mm, sl[aou]b: Extract common fields from struct kmem_cache
[deliverable/linux.git] / mm / slab.c
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
87 */
88
89 #include <linux/slab.h>
90 #include <linux/mm.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/notifier.h>
101 #include <linux/kallsyms.h>
102 #include <linux/cpu.h>
103 #include <linux/sysctl.h>
104 #include <linux/module.h>
105 #include <linux/rcupdate.h>
106 #include <linux/string.h>
107 #include <linux/uaccess.h>
108 #include <linux/nodemask.h>
109 #include <linux/kmemleak.h>
110 #include <linux/mempolicy.h>
111 #include <linux/mutex.h>
112 #include <linux/fault-inject.h>
113 #include <linux/rtmutex.h>
114 #include <linux/reciprocal_div.h>
115 #include <linux/debugobjects.h>
116 #include <linux/kmemcheck.h>
117 #include <linux/memory.h>
118 #include <linux/prefetch.h>
119
120 #include <asm/cacheflush.h>
121 #include <asm/tlbflush.h>
122 #include <asm/page.h>
123
124 #include <trace/events/kmem.h>
125
126 /*
127 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
128 * 0 for faster, smaller code (especially in the critical paths).
129 *
130 * STATS - 1 to collect stats for /proc/slabinfo.
131 * 0 for faster, smaller code (especially in the critical paths).
132 *
133 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
134 */
135
136 #ifdef CONFIG_DEBUG_SLAB
137 #define DEBUG 1
138 #define STATS 1
139 #define FORCED_DEBUG 1
140 #else
141 #define DEBUG 0
142 #define STATS 0
143 #define FORCED_DEBUG 0
144 #endif
145
146 /* Shouldn't this be in a header file somewhere? */
147 #define BYTES_PER_WORD sizeof(void *)
148 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
149
150 #ifndef ARCH_KMALLOC_FLAGS
151 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
152 #endif
153
154 /* Legal flag mask for kmem_cache_create(). */
155 #if DEBUG
156 # define CREATE_MASK (SLAB_RED_ZONE | \
157 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
158 SLAB_CACHE_DMA | \
159 SLAB_STORE_USER | \
160 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
161 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
162 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
163 #else
164 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
165 SLAB_CACHE_DMA | \
166 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
167 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
168 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
169 #endif
170
171 /*
172 * kmem_bufctl_t:
173 *
174 * Bufctl's are used for linking objs within a slab
175 * linked offsets.
176 *
177 * This implementation relies on "struct page" for locating the cache &
178 * slab an object belongs to.
179 * This allows the bufctl structure to be small (one int), but limits
180 * the number of objects a slab (not a cache) can contain when off-slab
181 * bufctls are used. The limit is the size of the largest general cache
182 * that does not use off-slab slabs.
183 * For 32bit archs with 4 kB pages, is this 56.
184 * This is not serious, as it is only for large objects, when it is unwise
185 * to have too many per slab.
186 * Note: This limit can be raised by introducing a general cache whose size
187 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
188 */
189
190 typedef unsigned int kmem_bufctl_t;
191 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
192 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
193 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
194 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
195
196 /*
197 * struct slab_rcu
198 *
199 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
200 * arrange for kmem_freepages to be called via RCU. This is useful if
201 * we need to approach a kernel structure obliquely, from its address
202 * obtained without the usual locking. We can lock the structure to
203 * stabilize it and check it's still at the given address, only if we
204 * can be sure that the memory has not been meanwhile reused for some
205 * other kind of object (which our subsystem's lock might corrupt).
206 *
207 * rcu_read_lock before reading the address, then rcu_read_unlock after
208 * taking the spinlock within the structure expected at that address.
209 */
210 struct slab_rcu {
211 struct rcu_head head;
212 struct kmem_cache *cachep;
213 void *addr;
214 };
215
216 /*
217 * struct slab
218 *
219 * Manages the objs in a slab. Placed either at the beginning of mem allocated
220 * for a slab, or allocated from an general cache.
221 * Slabs are chained into three list: fully used, partial, fully free slabs.
222 */
223 struct slab {
224 union {
225 struct {
226 struct list_head list;
227 unsigned long colouroff;
228 void *s_mem; /* including colour offset */
229 unsigned int inuse; /* num of objs active in slab */
230 kmem_bufctl_t free;
231 unsigned short nodeid;
232 };
233 struct slab_rcu __slab_cover_slab_rcu;
234 };
235 };
236
237 /*
238 * struct array_cache
239 *
240 * Purpose:
241 * - LIFO ordering, to hand out cache-warm objects from _alloc
242 * - reduce the number of linked list operations
243 * - reduce spinlock operations
244 *
245 * The limit is stored in the per-cpu structure to reduce the data cache
246 * footprint.
247 *
248 */
249 struct array_cache {
250 unsigned int avail;
251 unsigned int limit;
252 unsigned int batchcount;
253 unsigned int touched;
254 spinlock_t lock;
255 void *entry[]; /*
256 * Must have this definition in here for the proper
257 * alignment of array_cache. Also simplifies accessing
258 * the entries.
259 */
260 };
261
262 /*
263 * bootstrap: The caches do not work without cpuarrays anymore, but the
264 * cpuarrays are allocated from the generic caches...
265 */
266 #define BOOT_CPUCACHE_ENTRIES 1
267 struct arraycache_init {
268 struct array_cache cache;
269 void *entries[BOOT_CPUCACHE_ENTRIES];
270 };
271
272 /*
273 * The slab lists for all objects.
274 */
275 struct kmem_list3 {
276 struct list_head slabs_partial; /* partial list first, better asm code */
277 struct list_head slabs_full;
278 struct list_head slabs_free;
279 unsigned long free_objects;
280 unsigned int free_limit;
281 unsigned int colour_next; /* Per-node cache coloring */
282 spinlock_t list_lock;
283 struct array_cache *shared; /* shared per node */
284 struct array_cache **alien; /* on other nodes */
285 unsigned long next_reap; /* updated without locking */
286 int free_touched; /* updated without locking */
287 };
288
289 /*
290 * Need this for bootstrapping a per node allocator.
291 */
292 #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
293 static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
294 #define CACHE_CACHE 0
295 #define SIZE_AC MAX_NUMNODES
296 #define SIZE_L3 (2 * MAX_NUMNODES)
297
298 static int drain_freelist(struct kmem_cache *cache,
299 struct kmem_list3 *l3, int tofree);
300 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
301 int node);
302 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
303 static void cache_reap(struct work_struct *unused);
304
305 /*
306 * This function must be completely optimized away if a constant is passed to
307 * it. Mostly the same as what is in linux/slab.h except it returns an index.
308 */
309 static __always_inline int index_of(const size_t size)
310 {
311 extern void __bad_size(void);
312
313 if (__builtin_constant_p(size)) {
314 int i = 0;
315
316 #define CACHE(x) \
317 if (size <=x) \
318 return i; \
319 else \
320 i++;
321 #include <linux/kmalloc_sizes.h>
322 #undef CACHE
323 __bad_size();
324 } else
325 __bad_size();
326 return 0;
327 }
328
329 static int slab_early_init = 1;
330
331 #define INDEX_AC index_of(sizeof(struct arraycache_init))
332 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
333
334 static void kmem_list3_init(struct kmem_list3 *parent)
335 {
336 INIT_LIST_HEAD(&parent->slabs_full);
337 INIT_LIST_HEAD(&parent->slabs_partial);
338 INIT_LIST_HEAD(&parent->slabs_free);
339 parent->shared = NULL;
340 parent->alien = NULL;
341 parent->colour_next = 0;
342 spin_lock_init(&parent->list_lock);
343 parent->free_objects = 0;
344 parent->free_touched = 0;
345 }
346
347 #define MAKE_LIST(cachep, listp, slab, nodeid) \
348 do { \
349 INIT_LIST_HEAD(listp); \
350 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
351 } while (0)
352
353 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
354 do { \
355 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
356 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
357 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
358 } while (0)
359
360 #define CFLGS_OFF_SLAB (0x80000000UL)
361 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
362
363 #define BATCHREFILL_LIMIT 16
364 /*
365 * Optimization question: fewer reaps means less probability for unnessary
366 * cpucache drain/refill cycles.
367 *
368 * OTOH the cpuarrays can contain lots of objects,
369 * which could lock up otherwise freeable slabs.
370 */
371 #define REAPTIMEOUT_CPUC (2*HZ)
372 #define REAPTIMEOUT_LIST3 (4*HZ)
373
374 #if STATS
375 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
376 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
377 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
378 #define STATS_INC_GROWN(x) ((x)->grown++)
379 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
380 #define STATS_SET_HIGH(x) \
381 do { \
382 if ((x)->num_active > (x)->high_mark) \
383 (x)->high_mark = (x)->num_active; \
384 } while (0)
385 #define STATS_INC_ERR(x) ((x)->errors++)
386 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
387 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
388 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
389 #define STATS_SET_FREEABLE(x, i) \
390 do { \
391 if ((x)->max_freeable < i) \
392 (x)->max_freeable = i; \
393 } while (0)
394 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
395 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
396 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
397 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
398 #else
399 #define STATS_INC_ACTIVE(x) do { } while (0)
400 #define STATS_DEC_ACTIVE(x) do { } while (0)
401 #define STATS_INC_ALLOCED(x) do { } while (0)
402 #define STATS_INC_GROWN(x) do { } while (0)
403 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
404 #define STATS_SET_HIGH(x) do { } while (0)
405 #define STATS_INC_ERR(x) do { } while (0)
406 #define STATS_INC_NODEALLOCS(x) do { } while (0)
407 #define STATS_INC_NODEFREES(x) do { } while (0)
408 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
409 #define STATS_SET_FREEABLE(x, i) do { } while (0)
410 #define STATS_INC_ALLOCHIT(x) do { } while (0)
411 #define STATS_INC_ALLOCMISS(x) do { } while (0)
412 #define STATS_INC_FREEHIT(x) do { } while (0)
413 #define STATS_INC_FREEMISS(x) do { } while (0)
414 #endif
415
416 #if DEBUG
417
418 /*
419 * memory layout of objects:
420 * 0 : objp
421 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
422 * the end of an object is aligned with the end of the real
423 * allocation. Catches writes behind the end of the allocation.
424 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
425 * redzone word.
426 * cachep->obj_offset: The real object.
427 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
428 * cachep->size - 1* BYTES_PER_WORD: last caller address
429 * [BYTES_PER_WORD long]
430 */
431 static int obj_offset(struct kmem_cache *cachep)
432 {
433 return cachep->obj_offset;
434 }
435
436 static int obj_size(struct kmem_cache *cachep)
437 {
438 return cachep->object_size;
439 }
440
441 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
442 {
443 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
444 return (unsigned long long*) (objp + obj_offset(cachep) -
445 sizeof(unsigned long long));
446 }
447
448 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
449 {
450 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
451 if (cachep->flags & SLAB_STORE_USER)
452 return (unsigned long long *)(objp + cachep->size -
453 sizeof(unsigned long long) -
454 REDZONE_ALIGN);
455 return (unsigned long long *) (objp + cachep->size -
456 sizeof(unsigned long long));
457 }
458
459 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
460 {
461 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
462 return (void **)(objp + cachep->size - BYTES_PER_WORD);
463 }
464
465 #else
466
467 #define obj_offset(x) 0
468 #define obj_size(cachep) (cachep->size)
469 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
470 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
471 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
472
473 #endif
474
475 #ifdef CONFIG_TRACING
476 size_t slab_buffer_size(struct kmem_cache *cachep)
477 {
478 return cachep->size;
479 }
480 EXPORT_SYMBOL(slab_buffer_size);
481 #endif
482
483 /*
484 * Do not go above this order unless 0 objects fit into the slab or
485 * overridden on the command line.
486 */
487 #define SLAB_MAX_ORDER_HI 1
488 #define SLAB_MAX_ORDER_LO 0
489 static int slab_max_order = SLAB_MAX_ORDER_LO;
490 static bool slab_max_order_set __initdata;
491
492 static inline struct kmem_cache *page_get_cache(struct page *page)
493 {
494 page = compound_head(page);
495 BUG_ON(!PageSlab(page));
496 return page->slab_cache;
497 }
498
499 static inline struct kmem_cache *virt_to_cache(const void *obj)
500 {
501 struct page *page = virt_to_head_page(obj);
502 return page->slab_cache;
503 }
504
505 static inline struct slab *virt_to_slab(const void *obj)
506 {
507 struct page *page = virt_to_head_page(obj);
508
509 VM_BUG_ON(!PageSlab(page));
510 return page->slab_page;
511 }
512
513 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
514 unsigned int idx)
515 {
516 return slab->s_mem + cache->size * idx;
517 }
518
519 /*
520 * We want to avoid an expensive divide : (offset / cache->size)
521 * Using the fact that size is a constant for a particular cache,
522 * we can replace (offset / cache->size) by
523 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
524 */
525 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
526 const struct slab *slab, void *obj)
527 {
528 u32 offset = (obj - slab->s_mem);
529 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
530 }
531
532 /*
533 * These are the default caches for kmalloc. Custom caches can have other sizes.
534 */
535 struct cache_sizes malloc_sizes[] = {
536 #define CACHE(x) { .cs_size = (x) },
537 #include <linux/kmalloc_sizes.h>
538 CACHE(ULONG_MAX)
539 #undef CACHE
540 };
541 EXPORT_SYMBOL(malloc_sizes);
542
543 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
544 struct cache_names {
545 char *name;
546 char *name_dma;
547 };
548
549 static struct cache_names __initdata cache_names[] = {
550 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
551 #include <linux/kmalloc_sizes.h>
552 {NULL,}
553 #undef CACHE
554 };
555
556 static struct arraycache_init initarray_cache __initdata =
557 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
558 static struct arraycache_init initarray_generic =
559 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
560
561 /* internal cache of cache description objs */
562 static struct kmem_list3 *cache_cache_nodelists[MAX_NUMNODES];
563 static struct kmem_cache cache_cache = {
564 .nodelists = cache_cache_nodelists,
565 .batchcount = 1,
566 .limit = BOOT_CPUCACHE_ENTRIES,
567 .shared = 1,
568 .size = sizeof(struct kmem_cache),
569 .name = "kmem_cache",
570 };
571
572 #define BAD_ALIEN_MAGIC 0x01020304ul
573
574 /*
575 * chicken and egg problem: delay the per-cpu array allocation
576 * until the general caches are up.
577 */
578 static enum {
579 NONE,
580 PARTIAL_AC,
581 PARTIAL_L3,
582 EARLY,
583 LATE,
584 FULL
585 } g_cpucache_up;
586
587 /*
588 * used by boot code to determine if it can use slab based allocator
589 */
590 int slab_is_available(void)
591 {
592 return g_cpucache_up >= EARLY;
593 }
594
595 #ifdef CONFIG_LOCKDEP
596
597 /*
598 * Slab sometimes uses the kmalloc slabs to store the slab headers
599 * for other slabs "off slab".
600 * The locking for this is tricky in that it nests within the locks
601 * of all other slabs in a few places; to deal with this special
602 * locking we put on-slab caches into a separate lock-class.
603 *
604 * We set lock class for alien array caches which are up during init.
605 * The lock annotation will be lost if all cpus of a node goes down and
606 * then comes back up during hotplug
607 */
608 static struct lock_class_key on_slab_l3_key;
609 static struct lock_class_key on_slab_alc_key;
610
611 static struct lock_class_key debugobj_l3_key;
612 static struct lock_class_key debugobj_alc_key;
613
614 static void slab_set_lock_classes(struct kmem_cache *cachep,
615 struct lock_class_key *l3_key, struct lock_class_key *alc_key,
616 int q)
617 {
618 struct array_cache **alc;
619 struct kmem_list3 *l3;
620 int r;
621
622 l3 = cachep->nodelists[q];
623 if (!l3)
624 return;
625
626 lockdep_set_class(&l3->list_lock, l3_key);
627 alc = l3->alien;
628 /*
629 * FIXME: This check for BAD_ALIEN_MAGIC
630 * should go away when common slab code is taught to
631 * work even without alien caches.
632 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
633 * for alloc_alien_cache,
634 */
635 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
636 return;
637 for_each_node(r) {
638 if (alc[r])
639 lockdep_set_class(&alc[r]->lock, alc_key);
640 }
641 }
642
643 static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
644 {
645 slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
646 }
647
648 static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
649 {
650 int node;
651
652 for_each_online_node(node)
653 slab_set_debugobj_lock_classes_node(cachep, node);
654 }
655
656 static void init_node_lock_keys(int q)
657 {
658 struct cache_sizes *s = malloc_sizes;
659
660 if (g_cpucache_up < LATE)
661 return;
662
663 for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
664 struct kmem_list3 *l3;
665
666 l3 = s->cs_cachep->nodelists[q];
667 if (!l3 || OFF_SLAB(s->cs_cachep))
668 continue;
669
670 slab_set_lock_classes(s->cs_cachep, &on_slab_l3_key,
671 &on_slab_alc_key, q);
672 }
673 }
674
675 static inline void init_lock_keys(void)
676 {
677 int node;
678
679 for_each_node(node)
680 init_node_lock_keys(node);
681 }
682 #else
683 static void init_node_lock_keys(int q)
684 {
685 }
686
687 static inline void init_lock_keys(void)
688 {
689 }
690
691 static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
692 {
693 }
694
695 static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
696 {
697 }
698 #endif
699
700 /*
701 * Guard access to the cache-chain.
