Merge master.kernel.org:/pub/scm/linux/kernel/git/jejb/scsi-misc-2.6
[deliverable/linux.git] / mm / slab.c
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
87 */
88
89 #include <linux/slab.h>
90 #include <linux/mm.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/seq_file.h>
99 #include <linux/notifier.h>
100 #include <linux/kallsyms.h>
101 #include <linux/cpu.h>
102 #include <linux/sysctl.h>
103 #include <linux/module.h>
104 #include <linux/rcupdate.h>
105 #include <linux/string.h>
106 #include <linux/nodemask.h>
107 #include <linux/mempolicy.h>
108 #include <linux/mutex.h>
109 #include <linux/rtmutex.h>
110
111 #include <asm/uaccess.h>
112 #include <asm/cacheflush.h>
113 #include <asm/tlbflush.h>
114 #include <asm/page.h>
115
116 /*
117 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
118 * SLAB_RED_ZONE & SLAB_POISON.
119 * 0 for faster, smaller code (especially in the critical paths).
120 *
121 * STATS - 1 to collect stats for /proc/slabinfo.
122 * 0 for faster, smaller code (especially in the critical paths).
123 *
124 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
125 */
126
127 #ifdef CONFIG_DEBUG_SLAB
128 #define DEBUG 1
129 #define STATS 1
130 #define FORCED_DEBUG 1
131 #else
132 #define DEBUG 0
133 #define STATS 0
134 #define FORCED_DEBUG 0
135 #endif
136
137 /* Shouldn't this be in a header file somewhere? */
138 #define BYTES_PER_WORD sizeof(void *)
139
140 #ifndef cache_line_size
141 #define cache_line_size() L1_CACHE_BYTES
142 #endif
143
144 #ifndef ARCH_KMALLOC_MINALIGN
145 /*
146 * Enforce a minimum alignment for the kmalloc caches.
147 * Usually, the kmalloc caches are cache_line_size() aligned, except when
148 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
149 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
150 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
151 * Note that this flag disables some debug features.
152 */
153 #define ARCH_KMALLOC_MINALIGN 0
154 #endif
155
156 #ifndef ARCH_SLAB_MINALIGN
157 /*
158 * Enforce a minimum alignment for all caches.
159 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
160 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
161 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
162 * some debug features.
163 */
164 #define ARCH_SLAB_MINALIGN 0
165 #endif
166
167 #ifndef ARCH_KMALLOC_FLAGS
168 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
169 #endif
170
171 /* Legal flag mask for kmem_cache_create(). */
172 #if DEBUG
173 # define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
174 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
175 SLAB_CACHE_DMA | \
176 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
177 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
178 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
179 #else
180 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
181 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
182 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
183 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
184 #endif
185
186 /*
187 * kmem_bufctl_t:
188 *
189 * Bufctl's are used for linking objs within a slab
190 * linked offsets.
191 *
192 * This implementation relies on "struct page" for locating the cache &
193 * slab an object belongs to.
194 * This allows the bufctl structure to be small (one int), but limits
195 * the number of objects a slab (not a cache) can contain when off-slab
196 * bufctls are used. The limit is the size of the largest general cache
197 * that does not use off-slab slabs.
198 * For 32bit archs with 4 kB pages, is this 56.
199 * This is not serious, as it is only for large objects, when it is unwise
200 * to have too many per slab.
201 * Note: This limit can be raised by introducing a general cache whose size
202 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
203 */
204
205 typedef unsigned int kmem_bufctl_t;
206 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
207 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
208 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
209 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
210
211 /*
212 * struct slab
213 *
214 * Manages the objs in a slab. Placed either at the beginning of mem allocated
215 * for a slab, or allocated from an general cache.
216 * Slabs are chained into three list: fully used, partial, fully free slabs.
217 */
218 struct slab {
219 struct list_head list;
220 unsigned long colouroff;
221 void *s_mem; /* including colour offset */
222 unsigned int inuse; /* num of objs active in slab */
223 kmem_bufctl_t free;
224 unsigned short nodeid;
225 };
226
227 /*
228 * struct slab_rcu
229 *
230 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
231 * arrange for kmem_freepages to be called via RCU. This is useful if
232 * we need to approach a kernel structure obliquely, from its address
233 * obtained without the usual locking. We can lock the structure to
234 * stabilize it and check it's still at the given address, only if we
235 * can be sure that the memory has not been meanwhile reused for some
236 * other kind of object (which our subsystem's lock might corrupt).
237 *
238 * rcu_read_lock before reading the address, then rcu_read_unlock after
239 * taking the spinlock within the structure expected at that address.
240 *
241 * We assume struct slab_rcu can overlay struct slab when destroying.
242 */
243 struct slab_rcu {
244 struct rcu_head head;
245 struct kmem_cache *cachep;
246 void *addr;
247 };
248
249 /*
250 * struct array_cache
251 *
252 * Purpose:
253 * - LIFO ordering, to hand out cache-warm objects from _alloc
254 * - reduce the number of linked list operations
255 * - reduce spinlock operations
256 *
257 * The limit is stored in the per-cpu structure to reduce the data cache
258 * footprint.
259 *
260 */
261 struct array_cache {
262 unsigned int avail;
263 unsigned int limit;
264 unsigned int batchcount;
265 unsigned int touched;
266 spinlock_t lock;
267 void *entry[0]; /*
268 * Must have this definition in here for the proper
269 * alignment of array_cache. Also simplifies accessing
270 * the entries.
271 * [0] is for gcc 2.95. It should really be [].
272 */
273 };
274
275 /*
276 * bootstrap: The caches do not work without cpuarrays anymore, but the
277 * cpuarrays are allocated from the generic caches...
278 */
279 #define BOOT_CPUCACHE_ENTRIES 1
280 struct arraycache_init {
281 struct array_cache cache;
282 void *entries[BOOT_CPUCACHE_ENTRIES];
283 };
284
285 /*
286 * The slab lists for all objects.
287 */
288 struct kmem_list3 {
289 struct list_head slabs_partial; /* partial list first, better asm code */
290 struct list_head slabs_full;
291 struct list_head slabs_free;
292 unsigned long free_objects;
293 unsigned int free_limit;
294 unsigned int colour_next; /* Per-node cache coloring */
295 spinlock_t list_lock;
296 struct array_cache *shared; /* shared per node */
297 struct array_cache **alien; /* on other nodes */
298 unsigned long next_reap; /* updated without locking */
299 int free_touched; /* updated without locking */
300 };
301
302 /*
303 * Need this for bootstrapping a per node allocator.
304 */
305 #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
306 struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
307 #define CACHE_CACHE 0
308 #define SIZE_AC 1
309 #define SIZE_L3 (1 + MAX_NUMNODES)
310
311 static int drain_freelist(struct kmem_cache *cache,
312 struct kmem_list3 *l3, int tofree);
313 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
314 int node);
315 static int enable_cpucache(struct kmem_cache *cachep);
316 static void cache_reap(void *unused);
317
318 /*
319 * This function must be completely optimized away if a constant is passed to
320 * it. Mostly the same as what is in linux/slab.h except it returns an index.
321 */
322 static __always_inline int index_of(const size_t size)
323 {
324 extern void __bad_size(void);
325
326 if (__builtin_constant_p(size)) {
327 int i = 0;
328
329 #define CACHE(x) \
330 if (size <=x) \
331 return i; \
332 else \
333 i++;
334 #include "linux/kmalloc_sizes.h"
335 #undef CACHE
336 __bad_size();
337 } else
338 __bad_size();
339 return 0;
340 }
341
342 static int slab_early_init = 1;
343
344 #define INDEX_AC index_of(sizeof(struct arraycache_init))
345 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
346
347 static void kmem_list3_init(struct kmem_list3 *parent)
348 {
349 INIT_LIST_HEAD(&parent->slabs_full);
350 INIT_LIST_HEAD(&parent->slabs_partial);
351 INIT_LIST_HEAD(&parent->slabs_free);
352 parent->shared = NULL;
353 parent->alien = NULL;
354 parent->colour_next = 0;
355 spin_lock_init(&parent->list_lock);
356 parent->free_objects = 0;
357 parent->free_touched = 0;
358 }
359
360 #define MAKE_LIST(cachep, listp, slab, nodeid) \
361 do { \
362 INIT_LIST_HEAD(listp); \
363 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
364 } while (0)
365
366 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
367 do { \
368 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
369 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
370 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
371 } while (0)
372
373 /*
374 * struct kmem_cache
375 *
376 * manages a cache.
377 */
378
379 struct kmem_cache {
380 /* 1) per-cpu data, touched during every alloc/free */
381 struct array_cache *array[NR_CPUS];
382 /* 2) Cache tunables. Protected by cache_chain_mutex */
383 unsigned int batchcount;
384 unsigned int limit;
385 unsigned int shared;
386
387 unsigned int buffer_size;
388 /* 3) touched by every alloc & free from the backend */
389 struct kmem_list3 *nodelists[MAX_NUMNODES];
390
391 unsigned int flags; /* constant flags */
392 unsigned int num; /* # of objs per slab */
393
394 /* 4) cache_grow/shrink */
395 /* order of pgs per slab (2^n) */
396 unsigned int gfporder;
397
398 /* force GFP flags, e.g. GFP_DMA */
399 gfp_t gfpflags;
400
401 size_t colour; /* cache colouring range */
402 unsigned int colour_off; /* colour offset */
403 struct kmem_cache *slabp_cache;
404 unsigned int slab_size;
405 unsigned int dflags; /* dynamic flags */
406
407 /* constructor func */
408 void (*ctor) (void *, struct kmem_cache *, unsigned long);
409
410 /* de-constructor func */
411 void (*dtor) (void *, struct kmem_cache *, unsigned long);
412
413 /* 5) cache creation/removal */
414 const char *name;
415 struct list_head next;
416
417 /* 6) statistics */
418 #if STATS
419 unsigned long num_active;
420 unsigned long num_allocations;
421 unsigned long high_mark;
422 unsigned long grown;
423 unsigned long reaped;
424 unsigned long errors;
425 unsigned long max_freeable;
426 unsigned long node_allocs;
427 unsigned long node_frees;
428 unsigned long node_overflow;
429 atomic_t allochit;
430 atomic_t allocmiss;
431 atomic_t freehit;
432 atomic_t freemiss;
433 #endif
434 #if DEBUG
435 /*
436 * If debugging is enabled, then the allocator can add additional
437 * fields and/or padding to every object. buffer_size contains the total
438 * object size including these internal fields, the following two
439 * variables contain the offset to the user object and its size.
440 */
441 int obj_offset;
442 int obj_size;
443 #endif
444 };
445
446 #define CFLGS_OFF_SLAB (0x80000000UL)
447 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
448
449 #define BATCHREFILL_LIMIT 16
450 /*
451 * Optimization question: fewer reaps means less probability for unnessary
452 * cpucache drain/refill cycles.
453 *
454 * OTOH the cpuarrays can contain lots of objects,
455 * which could lock up otherwise freeable slabs.
