erase(&ac->entry[ac->avail]);
3157 return objp;
3158 }
3159
3160 #ifdef CONFIG_NUMA
3161 /*
3162 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3163 *
3164 * If we are in_interrupt, then process context, including cpusets and
3165 * mempolicy, may not apply and should not be used for allocation policy.
3166 */
3167 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3168 {
3169 int nid_alloc, nid_here;
3170
3171 if (in_interrupt() || (flags & __GFP_THISNODE))
3172 return NULL;
3173 nid_alloc = nid_here = numa_mem_id();
3174 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3175 nid_alloc = cpuset_slab_spread_node();
3176 else if (current->mempolicy)
3177 nid_alloc = slab_node();
3178 if (nid_alloc != nid_here)
3179 return ____cache_alloc_node(cachep, flags, nid_alloc);
3180 return NULL;
3181 }
3182
3183 /*
3184 * Fallback function if there was no memory available and no objects on a
3185 * certain node and fall back is permitted. First we scan all the
3186 * available node for available objects. If that fails then we
3187 * perform an allocation without specifying a node. This allows the page
3188 * allocator to do its reclaim / fallback magic. We then insert the
3189 * slab into the proper nodelist and then allocate from it.
3190 */
3191 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3192 {
3193 struct zonelist *zonelist;
3194 gfp_t local_flags;
3195 struct zoneref *z;
3196 struct zone *zone;
3197 enum zone_type high_zoneidx = gfp_zone(flags);
3198 void *obj = NULL;
3199 int nid;
3200 unsigned int cpuset_mems_cookie;
3201
3202 if (flags & __GFP_THISNODE)
3203 return NULL;
3204
3205 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3206
3207 retry_cpuset:
3208 cpuset_mems_cookie = get_mems_allowed();
3209 zonelist = node_zonelist(slab_node(), flags);
3210
3211 retry:
3212 /*
3213 * Look through allowed nodes for objects available
3214 * from existing per node queues.
3215 */
3216 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3217 nid = zone_to_nid(zone);
3218
3219 if (cpuset_zone_allowed_hardwall(zone, flags) &&
3220 cache->node[nid] &&
3221 cache->node[nid]->free_objects) {
3222 obj = ____cache_alloc_node(cache,
3223 flags | GFP_THISNODE, nid);
3224 if (obj)
3225 break;
3226 }
3227 }
3228
3229 if (!obj) {
3230 /*
3231 * This allocation will be performed within the constraints
3232 * of the current cpuset / memory policy requirements.
3233 * We may trigger various forms of reclaim on the allowed
3234 * set and go into memory reserves if necessary.
3235 */
3236 struct page *page;
3237
3238 if (local_flags & __GFP_WAIT)
3239 local_irq_enable();
3240 kmem_flagcheck(cache, flags);
3241 page = kmem_getpages(cache, local_flags, numa_mem_id());
3242 if (local_flags & __GFP_WAIT)
3243 local_irq_disable();
3244 if (page) {
3245 /*
3246 * Insert into the appropriate per node queues
3247 */
3248 nid = page_to_nid(page);
3249 if (cache_grow(cache, flags, nid, page)) {
3250 obj = ____cache_alloc_node(cache,
3251 flags | GFP_THISNODE, nid);
3252 if (!obj)
3253 /*
3254 * Another processor may allocate the
3255 * objects in the slab since we are
3256 * not holding any locks.
3257 */
3258 goto retry;
3259 } else {
3260 /* cache_grow already freed obj */
3261 obj = NULL;
3262 }
3263 }
3264 }
3265
3266 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
3267 goto retry_cpuset;
3268 return obj;
3269 }
3270
3271 /*
3272 * A interface to enable slab creation on nodeid
3273 */
3274 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3275 int nodeid)
3276 {
3277 struct list_head *entry;
3278 struct slab *slabp;
3279 struct kmem_cache_node *n;
3280 void *obj;
3281 int x;
3282
3283 VM_BUG_ON(nodeid > num_online_nodes());
3284 n = cachep->node[nodeid];
3285 BUG_ON(!n);
3286
3287 retry:
3288 check_irq_off();
3289 spin_lock(&n->list_lock);
3290 entry = n->slabs_partial.next;
3291 if (entry == &n->slabs_partial) {
3292 n->free_touched = 1;
3293 entry = n->slabs_free.next;
3294 if (entry == &n->slabs_free)
3295 goto must_grow;
3296 }
3297
3298 slabp = list_entry(entry, struct slab, list);
3299 check_spinlock_acquired_node(cachep, nodeid);
3300 check_slabp(cachep, slabp);
3301
3302 STATS_INC_NODEALLOCS(cachep);
3303 STATS_INC_ACTIVE(cachep);
3304 STATS_SET_HIGH(cachep);
3305
3306 BUG_ON(slabp->inuse == cachep->num);
3307
3308 obj = slab_get_obj(cachep, slabp, nodeid);
3309 check_slabp(cachep, slabp);
3310 n->free_objects--;
3311 /* move slabp to correct slabp list: */
3312 list_del(&slabp->list);
3313
3314 if (slabp->free == BUFCTL_END)
3315 list_add(&slabp->list, &n->slabs_full);
3316 else
