slab: Fix build failure in __kmem_cache_create()
[deliverable/linux.git] / mm / slab.c
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'slab_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
87 */
88
89 #include <linux/slab.h>
90 #include "slab.h"
91 #include <linux/mm.h>
92 #include <linux/poison.h>
93 #include <linux/swap.h>
94 #include <linux/cache.h>
95 #include <linux/interrupt.h>
96 #include <linux/init.h>
97 #include <linux/compiler.h>
98 #include <linux/cpuset.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/notifier.h>
102 #include <linux/kallsyms.h>
103 #include <linux/cpu.h>
104 #include <linux/sysctl.h>
105 #include <linux/module.h>
106 #include <linux/rcupdate.h>
107 #include <linux/string.h>
108 #include <linux/uaccess.h>
109 #include <linux/nodemask.h>
110 #include <linux/kmemleak.h>
111 #include <linux/mempolicy.h>
112 #include <linux/mutex.h>
113 #include <linux/fault-inject.h>
114 #include <linux/rtmutex.h>
115 #include <linux/reciprocal_div.h>
116 #include <linux/debugobjects.h>
117 #include <linux/kmemcheck.h>
118 #include <linux/memory.h>
119 #include <linux/prefetch.h>
120
121 #include <net/sock.h>
122
123 #include <asm/cacheflush.h>
124 #include <asm/tlbflush.h>
125 #include <asm/page.h>
126
127 #include <trace/events/kmem.h>
128
129 #include "internal.h"
130
131 /*
132 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
133 * 0 for faster, smaller code (especially in the critical paths).
134 *
135 * STATS - 1 to collect stats for /proc/slabinfo.
136 * 0 for faster, smaller code (especially in the critical paths).
137 *
138 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
139 */
140
141 #ifdef CONFIG_DEBUG_SLAB
142 #define DEBUG 1
143 #define STATS 1
144 #define FORCED_DEBUG 1
145 #else
146 #define DEBUG 0
147 #define STATS 0
148 #define FORCED_DEBUG 0
149 #endif
150
151 /* Shouldn't this be in a header file somewhere? */
152 #define BYTES_PER_WORD sizeof(void *)
153 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
154
155 #ifndef ARCH_KMALLOC_FLAGS
156 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
157 #endif
158
159 /*
160 * true if a page was allocated from pfmemalloc reserves for network-based
161 * swap
162 */
163 static bool pfmemalloc_active __read_mostly;
164
165 /* Legal flag mask for kmem_cache_create(). */
166 #if DEBUG
167 # define CREATE_MASK (SLAB_RED_ZONE | \
168 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
169 SLAB_CACHE_DMA | \
170 SLAB_STORE_USER | \
171 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
172 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
173 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
174 #else
175 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
176 SLAB_CACHE_DMA | \
177 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
178 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
179 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
180 #endif
181
182 /*
183 * kmem_bufctl_t:
184 *
185 * Bufctl's are used for linking objs within a slab
186 * linked offsets.
187 *
188 * This implementation relies on "struct page" for locating the cache &
189 * slab an object belongs to.
190 * This allows the bufctl structure to be small (one int), but limits
191 * the number of objects a slab (not a cache) can contain when off-slab
192 * bufctls are used. The limit is the size of the largest general cache
193 * that does not use off-slab slabs.
194 * For 32bit archs with 4 kB pages, is this 56.
195 * This is not serious, as it is only for large objects, when it is unwise
196 * to have too many per slab.
197 * Note: This limit can be raised by introducing a general cache whose size
198 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
199 */
200
201 typedef unsigned int kmem_bufctl_t;
202 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
203 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
204 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
205 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
206
207 /*
208 * struct slab_rcu
209 *
210 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
211 * arrange for kmem_freepages to be called via RCU. This is useful if
212 * we need to approach a kernel structure obliquely, from its address
213 * obtained without the usual locking. We can lock the structure to
214 * stabilize it and check it's still at the given address, only if we
215 * can be sure that the memory has not been meanwhile reused for some
216 * other kind of object (which our subsystem's lock might corrupt).
217 *
218 * rcu_read_lock before reading the address, then rcu_read_unlock after
219 * taking the spinlock within the structure expected at that address.
220 */
221 struct slab_rcu {
222 struct rcu_head head;
223 struct kmem_cache *cachep;
224 void *addr;
225 };
226
227 /*
228 * struct slab
229 *
230 * Manages the objs in a slab. Placed either at the beginning of mem allocated
231 * for a slab, or allocated from an general cache.
232 * Slabs are chained into three list: fully used, partial, fully free slabs.
233 */
234 struct slab {
235 union {
236 struct {
237 struct list_head list;
238 unsigned long colouroff;
239 void *s_mem; /* including colour offset */
240 unsigned int inuse; /* num of objs active in slab */
241 kmem_bufctl_t free;
242 unsigned short nodeid;
243 };
244 struct slab_rcu __slab_cover_slab_rcu;
245 };
246 };
247
248 /*
249 * struct array_cache
250 *
251 * Purpose:
252 * - LIFO ordering, to hand out cache-warm objects from _alloc
253 * - reduce the number of linked list operations
254 * - reduce spinlock operations
255 *
256 * The limit is stored in the per-cpu structure to reduce the data cache
257 * footprint.
258 *
259 */
260 struct array_cache {
261 unsigned int avail;
262 unsigned int limit;
263 unsigned int batchcount;
264 unsigned int touched;
265 spinlock_t lock;
266 void *entry[]; /*
267 * Must have this definition in here for the proper
268 * alignment of array_cache. Also simplifies accessing
269 * the entries.
270 *
271 * Entries should not be directly dereferenced as
272 * entries belonging to slabs marked pfmemalloc will
273 * have the lower bits set SLAB_OBJ_PFMEMALLOC
274 */
275 };
276
277 #define SLAB_OBJ_PFMEMALLOC 1
278 static inline bool is_obj_pfmemalloc(void *objp)
279 {
280 return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
281 }
282
283 static inline void set_obj_pfmemalloc(void **objp)
284 {
285 *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
286 return;
287 }
288
289 static inline void clear_obj_pfmemalloc(void **objp)
290 {
291 *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
292 }
293
294 /*
295 * bootstrap: The caches do not work without cpuarrays anymore, but the
296 * cpuarrays are allocated from the generic caches...
297 */
298 #define BOOT_CPUCACHE_ENTRIES 1
299 struct arraycache_init {
300 struct array_cache cache;
301 void *entries[BOOT_CPUCACHE_ENTRIES];
302 };
303
304 /*
305 * The slab lists for all objects.
306 */
307 struct kmem_list3 {
308 struct list_head slabs_partial; /* partial list first, better asm code */
309 struct list_head slabs_full;
310 struct list_head slabs_free;
311 unsigned long free_objects;
312 unsigned int free_limit;
313 unsigned int colour_next; /* Per-node cache coloring */
314 spinlock_t list_lock;
315 struct array_cache *shared; /* shared per node */
316 struct array_cache **alien; /* on other nodes */
317 unsigned long next_reap; /* updated without locking */
318 int free_touched; /* updated without locking */
319 };
320
321 /*
322 * Need this for bootstrapping a per node allocator.
323 */
324 #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
325 static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
326 #define CACHE_CACHE 0
327 #define SIZE_AC MAX_NUMNODES
328 #define SIZE_L3 (2 * MAX_NUMNODES)
329
330 static int drain_freelist(struct kmem_cache *cache,
331 struct kmem_list3 *l3, int tofree);
332 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
333 int node);
334 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
335 static void cache_reap(struct work_struct *unused);
336
337 /*
338 * This function must be completely optimized away if a constant is passed to
339 * it. Mostly the same as what is in linux/slab.h except it returns an index.
340 */
341 static __always_inline int index_of(const size_t size)
342 {
343 extern void __bad_size(void);
344
345 if (__builtin_constant_p(size)) {
346 int i = 0;
347
348 #define CACHE(x) \
349 if (size <=x) \
350 return i; \
351 else \
352 i++;
353 #include <linux/kmalloc_sizes.h>
354 #undef CACHE
355 __bad_size();
356 } else
357 __bad_size();
358 return 0;
359 }
360
361 static int slab_early_init = 1;
362
363 #define INDEX_AC index_of(sizeof(struct arraycache_init))
364 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
365
366 static void kmem_list3_init(struct kmem_list3 *parent)
367 {
368 INIT_LIST_HEAD(&parent->slabs_full);
369 INIT_LIST_HEAD(&parent->slabs_partial);
370 INIT_LIST_HEAD(&parent->slabs_free);
371 parent->shared = NULL;
372 parent->alien = NULL;
373 parent->colour_next = 0;
374 spin_lock_init(&parent->list_lock);
375 parent->free_objects = 0;
376 parent->free_touched = 0;
377 }
378
379 #define MAKE_LIST(cachep, listp, slab, nodeid) \
380 do { \
381 INIT_LIST_HEAD(listp); \
382 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
383 } while (0)
384
385 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
386 do { \
387 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
388 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
389 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
390 } while (0)
391
392 #define CFLGS_OFF_SLAB (0x80000000UL)
393 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
394
395 #define BATCHREFILL_LIMIT 16
396 /*
397 * Optimization question: fewer reaps means less probability for unnessary
398 * cpucache drain/refill cycles.
399 *
400 * OTOH the cpuarrays can contain lots of objects,
401 * which could lock up otherwise freeable slabs.
402 */
403 #define REAPTIMEOUT_CPUC (2*HZ)
404 #define REAPTIMEOUT_LIST3 (4*HZ)
405
406 #if STATS
407 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
408 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
409 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
410 #define STATS_INC_GROWN(x) ((x)->grown++)
411 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
412 #define STATS_SET_HIGH(x) \
413 do { \
414 if ((x)->num_active > (x)->high_mark) \
415 (x)->high_mark = (x)->num_active; \
416 } while (0)
417 #define STATS_INC_ERR(x) ((x)->errors++)
418 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
419 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
420 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
421 #define STATS_SET_FREEABLE(x, i) \
422 do { \
423 if ((x)->max_freeable < i) \
424 (x)->max_freeable = i; \
425 } while (0)
426 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
427 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
428 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
429 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
430 #else
431 #define STATS_INC_ACTIVE(x) do { } while (0)
432 #define STATS_DEC_ACTIVE(x) do { } while (0)
433 #define STATS_INC_ALLOCED(x) do { } while (0)
434 #define STATS_INC_GROWN(x) do { } while (0)
435 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
436 #define STATS_SET_HIGH(x) do { } while (0)
437 #define STATS_INC_ERR(x) do { } while (0)
438 #define STATS_INC_NODEALLOCS(x) do { } while (0)
439 #define STATS_INC_NODEFREES(x) do { } while (0)
440 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
441 #define STATS_SET_FREEABLE(x, i) do { } while (0)
442 #define STATS_INC_ALLOCHIT(x) do { } while (0)
443 #define STATS_INC_ALLOCMISS(x) do { } while (0)
444 #define STATS_INC_FREEHIT(x) do { } while (0)
445 #define STATS_INC_FREEMISS(x) do { } while (0)
446 #endif
447
448 #if DEBUG
449
450 /*
451 * memory layout of objects:
452 * 0 : objp
453 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
454 * the end of an object is aligned with the end of the real
455 * allocation. Catches writes behind the end of the allocation.
456 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
457 * redzone word.
458 * cachep->obj_offset: The real object.
459 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
460 * cachep->size - 1* BYTES_PER_WORD: last caller address
461 * [BYTES_PER_WORD long]
462 */
463 static int obj_offset(struct kmem_cache *cachep)
464 {
465 return cachep->obj_offset;
466 }
467
468 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
469 {
470 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
471 return (unsigned long long*) (objp + obj_offset(cachep) -
472 sizeof(unsigned long long));
473 }
474
475 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
476 {
477 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
478 if (cachep->flags & SLAB_STORE_USER)
479 return (unsigned long long *)(objp + cachep->size -
480 sizeof(unsigned long long) -
481 REDZONE_ALIGN);
482 return (unsigned long long *) (objp + cachep->size -
483 sizeof(unsigned long long));
484 }
485
486 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
487 {
488 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
489 return (void **)(objp + cachep->size - BYTES_PER_WORD);
490 }
491
492 #else
493
494 #define obj_offset(x) 0
495 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
496 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
497 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
498
499 #endif
500
501 /*
502 * Do not go above this order unless 0 objects fit into the slab or
503 * overridden on the command line.
504 */
505 #define SLAB_MAX_ORDER_HI 1
506 #define SLAB_MAX_ORDER_LO 0
507 static int slab_max_order = SLAB_MAX_ORDER_LO;
508 static bool slab_max_order_set __initdata;
509
510 static inline struct kmem_cache *virt_to_cache(const void *obj)
511 {
512 struct page *page = virt_to_head_page(obj);
513 return page->slab_cache;
514 }
515
516 static inline struct slab *virt_to_slab(const void *obj)
517 {
518 struct page *page = virt_to_head_page(obj);
519
520 VM_BUG_ON(!PageSlab(page));
521 return page->slab_page;
522 }
523
524 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
525 unsigned int idx)
526 {
527 return slab->s_mem + cache->size * idx;
528 }
529
530 /*
531 * We want to avoid an expensive divide : (offset / cache->size)
532 * Using the fact that size is a constant for a particular cache,
533 * we can replace (offset / cache->size) by
534 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
535 */
536 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
537 const struct slab *slab, void *obj)
538 {
539 u32 offset = (obj - slab->s_mem);
540 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
541 }
542
543 /*
544 * These are the default caches for kmalloc. Custom caches can have other sizes.
545 */
546 struct cache_sizes malloc_sizes[] = {
547 #define CACHE(x) { .cs_size = (x) },
548 #include <linux/kmalloc_sizes.h>
549 CACHE(ULONG_MAX)
550 #undef CACHE
551 };
552 EXPORT_SYMBOL(malloc_sizes);
553
554 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
555 struct cache_names {
556 char *name;
557 char *name_dma;
558 };
559
560 static struct cache_names __initdata cache_names[] = {
561 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
562 #include <linux/kmalloc_sizes.h>
563 {NULL,}
564 #undef CACHE
565 };
566
567 static struct arraycache_init initarray_cache __initdata =
568 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
569 static struct arraycache_init initarray_generic =
570 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
571
572 /* internal cache of cache description objs */
573 static struct kmem_list3 *cache_cache_nodelists[MAX_NUMNODES];
574 static struct kmem_cache cache_cache = {
575 .nodelists = cache_cache_nodelists,
576 .batchcount = 1,
577 .limit = BOOT_CPUCACHE_ENTRIES,
578 .shared = 1,
579 .size = sizeof(struct kmem_cache),
580 .name = "kmem_cache",
581 };
582
583 #define BAD_ALIEN_MAGIC 0x01020304ul
584
585 #ifdef CONFIG_LOCKDEP
586
587 /*
588 * Slab sometimes uses the kmalloc slabs to store the slab headers
589 * for other slabs "off slab".
590 * The locking for this is tricky in that it nests within the locks
591 * of all other slabs in a few places; to deal with this special
592 * locking we put on-slab caches into a separate lock-class.
593 *
594 * We set lock class for alien array caches which are up during init.
595 * The lock annotation will be lost if all cpus of a node goes down and
596 * then comes back up during hotplug
597 */
598 static struct lock_class_key on_slab_l3_key;
599 static struct lock_class_key on_slab_alc_key;
600
601 static struct lock_class_key debugobj_l3_key;
602 static struct lock_class_key debugobj_alc_key;
603
604 static void slab_set_lock_classes(struct kmem_cache *cachep,
605 struct lock_class_key *l3_key, struct lock_class_key *alc_key,
606 int q)
607 {
608 struct array_cache **alc;
609 struct kmem_list3 *l3;
610 int r;
611
612 l3 = cachep->nodelists[q];
613 if (!l3)
614 return;
615
616 lockdep_set_class(&l3->list_lock, l3_key);
617 alc = l3->alien;
618 /*
619 * FIXME: This check for BAD_ALIEN_MAGIC
620 * should go away when common slab code is taught to
621 * work even without alien caches.
622 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
623 * for alloc_alien_cache,
624 */
625 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
626 return;
627 for_each_node(r) {
628 if (alc[r])
629 lockdep_set_class(&alc[r]->lock, alc_key);
630 }
631 }
632
633 static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
634 {
635 slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
636 }
637
638 static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
639 {
640 int node;
641
642 for_each_online_node(node)
643 slab_set_debugobj_lock_classes_node(cachep, node);
644 }
645
646 static void init_node_lock_keys(int q)
647 {
648 struct cache_sizes *s = malloc_sizes;
649
650 if (slab_state < UP)
651 return;
652
653 for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
654 struct kmem_list3 *l3;
655
656 l3 = s->cs_cachep->nodelists[q];
657 if (!l3 || OFF_SLAB(s->cs_cachep))
658 continue;
659
660 slab_set_lock_classes(s->cs_cachep, &on_slab_l3_key,
661 &on_slab_alc_key, q);
662 }
663 }
664
665 static inline void init_lock_keys(void)
666 {
667 int node;
668
669 for_each_node(node)
670 init_node_lock_keys(node);
671 }
672 #else
673 static void init_node_lock_keys(int q)
674 {
675 }
676
677 static inline void init_lock_keys(void)
678 {
679 }
680
681 static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
682 {
683 }
684
685 static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
686 {
687 }
688 #endif
689
690 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
691
692 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
693 {
694 return cachep->array[smp_processor_id()];
695 }
696
697 static inline struct kmem_cache *__find_general_cachep(size_t size,
698 gfp_t gfpflags)
699 {
700 struct cache_sizes *csizep = malloc_sizes;
701
702 #if DEBUG
703 /* This happens if someone tries to call
704 * kmem_cache_create(), or __kmalloc(), before
705 * the generic caches are initialized.