456 */
457 #define REAPTIMEOUT_CPUC (2*HZ)
458 #define REAPTIMEOUT_LIST3 (4*HZ)
459
460 #if STATS
461 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
462 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
463 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
464 #define STATS_INC_GROWN(x) ((x)->grown++)
465 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
466 #define STATS_SET_HIGH(x) \
467 do { \
468 if ((x)->num_active > (x)->high_mark) \
469 (x)->high_mark = (x)->num_active; \
470 } while (0)
471 #define STATS_INC_ERR(x) ((x)->errors++)
472 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
473 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
474 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
475 #define STATS_SET_FREEABLE(x, i) \
476 do { \
477 if ((x)->max_freeable < i) \
478 (x)->max_freeable = i; \
479 } while (0)
480 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
481 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
482 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
483 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
484 #else
485 #define STATS_INC_ACTIVE(x) do { } while (0)
486 #define STATS_DEC_ACTIVE(x) do { } while (0)
487 #define STATS_INC_ALLOCED(x) do { } while (0)
488 #define STATS_INC_GROWN(x) do { } while (0)
489 #define STATS_ADD_REAPED(x,y) do { } while (0)
490 #define STATS_SET_HIGH(x) do { } while (0)
491 #define STATS_INC_ERR(x) do { } while (0)
492 #define STATS_INC_NODEALLOCS(x) do { } while (0)
493 #define STATS_INC_NODEFREES(x) do { } while (0)
494 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
495 #define STATS_SET_FREEABLE(x, i) do { } while (0)
496 #define STATS_INC_ALLOCHIT(x) do { } while (0)
497 #define STATS_INC_ALLOCMISS(x) do { } while (0)
498 #define STATS_INC_FREEHIT(x) do { } while (0)
499 #define STATS_INC_FREEMISS(x) do { } while (0)
500 #endif
501
502 #if DEBUG
503
504 /*
505 * memory layout of objects:
506 * 0 : objp
507 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
508 * the end of an object is aligned with the end of the real
509 * allocation. Catches writes behind the end of the allocation.
510 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
511 * redzone word.
512 * cachep->obj_offset: The real object.
513 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
514 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
515 * [BYTES_PER_WORD long]
516 */
517 static int obj_offset(struct kmem_cache *cachep)
518 {
519 return cachep->obj_offset;
520 }
521
522 static int obj_size(struct kmem_cache *cachep)
523 {
524 return cachep->obj_size;
525 }
526
527 static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
528 {
529 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
530 return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
531 }
532
533 static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
534 {
535 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
536 if (cachep->flags & SLAB_STORE_USER)
537 return (unsigned long *)(objp + cachep->buffer_size -
538 2 * BYTES_PER_WORD);
539 return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
540 }
541
542 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
543 {
544 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
545 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
546 }
547
548 #else
549
550 #define obj_offset(x) 0
551 #define obj_size(cachep) (cachep->buffer_size)
552 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
553 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
554 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
555
556 #endif
557
558 /*
559 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
560 * order.
561 */
562 #if defined(CONFIG_LARGE_ALLOCS)
563 #define MAX_OBJ_ORDER 13 /* up to 32Mb */
564 #define MAX_GFP_ORDER 13 /* up to 32Mb */
565 #elif defined(CONFIG_MMU)
566 #define MAX_OBJ_ORDER 5 /* 32 pages */
567 #define MAX_GFP_ORDER 5 /* 32 pages */
568 #else
569 #define MAX_OBJ_ORDER 8 /* up to 1Mb */
570 #define MAX_GFP_ORDER 8 /* up to 1Mb */
571 #endif
572
573 /*
574 * Do not go above this order unless 0 objects fit into the slab.
575 */
576 #define BREAK_GFP_ORDER_HI 1
577 #define BREAK_GFP_ORDER_LO 0
578 static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
579
580 /*
581 * Functions for storing/retrieving the cachep and or slab from the page
582 * allocator. These are used to find the slab an obj belongs to. With kfree(),
583 * these are used to find the cache which an obj belongs to.
584 */
585 static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
586 {
587 page->lru.next = (struct list_head *)cache;
588 }
589
590 static inline struct kmem_cache *page_get_cache(struct page *page)
591 {
592 if (unlikely(PageCompound(page)))
593 page = (struct page *)page_private(page);
594 BUG_ON(!PageSlab(page));
595 return (struct kmem_cache *)page->lru.next;
596 }
597
598 static inline void page_set_slab(struct page *page, struct slab *slab)
599 {
600 page->lru.prev = (struct list_head *)slab;
601 }
602
603 static inline struct slab *page_get_slab(struct page *page)
604 {
605 if (unlikely(PageCompound(page)))
606 page = (struct page *)page_private(page);
607 BUG_ON(!PageSlab(page));
608 return (struct slab *)page->lru.prev;
609 }
610
611 static inline struct kmem_cache *virt_to_cache(const void *obj)
612 {
613 struct page *page = virt_to_page(obj);
614 return page_get_cache(page);
615 }
616
617 static inline struct slab *virt_to_slab(const void *obj)
618 {
619 struct page *page = virt_to_page(obj);
620 return page_get_slab(page);
621 }
622
623 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
624 unsigned int idx)
625 {
626 return slab->s_mem + cache->buffer_size * idx;
627 }
628
629 static inline unsigned int obj_to_index(struct kmem_cache *cache,
630 struct slab *slab, void *obj)
631 {
632 return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
633 }
634
635 /*
636 * These are the default caches for kmalloc. Custom caches can have other sizes.
637 */
638 struct cache_sizes malloc_sizes[] = {
639 #define CACHE(x) { .cs_size = (x) },
640 #include <linux/kmalloc_sizes.h>
641 CACHE(ULONG_MAX)
642 #undef CACHE
643 };
644 EXPORT_SYMBOL(malloc_sizes);
645
646 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
647 struct cache_names {
648 char *name;
649 char *name_dma;
650 };
651
652 static struct cache_names __initdata cache_names[] = {
653 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
654 #include <linux/kmalloc_sizes.h>
655 {NULL,}
656 #undef CACHE
657 };
658
659 static struct arraycache_init initarray_cache __initdata =
660 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
661 static struct arraycache_init initarray_generic =
662 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
663
664 /* internal cache of cache description objs */
665 static struct kmem_cache cache_cache = {
666 .batchcount = 1,
667 .limit = BOOT_CPUCACHE_ENTRIES,
668 .shared = 1,
669 .buffer_size = sizeof(struct kmem_cache),
670 .name = "kmem_cache",
671 #if DEBUG
672 .obj_size = sizeof(struct kmem_cache),
673 #endif
674 };
675
676 #define BAD_ALIEN_MAGIC 0x01020304ul
677
678 #ifdef CONFIG_LOCKDEP
679
680 /*
681 * Slab sometimes uses the kmalloc slabs to store the slab headers
682 * for other slabs "off slab".
683 * The locking for this is tricky in that it nests within the locks
684 * of all other slabs in a few places; to deal with this special
685 * locking we put on-slab caches into a separate lock-class.
686 *
687 * We set lock class for alien array caches which are up during init.
688 * The lock annotation will be lost if all cpus of a node goes down and
689 * then comes back up during hotplug
690 */
691 static struct lock_class_key on_slab_l3_key;
692 static struct lock_class_key on_slab_alc_key;
693
694 static inline void init_lock_keys(void)
695
696 {
697 int q;
698 struct cache_sizes *s = malloc_sizes;
699
700 while (s->cs_size != ULONG_MAX) {
701 for_each_node(q) {
702 struct array_cache **alc;
703 int r;
704 struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
705 if (!l3 || OFF_SLAB(s->cs_cachep))
706 continue;
707 lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
708 alc = l3->alien;
709 /*
710 * FIXME: This check for BAD_ALIEN_MAGIC
711 * should go away when common slab code is taught to
712 * work even without alien caches.
713 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
714 * for alloc_alien_cache,
715 */
716 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
717 continue;
718 for_each_node(r) {
719 if (alc[r])
720 lockdep_set_class(&alc[r]->lock,
721 &on_slab_alc_key);
722 }
723 }
724 s++;
725 }
726 }
727 #else
728 static inline void init_lock_keys(void)
729 {
730 }
731 #endif
732
733 /* Guard access to the cache-chain. */
734 static DEFINE_MUTEX(cache_chain_mutex);
735 static struct list_head cache_chain;
736
737 /*
738 * chicken and egg problem: delay the per-cpu array allocation
739 * until the general caches are up.
740 */
741 static enum {
742 NONE,
743 PARTIAL_AC,
744 PARTIAL_L3,
745 FULL
746 } g_cpucache_up;
747
748 /*
749 * used by boot code to determine if it can use slab based allocator
750 */
751 int slab_is_available(void)
752 {
753 return g_cpucache_up == FULL;
754 }
755
756 static DEFINE_PER_CPU(struct work_struct, reap_work);
757
758 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
759 {
760 return cachep->array[smp_processor_id()];
761 }
762
763 static inline struct kmem_cache *__find_general_cachep(size_t size,
764 gfp_t gfpflags)
765 {
766 struct cache_sizes *csizep = malloc_sizes;
767
768 #if DEBUG
769 /* This happens if someone tries to call
770 * kmem_cache_create(), or __kmalloc(), before
771 * the generic caches are initialized.
772 */
773 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
774 #endif
775 while (size > csizep->cs_size)
776 csizep++;
777
778 /*
779 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
780 * has cs_{dma,}cachep==NULL. Thus no special case
781 * for large kmalloc calls required.
782 */
783 if (unlikely(gfpflags & GFP_DMA))
784 return csizep->cs_dmacachep;
785 return csizep->cs_cachep;
786 }
787
788 static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
789 {
790 return __find_general_cachep(size, gfpflags);
791 }
792
793 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
794 {
795 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
796 }
797
798 /*
799 * Calculate the number of objects and left-over bytes for a given buffer size.
800 */
801 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
802 size_t align, int flags, size_t *left_over,
803 unsigned int *num)
804 {
805 int nr_objs;
806 size_t mgmt_size;
807 size_t slab_size = PAGE_SIZE << gfporder;
808
809 /*
810 * The slab management structure can be either off the slab or
811 * on it. For the latter case, the memory allocated for a
812 * slab is used for:
813 *
814 * - The struct slab
815 * - One kmem_bufctl_t for each object
816 * - Padding to respect alignment of @align
817 * - @buffer_size bytes for each object
818 *
819 * If the slab management structure is off the slab, then the
820 * alignment will already be calculated into the size. Because
821 * the slabs are all pages aligned, the objects will be at the
822 * correct alignment when allocated.
823 */
824 if (flags & CFLGS_OFF_SLAB) {
825 mgmt_size = 0;
826 nr_objs = slab_size / buffer_size;
827
828 if (nr_objs > SLAB_LIMIT)
829 nr_objs = SLAB_LIMIT;
830 } else {
831 /*
832 * Ignore padding for the initial guess. The padding
833 * is at most @align-1 bytes, and @buffer_size is at
834 * least @align. In the worst case, this result will
835 * be one greater than the number of objects that fit
836 * into the memory allocation when taking the padding
837 * into account.
838 */
839 nr_objs = (slab_size - sizeof(struct slab)) /
840 (buffer_size + sizeof(kmem_bufctl_t));
841
842 /*
843 * This calculated number will be either the right
844 * amount, or one greater than what we want.
845 */
846 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
847 > slab_size)
848 nr_objs--;
849
850 if (nr_objs > SLAB_LIMIT)
851 nr_objs = SLAB_LIMIT;
852
853 mgmt_size = slab_mgmt_size(nr_objs, align);
854 }
855 *num = nr_objs;
856 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
857 }
858
859 #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
860
861 static void __slab_error(const char *function, struct kmem_cache *cachep,
862 char *msg)
863 {
864 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
865 function, cachep->name, msg);
866 dump_stack();
867 }
868
869 #ifdef CONFIG_NUMA
870 /*
871 * Special reaping functions for NUMA systems called from cache_reap().
872 * These take care of doing round robin flushing of alien caches (containing
873 * objects freed on different nodes from which they were allocated) and the
874 * flushing of remote pcps by calling drain_node_pages.
875 */
876 static DEFINE_PER_CPU(unsigned long, reap_node);
877
878 static void init_reap_node(int cpu)
879 {
880 int node;
881
882 node = next_node(cpu_to_node(cpu), node_online_map);
883 if (node == MAX_NUMNODES)
884 node = first_node(node_online_map);
885
886 __get_cpu_var(reap_node) = node;
887 }
888
889 static void next_reap_node(void)
890 {
891 int node = __get_cpu_var(reap_node);
892
893 /*
894 * Also drain per cpu pages on remote zones
895 */
896 if (node != numa_node_id())
897 drain_node_pages(node);
898
899 node = next_node(node, node_online_map);
900 if (unlikely(node >= MAX_NUMNODES))
901 node = first_node(node_online_map);
902 __get_cpu_var(reap_node) = node;
903 }
904
905 #else
906 #define init_reap_node(cpu) do { } while (0)
907 #define next_reap_node(void) do { } while (0)
908 #endif
909
910 /*
911 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
912 * via the workqueue/eventd.