3317 list_add(&slabp->list, &n->slabs_partial);
3318
3319 spin_unlock(&n->list_lock);
3320 goto done;
3321
3322 must_grow:
3323 spin_unlock(&n->list_lock);
3324 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3325 if (x)
3326 goto retry;
3327
3328 return fallback_alloc(cachep, flags);
3329
3330 done:
3331 return obj;
3332 }
3333
3334 static __always_inline void *
3335 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3336 unsigned long caller)
3337 {
3338 unsigned long save_flags;
3339 void *ptr;
3340 int slab_node = numa_mem_id();
3341
3342 flags &= gfp_allowed_mask;
3343
3344 lockdep_trace_alloc(flags);
3345
3346 if (slab_should_failslab(cachep, flags))
3347 return NULL;
3348
3349 cachep = memcg_kmem_get_cache(cachep, flags);
3350
3351 cache_alloc_debugcheck_before(cachep, flags);
3352 local_irq_save(save_flags);
3353
3354 if (nodeid == NUMA_NO_NODE)
3355 nodeid = slab_node;
3356
3357 if (unlikely(!cachep->node[nodeid])) {
3358 /* Node not bootstrapped yet */
3359 ptr = fallback_alloc(cachep, flags);
3360 goto out;
3361 }
3362
3363 if (nodeid == slab_node) {
3364 /*
3365 * Use the locally cached objects if possible.
3366 * However ____cache_alloc does not allow fallback
3367 * to other nodes. It may fail while we still have
3368 * objects on other nodes available.
3369 */
3370 ptr = ____cache_alloc(cachep, flags);
3371 if (ptr)
3372 goto out;
3373 }
3374 /* ___cache_alloc_node can fall back to other nodes */
3375 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3376 out:
3377 local_irq_restore(save_flags);
3378 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3379 kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3380 flags);
3381
3382 if (likely(ptr))
3383 kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
3384
3385 if (unlikely((flags & __GFP_ZERO) && ptr))
3386 memset(ptr, 0, cachep->object_size);
3387
3388 return ptr;
3389 }
3390
3391 static __always_inline void *
3392 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3393 {
3394 void *objp;
3395
3396 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3397 objp = alternate_node_alloc(cache, flags);
3398 if (objp)
3399 goto out;
3400 }
3401 objp = ____cache_alloc(cache, flags);
3402
3403 /*
3404 * We may just have run out of memory on the local node.
3405 * ____cache_alloc_node() knows how to locate memory on other nodes
3406 */
3407 if (!objp)
3408 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3409
3410 out:
3411 return objp;
3412 }
3413 #else
3414
3415 static __always_inline void *
3416 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3417 {
3418 return ____cache_alloc(cachep, flags);
3419 }
3420
3421 #endif /* CONFIG_NUMA */
3422
3423 static __always_inline void *
3424 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3425 {
3426 unsigned long save_flags;
3427 void *objp;
3428
3429 flags &= gfp_allowed_mask;
3430
3431 lockdep_trace_alloc(flags);
3432
3433 if (slab_should_failslab(cachep, flags))
3434 return NULL;
3435
3436 cachep = memcg_kmem_get_cache(cachep, flags);
3437
3438 cache_alloc_debugcheck_before(cachep, flags);
3439 local_irq_save(save_flags);
3440 objp = __do_cache_alloc(cachep, flags);
3441 local_irq_restore(save_flags);
3442 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3443 kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3444 flags);
3445 prefetchw(objp);
3446
3447 if (likely(objp))
3448 kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
3449
3450 if (unlikely((flags & __GFP_ZERO) && objp))
3451 memset(objp, 0, cachep->object_size);
3452
3453 return objp;
3454 }
3455
3456 /*
3457 * Caller needs to acquire correct kmem_list's list_lock
3458 */
3459 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3460 int node)
3461 {
3462 int i;
3463 struct kmem_cache_node *n;
3464
3465 for (i = 0; i < nr_objects; i++) {
3466 void *objp;
3467 struct slab *slabp;
3468
3469 clear_obj_pfmemalloc(&objpp[i]);
3470 objp = objpp[i];
3471
3472 slabp = virt_to_slab(objp);
3473 n = cachep->node[node];
3474 list_del(&slabp->list);
3475 check_spinlock_acquired_node(cachep, node);
3476 check_slabp(cachep, slabp);
3477 slab_put_obj(cachep, slabp, objp, node);
3478 STATS_DEC_ACTIVE(cachep);
3479 n->free_objects++;
3480 check_slabp(cachep, slabp);
3481
3482 /* fixup slab chains */
3483 if (slabp->inuse == 0) {
3484 if (n->free_objects > n->free_limit) {
3485 n->free_objects -= cachep->num;
3486 /* No need to drop any previously held
3487 * lock here, even if we have a off-slab slab
3488 * descriptor it is guaranteed to come from
3489 * a different cache, refer to comments before
3490 * alloc_slabmgmt.