702 */
703 static DEFINE_MUTEX(cache_chain_mutex);
704 static struct list_head cache_chain;
705
706 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
707
708 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
709 {
710 return cachep->array[smp_processor_id()];
711 }
712
713 static inline struct kmem_cache *__find_general_cachep(size_t size,
714 gfp_t gfpflags)
715 {
716 struct cache_sizes *csizep = malloc_sizes;
717
718 #if DEBUG
719 /* This happens if someone tries to call
720 * kmem_cache_create(), or __kmalloc(), before
721 * the generic caches are initialized.
722 */
723 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
724 #endif
725 if (!size)
726 return ZERO_SIZE_PTR;
727
728 while (size > csizep->cs_size)
729 csizep++;
730
731 /*
732 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
733 * has cs_{dma,}cachep==NULL. Thus no special case
734 * for large kmalloc calls required.
735 */
736 #ifdef CONFIG_ZONE_DMA
737 if (unlikely(gfpflags & GFP_DMA))
738 return csizep->cs_dmacachep;
739 #endif
740 return csizep->cs_cachep;
741 }
742
743 static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
744 {
745 return __find_general_cachep(size, gfpflags);
746 }
747
748 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
749 {
750 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
751 }
752
753 /*
754 * Calculate the number of objects and left-over bytes for a given buffer size.
755 */
756 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
757 size_t align, int flags, size_t *left_over,
758 unsigned int *num)
759 {
760 int nr_objs;
761 size_t mgmt_size;
762 size_t slab_size = PAGE_SIZE << gfporder;
763
764 /*
765 * The slab management structure can be either off the slab or
766 * on it. For the latter case, the memory allocated for a
767 * slab is used for:
768 *
769 * - The struct slab
770 * - One kmem_bufctl_t for each object
771 * - Padding to respect alignment of @align
772 * - @buffer_size bytes for each object
773 *
774 * If the slab management structure is off the slab, then the
775 * alignment will already be calculated into the size. Because
776 * the slabs are all pages aligned, the objects will be at the
777 * correct alignment when allocated.
778 */
779 if (flags & CFLGS_OFF_SLAB) {
780 mgmt_size = 0;
781 nr_objs = slab_size / buffer_size;
782
783 if (nr_objs > SLAB_LIMIT)
784 nr_objs = SLAB_LIMIT;
785 } else {
786 /*
787 * Ignore padding for the initial guess. The padding
788 * is at most @align-1 bytes, and @buffer_size is at
789 * least @align. In the worst case, this result will
790 * be one greater than the number of objects that fit
791 * into the memory allocation when taking the padding
792 * into account.
793 */
794 nr_objs = (slab_size - sizeof(struct slab)) /
795 (buffer_size + sizeof(kmem_bufctl_t));
796
797 /*
798 * This calculated number will be either the right
799 * amount, or one greater than what we want.
800 */
801 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
802 > slab_size)
803 nr_objs--;
804
805 if (nr_objs > SLAB_LIMIT)
806 nr_objs = SLAB_LIMIT;
807
808 mgmt_size = slab_mgmt_size(nr_objs, align);
809 }
810 *num = nr_objs;
811 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
812 }
813
814 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
815
816 static void __slab_error(const char *function, struct kmem_cache *cachep,
817 char *msg)
818 {
819 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
820 function, cachep->name, msg);
821 dump_stack();
822 }
823
824 /*
825 * By default on NUMA we use alien caches to stage the freeing of
826 * objects allocated from other nodes. This causes massive memory
827 * inefficiencies when using fake NUMA setup to split memory into a
828 * large number of small nodes, so it can be disabled on the command
829 * line
830 */
831
832 static int use_alien_caches __read_mostly = 1;
833 static int __init noaliencache_setup(char *s)
834 {
835 use_alien_caches = 0;
836 return 1;
837 }
838 __setup("noaliencache", noaliencache_setup);
839
840 static int __init slab_max_order_setup(char *str)
841 {
842 get_option(&str, &slab_max_order);
843 slab_max_order = slab_max_order < 0 ? 0 :
844 min(slab_max_order, MAX_ORDER - 1);
845 slab_max_order_set = true;
846
847 return 1;
848 }
849 __setup("slab_max_order=", slab_max_order_setup);
850
851 #ifdef CONFIG_NUMA
852 /*
853 * Special reaping functions for NUMA systems called from cache_reap().
854 * These take care of doing round robin flushing of alien caches (containing
855 * objects freed on different nodes from which they were allocated) and the
856 * flushing of remote pcps by calling drain_node_pages.
857 */
858 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
859
860 static void init_reap_node(int cpu)
861 {
862 int node;
863
864 node = next_node(cpu_to_mem(cpu), node_online_map);
865 if (node == MAX_NUMNODES)
866 node = first_node(node_online_map);
867
868 per_cpu(slab_reap_node, cpu) = node;
869 }
870
871 static void next_reap_node(void)
872 {
873 int node = __this_cpu_read(slab_reap_node);
874
875 node = next_node(node, node_online_map);
876 if (unlikely(node >= MAX_NUMNODES))
877 node = first_node(node_online_map);
878 __this_cpu_write(slab_reap_node, node);
879 }
880
881 #else
882 #define init_reap_node(cpu) do { } while (0)
883 #define next_reap_node(void) do { } while (0)
884 #endif
885
886 /*
887 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
888 * via the workqueue/eventd.
889 * Add the CPU number into the expiration time to minimize the possibility of
890 * the CPUs getting into lockstep and contending for the global cache chain
891 * lock.
892 */
893 static void __cpuinit start_cpu_timer(int cpu)
894 {
895 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
896
897 /*
898 * When this gets called from do_initcalls via cpucache_init(),
899 * init_workqueues() has already run, so keventd will be setup
900 * at that time.
901 */
902 if (keventd_up() && reap_work->work.func == NULL) {
903 init_reap_node(cpu);
904 INIT_DELAYED_WORK_DEFERRABLE(reap_work, cache_reap);
905 schedule_delayed_work_on(cpu, reap_work,
906 __round_jiffies_relative(HZ, cpu));
907 }
908 }
909
910 static struct array_cache *alloc_arraycache(int node, int entries,
911 int batchcount, gfp_t gfp)
912 {
913 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
914 struct array_cache *nc = NULL;
915
916 nc = kmalloc_node(memsize, gfp, node);
917 /*
918 * The array_cache structures contain pointers to free object.
919 * However, when such objects are allocated or transferred to another
920 * cache the pointers are not cleared and they could be counted as
921 * valid references during a kmemleak scan. Therefore, kmemleak must
922 * not scan such objects.
923 */
924 kmemleak_no_scan(nc);
925 if (nc) {
926 nc->avail = 0;
927 nc->limit = entries;
928 nc->batchcount = batchcount;
929 nc->touched = 0;
930 spin_lock_init(&nc->lock);
931 }
932 return nc;
933 }
934
935 /*
936 * Transfer objects in one arraycache to another.
937 * Locking must be handled by the caller.
938 *
939 * Return the number of entries transferred.
940 */
941 static int transfer_objects(struct array_cache *to,
942 struct array_cache *from, unsigned int max)
943 {
944 /* Figure out how many entries to transfer */
945 int nr = min3(from->avail, max, to->limit - to->avail);
946
947 if (!nr)
948 return 0;
949
950 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
951 sizeof(void *) *nr);
952
953 from->avail -= nr;
954 to->avail += nr;
955 return nr;
956 }
957
958 #ifndef CONFIG_NUMA
959
960 #define drain_alien_cache(cachep, alien) do { } while (0)
961 #define reap_alien(cachep, l3) do { } while (0)
962
963 static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
964 {
965 return (struct array_cache **)BAD_ALIEN_MAGIC;
966 }
967
968 static inline void free_alien_cache(struct array_cache **ac_ptr)
969 {
970 }
971
972 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
973 {
974 return 0;
975 }
976
977 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
978 gfp_t flags)
979 {
980 return NULL;
981 }
982
983 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
984 gfp_t flags, int nodeid)
985 {
986 return NULL;
987 }
988
989 #else /* CONFIG_NUMA */
990
991 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
992 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
993
994 static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
995 {
996 struct array_cache **ac_ptr;
997 int memsize = sizeof(void *) * nr_node_ids;
998 int i;
999
1000 if (limit > 1)
1001 limit = 12;
1002 ac_ptr = kzalloc_node(memsize, gfp, node);
1003 if (ac_ptr) {
1004 for_each_node(i) {
1005 if (i == node || !node_online(i))
1006 continue;
1007 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
1008 if (!ac_ptr[i]) {
1009 for (i--; i >= 0; i--)
1010 kfree(ac_ptr[i]);
1011 kfree(ac_ptr);
1012 return NULL;
1013 }
1014 }
1015 }
1016 return ac_ptr;
1017 }
1018
1019 static void free_alien_cache(struct array_cache **ac_ptr)
1020 {
1021 int i;
1022
1023 if (!ac_ptr)
1024 return;
1025 for_each_node(i)
1026 kfree(ac_ptr[i]);
1027 kfree(ac_ptr);
1028 }
1029
1030 static void __drain_alien_cache(struct kmem_cache *cachep,
1031 struct array_cache *ac, int node)
1032 {
1033 struct kmem_list3 *rl3 = cachep->nodelists[node];
1034
1035 if (ac->avail) {
1036 spin_lock(&rl3->list_lock);
1037 /*
1038 * Stuff objects into the remote nodes shared array first.
1039 * That way we could avoid the overhead of putting the objects
1040 * into the free lists and getting them back later.
1041 */
1042 if (rl3->shared)
1043 transfer_objects(rl3->shared, ac, ac->limit);
1044
1045 free_block(cachep, ac->entry, ac->avail, node);
1046 ac->avail = 0;
1047 spin_unlock(&rl3->list_lock);
1048 }
1049 }
1050
1051 /*
1052 * Called from cache_reap() to regularly drain alien caches round robin.
1053 */
1054 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1055 {
1056 int node = __this_cpu_read(slab_reap_node);
1057
1058 if (l3->alien) {
1059 struct array_cache *ac = l3->alien[node];
1060
1061 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1062 __drain_alien_cache(cachep, ac, node);
1063 spin_unlock_irq(&ac->lock);
1064 }
1065 }
1066 }
1067
1068 static void drain_alien_cache(struct kmem_cache *cachep,
1069 struct array_cache **alien)
1070 {
1071 int i = 0;
1072 struct array_cache *ac;
1073 unsigned long flags;
1074
1075 for_each_online_node(i) {
1076 ac = alien[i];
1077 if (ac) {
1078 spin_lock_irqsave(&ac->lock, flags);
1079 __drain_alien_cache(cachep, ac, i);
1080 spin_unlock_irqrestore(&ac->lock, flags);
1081 }
1082 }
1083 }
1084
1085 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1086 {
1087 struct slab *slabp = virt_to_slab(objp);
1088 int nodeid = slabp->nodeid;
1089 struct kmem_list3 *l3;
1090 struct array_cache *alien = NULL;
1091 int node;
1092
1093 node = numa_mem_id();
1094
1095 /*
1096 * Make sure we are not freeing a object from another node to the array
1097 * cache on this cpu.
1098 */
1099 if (likely(slabp->nodeid == node))
1100 return 0;
1101
1102 l3 = cachep->nodelists[node];
1103 STATS_INC_NODEFREES(cachep);
1104 if (l3->alien && l3->alien[nodeid]) {
1105 alien = l3->alien[nodeid];
1106 spin_lock(&alien->lock);
1107 if (unlikely(alien->avail == alien->limit)) {
1108 STATS_INC_ACOVERFLOW(cachep);
1109 __drain_alien_cache(cachep, alien, nodeid);
1110 }
1111 alien->entry[alien->avail++] = objp;
1112 spin_unlock(&alien->lock);
1113 } else {
1114 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1115 free_block(cachep, &objp, 1, nodeid);
1116 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1117 }
1118 return 1;
1119 }
1120 #endif
1121
1122 /*
1123 * Allocates and initializes nodelists for a node on each slab cache, used for
1124 * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3
1125 * will be allocated off-node since memory is not yet online for the new node.
1126 * When hotplugging memory or a cpu, existing nodelists are not replaced if
1127 * already in use.
1128 *
1129 * Must hold cache_chain_mutex.
1130 */
1131 static int init_cache_nodelists_node(int node)
1132 {
1133 struct kmem_cache *cachep;
1134 struct kmem_list3 *l3;
1135 const int memsize = sizeof(struct kmem_list3);
1136
1137 list_for_each_entry(cachep, &cache_chain, list) {
1138 /*
1139 * Set up the size64 kmemlist for cpu before we can
1140 * begin anything. Make sure some other cpu on this
1141 * node has not already allocated this
1142 */
1143 if (!cachep->nodelists[node]) {
1144 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1145 if (!l3)
1146 return -ENOMEM;
1147 kmem_list3_init(l3);
1148 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1149 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1150
1151 /*
1152 * The l3s don't come and go as CPUs come and
1153 * go. cache_chain_mutex is sufficient
1154 * protection here.
1155 */
1156 cachep->nodelists[node] = l3;
1157 }
1158
1159 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1160 cachep->nodelists[node]->free_limit =
1161 (1 + nr_cpus_node(node)) *
1162 cachep->batchcount + cachep->num;
1163 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1164 }
1165 return 0;
1166 }
1167
1168 static void __cpuinit cpuup_canceled(long cpu)
1169 {
1170 struct kmem_cache *cachep;
1171 struct kmem_list3 *l3 = NULL;
1172 int node = cpu_to_mem(cpu);
1173 const struct cpumask *mask = cpumask_of_node(node);
1174
1175 list_for_each_entry(cachep, &cache_chain, list) {
1176 struct array_cache *nc;
1177 struct array_cache *shared;
1178 struct array_cache **alien;
1179
1180 /* cpu is dead; no one can alloc from it. */
1181 nc = cachep->array[cpu];
1182 cachep->array[cpu] = NULL;
1183 l3 = cachep->nodelists[node];
1184
1185 if (!l3)
1186 goto free_array_cache;
1187
1188 spin_lock_irq(&l3->list_lock);
1189
1190 /* Free limit for this kmem_list3 */
1191 l3->free_limit -= cachep->batchcount;
1192 if (nc)
1193 free_block(cachep, nc->entry, nc->avail, node);
1194
1195 if (!cpumask_empty(mask)) {
1196 spin_unlock_irq(&l3->list_lock);
1197 goto free_array_cache;
1198 }
1199
1200 shared = l3->shared;
1201 if (shared) {
1202 free_block(cachep, shared->entry,
1203 shared->avail, node);
1204 l3->shared = NULL;
1205 }
1206
1207 alien = l3->alien;
1208 l3->alien = NULL;
1209
1210 spin_unlock_irq(&l3->list_lock);
1211
1212 kfree(shared);
1213 if (alien) {
1214 drain_alien_cache(cachep, alien);
1215 free_alien_cache(alien);
1216 }
1217 free_array_cache:
1218 kfree(nc);
1219 }
1220 /*
1221 * In the previous loop, all the objects were freed to
1222 * the respective cache's slabs, now we can go ahead and
1223 * shrink each nodelist to its limit.
1224 */
1225 list_for_each_entry(cachep, &cache_chain, list) {
1226 l3 = cachep->nodelists[node];
1227 if (!l3)
1228 continue;
1229 drain_freelist(cachep, l3, l3->free_objects);
1230 }
1231 }
1232
1233 static int __cpuinit cpuup_prepare(long cpu)
1234 {
1235 struct kmem_cache *cachep;
1236 struct kmem_list3 *l3 = NULL;
1237 int node = cpu_to_mem(cpu);
1238 int err;
1239
1240 /*
1241 * We need to do this right in the beginning since
1242 * alloc_arraycache's are going to use this list.
1243 * kmalloc_node allows us to add the slab to the right
1244 * kmem_list3 and not this cpu's kmem_list3
1245 */
1246 err = init_cache_nodelists_node(node);
1247 if (err < 0)
1248 goto bad;
1249
1250 /*
1251 * Now we can go ahead with allocating the shared arrays and
1252 * array caches
1253 */
1254 list_for_each_entry(cachep, &cache_chain, list) {
1255 struct array_cache *nc;
1256 struct array_cache *shared = NULL;
1257 struct array_cache **alien = NULL;
1258
1259 nc = alloc_arraycache(node, cachep->limit,
1260 cachep->batchcount, GFP_KERNEL);
1261 if (!nc)
1262 goto bad;
1263 if (cachep->shared) {
1264 shared = alloc_arraycache(node,
1265 cachep->shared * cachep->batchcount,
1266 0xbaadf00d, GFP_KERNEL);
1267 if (!shared) {
1268 kfree(nc);
1269 goto bad;
1270 }
1271 }
1272 if (use_alien_caches) {
1273 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1274 if (!alien) {
1275 kfree(shared);
1276 kfree(nc);
1277 goto bad;
1278 }
1279 }
1280 cachep->array[cpu] = nc;
1281 l3 = cachep->nodelists[node];
1282 BUG_ON(!l3);
1283
1284 spin_lock_irq(&l3->list_lock);
1285 if (!l3->shared) {
1286 /*
1287 * We are serialised from CPU_DEAD or
1288 * CPU_UP_CANCELLED by the cpucontrol lock
1289 */
1290 l3->shared = shared;
1291 shared = NULL;
1292 }
1293 #ifdef CONFIG_NUMA
1294 if (!l3->alien) {
1295 l3->alien = alien;
1296 alien = NULL;
1297 }
1298 #endif
1299 spin_unlock_irq(&l3->list_lock);
1300 kfree(shared);
1301 free_alien_cache(alien);
1302 if (cachep->flags & SLAB_DEBUG_OBJECTS)
1303 slab_set_debugobj_lock_classes_node(cachep, node);
1304 }
1305 init_node_lock_keys(node);
1306
1307 return 0;
1308 bad:
1309 cpuup_canceled(cpu);
1310 return -ENOMEM;
1311 }
1312
1313 static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1314 unsigned long action, void *hcpu)
1315 {
1316 long cpu = (long)hcpu;
1317 int err = 0;
1318
1319 switch (action) {
1320 case CPU_UP_PREPARE:
1321 case CPU_UP_PREPARE_FROZEN:
1322 mutex_lock(&cache_chain_mutex);
1323 err = cpuup_prepare(cpu);
1324 mutex_unlock(&cache_chain_mutex);
1325 break;
1326 case CPU_ONLINE:
1327 case CPU_ONLINE_FROZEN:
1328 start_cpu_timer(cpu);
1329 break;
1330 #ifdef CONFIG_HOTPLUG_CPU
1331 case CPU_DOWN_PREPARE:
1332 case CPU_DOWN_PREPARE_FROZEN:
1333 /*
1334 * Shutdown cache reaper. Note that the cache_chain_mutex is
1335 * held so that if cache_reap() is invoked it cannot do
1336 * anything expensive but will only modify reap_work
1337 * and reschedule the timer.