706 */
707 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
708 #endif
709 if (!size)
710 return ZERO_SIZE_PTR;
711
712 while (size > csizep->cs_size)
713 csizep++;
714
715 /*
716 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
717 * has cs_{dma,}cachep==NULL. Thus no special case
718 * for large kmalloc calls required.
719 */
720 #ifdef CONFIG_ZONE_DMA
721 if (unlikely(gfpflags & GFP_DMA))
722 return csizep->cs_dmacachep;
723 #endif
724 return csizep->cs_cachep;
725 }
726
727 static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
728 {
729 return __find_general_cachep(size, gfpflags);
730 }
731
732 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
733 {
734 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
735 }
736
737 /*
738 * Calculate the number of objects and left-over bytes for a given buffer size.
739 */
740 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
741 size_t align, int flags, size_t *left_over,
742 unsigned int *num)
743 {
744 int nr_objs;
745 size_t mgmt_size;
746 size_t slab_size = PAGE_SIZE << gfporder;
747
748 /*
749 * The slab management structure can be either off the slab or
750 * on it. For the latter case, the memory allocated for a
751 * slab is used for:
752 *
753 * - The struct slab
754 * - One kmem_bufctl_t for each object
755 * - Padding to respect alignment of @align
756 * - @buffer_size bytes for each object
757 *
758 * If the slab management structure is off the slab, then the
759 * alignment will already be calculated into the size. Because
760 * the slabs are all pages aligned, the objects will be at the
761 * correct alignment when allocated.
762 */
763 if (flags & CFLGS_OFF_SLAB) {
764 mgmt_size = 0;
765 nr_objs = slab_size / buffer_size;
766
767 if (nr_objs > SLAB_LIMIT)
768 nr_objs = SLAB_LIMIT;
769 } else {
770 /*
771 * Ignore padding for the initial guess. The padding
772 * is at most @align-1 bytes, and @buffer_size is at
773 * least @align. In the worst case, this result will
774 * be one greater than the number of objects that fit
775 * into the memory allocation when taking the padding
776 * into account.
777 */
778 nr_objs = (slab_size - sizeof(struct slab)) /
779 (buffer_size + sizeof(kmem_bufctl_t));
780
781 /*
782 * This calculated number will be either the right
783 * amount, or one greater than what we want.
784 */
785 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
786 > slab_size)
787 nr_objs--;
788
789 if (nr_objs > SLAB_LIMIT)
790 nr_objs = SLAB_LIMIT;
791
792 mgmt_size = slab_mgmt_size(nr_objs, align);
793 }
794 *num = nr_objs;
795 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
796 }
797
798 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
799
800 static void __slab_error(const char *function, struct kmem_cache *cachep,
801 char *msg)
802 {
803 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
804 function, cachep->name, msg);
805 dump_stack();
806 add_taint(TAINT_BAD_PAGE);
807 }
808
809 /*
810 * By default on NUMA we use alien caches to stage the freeing of
811 * objects allocated from other nodes. This causes massive memory
812 * inefficiencies when using fake NUMA setup to split memory into a
813 * large number of small nodes, so it can be disabled on the command
814 * line
815 */
816
817 static int use_alien_caches __read_mostly = 1;
818 static int __init noaliencache_setup(char *s)
819 {
820 use_alien_caches = 0;
821 return 1;
822 }
823 __setup("noaliencache", noaliencache_setup);
824
825 static int __init slab_max_order_setup(char *str)
826 {
827 get_option(&str, &slab_max_order);
828 slab_max_order = slab_max_order < 0 ? 0 :
829 min(slab_max_order, MAX_ORDER - 1);
830 slab_max_order_set = true;
831
832 return 1;
833 }
834 __setup("slab_max_order=", slab_max_order_setup);
835
836 #ifdef CONFIG_NUMA
837 /*
838 * Special reaping functions for NUMA systems called from cache_reap().
839 * These take care of doing round robin flushing of alien caches (containing
840 * objects freed on different nodes from which they were allocated) and the
841 * flushing of remote pcps by calling drain_node_pages.
842 */
843 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
844
845 static void init_reap_node(int cpu)
846 {
847 int node;
848
849 node = next_node(cpu_to_mem(cpu), node_online_map);
850 if (node == MAX_NUMNODES)
851 node = first_node(node_online_map);
852
853 per_cpu(slab_reap_node, cpu) = node;
854 }
855
856 static void next_reap_node(void)
857 {
858 int node = __this_cpu_read(slab_reap_node);
859
860 node = next_node(node, node_online_map);
861 if (unlikely(node >= MAX_NUMNODES))
862 node = first_node(node_online_map);
863 __this_cpu_write(slab_reap_node, node);
864 }
865
866 #else
867 #define init_reap_node(cpu) do { } while (0)
868 #define next_reap_node(void) do { } while (0)
869 #endif
870
871 /*
872 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
873 * via the workqueue/eventd.
874 * Add the CPU number into the expiration time to minimize the possibility of
875 * the CPUs getting into lockstep and contending for the global cache chain
876 * lock.
877 */
878 static void __cpuinit start_cpu_timer(int cpu)
879 {
880 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
881
882 /*
883 * When this gets called from do_initcalls via cpucache_init(),
884 * init_workqueues() has already run, so keventd will be setup
885 * at that time.
886 */
887 if (keventd_up() && reap_work->work.func == NULL) {
888 init_reap_node(cpu);
889 INIT_DELAYED_WORK_DEFERRABLE(reap_work, cache_reap);
890 schedule_delayed_work_on(cpu, reap_work,
891 __round_jiffies_relative(HZ, cpu));
892 }
893 }
894
895 static struct array_cache *alloc_arraycache(int node, int entries,
896 int batchcount, gfp_t gfp)
897 {
898 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
899 struct array_cache *nc = NULL;
900
901 nc = kmalloc_node(memsize, gfp, node);
902 /*
903 * The array_cache structures contain pointers to free object.
904 * However, when such objects are allocated or transferred to another
905 * cache the pointers are not cleared and they could be counted as
906 * valid references during a kmemleak scan. Therefore, kmemleak must
907 * not scan such objects.
908 */
909 kmemleak_no_scan(nc);
910 if (nc) {
911 nc->avail = 0;
912 nc->limit = entries;
913 nc->batchcount = batchcount;
914 nc->touched = 0;
915 spin_lock_init(&nc->lock);
916 }
917 return nc;
918 }
919
920 static inline bool is_slab_pfmemalloc(struct slab *slabp)
921 {
922 struct page *page = virt_to_page(slabp->s_mem);
923
924 return PageSlabPfmemalloc(page);
925 }
926
927 /* Clears pfmemalloc_active if no slabs have pfmalloc set */
928 static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
929 struct array_cache *ac)
930 {
931 struct kmem_list3 *l3 = cachep->nodelists[numa_mem_id()];
932 struct slab *slabp;
933 unsigned long flags;
934
935 if (!pfmemalloc_active)
936 return;
937
938 spin_lock_irqsave(&l3->list_lock, flags);
939 list_for_each_entry(slabp, &l3->slabs_full, list)
940 if (is_slab_pfmemalloc(slabp))
941 goto out;
942
943 list_for_each_entry(slabp, &l3->slabs_partial, list)
944 if (is_slab_pfmemalloc(slabp))
945 goto out;
946
947 list_for_each_entry(slabp, &l3->slabs_free, list)
948 if (is_slab_pfmemalloc(slabp))
949 goto out;
950
951 pfmemalloc_active = false;
952 out:
953 spin_unlock_irqrestore(&l3->list_lock, flags);
954 }
955
956 static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
957 gfp_t flags, bool force_refill)
958 {
959 int i;
960 void *objp = ac->entry[--ac->avail];
961
962 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
963 if (unlikely(is_obj_pfmemalloc(objp))) {
964 struct kmem_list3 *l3;
965
966 if (gfp_pfmemalloc_allowed(flags)) {
967 clear_obj_pfmemalloc(&objp);
968 return objp;
969 }
970
971 /* The caller cannot use PFMEMALLOC objects, find another one */
972 for (i = 1; i < ac->avail; i++) {
973 /* If a !PFMEMALLOC object is found, swap them */
974 if (!is_obj_pfmemalloc(ac->entry[i])) {
975 objp = ac->entry[i];
976 ac->entry[i] = ac->entry[ac->avail];
977 ac->entry[ac->avail] = objp;
978 return objp;
979 }
980 }
981
982 /*
983 * If there are empty slabs on the slabs_free list and we are
984 * being forced to refill the cache, mark this one !pfmemalloc.
985 */
986 l3 = cachep->nodelists[numa_mem_id()];
987 if (!list_empty(&l3->slabs_free) && force_refill) {
988 struct slab *slabp = virt_to_slab(objp);
989 ClearPageSlabPfmemalloc(virt_to_page(slabp->s_mem));
990 clear_obj_pfmemalloc(&objp);
991 recheck_pfmemalloc_active(cachep, ac);
992 return objp;
993 }
994
995 /* No !PFMEMALLOC objects available */
996 ac->avail++;
997 objp = NULL;
998 }
999
1000 return objp;
1001 }
1002
1003 static inline void *ac_get_obj(struct kmem_cache *cachep,
1004 struct array_cache *ac, gfp_t flags, bool force_refill)
1005 {
1006 void *objp;
1007
1008 if (unlikely(sk_memalloc_socks()))
1009 objp = __ac_get_obj(cachep, ac, flags, force_refill);
1010 else
1011 objp = ac->entry[--ac->avail];
1012
1013 return objp;
1014 }
1015
1016 static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
1017 void *objp)
1018 {
1019 if (unlikely(pfmemalloc_active)) {
1020 /* Some pfmemalloc slabs exist, check if this is one */
1021 struct page *page = virt_to_page(objp);
1022 if (PageSlabPfmemalloc(page))
1023 set_obj_pfmemalloc(&objp);
1024 }
1025
1026 return objp;
1027 }
1028
1029 static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
1030 void *objp)
1031 {
1032 if (unlikely(sk_memalloc_socks()))
1033 objp = __ac_put_obj(cachep, ac, objp);
1034
1035 ac->entry[ac->avail++] = objp;
1036 }
1037
1038 /*
1039 * Transfer objects in one arraycache to another.
1040 * Locking must be handled by the caller.
1041 *
1042 * Return the number of entries transferred.
1043 */
1044 static int transfer_objects(struct array_cache *to,
1045 struct array_cache *from, unsigned int max)
1046 {
1047 /* Figure out how many entries to transfer */
1048 int nr = min3(from->avail, max, to->limit - to->avail);
1049
1050 if (!nr)
1051 return 0;
1052
1053 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
1054 sizeof(void *) *nr);
1055
1056 from->avail -= nr;
1057 to->avail += nr;
1058 return nr;
1059 }
1060
1061 #ifndef CONFIG_NUMA
1062
1063 #define drain_alien_cache(cachep, alien) do { } while (0)
1064 #define reap_alien(cachep, l3) do { } while (0)
1065
1066 static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1067 {
1068 return (struct array_cache **)BAD_ALIEN_MAGIC;
1069 }
1070
1071 static inline void free_alien_cache(struct array_cache **ac_ptr)
1072 {
1073 }
1074
1075 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1076 {
1077 return 0;
1078 }
1079
1080 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1081 gfp_t flags)
1082 {
1083 return NULL;
1084 }
1085
1086 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1087 gfp_t flags, int nodeid)
1088 {
1089 return NULL;
1090 }
1091
1092 #else /* CONFIG_NUMA */
1093
1094 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1095 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1096
1097 static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1098 {
1099 struct array_cache **ac_ptr;
1100 int memsize = sizeof(void *) * nr_node_ids;
1101 int i;
1102
1103 if (limit > 1)
1104 limit = 12;
1105 ac_ptr = kzalloc_node(memsize, gfp, node);
1106 if (ac_ptr) {
1107 for_each_node(i) {
1108 if (i == node || !node_online(i))
1109 continue;
1110 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
1111 if (!ac_ptr[i]) {
1112 for (i--; i >= 0; i--)
1113 kfree(ac_ptr[i]);
1114 kfree(ac_ptr);
1115 return NULL;
1116 }
1117 }
1118 }
1119 return ac_ptr;
1120 }
1121
1122 static void free_alien_cache(struct array_cache **ac_ptr)
1123 {
1124 int i;
1125
1126 if (!ac_ptr)
1127 return;
1128 for_each_node(i)
1129 kfree(ac_ptr[i]);
1130 kfree(ac_ptr);
1131 }
1132
1133 static void __drain_alien_cache(struct kmem_cache *cachep,
1134 struct array_cache *ac, int node)
1135 {
1136 struct kmem_list3 *rl3 = cachep->nodelists[node];
1137
1138 if (ac->avail) {
1139 spin_lock(&rl3->list_lock);
1140 /*
1141 * Stuff objects into the remote nodes shared array first.
1142 * That way we could avoid the overhead of putting the objects
1143 * into the free lists and getting them back later.
1144 */
1145 if (rl3->shared)
1146 transfer_objects(rl3->shared, ac, ac->limit);
1147
1148 free_block(cachep, ac->entry, ac->avail, node);
1149 ac->avail = 0;
1150 spin_unlock(&rl3->list_lock);
1151 }
1152 }
1153
1154 /*
1155 * Called from cache_reap() to regularly drain alien caches round robin.
1156 */
1157 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1158 {
1159 int node = __this_cpu_read(slab_reap_node);
1160
1161 if (l3->alien) {
1162 struct array_cache *ac = l3->alien[node];
1163
1164 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1165 __drain_alien_cache(cachep, ac, node);
1166 spin_unlock_irq(&ac->lock);
1167 }
1168 }
1169 }
1170
1171 static void drain_alien_cache(struct kmem_cache *cachep,
1172 struct array_cache **alien)
1173 {
1174 int i = 0;
1175 struct array_cache *ac;
1176 unsigned long flags;
1177
1178 for_each_online_node(i) {
1179 ac = alien[i];
1180 if (ac) {
1181 spin_lock_irqsave(&ac->lock, flags);
1182 __drain_alien_cache(cachep, ac, i);
1183 spin_unlock_irqrestore(&ac->lock, flags);
1184 }
1185 }
1186 }
1187
1188 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1189 {
1190 struct slab *slabp = virt_to_slab(objp);
1191 int nodeid = slabp->nodeid;
1192 struct kmem_list3 *l3;
1193 struct array_cache *alien = NULL;
1194 int node;
1195
1196 node = numa_mem_id();
1197
1198 /*
1199 * Make sure we are not freeing a object from another node to the array
1200 * cache on this cpu.
1201 */
1202 if (likely(slabp->nodeid == node))
1203 return 0;
1204
1205 l3 = cachep->nodelists[node];
1206 STATS_INC_NODEFREES(cachep);
1207 if (l3->alien && l3->alien[nodeid]) {
1208 alien = l3->alien[nodeid];
1209 spin_lock(&alien->lock);
1210 if (unlikely(alien->avail == alien->limit)) {
1211 STATS_INC_ACOVERFLOW(cachep);
1212 __drain_alien_cache(cachep, alien, nodeid);
1213 }
1214 ac_put_obj(cachep, alien, objp);
1215 spin_unlock(&alien->lock);
1216 } else {
1217 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1218 free_block(cachep, &objp, 1, nodeid);
1219 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1220 }
1221 return 1;
1222 }
1223 #endif
1224
1225 /*
1226 * Allocates and initializes nodelists for a node on each slab cache, used for
1227 * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3
1228 * will be allocated off-node since memory is not yet online for the new node.
1229 * When hotplugging memory or a cpu, existing nodelists are not replaced if
1230 * already in use.
1231 *
1232 * Must hold slab_mutex.
1233 */
1234 static int init_cache_nodelists_node(int node)
1235 {
1236 struct kmem_cache *cachep;
1237 struct kmem_list3 *l3;
1238 const int memsize = sizeof(struct kmem_list3);
1239
1240 list_for_each_entry(cachep, &slab_caches, list) {
1241 /*
1242 * Set up the size64 kmemlist for cpu before we can
1243 * begin anything. Make sure some other cpu on this
1244 * node has not already allocated this
1245 */
1246 if (!cachep->nodelists[node]) {
1247 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1248 if (!l3)
1249 return -ENOMEM;
1250 kmem_list3_init(l3);
1251 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1252 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1253
1254 /*
1255 * The l3s don't come and go as CPUs come and
1256 * go. slab_mutex is sufficient
1257 * protection here.
1258 */
1259 cachep->nodelists[node] = l3;
1260 }
1261
1262 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1263 cachep->nodelists[node]->free_limit =
1264 (1 + nr_cpus_node(node)) *
1265 cachep->batchcount + cachep->num;
1266 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1267 }
1268 return 0;
1269 }
1270
1271 static void __cpuinit cpuup_canceled(long cpu)
1272 {
1273 struct kmem_cache *cachep;
1274 struct kmem_list3 *l3 = NULL;
1275 int node = cpu_to_mem(cpu);
1276 const struct cpumask *mask = cpumask_of_node(node);
1277
1278 list_for_each_entry(cachep, &slab_caches, list) {
1279 struct array_cache *nc;
1280 struct array_cache *shared;
1281 struct array_cache **alien;
1282
1283 /* cpu is dead; no one can alloc from it. */
1284 nc = cachep->array[cpu];
1285 cachep->array[cpu] = NULL;
1286 l3 = cachep->nodelists[node];
1287
1288 if (!l3)
1289 goto free_array_cache;
1290
1291 spin_lock_irq(&l3->list_lock);
1292
1293 /* Free limit for this kmem_list3 */
1294 l3->free_limit -= cachep->batchcount;
1295 if (nc)
1296 free_block(cachep, nc->entry, nc->avail, node);
1297
1298 if (!cpumask_empty(mask)) {
1299 spin_unlock_irq(&l3->list_lock);
1300 goto free_array_cache;
1301 }
1302
1303 shared = l3->shared;
1304 if (shared) {
1305 free_block(cachep, shared->entry,
1306 shared->avail, node);
1307 l3->shared = NULL;
1308 }
1309
1310 alien = l3->alien;
1311 l3->alien = NULL;
1312
1313 spin_unlock_irq(&l3->list_lock);
1314
1315 kfree(shared);
1316 if (alien) {
1317 drain_alien_cache(cachep, alien);
1318 free_alien_cache(alien);
1319 }
1320 free_array_cache:
1321 kfree(nc);
1322 }
1323 /*
1324 * In the previous loop, all the objects were freed to
1325 * the respective cache's slabs, now we can go ahead and
1326 * shrink each nodelist to its limit.