3491 */
3492 slab_destroy(cachep, slabp);
3493 } else {
3494 list_add(&slabp->list, &n->slabs_free);
3495 }
3496 } else {
3497 /* Unconditionally move a slab to the end of the
3498 * partial list on free - maximum time for the
3499 * other objects to be freed, too.
3500 */
3501 list_add_tail(&slabp->list, &n->slabs_partial);
3502 }
3503 }
3504 }
3505
3506 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3507 {
3508 int batchcount;
3509 struct kmem_cache_node *n;
3510 int node = numa_mem_id();
3511
3512 batchcount = ac->batchcount;
3513 #if DEBUG
3514 BUG_ON(!batchcount || batchcount > ac->avail);
3515 #endif
3516 check_irq_off();
3517 n = cachep->node[node];
3518 spin_lock(&n->list_lock);
3519 if (n->shared) {
3520 struct array_cache *shared_array = n->shared;
3521 int max = shared_array->limit - shared_array->avail;
3522 if (max) {
3523 if (batchcount > max)
3524 batchcount = max;
3525 memcpy(&(shared_array->entry[shared_array->avail]),
3526 ac->entry, sizeof(void *) * batchcount);
3527 shared_array->avail += batchcount;
3528 goto free_done;
3529 }
3530 }
3531
3532 free_block(cachep, ac->entry, batchcount, node);
3533 free_done:
3534 #if STATS
3535 {
3536 int i = 0;
3537 struct list_head *p;
3538
3539 p = n->slabs_free.next;
3540 while (p != &(n->slabs_free)) {
3541 struct slab *slabp;
3542
3543 slabp = list_entry(p, struct slab, list);
3544 BUG_ON(slabp->inuse);
3545
3546 i++;
3547 p = p->next;
3548 }
3549 STATS_SET_FREEABLE(cachep, i);
3550 }
3551 #endif
3552 spin_unlock(&n->list_lock);
3553 ac->avail -= batchcount;
3554 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3555 }
3556
3557 /*
3558 * Release an obj back to its cache. If the obj has a constructed state, it must
3559 * be in this state _before_ it is released. Called with disabled ints.
3560 */
3561 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3562 unsigned long caller)
3563 {
3564 struct array_cache *ac = cpu_cache_get(cachep);
3565
3566 check_irq_off();
3567 kmemleak_free_recursive(objp, cachep->flags);
3568 objp = cache_free_debugcheck(cachep, objp, caller);
3569
3570 kmemcheck_slab_free(cachep, objp, cachep->object_size);
3571
3572 /*
3573 * Skip calling cache_free_alien() when the platform is not numa.
3574 * This will avoid cache misses that happen while accessing slabp (which
3575 * is per page memory reference) to get nodeid. Instead use a global
3576 * variable to skip the call, which is mostly likely to be present in
3577 * the cache.
3578 */
3579 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3580 return;
3581
3582 if (likely(ac->avail < ac->limit)) {
3583 STATS_INC_FREEHIT(cachep);
3584 } else {
3585 STATS_INC_FREEMISS(cachep);
3586 cache_flusharray(cachep, ac);
3587 }
3588
3589 ac_put_obj(cachep, ac, objp);
3590 }
3591
3592 /**
3593 * kmem_cache_alloc - Allocate an object
3594 * @cachep: The cache to allocate from.
3595 * @flags: See kmalloc().
3596 *
3597 * Allocate an object from this cache. The flags are only relevant
3598 * if the cache has no available objects.
3599 */
3600 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3601 {
3602 void *ret = slab_alloc(cachep, flags, _RET_IP_);
3603
3604 trace_kmem_cache_alloc(_RET_IP_, ret,
3605 cachep->object_size, cachep->size, flags);
3606
3607 return ret;
3608 }
3609 EXPORT_SYMBOL(kmem_cache_alloc);
3610
3611 #ifdef CONFIG_TRACING
3612 void *
3613 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3614 {
3615 void *ret;
3616
3617 ret = slab_alloc(cachep, flags, _RET_IP_);
3618
3619 trace_kmalloc(_RET_IP_, ret,
3620 size, cachep->size, flags);
3621 return ret;
3622 }
3623 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3624 #endif
3625
3626 #ifdef CONFIG_NUMA
3627 /**
3628 * kmem_cache_alloc_node - Allocate an object on the specified node
3629 * @cachep: The cache to allocate from.
3630 * @flags: See kmalloc().
3631 * @nodeid: node number of the target node.
3632 *
3633 * Identical to kmem_cache_alloc but it will allocate memory on the given
3634 * node, which can improve the performance for cpu bound structures.
3635 *
3636 * Fallback to other node is possible if __GFP_THISNODE is not set.