1338 */
1339 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1340 /* Now the cache_reaper is guaranteed to be not running. */
1341 per_cpu(slab_reap_work, cpu).work.func = NULL;
1342 break;
1343 case CPU_DOWN_FAILED:
1344 case CPU_DOWN_FAILED_FROZEN:
1345 start_cpu_timer(cpu);
1346 break;
1347 case CPU_DEAD:
1348 case CPU_DEAD_FROZEN:
1349 /*
1350 * Even if all the cpus of a node are down, we don't free the
1351 * kmem_list3 of any cache. This to avoid a race between
1352 * cpu_down, and a kmalloc allocation from another cpu for
1353 * memory from the node of the cpu going down. The list3
1354 * structure is usually allocated from kmem_cache_create() and
1355 * gets destroyed at kmem_cache_destroy().
1356 */
1357 /* fall through */
1358 #endif
1359 case CPU_UP_CANCELED:
1360 case CPU_UP_CANCELED_FROZEN:
1361 mutex_lock(&cache_chain_mutex);
1362 cpuup_canceled(cpu);
1363 mutex_unlock(&cache_chain_mutex);
1364 break;
1365 }
1366 return notifier_from_errno(err);
1367 }
1368
1369 static struct notifier_block __cpuinitdata cpucache_notifier = {
1370 &cpuup_callback, NULL, 0
1371 };
1372
1373 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1374 /*
1375 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1376 * Returns -EBUSY if all objects cannot be drained so that the node is not
1377 * removed.
1378 *
1379 * Must hold cache_chain_mutex.
1380 */
1381 static int __meminit drain_cache_nodelists_node(int node)
1382 {
1383 struct kmem_cache *cachep;
1384 int ret = 0;
1385
1386 list_for_each_entry(cachep, &cache_chain, list) {
1387 struct kmem_list3 *l3;
1388
1389 l3 = cachep->nodelists[node];
1390 if (!l3)
1391 continue;
1392
1393 drain_freelist(cachep, l3, l3->free_objects);
1394
1395 if (!list_empty(&l3->slabs_full) ||
1396 !list_empty(&l3->slabs_partial)) {
1397 ret = -EBUSY;
1398 break;
1399 }
1400 }
1401 return ret;
1402 }
1403
1404 static int __meminit slab_memory_callback(struct notifier_block *self,
1405 unsigned long action, void *arg)
1406 {
1407 struct memory_notify *mnb = arg;
1408 int ret = 0;
1409 int nid;
1410
1411 nid = mnb->status_change_nid;
1412 if (nid < 0)
1413 goto out;
1414
1415 switch (action) {
1416 case MEM_GOING_ONLINE:
1417 mutex_lock(&cache_chain_mutex);
1418 ret = init_cache_nodelists_node(nid);
1419 mutex_unlock(&cache_chain_mutex);
1420 break;
1421 case MEM_GOING_OFFLINE:
1422 mutex_lock(&cache_chain_mutex);
1423 ret = drain_cache_nodelists_node(nid);
1424 mutex_unlock(&cache_chain_mutex);
1425 break;
1426 case MEM_ONLINE:
1427 case MEM_OFFLINE:
1428 case MEM_CANCEL_ONLINE:
1429 case MEM_CANCEL_OFFLINE:
1430 break;
1431 }
1432 out:
1433 return notifier_from_errno(ret);
1434 }
1435 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1436
1437 /*
1438 * swap the static kmem_list3 with kmalloced memory
1439 */
1440 static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1441 int nodeid)
1442 {
1443 struct kmem_list3 *ptr;
1444
1445 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
1446 BUG_ON(!ptr);
1447
1448 memcpy(ptr, list, sizeof(struct kmem_list3));
1449 /*
1450 * Do not assume that spinlocks can be initialized via memcpy:
1451 */
1452 spin_lock_init(&ptr->list_lock);
1453
1454 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1455 cachep->nodelists[nodeid] = ptr;
1456 }
1457
1458 /*
1459 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1460 * size of kmem_list3.
1461 */
1462 static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1463 {
1464 int node;
1465
1466 for_each_online_node(node) {
1467 cachep->nodelists[node] = &initkmem_list3[index + node];
1468 cachep->nodelists[node]->next_reap = jiffies +
1469 REAPTIMEOUT_LIST3 +
1470 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1471 }
1472 }
1473
1474 /*
1475 * Initialisation. Called after the page allocator have been initialised and
1476 * before smp_init().
1477 */
1478 void __init kmem_cache_init(void)
1479 {
1480 size_t left_over;
1481 struct cache_sizes *sizes;
1482 struct cache_names *names;
1483 int i;
1484 int order;
1485 int node;
1486
1487 if (num_possible_nodes() == 1)
1488 use_alien_caches = 0;
1489
1490 for (i = 0; i < NUM_INIT_LISTS; i++) {
1491 kmem_list3_init(&initkmem_list3[i]);
1492 if (i < MAX_NUMNODES)
1493 cache_cache.nodelists[i] = NULL;
1494 }
1495 set_up_list3s(&cache_cache, CACHE_CACHE);
1496
1497 /*
1498 * Fragmentation resistance on low memory - only use bigger
1499 * page orders on machines with more than 32MB of memory if
1500 * not overridden on the command line.
1501 */
1502 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1503 slab_max_order = SLAB_MAX_ORDER_HI;
1504
1505 /* Bootstrap is tricky, because several objects are allocated
1506 * from caches that do not exist yet:
1507 * 1) initialize the cache_cache cache: it contains the struct
1508 * kmem_cache structures of all caches, except cache_cache itself:
1509 * cache_cache is statically allocated.
1510 * Initially an __init data area is used for the head array and the
1511 * kmem_list3 structures, it's replaced with a kmalloc allocated
1512 * array at the end of the bootstrap.
1513 * 2) Create the first kmalloc cache.
1514 * The struct kmem_cache for the new cache is allocated normally.
1515 * An __init data area is used for the head array.
1516 * 3) Create the remaining kmalloc caches, with minimally sized
1517 * head arrays.
1518 * 4) Replace the __init data head arrays for cache_cache and the first
1519 * kmalloc cache with kmalloc allocated arrays.
1520 * 5) Replace the __init data for kmem_list3 for cache_cache and
1521 * the other cache's with kmalloc allocated memory.
1522 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1523 */
1524
1525 node = numa_mem_id();
1526
1527 /* 1) create the cache_cache */
1528 INIT_LIST_HEAD(&cache_chain);
1529 list_add(&cache_cache.list, &cache_chain);
1530 cache_cache.colour_off = cache_line_size();
1531 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1532 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
1533
1534 /*
1535 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1536 */
1537 cache_cache.size = offsetof(struct kmem_cache, array[nr_cpu_ids]) +
1538 nr_node_ids * sizeof(struct kmem_list3 *);
1539 cache_cache.object_size = cache_cache.size;
1540 cache_cache.size = ALIGN(cache_cache.size,
1541 cache_line_size());
1542 cache_cache.reciprocal_buffer_size =
1543 reciprocal_value(cache_cache.size);
1544
1545 for (order = 0; order < MAX_ORDER; order++) {
1546 cache_estimate(order, cache_cache.size,
1547 cache_line_size(), 0, &left_over, &cache_cache.num);
1548 if (cache_cache.num)
1549 break;
1550 }
1551 BUG_ON(!cache_cache.num);
1552 cache_cache.gfporder = order;
1553 cache_cache.colour = left_over / cache_cache.colour_off;
1554 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1555 sizeof(struct slab), cache_line_size());
1556
1557 /* 2+3) create the kmalloc caches */
1558 sizes = malloc_sizes;
1559 names = cache_names;
1560
1561 /*
1562 * Initialize the caches that provide memory for the array cache and the
1563 * kmem_list3 structures first. Without this, further allocations will
1564 * bug.
1565 */
1566
1567 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1568 sizes[INDEX_AC].cs_size,
1569 ARCH_KMALLOC_MINALIGN,
1570 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1571 NULL);
1572
1573 if (INDEX_AC != INDEX_L3) {
1574 sizes[INDEX_L3].cs_cachep =
1575 kmem_cache_create(names[INDEX_L3].name,
1576 sizes[INDEX_L3].cs_size,
1577 ARCH_KMALLOC_MINALIGN,
1578 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1579 NULL);
1580 }
1581
1582 slab_early_init = 0;
1583
1584 while (sizes->cs_size != ULONG_MAX) {
1585 /*
1586 * For performance, all the general caches are L1 aligned.
1587 * This should be particularly beneficial on SMP boxes, as it
1588 * eliminates "false sharing".
1589 * Note for systems short on memory removing the alignment will
1590 * allow tighter packing of the smaller caches.
1591 */
1592 if (!sizes->cs_cachep) {
1593 sizes->cs_cachep = kmem_cache_create(names->name,
1594 sizes->cs_size,
1595 ARCH_KMALLOC_MINALIGN,
1596 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1597 NULL);
1598 }
1599 #ifdef CONFIG_ZONE_DMA
1600 sizes->cs_dmacachep = kmem_cache_create(
1601 names->name_dma,
1602 sizes->cs_size,
1603 ARCH_KMALLOC_MINALIGN,
1604 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1605 SLAB_PANIC,
1606 NULL);
1607 #endif
1608 sizes++;
1609 names++;
1610 }
1611 /* 4) Replace the bootstrap head arrays */
1612 {
1613 struct array_cache *ptr;
1614
1615 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1616
1617 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1618 memcpy(ptr, cpu_cache_get(&cache_cache),
1619 sizeof(struct arraycache_init));
1620 /*
1621 * Do not assume that spinlocks can be initialized via memcpy:
1622 */
1623 spin_lock_init(&ptr->lock);
1624
1625 cache_cache.array[smp_processor_id()] = ptr;
1626
1627 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1628
1629 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1630 != &initarray_generic.cache);
1631 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1632 sizeof(struct arraycache_init));
1633 /*
1634 * Do not assume that spinlocks can be initialized via memcpy:
1635 */
1636 spin_lock_init(&ptr->lock);
1637
1638 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1639 ptr;
1640 }
1641 /* 5) Replace the bootstrap kmem_list3's */
1642 {
1643 int nid;
1644
1645 for_each_online_node(nid) {
1646 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
1647
1648 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1649 &initkmem_list3[SIZE_AC + nid], nid);
1650
1651 if (INDEX_AC != INDEX_L3) {
1652 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1653 &initkmem_list3[SIZE_L3 + nid], nid);
1654 }
1655 }
1656 }
1657
1658 g_cpucache_up = EARLY;
1659 }
1660
1661 void __init kmem_cache_init_late(void)
1662 {
1663 struct kmem_cache *cachep;
1664
1665 g_cpucache_up = LATE;
1666
1667 /* Annotate slab for lockdep -- annotate the malloc caches */
1668 init_lock_keys();
1669
1670 /* 6) resize the head arrays to their final sizes */
1671 mutex_lock(&cache_chain_mutex);
1672 list_for_each_entry(cachep, &cache_chain, list)
1673 if (enable_cpucache(cachep, GFP_NOWAIT))
1674 BUG();
1675 mutex_unlock(&cache_chain_mutex);
1676
1677 /* Done! */
1678 g_cpucache_up = FULL;
1679
1680 /*
1681 * Register a cpu startup notifier callback that initializes
1682 * cpu_cache_get for all new cpus
1683 */
1684 register_cpu_notifier(&cpucache_notifier);
1685
1686 #ifdef CONFIG_NUMA
1687 /*
1688 * Register a memory hotplug callback that initializes and frees
1689 * nodelists.
1690 */
1691 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1692 #endif
1693
1694 /*
1695 * The reap timers are started later, with a module init call: That part
1696 * of the kernel is not yet operational.
1697 */
1698 }
1699
1700 static int __init cpucache_init(void)
1701 {
1702 int cpu;
1703
1704 /*
1705 * Register the timers that return unneeded pages to the page allocator
1706 */
1707 for_each_online_cpu(cpu)
1708 start_cpu_timer(cpu);
1709 return 0;
1710 }
1711 __initcall(cpucache_init);
1712
1713 static noinline void
1714 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1715 {
1716 struct kmem_list3 *l3;
1717 struct slab *slabp;
1718 unsigned long flags;
1719 int node;
1720
1721 printk(KERN_WARNING
1722 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1723 nodeid, gfpflags);
1724 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
1725 cachep->name, cachep->size, cachep->gfporder);
1726
1727 for_each_online_node(node) {
1728 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1729 unsigned long active_slabs = 0, num_slabs = 0;
1730
1731 l3 = cachep->nodelists[node];
1732 if (!l3)
1733 continue;
1734
1735 spin_lock_irqsave(&l3->list_lock, flags);
1736 list_for_each_entry(slabp, &l3->slabs_full, list) {
1737 active_objs += cachep->num;
1738 active_slabs++;
1739 }
1740 list_for_each_entry(slabp, &l3->slabs_partial, list) {
1741 active_objs += slabp->inuse;
1742 active_slabs++;
1743 }
1744 list_for_each_entry(slabp, &l3->slabs_free, list)
1745 num_slabs++;
1746
1747 free_objects += l3->free_objects;
1748 spin_unlock_irqrestore(&l3->list_lock, flags);
1749
1750 num_slabs += active_slabs;
1751 num_objs = num_slabs * cachep->num;
1752 printk(KERN_WARNING
1753 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1754 node, active_slabs, num_slabs, active_objs, num_objs,
1755 free_objects);
1756 }
1757 }
1758
1759 /*
1760 * Interface to system's page allocator. No need to hold the cache-lock.
1761 *
1762 * If we requested dmaable memory, we will get it. Even if we
1763 * did not request dmaable memory, we might get it, but that
1764 * would be relatively rare and ignorable.
1765 */
1766 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1767 {
1768 struct page *page;
1769 int nr_pages;
1770 int i;
1771
1772 #ifndef CONFIG_MMU
1773 /*
1774 * Nommu uses slab's for process anonymous memory allocations, and thus
1775 * requires __GFP_COMP to properly refcount higher order allocations
1776 */
1777 flags |= __GFP_COMP;
1778 #endif
1779
1780 flags |= cachep->gfpflags;
1781 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1782 flags |= __GFP_RECLAIMABLE;
1783
1784 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1785 if (!page) {
1786 if (!(flags & __GFP_NOWARN) && printk_ratelimit())
1787 slab_out_of_memory(cachep, flags, nodeid);
1788 return NULL;
1789 }
1790
1791 nr_pages = (1 << cachep->gfporder);
1792 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1793 add_zone_page_state(page_zone(page),
1794 NR_SLAB_RECLAIMABLE, nr_pages);
1795 else
1796 add_zone_page_state(page_zone(page),
1797 NR_SLAB_UNRECLAIMABLE, nr_pages);
1798 for (i = 0; i < nr_pages; i++)
1799 __SetPageSlab(page + i);
1800
1801 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1802 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1803
1804 if (cachep->ctor)
1805 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1806 else
1807 kmemcheck_mark_unallocated_pages(page, nr_pages);
1808 }
1809
1810 return page_address(page);
1811 }
1812
1813 /*
1814 * Interface to system's page release.