1327 */
1328 list_for_each_entry(cachep, &slab_caches, list) {
1329 l3 = cachep->nodelists[node];
1330 if (!l3)
1331 continue;
1332 drain_freelist(cachep, l3, l3->free_objects);
1333 }
1334 }
1335
1336 static int __cpuinit cpuup_prepare(long cpu)
1337 {
1338 struct kmem_cache *cachep;
1339 struct kmem_list3 *l3 = NULL;
1340 int node = cpu_to_mem(cpu);
1341 int err;
1342
1343 /*
1344 * We need to do this right in the beginning since
1345 * alloc_arraycache's are going to use this list.
1346 * kmalloc_node allows us to add the slab to the right
1347 * kmem_list3 and not this cpu's kmem_list3
1348 */
1349 err = init_cache_nodelists_node(node);
1350 if (err < 0)
1351 goto bad;
1352
1353 /*
1354 * Now we can go ahead with allocating the shared arrays and
1355 * array caches
1356 */
1357 list_for_each_entry(cachep, &slab_caches, list) {
1358 struct array_cache *nc;
1359 struct array_cache *shared = NULL;
1360 struct array_cache **alien = NULL;
1361
1362 nc = alloc_arraycache(node, cachep->limit,
1363 cachep->batchcount, GFP_KERNEL);
1364 if (!nc)
1365 goto bad;
1366 if (cachep->shared) {
1367 shared = alloc_arraycache(node,
1368 cachep->shared * cachep->batchcount,
1369 0xbaadf00d, GFP_KERNEL);
1370 if (!shared) {
1371 kfree(nc);
1372 goto bad;
1373 }
1374 }
1375 if (use_alien_caches) {
1376 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1377 if (!alien) {
1378 kfree(shared);
1379 kfree(nc);
1380 goto bad;
1381 }
1382 }
1383 cachep->array[cpu] = nc;
1384 l3 = cachep->nodelists[node];
1385 BUG_ON(!l3);
1386
1387 spin_lock_irq(&l3->list_lock);
1388 if (!l3->shared) {
1389 /*
1390 * We are serialised from CPU_DEAD or
1391 * CPU_UP_CANCELLED by the cpucontrol lock
1392 */
1393 l3->shared = shared;
1394 shared = NULL;
1395 }
1396 #ifdef CONFIG_NUMA
1397 if (!l3->alien) {
1398 l3->alien = alien;
1399 alien = NULL;
1400 }
1401 #endif
1402 spin_unlock_irq(&l3->list_lock);
1403 kfree(shared);
1404 free_alien_cache(alien);
1405 if (cachep->flags & SLAB_DEBUG_OBJECTS)
1406 slab_set_debugobj_lock_classes_node(cachep, node);
1407 }
1408 init_node_lock_keys(node);
1409
1410 return 0;
1411 bad:
1412 cpuup_canceled(cpu);
1413 return -ENOMEM;
1414 }
1415
1416 static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1417 unsigned long action, void *hcpu)
1418 {
1419 long cpu = (long)hcpu;
1420 int err = 0;
1421
1422 switch (action) {
1423 case CPU_UP_PREPARE:
1424 case CPU_UP_PREPARE_FROZEN:
1425 mutex_lock(&slab_mutex);
1426 err = cpuup_prepare(cpu);
1427 mutex_unlock(&slab_mutex);
1428 break;
1429 case CPU_ONLINE:
1430 case CPU_ONLINE_FROZEN:
1431 start_cpu_timer(cpu);
1432 break;
1433 #ifdef CONFIG_HOTPLUG_CPU
1434 case CPU_DOWN_PREPARE:
1435 case CPU_DOWN_PREPARE_FROZEN:
1436 /*
1437 * Shutdown cache reaper. Note that the slab_mutex is
1438 * held so that if cache_reap() is invoked it cannot do
1439 * anything expensive but will only modify reap_work
1440 * and reschedule the timer.
1441 */
1442 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1443 /* Now the cache_reaper is guaranteed to be not running. */
1444 per_cpu(slab_reap_work, cpu).work.func = NULL;
1445 break;
1446 case CPU_DOWN_FAILED:
1447 case CPU_DOWN_FAILED_FROZEN:
1448 start_cpu_timer(cpu);
1449 break;
1450 case CPU_DEAD:
1451 case CPU_DEAD_FROZEN:
1452 /*
1453 * Even if all the cpus of a node are down, we don't free the
1454 * kmem_list3 of any cache. This to avoid a race between
1455 * cpu_down, and a kmalloc allocation from another cpu for
1456 * memory from the node of the cpu going down. The list3
1457 * structure is usually allocated from kmem_cache_create() and
1458 * gets destroyed at kmem_cache_destroy().
1459 */
1460 /* fall through */
1461 #endif
1462 case CPU_UP_CANCELED:
1463 case CPU_UP_CANCELED_FROZEN:
1464 mutex_lock(&slab_mutex);
1465 cpuup_canceled(cpu);
1466 mutex_unlock(&slab_mutex);
1467 break;
1468 }
1469 return notifier_from_errno(err);
1470 }
1471
1472 static struct notifier_block __cpuinitdata cpucache_notifier = {
1473 &cpuup_callback, NULL, 0
1474 };
1475
1476 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1477 /*
1478 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1479 * Returns -EBUSY if all objects cannot be drained so that the node is not
1480 * removed.
1481 *
1482 * Must hold slab_mutex.
1483 */
1484 static int __meminit drain_cache_nodelists_node(int node)
1485 {
1486 struct kmem_cache *cachep;
1487 int ret = 0;
1488
1489 list_for_each_entry(cachep, &slab_caches, list) {
1490 struct kmem_list3 *l3;
1491
1492 l3 = cachep->nodelists[node];
1493 if (!l3)
1494 continue;
1495
1496 drain_freelist(cachep, l3, l3->free_objects);
1497
1498 if (!list_empty(&l3->slabs_full) ||
1499 !list_empty(&l3->slabs_partial)) {
1500 ret = -EBUSY;
1501 break;
1502 }
1503 }
1504 return ret;
1505 }
1506
1507 static int __meminit slab_memory_callback(struct notifier_block *self,
1508 unsigned long action, void *arg)
1509 {
1510 struct memory_notify *mnb = arg;
1511 int ret = 0;
1512 int nid;
1513
1514 nid = mnb->status_change_nid;
1515 if (nid < 0)
1516 goto out;
1517
1518 switch (action) {
1519 case MEM_GOING_ONLINE:
1520 mutex_lock(&slab_mutex);
1521 ret = init_cache_nodelists_node(nid);
1522 mutex_unlock(&slab_mutex);
1523 break;
1524 case MEM_GOING_OFFLINE:
1525 mutex_lock(&slab_mutex);
1526 ret = drain_cache_nodelists_node(nid);
1527 mutex_unlock(&slab_mutex);
1528 break;
1529 case MEM_ONLINE:
1530 case MEM_OFFLINE:
1531 case MEM_CANCEL_ONLINE:
1532 case MEM_CANCEL_OFFLINE:
1533 break;
1534 }
1535 out:
1536 return notifier_from_errno(ret);
1537 }
1538 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1539
1540 /*
1541 * swap the static kmem_list3 with kmalloced memory
1542 */
1543 static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1544 int nodeid)
1545 {
1546 struct kmem_list3 *ptr;
1547
1548 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
1549 BUG_ON(!ptr);
1550
1551 memcpy(ptr, list, sizeof(struct kmem_list3));
1552 /*
1553 * Do not assume that spinlocks can be initialized via memcpy:
1554 */
1555 spin_lock_init(&ptr->list_lock);
1556
1557 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1558 cachep->nodelists[nodeid] = ptr;
1559 }
1560
1561 /*
1562 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1563 * size of kmem_list3.
1564 */
1565 static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1566 {
1567 int node;
1568
1569 for_each_online_node(node) {
1570 cachep->nodelists[node] = &initkmem_list3[index + node];
1571 cachep->nodelists[node]->next_reap = jiffies +
1572 REAPTIMEOUT_LIST3 +
1573 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1574 }
1575 }
1576
1577 /*
1578 * Initialisation. Called after the page allocator have been initialised and
1579 * before smp_init().
1580 */
1581 void __init kmem_cache_init(void)
1582 {
1583 size_t left_over;
1584 struct cache_sizes *sizes;
1585 struct cache_names *names;
1586 int i;
1587 int order;
1588 int node;
1589
1590 if (num_possible_nodes() == 1)
1591 use_alien_caches = 0;
1592
1593 for (i = 0; i < NUM_INIT_LISTS; i++) {
1594 kmem_list3_init(&initkmem_list3[i]);
1595 if (i < MAX_NUMNODES)
1596 cache_cache.nodelists[i] = NULL;
1597 }
1598 set_up_list3s(&cache_cache, CACHE_CACHE);
1599
1600 /*
1601 * Fragmentation resistance on low memory - only use bigger
1602 * page orders on machines with more than 32MB of memory if
1603 * not overridden on the command line.
1604 */
1605 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1606 slab_max_order = SLAB_MAX_ORDER_HI;
1607
1608 /* Bootstrap is tricky, because several objects are allocated
1609 * from caches that do not exist yet:
1610 * 1) initialize the cache_cache cache: it contains the struct
1611 * kmem_cache structures of all caches, except cache_cache itself:
1612 * cache_cache is statically allocated.
1613 * Initially an __init data area is used for the head array and the
1614 * kmem_list3 structures, it's replaced with a kmalloc allocated
1615 * array at the end of the bootstrap.
1616 * 2) Create the first kmalloc cache.
1617 * The struct kmem_cache for the new cache is allocated normally.
1618 * An __init data area is used for the head array.
1619 * 3) Create the remaining kmalloc caches, with minimally sized
1620 * head arrays.
1621 * 4) Replace the __init data head arrays for cache_cache and the first
1622 * kmalloc cache with kmalloc allocated arrays.
1623 * 5) Replace the __init data for kmem_list3 for cache_cache and
1624 * the other cache's with kmalloc allocated memory.
1625 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1626 */
1627
1628 node = numa_mem_id();
1629
1630 /* 1) create the cache_cache */
1631 INIT_LIST_HEAD(&slab_caches);
1632 list_add(&cache_cache.list, &slab_caches);
1633 cache_cache.colour_off = cache_line_size();
1634 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1635 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
1636
1637 /*
1638 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1639 */
1640 cache_cache.size = offsetof(struct kmem_cache, array[nr_cpu_ids]) +
1641 nr_node_ids * sizeof(struct kmem_list3 *);
1642 cache_cache.object_size = cache_cache.size;
1643 cache_cache.size = ALIGN(cache_cache.size,
1644 cache_line_size());
1645 cache_cache.reciprocal_buffer_size =
1646 reciprocal_value(cache_cache.size);
1647
1648 for (order = 0; order < MAX_ORDER; order++) {
1649 cache_estimate(order, cache_cache.size,
1650 cache_line_size(), 0, &left_over, &cache_cache.num);
1651 if (cache_cache.num)
1652 break;
1653 }
1654 BUG_ON(!cache_cache.num);
1655 cache_cache.gfporder = order;
1656 cache_cache.colour = left_over / cache_cache.colour_off;
1657 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1658 sizeof(struct slab), cache_line_size());
1659
1660 /* 2+3) create the kmalloc caches */
1661 sizes = malloc_sizes;
1662 names = cache_names;
1663
1664 /*
1665 * Initialize the caches that provide memory for the array cache and the
1666 * kmem_list3 structures first. Without this, further allocations will
1667 * bug.
1668 */
1669
1670 sizes[INDEX_AC].cs_cachep = __kmem_cache_create(names[INDEX_AC].name,
1671 sizes[INDEX_AC].cs_size,
1672 ARCH_KMALLOC_MINALIGN,
1673 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1674 NULL);
1675
1676 if (INDEX_AC != INDEX_L3) {
1677 sizes[INDEX_L3].cs_cachep =
1678 __kmem_cache_create(names[INDEX_L3].name,
1679 sizes[INDEX_L3].cs_size,
1680 ARCH_KMALLOC_MINALIGN,
1681 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1682 NULL);
1683 }
1684
1685 slab_early_init = 0;
1686
1687 while (sizes->cs_size != ULONG_MAX) {
1688 /*
1689 * For performance, all the general caches are L1 aligned.
1690 * This should be particularly beneficial on SMP boxes, as it
1691 * eliminates "false sharing".
1692 * Note for systems short on memory removing the alignment will
1693 * allow tighter packing of the smaller caches.
1694 */
1695 if (!sizes->cs_cachep) {
1696 sizes->cs_cachep = __kmem_cache_create(names->name,
1697 sizes->cs_size,
1698 ARCH_KMALLOC_MINALIGN,
1699 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1700 NULL);
1701 }
1702 #ifdef CONFIG_ZONE_DMA
1703 sizes->cs_dmacachep = __kmem_cache_create(
1704 names->name_dma,
1705 sizes->cs_size,
1706 ARCH_KMALLOC_MINALIGN,
1707 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1708 SLAB_PANIC,
1709 NULL);
1710 #endif
1711 sizes++;
1712 names++;
1713 }
1714 /* 4) Replace the bootstrap head arrays */
1715 {
1716 struct array_cache *ptr;
1717
1718 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1719
1720 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1721 memcpy(ptr, cpu_cache_get(&cache_cache),
1722 sizeof(struct arraycache_init));
1723 /*
1724 * Do not assume that spinlocks can be initialized via memcpy:
1725 */
1726 spin_lock_init(&ptr->lock);
1727
1728 cache_cache.array[smp_processor_id()] = ptr;
1729
1730 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1731
1732 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1733 != &initarray_generic.cache);
1734 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1735 sizeof(struct arraycache_init));
1736 /*
1737 * Do not assume that spinlocks can be initialized via memcpy:
1738 */
1739 spin_lock_init(&ptr->lock);
1740
1741 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1742 ptr;
1743 }
1744 /* 5) Replace the bootstrap kmem_list3's */
1745 {
1746 int nid;
1747
1748 for_each_online_node(nid) {
1749 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
1750
1751 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1752 &initkmem_list3[SIZE_AC + nid], nid);
1753
1754 if (INDEX_AC != INDEX_L3) {
1755 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1756 &initkmem_list3[SIZE_L3 + nid], nid);
1757 }
1758 }
1759 }
1760
1761 slab_state = UP;
1762 }
1763
1764 void __init kmem_cache_init_late(void)
1765 {
1766 struct kmem_cache *cachep;
1767
1768 slab_state = UP;
1769
1770 /* 6) resize the head arrays to their final sizes */
1771 mutex_lock(&slab_mutex);
1772 list_for_each_entry(cachep, &slab_caches, list)
1773 if (enable_cpucache(cachep, GFP_NOWAIT))
1774 BUG();
1775 mutex_unlock(&slab_mutex);
1776
1777 /* Annotate slab for lockdep -- annotate the malloc caches */
1778 init_lock_keys();
1779
1780 /* Done! */
1781 slab_state = FULL;
1782
1783 /*
1784 * Register a cpu startup notifier callback that initializes
1785 * cpu_cache_get for all new cpus
1786 */
1787 register_cpu_notifier(&cpucache_notifier);
1788
1789 #ifdef CONFIG_NUMA
1790 /*
1791 * Register a memory hotplug callback that initializes and frees
1792 * nodelists.
1793 */
1794 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1795 #endif
1796
1797 /*
1798 * The reap timers are started later, with a module init call: That part
1799 * of the kernel is not yet operational.
1800 */
1801 }
1802
1803 static int __init cpucache_init(void)
1804 {
1805 int cpu;
1806
1807 /*
1808 * Register the timers that return unneeded pages to the page allocator
1809 */
1810 for_each_online_cpu(cpu)
1811 start_cpu_timer(cpu);
1812
1813 /* Done! */
1814 slab_state = FULL;
1815 return 0;
1816 }
1817 __initcall(cpucache_init);
1818
1819 static noinline void
1820 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1821 {
1822 struct kmem_list3 *l3;
1823 struct slab *slabp;
1824 unsigned long flags;
1825 int node;
1826
1827 printk(KERN_WARNING
1828 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1829 nodeid, gfpflags);
1830 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
1831 cachep->name, cachep->size, cachep->gfporder);
1832
1833 for_each_online_node(node) {
1834 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1835 unsigned long active_slabs = 0, num_slabs = 0;
1836
1837 l3 = cachep->nodelists[node];
1838 if (!l3)
1839 continue;
1840
1841 spin_lock_irqsave(&l3->list_lock, flags);
1842 list_for_each_entry(slabp, &l3->slabs_full, list) {
1843 active_objs += cachep->num;
1844 active_slabs++;
1845 }
1846 list_for_each_entry(slabp, &l3->slabs_partial, list) {
1847 active_objs += slabp->inuse;
1848 active_slabs++;
1849 }
1850 list_for_each_entry(slabp, &l3->slabs_free, list)
1851 num_slabs++;
1852
1853 free_objects += l3->free_objects;
1854 spin_unlock_irqrestore(&l3->list_lock, flags);
1855
1856 num_slabs += active_slabs;
1857 num_objs = num_slabs * cachep->num;
1858 printk(KERN_WARNING
1859 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1860 node, active_slabs, num_slabs, active_objs, num_objs,
1861 free_objects);
1862 }
1863 }
1864
1865 /*
1866 * Interface to system's page allocator. No need to hold the cache-lock.