3637 */
3638 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3639 {
3640 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3641
3642 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3643 cachep->object_size, cachep->size,
3644 flags, nodeid);
3645
3646 return ret;
3647 }
3648 EXPORT_SYMBOL(kmem_cache_alloc_node);
3649
3650 #ifdef CONFIG_TRACING
3651 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3652 gfp_t flags,
3653 int nodeid,
3654 size_t size)
3655 {
3656 void *ret;
3657
3658 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3659
3660 trace_kmalloc_node(_RET_IP_, ret,
3661 size, cachep->size,
3662 flags, nodeid);
3663 return ret;
3664 }
3665 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3666 #endif
3667
3668 static __always_inline void *
3669 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3670 {
3671 struct kmem_cache *cachep;
3672
3673 cachep = kmalloc_slab(size, flags);
3674 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3675 return cachep;
3676 return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3677 }
3678
3679 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3680 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3681 {
3682 return __do_kmalloc_node(size, flags, node, _RET_IP_);
3683 }
3684 EXPORT_SYMBOL(__kmalloc_node);
3685
3686 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3687 int node, unsigned long caller)
3688 {
3689 return __do_kmalloc_node(size, flags, node, caller);
3690 }
3691 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3692 #else
3693 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3694 {
3695 return __do_kmalloc_node(size, flags, node, 0);
3696 }
3697 EXPORT_SYMBOL(__kmalloc_node);
3698 #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3699 #endif /* CONFIG_NUMA */
3700
3701 /**
3702 * __do_kmalloc - allocate memory
3703 * @size: how many bytes of memory are required.
3704 * @flags: the type of memory to allocate (see kmalloc).
3705 * @caller: function caller for debug tracking of the caller
3706 */
3707 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3708 unsigned long caller)
3709 {
3710 struct kmem_cache *cachep;
3711 void *ret;
3712
3713 /* If you want to save a few bytes .text space: replace
3714 * __ with kmem_.
3715 * Then kmalloc uses the uninlined functions instead of the inline
3716 * functions.
3717 */
3718 cachep = kmalloc_slab(size, flags);
3719 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3720 return cachep;
3721 ret = slab_alloc(cachep, flags, caller);
3722
3723 trace_kmalloc(caller, ret,
3724 size, cachep->size, flags);
3725
3726 return ret;
3727 }
3728
3729
3730 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3731 void *__kmalloc(size_t size, gfp_t flags)
3732 {
3733 return __do_kmalloc(size, flags, _RET_IP_);
3734 }
3735 EXPORT_SYMBOL(__kmalloc);
3736
3737 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3738 {
3739 return __do_kmalloc(size, flags, caller);
3740 }
3741 EXPORT_SYMBOL(__kmalloc_track_caller);
3742
3743 #else
3744 void *__kmalloc(size_t size, gfp_t flags)
3745 {
3746 return __do_kmalloc(size, flags, 0);
3747 }
3748 EXPORT_SYMBOL(__kmalloc);
3749 #endif
3750
3751 /**
3752 * kmem_cache_free - Deallocate an object
3753 * @cachep: The cache the allocation was from.
3754 * @objp: The previously allocated object.
3755 *
3756 * Free an object which was previously allocated from this
3757 * cache.
3758 */
3759 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3760 {
3761 unsigned long flags;
3762 cachep = cache_from_obj(cachep, objp);
3763 if (!cachep)
3764 return;
3765
3766 local_irq_save(flags);
3767 debug_check_no_locks_freed(objp, cachep->object_size);
3768 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3769 debug_check_no_obj_freed(objp, cachep->object_size);
3770 __cache_free(cachep, objp, _RET_IP_);
3771 local_irq_restore(flags);
3772
3773 trace_kmem_cache_free(_RET_IP_, objp);
3774 }
3775 EXPORT_SYMBOL(kmem_cache_free);
3776
3777 /**
3778 * kfree - free previously allocated memory
3779 * @objp: pointer returned by kmalloc.
3780 *
3781 * If @objp is NULL, no operation is performed.
3782 *
3783 * Don't free memory not originally allocated by kmalloc()
3784 * or you will run into trouble.
3785 */
3786 void kfree(const void *objp)
3787 {
3788 struct kmem_cache *c;
3789 unsigned long flags;
3790
3791 trace_kfree(_RET_IP_, objp);
3792
3793 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3794 return;
3795 local_irq_save(flags);
3796 kfree_debugcheck(objp);
3797 c = virt_to_cache(objp);
3798 debug_check_no_locks_freed(objp, c->object_size);
3799
3800 debug_check_no_obj_freed(objp, c->object_size);
3801 __cache_free(c, (void *)objp, _RET_IP_);
3802 local_irq_restore(flags);
3803 }
3804 EXPORT_SYMBOL(kfree);
3805
3806 /*
3807 * This initializes kmem_cache_node or resizes various caches for all nodes.