913 * Add the CPU number into the expiration time to minimize the possibility of
914 * the CPUs getting into lockstep and contending for the global cache chain
915 * lock.
916 */
917 static void __devinit start_cpu_timer(int cpu)
918 {
919 struct work_struct *reap_work = &per_cpu(reap_work, cpu);
920
921 /*
922 * When this gets called from do_initcalls via cpucache_init(),
923 * init_workqueues() has already run, so keventd will be setup
924 * at that time.
925 */
926 if (keventd_up() && reap_work->func == NULL) {
927 init_reap_node(cpu);
928 INIT_WORK(reap_work, cache_reap, NULL);
929 schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
930 }
931 }
932
933 static struct array_cache *alloc_arraycache(int node, int entries,
934 int batchcount)
935 {
936 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
937 struct array_cache *nc = NULL;
938
939 nc = kmalloc_node(memsize, GFP_KERNEL, node);
940 if (nc) {
941 nc->avail = 0;
942 nc->limit = entries;
943 nc->batchcount = batchcount;
944 nc->touched = 0;
945 spin_lock_init(&nc->lock);
946 }
947 return nc;
948 }
949
950 /*
951 * Transfer objects in one arraycache to another.
952 * Locking must be handled by the caller.
953 *
954 * Return the number of entries transferred.
955 */
956 static int transfer_objects(struct array_cache *to,
957 struct array_cache *from, unsigned int max)
958 {
959 /* Figure out how many entries to transfer */
960 int nr = min(min(from->avail, max), to->limit - to->avail);
961
962 if (!nr)
963 return 0;
964
965 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
966 sizeof(void *) *nr);
967
968 from->avail -= nr;
969 to->avail += nr;
970 to->touched = 1;
971 return nr;
972 }
973
974 #ifndef CONFIG_NUMA
975
976 #define drain_alien_cache(cachep, alien) do { } while (0)
977 #define reap_alien(cachep, l3) do { } while (0)
978
979 static inline struct array_cache **alloc_alien_cache(int node, int limit)
980 {
981 return (struct array_cache **)BAD_ALIEN_MAGIC;
982 }
983
984 static inline void free_alien_cache(struct array_cache **ac_ptr)
985 {
986 }
987
988 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
989 {
990 return 0;
991 }
992
993 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
994 gfp_t flags)
995 {
996 return NULL;
997 }
998
999 static inline void *__cache_alloc_node(struct kmem_cache *cachep,
1000 gfp_t flags, int nodeid)
1001 {
1002 return NULL;
1003 }
1004
1005 #else /* CONFIG_NUMA */
1006
1007 static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
1008 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1009
1010 static struct array_cache **alloc_alien_cache(int node, int limit)
1011 {
1012 struct array_cache **ac_ptr;
1013 int memsize = sizeof(void *) * MAX_NUMNODES;
1014 int i;
1015
1016 if (limit > 1)
1017 limit = 12;
1018 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
1019 if (ac_ptr) {
1020 for_each_node(i) {
1021 if (i == node || !node_online(i)) {
1022 ac_ptr[i] = NULL;
1023 continue;
1024 }
1025 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
1026 if (!ac_ptr[i]) {
1027 for (i--; i <= 0; i--)
1028 kfree(ac_ptr[i]);
1029 kfree(ac_ptr);
1030 return NULL;
1031 }
1032 }
1033 }
1034 return ac_ptr;
1035 }
1036
1037 static void free_alien_cache(struct array_cache **ac_ptr)
1038 {
1039 int i;
1040
1041 if (!ac_ptr)
1042 return;
1043 for_each_node(i)
1044 kfree(ac_ptr[i]);
1045 kfree(ac_ptr);
1046 }
1047
1048 static void __drain_alien_cache(struct kmem_cache *cachep,
1049 struct array_cache *ac, int node)
1050 {
1051 struct kmem_list3 *rl3 = cachep->nodelists[node];
1052
1053 if (ac->avail) {
1054 spin_lock(&rl3->list_lock);
1055 /*
1056 * Stuff objects into the remote nodes shared array first.
1057 * That way we could avoid the overhead of putting the objects
1058 * into the free lists and getting them back later.
1059 */
1060 if (rl3->shared)
1061 transfer_objects(rl3->shared, ac, ac->limit);
1062
1063 free_block(cachep, ac->entry, ac->avail, node);
1064 ac->avail = 0;
1065 spin_unlock(&rl3->list_lock);
1066 }
1067 }
1068
1069 /*
1070 * Called from cache_reap() to regularly drain alien caches round robin.
1071 */
1072 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1073 {
1074 int node = __get_cpu_var(reap_node);
1075
1076 if (l3->alien) {
1077 struct array_cache *ac = l3->alien[node];
1078
1079 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1080 __drain_alien_cache(cachep, ac, node);
1081 spin_unlock_irq(&ac->lock);
1082 }
1083 }
1084 }
1085
1086 static void drain_alien_cache(struct kmem_cache *cachep,
1087 struct array_cache **alien)
1088 {
1089 int i = 0;
1090 struct array_cache *ac;
1091 unsigned long flags;
1092
1093 for_each_online_node(i) {
1094 ac = alien[i];
1095 if (ac) {
1096 spin_lock_irqsave(&ac->lock, flags);
1097 __drain_alien_cache(cachep, ac, i);
1098 spin_unlock_irqrestore(&ac->lock, flags);
1099 }
1100 }
1101 }
1102
1103 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1104 {
1105 struct slab *slabp = virt_to_slab(objp);
1106 int nodeid = slabp->nodeid;
1107 struct kmem_list3 *l3;
1108 struct array_cache *alien = NULL;
1109
1110 /*
1111 * Make sure we are not freeing a object from another node to the array
1112 * cache on this cpu.
1113 */
1114 if (likely(slabp->nodeid == numa_node_id()))
1115 return 0;
1116
1117 l3 = cachep->nodelists[numa_node_id()];
1118 STATS_INC_NODEFREES(cachep);
1119 if (l3->alien && l3->alien[nodeid]) {
1120 alien = l3->alien[nodeid];
1121 spin_lock(&alien->lock);
1122 if (unlikely(alien->avail == alien->limit)) {
1123 STATS_INC_ACOVERFLOW(cachep);
1124 __drain_alien_cache(cachep, alien, nodeid);
1125 }
1126 alien->entry[alien->avail++] = objp;
1127 spin_unlock(&alien->lock);
1128 } else {
1129 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1130 free_block(cachep, &objp, 1, nodeid);
1131 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1132 }
1133 return 1;
1134 }
1135 #endif
1136
1137 static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1138 unsigned long action, void *hcpu)
1139 {
1140 long cpu = (long)hcpu;
1141 struct kmem_cache *cachep;
1142 struct kmem_list3 *l3 = NULL;
1143 int node = cpu_to_node(cpu);
1144 int memsize = sizeof(struct kmem_list3);
1145
1146 switch (action) {
1147 case CPU_UP_PREPARE:
1148 mutex_lock(&cache_chain_mutex);
1149 /*
1150 * We need to do this right in the beginning since
1151 * alloc_arraycache's are going to use this list.
1152 * kmalloc_node allows us to add the slab to the right
1153 * kmem_list3 and not this cpu's kmem_list3
1154 */
1155
1156 list_for_each_entry(cachep, &cache_chain, next) {
1157 /*
1158 * Set up the size64 kmemlist for cpu before we can
1159 * begin anything. Make sure some other cpu on this
1160 * node has not already allocated this
1161 */
1162 if (!cachep->nodelists[node]) {
1163 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1164 if (!l3)
1165 goto bad;
1166 kmem_list3_init(l3);
1167 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1168 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1169
1170 /*
1171 * The l3s don't come and go as CPUs come and
1172 * go. cache_chain_mutex is sufficient
1173 * protection here.
1174 */
1175 cachep->nodelists[node] = l3;
1176 }
1177
1178 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1179 cachep->nodelists[node]->free_limit =
1180 (1 + nr_cpus_node(node)) *
1181 cachep->batchcount + cachep->num;
1182 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1183 }
1184
1185 /*
1186 * Now we can go ahead with allocating the shared arrays and
1187 * array caches
1188 */
1189 list_for_each_entry(cachep, &cache_chain, next) {
1190 struct array_cache *nc;
1191 struct array_cache *shared;
1192 struct array_cache **alien;
1193
1194 nc = alloc_arraycache(node, cachep->limit,
1195 cachep->batchcount);
1196 if (!nc)
1197 goto bad;
1198 shared = alloc_arraycache(node,
1199 cachep->shared * cachep->batchcount,
1200 0xbaadf00d);
1201 if (!shared)
1202 goto bad;
1203
1204 alien = alloc_alien_cache(node, cachep->limit);
1205 if (!alien)
1206 goto bad;
1207 cachep->array[cpu] = nc;
1208 l3 = cachep->nodelists[node];
1209 BUG_ON(!l3);
1210
1211 spin_lock_irq(&l3->list_lock);
1212 if (!l3->shared) {
1213 /*
1214 * We are serialised from CPU_DEAD or
1215 * CPU_UP_CANCELLED by the cpucontrol lock
1216 */
1217 l3->shared = shared;
1218 shared = NULL;
1219 }
1220 #ifdef CONFIG_NUMA
1221 if (!l3->alien) {
1222 l3->alien = alien;
1223 alien = NULL;
1224 }
1225 #endif
1226 spin_unlock_irq(&l3->list_lock);
1227 kfree(shared);
1228 free_alien_cache(alien);
1229 }
1230 mutex_unlock(&cache_chain_mutex);
1231 break;
1232 case CPU_ONLINE:
1233 start_cpu_timer(cpu);
1234 break;
1235 #ifdef CONFIG_HOTPLUG_CPU
1236 case CPU_DEAD:
1237 /*
1238 * Even if all the cpus of a node are down, we don't free the
1239 * kmem_list3 of any cache. This to avoid a race between
1240 * cpu_down, and a kmalloc allocation from another cpu for
1241 * memory from the node of the cpu going down. The list3
1242 * structure is usually allocated from kmem_cache_create() and
1243 * gets destroyed at kmem_cache_destroy().
1244 */
1245 /* fall thru */
1246 case CPU_UP_CANCELED:
1247 mutex_lock(&cache_chain_mutex);
1248 list_for_each_entry(cachep, &cache_chain, next) {
1249 struct array_cache *nc;
1250 struct array_cache *shared;
1251 struct array_cache **alien;
1252 cpumask_t mask;
1253
1254 mask = node_to_cpumask(node);
1255 /* cpu is dead; no one can alloc from it. */
1256 nc = cachep->array[cpu];
1257 cachep->array[cpu] = NULL;
1258 l3 = cachep->nodelists[node];
1259
1260 if (!l3)
1261 goto free_array_cache;
1262
1263 spin_lock_irq(&l3->list_lock);
1264
1265 /* Free limit for this kmem_list3 */
1266 l3->free_limit -= cachep->batchcount;
1267 if (nc)
1268 free_block(cachep, nc->entry, nc->avail, node);
1269
1270 if (!cpus_empty(mask)) {
1271 spin_unlock_irq(&l3->list_lock);
1272 goto free_array_cache;
1273 }
1274
1275 shared = l3->shared;
1276 if (shared) {
1277 free_block(cachep, l3->shared->entry,
1278 l3->shared->avail, node);
1279 l3->shared = NULL;
1280 }
1281
1282 alien = l3->alien;
1283 l3->alien = NULL;
1284
1285 spin_unlock_irq(&l3->list_lock);
1286
1287 kfree(shared);
1288 if (alien) {
1289 drain_alien_cache(cachep, alien);
1290 free_alien_cache(alien);
1291 }
1292 free_array_cache:
1293 kfree(nc);
1294 }
1295 /*
1296 * In the previous loop, all the objects were freed to
1297 * the respective cache's slabs, now we can go ahead and
1298 * shrink each nodelist to its limit.