1815 */
1816 static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1817 {
1818 unsigned long i = (1 << cachep->gfporder);
1819 struct page *page = virt_to_page(addr);
1820 const unsigned long nr_freed = i;
1821
1822 kmemcheck_free_shadow(page, cachep->gfporder);
1823
1824 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1825 sub_zone_page_state(page_zone(page),
1826 NR_SLAB_RECLAIMABLE, nr_freed);
1827 else
1828 sub_zone_page_state(page_zone(page),
1829 NR_SLAB_UNRECLAIMABLE, nr_freed);
1830 while (i--) {
1831 BUG_ON(!PageSlab(page));
1832 __ClearPageSlab(page);
1833 page++;
1834 }
1835 if (current->reclaim_state)
1836 current->reclaim_state->reclaimed_slab += nr_freed;
1837 free_pages((unsigned long)addr, cachep->gfporder);
1838 }
1839
1840 static void kmem_rcu_free(struct rcu_head *head)
1841 {
1842 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1843 struct kmem_cache *cachep = slab_rcu->cachep;
1844
1845 kmem_freepages(cachep, slab_rcu->addr);
1846 if (OFF_SLAB(cachep))
1847 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1848 }
1849
1850 #if DEBUG
1851
1852 #ifdef CONFIG_DEBUG_PAGEALLOC
1853 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1854 unsigned long caller)
1855 {
1856 int size = obj_size(cachep);
1857
1858 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1859
1860 if (size < 5 * sizeof(unsigned long))
1861 return;
1862
1863 *addr++ = 0x12345678;
1864 *addr++ = caller;
1865 *addr++ = smp_processor_id();
1866 size -= 3 * sizeof(unsigned long);
1867 {
1868 unsigned long *sptr = &caller;
1869 unsigned long svalue;
1870
1871 while (!kstack_end(sptr)) {
1872 svalue = *sptr++;
1873 if (kernel_text_address(svalue)) {
1874 *addr++ = svalue;
1875 size -= sizeof(unsigned long);
1876 if (size <= sizeof(unsigned long))
1877 break;
1878 }
1879 }
1880
1881 }
1882 *addr++ = 0x87654321;
1883 }
1884 #endif
1885
1886 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1887 {
1888 int size = obj_size(cachep);
1889 addr = &((char *)addr)[obj_offset(cachep)];
1890
1891 memset(addr, val, size);
1892 *(unsigned char *)(addr + size - 1) = POISON_END;
1893 }
1894
1895 static void dump_line(char *data, int offset, int limit)
1896 {
1897 int i;
1898 unsigned char error = 0;
1899 int bad_count = 0;
1900
1901 printk(KERN_ERR "%03x: ", offset);
1902 for (i = 0; i < limit; i++) {
1903 if (data[offset + i] != POISON_FREE) {
1904 error = data[offset + i];
1905 bad_count++;
1906 }
1907 }
1908 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1909 &data[offset], limit, 1);
1910
1911 if (bad_count == 1) {
1912 error ^= POISON_FREE;
1913 if (!(error & (error - 1))) {
1914 printk(KERN_ERR "Single bit error detected. Probably "
1915 "bad RAM.\n");
1916 #ifdef CONFIG_X86
1917 printk(KERN_ERR "Run memtest86+ or a similar memory "
1918 "test tool.\n");
1919 #else
1920 printk(KERN_ERR "Run a memory test tool.\n");
1921 #endif
1922 }
1923 }
1924 }
1925 #endif
1926
1927 #if DEBUG
1928
1929 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1930 {
1931 int i, size;
1932 char *realobj;
1933
1934 if (cachep->flags & SLAB_RED_ZONE) {
1935 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1936 *dbg_redzone1(cachep, objp),
1937 *dbg_redzone2(cachep, objp));
1938 }
1939
1940 if (cachep->flags & SLAB_STORE_USER) {
1941 printk(KERN_ERR "Last user: [<%p>]",
1942 *dbg_userword(cachep, objp));
1943 print_symbol("(%s)",
1944 (unsigned long)*dbg_userword(cachep, objp));
1945 printk("\n");
1946 }
1947 realobj = (char *)objp + obj_offset(cachep);
1948 size = obj_size(cachep);
1949 for (i = 0; i < size && lines; i += 16, lines--) {
1950 int limit;
1951 limit = 16;
1952 if (i + limit > size)
1953 limit = size - i;
1954 dump_line(realobj, i, limit);
1955 }
1956 }
1957
1958 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1959 {
1960 char *realobj;
1961 int size, i;
1962 int lines = 0;
1963
1964 realobj = (char *)objp + obj_offset(cachep);
1965 size = obj_size(cachep);
1966
1967 for (i = 0; i < size; i++) {
1968 char exp = POISON_FREE;
1969 if (i == size - 1)
1970 exp = POISON_END;
1971 if (realobj[i] != exp) {
1972 int limit;
1973 /* Mismatch ! */
1974 /* Print header */
1975 if (lines == 0) {
1976 printk(KERN_ERR
1977 "Slab corruption (%s): %s start=%p, len=%d\n",
1978 print_tainted(), cachep->name, realobj, size);
1979 print_objinfo(cachep, objp, 0);
1980 }
1981 /* Hexdump the affected line */
1982 i = (i / 16) * 16;
1983 limit = 16;
1984 if (i + limit > size)
1985 limit = size - i;
1986 dump_line(realobj, i, limit);
1987 i += 16;
1988 lines++;
1989 /* Limit to 5 lines */
1990 if (lines > 5)
1991 break;
1992 }
1993 }
1994 if (lines != 0) {
1995 /* Print some data about the neighboring objects, if they
1996 * exist:
1997 */
1998 struct slab *slabp = virt_to_slab(objp);
1999 unsigned int objnr;
2000
2001 objnr = obj_to_index(cachep, slabp, objp);
2002 if (objnr) {
2003 objp = index_to_obj(cachep, slabp, objnr - 1);
2004 realobj = (char *)objp + obj_offset(cachep);
2005 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
2006 realobj, size);
2007 print_objinfo(cachep, objp, 2);
2008 }
2009 if (objnr + 1 < cachep->num) {
2010 objp = index_to_obj(cachep, slabp, objnr + 1);
2011 realobj = (char *)objp + obj_offset(cachep);
2012 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
2013 realobj, size);
2014 print_objinfo(cachep, objp, 2);
2015 }
2016 }
2017 }
2018 #endif
2019
2020 #if DEBUG
2021 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
2022 {
2023 int i;
2024 for (i = 0; i < cachep->num; i++) {
2025 void *objp = index_to_obj(cachep, slabp, i);
2026
2027 if (cachep->flags & SLAB_POISON) {
2028 #ifdef CONFIG_DEBUG_PAGEALLOC
2029 if (cachep->size % PAGE_SIZE == 0 &&
2030 OFF_SLAB(cachep))
2031 kernel_map_pages(virt_to_page(objp),
2032 cachep->size / PAGE_SIZE, 1);
2033 else
2034 check_poison_obj(cachep, objp);
2035 #else
2036 check_poison_obj(cachep, objp);
2037 #endif
2038 }
2039 if (cachep->flags & SLAB_RED_ZONE) {
2040 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2041 slab_error(cachep, "start of a freed object "
2042 "was overwritten");
2043 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2044 slab_error(cachep, "end of a freed object "
2045 "was overwritten");
2046 }
2047 }
2048 }
2049 #else
2050 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
2051 {
2052 }
2053 #endif
2054
2055 /**
2056 * slab_destroy - destroy and release all objects in a slab
2057 * @cachep: cache pointer being destroyed
2058 * @slabp: slab pointer being destroyed
2059 *
2060 * Destroy all the objs in a slab, and release the mem back to the system.
2061 * Before calling the slab must have been unlinked from the cache. The
2062 * cache-lock is not held/needed.
2063 */
2064 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
2065 {
2066 void *addr = slabp->s_mem - slabp->colouroff;
2067
2068 slab_destroy_debugcheck(cachep, slabp);
2069 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
2070 struct slab_rcu *slab_rcu;
2071
2072 slab_rcu = (struct slab_rcu *)slabp;
2073 slab_rcu->cachep = cachep;
2074 slab_rcu->addr = addr;
2075 call_rcu(&slab_rcu->head, kmem_rcu_free);
2076 } else {
2077 kmem_freepages(cachep, addr);
2078 if (OFF_SLAB(cachep))
2079 kmem_cache_free(cachep->slabp_cache, slabp);
2080 }
2081 }
2082
2083 static void __kmem_cache_destroy(struct kmem_cache *cachep)
2084 {
2085 int i;
2086 struct kmem_list3 *l3;
2087
2088 for_each_online_cpu(i)
2089 kfree(cachep->array[i]);
2090
2091 /* NUMA: free the list3 structures */
2092 for_each_online_node(i) {
2093 l3 = cachep->nodelists[i];
2094 if (l3) {
2095 kfree(l3->shared);
2096 free_alien_cache(l3->alien);
2097 kfree(l3);
2098 }
2099 }
2100 kmem_cache_free(&cache_cache, cachep);
2101 }
2102
2103
2104 /**
2105 * calculate_slab_order - calculate size (page order) of slabs
2106 * @cachep: pointer to the cache that is being created
2107 * @size: size of objects to be created in this cache.
2108 * @align: required alignment for the objects.
2109 * @flags: slab allocation flags
2110 *
2111 * Also calculates the number of objects per slab.
2112 *
2113 * This could be made much more intelligent. For now, try to avoid using
2114 * high order pages for slabs. When the gfp() functions are more friendly
2115 * towards high-order requests, this should be changed.
2116 */
2117 static size_t calculate_slab_order(struct kmem_cache *cachep,
2118 size_t size, size_t align, unsigned long flags)
2119 {
2120 unsigned long offslab_limit;
2121 size_t left_over = 0;
2122 int gfporder;
2123
2124 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2125 unsigned int num;
2126 size_t remainder;
2127
2128 cache_estimate(gfporder, size, align, flags, &remainder, &num);
2129 if (!num)
2130 continue;
2131
2132 if (flags & CFLGS_OFF_SLAB) {
2133 /*
2134 * Max number of objs-per-slab for caches which
2135 * use off-slab slabs. Needed to avoid a possible
2136 * looping condition in cache_grow().
2137 */
2138 offslab_limit = size - sizeof(struct slab);
2139 offslab_limit /= sizeof(kmem_bufctl_t);
2140
2141 if (num > offslab_limit)
2142 break;
2143 }
2144
2145 /* Found something acceptable - save it away */
2146 cachep->num = num;
2147 cachep->gfporder = gfporder;
2148 left_over = remainder;
2149
2150 /*
2151 * A VFS-reclaimable slab tends to have most allocations
2152 * as GFP_NOFS and we really don't want to have to be allocating
2153 * higher-order pages when we are unable to shrink dcache.
2154 */
2155 if (flags & SLAB_RECLAIM_ACCOUNT)
2156 break;
2157
2158 /*
2159 * Large number of objects is good, but very large slabs are
2160 * currently bad for the gfp()s.
2161 */
2162 if (gfporder >= slab_max_order)
2163 break;
2164
2165 /*
2166 * Acceptable internal fragmentation?
2167 */
2168 if (left_over * 8 <= (PAGE_SIZE << gfporder))
2169 break;
2170 }
2171 return left_over;
2172 }
2173
2174 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2175 {
2176 if (g_cpucache_up == FULL)
2177 return enable_cpucache(cachep, gfp);
2178
2179 if (g_cpucache_up == NONE) {
2180 /*
2181 * Note: the first kmem_cache_create must create the cache
2182 * that's used by kmalloc(24), otherwise the creation of
2183 * further caches will BUG().
2184 */
2185 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2186
2187 /*
2188 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2189 * the first cache, then we need to set up all its list3s,
2190 * otherwise the creation of further caches will BUG().
2191 */
2192 set_up_list3s(cachep, SIZE_AC);
2193 if (INDEX_AC == INDEX_L3)
2194 g_cpucache_up = PARTIAL_L3;
2195 else
2196 g_cpucache_up = PARTIAL_AC;
2197 } else {
2198 cachep->array[smp_processor_id()] =
2199 kmalloc(sizeof(struct arraycache_init), gfp);
2200
2201 if (g_cpucache_up == PARTIAL_AC) {
2202 set_up_list3s(cachep, SIZE_L3);
2203 g_cpucache_up = PARTIAL_L3;
2204 } else {
2205 int node;
2206 for_each_online_node(node) {
2207 cachep->nodelists[node] =
2208 kmalloc_node(sizeof(struct kmem_list3),
2209 gfp, node);
2210 BUG_ON(!cachep->nodelists[node]);
2211 kmem_list3_init(cachep->nodelists[node]);
2212 }
2213 }
2214 }
2215 cachep->nodelists[numa_mem_id()]->next_reap =
2216 jiffies + REAPTIMEOUT_LIST3 +
2217 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2218
2219 cpu_cache_get(cachep)->avail = 0;
2220 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2221 cpu_cache_get(cachep)->batchcount = 1;
2222 cpu_cache_get(cachep)->touched = 0;
2223 cachep->batchcount = 1;
2224 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2225 return 0;
2226 }
2227
2228 /**
2229 * kmem_cache_create - Create a cache.
2230 * @name: A string which is used in /proc/slabinfo to identify this cache.
2231 * @size: The size of objects to be created in this cache.
2232 * @align: The required alignment for the objects.
2233 * @flags: SLAB flags
2234 * @ctor: A constructor for the objects.
2235 *
2236 * Returns a ptr to the cache on success, NULL on failure.
2237 * Cannot be called within a int, but can be interrupted.
2238 * The @ctor is run when new pages are allocated by the cache.
2239 *
2240 * @name must be valid until the cache is destroyed. This implies that
2241 * the module calling this has to destroy the cache before getting unloaded.
2242 *
2243 * The flags are
2244 *
2245 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2246 * to catch references to uninitialised memory.
2247 *
2248 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2249 * for buffer overruns.
2250 *
2251 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2252 * cacheline. This can be beneficial if you're counting cycles as closely
2253 * as davem.
2254 */
2255 struct kmem_cache *
2256 kmem_cache_create (const char *name, size_t size, size_t align,
2257 unsigned long flags, void (*ctor)(void *))
2258 {
2259 size_t left_over, slab_size, ralign;
2260 struct kmem_cache *cachep = NULL, *pc;
2261 gfp_t gfp;
2262
2263 /*
2264 * Sanity checks... these are all serious usage bugs.
2265 */
2266 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2267 size > KMALLOC_MAX_SIZE) {
2268 printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
2269 name);
2270 BUG();
2271 }
2272
2273 /*
2274 * We use cache_chain_mutex to ensure a consistent view of
2275 * cpu_online_mask as well. Please see cpuup_callback
2276 */
2277 if (slab_is_available()) {
2278 get_online_cpus();
2279 mutex_lock(&cache_chain_mutex);
2280 }
2281
2282 list_for_each_entry(pc, &cache_chain, list) {
2283 char tmp;
2284 int res;
2285
2286 /*
2287 * This happens when the module gets unloaded and doesn't
2288 * destroy its slab cache and no-one else reuses the vmalloc
2289 * area of the module. Print a warning.
2290 */
2291 res = probe_kernel_address(pc->name, tmp);
2292 if (res) {
2293 printk(KERN_ERR
2294 "SLAB: cache with size %d has lost its name\n",
2295 pc->size);
2296 continue;
2297 }
2298
2299 if (!strcmp(pc->name, name)) {
2300 printk(KERN_ERR
2301 "kmem_cache_create: duplicate cache %s\n", name);
2302 dump_stack();
2303 goto oops;
2304 }
2305 }
2306
2307 #if DEBUG
2308 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
2309 #if FORCED_DEBUG
2310 /*
2311 * Enable redzoning and last user accounting, except for caches with
2312 * large objects, if the increased size would increase the object size
2313 * above the next power of two: caches with object sizes just above a
2314 * power of two have a significant amount of internal fragmentation.
2315 */
2316 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2317 2 * sizeof(unsigned long long)))
2318 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2319 if (!(flags & SLAB_DESTROY_BY_RCU))
2320 flags |= SLAB_POISON;
2321 #endif
2322 if (flags & SLAB_DESTROY_BY_RCU)
2323 BUG_ON(flags & SLAB_POISON);
2324 #endif
2325 /*
2326 * Always checks flags, a caller might be expecting debug support which
2327 * isn't available.
2328 */
2329 BUG_ON(flags & ~CREATE_MASK);
2330
2331 /*
2332 * Check that size is in terms of words. This is needed to avoid
2333 * unaligned accesses for some archs when redzoning is used, and makes
2334 * sure any on-slab bufctl's are also correctly aligned.
2335 */
2336 if (size & (BYTES_PER_WORD - 1)) {
2337 size += (BYTES_PER_WORD - 1);
2338 size &= ~(BYTES_PER_WORD - 1);
2339 }
2340
2341 /* calculate the final buffer alignment: */
2342
2343 /* 1) arch recommendation: can be overridden for debug */
2344 if (flags & SLAB_HWCACHE_ALIGN) {
2345 /*
2346 * Default alignment: as specified by the arch code. Except if
2347 * an object is really small, then squeeze multiple objects into
2348 * one cacheline.
2349 */
2350 ralign = cache_line_size();
2351 while (size <= ralign / 2)
2352 ralign /= 2;
2353 } else {
2354 ralign = BYTES_PER_WORD;
2355 }
2356
2357 /*
2358 * Redzoning and user store require word alignment or possibly larger.
2359 * Note this will be overridden by architecture or caller mandated
2360 * alignment if either is greater than BYTES_PER_WORD.
2361 */
2362 if (flags & SLAB_STORE_USER)
2363 ralign = BYTES_PER_WORD;
2364
2365 if (flags & SLAB_RED_ZONE) {
2366 ralign = REDZONE_ALIGN;
2367 /* If redzoning, ensure that the second redzone is suitably
2368 * aligned, by adjusting the object size accordingly. */
2369 size += REDZONE_ALIGN - 1;
2370 size &= ~(REDZONE_ALIGN - 1);
2371 }
2372
2373 /* 2) arch mandated alignment */
2374 if (ralign < ARCH_SLAB_MINALIGN) {
2375 ralign = ARCH_SLAB_MINALIGN;
2376 }
2377 /* 3) caller mandated alignment */
2378 if (ralign < align) {
2379 ralign = align;
2380 }
2381 /* disable debug if necessary */
2382 if (ralign > __alignof__(unsigned long long))
2383 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2384 /*
2385 * 4) Store it.