3808 */
3809 static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
3810 {
3811 int node;
3812 struct kmem_cache_node *n;
3813 struct array_cache *new_shared;
3814 struct array_cache **new_alien = NULL;
3815
3816 for_each_online_node(node) {
3817
3818 if (use_alien_caches) {
3819 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3820 if (!new_alien)
3821 goto fail;
3822 }
3823
3824 new_shared = NULL;
3825 if (cachep->shared) {
3826 new_shared = alloc_arraycache(node,
3827 cachep->shared*cachep->batchcount,
3828 0xbaadf00d, gfp);
3829 if (!new_shared) {
3830 free_alien_cache(new_alien);
3831 goto fail;
3832 }
3833 }
3834
3835 n = cachep->node[node];
3836 if (n) {
3837 struct array_cache *shared = n->shared;
3838
3839 spin_lock_irq(&n->list_lock);
3840
3841 if (shared)
3842 free_block(cachep, shared->entry,
3843 shared->avail, node);
3844
3845 n->shared = new_shared;
3846 if (!n->alien) {
3847 n->alien = new_alien;
3848 new_alien = NULL;
3849 }
3850 n->free_limit = (1 + nr_cpus_node(node)) *
3851 cachep->batchcount + cachep->num;
3852 spin_unlock_irq(&n->list_lock);
3853 kfree(shared);
3854 free_alien_cache(new_alien);
3855 continue;
3856 }
3857 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3858 if (!n) {
3859 free_alien_cache(new_alien);
3860 kfree(new_shared);
3861 goto fail;
3862 }
3863
3864 kmem_cache_node_init(n);
3865 n->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3866 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3867 n->shared = new_shared;
3868 n->alien = new_alien;
3869 n->free_limit = (1 + nr_cpus_node(node)) *
3870 cachep->batchcount + cachep->num;
3871 cachep->node[node] = n;
3872 }
3873 return 0;
3874
3875 fail:
3876 if (!cachep->list.next) {
3877 /* Cache is not active yet. Roll back what we did */
3878 node--;
3879 while (node >= 0) {
3880 if (cachep->node[node]) {
3881 n = cachep->node[node];
3882
3883 kfree(n->shared);
3884 free_alien_cache(n->alien);
3885 kfree(n);
3886 cachep->node[node] = NULL;
3887 }
3888 node--;
3889 }
3890 }
3891 return -ENOMEM;
3892 }
3893
3894 struct ccupdate_struct {
3895 struct kmem_cache *cachep;
3896 struct array_cache *new[0];
3897 };
3898
3899 static void do_ccupdate_local(void *info)
3900 {
3901 struct ccupdate_struct *new = info;
3902 struct array_cache *old;
3903
3904 check_irq_off();
3905 old = cpu_cache_get(new->cachep);
3906
3907 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3908 new->new[smp_processor_id()] = old;
3909 }
3910
3911 /* Always called with the slab_mutex held */
3912 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3913 int batchcount, int shared, gfp_t gfp)
3914 {
3915 struct ccupdate_struct *new;
3916 int i;
3917
3918 new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
3919 gfp);
3920 if (!new)
3921 return -ENOMEM;
3922
3923 for_each_online_cpu(i) {
3924 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
3925 batchcount, gfp);
3926 if (!new->new[i]) {
3927 for (i--; i >= 0; i--)
3928 kfree(new->new[i]);
3929 kfree(new);
3930 return -ENOMEM;
3931 }
3932 }
3933 new->cachep = cachep;
3934
3935 on_each_cpu(do_ccupdate_local, (void *)new, 1);
3936
3937 check_irq_on();
3938 cachep->batchcount = batchcount;
3939 cachep->limit = limit;
3940 cachep->shared = shared;
3941
3942 for_each_online_cpu(i) {
3943 struct array_cache *ccold = new->new[i];
3944 if (!ccold)
3945 continue;
3946 spin_lock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
3947 free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
3948 spin_unlock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
3949 kfree(ccold);
3950 }
3951 kfree(new);
3952 return alloc_kmemlist(cachep, gfp);
3953 }
3954
3955 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3956 int batchcount, int shared, gfp_t gfp)
3957 {
3958 int ret;
3959 struct kmem_cache *c = NULL;
3960 int i = 0;
3961
3962 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3963
3964 if (slab_state < FULL)
3965 return ret;
3966
3967 if ((ret < 0) || !is_root_cache(cachep))
3968 return ret;
3969
3970 VM_BUG_ON(!mutex_is_locked(&slab_mutex));
3971 for_each_memcg_cache_index(i) {
3972 c = cache_from_memcg(cachep, i);
3973 if (c)
3974 /* return value determined by the parent cache only */
3975 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3976 }
3977
3978 return ret;
3979 }
3980
3981 /* Called with slab_mutex held always */
3982 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3983 {
3984 int err;
3985 int limit = 0;
3986 int shared = 0;
3987 int batchcount = 0;
3988
3989 if (!is_root_cache(cachep)) {
3990 struct kmem_cache *root = memcg_root_cache(cachep);
3991 limit = root->limit;
3992 shared = root->shared;
3993 batchcount = root->batchcount;
3994 }
3995
3996 if (limit && shared && batchcount)
3997 goto skip_setup;
3998 /*
3999 * The head array serves three purposes:
4000 * - create a LIFO ordering, i.e. return objects that are cache-warm
4001 * - reduce the number of spinlock operations.
4002 * - reduce the number of linked list operations on the slab and
4003 * bufctl chains: array operations are cheaper.
4004 * The numbers are guessed, we should auto-tune as described by
4005 * Bonwick.