1299 */
1300 list_for_each_entry(cachep, &cache_chain, next) {
1301 l3 = cachep->nodelists[node];
1302 if (!l3)
1303 continue;
1304 drain_freelist(cachep, l3, l3->free_objects);
1305 }
1306 mutex_unlock(&cache_chain_mutex);
1307 break;
1308 #endif
1309 }
1310 return NOTIFY_OK;
1311 bad:
1312 mutex_unlock(&cache_chain_mutex);
1313 return NOTIFY_BAD;
1314 }
1315
1316 static struct notifier_block __cpuinitdata cpucache_notifier = {
1317 &cpuup_callback, NULL, 0
1318 };
1319
1320 /*
1321 * swap the static kmem_list3 with kmalloced memory
1322 */
1323 static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1324 int nodeid)
1325 {
1326 struct kmem_list3 *ptr;
1327
1328 BUG_ON(cachep->nodelists[nodeid] != list);
1329 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1330 BUG_ON(!ptr);
1331
1332 local_irq_disable();
1333 memcpy(ptr, list, sizeof(struct kmem_list3));
1334 /*
1335 * Do not assume that spinlocks can be initialized via memcpy:
1336 */
1337 spin_lock_init(&ptr->list_lock);
1338
1339 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1340 cachep->nodelists[nodeid] = ptr;
1341 local_irq_enable();
1342 }
1343
1344 /*
1345 * Initialisation. Called after the page allocator have been initialised and
1346 * before smp_init().
1347 */
1348 void __init kmem_cache_init(void)
1349 {
1350 size_t left_over;
1351 struct cache_sizes *sizes;
1352 struct cache_names *names;
1353 int i;
1354 int order;
1355
1356 for (i = 0; i < NUM_INIT_LISTS; i++) {
1357 kmem_list3_init(&initkmem_list3[i]);
1358 if (i < MAX_NUMNODES)
1359 cache_cache.nodelists[i] = NULL;
1360 }
1361
1362 /*
1363 * Fragmentation resistance on low memory - only use bigger
1364 * page orders on machines with more than 32MB of memory.
1365 */
1366 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1367 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1368
1369 /* Bootstrap is tricky, because several objects are allocated
1370 * from caches that do not exist yet:
1371 * 1) initialize the cache_cache cache: it contains the struct
1372 * kmem_cache structures of all caches, except cache_cache itself:
1373 * cache_cache is statically allocated.
1374 * Initially an __init data area is used for the head array and the
1375 * kmem_list3 structures, it's replaced with a kmalloc allocated
1376 * array at the end of the bootstrap.
1377 * 2) Create the first kmalloc cache.
1378 * The struct kmem_cache for the new cache is allocated normally.
1379 * An __init data area is used for the head array.
1380 * 3) Create the remaining kmalloc caches, with minimally sized
1381 * head arrays.
1382 * 4) Replace the __init data head arrays for cache_cache and the first
1383 * kmalloc cache with kmalloc allocated arrays.
1384 * 5) Replace the __init data for kmem_list3 for cache_cache and
1385 * the other cache's with kmalloc allocated memory.
1386 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1387 */
1388
1389 /* 1) create the cache_cache */
1390 INIT_LIST_HEAD(&cache_chain);
1391 list_add(&cache_cache.next, &cache_chain);
1392 cache_cache.colour_off = cache_line_size();
1393 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1394 cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
1395
1396 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1397 cache_line_size());
1398
1399 for (order = 0; order < MAX_ORDER; order++) {
1400 cache_estimate(order, cache_cache.buffer_size,
1401 cache_line_size(), 0, &left_over, &cache_cache.num);
1402 if (cache_cache.num)
1403 break;
1404 }
1405 BUG_ON(!cache_cache.num);
1406 cache_cache.gfporder = order;
1407 cache_cache.colour = left_over / cache_cache.colour_off;
1408 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1409 sizeof(struct slab), cache_line_size());
1410
1411 /* 2+3) create the kmalloc caches */
1412 sizes = malloc_sizes;
1413 names = cache_names;
1414
1415 /*
1416 * Initialize the caches that provide memory for the array cache and the
1417 * kmem_list3 structures first. Without this, further allocations will
1418 * bug.
1419 */
1420
1421 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1422 sizes[INDEX_AC].cs_size,
1423 ARCH_KMALLOC_MINALIGN,
1424 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1425 NULL, NULL);
1426
1427 if (INDEX_AC != INDEX_L3) {
1428 sizes[INDEX_L3].cs_cachep =
1429 kmem_cache_create(names[INDEX_L3].name,
1430 sizes[INDEX_L3].cs_size,
1431 ARCH_KMALLOC_MINALIGN,
1432 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1433 NULL, NULL);
1434 }
1435
1436 slab_early_init = 0;
1437
1438 while (sizes->cs_size != ULONG_MAX) {
1439 /*
1440 * For performance, all the general caches are L1 aligned.
1441 * This should be particularly beneficial on SMP boxes, as it
1442 * eliminates "false sharing".
1443 * Note for systems short on memory removing the alignment will
1444 * allow tighter packing of the smaller caches.
1445 */
1446 if (!sizes->cs_cachep) {
1447 sizes->cs_cachep = kmem_cache_create(names->name,
1448 sizes->cs_size,
1449 ARCH_KMALLOC_MINALIGN,
1450 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1451 NULL, NULL);
1452 }
1453
1454 sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
1455 sizes->cs_size,
1456 ARCH_KMALLOC_MINALIGN,
1457 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1458 SLAB_PANIC,
1459 NULL, NULL);
1460 sizes++;
1461 names++;
1462 }
1463 /* 4) Replace the bootstrap head arrays */
1464 {
1465 struct array_cache *ptr;
1466
1467 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1468
1469 local_irq_disable();
1470 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1471 memcpy(ptr, cpu_cache_get(&cache_cache),
1472 sizeof(struct arraycache_init));
1473 /*
1474 * Do not assume that spinlocks can be initialized via memcpy:
1475 */
1476 spin_lock_init(&ptr->lock);
1477
1478 cache_cache.array[smp_processor_id()] = ptr;
1479 local_irq_enable();
1480
1481 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1482
1483 local_irq_disable();
1484 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1485 != &initarray_generic.cache);
1486 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1487 sizeof(struct arraycache_init));
1488 /*
1489 * Do not assume that spinlocks can be initialized via memcpy:
1490 */
1491 spin_lock_init(&ptr->lock);
1492
1493 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1494 ptr;
1495 local_irq_enable();
1496 }
1497 /* 5) Replace the bootstrap kmem_list3's */
1498 {
1499 int node;
1500 /* Replace the static kmem_list3 structures for the boot cpu */
1501 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
1502 numa_node_id());
1503
1504 for_each_online_node(node) {
1505 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1506 &initkmem_list3[SIZE_AC + node], node);
1507
1508 if (INDEX_AC != INDEX_L3) {
1509 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1510 &initkmem_list3[SIZE_L3 + node],
1511 node);
1512 }
1513 }
1514 }
1515
1516 /* 6) resize the head arrays to their final sizes */
1517 {
1518 struct kmem_cache *cachep;
1519 mutex_lock(&cache_chain_mutex);
1520 list_for_each_entry(cachep, &cache_chain, next)
1521 if (enable_cpucache(cachep))
1522 BUG();
1523 mutex_unlock(&cache_chain_mutex);
1524 }
1525
1526 /* Annotate slab for lockdep -- annotate the malloc caches */
1527 init_lock_keys();
1528
1529
1530 /* Done! */
1531 g_cpucache_up = FULL;
1532
1533 /*
1534 * Register a cpu startup notifier callback that initializes
1535 * cpu_cache_get for all new cpus
1536 */
1537 register_cpu_notifier(&cpucache_notifier);
1538
1539 /*
1540 * The reap timers are started later, with a module init call: That part
1541 * of the kernel is not yet operational.
1542 */
1543 }
1544
1545 static int __init cpucache_init(void)
1546 {
1547 int cpu;
1548
1549 /*
1550 * Register the timers that return unneeded pages to the page allocator
1551 */
1552 for_each_online_cpu(cpu)
1553 start_cpu_timer(cpu);
1554 return 0;
1555 }
1556 __initcall(cpucache_init);
1557
1558 /*
1559 * Interface to system's page allocator. No need to hold the cache-lock.
1560 *
1561 * If we requested dmaable memory, we will get it. Even if we
1562 * did not request dmaable memory, we might get it, but that
1563 * would be relatively rare and ignorable.
1564 */
1565 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1566 {
1567 struct page *page;
1568 int nr_pages;
1569 int i;
1570
1571 #ifndef CONFIG_MMU
1572 /*
1573 * Nommu uses slab's for process anonymous memory allocations, and thus
1574 * requires __GFP_COMP to properly refcount higher order allocations
1575 */
1576 flags |= __GFP_COMP;
1577 #endif
1578
1579 /*
1580 * Under NUMA we want memory on the indicated node. We will handle
1581 * the needed fallback ourselves since we want to serve from our
1582 * per node object lists first for other nodes.
1583 */
1584 flags |= cachep->gfpflags | GFP_THISNODE;
1585
1586 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1587 if (!page)
1588 return NULL;
1589
1590 nr_pages = (1 << cachep->gfporder);
1591 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1592 add_zone_page_state(page_zone(page),
1593 NR_SLAB_RECLAIMABLE, nr_pages);
1594 else
1595 add_zone_page_state(page_zone(page),
1596 NR_SLAB_UNRECLAIMABLE, nr_pages);
1597 for (i = 0; i < nr_pages; i++)
1598 __SetPageSlab(page + i);
1599 return page_address(page);
1600 }
1601
1602 /*
1603 * Interface to system's page release.