1867 *
1868 * If we requested dmaable memory, we will get it. Even if we
1869 * did not request dmaable memory, we might get it, but that
1870 * would be relatively rare and ignorable.
1871 */
1872 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1873 {
1874 struct page *page;
1875 int nr_pages;
1876 int i;
1877
1878 #ifndef CONFIG_MMU
1879 /*
1880 * Nommu uses slab's for process anonymous memory allocations, and thus
1881 * requires __GFP_COMP to properly refcount higher order allocations
1882 */
1883 flags |= __GFP_COMP;
1884 #endif
1885
1886 flags |= cachep->allocflags;
1887 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1888 flags |= __GFP_RECLAIMABLE;
1889
1890 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1891 if (!page) {
1892 if (!(flags & __GFP_NOWARN) && printk_ratelimit())
1893 slab_out_of_memory(cachep, flags, nodeid);
1894 return NULL;
1895 }
1896
1897 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1898 if (unlikely(page->pfmemalloc))
1899 pfmemalloc_active = true;
1900
1901 nr_pages = (1 << cachep->gfporder);
1902 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1903 add_zone_page_state(page_zone(page),
1904 NR_SLAB_RECLAIMABLE, nr_pages);
1905 else
1906 add_zone_page_state(page_zone(page),
1907 NR_SLAB_UNRECLAIMABLE, nr_pages);
1908 for (i = 0; i < nr_pages; i++) {
1909 __SetPageSlab(page + i);
1910
1911 if (page->pfmemalloc)
1912 SetPageSlabPfmemalloc(page + i);
1913 }
1914
1915 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1916 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1917
1918 if (cachep->ctor)
1919 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1920 else
1921 kmemcheck_mark_unallocated_pages(page, nr_pages);
1922 }
1923
1924 return page_address(page);
1925 }
1926
1927 /*
1928 * Interface to system's page release.
1929 */
1930 static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1931 {
1932 unsigned long i = (1 << cachep->gfporder);
1933 struct page *page = virt_to_page(addr);
1934 const unsigned long nr_freed = i;
1935
1936 kmemcheck_free_shadow(page, cachep->gfporder);
1937
1938 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1939 sub_zone_page_state(page_zone(page),
1940 NR_SLAB_RECLAIMABLE, nr_freed);
1941 else
1942 sub_zone_page_state(page_zone(page),
1943 NR_SLAB_UNRECLAIMABLE, nr_freed);
1944 while (i--) {
1945 BUG_ON(!PageSlab(page));
1946 __ClearPageSlabPfmemalloc(page);
1947 __ClearPageSlab(page);
1948 page++;
1949 }
1950 if (current->reclaim_state)
1951 current->reclaim_state->reclaimed_slab += nr_freed;
1952 free_pages((unsigned long)addr, cachep->gfporder);
1953 }
1954
1955 static void kmem_rcu_free(struct rcu_head *head)
1956 {
1957 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1958 struct kmem_cache *cachep = slab_rcu->cachep;
1959
1960 kmem_freepages(cachep, slab_rcu->addr);
1961 if (OFF_SLAB(cachep))
1962 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1963 }
1964
1965 #if DEBUG
1966
1967 #ifdef CONFIG_DEBUG_PAGEALLOC
1968 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1969 unsigned long caller)
1970 {
1971 int size = cachep->object_size;
1972
1973 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1974
1975 if (size < 5 * sizeof(unsigned long))
1976 return;
1977
1978 *addr++ = 0x12345678;
1979 *addr++ = caller;
1980 *addr++ = smp_processor_id();
1981 size -= 3 * sizeof(unsigned long);
1982 {
1983 unsigned long *sptr = &caller;
1984 unsigned long svalue;
1985
1986 while (!kstack_end(sptr)) {
1987 svalue = *sptr++;
1988 if (kernel_text_address(svalue)) {
1989 *addr++ = svalue;
1990 size -= sizeof(unsigned long);
1991 if (size <= sizeof(unsigned long))
1992 break;
1993 }
1994 }
1995
1996 }
1997 *addr++ = 0x87654321;
1998 }
1999 #endif
2000
2001 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
2002 {
2003 int size = cachep->object_size;
2004 addr = &((char *)addr)[obj_offset(cachep)];
2005
2006 memset(addr, val, size);
2007 *(unsigned char *)(addr + size - 1) = POISON_END;
2008 }
2009
2010 static void dump_line(char *data, int offset, int limit)
2011 {
2012 int i;
2013 unsigned char error = 0;
2014 int bad_count = 0;
2015
2016 printk(KERN_ERR "%03x: ", offset);
2017 for (i = 0; i < limit; i++) {
2018 if (data[offset + i] != POISON_FREE) {
2019 error = data[offset + i];
2020 bad_count++;
2021 }
2022 }
2023 print_hex_dump(KERN_CONT, "", 0, 16, 1,
2024 &data[offset], limit, 1);
2025
2026 if (bad_count == 1) {
2027 error ^= POISON_FREE;
2028 if (!(error & (error - 1))) {
2029 printk(KERN_ERR "Single bit error detected. Probably "
2030 "bad RAM.\n");
2031 #ifdef CONFIG_X86
2032 printk(KERN_ERR "Run memtest86+ or a similar memory "
2033 "test tool.\n");
2034 #else
2035 printk(KERN_ERR "Run a memory test tool.\n");
2036 #endif
2037 }
2038 }
2039 }
2040 #endif
2041
2042 #if DEBUG
2043
2044 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
2045 {
2046 int i, size;
2047 char *realobj;
2048
2049 if (cachep->flags & SLAB_RED_ZONE) {
2050 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
2051 *dbg_redzone1(cachep, objp),
2052 *dbg_redzone2(cachep, objp));
2053 }
2054
2055 if (cachep->flags & SLAB_STORE_USER) {
2056 printk(KERN_ERR "Last user: [<%p>]",
2057 *dbg_userword(cachep, objp));
2058 print_symbol("(%s)",
2059 (unsigned long)*dbg_userword(cachep, objp));
2060 printk("\n");
2061 }
2062 realobj = (char *)objp + obj_offset(cachep);
2063 size = cachep->object_size;
2064 for (i = 0; i < size && lines; i += 16, lines--) {
2065 int limit;
2066 limit = 16;
2067 if (i + limit > size)
2068 limit = size - i;
2069 dump_line(realobj, i, limit);
2070 }
2071 }
2072
2073 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
2074 {
2075 char *realobj;
2076 int size, i;
2077 int lines = 0;
2078
2079 realobj = (char *)objp + obj_offset(cachep);
2080 size = cachep->object_size;
2081
2082 for (i = 0; i < size; i++) {
2083 char exp = POISON_FREE;
2084 if (i == size - 1)
2085 exp = POISON_END;
2086 if (realobj[i] != exp) {
2087 int limit;
2088 /* Mismatch ! */
2089 /* Print header */
2090 if (lines == 0) {
2091 printk(KERN_ERR
2092 "Slab corruption (%s): %s start=%p, len=%d\n",
2093 print_tainted(), cachep->name, realobj, size);
2094 print_objinfo(cachep, objp, 0);
2095 }
2096 /* Hexdump the affected line */
2097 i = (i / 16) * 16;
2098 limit = 16;
2099 if (i + limit > size)
2100 limit = size - i;
2101 dump_line(realobj, i, limit);
2102 i += 16;
2103 lines++;
2104 /* Limit to 5 lines */
2105 if (lines > 5)
2106 break;
2107 }
2108 }
2109 if (lines != 0) {
2110 /* Print some data about the neighboring objects, if they
2111 * exist:
2112 */
2113 struct slab *slabp = virt_to_slab(objp);
2114 unsigned int objnr;
2115
2116 objnr = obj_to_index(cachep, slabp, objp);
2117 if (objnr) {
2118 objp = index_to_obj(cachep, slabp, objnr - 1);
2119 realobj = (char *)objp + obj_offset(cachep);
2120 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
2121 realobj, size);
2122 print_objinfo(cachep, objp, 2);
2123 }
2124 if (objnr + 1 < cachep->num) {
2125 objp = index_to_obj(cachep, slabp, objnr + 1);
2126 realobj = (char *)objp + obj_offset(cachep);
2127 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
2128 realobj, size);
2129 print_objinfo(cachep, objp, 2);
2130 }
2131 }
2132 }
2133 #endif
2134
2135 #if DEBUG
2136 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
2137 {
2138 int i;
2139 for (i = 0; i < cachep->num; i++) {
2140 void *objp = index_to_obj(cachep, slabp, i);
2141
2142 if (cachep->flags & SLAB_POISON) {
2143 #ifdef CONFIG_DEBUG_PAGEALLOC
2144 if (cachep->size % PAGE_SIZE == 0 &&
2145 OFF_SLAB(cachep))
2146 kernel_map_pages(virt_to_page(objp),
2147 cachep->size / PAGE_SIZE, 1);
2148 else
2149 check_poison_obj(cachep, objp);
2150 #else
2151 check_poison_obj(cachep, objp);
2152 #endif
2153 }
2154 if (cachep->flags & SLAB_RED_ZONE) {
2155 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2156 slab_error(cachep, "start of a freed object "
2157 "was overwritten");
2158 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2159 slab_error(cachep, "end of a freed object "
2160 "was overwritten");
2161 }
2162 }
2163 }
2164 #else
2165 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
2166 {
2167 }
2168 #endif
2169
2170 /**
2171 * slab_destroy - destroy and release all objects in a slab
2172 * @cachep: cache pointer being destroyed
2173 * @slabp: slab pointer being destroyed
2174 *
2175 * Destroy all the objs in a slab, and release the mem back to the system.
2176 * Before calling the slab must have been unlinked from the cache. The
2177 * cache-lock is not held/needed.
2178 */
2179 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
2180 {
2181 void *addr = slabp->s_mem - slabp->colouroff;
2182
2183 slab_destroy_debugcheck(cachep, slabp);
2184 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
2185 struct slab_rcu *slab_rcu;
2186
2187 slab_rcu = (struct slab_rcu *)slabp;
2188 slab_rcu->cachep = cachep;
2189 slab_rcu->addr = addr;
2190 call_rcu(&slab_rcu->head, kmem_rcu_free);
2191 } else {
2192 kmem_freepages(cachep, addr);
2193 if (OFF_SLAB(cachep))
2194 kmem_cache_free(cachep->slabp_cache, slabp);
2195 }
2196 }
2197
2198 static void __kmem_cache_destroy(struct kmem_cache *cachep)
2199 {
2200 int i;
2201 struct kmem_list3 *l3;
2202
2203 for_each_online_cpu(i)
2204 kfree(cachep->array[i]);
2205
2206 /* NUMA: free the list3 structures */
2207 for_each_online_node(i) {
2208 l3 = cachep->nodelists[i];
2209 if (l3) {
2210 kfree(l3->shared);
2211 free_alien_cache(l3->alien);
2212 kfree(l3);
2213 }
2214 }
2215 kmem_cache_free(&cache_cache, cachep);
2216 }
2217
2218
2219 /**
2220 * calculate_slab_order - calculate size (page order) of slabs
2221 * @cachep: pointer to the cache that is being created
2222 * @size: size of objects to be created in this cache.
2223 * @align: required alignment for the objects.
2224 * @flags: slab allocation flags
2225 *
2226 * Also calculates the number of objects per slab.
2227 *
2228 * This could be made much more intelligent. For now, try to avoid using
2229 * high order pages for slabs. When the gfp() functions are more friendly
2230 * towards high-order requests, this should be changed.
2231 */
2232 static size_t calculate_slab_order(struct kmem_cache *cachep,
2233 size_t size, size_t align, unsigned long flags)
2234 {
2235 unsigned long offslab_limit;
2236 size_t left_over = 0;
2237 int gfporder;
2238
2239 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2240 unsigned int num;
2241 size_t remainder;
2242
2243 cache_estimate(gfporder, size, align, flags, &remainder, &num);
2244 if (!num)
2245 continue;
2246
2247 if (flags & CFLGS_OFF_SLAB) {
2248 /*
2249 * Max number of objs-per-slab for caches which
2250 * use off-slab slabs. Needed to avoid a possible
2251 * looping condition in cache_grow().
2252 */
2253 offslab_limit = size - sizeof(struct slab);
2254 offslab_limit /= sizeof(kmem_bufctl_t);
2255
2256 if (num > offslab_limit)
2257 break;
2258 }
2259
2260 /* Found something acceptable - save it away */
2261 cachep->num = num;
2262 cachep->gfporder = gfporder;
2263 left_over = remainder;
2264
2265 /*
2266 * A VFS-reclaimable slab tends to have most allocations
2267 * as GFP_NOFS and we really don't want to have to be allocating
2268 * higher-order pages when we are unable to shrink dcache.
2269 */
2270 if (flags & SLAB_RECLAIM_ACCOUNT)
2271 break;
2272
2273 /*
2274 * Large number of objects is good, but very large slabs are
2275 * currently bad for the gfp()s.
2276 */
2277 if (gfporder >= slab_max_order)
2278 break;
2279
2280 /*
2281 * Acceptable internal fragmentation?
2282 */
2283 if (left_over * 8 <= (PAGE_SIZE << gfporder))
2284 break;
2285 }
2286 return left_over;
2287 }
2288
2289 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2290 {
2291 if (slab_state >= FULL)
2292 return enable_cpucache(cachep, gfp);
2293
2294 if (slab_state == DOWN) {
2295 /*
2296 * Note: the first kmem_cache_create must create the cache
2297 * that's used by kmalloc(24), otherwise the creation of
2298 * further caches will BUG().
2299 */
2300 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2301
2302 /*
2303 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2304 * the first cache, then we need to set up all its list3s,
2305 * otherwise the creation of further caches will BUG().
2306 */
2307 set_up_list3s(cachep, SIZE_AC);
2308 if (INDEX_AC == INDEX_L3)
2309 slab_state = PARTIAL_L3;
2310 else
2311 slab_state = PARTIAL_ARRAYCACHE;
2312 } else {
2313 cachep->array[smp_processor_id()] =
2314 kmalloc(sizeof(struct arraycache_init), gfp);
2315
2316 if (slab_state == PARTIAL_ARRAYCACHE) {
2317 set_up_list3s(cachep, SIZE_L3);
2318 slab_state = PARTIAL_L3;
2319 } else {
2320 int node;
2321 for_each_online_node(node) {
2322 cachep->nodelists[node] =
2323 kmalloc_node(sizeof(struct kmem_list3),
2324 gfp, node);
2325 BUG_ON(!cachep->nodelists[node]);
2326 kmem_list3_init(cachep->nodelists[node]);
2327 }
2328 }
2329 }
2330 cachep->nodelists[numa_mem_id()]->next_reap =
2331 jiffies + REAPTIMEOUT_LIST3 +
2332 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2333
2334 cpu_cache_get(cachep)->avail = 0;
2335 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2336 cpu_cache_get(cachep)->batchcount = 1;
2337 cpu_cache_get(cachep)->touched = 0;
2338 cachep->batchcount = 1;
2339 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2340 return 0;
2341 }
2342
2343 /**
2344 * __kmem_cache_create - Create a cache.
2345 * @name: A string which is used in /proc/slabinfo to identify this cache.
2346 * @size: The size of objects to be created in this cache.
2347 * @align: The required alignment for the objects.
2348 * @flags: SLAB flags
2349 * @ctor: A constructor for the objects.
2350 *
2351 * Returns a ptr to the cache on success, NULL on failure.
2352 * Cannot be called within a int, but can be interrupted.
2353 * The @ctor is run when new pages are allocated by the cache.
2354 *
2355 * @name must be valid until the cache is destroyed. This implies that
2356 * the module calling this has to destroy the cache before getting unloaded.
2357 *
2358 * The flags are
2359 *
2360 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2361 * to catch references to uninitialised memory.
2362 *
2363 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2364 * for buffer overruns.
2365 *
2366 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2367 * cacheline. This can be beneficial if you're counting cycles as closely
2368 * as davem.
2369 */
2370 struct kmem_cache *
2371 __kmem_cache_create (const char *name, size_t size, size_t align,
2372 unsigned long flags, void (*ctor)(void *))
2373 {
2374 size_t left_over, slab_size, ralign;
2375 struct kmem_cache *cachep = NULL;
2376 gfp_t gfp;
2377
2378 #if DEBUG
2379 #if FORCED_DEBUG
2380 /*
2381 * Enable redzoning and last user accounting, except for caches with
2382 * large objects, if the increased size would increase the object size
2383 * above the next power of two: caches with object sizes just above a
2384 * power of two have a significant amount of internal fragmentation.
2385 */
2386 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2387 2 * sizeof(unsigned long long)))
2388 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2389 if (!(flags & SLAB_DESTROY_BY_RCU))
2390 flags |= SLAB_POISON;
2391 #endif
2392 if (flags & SLAB_DESTROY_BY_RCU)
2393 BUG_ON(flags & SLAB_POISON);
2394 #endif
2395 /*
2396 * Always checks flags, a caller might be expecting debug support which
2397 * isn't available.
2398 */
2399 BUG_ON(flags & ~CREATE_MASK);
2400
2401 /*
2402 * Check that size is in terms of words. This is needed to avoid
2403 * unaligned accesses for some archs when redzoning is used, and makes
2404 * sure any on-slab bufctl's are also correctly aligned.