4006 */
4007 if (cachep->size > 131072)
4008 limit = 1;
4009 else if (cachep->size > PAGE_SIZE)
4010 limit = 8;
4011 else if (cachep->size > 1024)
4012 limit = 24;
4013 else if (cachep->size > 256)
4014 limit = 54;
4015 else
4016 limit = 120;
4017
4018 /*
4019 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
4020 * allocation behaviour: Most allocs on one cpu, most free operations
4021 * on another cpu. For these cases, an efficient object passing between
4022 * cpus is necessary. This is provided by a shared array. The array
4023 * replaces Bonwick's magazine layer.
4024 * On uniprocessor, it's functionally equivalent (but less efficient)
4025 * to a larger limit. Thus disabled by default.
4026 */
4027 shared = 0;
4028 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
4029 shared = 8;
4030
4031 #if DEBUG
4032 /*
4033 * With debugging enabled, large batchcount lead to excessively long
4034 * periods with disabled local interrupts. Limit the batchcount
4035 */
4036 if (limit > 32)
4037 limit = 32;
4038 #endif
4039 batchcount = (limit + 1) / 2;
4040 skip_setup:
4041 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
4042 if (err)
4043 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
4044 cachep->name, -err);
4045 return err;
4046 }
4047
4048 /*
4049 * Drain an array if it contains any elements taking the node lock only if
4050 * necessary. Note that the node listlock also protects the array_cache
4051 * if drain_array() is used on the shared array.
4052 */
4053 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
4054 struct array_cache *ac, int force, int node)
4055 {
4056 int tofree;
4057
4058 if (!ac || !ac->avail)
4059 return;
4060 if (ac->touched && !force) {
4061 ac->touched = 0;
4062 } else {
4063 spin_lock_irq(&n->list_lock);
4064 if (ac->avail) {
4065 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4066 if (tofree > ac->avail)
4067 tofree = (ac->avail + 1) / 2;
4068 free_block(cachep, ac->entry, tofree, node);
4069 ac->avail -= tofree;
4070 memmove(ac->entry, &(ac->entry[tofree]),
4071 sizeof(void *) * ac->avail);
4072 }
4073 spin_unlock_irq(&n->list_lock);
4074 }
4075 }
4076
4077 /**
4078 * cache_reap - Reclaim memory from caches.
4079 * @w: work descriptor
4080 *
4081 * Called from workqueue/eventd every few seconds.
4082 * Purpose:
4083 * - clear the per-cpu caches for this CPU.
4084 * - return freeable pages to the main free memory pool.
4085 *
4086 * If we cannot acquire the cache chain mutex then just give up - we'll try
4087 * again on the next iteration.
4088 */
4089 static void cache_reap(struct work_struct *w)
4090 {
4091 struct kmem_cache *searchp;
4092 struct kmem_cache_node *n;
4093 int node = numa_mem_id();
4094 struct delayed_work *work = to_delayed_work(w);
4095
4096 if (!mutex_trylock(&slab_mutex))
4097 /* Give up. Setup the next iteration. */
4098 goto out;
4099
4100 list_for_each_entry(searchp, &slab_caches, list) {
4101 check_irq_on();
4102
4103 /*
4104 * We only take the node lock if absolutely necessary and we
4105 * have established with reasonable certainty that
4106 * we can do some work if the lock was obtained.
4107 */
4108 n = searchp->node[node];
4109
4110 reap_alien(searchp, n);
4111
4112 drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
4113
4114 /*
4115 * These are racy checks but it does not matter
4116 * if we skip one check or scan twice.
4117 */
4118 if (time_after(n->next_reap, jiffies))
4119 goto next;
4120
4121 n->next_reap = jiffies + REAPTIMEOUT_LIST3;
4122
4123 drain_array(searchp, n, n->shared, 0, node);
4124
4125 if (n->free_touched)
4126 n->free_touched = 0;
4127 else {
4128 int freed;
4129
4130 freed = drain_freelist(searchp, n, (n->free_limit +
4131 5 * searchp->num - 1) / (5 * searchp->num));
4132 STATS_ADD_REAPED(searchp, freed);
4133 }
4134 next:
4135 cond_resched();
4136 }
4137 check_irq_on();
4138 mutex_unlock(&slab_mutex);
4139 next_reap_node();
4140 out:
4141 /* Set up the next iteration */
4142 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
4143 }
4144
4145 #ifdef CONFIG_SLABINFO
4146 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4147 {
4148 struct slab *slabp;
4149 unsigned long active_objs;
4150 unsigned long num_objs;
4151 unsigned long active_slabs = 0;
4152 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4153 const char *name;
4154 char *error = NULL;
4155 int node;
4156 struct kmem_cache_node *n;
4157
4158 active_objs = 0;
4159 num_slabs = 0;
4160 for_each_online_node(node) {
4161 n = cachep->node[node];
4162 if (!n)
4163 continue;
4164