1604 */
1605 static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1606 {
1607 unsigned long i = (1 << cachep->gfporder);
1608 struct page *page = virt_to_page(addr);
1609 const unsigned long nr_freed = i;
1610
1611 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1612 sub_zone_page_state(page_zone(page),
1613 NR_SLAB_RECLAIMABLE, nr_freed);
1614 else
1615 sub_zone_page_state(page_zone(page),
1616 NR_SLAB_UNRECLAIMABLE, nr_freed);
1617 while (i--) {
1618 BUG_ON(!PageSlab(page));
1619 __ClearPageSlab(page);
1620 page++;
1621 }
1622 if (current->reclaim_state)
1623 current->reclaim_state->reclaimed_slab += nr_freed;
1624 free_pages((unsigned long)addr, cachep->gfporder);
1625 }
1626
1627 static void kmem_rcu_free(struct rcu_head *head)
1628 {
1629 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1630 struct kmem_cache *cachep = slab_rcu->cachep;
1631
1632 kmem_freepages(cachep, slab_rcu->addr);
1633 if (OFF_SLAB(cachep))
1634 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1635 }
1636
1637 #if DEBUG
1638
1639 #ifdef CONFIG_DEBUG_PAGEALLOC
1640 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1641 unsigned long caller)
1642 {
1643 int size = obj_size(cachep);
1644
1645 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1646
1647 if (size < 5 * sizeof(unsigned long))
1648 return;
1649
1650 *addr++ = 0x12345678;
1651 *addr++ = caller;
1652 *addr++ = smp_processor_id();
1653 size -= 3 * sizeof(unsigned long);
1654 {
1655 unsigned long *sptr = &caller;
1656 unsigned long svalue;
1657
1658 while (!kstack_end(sptr)) {
1659 svalue = *sptr++;
1660 if (kernel_text_address(svalue)) {
1661 *addr++ = svalue;
1662 size -= sizeof(unsigned long);
1663 if (size <= sizeof(unsigned long))
1664 break;
1665 }
1666 }
1667
1668 }
1669 *addr++ = 0x87654321;
1670 }
1671 #endif
1672
1673 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1674 {
1675 int size = obj_size(cachep);
1676 addr = &((char *)addr)[obj_offset(cachep)];
1677
1678 memset(addr, val, size);
1679 *(unsigned char *)(addr + size - 1) = POISON_END;
1680 }
1681
1682 static void dump_line(char *data, int offset, int limit)
1683 {
1684 int i;
1685 unsigned char error = 0;
1686 int bad_count = 0;
1687
1688 printk(KERN_ERR "%03x:", offset);
1689 for (i = 0; i < limit; i++) {
1690 if (data[offset + i] != POISON_FREE) {
1691 error = data[offset + i];
1692 bad_count++;
1693 }
1694 printk(" %02x", (unsigned char)data[offset + i]);
1695 }
1696 printk("\n");
1697
1698 if (bad_count == 1) {
1699 error ^= POISON_FREE;
1700 if (!(error & (error - 1))) {
1701 printk(KERN_ERR "Single bit error detected. Probably "
1702 "bad RAM.\n");
1703 #ifdef CONFIG_X86
1704 printk(KERN_ERR "Run memtest86+ or a similar memory "
1705 "test tool.\n");
1706 #else
1707 printk(KERN_ERR "Run a memory test tool.\n");
1708 #endif
1709 }
1710 }
1711 }
1712 #endif
1713
1714 #if DEBUG
1715
1716 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1717 {
1718 int i, size;
1719 char *realobj;
1720
1721 if (cachep->flags & SLAB_RED_ZONE) {
1722 printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
1723 *dbg_redzone1(cachep, objp),
1724 *dbg_redzone2(cachep, objp));
1725 }
1726
1727 if (cachep->flags & SLAB_STORE_USER) {
1728 printk(KERN_ERR "Last user: [<%p>]",
1729 *dbg_userword(cachep, objp));
1730 print_symbol("(%s)",
1731 (unsigned long)*dbg_userword(cachep, objp));
1732 printk("\n");
1733 }
1734 realobj = (char *)objp + obj_offset(cachep);
1735 size = obj_size(cachep);
1736 for (i = 0; i < size && lines; i += 16, lines--) {
1737 int limit;
1738 limit = 16;
1739 if (i + limit > size)
1740 limit = size - i;
1741 dump_line(realobj, i, limit);
1742 }
1743 }
1744
1745 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1746 {
1747 char *realobj;
1748 int size, i;
1749 int lines = 0;
1750
1751 realobj = (char *)objp + obj_offset(cachep);
1752 size = obj_size(cachep);
1753
1754 for (i = 0; i < size; i++) {
1755 char exp = POISON_FREE;
1756 if (i == size - 1)
1757 exp = POISON_END;
1758 if (realobj[i] != exp) {
1759 int limit;
1760 /* Mismatch ! */
1761 /* Print header */
1762 if (lines == 0) {
1763 printk(KERN_ERR
1764 "Slab corruption: start=%p, len=%d\n",
1765 realobj, size);
1766 print_objinfo(cachep, objp, 0);
1767 }
1768 /* Hexdump the affected line */
1769 i = (i / 16) * 16;
1770 limit = 16;
1771 if (i + limit > size)
1772 limit = size - i;
1773 dump_line(realobj, i, limit);
1774 i += 16;
1775 lines++;
1776 /* Limit to 5 lines */
1777 if (lines > 5)
1778 break;
1779 }
1780 }
1781 if (lines != 0) {
1782 /* Print some data about the neighboring objects, if they
1783 * exist:
1784 */
1785 struct slab *slabp = virt_to_slab(objp);
1786 unsigned int objnr;
1787
1788 objnr = obj_to_index(cachep, slabp, objp);
1789 if (objnr) {
1790 objp = index_to_obj(cachep, slabp, objnr - 1);
1791 realobj = (char *)objp + obj_offset(cachep);
1792 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1793 realobj, size);
1794 print_objinfo(cachep, objp, 2);
1795 }
1796 if (objnr + 1 < cachep->num) {
1797 objp = index_to_obj(cachep, slabp, objnr + 1);
1798 realobj = (char *)objp + obj_offset(cachep);
1799 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1800 realobj, size);
1801 print_objinfo(cachep, objp, 2);
1802 }
1803 }
1804 }
1805 #endif
1806
1807 #if DEBUG
1808 /**
1809 * slab_destroy_objs - destroy a slab and its objects
1810 * @cachep: cache pointer being destroyed
1811 * @slabp: slab pointer being destroyed
1812 *
1813 * Call the registered destructor for each object in a slab that is being
1814 * destroyed.
1815 */
1816 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1817 {
1818 int i;
1819 for (i = 0; i < cachep->num; i++) {
1820 void *objp = index_to_obj(cachep, slabp, i);
1821
1822 if (cachep->flags & SLAB_POISON) {
1823 #ifdef CONFIG_DEBUG_PAGEALLOC
1824 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1825 OFF_SLAB(cachep))
1826 kernel_map_pages(virt_to_page(objp),
1827 cachep->buffer_size / PAGE_SIZE, 1);
1828 else
1829 check_poison_obj(cachep, objp);
1830 #else
1831 check_poison_obj(cachep, objp);
1832 #endif
1833 }
1834 if (cachep->flags & SLAB_RED_ZONE) {
1835 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1836 slab_error(cachep, "start of a freed object "
1837 "was overwritten");
1838 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1839 slab_error(cachep, "end of a freed object "
1840 "was overwritten");
1841 }
1842 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
1843 (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
1844 }
1845 }
1846 #else
1847 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1848 {
1849 if (cachep->dtor) {
1850 int i;
1851 for (i = 0; i < cachep->num; i++) {
1852 void *objp = index_to_obj(cachep, slabp, i);
1853 (cachep->dtor) (objp, cachep, 0);
1854 }
1855 }
1856 }
1857 #endif
1858
1859 /**
1860 * slab_destroy - destroy and release all objects in a slab
1861 * @cachep: cache pointer being destroyed
1862 * @slabp: slab pointer being destroyed
1863 *
1864 * Destroy all the objs in a slab, and release the mem back to the system.
1865 * Before calling the slab must have been unlinked from the cache. The
1866 * cache-lock is not held/needed.
1867 */
1868 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1869 {
1870 void *addr = slabp->s_mem - slabp->colouroff;
1871
1872 slab_destroy_objs(cachep, slabp);
1873 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1874 struct slab_rcu *slab_rcu;
1875
1876 slab_rcu = (struct slab_rcu *)slabp;
1877 slab_rcu->cachep = cachep;
1878 slab_rcu->addr = addr;
1879 call_rcu(&slab_rcu->head, kmem_rcu_free);
1880 } else {
1881 kmem_freepages(cachep, addr);
1882 if (OFF_SLAB(cachep))
1883 kmem_cache_free(cachep->slabp_cache, slabp);
1884 }
1885 }
1886
1887 /*
1888 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1889 * size of kmem_list3.
1890 */
1891 static void set_up_list3s(struct kmem_cache *cachep, int index)
1892 {
1893 int node;
1894
1895 for_each_online_node(node) {
1896 cachep->nodelists[node] = &initkmem_list3[index + node];
1897 cachep->nodelists[node]->next_reap = jiffies +
1898 REAPTIMEOUT_LIST3 +
1899 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1900 }
1901 }
1902
1903 static void __kmem_cache_destroy(struct kmem_cache *cachep)
1904 {
1905 int i;
1906 struct kmem_list3 *l3;
1907
1908 for_each_online_cpu(i)
1909 kfree(cachep->array[i]);
1910
1911 /* NUMA: free the list3 structures */
1912 for_each_online_node(i) {
1913 l3 = cachep->nodelists[i];
1914 if (l3) {
1915 kfree(l3->shared);
1916 free_alien_cache(l3->alien);
1917 kfree(l3);
1918 }
1919 }
1920 kmem_cache_free(&cache_cache, cachep);
1921 }
1922
1923
1924 /**
1925 * calculate_slab_order - calculate size (page order) of slabs
1926 * @cachep: pointer to the cache that is being created
1927 * @size: size of objects to be created in this cache.
1928 * @align: required alignment for the objects.
1929 * @flags: slab allocation flags
1930 *
1931 * Also calculates the number of objects per slab.
1932 *
1933 * This could be made much more intelligent. For now, try to avoid using
1934 * high order pages for slabs. When the gfp() functions are more friendly
1935 * towards high-order requests, this should be changed.
1936 */
1937 static size_t calculate_slab_order(struct kmem_cache *cachep,
1938 size_t size, size_t align, unsigned long flags)
1939 {
1940 unsigned long offslab_limit;
1941 size_t left_over = 0;
1942 int gfporder;
1943
1944 for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
1945 unsigned int num;
1946 size_t remainder;
1947
1948 cache_estimate(gfporder, size, align, flags, &remainder, &num);
1949 if (!num)
1950 continue;
1951
1952 if (flags & CFLGS_OFF_SLAB) {
1953 /*
1954 * Max number of objs-per-slab for caches which
1955 * use off-slab slabs. Needed to avoid a possible
1956 * looping condition in cache_grow().
1957 */
1958 offslab_limit = size - sizeof(struct slab);
1959 offslab_limit /= sizeof(kmem_bufctl_t);
1960
1961 if (num > offslab_limit)
1962 break;
1963 }
1964
1965 /* Found something acceptable - save it away */
1966 cachep->num = num;
1967 cachep->gfporder = gfporder;
1968 left_over = remainder;
1969
1970 /*
1971 * A VFS-reclaimable slab tends to have most allocations
1972 * as GFP_NOFS and we really don't want to have to be allocating
1973 * higher-order pages when we are unable to shrink dcache.
1974 */
1975 if (flags & SLAB_RECLAIM_ACCOUNT)
1976 break;
1977
1978 /*
1979 * Large number of objects is good, but very large slabs are
1980 * currently bad for the gfp()s.
1981 */
1982 if (gfporder >= slab_break_gfp_order)
1983 break;
1984
1985 /*
1986 * Acceptable internal fragmentation?
1987 */
1988 if (left_over * 8 <= (PAGE_SIZE << gfporder))
1989 break;
1990 }
1991 return left_over;
1992 }
1993
1994 static int setup_cpu_cache(struct kmem_cache *cachep)
1995 {
1996 if (g_cpucache_up == FULL)
1997 return enable_cpucache(cachep);
1998
1999 if (g_cpucache_up == NONE) {
2000 /*
2001 * Note: the first kmem_cache_create must create the cache
2002 * that's used by kmalloc(24), otherwise the creation of
2003 * further caches will BUG().
2004 */
2005 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2006
2007 /*
2008 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2009 * the first cache, then we need to set up all its list3s,
2010 * otherwise the creation of further caches will BUG().
2011 */
2012 set_up_list3s(cachep, SIZE_AC);
2013 if (INDEX_AC == INDEX_L3)
2014 g_cpucache_up = PARTIAL_L3;
2015 else
2016 g_cpucache_up = PARTIAL_AC;
2017 } else {
2018 cachep->array[smp_processor_id()] =
2019 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
2020
2021 if (g_cpucache_up == PARTIAL_AC) {
2022 set_up_list3s(cachep, SIZE_L3);
2023 g_cpucache_up = PARTIAL_L3;
2024 } else {
2025 int node;
2026 for_each_online_node(node) {
2027 cachep->nodelists[node] =
2028 kmalloc_node(sizeof(struct kmem_list3),
2029 GFP_KERNEL, node);
2030 BUG_ON(!cachep->nodelists[node]);
2031 kmem_list3_init(cachep->nodelists[node]);
2032 }
2033 }
2034 }
2035 cachep->nodelists[numa_node_id()]->next_reap =
2036 jiffies + REAPTIMEOUT_LIST3 +
2037 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2038
2039 cpu_cache_get(cachep)->avail = 0;
2040 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2041 cpu_cache_get(cachep)->batchcount = 1;
2042 cpu_cache_get(cachep)->touched = 0;
2043 cachep->batchcount = 1;
2044 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2045 return 0;
2046 }
2047
2048 /**
2049 * kmem_cache_create - Create a cache.