2405 */
2406 if (size & (BYTES_PER_WORD - 1)) {
2407 size += (BYTES_PER_WORD - 1);
2408 size &= ~(BYTES_PER_WORD - 1);
2409 }
2410
2411 /* calculate the final buffer alignment: */
2412
2413 /* 1) arch recommendation: can be overridden for debug */
2414 if (flags & SLAB_HWCACHE_ALIGN) {
2415 /*
2416 * Default alignment: as specified by the arch code. Except if
2417 * an object is really small, then squeeze multiple objects into
2418 * one cacheline.
2419 */
2420 ralign = cache_line_size();
2421 while (size <= ralign / 2)
2422 ralign /= 2;
2423 } else {
2424 ralign = BYTES_PER_WORD;
2425 }
2426
2427 /*
2428 * Redzoning and user store require word alignment or possibly larger.
2429 * Note this will be overridden by architecture or caller mandated
2430 * alignment if either is greater than BYTES_PER_WORD.
2431 */
2432 if (flags & SLAB_STORE_USER)
2433 ralign = BYTES_PER_WORD;
2434
2435 if (flags & SLAB_RED_ZONE) {
2436 ralign = REDZONE_ALIGN;
2437 /* If redzoning, ensure that the second redzone is suitably
2438 * aligned, by adjusting the object size accordingly. */
2439 size += REDZONE_ALIGN - 1;
2440 size &= ~(REDZONE_ALIGN - 1);
2441 }
2442
2443 /* 2) arch mandated alignment */
2444 if (ralign < ARCH_SLAB_MINALIGN) {
2445 ralign = ARCH_SLAB_MINALIGN;
2446 }
2447 /* 3) caller mandated alignment */
2448 if (ralign < align) {
2449 ralign = align;
2450 }
2451 /* disable debug if necessary */
2452 if (ralign > __alignof__(unsigned long long))
2453 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2454 /*
2455 * 4) Store it.
2456 */
2457 align = ralign;
2458
2459 if (slab_is_available())
2460 gfp = GFP_KERNEL;
2461 else
2462 gfp = GFP_NOWAIT;
2463
2464 /* Get cache's description obj. */
2465 cachep = kmem_cache_zalloc(&cache_cache, gfp);
2466 if (!cachep)
2467 return NULL;
2468
2469 cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids];
2470 cachep->object_size = size;
2471 cachep->align = align;
2472 #if DEBUG
2473
2474 /*
2475 * Both debugging options require word-alignment which is calculated
2476 * into align above.
2477 */
2478 if (flags & SLAB_RED_ZONE) {
2479 /* add space for red zone words */
2480 cachep->obj_offset += sizeof(unsigned long long);
2481 size += 2 * sizeof(unsigned long long);
2482 }
2483 if (flags & SLAB_STORE_USER) {
2484 /* user store requires one word storage behind the end of
2485 * the real object. But if the second red zone needs to be
2486 * aligned to 64 bits, we must allow that much space.
2487 */
2488 if (flags & SLAB_RED_ZONE)
2489 size += REDZONE_ALIGN;
2490 else
2491 size += BYTES_PER_WORD;
2492 }
2493 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2494 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2495 && cachep->object_size > cache_line_size()
2496 && ALIGN(size, cachep->align) < PAGE_SIZE) {
2497 cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
2498 size = PAGE_SIZE;
2499 }
2500 #endif
2501 #endif
2502
2503 /*
2504 * Determine if the slab management is 'on' or 'off' slab.
2505 * (bootstrapping cannot cope with offslab caches so don't do
2506 * it too early on. Always use on-slab management when
2507 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2508 */
2509 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
2510 !(flags & SLAB_NOLEAKTRACE))
2511 /*
2512 * Size is large, assume best to place the slab management obj
2513 * off-slab (should allow better packing of objs).
2514 */
2515 flags |= CFLGS_OFF_SLAB;
2516
2517 size = ALIGN(size, align);
2518
2519 left_over = calculate_slab_order(cachep, size, align, flags);
2520
2521 if (!cachep->num) {
2522 printk(KERN_ERR
2523 "kmem_cache_create: couldn't create cache %s.\n", name);
2524 kmem_cache_free(&cache_cache, cachep);
2525 return NULL;
2526 }
2527 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2528 + sizeof(struct slab), align);
2529
2530 /*
2531 * If the slab has been placed off-slab, and we have enough space then
2532 * move it on-slab. This is at the expense of any extra colouring.
2533 */
2534 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2535 flags &= ~CFLGS_OFF_SLAB;
2536 left_over -= slab_size;
2537 }
2538
2539 if (flags & CFLGS_OFF_SLAB) {
2540 /* really off slab. No need for manual alignment */
2541 slab_size =
2542 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2543
2544 #ifdef CONFIG_PAGE_POISONING
2545 /* If we're going to use the generic kernel_map_pages()
2546 * poisoning, then it's going to smash the contents of
2547 * the redzone and userword anyhow, so switch them off.
2548 */
2549 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2550 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2551 #endif
2552 }
2553
2554 cachep->colour_off = cache_line_size();
2555 /* Offset must be a multiple of the alignment. */
2556 if (cachep->colour_off < align)
2557 cachep->colour_off = align;
2558 cachep->colour = left_over / cachep->colour_off;
2559 cachep->slab_size = slab_size;
2560 cachep->flags = flags;
2561 cachep->allocflags = 0;
2562 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2563 cachep->allocflags |= GFP_DMA;
2564 cachep->size = size;
2565 cachep->reciprocal_buffer_size = reciprocal_value(size);
2566
2567 if (flags & CFLGS_OFF_SLAB) {
2568 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2569 /*
2570 * This is a possibility for one of the malloc_sizes caches.
2571 * But since we go off slab only for object size greater than
2572 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2573 * this should not happen at all.
2574 * But leave a BUG_ON for some lucky dude.
2575 */
2576 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2577 }
2578 cachep->ctor = ctor;
2579 cachep->name = name;
2580
2581 if (setup_cpu_cache(cachep, gfp)) {
2582 __kmem_cache_destroy(cachep);
2583 return NULL;
2584 }
2585
2586 if (flags & SLAB_DEBUG_OBJECTS) {
2587 /*
2588 * Would deadlock through slab_destroy()->call_rcu()->
2589 * debug_object_activate()->kmem_cache_alloc().
2590 */
2591 WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);
2592
2593 slab_set_debugobj_lock_classes(cachep);
2594 }
2595
2596 /* cache setup completed, link it into the list */
2597 list_add(&cachep->list, &slab_caches);
2598 return cachep;
2599 }
2600
2601 #if DEBUG
2602 static void check_irq_off(void)
2603 {
2604 BUG_ON(!irqs_disabled());
2605 }
2606
2607 static void check_irq_on(void)
2608 {
2609 BUG_ON(irqs_disabled());
2610 }
2611
2612 static void check_spinlock_acquired(struct kmem_cache *cachep)
2613 {
2614 #ifdef CONFIG_SMP
2615 check_irq_off();
2616 assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
2617 #endif
2618 }
2619
2620 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2621 {
2622 #ifdef CONFIG_SMP
2623 check_irq_off();
2624 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2625 #endif
2626 }
2627
2628 #else
2629 #define check_irq_off() do { } while(0)
2630 #define check_irq_on() do { } while(0)
2631 #define check_spinlock_acquired(x) do { } while(0)
2632 #define check_spinlock_acquired_node(x, y) do { } while(0)
2633 #endif
2634
2635 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2636 struct array_cache *ac,
2637 int force, int node);
2638
2639 static void do_drain(void *arg)
2640 {
2641 struct kmem_cache *cachep = arg;
2642 struct array_cache *ac;
2643 int node = numa_mem_id();
2644
2645 check_irq_off();
2646 ac = cpu_cache_get(cachep);
2647 spin_lock(&cachep->nodelists[node]->list_lock);
2648 free_block(cachep, ac->entry, ac->avail, node);
2649 spin_unlock(&cachep->nodelists[node]->list_lock);
2650 ac->avail = 0;
2651 }
2652
2653 static void drain_cpu_caches(struct kmem_cache *cachep)
2654 {
2655 struct kmem_list3 *l3;
2656 int node;
2657
2658 on_each_cpu(do_drain, cachep, 1);
2659 check_irq_on();
2660 for_each_online_node(node) {
2661 l3 = cachep->nodelists[node];
2662 if (l3 && l3->alien)
2663 drain_alien_cache(cachep, l3->alien);
2664 }
2665
2666 for_each_online_node(node) {
2667 l3 = cachep->nodelists[node];
2668 if (l3)
2669 drain_array(cachep, l3, l3->shared, 1, node);
2670 }
2671 }
2672
2673 /*
2674 * Remove slabs from the list of free slabs.
2675 * Specify the number of slabs to drain in tofree.
2676 *
2677 * Returns the actual number of slabs released.
2678 */
2679 static int drain_freelist(struct kmem_cache *cache,
2680 struct kmem_list3 *l3, int tofree)
2681 {
2682 struct list_head *p;
2683 int nr_freed;
2684 struct slab *slabp;
2685
2686 nr_freed = 0;
2687 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
2688
2689 spin_lock_irq(&l3->list_lock);
2690 p = l3->slabs_free.prev;
2691 if (p == &l3->slabs_free) {
2692 spin_unlock_irq(&l3->list_lock);
2693 goto out;
2694 }
2695
2696 slabp = list_entry(p, struct slab, list);
2697 #if DEBUG
2698 BUG_ON(slabp->inuse);
2699 #endif
2700 list_del(&slabp->list);
2701 /*
2702 * Safe to drop the lock. The slab is no longer linked
2703 * to the cache.
2704 */
2705 l3->free_objects -= cache->num;
2706 spin_unlock_irq(&l3->list_lock);
2707 slab_destroy(cache, slabp);
2708 nr_freed++;
2709 }
2710 out:
2711 return nr_freed;
2712 }
2713
2714 /* Called with slab_mutex held to protect against cpu hotplug */
2715 static int __cache_shrink(struct kmem_cache *cachep)
2716 {
2717 int ret = 0, i = 0;
2718 struct kmem_list3 *l3;
2719
2720 drain_cpu_caches(cachep);
2721
2722 check_irq_on();
2723 for_each_online_node(i) {
2724 l3 = cachep->nodelists[i];
2725 if (!l3)
2726 continue;
2727
2728 drain_freelist(cachep, l3, l3->free_objects);
2729
2730 ret += !list_empty(&l3->slabs_full) ||
2731 !list_empty(&l3->slabs_partial);
2732 }
2733 return (ret ? 1 : 0);
2734 }
2735
2736 /**
2737 * kmem_cache_shrink - Shrink a cache.
2738 * @cachep: The cache to shrink.
2739 *
2740 * Releases as many slabs as possible for a cache.
2741 * To help debugging, a zero exit status indicates all slabs were released.
2742 */
2743 int kmem_cache_shrink(struct kmem_cache *cachep)
2744 {
2745 int ret;
2746 BUG_ON(!cachep || in_interrupt());
2747
2748 get_online_cpus();
2749 mutex_lock(&slab_mutex);
2750 ret = __cache_shrink(cachep);
2751 mutex_unlock(&slab_mutex);
2752 put_online_cpus();
2753 return ret;
2754 }
2755 EXPORT_SYMBOL(kmem_cache_shrink);
2756
2757 /**
2758 * kmem_cache_destroy - delete a cache
2759 * @cachep: the cache to destroy
2760 *
2761 * Remove a &struct kmem_cache object from the slab cache.
2762 *
2763 * It is expected this function will be called by a module when it is
2764 * unloaded. This will remove the cache completely, and avoid a duplicate
2765 * cache being allocated each time a module is loaded and unloaded, if the
2766 * module doesn't have persistent in-kernel storage across loads and unloads.
2767 *
2768 * The cache must be empty before calling this function.
2769 *
2770 * The caller must guarantee that no one will allocate memory from the cache
2771 * during the kmem_cache_destroy().
2772 */
2773 void kmem_cache_destroy(struct kmem_cache *cachep)
2774 {
2775 BUG_ON(!cachep || in_interrupt());
2776
2777 /* Find the cache in the chain of caches. */
2778 get_online_cpus();
2779 mutex_lock(&slab_mutex);
2780 /*
2781 * the chain is never empty, cache_cache is never destroyed
2782 */
2783 list_del(&cachep->list);
2784 if (__cache_shrink(cachep)) {
2785 slab_error(cachep, "Can't free all objects");
2786 list_add(&cachep->list, &slab_caches);
2787 mutex_unlock(&slab_mutex);
2788 put_online_cpus();
2789 return;
2790 }
2791
2792 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2793 rcu_barrier();
2794
2795 __kmem_cache_destroy(cachep);
2796 mutex_unlock(&slab_mutex);
2797 put_online_cpus();
2798 }
2799 EXPORT_SYMBOL(kmem_cache_destroy);
2800
2801 /*
2802 * Get the memory for a slab management obj.
2803 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2804 * always come from malloc_sizes caches. The slab descriptor cannot
2805 * come from the same cache which is getting created because,
2806 * when we are searching for an appropriate cache for these
2807 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2808 * If we are creating a malloc_sizes cache here it would not be visible to
2809 * kmem_find_general_cachep till the initialization is complete.
2810 * Hence we cannot have slabp_cache same as the original cache.
2811 */
2812 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2813 int colour_off, gfp_t local_flags,
2814 int nodeid)
2815 {
2816 struct slab *slabp;
2817
2818 if (OFF_SLAB(cachep)) {
2819 /* Slab management obj is off-slab. */
2820 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2821 local_flags, nodeid);
2822 /*
2823 * If the first object in the slab is leaked (it's allocated
2824 * but no one has a reference to it), we want to make sure
2825 * kmemleak does not treat the ->s_mem pointer as a reference
2826 * to the object. Otherwise we will not report the leak.
2827 */
2828 kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
2829 local_flags);
2830 if (!slabp)
2831 return NULL;
2832 } else {
2833 slabp = objp + colour_off;
2834 colour_off += cachep->slab_size;
2835 }
2836 slabp->inuse = 0;
2837 slabp->colouroff = colour_off;
2838 slabp->s_mem = objp + colour_off;
2839 slabp->nodeid = nodeid;
2840 slabp->free = 0;
2841 return slabp;
2842 }
2843
2844 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2845 {
2846 return (kmem_bufctl_t *) (slabp + 1);
2847 }
2848
2849 static void cache_init_objs(struct kmem_cache *cachep,
2850 struct slab *slabp)
2851 {
2852 int i;
2853
2854 for (i = 0; i < cachep->num; i++) {
2855 void *objp = index_to_obj(cachep, slabp, i);
2856 #if DEBUG
2857 /* need to poison the objs? */
2858 if (cachep->flags & SLAB_POISON)
2859 poison_obj(cachep, objp, POISON_FREE);
2860 if (cachep->flags & SLAB_STORE_USER)
2861 *dbg_userword(cachep, objp) = NULL;
2862
2863 if (cachep->flags & SLAB_RED_ZONE) {
2864 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2865 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2866 }
2867 /*
2868 * Constructors are not allowed to allocate memory from the same
2869 * cache which they are a constructor for. Otherwise, deadlock.
2870 * They must also be threaded.
2871 */
2872 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2873 cachep->ctor(objp + obj_offset(cachep));
2874
2875 if (cachep->flags & SLAB_RED_ZONE) {
2876 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2877 slab_error(cachep, "constructor overwrote the"
2878 " end of an object");
2879 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2880 slab_error(cachep, "constructor overwrote the"
2881 " start of an object");
2882 }
2883 if ((cachep->size % PAGE_SIZE) == 0 &&
2884 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2885 kernel_map_pages(virt_to_page(objp),
2886 cachep->size / PAGE_SIZE, 0);
2887 #else
2888 if (cachep->ctor)
2889 cachep->ctor(objp);
2890 #endif
2891 slab_bufctl(slabp)[i] = i + 1;
2892 }
2893 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2894 }
2895
2896 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2897 {
2898 if (CONFIG_ZONE_DMA_FLAG) {
2899 if (flags & GFP_DMA)
2900 BUG_ON(!(cachep->allocflags & GFP_DMA));
2901 else
2902 BUG_ON(cachep->allocflags & GFP_DMA);
2903 }
2904 }
2905
2906 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2907 int nodeid)
2908 {
2909 void *objp = index_to_obj(cachep, slabp, slabp->free);
2910 kmem_bufctl_t next;
2911
2912 slabp->inuse++;
2913 next = slab_bufctl(slabp)[slabp->free];
2914 #if DEBUG
2915 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2916 WARN_ON(slabp->nodeid != nodeid);
2917 #endif
2918 slabp->free = next;
2919
2920 return objp;
2921 }
2922
2923 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2924 void *objp, int nodeid)
2925 {
2926 unsigned int objnr = obj_to_index(cachep, slabp, objp);
2927
2928 #if DEBUG
2929 /* Verify that the slab belongs to the intended node */
2930 WARN_ON(slabp->nodeid != nodeid);
2931
2932 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2933 printk(KERN_ERR "slab: double free detected in cache "
2934 "'%s', objp %p\n", cachep->name, objp);
2935 BUG();
2936 }
2937 #endif
2938 slab_bufctl(slabp)[objnr] = slabp->free;
2939 slabp->free = objnr;
2940 slabp->inuse--;
2941 }
2942
2943 /*
2944 * Map pages beginning at addr to the given cache and slab. This is required
2945 * for the slab allocator to be able to lookup the cache and slab of a
2946 * virtual address for kfree, ksize, and slab debugging.
2947 */
2948 static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2949 void *addr)
2950 {
2951 int nr_pages;
2952 struct page *page;
2953
2954 page = virt_to_page(addr);
2955
2956 nr_pages = 1;
2957 if (likely(!PageCompound(page)))
2958 nr_pages <<= cache->gfporder;
2959
2960 do {
2961 page->slab_cache = cache;
2962 page->slab_page = slab;
2963 page++;
2964 } while (--nr_pages);
2965 }
2966
2967 /*
2968 * Grow (by 1) the number of slabs within a cache. This is called by
2969 * kmem_cache_alloc() when there are no active objs left in a cache.