4165 check_irq_on();
4166 spin_lock_irq(&n->list_lock);
4167
4168 list_for_each_entry(slabp, &n->slabs_full, list) {
4169 if (slabp->inuse != cachep->num && !error)
4170 error = "slabs_full accounting error";
4171 active_objs += cachep->num;
4172 active_slabs++;
4173 }
4174 list_for_each_entry(slabp, &n->slabs_partial, list) {
4175 if (slabp->inuse == cachep->num && !error)
4176 error = "slabs_partial inuse accounting error";
4177 if (!slabp->inuse && !error)
4178 error = "slabs_partial/inuse accounting error";
4179 active_objs += slabp->inuse;
4180 active_slabs++;
4181 }
4182 list_for_each_entry(slabp, &n->slabs_free, list) {
4183 if (slabp->inuse && !error)
4184 error = "slabs_free/inuse accounting error";
4185 num_slabs++;
4186 }
4187 free_objects += n->free_objects;
4188 if (n->shared)
4189 shared_avail += n->shared->avail;
4190
4191 spin_unlock_irq(&n->list_lock);
4192 }
4193 num_slabs += active_slabs;
4194 num_objs = num_slabs * cachep->num;
4195 if (num_objs - active_objs != free_objects && !error)
4196 error = "free_objects accounting error";
4197
4198 name = cachep->name;
4199 if (error)
4200 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4201
4202 sinfo->active_objs = active_objs;
4203 sinfo->num_objs = num_objs;
4204 sinfo->active_slabs = active_slabs;
4205 sinfo->num_slabs = num_slabs;
4206 sinfo->shared_avail = shared_avail;
4207 sinfo->limit = cachep->limit;
4208 sinfo->batchcount = cachep->batchcount;
4209 sinfo->shared = cachep->shared;
4210 sinfo->objects_per_slab = cachep->num;
4211 sinfo->cache_order = cachep->gfporder;
4212 }
4213
4214 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4215 {
4216 #if STATS
4217 { /* node stats */
4218 unsigned long high = cachep->high_mark;
4219 unsigned long allocs = cachep->num_allocations;
4220 unsigned long grown = cachep->grown;
4221 unsigned long reaped = cachep->reaped;
4222 unsigned long errors = cachep->errors;
4223 unsigned long max_freeable = cachep->max_freeable;
4224 unsigned long node_allocs = cachep->node_allocs;
4225 unsigned long node_frees = cachep->node_frees;
4226 unsigned long overflows = cachep->node_overflow;
4227
4228 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4229 "%4lu %4lu %4lu %4lu %4lu",
4230 allocs, high, grown,
4231 reaped, errors, max_freeable, node_allocs,
4232 node_frees, overflows);
4233 }
4234 /* cpu stats */
4235 {
4236 unsigned long allochit = atomic_read(&cachep->allochit);
4237 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4238 unsigned long freehit = atomic_read(&cachep->freehit);
4239 unsigned long freemiss = atomic_read(&cachep->freemiss);
4240
4241 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4242 allochit, allocmiss, freehit, freemiss);
4243 }
4244 #endif
4245 }
4246
4247 #define MAX_SLABINFO_WRITE 128
4248 /**
4249 * slabinfo_write - Tuning for the slab allocator
4250 * @file: unused
4251 * @buffer: user buffer
4252 * @count: data length
4253 * @ppos: unused
4254 */
4255 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4256 size_t count, loff_t *ppos)
4257 {
4258 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4259 int limit, batchcount, shared, res;
4260 struct kmem_cache *cachep;
4261
4262 if (count > MAX_SLABINFO_WRITE)
4263 return -EINVAL;
4264 if (copy_from_user(&kbuf, buffer, count))
4265 return -EFAULT;
4266 kbuf[MAX_SLABINFO_WRITE] = '\0';
4267
4268 tmp = strchr(kbuf, ' ');
4269 if (!tmp)
4270 return -EINVAL;
4271 *tmp = '\0';
4272 tmp++;
4273 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4274 return -EINVAL;
4275
4276 /* Find the cache in the chain of caches. */
4277 mutex_lock(&slab_mutex);
4278 res = -EINVAL;
4279 list_for_each_entry(cachep, &slab_caches, list) {
4280 if (!strcmp(cachep->name, kbuf)) {
4281 if (limit < 1 || batchcount < 1 ||
4282 batchcount > limit || shared < 0) {
4283 res = 0;
4284 } else {
4285 res = do_tune_cpucache(cachep, limit,
4286 batchcount, shared,
4287 GFP_KERNEL);
4288 }
4289 break;
4290 }
4291 }
4292 mutex_unlock(&slab_mutex);
4293 if (res >= 0)
4294 res = count;
4295 return res;
4296 }
4297
4298 #ifdef CONFIG_DEBUG_SLAB_LEAK
4299
4300 static void *leaks_start(struct seq_file *m, loff_t *pos)
4301 {
4302 mutex_lock(&slab_mutex);
4303 return seq_list_start(&slab_caches, *pos);
4304 }
4305
4306 static inline int add_caller(unsigned long *n, unsigned long v)
4307 {
4308 unsigned long *p;
4309 int l;
4310 if (!v)
4311 return 1;
4312 l = n[1];
4313 p = n + 2;
4314 while (l) {
4315 int i = l/2;
4316 unsigned long *q = p + 2 * i;
4317 if (*q == v) {
4318 q[1]++;
4319 return 1;
4320 }