2050 * @name: A string which is used in /proc/slabinfo to identify this cache.
2051 * @size: The size of objects to be created in this cache.
2052 * @align: The required alignment for the objects.
2053 * @flags: SLAB flags
2054 * @ctor: A constructor for the objects.
2055 * @dtor: A destructor for the objects.
2056 *
2057 * Returns a ptr to the cache on success, NULL on failure.
2058 * Cannot be called within a int, but can be interrupted.
2059 * The @ctor is run when new pages are allocated by the cache
2060 * and the @dtor is run before the pages are handed back.
2061 *
2062 * @name must be valid until the cache is destroyed. This implies that
2063 * the module calling this has to destroy the cache before getting unloaded.
2064 *
2065 * The flags are
2066 *
2067 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2068 * to catch references to uninitialised memory.
2069 *
2070 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2071 * for buffer overruns.
2072 *
2073 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2074 * cacheline. This can be beneficial if you're counting cycles as closely
2075 * as davem.
2076 */
2077 struct kmem_cache *
2078 kmem_cache_create (const char *name, size_t size, size_t align,
2079 unsigned long flags,
2080 void (*ctor)(void*, struct kmem_cache *, unsigned long),
2081 void (*dtor)(void*, struct kmem_cache *, unsigned long))
2082 {
2083 size_t left_over, slab_size, ralign;
2084 struct kmem_cache *cachep = NULL, *pc;
2085
2086 /*
2087 * Sanity checks... these are all serious usage bugs.
2088 */
2089 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2090 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
2091 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
2092 name);
2093 BUG();
2094 }
2095
2096 /*
2097 * Prevent CPUs from coming and going.
2098 * lock_cpu_hotplug() nests outside cache_chain_mutex
2099 */
2100 lock_cpu_hotplug();
2101
2102 mutex_lock(&cache_chain_mutex);
2103
2104 list_for_each_entry(pc, &cache_chain, next) {
2105 mm_segment_t old_fs = get_fs();
2106 char tmp;
2107 int res;
2108
2109 /*
2110 * This happens when the module gets unloaded and doesn't
2111 * destroy its slab cache and no-one else reuses the vmalloc
2112 * area of the module. Print a warning.
2113 */
2114 set_fs(KERNEL_DS);
2115 res = __get_user(tmp, pc->name);
2116 set_fs(old_fs);
2117 if (res) {
2118 printk("SLAB: cache with size %d has lost its name\n",
2119 pc->buffer_size);
2120 continue;
2121 }
2122
2123 if (!strcmp(pc->name, name)) {
2124 printk("kmem_cache_create: duplicate cache %s\n", name);
2125 dump_stack();
2126 goto oops;
2127 }
2128 }
2129
2130 #if DEBUG
2131 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
2132 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
2133 /* No constructor, but inital state check requested */
2134 printk(KERN_ERR "%s: No con, but init state check "
2135 "requested - %s\n", __FUNCTION__, name);
2136 flags &= ~SLAB_DEBUG_INITIAL;
2137 }
2138 #if FORCED_DEBUG
2139 /*
2140 * Enable redzoning and last user accounting, except for caches with
2141 * large objects, if the increased size would increase the object size
2142 * above the next power of two: caches with object sizes just above a
2143 * power of two have a significant amount of internal fragmentation.
2144 */
2145 if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
2146 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2147 if (!(flags & SLAB_DESTROY_BY_RCU))
2148 flags |= SLAB_POISON;
2149 #endif
2150 if (flags & SLAB_DESTROY_BY_RCU)
2151 BUG_ON(flags & SLAB_POISON);
2152 #endif
2153 if (flags & SLAB_DESTROY_BY_RCU)
2154 BUG_ON(dtor);
2155
2156 /*
2157 * Always checks flags, a caller might be expecting debug support which
2158 * isn't available.
2159 */
2160 BUG_ON(flags & ~CREATE_MASK);
2161
2162 /*
2163 * Check that size is in terms of words. This is needed to avoid
2164 * unaligned accesses for some archs when redzoning is used, and makes
2165 * sure any on-slab bufctl's are also correctly aligned.
2166 */
2167 if (size & (BYTES_PER_WORD - 1)) {
2168 size += (BYTES_PER_WORD - 1);
2169 size &= ~(BYTES_PER_WORD - 1);
2170 }
2171
2172 /* calculate the final buffer alignment: */
2173
2174 /* 1) arch recommendation: can be overridden for debug */
2175 if (flags & SLAB_HWCACHE_ALIGN) {
2176 /*
2177 * Default alignment: as specified by the arch code. Except if
2178 * an object is really small, then squeeze multiple objects into
2179 * one cacheline.
2180 */
2181 ralign = cache_line_size();
2182 while (size <= ralign / 2)
2183 ralign /= 2;
2184 } else {
2185 ralign = BYTES_PER_WORD;
2186 }
2187
2188 /*
2189 * Redzoning and user store require word alignment. Note this will be
2190 * overridden by architecture or caller mandated alignment if either
2191 * is greater than BYTES_PER_WORD.
2192 */
2193 if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER)
2194 ralign = BYTES_PER_WORD;
2195
2196 /* 2) arch mandated alignment: disables debug if necessary */
2197 if (ralign < ARCH_SLAB_MINALIGN) {
2198 ralign = ARCH_SLAB_MINALIGN;
2199 if (ralign > BYTES_PER_WORD)
2200 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2201 }
2202 /* 3) caller mandated alignment: disables debug if necessary */
2203 if (ralign < align) {
2204 ralign = align;
2205 if (ralign > BYTES_PER_WORD)
2206 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2207 }
2208 /*
2209 * 4) Store it.
2210 */
2211 align = ralign;
2212
2213 /* Get cache's description obj. */
2214 cachep = kmem_cache_zalloc(&cache_cache, SLAB_KERNEL);
2215 if (!cachep)
2216 goto oops;
2217
2218 #if DEBUG
2219 cachep->obj_size = size;
2220
2221 /*
2222 * Both debugging options require word-alignment which is calculated
2223 * into align above.
2224 */
2225 if (flags & SLAB_RED_ZONE) {
2226 /* add space for red zone words */
2227 cachep->obj_offset += BYTES_PER_WORD;
2228 size += 2 * BYTES_PER_WORD;
2229 }
2230 if (flags & SLAB_STORE_USER) {
2231 /* user store requires one word storage behind the end of
2232 * the real object.
2233 */
2234 size += BYTES_PER_WORD;
2235 }
2236 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2237 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2238 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2239 cachep->obj_offset += PAGE_SIZE - size;
2240 size = PAGE_SIZE;
2241 }
2242 #endif
2243 #endif
2244
2245 /*
2246 * Determine if the slab management is 'on' or 'off' slab.
2247 * (bootstrapping cannot cope with offslab caches so don't do
2248 * it too early on.)
2249 */
2250 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
2251 /*
2252 * Size is large, assume best to place the slab management obj
2253 * off-slab (should allow better packing of objs).
2254 */
2255 flags |= CFLGS_OFF_SLAB;
2256
2257 size = ALIGN(size, align);
2258
2259 left_over = calculate_slab_order(cachep, size, align, flags);
2260
2261 if (!cachep->num) {
2262 printk("kmem_cache_create: couldn't create cache %s.\n", name);
2263 kmem_cache_free(&cache_cache, cachep);
2264 cachep = NULL;
2265 goto oops;
2266 }
2267 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2268 + sizeof(struct slab), align);
2269
2270 /*
2271 * If the slab has been placed off-slab, and we have enough space then
2272 * move it on-slab. This is at the expense of any extra colouring.
2273 */
2274 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2275 flags &= ~CFLGS_OFF_SLAB;
2276 left_over -= slab_size;
2277 }
2278
2279 if (flags & CFLGS_OFF_SLAB) {
2280 /* really off slab. No need for manual alignment */
2281 slab_size =
2282 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2283 }
2284
2285 cachep->colour_off = cache_line_size();
2286 /* Offset must be a multiple of the alignment. */
2287 if (cachep->colour_off < align)
2288 cachep->colour_off = align;
2289 cachep->colour = left_over / cachep->colour_off;
2290 cachep->slab_size = slab_size;
2291 cachep->flags = flags;
2292 cachep->gfpflags = 0;
2293 if (flags & SLAB_CACHE_DMA)
2294 cachep->gfpflags |= GFP_DMA;
2295 cachep->buffer_size = size;
2296
2297 if (flags & CFLGS_OFF_SLAB) {
2298 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2299 /*
2300 * This is a possibility for one of the malloc_sizes caches.
2301 * But since we go off slab only for object size greater than
2302 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2303 * this should not happen at all.
2304 * But leave a BUG_ON for some lucky dude.
2305 */
2306 BUG_ON(!cachep->slabp_cache);
2307 }
2308 cachep->ctor = ctor;
2309 cachep->dtor = dtor;
2310 cachep->name = name;
2311
2312 if (setup_cpu_cache(cachep)) {
2313 __kmem_cache_destroy(cachep);
2314 cachep = NULL;
2315 goto oops;
2316 }
2317
2318 /* cache setup completed, link it into the list */
2319 list_add(&cachep->next, &cache_chain);
2320 oops:
2321 if (!cachep && (flags & SLAB_PANIC))
2322 panic("kmem_cache_create(): failed to create slab `%s'\n",
2323 name);
2324 mutex_unlock(&cache_chain_mutex);
2325 unlock_cpu_hotplug();
2326 return cachep;
2327 }
2328 EXPORT_SYMBOL(kmem_cache_create);
2329
2330 #if DEBUG
2331 static void check_irq_off(void)
2332 {
2333 BUG_ON(!irqs_disabled());
2334 }
2335
2336 static void check_irq_on(void)
2337 {
2338 BUG_ON(irqs_disabled());
2339 }
2340
2341 static void check_spinlock_acquired(struct kmem_cache *cachep)
2342 {
2343 #ifdef CONFIG_SMP
2344 check_irq_off();
2345 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
2346 #endif
2347 }
2348
2349 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2350 {
2351 #ifdef CONFIG_SMP
2352 check_irq_off();
2353 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2354 #endif
2355 }
2356
2357 #else
2358 #define check_irq_off() do { } while(0)
2359 #define check_irq_on() do { } while(0)
2360 #define check_spinlock_acquired(x) do { } while(0)
2361 #define check_spinlock_acquired_node(x, y) do { } while(0)
2362 #endif
2363
2364 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2365 struct array_cache *ac,
2366 int force, int node);
2367
2368 static void do_drain(void *arg)
2369 {
2370 struct kmem_cache *cachep = arg;
2371 struct array_cache *ac;
2372 int node = numa_node_id();
2373
2374 check_irq_off();
2375 ac = cpu_cache_get(cachep);
2376 spin_lock(&cachep->nodelists[node]->list_lock);
2377 free_block(cachep, ac->entry, ac->avail, node);
2378 spin_unlock(&cachep->nodelists[node]->list_lock);
2379 ac->avail = 0;
2380 }
2381
2382 static void drain_cpu_caches(struct kmem_cache *cachep)
2383 {
2384 struct kmem_list3 *l3;
2385 int node;
2386
2387 on_each_cpu(do_drain, cachep, 1, 1);
2388 check_irq_on();
2389 for_each_online_node(node) {
2390 l3 = cachep->nodelists[node];
2391 if (l3 && l3->alien)
2392 drain_alien_cache(cachep, l3->alien);
2393 }
2394
2395 for_each_online_node(node) {
2396 l3 = cachep->nodelists[node];
2397 if (l3)
2398 drain_array(cachep, l3, l3->shared, 1, node);
2399 }
2400 }
2401
2402 /*
2403 * Remove slabs from the list of free slabs.