2386 */
2387 align = ralign;
2388
2389 if (slab_is_available())
2390 gfp = GFP_KERNEL;
2391 else
2392 gfp = GFP_NOWAIT;
2393
2394 /* Get cache's description obj. */
2395 cachep = kmem_cache_zalloc(&cache_cache, gfp);
2396 if (!cachep)
2397 goto oops;
2398
2399 cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids];
2400 cachep->object_size = size;
2401 cachep->align = align;
2402 #if DEBUG
2403
2404 /*
2405 * Both debugging options require word-alignment which is calculated
2406 * into align above.
2407 */
2408 if (flags & SLAB_RED_ZONE) {
2409 /* add space for red zone words */
2410 cachep->obj_offset += sizeof(unsigned long long);
2411 size += 2 * sizeof(unsigned long long);
2412 }
2413 if (flags & SLAB_STORE_USER) {
2414 /* user store requires one word storage behind the end of
2415 * the real object. But if the second red zone needs to be
2416 * aligned to 64 bits, we must allow that much space.
2417 */
2418 if (flags & SLAB_RED_ZONE)
2419 size += REDZONE_ALIGN;
2420 else
2421 size += BYTES_PER_WORD;
2422 }
2423 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2424 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2425 && cachep->object_size > cache_line_size() && ALIGN(size, align) < PAGE_SIZE) {
2426 cachep->obj_offset += PAGE_SIZE - ALIGN(size, align);
2427 size = PAGE_SIZE;
2428 }
2429 #endif
2430 #endif
2431
2432 /*
2433 * Determine if the slab management is 'on' or 'off' slab.
2434 * (bootstrapping cannot cope with offslab caches so don't do
2435 * it too early on. Always use on-slab management when
2436 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2437 */
2438 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
2439 !(flags & SLAB_NOLEAKTRACE))
2440 /*
2441 * Size is large, assume best to place the slab management obj
2442 * off-slab (should allow better packing of objs).
2443 */
2444 flags |= CFLGS_OFF_SLAB;
2445
2446 size = ALIGN(size, align);
2447
2448 left_over = calculate_slab_order(cachep, size, align, flags);
2449
2450 if (!cachep->num) {
2451 printk(KERN_ERR
2452 "kmem_cache_create: couldn't create cache %s.\n", name);
2453 kmem_cache_free(&cache_cache, cachep);
2454 cachep = NULL;
2455 goto oops;
2456 }
2457 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2458 + sizeof(struct slab), align);
2459
2460 /*
2461 * If the slab has been placed off-slab, and we have enough space then
2462 * move it on-slab. This is at the expense of any extra colouring.
2463 */
2464 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2465 flags &= ~CFLGS_OFF_SLAB;
2466 left_over -= slab_size;
2467 }
2468
2469 if (flags & CFLGS_OFF_SLAB) {
2470 /* really off slab. No need for manual alignment */
2471 slab_size =
2472 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2473
2474 #ifdef CONFIG_PAGE_POISONING
2475 /* If we're going to use the generic kernel_map_pages()
2476 * poisoning, then it's going to smash the contents of
2477 * the redzone and userword anyhow, so switch them off.
2478 */
2479 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2480 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2481 #endif
2482 }
2483
2484 cachep->colour_off = cache_line_size();
2485 /* Offset must be a multiple of the alignment. */
2486 if (cachep->colour_off < align)
2487 cachep->colour_off = align;
2488 cachep->colour = left_over / cachep->colour_off;
2489 cachep->slab_size = slab_size;
2490 cachep->flags = flags;
2491 cachep->gfpflags = 0;
2492 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2493 cachep->gfpflags |= GFP_DMA;
2494 cachep->size = size;
2495 cachep->reciprocal_buffer_size = reciprocal_value(size);
2496
2497 if (flags & CFLGS_OFF_SLAB) {
2498 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2499 /*
2500 * This is a possibility for one of the malloc_sizes caches.
2501 * But since we go off slab only for object size greater than
2502 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2503 * this should not happen at all.
2504 * But leave a BUG_ON for some lucky dude.
2505 */
2506 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2507 }
2508 cachep->ctor = ctor;
2509 cachep->name = name;
2510
2511 if (setup_cpu_cache(cachep, gfp)) {
2512 __kmem_cache_destroy(cachep);
2513 cachep = NULL;
2514 goto oops;
2515 }
2516
2517 if (flags & SLAB_DEBUG_OBJECTS) {
2518 /*
2519 * Would deadlock through slab_destroy()->call_rcu()->
2520 * debug_object_activate()->kmem_cache_alloc().
2521 */
2522 WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);
2523
2524 slab_set_debugobj_lock_classes(cachep);
2525 }
2526
2527 /* cache setup completed, link it into the list */
2528 list_add(&cachep->list, &cache_chain);
2529 oops:
2530 if (!cachep && (flags & SLAB_PANIC))
2531 panic("kmem_cache_create(): failed to create slab `%s'\n",
2532 name);
2533 if (slab_is_available()) {
2534 mutex_unlock(&cache_chain_mutex);
2535 put_online_cpus();
2536 }
2537 return cachep;
2538 }
2539 EXPORT_SYMBOL(kmem_cache_create);
2540
2541 #if DEBUG
2542 static void check_irq_off(void)
2543 {
2544 BUG_ON(!irqs_disabled());
2545 }
2546
2547 static void check_irq_on(void)
2548 {
2549 BUG_ON(irqs_disabled());
2550 }
2551
2552 static void check_spinlock_acquired(struct kmem_cache *cachep)
2553 {
2554 #ifdef CONFIG_SMP
2555 check_irq_off();
2556 assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
2557 #endif
2558 }
2559
2560 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2561 {
2562 #ifdef CONFIG_SMP
2563 check_irq_off();
2564 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2565 #endif
2566 }
2567
2568 #else
2569 #define check_irq_off() do { } while(0)
2570 #define check_irq_on() do { } while(0)
2571 #define check_spinlock_acquired(x) do { } while(0)
2572 #define check_spinlock_acquired_node(x, y) do { } while(0)
2573 #endif
2574
2575 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2576 struct array_cache *ac,
2577 int force, int node);
2578
2579 static void do_drain(void *arg)
2580 {
2581 struct kmem_cache *cachep = arg;
2582 struct array_cache *ac;
2583 int node = numa_mem_id();
2584
2585 check_irq_off();
2586 ac = cpu_cache_get(cachep);
2587 spin_lock(&cachep->nodelists[node]->list_lock);
2588 free_block(cachep, ac->entry, ac->avail, node);
2589 spin_unlock(&cachep->nodelists[node]->list_lock);
2590 ac->avail = 0;
2591 }
2592
2593 static void drain_cpu_caches(struct kmem_cache *cachep)
2594 {
2595 struct kmem_list3 *l3;
2596 int node;
2597
2598 on_each_cpu(do_drain, cachep, 1);
2599 check_irq_on();
2600 for_each_online_node(node) {
2601 l3 = cachep->nodelists[node];
2602 if (l3 && l3->alien)
2603 drain_alien_cache(cachep, l3->alien);
2604 }
2605
2606 for_each_online_node(node) {
2607 l3 = cachep->nodelists[node];
2608 if (l3)
2609 drain_array(cachep, l3, l3->shared, 1, node);
2610 }
2611 }
2612
2613 /*
2614 * Remove slabs from the list of free slabs.
2615 * Specify the number of slabs to drain in tofree.
2616 *
2617 * Returns the actual number of slabs released.
2618 */
2619 static int drain_freelist(struct kmem_cache *cache,
2620 struct kmem_list3 *l3, int tofree)
2621 {
2622 struct list_head *p;
2623 int nr_freed;
2624 struct slab *slabp;
2625
2626 nr_freed = 0;
2627 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
2628
2629 spin_lock_irq(&l3->list_lock);
2630 p = l3->slabs_free.prev;
2631 if (p == &l3->slabs_free) {
2632 spin_unlock_irq(&l3->list_lock);
2633 goto out;
2634 }
2635
2636 slabp = list_entry(p, struct slab, list);
2637 #if DEBUG
2638 BUG_ON(slabp->inuse);
2639 #endif
2640 list_del(&slabp->list);
2641 /*
2642 * Safe to drop the lock. The slab is no longer linked
2643 * to the cache.
2644 */
2645 l3->free_objects -= cache->num;
2646 spin_unlock_irq(&l3->list_lock);
2647 slab_destroy(cache, slabp);
2648 nr_freed++;
2649 }
2650 out:
2651 return nr_freed;
2652 }
2653
2654 /* Called with cache_chain_mutex held to protect against cpu hotplug */
2655 static int __cache_shrink(struct kmem_cache *cachep)
2656 {
2657 int ret = 0, i = 0;
2658 struct kmem_list3 *l3;
2659
2660 drain_cpu_caches(cachep);
2661
2662 check_irq_on();
2663 for_each_online_node(i) {
2664 l3 = cachep->nodelists[i];
2665 if (!l3)
2666 continue;
2667
2668 drain_freelist(cachep, l3, l3->free_objects);
2669
2670 ret += !list_empty(&l3->slabs_full) ||
2671 !list_empty(&l3->slabs_partial);
2672 }
2673 return (ret ? 1 : 0);
2674 }
2675
2676 /**
2677 * kmem_cache_shrink - Shrink a cache.
2678 * @cachep: The cache to shrink.
2679 *
2680 * Releases as many slabs as possible for a cache.
2681 * To help debugging, a zero exit status indicates all slabs were released.
2682 */
2683 int kmem_cache_shrink(struct kmem_cache *cachep)
2684 {
2685 int ret;
2686 BUG_ON(!cachep || in_interrupt());
2687
2688 get_online_cpus();
2689 mutex_lock(&cache_chain_mutex);
2690 ret = __cache_shrink(cachep);
2691 mutex_unlock(&cache_chain_mutex);
2692 put_online_cpus();
2693 return ret;
2694 }
2695 EXPORT_SYMBOL(kmem_cache_shrink);
2696
2697 /**
2698 * kmem_cache_destroy - delete a cache
2699 * @cachep: the cache to destroy
2700 *
2701 * Remove a &struct kmem_cache object from the slab cache.
2702 *
2703 * It is expected this function will be called by a module when it is
2704 * unloaded. This will remove the cache completely, and avoid a duplicate
2705 * cache being allocated each time a module is loaded and unloaded, if the
2706 * module doesn't have persistent in-kernel storage across loads and unloads.
2707 *
2708 * The cache must be empty before calling this function.
2709 *
2710 * The caller must guarantee that no one will allocate memory from the cache
2711 * during the kmem_cache_destroy().
2712 */
2713 void kmem_cache_destroy(struct kmem_cache *cachep)
2714 {
2715 BUG_ON(!cachep || in_interrupt());
2716
2717 /* Find the cache in the chain of caches. */
2718 get_online_cpus();
2719 mutex_lock(&cache_chain_mutex);
2720 /*
2721 * the chain is never empty, cache_cache is never destroyed
2722 */
2723 list_del(&cachep->list);
2724 if (__cache_shrink(cachep)) {
2725 slab_error(cachep, "Can't free all objects");
2726 list_add(&cachep->list, &cache_chain);
2727 mutex_unlock(&cache_chain_mutex);
2728 put_online_cpus();
2729 return;
2730 }
2731
2732 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2733 rcu_barrier();
2734
2735 __kmem_cache_destroy(cachep);
2736 mutex_unlock(&cache_chain_mutex);
2737 put_online_cpus();
2738 }
2739 EXPORT_SYMBOL(kmem_cache_destroy);
2740
2741 /*
2742 * Get the memory for a slab management obj.
2743 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2744 * always come from malloc_sizes caches. The slab descriptor cannot
2745 * come from the same cache which is getting created because,
2746 * when we are searching for an appropriate cache for these
2747 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2748 * If we are creating a malloc_sizes cache here it would not be visible to
2749 * kmem_find_general_cachep till the initialization is complete.
2750 * Hence we cannot have slabp_cache same as the original cache.
2751 */
2752 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2753 int colour_off, gfp_t local_flags,
2754 int nodeid)
2755 {
2756 struct slab *slabp;
2757
2758 if (OFF_SLAB(cachep)) {
2759 /* Slab management obj is off-slab. */
2760 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2761 local_flags, nodeid);
2762 /*
2763 * If the first object in the slab is leaked (it's allocated
2764 * but no one has a reference to it), we want to make sure
2765 * kmemleak does not treat the ->s_mem pointer as a reference
2766 * to the object. Otherwise we will not report the leak.
2767 */
2768 kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
2769 local_flags);
2770 if (!slabp)
2771 return NULL;
2772 } else {
2773 slabp = objp + colour_off;
2774 colour_off += cachep->slab_size;
2775 }
2776 slabp->inuse = 0;
2777 slabp->colouroff = colour_off;
2778 slabp->s_mem = objp + colour_off;
2779 slabp->nodeid = nodeid;
2780 slabp->free = 0;
2781 return slabp;
2782 }
2783
2784 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2785 {
2786 return (kmem_bufctl_t *) (slabp + 1);
2787 }
2788
2789 static void cache_init_objs(struct kmem_cache *cachep,
2790 struct slab *slabp)
2791 {
2792 int i;
2793
2794 for (i = 0; i < cachep->num; i++) {
2795 void *objp = index_to_obj(cachep, slabp, i);
2796 #if DEBUG
2797 /* need to poison the objs? */
2798 if (cachep->flags & SLAB_POISON)
2799 poison_obj(cachep, objp, POISON_FREE);
2800 if (cachep->flags & SLAB_STORE_USER)
2801 *dbg_userword(cachep, objp) = NULL;
2802
2803 if (cachep->flags & SLAB_RED_ZONE) {
2804 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2805 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2806 }
2807 /*
2808 * Constructors are not allowed to allocate memory from the same
2809 * cache which they are a constructor for. Otherwise, deadlock.
2810 * They must also be threaded.
2811 */
2812 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2813 cachep->ctor(objp + obj_offset(cachep));
2814
2815 if (cachep->flags & SLAB_RED_ZONE) {
2816 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2817 slab_error(cachep, "constructor overwrote the"
2818 " end of an object");
2819 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2820 slab_error(cachep, "constructor overwrote the"
2821 " start of an object");
2822 }
2823 if ((cachep->size % PAGE_SIZE) == 0 &&
2824 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2825 kernel_map_pages(virt_to_page(objp),
2826 cachep->size / PAGE_SIZE, 0);
2827 #else
2828 if (cachep->ctor)
2829 cachep->ctor(objp);
2830 #endif
2831 slab_bufctl(slabp)[i] = i + 1;
2832 }
2833 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2834 }
2835
2836 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2837 {
2838 if (CONFIG_ZONE_DMA_FLAG) {
2839 if (flags & GFP_DMA)
2840 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2841 else
2842 BUG_ON(cachep->gfpflags & GFP_DMA);
2843 }
2844 }
2845
2846 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2847 int nodeid)
2848 {
2849 void *objp = index_to_obj(cachep, slabp, slabp->free);
2850 kmem_bufctl_t next;
2851
2852 slabp->inuse++;
2853 next = slab_bufctl(slabp)[slabp->free];
2854 #if DEBUG
2855 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2856 WARN_ON(slabp->nodeid != nodeid);
2857 #endif
2858 slabp->free = next;
2859
2860 return objp;
2861 }
2862
2863 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2864 void *objp, int nodeid)
2865 {
2866 unsigned int objnr = obj_to_index(cachep, slabp, objp);
2867
2868 #if DEBUG
2869 /* Verify that the slab belongs to the intended node */
2870 WARN_ON(slabp->nodeid != nodeid);
2871
2872 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2873 printk(KERN_ERR "slab: double free detected in cache "
2874 "'%s', objp %p\n", cachep->name, objp);
2875 BUG();
2876 }
2877 #endif
2878 slab_bufctl(slabp)[objnr] = slabp->free;
2879 slabp->free = objnr;
2880 slabp->inuse--;
2881 }
2882
2883 /*
2884 * Map pages beginning at addr to the given cache and slab. This is required
2885 * for the slab allocator to be able to lookup the cache and slab of a
2886 * virtual address for kfree, ksize, and slab debugging.
2887 */
2888 static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2889 void *addr)
2890 {
2891 int nr_pages;
2892 struct page *page;
2893
2894 page = virt_to_page(addr);
2895
2896 nr_pages = 1;
2897 if (likely(!PageCompound(page)))
2898 nr_pages <<= cache->gfporder;
2899
2900 do {
2901 page->slab_cache = cache;
2902 page->slab_page = slab;
2903 page++;
2904 } while (--nr_pages);
2905 }
2906
2907 /*
2908 * Grow (by 1) the number of slabs within a cache. This is called by
2909 * kmem_cache_alloc() when there are no active objs left in a cache.
2910 */
2911 static int cache_grow(struct kmem_cache *cachep,
2912 gfp_t flags, int nodeid, void *objp)
2913 {
2914 struct slab *slabp;
2915 size_t offset;
2916 gfp_t local_flags;
2917 struct kmem_list3 *l3;
2918
2919 /*
2920 * Be lazy and only check for valid flags here, keeping it out of the
2921 * critical path in kmem_cache_alloc().