4321 if (*q > v) {
4322 l = i;
4323 } else {
4324 p = q + 2;
4325 l -= i + 1;
4326 }
4327 }
4328 if (++n[1] == n[0])
4329 return 0;
4330 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4331 p[0] = v;
4332 p[1] = 1;
4333 return 1;
4334 }
4335
4336 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4337 {
4338 void *p;
4339 int i;
4340 if (n[0] == n[1])
4341 return;
4342 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->size) {
4343 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4344 continue;
4345 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4346 return;
4347 }
4348 }
4349
4350 static void show_symbol(struct seq_file *m, unsigned long address)
4351 {
4352 #ifdef CONFIG_KALLSYMS
4353 unsigned long offset, size;
4354 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4355
4356 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4357 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4358 if (modname[0])
4359 seq_printf(m, " [%s]", modname);
4360 return;
4361 }
4362 #endif
4363 seq_printf(m, "%p", (void *)address);
4364 }
4365
4366 static int leaks_show(struct seq_file *m, void *p)
4367 {
4368 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4369 struct slab *slabp;
4370 struct kmem_cache_node *n;
4371 const char *name;
4372 unsigned long *x = m->private;
4373 int node;
4374 int i;
4375
4376 if (!(cachep->flags & SLAB_STORE_USER))
4377 return 0;
4378 if (!(cachep->flags & SLAB_RED_ZONE))
4379 return 0;
4380
4381 /* OK, we can do it */
4382
4383 x[1] = 0;
4384
4385 for_each_online_node(node) {
4386 n = cachep->node[node];
4387 if (!n)
4388 continue;
4389
4390 check_irq_on();
4391 spin_lock_irq(&n->list_lock);
4392
4393 list_for_each_entry(slabp, &n->slabs_full, list)
4394 handle_slab(x, cachep, slabp);
4395 list_for_each_entry(slabp, &n->slabs_partial, list)
4396 handle_slab(x, cachep, slabp);
4397 spin_unlock_irq(&n->list_lock);
4398 }
4399 name = cachep->name;
4400 if (x[0] == x[1]) {
4401 /* Increase the buffer size */
4402 mutex_unlock(&slab_mutex);
4403 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4404 if (!m->private) {
4405 /* Too bad, we are really out */
4406 m->private = x;
4407 mutex_lock(&slab_mutex);
4408 return -ENOMEM;
4409 }
4410 *(unsigned long *)m->private = x[0] * 2;
4411 kfree(x);
4412 mutex_lock(&slab_mutex);
4413 /* Now make sure this entry will be retried */
4414 m->count = m->size;
4415 return 0;
4416 }
4417 for (i = 0; i < x[1]; i++) {
4418 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4419 show_symbol(m, x[2*i+2]);
4420 seq_putc(m, '\n');
4421 }
4422
4423 return 0;
4424 }
4425
4426 static const struct seq_operations slabstats_op = {
4427 .start = leaks_start,
4428 .next = slab_next,
4429 .stop = slab_stop,
4430 .show = leaks_show,
4431 };
4432
4433 static int slabstats_open(struct inode *inode, struct file *file)
4434 {
4435 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4436 int ret = -ENOMEM;
4437 if (n) {
4438 ret = seq_open(file, &slabstats_op);
4439 if (!ret) {
4440 struct seq_file *m = file->private_data;
4441 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4442 m->private = n;
4443 n = NULL;
4444 }
4445 kfree(n);
4446 }
4447 return ret;
4448 }
4449
4450 static const struct file_operations proc_slabstats_operations = {
4451 .open = slabstats_open,
4452 .read = seq_read,
4453 .llseek = seq_lseek,
4454 .release = seq_release_private,
4455 };
4456 #endif
4457
4458 static int __init slab_proc_init(void)
4459 {
4460 #ifdef CONFIG_DEBUG_SLAB_LEAK
4461 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4462 #endif
4463 return 0;
4464 }
4465 module_init(slab_proc_init);
4466 #endif
4467
4468 /**
4469 * ksize - get the actual amount of memory allocated for a given object
4470 * @objp: Pointer to the object
4471 *
4472 * kmalloc may internally round up allocations and return more memory
4473 * than requested. ksize() can be used to determine the actual amount of
4474 * memory allocated. The caller may use this additional memory, even though
4475 * a smaller amount of memory was initially specified with the kmalloc call.
4476 * The caller must guarantee that objp points to a valid object previously
4477 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4478 * must not be freed during the duration of the call.
4479 */
4480 size_t ksize(const void *objp)
4481 {
4482 BUG_ON(!objp);
4483 if (unlikely(objp == ZERO_SIZE_PTR))
4484 return 0;
4485
4486 return virt_to_cache(objp)->object_size;
4487 }
4488 EXPORT_SYMBOL(ksize);
This page took 0.125181 seconds and 5 git commands to generate.