2970 */
2971 static int cache_grow(struct kmem_cache *cachep,
2972 gfp_t flags, int nodeid, void *objp)
2973 {
2974 struct slab *slabp;
2975 size_t offset;
2976 gfp_t local_flags;
2977 struct kmem_list3 *l3;
2978
2979 /*
2980 * Be lazy and only check for valid flags here, keeping it out of the
2981 * critical path in kmem_cache_alloc().
2982 */
2983 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2984 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2985
2986 /* Take the l3 list lock to change the colour_next on this node */
2987 check_irq_off();
2988 l3 = cachep->nodelists[nodeid];
2989 spin_lock(&l3->list_lock);
2990
2991 /* Get colour for the slab, and cal the next value. */
2992 offset = l3->colour_next;
2993 l3->colour_next++;
2994 if (l3->colour_next >= cachep->colour)
2995 l3->colour_next = 0;
2996 spin_unlock(&l3->list_lock);
2997
2998 offset *= cachep->colour_off;
2999
3000 if (local_flags & __GFP_WAIT)
3001 local_irq_enable();
3002
3003 /*
3004 * The test for missing atomic flag is performed here, rather than
3005 * the more obvious place, simply to reduce the critical path length
3006 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
3007 * will eventually be caught here (where it matters).
3008 */
3009 kmem_flagcheck(cachep, flags);
3010
3011 /*
3012 * Get mem for the objs. Attempt to allocate a physical page from
3013 * 'nodeid'.
3014 */
3015 if (!objp)
3016 objp = kmem_getpages(cachep, local_flags, nodeid);
3017 if (!objp)
3018 goto failed;
3019
3020 /* Get slab management. */
3021 slabp = alloc_slabmgmt(cachep, objp, offset,
3022 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
3023 if (!slabp)
3024 goto opps1;
3025
3026 slab_map_pages(cachep, slabp, objp);
3027
3028 cache_init_objs(cachep, slabp);
3029
3030 if (local_flags & __GFP_WAIT)
3031 local_irq_disable();
3032 check_irq_off();
3033 spin_lock(&l3->list_lock);
3034
3035 /* Make slab active. */
3036 list_add_tail(&slabp->list, &(l3->slabs_free));
3037 STATS_INC_GROWN(cachep);
3038 l3->free_objects += cachep->num;
3039 spin_unlock(&l3->list_lock);
3040 return 1;
3041 opps1:
3042 kmem_freepages(cachep, objp);
3043 failed:
3044 if (local_flags & __GFP_WAIT)
3045 local_irq_disable();
3046 return 0;
3047 }
3048
3049 #if DEBUG
3050
3051 /*
3052 * Perform extra freeing checks:
3053 * - detect bad pointers.
3054 * - POISON/RED_ZONE checking
3055 */
3056 static void kfree_debugcheck(const void *objp)
3057 {
3058 if (!virt_addr_valid(objp)) {
3059 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
3060 (unsigned long)objp);
3061 BUG();
3062 }
3063 }
3064
3065 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
3066 {
3067 unsigned long long redzone1, redzone2;
3068
3069 redzone1 = *dbg_redzone1(cache, obj);
3070 redzone2 = *dbg_redzone2(cache, obj);
3071
3072 /*
3073 * Redzone is ok.
3074 */
3075 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
3076 return;
3077
3078 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
3079 slab_error(cache, "double free detected");
3080 else
3081 slab_error(cache, "memory outside object was overwritten");
3082
3083 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
3084 obj, redzone1, redzone2);
3085 }
3086
3087 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
3088 unsigned long caller)
3089 {
3090 struct page *page;
3091 unsigned int objnr;
3092 struct slab *slabp;
3093
3094 BUG_ON(virt_to_cache(objp) != cachep);
3095
3096 objp -= obj_offset(cachep);
3097 kfree_debugcheck(objp);
3098 page = virt_to_head_page(objp);
3099
3100 slabp = page->slab_page;
3101
3102 if (cachep->flags & SLAB_RED_ZONE) {
3103 verify_redzone_free(cachep, objp);
3104 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
3105 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
3106 }
3107 if (cachep->flags & SLAB_STORE_USER)
3108 *dbg_userword(cachep, objp) = (void *)caller;
3109
3110 objnr = obj_to_index(cachep, slabp, objp);
3111
3112 BUG_ON(objnr >= cachep->num);
3113 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
3114
3115 #ifdef CONFIG_DEBUG_SLAB_LEAK
3116 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
3117 #endif
3118 if (cachep->flags & SLAB_POISON) {
3119 #ifdef CONFIG_DEBUG_PAGEALLOC
3120 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
3121 store_stackinfo(cachep, objp, caller);
3122 kernel_map_pages(virt_to_page(objp),
3123 cachep->size / PAGE_SIZE, 0);
3124 } else {
3125 poison_obj(cachep, objp, POISON_FREE);
3126 }
3127 #else
3128 poison_obj(cachep, objp, POISON_FREE);
3129 #endif
3130 }
3131 return objp;
3132 }
3133
3134 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
3135 {
3136 kmem_bufctl_t i;
3137 int entries = 0;
3138
3139 /* Check slab's freelist to see if this obj is there. */
3140 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
3141 entries++;
3142 if (entries > cachep->num || i >= cachep->num)
3143 goto bad;
3144 }
3145 if (entries != cachep->num - slabp->inuse) {
3146 bad:
3147 printk(KERN_ERR "slab: Internal list corruption detected in "
3148 "cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n",
3149 cachep->name, cachep->num, slabp, slabp->inuse,
3150 print_tainted());
3151 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp,
3152 sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t),
3153 1);
3154 BUG();
3155 }
3156 }
3157 #else
3158 #define kfree_debugcheck(x) do { } while(0)
3159 #define cache_free_debugcheck(x,objp,z) (objp)
3160 #define check_slabp(x,y) do { } while(0)
3161 #endif
3162
3163 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
3164 bool force_refill)
3165 {
3166 int batchcount;
3167 struct kmem_list3 *l3;
3168 struct array_cache *ac;
3169 int node;
3170
3171 check_irq_off();
3172 node = numa_mem_id();
3173 if (unlikely(force_refill))
3174 goto force_grow;
3175 retry:
3176 ac = cpu_cache_get(cachep);
3177 batchcount = ac->batchcount;
3178 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
3179 /*
3180 * If there was little recent activity on this cache, then
3181 * perform only a partial refill. Otherwise we could generate
3182 * refill bouncing.
3183 */
3184 batchcount = BATCHREFILL_LIMIT;
3185 }
3186 l3 = cachep->nodelists[node];
3187
3188 BUG_ON(ac->avail > 0 || !l3);
3189 spin_lock(&l3->list_lock);
3190
3191 /* See if we can refill from the shared array */
3192 if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
3193 l3->shared->touched = 1;
3194 goto alloc_done;
3195 }
3196
3197 while (batchcount > 0) {
3198 struct list_head *entry;
3199 struct slab *slabp;
3200 /* Get slab alloc is to come from. */
3201 entry = l3->slabs_partial.next;
3202 if (entry == &l3->slabs_partial) {
3203 l3->free_touched = 1;
3204 entry = l3->slabs_free.next;
3205 if (entry == &l3->slabs_free)
3206 goto must_grow;
3207 }
3208
3209 slabp = list_entry(entry, struct slab, list);
3210 check_slabp(cachep, slabp);
3211 check_spinlock_acquired(cachep);
3212
3213 /*
3214 * The slab was either on partial or free list so
3215 * there must be at least one object available for
3216 * allocation.
3217 */
3218 BUG_ON(slabp->inuse >= cachep->num);
3219
3220 while (slabp->inuse < cachep->num && batchcount--) {
3221 STATS_INC_ALLOCED(cachep);
3222 STATS_INC_ACTIVE(cachep);
3223 STATS_SET_HIGH(cachep);
3224
3225 ac_put_obj(cachep, ac, slab_get_obj(cachep, slabp,
3226 node));
3227 }
3228 check_slabp(cachep, slabp);
3229
3230 /* move slabp to correct slabp list: */
3231 list_del(&slabp->list);
3232 if (slabp->free == BUFCTL_END)
3233 list_add(&slabp->list, &l3->slabs_full);
3234 else
3235 list_add(&slabp->list, &l3->slabs_partial);
3236 }
3237
3238 must_grow:
3239 l3->free_objects -= ac->avail;
3240 alloc_done:
3241 spin_unlock(&l3->list_lock);
3242
3243 if (unlikely(!ac->avail)) {
3244 int x;
3245 force_grow:
3246 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3247
3248 /* cache_grow can reenable interrupts, then ac could change. */
3249 ac = cpu_cache_get(cachep);
3250
3251 /* no objects in sight? abort */
3252 if (!x && (ac->avail == 0 || force_refill))
3253 return NULL;
3254
3255 if (!ac->avail) /* objects refilled by interrupt? */
3256 goto retry;
3257 }
3258 ac->touched = 1;
3259
3260 return ac_get_obj(cachep, ac, flags, force_refill);
3261 }
3262
3263 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3264 gfp_t flags)
3265 {
3266 might_sleep_if(flags & __GFP_WAIT);
3267 #if DEBUG
3268 kmem_flagcheck(cachep, flags);
3269 #endif
3270 }
3271
3272 #if DEBUG
3273 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3274 gfp_t flags, void *objp, unsigned long caller)
3275 {
3276 if (!objp)
3277 return objp;
3278 if (cachep->flags & SLAB_POISON) {
3279 #ifdef CONFIG_DEBUG_PAGEALLOC
3280 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3281 kernel_map_pages(virt_to_page(objp),
3282 cachep->size / PAGE_SIZE, 1);
3283 else
3284 check_poison_obj(cachep, objp);
3285 #else
3286 check_poison_obj(cachep, objp);
3287 #endif
3288 poison_obj(cachep, objp, POISON_INUSE);
3289 }
3290 if (cachep->flags & SLAB_STORE_USER)
3291 *dbg_userword(cachep, objp) = (void *)caller;
3292
3293 if (cachep->flags & SLAB_RED_ZONE) {
3294 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3295 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3296 slab_error(cachep, "double free, or memory outside"
3297 " object was overwritten");
3298 printk(KERN_ERR
3299 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3300 objp, *dbg_redzone1(cachep, objp),
3301 *dbg_redzone2(cachep, objp));
3302 }
3303 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3304 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3305 }
3306 #ifdef CONFIG_DEBUG_SLAB_LEAK
3307 {
3308 struct slab *slabp;
3309 unsigned objnr;
3310
3311 slabp = virt_to_head_page(objp)->slab_page;
3312 objnr = (unsigned)(objp - slabp->s_mem) / cachep->size;
3313 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3314 }
3315 #endif
3316 objp += obj_offset(cachep);
3317 if (cachep->ctor && cachep->flags & SLAB_POISON)
3318 cachep->ctor(objp);
3319 if (ARCH_SLAB_MINALIGN &&
3320 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3321 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3322 objp, (int)ARCH_SLAB_MINALIGN);
3323 }
3324 return objp;
3325 }
3326 #else
3327 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3328 #endif
3329
3330 static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3331 {
3332 if (cachep == &cache_cache)
3333 return false;
3334
3335 return should_failslab(cachep->object_size, flags, cachep->flags);
3336 }
3337
3338 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3339 {
3340 void *objp;
3341 struct array_cache *ac;
3342 bool force_refill = false;
3343
3344 check_irq_off();
3345
3346 ac = cpu_cache_get(cachep);
3347 if (likely(ac->avail)) {
3348 ac->touched = 1;
3349 objp = ac_get_obj(cachep, ac, flags, false);
3350
3351 /*
3352 * Allow for the possibility all avail objects are not allowed
3353 * by the current flags
3354 */
3355 if (objp) {
3356 STATS_INC_ALLOCHIT(cachep);
3357 goto out;
3358 }
3359 force_refill = true;
3360 }
3361
3362 STATS_INC_ALLOCMISS(cachep);
3363 objp = cache_alloc_refill(cachep, flags, force_refill);
3364 /*
3365 * the 'ac' may be updated by cache_alloc_refill(),
3366 * and kmemleak_erase() requires its correct value.
3367 */
3368 ac = cpu_cache_get(cachep);
3369
3370 out:
3371 /*
3372 * To avoid a false negative, if an object that is in one of the
3373 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3374 * treat the array pointers as a reference to the object.
3375 */
3376 if (objp)
3377 kmemleak_erase(&ac->entry[ac->avail]);
3378 return objp;
3379 }
3380
3381 #ifdef CONFIG_NUMA
3382 /*
3383 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3384 *
3385 * If we are in_interrupt, then process context, including cpusets and
3386 * mempolicy, may not apply and should not be used for allocation policy.
3387 */
3388 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3389 {
3390 int nid_alloc, nid_here;
3391
3392 if (in_interrupt() || (flags & __GFP_THISNODE))
3393 return NULL;
3394 nid_alloc = nid_here = numa_mem_id();
3395 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3396 nid_alloc = cpuset_slab_spread_node();
3397 else if (current->mempolicy)
3398 nid_alloc = slab_node();
3399 if (nid_alloc != nid_here)
3400 return ____cache_alloc_node(cachep, flags, nid_alloc);
3401 return NULL;
3402 }
3403
3404 /*
3405 * Fallback function if there was no memory available and no objects on a
3406 * certain node and fall back is permitted. First we scan all the
3407 * available nodelists for available objects. If that fails then we
3408 * perform an allocation without specifying a node. This allows the page
3409 * allocator to do its reclaim / fallback magic. We then insert the
3410 * slab into the proper nodelist and then allocate from it.
3411 */
3412 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3413 {
3414 struct zonelist *zonelist;
3415 gfp_t local_flags;
3416 struct zoneref *z;
3417 struct zone *zone;
3418 enum zone_type high_zoneidx = gfp_zone(flags);
3419 void *obj = NULL;
3420 int nid;
3421 unsigned int cpuset_mems_cookie;
3422
3423 if (flags & __GFP_THISNODE)
3424 return NULL;
3425
3426 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3427
3428 retry_cpuset:
3429 cpuset_mems_cookie = get_mems_allowed();
3430 zonelist = node_zonelist(slab_node(), flags);
3431
3432 retry:
3433 /*
3434 * Look through allowed nodes for objects available
3435 * from existing per node queues.
3436 */
3437 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3438 nid = zone_to_nid(zone);
3439
3440 if (cpuset_zone_allowed_hardwall(zone, flags) &&
3441 cache->nodelists[nid] &&
3442 cache->nodelists[nid]->free_objects) {
3443 obj = ____cache_alloc_node(cache,
3444 flags | GFP_THISNODE, nid);
3445 if (obj)
3446 break;
3447 }
3448 }
3449
3450 if (!obj) {
3451 /*
3452 * This allocation will be performed within the constraints
3453 * of the current cpuset / memory policy requirements.
3454 * We may trigger various forms of reclaim on the allowed
3455 * set and go into memory reserves if necessary.
3456 */
3457 if (local_flags & __GFP_WAIT)
3458 local_irq_enable();
3459 kmem_flagcheck(cache, flags);
3460 obj = kmem_getpages(cache, local_flags, numa_mem_id());
3461 if (local_flags & __GFP_WAIT)
3462 local_irq_disable();
3463 if (obj) {
3464 /*
3465 * Insert into the appropriate per node queues
3466 */
3467 nid = page_to_nid(virt_to_page(obj));
3468 if (cache_grow(cache, flags, nid, obj)) {
3469 obj = ____cache_alloc_node(cache,
3470 flags | GFP_THISNODE, nid);
3471 if (!obj)
3472 /*
3473 * Another processor may allocate the
3474 * objects in the slab since we are
3475 * not holding any locks.
3476 */
3477 goto retry;
3478 } else {
3479 /* cache_grow already freed obj */
3480 obj = NULL;
3481 }
3482 }
3483 }
3484
3485 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
3486 goto retry_cpuset;
3487 return obj;
3488 }
3489
3490 /*
3491 * A interface to enable slab creation on nodeid
3492 */
3493 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3494 int nodeid)
3495 {
3496 struct list_head *entry;
3497 struct slab *slabp;
3498 struct kmem_list3 *l3;
3499 void *obj;
3500 int x;
3501
3502 l3 = cachep->nodelists[nodeid];
3503 BUG_ON(!l3);
3504
3505 retry:
3506 check_irq_off();
3507 spin_lock(&l3->list_lock);
3508 entry = l3->slabs_partial.next;
3509 if (entry == &l3->slabs_partial) {
3510 l3->free_touched = 1;
3511 entry = l3->slabs_free.next;
3512 if (entry == &l3->slabs_free)
3513 goto must_grow;
3514 }
3515
3516 slabp = list_entry(entry, struct slab, list);
3517 check_spinlock_acquired_node(cachep, nodeid);
3518 check_slabp(cachep, slabp);
3519
3520 STATS_INC_NODEALLOCS(cachep);
3521 STATS_INC_ACTIVE(cachep);
3522 STATS_SET_HIGH(cachep);
3523
3524 BUG_ON(slabp->inuse == cachep->num);
3525
3526 obj = slab_get_obj(cachep, slabp, nodeid);
3527 check_slabp(cachep, slabp);
3528 l3->free_objects--;
3529 /* move slabp to correct slabp list: */
3530 list_del(&slabp->list);
3531
3532 if (slabp->free == BUFCTL_END)
3533 list_add(&slabp->list, &l3->slabs_full);
3534 else
3535 list_add(&slabp->list, &l3->slabs_partial);
3536
3537 spin_unlock(&l3->list_lock);
3538 goto done;
3539
3540 must_grow:
3541 spin_unlock(&l3->list_lock);
3542 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3543 if (x)
3544 goto retry;
3545
3546 return fallback_alloc(cachep, flags);
3547
3548 done:
3549 return obj;
3550 }
3551
3552 /**
3553 * kmem_cache_alloc_node - Allocate an object on the specified node
3554 * @cachep: The cache to allocate from.