2922 */
2923 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2924 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2925
2926 /* Take the l3 list lock to change the colour_next on this node */
2927 check_irq_off();
2928 l3 = cachep->nodelists[nodeid];
2929 spin_lock(&l3->list_lock);
2930
2931 /* Get colour for the slab, and cal the next value. */
2932 offset = l3->colour_next;
2933 l3->colour_next++;
2934 if (l3->colour_next >= cachep->colour)
2935 l3->colour_next = 0;
2936 spin_unlock(&l3->list_lock);
2937
2938 offset *= cachep->colour_off;
2939
2940 if (local_flags & __GFP_WAIT)
2941 local_irq_enable();
2942
2943 /*
2944 * The test for missing atomic flag is performed here, rather than
2945 * the more obvious place, simply to reduce the critical path length
2946 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2947 * will eventually be caught here (where it matters).
2948 */
2949 kmem_flagcheck(cachep, flags);
2950
2951 /*
2952 * Get mem for the objs. Attempt to allocate a physical page from
2953 * 'nodeid'.
2954 */
2955 if (!objp)
2956 objp = kmem_getpages(cachep, local_flags, nodeid);
2957 if (!objp)
2958 goto failed;
2959
2960 /* Get slab management. */
2961 slabp = alloc_slabmgmt(cachep, objp, offset,
2962 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2963 if (!slabp)
2964 goto opps1;
2965
2966 slab_map_pages(cachep, slabp, objp);
2967
2968 cache_init_objs(cachep, slabp);
2969
2970 if (local_flags & __GFP_WAIT)
2971 local_irq_disable();
2972 check_irq_off();
2973 spin_lock(&l3->list_lock);
2974
2975 /* Make slab active. */
2976 list_add_tail(&slabp->list, &(l3->slabs_free));
2977 STATS_INC_GROWN(cachep);
2978 l3->free_objects += cachep->num;
2979 spin_unlock(&l3->list_lock);
2980 return 1;
2981 opps1:
2982 kmem_freepages(cachep, objp);
2983 failed:
2984 if (local_flags & __GFP_WAIT)
2985 local_irq_disable();
2986 return 0;
2987 }
2988
2989 #if DEBUG
2990
2991 /*
2992 * Perform extra freeing checks:
2993 * - detect bad pointers.
2994 * - POISON/RED_ZONE checking
2995 */
2996 static void kfree_debugcheck(const void *objp)
2997 {
2998 if (!virt_addr_valid(objp)) {
2999 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
3000 (unsigned long)objp);
3001 BUG();
3002 }
3003 }
3004
3005 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
3006 {
3007 unsigned long long redzone1, redzone2;
3008
3009 redzone1 = *dbg_redzone1(cache, obj);
3010 redzone2 = *dbg_redzone2(cache, obj);
3011
3012 /*
3013 * Redzone is ok.
3014 */
3015 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
3016 return;
3017
3018 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
3019 slab_error(cache, "double free detected");
3020 else
3021 slab_error(cache, "memory outside object was overwritten");
3022
3023 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
3024 obj, redzone1, redzone2);
3025 }
3026
3027 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
3028 void *caller)
3029 {
3030 struct page *page;
3031 unsigned int objnr;
3032 struct slab *slabp;
3033
3034 BUG_ON(virt_to_cache(objp) != cachep);
3035
3036 objp -= obj_offset(cachep);
3037 kfree_debugcheck(objp);
3038 page = virt_to_head_page(objp);
3039
3040 slabp = page->slab_page;
3041
3042 if (cachep->flags & SLAB_RED_ZONE) {
3043 verify_redzone_free(cachep, objp);
3044 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
3045 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
3046 }
3047 if (cachep->flags & SLAB_STORE_USER)
3048 *dbg_userword(cachep, objp) = caller;
3049
3050 objnr = obj_to_index(cachep, slabp, objp);
3051
3052 BUG_ON(objnr >= cachep->num);
3053 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
3054
3055 #ifdef CONFIG_DEBUG_SLAB_LEAK
3056 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
3057 #endif
3058 if (cachep->flags & SLAB_POISON) {
3059 #ifdef CONFIG_DEBUG_PAGEALLOC
3060 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
3061 store_stackinfo(cachep, objp, (unsigned long)caller);
3062 kernel_map_pages(virt_to_page(objp),
3063 cachep->size / PAGE_SIZE, 0);
3064 } else {
3065 poison_obj(cachep, objp, POISON_FREE);
3066 }
3067 #else
3068 poison_obj(cachep, objp, POISON_FREE);
3069 #endif
3070 }
3071 return objp;
3072 }
3073
3074 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
3075 {
3076 kmem_bufctl_t i;
3077 int entries = 0;
3078
3079 /* Check slab's freelist to see if this obj is there. */
3080 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
3081 entries++;
3082 if (entries > cachep->num || i >= cachep->num)
3083 goto bad;
3084 }
3085 if (entries != cachep->num - slabp->inuse) {
3086 bad:
3087 printk(KERN_ERR "slab: Internal list corruption detected in "
3088 "cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n",
3089 cachep->name, cachep->num, slabp, slabp->inuse,
3090 print_tainted());
3091 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp,
3092 sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t),
3093 1);
3094 BUG();
3095 }
3096 }
3097 #else
3098 #define kfree_debugcheck(x) do { } while(0)
3099 #define cache_free_debugcheck(x,objp,z) (objp)
3100 #define check_slabp(x,y) do { } while(0)
3101 #endif
3102
3103 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
3104 {
3105 int batchcount;
3106 struct kmem_list3 *l3;
3107 struct array_cache *ac;
3108 int node;
3109
3110 retry:
3111 check_irq_off();
3112 node = numa_mem_id();
3113 ac = cpu_cache_get(cachep);
3114 batchcount = ac->batchcount;
3115 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
3116 /*
3117 * If there was little recent activity on this cache, then
3118 * perform only a partial refill. Otherwise we could generate
3119 * refill bouncing.
3120 */
3121 batchcount = BATCHREFILL_LIMIT;
3122 }
3123 l3 = cachep->nodelists[node];
3124
3125 BUG_ON(ac->avail > 0 || !l3);
3126 spin_lock(&l3->list_lock);
3127
3128 /* See if we can refill from the shared array */
3129 if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
3130 l3->shared->touched = 1;
3131 goto alloc_done;
3132 }
3133
3134 while (batchcount > 0) {
3135 struct list_head *entry;
3136 struct slab *slabp;
3137 /* Get slab alloc is to come from. */
3138 entry = l3->slabs_partial.next;
3139 if (entry == &l3->slabs_partial) {
3140 l3->free_touched = 1;
3141 entry = l3->slabs_free.next;
3142 if (entry == &l3->slabs_free)
3143 goto must_grow;
3144 }
3145
3146 slabp = list_entry(entry, struct slab, list);
3147 check_slabp(cachep, slabp);
3148 check_spinlock_acquired(cachep);
3149
3150 /*
3151 * The slab was either on partial or free list so
3152 * there must be at least one object available for
3153 * allocation.
3154 */
3155 BUG_ON(slabp->inuse >= cachep->num);
3156
3157 while (slabp->inuse < cachep->num && batchcount--) {
3158 STATS_INC_ALLOCED(cachep);
3159 STATS_INC_ACTIVE(cachep);
3160 STATS_SET_HIGH(cachep);
3161
3162 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
3163 node);
3164 }
3165 check_slabp(cachep, slabp);
3166
3167 /* move slabp to correct slabp list: */
3168 list_del(&slabp->list);
3169 if (slabp->free == BUFCTL_END)
3170 list_add(&slabp->list, &l3->slabs_full);
3171 else
3172 list_add(&slabp->list, &l3->slabs_partial);
3173 }
3174
3175 must_grow:
3176 l3->free_objects -= ac->avail;
3177 alloc_done:
3178 spin_unlock(&l3->list_lock);
3179
3180 if (unlikely(!ac->avail)) {
3181 int x;
3182 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3183
3184 /* cache_grow can reenable interrupts, then ac could change. */
3185 ac = cpu_cache_get(cachep);
3186 if (!x && ac->avail == 0) /* no objects in sight? abort */
3187 return NULL;
3188
3189 if (!ac->avail) /* objects refilled by interrupt? */
3190 goto retry;
3191 }
3192 ac->touched = 1;
3193 return ac->entry[--ac->avail];
3194 }
3195
3196 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3197 gfp_t flags)
3198 {
3199 might_sleep_if(flags & __GFP_WAIT);
3200 #if DEBUG
3201 kmem_flagcheck(cachep, flags);
3202 #endif
3203 }
3204
3205 #if DEBUG
3206 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3207 gfp_t flags, void *objp, void *caller)
3208 {
3209 if (!objp)
3210 return objp;
3211 if (cachep->flags & SLAB_POISON) {
3212 #ifdef CONFIG_DEBUG_PAGEALLOC
3213 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3214 kernel_map_pages(virt_to_page(objp),
3215 cachep->size / PAGE_SIZE, 1);
3216 else
3217 check_poison_obj(cachep, objp);
3218 #else
3219 check_poison_obj(cachep, objp);
3220 #endif
3221 poison_obj(cachep, objp, POISON_INUSE);
3222 }
3223 if (cachep->flags & SLAB_STORE_USER)
3224 *dbg_userword(cachep, objp) = caller;
3225
3226 if (cachep->flags & SLAB_RED_ZONE) {
3227 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3228 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3229 slab_error(cachep, "double free, or memory outside"
3230 " object was overwritten");
3231 printk(KERN_ERR
3232 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3233 objp, *dbg_redzone1(cachep, objp),
3234 *dbg_redzone2(cachep, objp));
3235 }
3236 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3237 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3238 }
3239 #ifdef CONFIG_DEBUG_SLAB_LEAK
3240 {
3241 struct slab *slabp;
3242 unsigned objnr;
3243
3244 slabp = virt_to_head_page(objp)->slab_page;
3245 objnr = (unsigned)(objp - slabp->s_mem) / cachep->size;
3246 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3247 }
3248 #endif
3249 objp += obj_offset(cachep);
3250 if (cachep->ctor && cachep->flags & SLAB_POISON)
3251 cachep->ctor(objp);
3252 if (ARCH_SLAB_MINALIGN &&
3253 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3254 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3255 objp, (int)ARCH_SLAB_MINALIGN);
3256 }
3257 return objp;
3258 }
3259 #else
3260 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3261 #endif
3262
3263 static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3264 {
3265 if (cachep == &cache_cache)
3266 return false;
3267
3268 return should_failslab(obj_size(cachep), flags, cachep->flags);
3269 }
3270
3271 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3272 {
3273 void *objp;
3274 struct array_cache *ac;
3275
3276 check_irq_off();
3277
3278 ac = cpu_cache_get(cachep);
3279 if (likely(ac->avail)) {
3280 STATS_INC_ALLOCHIT(cachep);
3281 ac->touched = 1;
3282 objp = ac->entry[--ac->avail];
3283 } else {
3284 STATS_INC_ALLOCMISS(cachep);
3285 objp = cache_alloc_refill(cachep, flags);
3286 /*
3287 * the 'ac' may be updated by cache_alloc_refill(),
3288 * and kmemleak_erase() requires its correct value.
3289 */
3290 ac = cpu_cache_get(cachep);
3291 }
3292 /*
3293 * To avoid a false negative, if an object that is in one of the
3294 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3295 * treat the array pointers as a reference to the object.
3296 */
3297 if (objp)
3298 kmemleak_erase(&ac->entry[ac->avail]);
3299 return objp;
3300 }
3301
3302 #ifdef CONFIG_NUMA
3303 /*
3304 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3305 *
3306 * If we are in_interrupt, then process context, including cpusets and
3307 * mempolicy, may not apply and should not be used for allocation policy.
3308 */
3309 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3310 {
3311 int nid_alloc, nid_here;
3312
3313 if (in_interrupt() || (flags & __GFP_THISNODE))
3314 return NULL;
3315 nid_alloc = nid_here = numa_mem_id();
3316 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3317 nid_alloc = cpuset_slab_spread_node();
3318 else if (current->mempolicy)
3319 nid_alloc = slab_node(current->mempolicy);
3320 if (nid_alloc != nid_here)
3321 return ____cache_alloc_node(cachep, flags, nid_alloc);
3322 return NULL;
3323 }
3324
3325 /*
3326 * Fallback function if there was no memory available and no objects on a
3327 * certain node and fall back is permitted. First we scan all the
3328 * available nodelists for available objects. If that fails then we
3329 * perform an allocation without specifying a node. This allows the page
3330 * allocator to do its reclaim / fallback magic. We then insert the
3331 * slab into the proper nodelist and then allocate from it.
3332 */
3333 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3334 {
3335 struct zonelist *zonelist;
3336 gfp_t local_flags;
3337 struct zoneref *z;
3338 struct zone *zone;
3339 enum zone_type high_zoneidx = gfp_zone(flags);
3340 void *obj = NULL;
3341 int nid;
3342 unsigned int cpuset_mems_cookie;
3343
3344 if (flags & __GFP_THISNODE)
3345 return NULL;
3346
3347 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3348
3349 retry_cpuset:
3350 cpuset_mems_cookie = get_mems_allowed();
3351 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
3352
3353 retry:
3354 /*
3355 * Look through allowed nodes for objects available
3356 * from existing per node queues.
3357 */
3358 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3359 nid = zone_to_nid(zone);
3360
3361 if (cpuset_zone_allowed_hardwall(zone, flags) &&
3362 cache->nodelists[nid] &&
3363 cache->nodelists[nid]->free_objects) {
3364 obj = ____cache_alloc_node(cache,
3365 flags | GFP_THISNODE, nid);
3366 if (obj)
3367 break;
3368 }
3369 }
3370
3371 if (!obj) {
3372 /*
3373 * This allocation will be performed within the constraints
3374 * of the current cpuset / memory policy requirements.
3375 * We may trigger various forms of reclaim on the allowed
3376 * set and go into memory reserves if necessary.
3377 */
3378 if (local_flags & __GFP_WAIT)
3379 local_irq_enable();
3380 kmem_flagcheck(cache, flags);
3381 obj = kmem_getpages(cache, local_flags, numa_mem_id());
3382 if (local_flags & __GFP_WAIT)
3383 local_irq_disable();
3384 if (obj) {
3385 /*
3386 * Insert into the appropriate per node queues
3387 */
3388 nid = page_to_nid(virt_to_page(obj));
3389 if (cache_grow(cache, flags, nid, obj)) {
3390 obj = ____cache_alloc_node(cache,
3391 flags | GFP_THISNODE, nid);
3392 if (!obj)
3393 /*
3394 * Another processor may allocate the
3395 * objects in the slab since we are
3396 * not holding any locks.
3397 */
3398 goto retry;
3399 } else {
3400 /* cache_grow already freed obj */
3401 obj = NULL;
3402 }
3403 }
3404 }
3405
3406 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
3407 goto retry_cpuset;
3408 return obj;
3409 }
3410
3411 /*
3412 * A interface to enable slab creation on nodeid
3413 */
3414 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3415 int nodeid)
3416 {
3417 struct list_head *entry;
3418 struct slab *slabp;
3419 struct kmem_list3 *l3;
3420 void *obj;
3421 int x;
3422
3423 l3 = cachep->nodelists[nodeid];
3424 BUG_ON(!l3);
3425
3426 retry:
3427 check_irq_off();
3428 spin_lock(&l3->list_lock);
3429 entry = l3->slabs_partial.next;
3430 if (entry == &l3->slabs_partial) {
3431 l3->free_touched = 1;
3432 entry = l3->slabs_free.next;
3433 if (entry == &l3->slabs_free)
3434 goto must_grow;
3435 }
3436
3437 slabp = list_entry(entry, struct slab, list);
3438 check_spinlock_acquired_node(cachep, nodeid);
3439 check_slabp(cachep, slabp);
3440
3441 STATS_INC_NODEALLOCS(cachep);
3442 STATS_INC_ACTIVE(cachep);
3443 STATS_SET_HIGH(cachep);
3444
3445 BUG_ON(slabp->inuse == cachep->num);
3446
3447 obj = slab_get_obj(cachep, slabp, nodeid);
3448 check_slabp(cachep, slabp);
3449 l3->free_objects--;
3450 /* move slabp to correct slabp list: */
3451 list_del(&slabp->list);
3452
3453 if (slabp->free == BUFCTL_END)
3454 list_add(&slabp->list, &l3->slabs_full);
3455 else
3456 list_add(&slabp->list, &l3->slabs_partial);
3457
3458 spin_unlock(&l3->list_lock);
3459 goto done;
3460
3461 must_grow:
3462 spin_unlock(&l3->list_lock);
3463 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3464 if (x)
3465 goto retry;
3466
3467 return fallback_alloc(cachep, flags);
3468
3469 done:
3470 return obj;
3471 }
3472
3473 /**
3474 * kmem_cache_alloc_node - Allocate an object on the specified node
3475 * @cachep: The cache to allocate from.
3476 * @flags: See kmalloc().
3477 * @nodeid: node number of the target node.
3478 * @caller: return address of caller, used for debug information
3479 *
3480 * Identical to kmem_cache_alloc but it will allocate memory on the given
3481 * node, which can improve the performance for cpu bound structures.
3482 *
3483 * Fallback to other node is possible if __GFP_THISNODE is not set.