2404 * Specify the number of slabs to drain in tofree.
2405 *
2406 * Returns the actual number of slabs released.
2407 */
2408 static int drain_freelist(struct kmem_cache *cache,
2409 struct kmem_list3 *l3, int tofree)
2410 {
2411 struct list_head *p;
2412 int nr_freed;
2413 struct slab *slabp;
2414
2415 nr_freed = 0;
2416 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
2417
2418 spin_lock_irq(&l3->list_lock);
2419 p = l3->slabs_free.prev;
2420 if (p == &l3->slabs_free) {
2421 spin_unlock_irq(&l3->list_lock);
2422 goto out;
2423 }
2424
2425 slabp = list_entry(p, struct slab, list);
2426 #if DEBUG
2427 BUG_ON(slabp->inuse);
2428 #endif
2429 list_del(&slabp->list);
2430 /*
2431 * Safe to drop the lock. The slab is no longer linked
2432 * to the cache.
2433 */
2434 l3->free_objects -= cache->num;
2435 spin_unlock_irq(&l3->list_lock);
2436 slab_destroy(cache, slabp);
2437 nr_freed++;
2438 }
2439 out:
2440 return nr_freed;
2441 }
2442
2443 static int __cache_shrink(struct kmem_cache *cachep)
2444 {
2445 int ret = 0, i = 0;
2446 struct kmem_list3 *l3;
2447
2448 drain_cpu_caches(cachep);
2449
2450 check_irq_on();
2451 for_each_online_node(i) {
2452 l3 = cachep->nodelists[i];
2453 if (!l3)
2454 continue;
2455
2456 drain_freelist(cachep, l3, l3->free_objects);
2457
2458 ret += !list_empty(&l3->slabs_full) ||
2459 !list_empty(&l3->slabs_partial);
2460 }
2461 return (ret ? 1 : 0);
2462 }
2463
2464 /**
2465 * kmem_cache_shrink - Shrink a cache.
2466 * @cachep: The cache to shrink.
2467 *
2468 * Releases as many slabs as possible for a cache.
2469 * To help debugging, a zero exit status indicates all slabs were released.
2470 */
2471 int kmem_cache_shrink(struct kmem_cache *cachep)
2472 {
2473 BUG_ON(!cachep || in_interrupt());
2474
2475 return __cache_shrink(cachep);
2476 }
2477 EXPORT_SYMBOL(kmem_cache_shrink);
2478
2479 /**
2480 * kmem_cache_destroy - delete a cache
2481 * @cachep: the cache to destroy
2482 *
2483 * Remove a struct kmem_cache object from the slab cache.
2484 *
2485 * It is expected this function will be called by a module when it is
2486 * unloaded. This will remove the cache completely, and avoid a duplicate
2487 * cache being allocated each time a module is loaded and unloaded, if the
2488 * module doesn't have persistent in-kernel storage across loads and unloads.
2489 *
2490 * The cache must be empty before calling this function.
2491 *
2492 * The caller must guarantee that noone will allocate memory from the cache
2493 * during the kmem_cache_destroy().
2494 */
2495 void kmem_cache_destroy(struct kmem_cache *cachep)
2496 {
2497 BUG_ON(!cachep || in_interrupt());
2498
2499 /* Don't let CPUs to come and go */
2500 lock_cpu_hotplug();
2501
2502 /* Find the cache in the chain of caches. */
2503 mutex_lock(&cache_chain_mutex);
2504 /*
2505 * the chain is never empty, cache_cache is never destroyed
2506 */
2507 list_del(&cachep->next);
2508 mutex_unlock(&cache_chain_mutex);
2509
2510 if (__cache_shrink(cachep)) {
2511 slab_error(cachep, "Can't free all objects");
2512 mutex_lock(&cache_chain_mutex);
2513 list_add(&cachep->next, &cache_chain);
2514 mutex_unlock(&cache_chain_mutex);
2515 unlock_cpu_hotplug();
2516 return;
2517 }
2518
2519 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2520 synchronize_rcu();
2521
2522 __kmem_cache_destroy(cachep);
2523 unlock_cpu_hotplug();
2524 }
2525 EXPORT_SYMBOL(kmem_cache_destroy);
2526
2527 /*
2528 * Get the memory for a slab management obj.
2529 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2530 * always come from malloc_sizes caches. The slab descriptor cannot
2531 * come from the same cache which is getting created because,
2532 * when we are searching for an appropriate cache for these
2533 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2534 * If we are creating a malloc_sizes cache here it would not be visible to
2535 * kmem_find_general_cachep till the initialization is complete.
2536 * Hence we cannot have slabp_cache same as the original cache.
2537 */
2538 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2539 int colour_off, gfp_t local_flags,
2540 int nodeid)
2541 {
2542 struct slab *slabp;
2543
2544 if (OFF_SLAB(cachep)) {
2545 /* Slab management obj is off-slab. */
2546 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2547 local_flags, nodeid);
2548 if (!slabp)
2549 return NULL;
2550 } else {
2551 slabp = objp + colour_off;
2552 colour_off += cachep->slab_size;
2553 }
2554 slabp->inuse = 0;
2555 slabp->colouroff = colour_off;
2556 slabp->s_mem = objp + colour_off;
2557 slabp->nodeid = nodeid;
2558 return slabp;
2559 }
2560
2561 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2562 {
2563 return (kmem_bufctl_t *) (slabp + 1);
2564 }
2565
2566 static void cache_init_objs(struct kmem_cache *cachep,
2567 struct slab *slabp, unsigned long ctor_flags)
2568 {
2569 int i;
2570
2571 for (i = 0; i < cachep->num; i++) {
2572 void *objp = index_to_obj(cachep, slabp, i);
2573 #if DEBUG
2574 /* need to poison the objs? */
2575 if (cachep->flags & SLAB_POISON)
2576 poison_obj(cachep, objp, POISON_FREE);
2577 if (cachep->flags & SLAB_STORE_USER)
2578 *dbg_userword(cachep, objp) = NULL;
2579
2580 if (cachep->flags & SLAB_RED_ZONE) {
2581 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2582 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2583 }
2584 /*
2585 * Constructors are not allowed to allocate memory from the same
2586 * cache which they are a constructor for. Otherwise, deadlock.
2587 * They must also be threaded.
2588 */
2589 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2590 cachep->ctor(objp + obj_offset(cachep), cachep,
2591 ctor_flags);
2592
2593 if (cachep->flags & SLAB_RED_ZONE) {
2594 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2595 slab_error(cachep, "constructor overwrote the"
2596 " end of an object");
2597 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2598 slab_error(cachep, "constructor overwrote the"
2599 " start of an object");
2600 }
2601 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2602 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2603 kernel_map_pages(virt_to_page(objp),
2604 cachep->buffer_size / PAGE_SIZE, 0);
2605 #else
2606 if (cachep->ctor)
2607 cachep->ctor(objp, cachep, ctor_flags);
2608 #endif
2609 slab_bufctl(slabp)[i] = i + 1;
2610 }
2611 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2612 slabp->free = 0;
2613 }
2614
2615 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2616 {
2617 if (flags & SLAB_DMA)
2618 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2619 else
2620 BUG_ON(cachep->gfpflags & GFP_DMA);
2621 }
2622
2623 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2624 int nodeid)
2625 {
2626 void *objp = index_to_obj(cachep, slabp, slabp->free);
2627 kmem_bufctl_t next;
2628
2629 slabp->inuse++;
2630 next = slab_bufctl(slabp)[slabp->free];
2631 #if DEBUG
2632 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2633 WARN_ON(slabp->nodeid != nodeid);
2634 #endif
2635 slabp->free = next;
2636
2637 return objp;
2638 }
2639
2640 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2641 void *objp, int nodeid)
2642 {
2643 unsigned int objnr = obj_to_index(cachep, slabp, objp);
2644
2645 #if DEBUG
2646 /* Verify that the slab belongs to the intended node */
2647 WARN_ON(slabp->nodeid != nodeid);
2648
2649 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2650 printk(KERN_ERR "slab: double free detected in cache "
2651 "'%s', objp %p\n", cachep->name, objp);
2652 BUG();
2653 }
2654 #endif
2655 slab_bufctl(slabp)[objnr] = slabp->free;
2656 slabp->free = objnr;
2657 slabp->inuse--;
2658 }
2659
2660 /*
2661 * Map pages beginning at addr to the given cache and slab. This is required
2662 * for the slab allocator to be able to lookup the cache and slab of a
2663 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2664 */
2665 static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2666 void *addr)
2667 {
2668 int nr_pages;
2669 struct page *page;
2670
2671 page = virt_to_page(addr);
2672
2673 nr_pages = 1;
2674 if (likely(!PageCompound(page)))
2675 nr_pages <<= cache->gfporder;
2676
2677 do {
2678 page_set_cache(page, cache);
2679 page_set_slab(page, slab);
2680 page++;
2681 } while (--nr_pages);
2682 }
2683
2684 /*
2685 * Grow (by 1) the number of slabs within a cache. This is called by
2686 * kmem_cache_alloc() when there are no active objs left in a cache.
2687 */
2688 static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
2689 {
2690 struct slab *slabp;
2691 void *objp;
2692 size_t offset;
2693 gfp_t local_flags;
2694 unsigned long ctor_flags;
2695 struct kmem_list3 *l3;
2696
2697 /*
2698 * Be lazy and only check for valid flags here, keeping it out of the
2699 * critical path in kmem_cache_alloc().
2700 */
2701 BUG_ON(flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW));
2702 if (flags & SLAB_NO_GROW)
2703 return 0;
2704
2705 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2706 local_flags = (flags & SLAB_LEVEL_MASK);
2707 if (!(local_flags & __GFP_WAIT))
2708 /*
2709 * Not allowed to sleep. Need to tell a constructor about
2710 * this - it might need to know...
2711 */
2712 ctor_flags |= SLAB_CTOR_ATOMIC;
2713
2714 /* Take the l3 list lock to change the colour_next on this node */
2715 check_irq_off();
2716 l3 = cachep->nodelists[nodeid];
2717 spin_lock(&l3->list_lock);
2718
2719 /* Get colour for the slab, and cal the next value. */
2720 offset = l3->colour_next;
2721 l3->colour_next++;
2722 if (l3->colour_next >= cachep->colour)
2723 l3->colour_next = 0;
2724 spin_unlock(&l3->list_lock);
2725
2726 offset *= cachep->colour_off;
2727
2728 if (local_flags & __GFP_WAIT)
2729 local_irq_enable();
2730
2731 /*
2732 * The test for missing atomic flag is performed here, rather than
2733 * the more obvious place, simply to reduce the critical path length
2734 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2735 * will eventually be caught here (where it matters).
2736 */
2737 kmem_flagcheck(cachep, flags);
2738
2739 /*
2740 * Get mem for the objs. Attempt to allocate a physical page from
2741 * 'nodeid'.
2742 */
2743 objp = kmem_getpages(cachep, flags, nodeid);
2744 if (!objp)
2745 goto failed;
2746
2747 /* Get slab management. */
2748 slabp = alloc_slabmgmt(cachep, objp, offset, local_flags, nodeid);
2749 if (!slabp)
2750 goto opps1;
2751
2752 slabp->nodeid = nodeid;
2753 slab_map_pages(cachep, slabp, objp);
2754
2755 cache_init_objs(cachep, slabp, ctor_flags);
2756
2757 if (local_flags & __GFP_WAIT)
2758 local_irq_disable();
2759 check_irq_off();
2760 spin_lock(&l3->list_lock);
2761
2762 /* Make slab active. */
2763 list_add_tail(&slabp->list, &(l3->slabs_free));
2764 STATS_INC_GROWN(cachep);
2765 l3->free_objects += cachep->num;
2766 spin_unlock(&l3->list_lock);
2767 return 1;
2768 opps1:
2769 kmem_freepages(cachep, objp);
2770 failed:
2771 if (local_flags & __GFP_WAIT)
2772 local_irq_disable();
2773 return 0;
2774 }
2775
2776 #if DEBUG
2777
2778 /*
2779 * Perform extra freeing checks:
2780 * - detect bad pointers.