3555 * @flags: See kmalloc().
3556 * @nodeid: node number of the target node.
3557 * @caller: return address of caller, used for debug information
3558 *
3559 * Identical to kmem_cache_alloc but it will allocate memory on the given
3560 * node, which can improve the performance for cpu bound structures.
3561 *
3562 * Fallback to other node is possible if __GFP_THISNODE is not set.
3563 */
3564 static __always_inline void *
3565 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3566 unsigned long caller)
3567 {
3568 unsigned long save_flags;
3569 void *ptr;
3570 int slab_node = numa_mem_id();
3571
3572 flags &= gfp_allowed_mask;
3573
3574 lockdep_trace_alloc(flags);
3575
3576 if (slab_should_failslab(cachep, flags))
3577 return NULL;
3578
3579 cache_alloc_debugcheck_before(cachep, flags);
3580 local_irq_save(save_flags);
3581
3582 if (nodeid == NUMA_NO_NODE)
3583 nodeid = slab_node;
3584
3585 if (unlikely(!cachep->nodelists[nodeid])) {
3586 /* Node not bootstrapped yet */
3587 ptr = fallback_alloc(cachep, flags);
3588 goto out;
3589 }
3590
3591 if (nodeid == slab_node) {
3592 /*
3593 * Use the locally cached objects if possible.
3594 * However ____cache_alloc does not allow fallback
3595 * to other nodes. It may fail while we still have
3596 * objects on other nodes available.
3597 */
3598 ptr = ____cache_alloc(cachep, flags);
3599 if (ptr)
3600 goto out;
3601 }
3602 /* ___cache_alloc_node can fall back to other nodes */
3603 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3604 out:
3605 local_irq_restore(save_flags);
3606 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3607 kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3608 flags);
3609
3610 if (likely(ptr))
3611 kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
3612
3613 if (unlikely((flags & __GFP_ZERO) && ptr))
3614 memset(ptr, 0, cachep->object_size);
3615
3616 return ptr;
3617 }
3618
3619 static __always_inline void *
3620 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3621 {
3622 void *objp;
3623
3624 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3625 objp = alternate_node_alloc(cache, flags);
3626 if (objp)
3627 goto out;
3628 }
3629 objp = ____cache_alloc(cache, flags);
3630
3631 /*
3632 * We may just have run out of memory on the local node.
3633 * ____cache_alloc_node() knows how to locate memory on other nodes
3634 */
3635 if (!objp)
3636 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3637
3638 out:
3639 return objp;
3640 }
3641 #else
3642
3643 static __always_inline void *
3644 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3645 {
3646 return ____cache_alloc(cachep, flags);
3647 }
3648
3649 #endif /* CONFIG_NUMA */
3650
3651 static __always_inline void *
3652 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3653 {
3654 unsigned long save_flags;
3655 void *objp;
3656
3657 flags &= gfp_allowed_mask;
3658
3659 lockdep_trace_alloc(flags);
3660
3661 if (slab_should_failslab(cachep, flags))
3662 return NULL;
3663
3664 cache_alloc_debugcheck_before(cachep, flags);
3665 local_irq_save(save_flags);
3666 objp = __do_cache_alloc(cachep, flags);
3667 local_irq_restore(save_flags);
3668 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3669 kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3670 flags);
3671 prefetchw(objp);
3672
3673 if (likely(objp))
3674 kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
3675
3676 if (unlikely((flags & __GFP_ZERO) && objp))
3677 memset(objp, 0, cachep->object_size);
3678
3679 return objp;
3680 }
3681
3682 /*
3683 * Caller needs to acquire correct kmem_list's list_lock
3684 */
3685 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3686 int node)
3687 {
3688 int i;
3689 struct kmem_list3 *l3;
3690
3691 for (i = 0; i < nr_objects; i++) {
3692 void *objp;
3693 struct slab *slabp;
3694
3695 clear_obj_pfmemalloc(&objpp[i]);
3696 objp = objpp[i];
3697
3698 slabp = virt_to_slab(objp);
3699 l3 = cachep->nodelists[node];
3700 list_del(&slabp->list);
3701 check_spinlock_acquired_node(cachep, node);
3702 check_slabp(cachep, slabp);
3703 slab_put_obj(cachep, slabp, objp, node);
3704 STATS_DEC_ACTIVE(cachep);
3705 l3->free_objects++;
3706 check_slabp(cachep, slabp);
3707
3708 /* fixup slab chains */
3709 if (slabp->inuse == 0) {
3710 if (l3->free_objects > l3->free_limit) {
3711 l3->free_objects -= cachep->num;
3712 /* No need to drop any previously held
3713 * lock here, even if we have a off-slab slab
3714 * descriptor it is guaranteed to come from
3715 * a different cache, refer to comments before
3716 * alloc_slabmgmt.
3717 */
3718 slab_destroy(cachep, slabp);
3719 } else {
3720 list_add(&slabp->list, &l3->slabs_free);
3721 }
3722 } else {
3723 /* Unconditionally move a slab to the end of the
3724 * partial list on free - maximum time for the
3725 * other objects to be freed, too.
3726 */
3727 list_add_tail(&slabp->list, &l3->slabs_partial);
3728 }
3729 }
3730 }
3731
3732 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3733 {
3734 int batchcount;
3735 struct kmem_list3 *l3;
3736 int node = numa_mem_id();
3737
3738 batchcount = ac->batchcount;
3739 #if DEBUG
3740 BUG_ON(!batchcount || batchcount > ac->avail);
3741 #endif
3742 check_irq_off();
3743 l3 = cachep->nodelists[node];
3744 spin_lock(&l3->list_lock);
3745 if (l3->shared) {
3746 struct array_cache *shared_array = l3->shared;
3747 int max = shared_array->limit - shared_array->avail;
3748 if (max) {
3749 if (batchcount > max)
3750 batchcount = max;
3751 memcpy(&(shared_array->entry[shared_array->avail]),
3752 ac->entry, sizeof(void *) * batchcount);
3753 shared_array->avail += batchcount;
3754 goto free_done;
3755 }
3756 }
3757
3758 free_block(cachep, ac->entry, batchcount, node);
3759 free_done:
3760 #if STATS
3761 {
3762 int i = 0;
3763 struct list_head *p;
3764
3765 p = l3->slabs_free.next;
3766 while (p != &(l3->slabs_free)) {
3767 struct slab *slabp;
3768
3769 slabp = list_entry(p, struct slab, list);
3770 BUG_ON(slabp->inuse);
3771
3772 i++;
3773 p = p->next;
3774 }
3775 STATS_SET_FREEABLE(cachep, i);
3776 }
3777 #endif
3778 spin_unlock(&l3->list_lock);
3779 ac->avail -= batchcount;
3780 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3781 }
3782
3783 /*
3784 * Release an obj back to its cache. If the obj has a constructed state, it must
3785 * be in this state _before_ it is released. Called with disabled ints.
3786 */
3787 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3788 unsigned long caller)
3789 {
3790 struct array_cache *ac = cpu_cache_get(cachep);
3791
3792 check_irq_off();
3793 kmemleak_free_recursive(objp, cachep->flags);
3794 objp = cache_free_debugcheck(cachep, objp, caller);
3795
3796 kmemcheck_slab_free(cachep, objp, cachep->object_size);
3797
3798 /*
3799 * Skip calling cache_free_alien() when the platform is not numa.
3800 * This will avoid cache misses that happen while accessing slabp (which
3801 * is per page memory reference) to get nodeid. Instead use a global
3802 * variable to skip the call, which is mostly likely to be present in
3803 * the cache.
3804 */
3805 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3806 return;
3807
3808 if (likely(ac->avail < ac->limit)) {
3809 STATS_INC_FREEHIT(cachep);
3810 } else {
3811 STATS_INC_FREEMISS(cachep);
3812 cache_flusharray(cachep, ac);
3813 }
3814
3815 ac_put_obj(cachep, ac, objp);
3816 }
3817
3818 /**
3819 * kmem_cache_alloc - Allocate an object
3820 * @cachep: The cache to allocate from.
3821 * @flags: See kmalloc().
3822 *
3823 * Allocate an object from this cache. The flags are only relevant
3824 * if the cache has no available objects.
3825 */
3826 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3827 {
3828 void *ret = slab_alloc(cachep, flags, _RET_IP_);
3829
3830 trace_kmem_cache_alloc(_RET_IP_, ret,
3831 cachep->object_size, cachep->size, flags);
3832
3833 return ret;
3834 }
3835 EXPORT_SYMBOL(kmem_cache_alloc);
3836
3837 #ifdef CONFIG_TRACING
3838 void *
3839 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3840 {
3841 void *ret;
3842
3843 ret = slab_alloc(cachep, flags, _RET_IP_);
3844
3845 trace_kmalloc(_RET_IP_, ret,
3846 size, cachep->size, flags);
3847 return ret;
3848 }
3849 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3850 #endif
3851
3852 #ifdef CONFIG_NUMA
3853 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3854 {
3855 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3856
3857 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3858 cachep->object_size, cachep->size,
3859 flags, nodeid);
3860
3861 return ret;
3862 }
3863 EXPORT_SYMBOL(kmem_cache_alloc_node);
3864
3865 #ifdef CONFIG_TRACING
3866 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3867 gfp_t flags,
3868 int nodeid,
3869 size_t size)
3870 {
3871 void *ret;
3872
3873 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP);
3874
3875 trace_kmalloc_node(_RET_IP_, ret,
3876 size, cachep->size,
3877 flags, nodeid);
3878 return ret;
3879 }
3880 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3881 #endif
3882
3883 static __always_inline void *
3884 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3885 {
3886 struct kmem_cache *cachep;
3887
3888 cachep = kmem_find_general_cachep(size, flags);
3889 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3890 return cachep;
3891 return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3892 }
3893
3894 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3895 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3896 {
3897 return __do_kmalloc_node(size, flags, node, _RET_IP_);
3898 }
3899 EXPORT_SYMBOL(__kmalloc_node);
3900
3901 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3902 int node, unsigned long caller)
3903 {
3904 return __do_kmalloc_node(size, flags, node, caller);
3905 }
3906 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3907 #else
3908 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3909 {
3910 return __do_kmalloc_node(size, flags, node, 0);
3911 }
3912 EXPORT_SYMBOL(__kmalloc_node);
3913 #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3914 #endif /* CONFIG_NUMA */
3915
3916 /**
3917 * __do_kmalloc - allocate memory
3918 * @size: how many bytes of memory are required.
3919 * @flags: the type of memory to allocate (see kmalloc).
3920 * @caller: function caller for debug tracking of the caller
3921 */
3922 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3923 unsigned long caller)
3924 {
3925 struct kmem_cache *cachep;
3926 void *ret;
3927
3928 /* If you want to save a few bytes .text space: replace
3929 * __ with kmem_.
3930 * Then kmalloc uses the uninlined functions instead of the inline
3931 * functions.
3932 */
3933 cachep = __find_general_cachep(size, flags);
3934 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3935 return cachep;
3936 ret = slab_alloc(cachep, flags, caller);
3937
3938 trace_kmalloc(caller, ret,
3939 size, cachep->size, flags);
3940
3941 return ret;
3942 }
3943
3944
3945 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3946 void *__kmalloc(size_t size, gfp_t flags)
3947 {
3948 return __do_kmalloc(size, flags, _RET_IP_);
3949 }
3950 EXPORT_SYMBOL(__kmalloc);
3951
3952 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3953 {
3954 return __do_kmalloc(size, flags, caller);
3955 }
3956 EXPORT_SYMBOL(__kmalloc_track_caller);
3957
3958 #else
3959 void *__kmalloc(size_t size, gfp_t flags)
3960 {
3961 return __do_kmalloc(size, flags, 0);
3962 }
3963 EXPORT_SYMBOL(__kmalloc);
3964 #endif
3965
3966 /**
3967 * kmem_cache_free - Deallocate an object
3968 * @cachep: The cache the allocation was from.
3969 * @objp: The previously allocated object.
3970 *
3971 * Free an object which was previously allocated from this
3972 * cache.
3973 */
3974 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3975 {
3976 unsigned long flags;
3977
3978 local_irq_save(flags);
3979 debug_check_no_locks_freed(objp, cachep->object_size);
3980 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3981 debug_check_no_obj_freed(objp, cachep->object_size);
3982 __cache_free(cachep, objp, _RET_IP_);
3983 local_irq_restore(flags);
3984
3985 trace_kmem_cache_free(_RET_IP_, objp);
3986 }
3987 EXPORT_SYMBOL(kmem_cache_free);
3988
3989 /**
3990 * kfree - free previously allocated memory
3991 * @objp: pointer returned by kmalloc.
3992 *
3993 * If @objp is NULL, no operation is performed.
3994 *
3995 * Don't free memory not originally allocated by kmalloc()
3996 * or you will run into trouble.
3997 */
3998 void kfree(const void *objp)
3999 {
4000 struct kmem_cache *c;
4001 unsigned long flags;
4002
4003 trace_kfree(_RET_IP_, objp);
4004
4005 if (unlikely(ZERO_OR_NULL_PTR(objp)))
4006 return;
4007 local_irq_save(flags);
4008 kfree_debugcheck(objp);
4009 c = virt_to_cache(objp);
4010 debug_check_no_locks_freed(objp, c->object_size);
4011
4012 debug_check_no_obj_freed(objp, c->object_size);
4013 __cache_free(c, (void *)objp, _RET_IP_);
4014 local_irq_restore(flags);
4015 }
4016 EXPORT_SYMBOL(kfree);
4017
4018 unsigned int kmem_cache_size(struct kmem_cache *cachep)
4019 {
4020 return cachep->object_size;
4021 }
4022 EXPORT_SYMBOL(kmem_cache_size);
4023
4024 /*
4025 * This initializes kmem_list3 or resizes various caches for all nodes.
4026 */
4027 static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
4028 {
4029 int node;
4030 struct kmem_list3 *l3;
4031 struct array_cache *new_shared;
4032 struct array_cache **new_alien = NULL;
4033
4034 for_each_online_node(node) {
4035
4036 if (use_alien_caches) {
4037 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
4038 if (!new_alien)
4039 goto fail;
4040 }
4041
4042 new_shared = NULL;
4043 if (cachep->shared) {
4044 new_shared = alloc_arraycache(node,
4045 cachep->shared*cachep->batchcount,
4046 0xbaadf00d, gfp);
4047 if (!new_shared) {
4048 free_alien_cache(new_alien);
4049 goto fail;
4050 }
4051 }
4052
4053 l3 = cachep->nodelists[node];
4054 if (l3) {
4055 struct array_cache *shared = l3->shared;
4056
4057 spin_lock_irq(&l3->list_lock);
4058
4059 if (shared)
4060 free_block(cachep, shared->entry,
4061 shared->avail, node);
4062
4063 l3->shared = new_shared;
4064 if (!l3->alien) {
4065 l3->alien = new_alien;
4066 new_alien = NULL;
4067 }
4068 l3->free_limit = (1 + nr_cpus_node(node)) *
4069 cachep->batchcount + cachep->num;
4070 spin_unlock_irq(&l3->list_lock);
4071 kfree(shared);
4072 free_alien_cache(new_alien);
4073 continue;
4074 }
4075 l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
4076 if (!l3) {
4077 free_alien_cache(new_alien);
4078 kfree(new_shared);
4079 goto fail;
4080 }
4081
4082 kmem_list3_init(l3);
4083 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
4084 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
4085 l3->shared = new_shared;
4086 l3->alien = new_alien;
4087 l3->free_limit = (1 + nr_cpus_node(node)) *
4088 cachep->batchcount + cachep->num;
4089 cachep->nodelists[node] = l3;
4090 }
4091 return 0;
4092
4093 fail:
4094 if (!cachep->list.next) {
4095 /* Cache is not active yet. Roll back what we did */
4096 node--;
4097 while (node >= 0) {
4098 if (cachep->nodelists[node]) {
4099 l3 = cachep->nodelists[node];
4100
4101 kfree(l3->shared);
4102 free_alien_cache(l3->alien);
4103 kfree(l3);
4104 cachep->nodelists[node] = NULL;
4105 }
4106 node--;
4107 }
4108 }
4109 return -ENOMEM;
4110 }
4111
4112 struct ccupdate_struct {
4113 struct kmem_cache *cachep;
4114 struct array_cache *new[0];
4115 };
4116
4117 static void do_ccupdate_local(void *info)
4118 {
4119 struct ccupdate_struct *new = info;
4120 struct array_cache *old;
4121
4122 check_irq_off();
4123 old = cpu_cache_get(new->cachep);
4124
4125 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
4126 new->new[smp_processor_id()] = old;
4127 }
4128
4129 /* Always called with the slab_mutex held */
4130 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
4131 int batchcount, int shared, gfp_t gfp)
4132 {
4133 struct ccupdate_struct *new;
4134 int i;
4135
4136 new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
4137 gfp);
4138 if (!new)
4139 return -ENOMEM;
4140
4141 for_each_online_cpu(i) {
4142 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
4143 batchcount, gfp);
4144 if (!new->new[i]) {
4145 for (i--; i >= 0; i--)
4146 kfree(new->new[i]);
4147 kfree(new);
4148 return -ENOMEM;
4149 }
4150 }
4151 new->cachep = cachep;
4152
4153 on_each_cpu(do_ccupdate_local, (void *)new, 1);
4154
4155 check_irq_on();
4156 cachep->batchcount = batchcount;
4157 cachep->limit = limit;
4158 cachep->shared = shared;
4159
4160 for_each_online_cpu(i) {
4161 struct array_cache *ccold = new->new[i];
4162 if (!ccold)
4163 continue;
4164 spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
4165 free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
4166 spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
4167 kfree(ccold);
4168 }
4169 kfree(new);
4170 return alloc_kmemlist(cachep, gfp);
4171 }
4172
4173 /* Called with slab_mutex held always */
4174 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
4175 {
4176 int err;
4177 int limit, shared;
4178
4179 /*
4180 * The head array serves three purposes:
4181 * - create a LIFO ordering, i.e. return objects that are cache-warm
4182 * - reduce the number of spinlock operations.