3484 */
3485 static __always_inline void *
3486 __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3487 void *caller)
3488 {
3489 unsigned long save_flags;
3490 void *ptr;
3491 int slab_node = numa_mem_id();
3492
3493 flags &= gfp_allowed_mask;
3494
3495 lockdep_trace_alloc(flags);
3496
3497 if (slab_should_failslab(cachep, flags))
3498 return NULL;
3499
3500 cache_alloc_debugcheck_before(cachep, flags);
3501 local_irq_save(save_flags);
3502
3503 if (nodeid == NUMA_NO_NODE)
3504 nodeid = slab_node;
3505
3506 if (unlikely(!cachep->nodelists[nodeid])) {
3507 /* Node not bootstrapped yet */
3508 ptr = fallback_alloc(cachep, flags);
3509 goto out;
3510 }
3511
3512 if (nodeid == slab_node) {
3513 /*
3514 * Use the locally cached objects if possible.
3515 * However ____cache_alloc does not allow fallback
3516 * to other nodes. It may fail while we still have
3517 * objects on other nodes available.
3518 */
3519 ptr = ____cache_alloc(cachep, flags);
3520 if (ptr)
3521 goto out;
3522 }
3523 /* ___cache_alloc_node can fall back to other nodes */
3524 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3525 out:
3526 local_irq_restore(save_flags);
3527 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3528 kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags,
3529 flags);
3530
3531 if (likely(ptr))
3532 kmemcheck_slab_alloc(cachep, flags, ptr, obj_size(cachep));
3533
3534 if (unlikely((flags & __GFP_ZERO) && ptr))
3535 memset(ptr, 0, obj_size(cachep));
3536
3537 return ptr;
3538 }
3539
3540 static __always_inline void *
3541 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3542 {
3543 void *objp;
3544
3545 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3546 objp = alternate_node_alloc(cache, flags);
3547 if (objp)
3548 goto out;
3549 }
3550 objp = ____cache_alloc(cache, flags);
3551
3552 /*
3553 * We may just have run out of memory on the local node.
3554 * ____cache_alloc_node() knows how to locate memory on other nodes
3555 */
3556 if (!objp)
3557 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3558
3559 out:
3560 return objp;
3561 }
3562 #else
3563
3564 static __always_inline void *
3565 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3566 {
3567 return ____cache_alloc(cachep, flags);
3568 }
3569
3570 #endif /* CONFIG_NUMA */
3571
3572 static __always_inline void *
3573 __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3574 {
3575 unsigned long save_flags;
3576 void *objp;
3577
3578 flags &= gfp_allowed_mask;
3579
3580 lockdep_trace_alloc(flags);
3581
3582 if (slab_should_failslab(cachep, flags))
3583 return NULL;
3584
3585 cache_alloc_debugcheck_before(cachep, flags);
3586 local_irq_save(save_flags);
3587 objp = __do_cache_alloc(cachep, flags);
3588 local_irq_restore(save_flags);
3589 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3590 kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags,
3591 flags);
3592 prefetchw(objp);
3593
3594 if (likely(objp))
3595 kmemcheck_slab_alloc(cachep, flags, objp, obj_size(cachep));
3596
3597 if (unlikely((flags & __GFP_ZERO) && objp))
3598 memset(objp, 0, obj_size(cachep));
3599
3600 return objp;
3601 }
3602
3603 /*
3604 * Caller needs to acquire correct kmem_list's list_lock
3605 */
3606 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3607 int node)
3608 {
3609 int i;
3610 struct kmem_list3 *l3;
3611
3612 for (i = 0; i < nr_objects; i++) {
3613 void *objp = objpp[i];
3614 struct slab *slabp;
3615
3616 slabp = virt_to_slab(objp);
3617 l3 = cachep->nodelists[node];
3618 list_del(&slabp->list);
3619 check_spinlock_acquired_node(cachep, node);
3620 check_slabp(cachep, slabp);
3621 slab_put_obj(cachep, slabp, objp, node);
3622 STATS_DEC_ACTIVE(cachep);
3623 l3->free_objects++;
3624 check_slabp(cachep, slabp);
3625
3626 /* fixup slab chains */
3627 if (slabp->inuse == 0) {
3628 if (l3->free_objects > l3->free_limit) {
3629 l3->free_objects -= cachep->num;
3630 /* No need to drop any previously held
3631 * lock here, even if we have a off-slab slab
3632 * descriptor it is guaranteed to come from
3633 * a different cache, refer to comments before
3634 * alloc_slabmgmt.
3635 */
3636 slab_destroy(cachep, slabp);
3637 } else {
3638 list_add(&slabp->list, &l3->slabs_free);
3639 }
3640 } else {
3641 /* Unconditionally move a slab to the end of the
3642 * partial list on free - maximum time for the
3643 * other objects to be freed, too.
3644 */
3645 list_add_tail(&slabp->list, &l3->slabs_partial);
3646 }
3647 }
3648 }
3649
3650 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3651 {
3652 int batchcount;
3653 struct kmem_list3 *l3;
3654 int node = numa_mem_id();
3655
3656 batchcount = ac->batchcount;
3657 #if DEBUG
3658 BUG_ON(!batchcount || batchcount > ac->avail);
3659 #endif
3660 check_irq_off();
3661 l3 = cachep->nodelists[node];
3662 spin_lock(&l3->list_lock);
3663 if (l3->shared) {
3664 struct array_cache *shared_array = l3->shared;
3665 int max = shared_array->limit - shared_array->avail;
3666 if (max) {
3667 if (batchcount > max)
3668 batchcount = max;
3669 memcpy(&(shared_array->entry[shared_array->avail]),
3670 ac->entry, sizeof(void *) * batchcount);
3671 shared_array->avail += batchcount;
3672 goto free_done;
3673 }
3674 }
3675
3676 free_block(cachep, ac->entry, batchcount, node);
3677 free_done:
3678 #if STATS
3679 {
3680 int i = 0;
3681 struct list_head *p;
3682
3683 p = l3->slabs_free.next;
3684 while (p != &(l3->slabs_free)) {
3685 struct slab *slabp;
3686
3687 slabp = list_entry(p, struct slab, list);
3688 BUG_ON(slabp->inuse);
3689
3690 i++;
3691 p = p->next;
3692 }
3693 STATS_SET_FREEABLE(cachep, i);
3694 }
3695 #endif
3696 spin_unlock(&l3->list_lock);
3697 ac->avail -= batchcount;
3698 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3699 }
3700
3701 /*
3702 * Release an obj back to its cache. If the obj has a constructed state, it must
3703 * be in this state _before_ it is released. Called with disabled ints.
3704 */
3705 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3706 void *caller)
3707 {
3708 struct array_cache *ac = cpu_cache_get(cachep);
3709
3710 check_irq_off();
3711 kmemleak_free_recursive(objp, cachep->flags);
3712 objp = cache_free_debugcheck(cachep, objp, caller);
3713
3714 kmemcheck_slab_free(cachep, objp, obj_size(cachep));
3715
3716 /*
3717 * Skip calling cache_free_alien() when the platform is not numa.
3718 * This will avoid cache misses that happen while accessing slabp (which
3719 * is per page memory reference) to get nodeid. Instead use a global
3720 * variable to skip the call, which is mostly likely to be present in
3721 * the cache.
3722 */
3723 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3724 return;
3725
3726 if (likely(ac->avail < ac->limit)) {
3727 STATS_INC_FREEHIT(cachep);
3728 } else {
3729 STATS_INC_FREEMISS(cachep);
3730 cache_flusharray(cachep, ac);
3731 }
3732
3733 ac->entry[ac->avail++] = objp;
3734 }
3735
3736 /**
3737 * kmem_cache_alloc - Allocate an object
3738 * @cachep: The cache to allocate from.
3739 * @flags: See kmalloc().
3740 *
3741 * Allocate an object from this cache. The flags are only relevant
3742 * if the cache has no available objects.
3743 */
3744 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3745 {
3746 void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3747
3748 trace_kmem_cache_alloc(_RET_IP_, ret,
3749 obj_size(cachep), cachep->size, flags);
3750
3751 return ret;
3752 }
3753 EXPORT_SYMBOL(kmem_cache_alloc);
3754
3755 #ifdef CONFIG_TRACING
3756 void *
3757 kmem_cache_alloc_trace(size_t size, struct kmem_cache *cachep, gfp_t flags)
3758 {
3759 void *ret;
3760
3761 ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3762
3763 trace_kmalloc(_RET_IP_, ret,
3764 size, slab_buffer_size(cachep), flags);
3765 return ret;
3766 }
3767 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3768 #endif
3769
3770 #ifdef CONFIG_NUMA
3771 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3772 {
3773 void *ret = __cache_alloc_node(cachep, flags, nodeid,
3774 __builtin_return_address(0));
3775
3776 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3777 obj_size(cachep), cachep->size,
3778 flags, nodeid);
3779
3780 return ret;
3781 }
3782 EXPORT_SYMBOL(kmem_cache_alloc_node);
3783
3784 #ifdef CONFIG_TRACING
3785 void *kmem_cache_alloc_node_trace(size_t size,
3786 struct kmem_cache *cachep,
3787 gfp_t flags,
3788 int nodeid)
3789 {
3790 void *ret;
3791
3792 ret = __cache_alloc_node(cachep, flags, nodeid,
3793 __builtin_return_address(0));
3794 trace_kmalloc_node(_RET_IP_, ret,
3795 size, slab_buffer_size(cachep),
3796 flags, nodeid);
3797 return ret;
3798 }
3799 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3800 #endif
3801
3802 static __always_inline void *
3803 __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3804 {
3805 struct kmem_cache *cachep;
3806
3807 cachep = kmem_find_general_cachep(size, flags);
3808 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3809 return cachep;
3810 return kmem_cache_alloc_node_trace(size, cachep, flags, node);
3811 }
3812
3813 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3814 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3815 {
3816 return __do_kmalloc_node(size, flags, node,
3817 __builtin_return_address(0));
3818 }
3819 EXPORT_SYMBOL(__kmalloc_node);
3820
3821 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3822 int node, unsigned long caller)
3823 {
3824 return __do_kmalloc_node(size, flags, node, (void *)caller);
3825 }
3826 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3827 #else
3828 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3829 {
3830 return __do_kmalloc_node(size, flags, node, NULL);
3831 }
3832 EXPORT_SYMBOL(__kmalloc_node);
3833 #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3834 #endif /* CONFIG_NUMA */
3835
3836 /**
3837 * __do_kmalloc - allocate memory
3838 * @size: how many bytes of memory are required.
3839 * @flags: the type of memory to allocate (see kmalloc).
3840 * @caller: function caller for debug tracking of the caller
3841 */
3842 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3843 void *caller)
3844 {
3845 struct kmem_cache *cachep;
3846 void *ret;
3847
3848 /* If you want to save a few bytes .text space: replace
3849 * __ with kmem_.
3850 * Then kmalloc uses the uninlined functions instead of the inline
3851 * functions.
3852 */
3853 cachep = __find_general_cachep(size, flags);
3854 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3855 return cachep;
3856 ret = __cache_alloc(cachep, flags, caller);
3857
3858 trace_kmalloc((unsigned long) caller, ret,
3859 size, cachep->size, flags);
3860
3861 return ret;
3862 }
3863
3864
3865 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3866 void *__kmalloc(size_t size, gfp_t flags)
3867 {
3868 return __do_kmalloc(size, flags, __builtin_return_address(0));
3869 }
3870 EXPORT_SYMBOL(__kmalloc);
3871
3872 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3873 {
3874 return __do_kmalloc(size, flags, (void *)caller);
3875 }
3876 EXPORT_SYMBOL(__kmalloc_track_caller);
3877
3878 #else
3879 void *__kmalloc(size_t size, gfp_t flags)
3880 {
3881 return __do_kmalloc(size, flags, NULL);
3882 }
3883 EXPORT_SYMBOL(__kmalloc);
3884 #endif
3885
3886 /**
3887 * kmem_cache_free - Deallocate an object
3888 * @cachep: The cache the allocation was from.
3889 * @objp: The previously allocated object.
3890 *
3891 * Free an object which was previously allocated from this
3892 * cache.
3893 */
3894 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3895 {
3896 unsigned long flags;
3897
3898 local_irq_save(flags);
3899 debug_check_no_locks_freed(objp, obj_size(cachep));
3900 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3901 debug_check_no_obj_freed(objp, obj_size(cachep));
3902 __cache_free(cachep, objp, __builtin_return_address(0));
3903 local_irq_restore(flags);
3904
3905 trace_kmem_cache_free(_RET_IP_, objp);
3906 }
3907 EXPORT_SYMBOL(kmem_cache_free);
3908
3909 /**
3910 * kfree - free previously allocated memory
3911 * @objp: pointer returned by kmalloc.
3912 *
3913 * If @objp is NULL, no operation is performed.
3914 *
3915 * Don't free memory not originally allocated by kmalloc()
3916 * or you will run into trouble.
3917 */
3918 void kfree(const void *objp)
3919 {
3920 struct kmem_cache *c;
3921 unsigned long flags;
3922
3923 trace_kfree(_RET_IP_, objp);
3924
3925 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3926 return;
3927 local_irq_save(flags);
3928 kfree_debugcheck(objp);
3929 c = virt_to_cache(objp);
3930 debug_check_no_locks_freed(objp, obj_size(c));
3931 debug_check_no_obj_freed(objp, obj_size(c));
3932 __cache_free(c, (void *)objp, __builtin_return_address(0));
3933 local_irq_restore(flags);
3934 }
3935 EXPORT_SYMBOL(kfree);
3936
3937 unsigned int kmem_cache_size(struct kmem_cache *cachep)
3938 {
3939 return obj_size(cachep);
3940 }
3941 EXPORT_SYMBOL(kmem_cache_size);
3942
3943 /*
3944 * This initializes kmem_list3 or resizes various caches for all nodes.
3945 */
3946 static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
3947 {
3948 int node;
3949 struct kmem_list3 *l3;
3950 struct array_cache *new_shared;
3951 struct array_cache **new_alien = NULL;
3952
3953 for_each_online_node(node) {
3954
3955 if (use_alien_caches) {
3956 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3957 if (!new_alien)
3958 goto fail;
3959 }
3960
3961 new_shared = NULL;
3962 if (cachep->shared) {
3963 new_shared = alloc_arraycache(node,
3964 cachep->shared*cachep->batchcount,
3965 0xbaadf00d, gfp);
3966 if (!new_shared) {
3967 free_alien_cache(new_alien);
3968 goto fail;
3969 }
3970 }
3971
3972 l3 = cachep->nodelists[node];
3973 if (l3) {
3974 struct array_cache *shared = l3->shared;
3975
3976 spin_lock_irq(&l3->list_lock);
3977
3978 if (shared)
3979 free_block(cachep, shared->entry,
3980 shared->avail, node);
3981
3982 l3->shared = new_shared;
3983 if (!l3->alien) {
3984 l3->alien = new_alien;
3985 new_alien = NULL;
3986 }
3987 l3->free_limit = (1 + nr_cpus_node(node)) *
3988 cachep->batchcount + cachep->num;
3989 spin_unlock_irq(&l3->list_lock);
3990 kfree(shared);
3991 free_alien_cache(new_alien);
3992 continue;
3993 }
3994 l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
3995 if (!l3) {
3996 free_alien_cache(new_alien);
3997 kfree(new_shared);
3998 goto fail;
3999 }
4000
4001 kmem_list3_init(l3);
4002 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
4003 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
4004 l3->shared = new_shared;
4005 l3->alien = new_alien;
4006 l3->free_limit = (1 + nr_cpus_node(node)) *
4007 cachep->batchcount + cachep->num;
4008 cachep->nodelists[node] = l3;
4009 }
4010 return 0;
4011
4012 fail:
4013 if (!cachep->list.next) {
4014 /* Cache is not active yet. Roll back what we did */
4015 node--;
4016 while (node >= 0) {
4017 if (cachep->nodelists[node]) {
4018 l3 = cachep->nodelists[node];
4019
4020 kfree(l3->shared);
4021 free_alien_cache(l3->alien);
4022 kfree(l3);
4023 cachep->nodelists[node] = NULL;
4024 }
4025 node--;
4026 }
4027 }
4028 return -ENOMEM;
4029 }
4030
4031 struct ccupdate_struct {
4032 struct kmem_cache *cachep;
4033 struct array_cache *new[0];
4034 };
4035
4036 static void do_ccupdate_local(void *info)
4037 {
4038 struct ccupdate_struct *new = info;
4039 struct array_cache *old;
4040
4041 check_irq_off();
4042 old = cpu_cache_get(new->cachep);
4043
4044 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
4045 new->new[smp_processor_id()] = old;
4046 }
4047
4048 /* Always called with the cache_chain_mutex held */
4049 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
4050 int batchcount, int shared, gfp_t gfp)
4051 {
4052 struct ccupdate_struct *new;
4053 int i;
4054
4055 new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
4056 gfp);
4057 if (!new)
4058 return -ENOMEM;
4059
4060 for_each_online_cpu(i) {
4061 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
4062 batchcount, gfp);
4063 if (!new->new[i]) {
4064 for (i--; i >= 0; i--)
4065 kfree(new->new[i]);
4066 kfree(new);
4067 return -ENOMEM;
4068 }
4069 }
4070 new->cachep = cachep;
4071
4072 on_each_cpu(do_ccupdate_local, (void *)new, 1);
4073
4074 check_irq_on();
4075 cachep->batchcount = batchcount;
4076 cachep->limit = limit;
4077 cachep->shared = shared;
4078
4079 for_each_online_cpu(i) {
4080 struct array_cache *ccold = new->new[i];
4081 if (!ccold)
4082 continue;
4083 spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
4084 free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
4085 spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
4086 kfree(ccold);
4087 }
4088 kfree(new);
4089 return alloc_kmemlist(cachep, gfp);
4090 }
4091
4092 /* Called with cache_chain_mutex held always */
4093 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
4094 {
4095 int err;
4096 int limit, shared;
4097
4098 /*
4099 * The head array serves three purposes:
4100 * - create a LIFO ordering, i.e. return objects that are cache-warm
4101 * - reduce the number of spinlock operations.