4183 * - reduce the number of linked list operations on the slab and
4184 * bufctl chains: array operations are cheaper.
4185 * The numbers are guessed, we should auto-tune as described by
4186 * Bonwick.
4187 */
4188 if (cachep->size > 131072)
4189 limit = 1;
4190 else if (cachep->size > PAGE_SIZE)
4191 limit = 8;
4192 else if (cachep->size > 1024)
4193 limit = 24;
4194 else if (cachep->size > 256)
4195 limit = 54;
4196 else
4197 limit = 120;
4198
4199 /*
4200 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
4201 * allocation behaviour: Most allocs on one cpu, most free operations
4202 * on another cpu. For these cases, an efficient object passing between
4203 * cpus is necessary. This is provided by a shared array. The array
4204 * replaces Bonwick's magazine layer.
4205 * On uniprocessor, it's functionally equivalent (but less efficient)
4206 * to a larger limit. Thus disabled by default.
4207 */
4208 shared = 0;
4209 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
4210 shared = 8;
4211
4212 #if DEBUG
4213 /*
4214 * With debugging enabled, large batchcount lead to excessively long
4215 * periods with disabled local interrupts. Limit the batchcount
4216 */
4217 if (limit > 32)
4218 limit = 32;
4219 #endif
4220 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
4221 if (err)
4222 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
4223 cachep->name, -err);
4224 return err;
4225 }
4226
4227 /*
4228 * Drain an array if it contains any elements taking the l3 lock only if
4229 * necessary. Note that the l3 listlock also protects the array_cache
4230 * if drain_array() is used on the shared array.
4231 */
4232 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4233 struct array_cache *ac, int force, int node)
4234 {
4235 int tofree;
4236
4237 if (!ac || !ac->avail)
4238 return;
4239 if (ac->touched && !force) {
4240 ac->touched = 0;
4241 } else {
4242 spin_lock_irq(&l3->list_lock);
4243 if (ac->avail) {
4244 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4245 if (tofree > ac->avail)
4246 tofree = (ac->avail + 1) / 2;
4247 free_block(cachep, ac->entry, tofree, node);
4248 ac->avail -= tofree;
4249 memmove(ac->entry, &(ac->entry[tofree]),
4250 sizeof(void *) * ac->avail);
4251 }
4252 spin_unlock_irq(&l3->list_lock);
4253 }
4254 }
4255
4256 /**
4257 * cache_reap - Reclaim memory from caches.
4258 * @w: work descriptor
4259 *
4260 * Called from workqueue/eventd every few seconds.
4261 * Purpose:
4262 * - clear the per-cpu caches for this CPU.
4263 * - return freeable pages to the main free memory pool.
4264 *
4265 * If we cannot acquire the cache chain mutex then just give up - we'll try
4266 * again on the next iteration.
4267 */
4268 static void cache_reap(struct work_struct *w)
4269 {
4270 struct kmem_cache *searchp;
4271 struct kmem_list3 *l3;
4272 int node = numa_mem_id();
4273 struct delayed_work *work = to_delayed_work(w);
4274
4275 if (!mutex_trylock(&slab_mutex))
4276 /* Give up. Setup the next iteration. */
4277 goto out;
4278
4279 list_for_each_entry(searchp, &slab_caches, list) {
4280 check_irq_on();
4281
4282 /*
4283 * We only take the l3 lock if absolutely necessary and we
4284 * have established with reasonable certainty that
4285 * we can do some work if the lock was obtained.
4286 */
4287 l3 = searchp->nodelists[node];
4288
4289 reap_alien(searchp, l3);
4290
4291 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
4292
4293 /*
4294 * These are racy checks but it does not matter
4295 * if we skip one check or scan twice.
4296 */
4297 if (time_after(l3->next_reap, jiffies))
4298 goto next;
4299
4300 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
4301
4302 drain_array(searchp, l3, l3->shared, 0, node);
4303
4304 if (l3->free_touched)
4305 l3->free_touched = 0;
4306 else {
4307 int freed;
4308
4309 freed = drain_freelist(searchp, l3, (l3->free_limit +
4310 5 * searchp->num - 1) / (5 * searchp->num));
4311 STATS_ADD_REAPED(searchp, freed);
4312 }
4313 next:
4314 cond_resched();
4315 }
4316 check_irq_on();
4317 mutex_unlock(&slab_mutex);
4318 next_reap_node();
4319 out:
4320 /* Set up the next iteration */
4321 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
4322 }
4323
4324 #ifdef CONFIG_SLABINFO
4325
4326 static void print_slabinfo_header(struct seq_file *m)
4327 {
4328 /*
4329 * Output format version, so at least we can change it
4330 * without _too_ many complaints.
4331 */
4332 #if STATS
4333 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
4334 #else
4335 seq_puts(m, "slabinfo - version: 2.1\n");
4336 #endif
4337 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4338 "<objperslab> <pagesperslab>");
4339 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4340 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4341 #if STATS
4342 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4343 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4344 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4345 #endif
4346 seq_putc(m, '\n');
4347 }
4348
4349 static void *s_start(struct seq_file *m, loff_t *pos)
4350 {
4351 loff_t n = *pos;
4352
4353 mutex_lock(&slab_mutex);
4354 if (!n)
4355 print_slabinfo_header(m);
4356
4357 return seq_list_start(&slab_caches, *pos);
4358 }
4359
4360 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4361 {
4362 return seq_list_next(p, &slab_caches, pos);
4363 }
4364
4365 static void s_stop(struct seq_file *m, void *p)
4366 {
4367 mutex_unlock(&slab_mutex);
4368 }
4369
4370 static int s_show(struct seq_file *m, void *p)
4371 {
4372 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4373 struct slab *slabp;
4374 unsigned long active_objs;
4375 unsigned long num_objs;
4376 unsigned long active_slabs = 0;
4377 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4378 const char *name;
4379 char *error = NULL;
4380 int node;
4381 struct kmem_list3 *l3;
4382
4383 active_objs = 0;
4384 num_slabs = 0;
4385 for_each_online_node(node) {
4386 l3 = cachep->nodelists[node];
4387 if (!l3)
4388 continue;
4389
4390 check_irq_on();
4391 spin_lock_irq(&l3->list_lock);
4392
4393 list_for_each_entry(slabp, &l3->slabs_full, list) {
4394 if (slabp->inuse != cachep->num && !error)
4395 error = "slabs_full accounting error";
4396 active_objs += cachep->num;
4397 active_slabs++;
4398 }
4399 list_for_each_entry(slabp, &l3->slabs_partial, list) {
4400 if (slabp->inuse == cachep->num && !error)
4401 error = "slabs_partial inuse accounting error";
4402 if (!slabp->inuse && !error)
4403 error = "slabs_partial/inuse accounting error";
4404 active_objs += slabp->inuse;
4405 active_slabs++;
4406 }
4407 list_for_each_entry(slabp, &l3->slabs_free, list) {
4408 if (slabp->inuse && !error)
4409 error = "slabs_free/inuse accounting error";
4410 num_slabs++;
4411 }
4412 free_objects += l3->free_objects;
4413 if (l3->shared)
4414 shared_avail += l3->shared->avail;
4415
4416 spin_unlock_irq(&l3->list_lock);
4417 }
4418 num_slabs += active_slabs;
4419 num_objs = num_slabs * cachep->num;
4420 if (num_objs - active_objs != free_objects && !error)
4421 error = "free_objects accounting error";
4422
4423 name = cachep->name;
4424 if (error)
4425 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4426
4427 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4428 name, active_objs, num_objs, cachep->size,
4429 cachep->num, (1 << cachep->gfporder));
4430 seq_printf(m, " : tunables %4u %4u %4u",
4431 cachep->limit, cachep->batchcount, cachep->shared);
4432 seq_printf(m, " : slabdata %6lu %6lu %6lu",
4433 active_slabs, num_slabs, shared_avail);
4434 #if STATS
4435 { /* list3 stats */
4436 unsigned long high = cachep->high_mark;
4437 unsigned long allocs = cachep->num_allocations;
4438 unsigned long grown = cachep->grown;
4439 unsigned long reaped = cachep->reaped;
4440 unsigned long errors = cachep->errors;
4441 unsigned long max_freeable = cachep->max_freeable;
4442 unsigned long node_allocs = cachep->node_allocs;
4443 unsigned long node_frees = cachep->node_frees;
4444 unsigned long overflows = cachep->node_overflow;
4445
4446 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4447 "%4lu %4lu %4lu %4lu %4lu",
4448 allocs, high, grown,
4449 reaped, errors, max_freeable, node_allocs,
4450 node_frees, overflows);
4451 }
4452 /* cpu stats */
4453 {
4454 unsigned long allochit = atomic_read(&cachep->allochit);
4455 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4456 unsigned long freehit = atomic_read(&cachep->freehit);
4457 unsigned long freemiss = atomic_read(&cachep->freemiss);
4458
4459 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4460 allochit, allocmiss, freehit, freemiss);
4461 }
4462 #endif
4463 seq_putc(m, '\n');
4464 return 0;
4465 }
4466
4467 /*
4468 * slabinfo_op - iterator that generates /proc/slabinfo
4469 *
4470 * Output layout:
4471 * cache-name
4472 * num-active-objs
4473 * total-objs
4474 * object size
4475 * num-active-slabs
4476 * total-slabs
4477 * num-pages-per-slab
4478 * + further values on SMP and with statistics enabled
4479 */
4480
4481 static const struct seq_operations slabinfo_op = {
4482 .start = s_start,
4483 .next = s_next,
4484 .stop = s_stop,
4485 .show = s_show,
4486 };
4487
4488 #define MAX_SLABINFO_WRITE 128
4489 /**
4490 * slabinfo_write - Tuning for the slab allocator
4491 * @file: unused
4492 * @buffer: user buffer
4493 * @count: data length
4494 * @ppos: unused
4495 */
4496 static ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4497 size_t count, loff_t *ppos)
4498 {
4499 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4500 int limit, batchcount, shared, res;
4501 struct kmem_cache *cachep;
4502
4503 if (count > MAX_SLABINFO_WRITE)
4504 return -EINVAL;
4505 if (copy_from_user(&kbuf, buffer, count))
4506 return -EFAULT;
4507 kbuf[MAX_SLABINFO_WRITE] = '\0';
4508
4509 tmp = strchr(kbuf, ' ');
4510 if (!tmp)
4511 return -EINVAL;
4512 *tmp = '\0';
4513 tmp++;
4514 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4515 return -EINVAL;
4516
4517 /* Find the cache in the chain of caches. */
4518 mutex_lock(&slab_mutex);
4519 res = -EINVAL;
4520 list_for_each_entry(cachep, &slab_caches, list) {
4521 if (!strcmp(cachep->name, kbuf)) {
4522 if (limit < 1 || batchcount < 1 ||
4523 batchcount > limit || shared < 0) {
4524 res = 0;
4525 } else {
4526 res = do_tune_cpucache(cachep, limit,
4527 batchcount, shared,
4528 GFP_KERNEL);
4529 }
4530 break;
4531 }
4532 }
4533 mutex_unlock(&slab_mutex);
4534 if (res >= 0)
4535 res = count;
4536 return res;
4537 }
4538
4539 static int slabinfo_open(struct inode *inode, struct file *file)
4540 {
4541 return seq_open(file, &slabinfo_op);
4542 }
4543
4544 static const struct file_operations proc_slabinfo_operations = {
4545 .open = slabinfo_open,
4546 .read = seq_read,
4547 .write = slabinfo_write,
4548 .llseek = seq_lseek,
4549 .release = seq_release,
4550 };
4551
4552 #ifdef CONFIG_DEBUG_SLAB_LEAK
4553
4554 static void *leaks_start(struct seq_file *m, loff_t *pos)
4555 {
4556 mutex_lock(&slab_mutex);
4557 return seq_list_start(&slab_caches, *pos);
4558 }
4559
4560 static inline int add_caller(unsigned long *n, unsigned long v)
4561 {
4562 unsigned long *p;
4563 int l;
4564 if (!v)
4565 return 1;
4566 l = n[1];
4567 p = n + 2;
4568 while (l) {
4569 int i = l/2;
4570 unsigned long *q = p + 2 * i;
4571 if (*q == v) {
4572 q[1]++;
4573 return 1;
4574 }
4575 if (*q > v) {
4576 l = i;
4577 } else {
4578 p = q + 2;
4579 l -= i + 1;
4580 }
4581 }
4582 if (++n[1] == n[0])
4583 return 0;
4584 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4585 p[0] = v;
4586 p[1] = 1;
4587 return 1;
4588 }
4589
4590 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4591 {
4592 void *p;
4593 int i;
4594 if (n[0] == n[1])
4595 return;
4596 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->size) {
4597 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4598 continue;
4599 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4600 return;
4601 }
4602 }
4603
4604 static void show_symbol(struct seq_file *m, unsigned long address)
4605 {
4606 #ifdef CONFIG_KALLSYMS
4607 unsigned long offset, size;
4608 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4609
4610 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4611 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4612 if (modname[0])
4613 seq_printf(m, " [%s]", modname);
4614 return;
4615 }
4616 #endif
4617 seq_printf(m, "%p", (void *)address);
4618 }
4619
4620 static int leaks_show(struct seq_file *m, void *p)
4621 {
4622 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4623 struct slab *slabp;
4624 struct kmem_list3 *l3;
4625 const char *name;
4626 unsigned long *n = m->private;
4627 int node;
4628 int i;
4629
4630 if (!(cachep->flags & SLAB_STORE_USER))
4631 return 0;
4632 if (!(cachep->flags & SLAB_RED_ZONE))
4633 return 0;
4634
4635 /* OK, we can do it */
4636
4637 n[1] = 0;
4638
4639 for_each_online_node(node) {
4640 l3 = cachep->nodelists[node];
4641 if (!l3)
4642 continue;
4643
4644 check_irq_on();
4645 spin_lock_irq(&l3->list_lock);
4646
4647 list_for_each_entry(slabp, &l3->slabs_full, list)
4648 handle_slab(n, cachep, slabp);
4649 list_for_each_entry(slabp, &l3->slabs_partial, list)
4650 handle_slab(n, cachep, slabp);
4651 spin_unlock_irq(&l3->list_lock);
4652 }
4653 name = cachep->name;
4654 if (n[0] == n[1]) {
4655 /* Increase the buffer size */
4656 mutex_unlock(&slab_mutex);
4657 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4658 if (!m->private) {
4659 /* Too bad, we are really out */
4660 m->private = n;
4661 mutex_lock(&slab_mutex);
4662 return -ENOMEM;
4663 }
4664 *(unsigned long *)m->private = n[0] * 2;
4665 kfree(n);
4666 mutex_lock(&slab_mutex);
4667 /* Now make sure this entry will be retried */
4668 m->count = m->size;
4669 return 0;
4670 }
4671 for (i = 0; i < n[1]; i++) {
4672 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4673 show_symbol(m, n[2*i+2]);
4674 seq_putc(m, '\n');
4675 }
4676
4677 return 0;
4678 }
4679
4680 static const struct seq_operations slabstats_op = {
4681 .start = leaks_start,
4682 .next = s_next,
4683 .stop = s_stop,
4684 .show = leaks_show,
4685 };
4686
4687 static int slabstats_open(struct inode *inode, struct file *file)
4688 {
4689 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4690 int ret = -ENOMEM;
4691 if (n) {
4692 ret = seq_open(file, &slabstats_op);
4693 if (!ret) {
4694 struct seq_file *m = file->private_data;
4695 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4696 m->private = n;
4697 n = NULL;
4698 }
4699 kfree(n);
4700 }
4701 return ret;
4702 }
4703
4704 static const struct file_operations proc_slabstats_operations = {
4705 .open = slabstats_open,
4706 .read = seq_read,
4707 .llseek = seq_lseek,
4708 .release = seq_release_private,
4709 };
4710 #endif
4711
4712 static int __init slab_proc_init(void)
4713 {
4714 proc_create("slabinfo",S_IWUSR|S_IRUSR,NULL,&proc_slabinfo_operations);
4715 #ifdef CONFIG_DEBUG_SLAB_LEAK
4716 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4717 #endif
4718 return 0;
4719 }
4720 module_init(slab_proc_init);
4721 #endif
4722
4723 /**
4724 * ksize - get the actual amount of memory allocated for a given object
4725 * @objp: Pointer to the object
4726 *
4727 * kmalloc may internally round up allocations and return more memory
4728 * than requested. ksize() can be used to determine the actual amount of
4729 * memory allocated. The caller may use this additional memory, even though
4730 * a smaller amount of memory was initially specified with the kmalloc call.
4731 * The caller must guarantee that objp points to a valid object previously
4732 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4733 * must not be freed during the duration of the call.
4734 */
4735 size_t ksize(const void *objp)
4736 {
4737 BUG_ON(!objp);
4738 if (unlikely(objp == ZERO_SIZE_PTR))
4739 return 0;
4740
4741 return virt_to_cache(objp)->object_size;
4742 }
4743 EXPORT_SYMBOL(ksize);
This page took 0.165106 seconds and 5 git commands to generate.