4102 * - reduce the number of linked list operations on the slab and
4103 * bufctl chains: array operations are cheaper.
4104 * The numbers are guessed, we should auto-tune as described by
4105 * Bonwick.
4106 */
4107 if (cachep->size > 131072)
4108 limit = 1;
4109 else if (cachep->size > PAGE_SIZE)
4110 limit = 8;
4111 else if (cachep->size > 1024)
4112 limit = 24;
4113 else if (cachep->size > 256)
4114 limit = 54;
4115 else
4116 limit = 120;
4117
4118 /*
4119 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
4120 * allocation behaviour: Most allocs on one cpu, most free operations
4121 * on another cpu. For these cases, an efficient object passing between
4122 * cpus is necessary. This is provided by a shared array. The array
4123 * replaces Bonwick's magazine layer.
4124 * On uniprocessor, it's functionally equivalent (but less efficient)
4125 * to a larger limit. Thus disabled by default.
4126 */
4127 shared = 0;
4128 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
4129 shared = 8;
4130
4131 #if DEBUG
4132 /*
4133 * With debugging enabled, large batchcount lead to excessively long
4134 * periods with disabled local interrupts. Limit the batchcount
4135 */
4136 if (limit > 32)
4137 limit = 32;
4138 #endif
4139 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
4140 if (err)
4141 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
4142 cachep->name, -err);
4143 return err;
4144 }
4145
4146 /*
4147 * Drain an array if it contains any elements taking the l3 lock only if
4148 * necessary. Note that the l3 listlock also protects the array_cache
4149 * if drain_array() is used on the shared array.
4150 */
4151 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4152 struct array_cache *ac, int force, int node)
4153 {
4154 int tofree;
4155
4156 if (!ac || !ac->avail)
4157 return;
4158 if (ac->touched && !force) {
4159 ac->touched = 0;
4160 } else {
4161 spin_lock_irq(&l3->list_lock);
4162 if (ac->avail) {
4163 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4164 if (tofree > ac->avail)
4165 tofree = (ac->avail + 1) / 2;
4166 free_block(cachep, ac->entry, tofree, node);
4167 ac->avail -= tofree;
4168 memmove(ac->entry, &(ac->entry[tofree]),
4169 sizeof(void *) * ac->avail);
4170 }
4171 spin_unlock_irq(&l3->list_lock);
4172 }
4173 }
4174
4175 /**
4176 * cache_reap - Reclaim memory from caches.
4177 * @w: work descriptor
4178 *
4179 * Called from workqueue/eventd every few seconds.
4180 * Purpose:
4181 * - clear the per-cpu caches for this CPU.
4182 * - return freeable pages to the main free memory pool.
4183 *
4184 * If we cannot acquire the cache chain mutex then just give up - we'll try
4185 * again on the next iteration.
4186 */
4187 static void cache_reap(struct work_struct *w)
4188 {
4189 struct kmem_cache *searchp;
4190 struct kmem_list3 *l3;
4191 int node = numa_mem_id();
4192 struct delayed_work *work = to_delayed_work(w);
4193
4194 if (!mutex_trylock(&cache_chain_mutex))
4195 /* Give up. Setup the next iteration. */
4196 goto out;
4197
4198 list_for_each_entry(searchp, &cache_chain, list) {
4199 check_irq_on();
4200
4201 /*
4202 * We only take the l3 lock if absolutely necessary and we
4203 * have established with reasonable certainty that
4204 * we can do some work if the lock was obtained.
4205 */
4206 l3 = searchp->nodelists[node];
4207
4208 reap_alien(searchp, l3);
4209
4210 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
4211
4212 /*
4213 * These are racy checks but it does not matter
4214 * if we skip one check or scan twice.
4215 */
4216 if (time_after(l3->next_reap, jiffies))
4217 goto next;
4218
4219 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
4220
4221 drain_array(searchp, l3, l3->shared, 0, node);
4222
4223 if (l3->free_touched)
4224 l3->free_touched = 0;
4225 else {
4226 int freed;
4227
4228 freed = drain_freelist(searchp, l3, (l3->free_limit +
4229 5 * searchp->num - 1) / (5 * searchp->num));
4230 STATS_ADD_REAPED(searchp, freed);
4231 }
4232 next:
4233 cond_resched();
4234 }
4235 check_irq_on();
4236 mutex_unlock(&cache_chain_mutex);
4237 next_reap_node();
4238 out:
4239 /* Set up the next iteration */
4240 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
4241 }
4242
4243 #ifdef CONFIG_SLABINFO
4244
4245 static void print_slabinfo_header(struct seq_file *m)
4246 {
4247 /*
4248 * Output format version, so at least we can change it
4249 * without _too_ many complaints.
4250 */
4251 #if STATS
4252 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
4253 #else
4254 seq_puts(m, "slabinfo - version: 2.1\n");
4255 #endif
4256 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4257 "<objperslab> <pagesperslab>");
4258 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4259 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4260 #if STATS
4261 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4262 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4263 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4264 #endif
4265 seq_putc(m, '\n');
4266 }
4267
4268 static void *s_start(struct seq_file *m, loff_t *pos)
4269 {
4270 loff_t n = *pos;
4271
4272 mutex_lock(&cache_chain_mutex);
4273 if (!n)
4274 print_slabinfo_header(m);
4275
4276 return seq_list_start(&cache_chain, *pos);
4277 }
4278
4279 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4280 {
4281 return seq_list_next(p, &cache_chain, pos);
4282 }
4283
4284 static void s_stop(struct seq_file *m, void *p)
4285 {
4286 mutex_unlock(&cache_chain_mutex);
4287 }
4288
4289 static int s_show(struct seq_file *m, void *p)
4290 {
4291 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4292 struct slab *slabp;
4293 unsigned long active_objs;
4294 unsigned long num_objs;
4295 unsigned long active_slabs = 0;
4296 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4297 const char *name;
4298 char *error = NULL;
4299 int node;
4300 struct kmem_list3 *l3;
4301
4302 active_objs = 0;
4303 num_slabs = 0;
4304 for_each_online_node(node) {
4305 l3 = cachep->nodelists[node];
4306 if (!l3)
4307 continue;
4308
4309 check_irq_on();
4310 spin_lock_irq(&l3->list_lock);
4311
4312 list_for_each_entry(slabp, &l3->slabs_full, list) {
4313 if (slabp->inuse != cachep->num && !error)
4314 error = "slabs_full accounting error";
4315 active_objs += cachep->num;
4316 active_slabs++;
4317 }
4318 list_for_each_entry(slabp, &l3->slabs_partial, list) {
4319 if (slabp->inuse == cachep->num && !error)
4320 error = "slabs_partial inuse accounting error";
4321 if (!slabp->inuse && !error)
4322 error = "slabs_partial/inuse accounting error";
4323 active_objs += slabp->inuse;
4324 active_slabs++;
4325 }
4326 list_for_each_entry(slabp, &l3->slabs_free, list) {
4327 if (slabp->inuse && !error)
4328 error = "slabs_free/inuse accounting error";
4329 num_slabs++;
4330 }
4331 free_objects += l3->free_objects;
4332 if (l3->shared)
4333 shared_avail += l3->shared->avail;
4334
4335 spin_unlock_irq(&l3->list_lock);
4336 }
4337 num_slabs += active_slabs;
4338 num_objs = num_slabs * cachep->num;
4339 if (num_objs - active_objs != free_objects && !error)
4340 error = "free_objects accounting error";
4341
4342 name = cachep->name;
4343 if (error)
4344 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4345
4346 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4347 name, active_objs, num_objs, cachep->size,
4348 cachep->num, (1 << cachep->gfporder));
4349 seq_printf(m, " : tunables %4u %4u %4u",
4350 cachep->limit, cachep->batchcount, cachep->shared);
4351 seq_printf(m, " : slabdata %6lu %6lu %6lu",
4352 active_slabs, num_slabs, shared_avail);
4353 #if STATS
4354 { /* list3 stats */
4355 unsigned long high = cachep->high_mark;
4356 unsigned long allocs = cachep->num_allocations;
4357 unsigned long grown = cachep->grown;
4358 unsigned long reaped = cachep->reaped;
4359 unsigned long errors = cachep->errors;
4360 unsigned long max_freeable = cachep->max_freeable;
4361 unsigned long node_allocs = cachep->node_allocs;
4362 unsigned long node_frees = cachep->node_frees;
4363 unsigned long overflows = cachep->node_overflow;
4364
4365 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4366 "%4lu %4lu %4lu %4lu %4lu",
4367 allocs, high, grown,
4368 reaped, errors, max_freeable, node_allocs,
4369 node_frees, overflows);
4370 }
4371 /* cpu stats */
4372 {
4373 unsigned long allochit = atomic_read(&cachep->allochit);
4374 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4375 unsigned long freehit = atomic_read(&cachep->freehit);
4376 unsigned long freemiss = atomic_read(&cachep->freemiss);
4377
4378 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4379 allochit, allocmiss, freehit, freemiss);
4380 }
4381 #endif
4382 seq_putc(m, '\n');
4383 return 0;
4384 }
4385
4386 /*
4387 * slabinfo_op - iterator that generates /proc/slabinfo
4388 *
4389 * Output layout:
4390 * cache-name
4391 * num-active-objs
4392 * total-objs
4393 * object size
4394 * num-active-slabs
4395 * total-slabs
4396 * num-pages-per-slab
4397 * + further values on SMP and with statistics enabled
4398 */
4399
4400 static const struct seq_operations slabinfo_op = {
4401 .start = s_start,
4402 .next = s_next,
4403 .stop = s_stop,
4404 .show = s_show,
4405 };
4406
4407 #define MAX_SLABINFO_WRITE 128
4408 /**
4409 * slabinfo_write - Tuning for the slab allocator
4410 * @file: unused
4411 * @buffer: user buffer
4412 * @count: data length
4413 * @ppos: unused
4414 */
4415 static ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4416 size_t count, loff_t *ppos)
4417 {
4418 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4419 int limit, batchcount, shared, res;
4420 struct kmem_cache *cachep;
4421
4422 if (count > MAX_SLABINFO_WRITE)
4423 return -EINVAL;
4424 if (copy_from_user(&kbuf, buffer, count))
4425 return -EFAULT;
4426 kbuf[MAX_SLABINFO_WRITE] = '\0';
4427
4428 tmp = strchr(kbuf, ' ');
4429 if (!tmp)
4430 return -EINVAL;
4431 *tmp = '\0';
4432 tmp++;
4433 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4434 return -EINVAL;
4435
4436 /* Find the cache in the chain of caches. */
4437 mutex_lock(&cache_chain_mutex);
4438 res = -EINVAL;
4439 list_for_each_entry(cachep, &cache_chain, list) {
4440 if (!strcmp(cachep->name, kbuf)) {
4441 if (limit < 1 || batchcount < 1 ||
4442 batchcount > limit || shared < 0) {
4443 res = 0;
4444 } else {
4445 res = do_tune_cpucache(cachep, limit,
4446 batchcount, shared,
4447 GFP_KERNEL);
4448 }
4449 break;
4450 }
4451 }
4452 mutex_unlock(&cache_chain_mutex);
4453 if (res >= 0)
4454 res = count;
4455 return res;
4456 }
4457
4458 static int slabinfo_open(struct inode *inode, struct file *file)
4459 {
4460 return seq_open(file, &slabinfo_op);
4461 }
4462
4463 static const struct file_operations proc_slabinfo_operations = {
4464 .open = slabinfo_open,
4465 .read = seq_read,
4466 .write = slabinfo_write,
4467 .llseek = seq_lseek,
4468 .release = seq_release,
4469 };
4470
4471 #ifdef CONFIG_DEBUG_SLAB_LEAK
4472
4473 static void *leaks_start(struct seq_file *m, loff_t *pos)
4474 {
4475 mutex_lock(&cache_chain_mutex);
4476 return seq_list_start(&cache_chain, *pos);
4477 }
4478
4479 static inline int add_caller(unsigned long *n, unsigned long v)
4480 {
4481 unsigned long *p;
4482 int l;
4483 if (!v)
4484 return 1;
4485 l = n[1];
4486 p = n + 2;
4487 while (l) {
4488 int i = l/2;
4489 unsigned long *q = p + 2 * i;
4490 if (*q == v) {
4491 q[1]++;
4492 return 1;
4493 }
4494 if (*q > v) {
4495 l = i;
4496 } else {
4497 p = q + 2;
4498 l -= i + 1;
4499 }
4500 }
4501 if (++n[1] == n[0])
4502 return 0;
4503 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4504 p[0] = v;
4505 p[1] = 1;
4506 return 1;
4507 }
4508
4509 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4510 {
4511 void *p;
4512 int i;
4513 if (n[0] == n[1])
4514 return;
4515 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->size) {
4516 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4517 continue;
4518 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4519 return;
4520 }
4521 }
4522
4523 static void show_symbol(struct seq_file *m, unsigned long address)
4524 {
4525 #ifdef CONFIG_KALLSYMS
4526 unsigned long offset, size;
4527 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4528
4529 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4530 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4531 if (modname[0])
4532 seq_printf(m, " [%s]", modname);
4533 return;
4534 }
4535 #endif
4536 seq_printf(m, "%p", (void *)address);
4537 }
4538
4539 static int leaks_show(struct seq_file *m, void *p)
4540 {
4541 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4542 struct slab *slabp;
4543 struct kmem_list3 *l3;
4544 const char *name;
4545 unsigned long *n = m->private;
4546 int node;
4547 int i;
4548
4549 if (!(cachep->flags & SLAB_STORE_USER))
4550 return 0;
4551 if (!(cachep->flags & SLAB_RED_ZONE))
4552 return 0;
4553
4554 /* OK, we can do it */
4555
4556 n[1] = 0;
4557
4558 for_each_online_node(node) {
4559 l3 = cachep->nodelists[node];
4560 if (!l3)
4561 continue;
4562
4563 check_irq_on();
4564 spin_lock_irq(&l3->list_lock);
4565
4566 list_for_each_entry(slabp, &l3->slabs_full, list)
4567 handle_slab(n, cachep, slabp);
4568 list_for_each_entry(slabp, &l3->slabs_partial, list)
4569 handle_slab(n, cachep, slabp);
4570 spin_unlock_irq(&l3->list_lock);
4571 }
4572 name = cachep->name;
4573 if (n[0] == n[1]) {
4574 /* Increase the buffer size */
4575 mutex_unlock(&cache_chain_mutex);
4576 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4577 if (!m->private) {
4578 /* Too bad, we are really out */
4579 m->private = n;
4580 mutex_lock(&cache_chain_mutex);
4581 return -ENOMEM;
4582 }
4583 *(unsigned long *)m->private = n[0] * 2;
4584 kfree(n);
4585 mutex_lock(&cache_chain_mutex);
4586 /* Now make sure this entry will be retried */
4587 m->count = m->size;
4588 return 0;
4589 }
4590 for (i = 0; i < n[1]; i++) {
4591 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4592 show_symbol(m, n[2*i+2]);
4593 seq_putc(m, '\n');
4594 }
4595
4596 return 0;
4597 }
4598
4599 static const struct seq_operations slabstats_op = {
4600 .start = leaks_start,
4601 .next = s_next,
4602 .stop = s_stop,
4603 .show = leaks_show,
4604 };
4605
4606 static int slabstats_open(struct inode *inode, struct file *file)
4607 {
4608 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4609 int ret = -ENOMEM;
4610 if (n) {
4611 ret = seq_open(file, &slabstats_op);
4612 if (!ret) {
4613 struct seq_file *m = file->private_data;
4614 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4615 m->private = n;
4616 n = NULL;
4617 }
4618 kfree(n);
4619 }
4620 return ret;
4621 }
4622
4623 static const struct file_operations proc_slabstats_operations = {
4624 .open = slabstats_open,
4625 .read = seq_read,
4626 .llseek = seq_lseek,
4627 .release = seq_release_private,
4628 };
4629 #endif
4630
4631 static int __init slab_proc_init(void)
4632 {
4633 proc_create("slabinfo",S_IWUSR|S_IRUSR,NULL,&proc_slabinfo_operations);
4634 #ifdef CONFIG_DEBUG_SLAB_LEAK
4635 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4636 #endif
4637 return 0;
4638 }
4639 module_init(slab_proc_init);
4640 #endif
4641
4642 /**
4643 * ksize - get the actual amount of memory allocated for a given object
4644 * @objp: Pointer to the object
4645 *
4646 * kmalloc may internally round up allocations and return more memory
4647 * than requested. ksize() can be used to determine the actual amount of
4648 * memory allocated. The caller may use this additional memory, even though
4649 * a smaller amount of memory was initially specified with the kmalloc call.
4650 * The caller must guarantee that objp points to a valid object previously
4651 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4652 * must not be freed during the duration of the call.
4653 */
4654 size_t ksize(const void *objp)
4655 {
4656 BUG_ON(!objp);
4657 if (unlikely(objp == ZERO_SIZE_PTR))
4658 return 0;
4659
4660 return obj_size(virt_to_cache(objp));
4661 }
4662 EXPORT_SYMBOL(ksize);
This page took 0.143464 seconds and 5 git commands to generate.