2781 * - POISON/RED_ZONE checking
2782 * - destructor calls, for caches with POISON+dtor
2783 */
2784 static void kfree_debugcheck(const void *objp)
2785 {
2786 struct page *page;
2787
2788 if (!virt_addr_valid(objp)) {
2789 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2790 (unsigned long)objp);
2791 BUG();
2792 }
2793 page = virt_to_page(objp);
2794 if (!PageSlab(page)) {
2795 printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
2796 (unsigned long)objp);
2797 BUG();
2798 }
2799 }
2800
2801 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2802 {
2803 unsigned long redzone1, redzone2;
2804
2805 redzone1 = *dbg_redzone1(cache, obj);
2806 redzone2 = *dbg_redzone2(cache, obj);
2807
2808 /*
2809 * Redzone is ok.
2810 */
2811 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2812 return;
2813
2814 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2815 slab_error(cache, "double free detected");
2816 else
2817 slab_error(cache, "memory outside object was overwritten");
2818
2819 printk(KERN_ERR "%p: redzone 1:0x%lx, redzone 2:0x%lx.\n",
2820 obj, redzone1, redzone2);
2821 }
2822
2823 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2824 void *caller)
2825 {
2826 struct page *page;
2827 unsigned int objnr;
2828 struct slab *slabp;
2829
2830 objp -= obj_offset(cachep);
2831 kfree_debugcheck(objp);
2832 page = virt_to_page(objp);
2833
2834 slabp = page_get_slab(page);
2835
2836 if (cachep->flags & SLAB_RED_ZONE) {
2837 verify_redzone_free(cachep, objp);
2838 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2839 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2840 }
2841 if (cachep->flags & SLAB_STORE_USER)
2842 *dbg_userword(cachep, objp) = caller;
2843
2844 objnr = obj_to_index(cachep, slabp, objp);
2845
2846 BUG_ON(objnr >= cachep->num);
2847 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2848
2849 if (cachep->flags & SLAB_DEBUG_INITIAL) {
2850 /*
2851 * Need to call the slab's constructor so the caller can
2852 * perform a verify of its state (debugging). Called without
2853 * the cache-lock held.
2854 */
2855 cachep->ctor(objp + obj_offset(cachep),
2856 cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
2857 }
2858 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2859 /* we want to cache poison the object,
2860 * call the destruction callback
2861 */
2862 cachep->dtor(objp + obj_offset(cachep), cachep, 0);
2863 }
2864 #ifdef CONFIG_DEBUG_SLAB_LEAK
2865 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2866 #endif
2867 if (cachep->flags & SLAB_POISON) {
2868 #ifdef CONFIG_DEBUG_PAGEALLOC
2869 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2870 store_stackinfo(cachep, objp, (unsigned long)caller);
2871 kernel_map_pages(virt_to_page(objp),
2872 cachep->buffer_size / PAGE_SIZE, 0);
2873 } else {
2874 poison_obj(cachep, objp, POISON_FREE);
2875 }
2876 #else
2877 poison_obj(cachep, objp, POISON_FREE);
2878 #endif
2879 }
2880 return objp;
2881 }
2882
2883 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2884 {
2885 kmem_bufctl_t i;
2886 int entries = 0;
2887
2888 /* Check slab's freelist to see if this obj is there. */
2889 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2890 entries++;
2891 if (entries > cachep->num || i >= cachep->num)
2892 goto bad;
2893 }
2894 if (entries != cachep->num - slabp->inuse) {
2895 bad:
2896 printk(KERN_ERR "slab: Internal list corruption detected in "
2897 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2898 cachep->name, cachep->num, slabp, slabp->inuse);
2899 for (i = 0;
2900 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
2901 i++) {
2902 if (i % 16 == 0)
2903 printk("\n%03x:", i);
2904 printk(" %02x", ((unsigned char *)slabp)[i]);
2905 }
2906 printk("\n");
2907 BUG();
2908 }
2909 }
2910 #else
2911 #define kfree_debugcheck(x) do { } while(0)
2912 #define cache_free_debugcheck(x,objp,z) (objp)
2913 #define check_slabp(x,y) do { } while(0)
2914 #endif
2915
2916 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2917 {
2918 int batchcount;
2919 struct kmem_list3 *l3;
2920 struct array_cache *ac;
2921
2922 check_irq_off();
2923 ac = cpu_cache_get(cachep);
2924 retry:
2925 batchcount = ac->batchcount;
2926 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2927 /*
2928 * If there was little recent activity on this cache, then
2929 * perform only a partial refill. Otherwise we could generate
2930 * refill bouncing.
2931 */
2932 batchcount = BATCHREFILL_LIMIT;
2933 }
2934 l3 = cachep->nodelists[numa_node_id()];
2935
2936 BUG_ON(ac->avail > 0 || !l3);
2937 spin_lock(&l3->list_lock);
2938
2939 /* See if we can refill from the shared array */
2940 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2941 goto alloc_done;
2942
2943 while (batchcount > 0) {
2944 struct list_head *entry;
2945 struct slab *slabp;
2946 /* Get slab alloc is to come from. */
2947 entry = l3->slabs_partial.next;
2948 if (entry == &l3->slabs_partial) {
2949 l3->free_touched = 1;
2950 entry = l3->slabs_free.next;
2951 if (entry == &l3->slabs_free)
2952 goto must_grow;
2953 }
2954
2955 slabp = list_entry(entry, struct slab, list);
2956 check_slabp(cachep, slabp);
2957 check_spinlock_acquired(cachep);
2958 while (slabp->inuse < cachep->num && batchcount--) {
2959 STATS_INC_ALLOCED(cachep);
2960 STATS_INC_ACTIVE(cachep);
2961 STATS_SET_HIGH(cachep);
2962
2963 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
2964 numa_node_id());
2965 }
2966 check_slabp(cachep, slabp);
2967
2968 /* move slabp to correct slabp list: */
2969 list_del(&slabp->list);
2970 if (slabp->free == BUFCTL_END)
2971 list_add(&slabp->list, &l3->slabs_full);
2972 else
2973 list_add(&slabp->list, &l3->slabs_partial);
2974 }
2975
2976 must_grow:
2977 l3->free_objects -= ac->avail;
2978 alloc_done:
2979 spin_unlock(&l3->list_lock);
2980
2981 if (unlikely(!ac->avail)) {
2982 int x;
2983 x = cache_grow(cachep, flags, numa_node_id());
2984
2985 /* cache_grow can reenable interrupts, then ac could change. */
2986 ac = cpu_cache_get(cachep);
2987 if (!x && ac->avail == 0) /* no objects in sight? abort */
2988 return NULL;
2989
2990 if (!ac->avail) /* objects refilled by interrupt? */
2991 goto retry;
2992 }
2993 ac->touched = 1;
2994 return ac->entry[--ac->avail];
2995 }
2996
2997 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2998 gfp_t flags)
2999 {
3000 might_sleep_if(flags & __GFP_WAIT);
3001 #if DEBUG
3002 kmem_flagcheck(cachep, flags);
3003 #endif
3004 }
3005
3006 #if DEBUG
3007 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3008 gfp_t flags, void *objp, void *caller)
3009 {
3010 if (!objp)
3011 return objp;
3012 if (cachep->flags & SLAB_POISON) {
3013 #ifdef CONFIG_DEBUG_PAGEALLOC
3014 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3015 kernel_map_pages(virt_to_page(objp),
3016 cachep->buffer_size / PAGE_SIZE, 1);
3017 else
3018 check_poison_obj(cachep, objp);
3019 #else
3020 check_poison_obj(cachep, objp);
3021 #endif
3022 poison_obj(cachep, objp, POISON_INUSE);
3023 }
3024 if (cachep->flags & SLAB_STORE_USER)
3025 *dbg_userword(cachep, objp) = caller;
3026
3027 if (cachep->flags & SLAB_RED_ZONE) {
3028 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3029 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3030 slab_error(cachep, "double free, or memory outside"
3031 " object was overwritten");
3032 printk(KERN_ERR
3033 "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
3034 objp, *dbg_redzone1(cachep, objp),
3035 *dbg_redzone2(cachep, objp));
3036 }
3037 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3038 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3039 }
3040 #ifdef CONFIG_DEBUG_SLAB_LEAK
3041 {
3042 struct slab *slabp;
3043 unsigned objnr;
3044
3045 slabp = page_get_slab(virt_to_page(objp));
3046 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3047 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3048 }
3049 #endif
3050 objp += obj_offset(cachep);
3051 if (cachep->ctor && cachep->flags & SLAB_POISON) {
3052 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
3053
3054 if (!(flags & __GFP_WAIT))
3055 ctor_flags |= SLAB_CTOR_ATOMIC;
3056
3057 cachep->ctor(objp, cachep, ctor_flags);
3058 }
3059 return objp;
3060 }
3061 #else
3062 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3063 #endif
3064
3065 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3066 {
3067 void *objp;
3068 struct array_cache *ac;
3069
3070 check_irq_off();
3071 ac = cpu_cache_get(cachep);
3072 if (likely(ac->avail)) {
3073 STATS_INC_ALLOCHIT(cachep);
3074 ac->touched = 1;
3075 objp = ac->entry[--ac->avail];
3076 } else {
3077 STATS_INC_ALLOCMISS(cachep);
3078 objp = cache_alloc_refill(cachep, flags);
3079 }
3080 return objp;
3081 }
3082
3083 static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
3084 gfp_t flags, void *caller)
3085 {
3086 unsigned long save_flags;
3087 void *objp = NULL;
3088
3089 cache_alloc_debugcheck_before(cachep, flags);
3090
3091 local_irq_save(save_flags);
3092
3093 if (unlikely(NUMA_BUILD &&
3094 current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY)))
3095 objp = alternate_node_alloc(cachep, flags);
3096
3097 if (!objp)
3098 objp = ____cache_alloc(cachep, flags);
3099 /*
3100 * We may just have run out of memory on the local node.
3101 * __cache_alloc_node() knows how to locate memory on other nodes
3102 */
3103 if (NUMA_BUILD && !objp)
3104 objp = __cache_alloc_node(cachep, flags, numa_node_id());
3105 local_irq_restore(save_flags);
3106 objp = cache_alloc_debugcheck_after(cachep, flags, objp,
3107 caller);
3108 prefetchw(objp);
3109 return objp;
3110 }
3111
3112 #ifdef CONFIG_NUMA
3113 /*
3114 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3115 *
3116 * If we are in_interrupt, then process context, including cpusets and
3117 * mempolicy, may not apply and should not be used for allocation policy.
3118 */
3119 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3120 {
3121 int nid_alloc, nid_here;
3122
3123 if (in_interrupt() || (flags & __GFP_THISNODE))
3124 return NULL;
3125 nid_alloc = nid_here = numa_node_id();
3126 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3127 nid_alloc = cpuset_mem_spread_node();
3128 else if (current->mempolicy)
3129 nid_alloc = slab_node(current->mempolicy);
3130 if (nid_alloc != nid_here)
3131 return __cache_alloc_node(cachep, flags, nid_alloc);
3132 return NULL;
3133 }
3134
3135 /*
3136 * Fallback function if there was no memory available and no objects on a
3137 * certain node and we are allowed to fall back. We mimick the behavior of
3138 * the page allocator. We fall back according to a zonelist determined by
3139 * the policy layer while obeying cpuset constraints.
3140 */
3141 void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3142 {
3143 struct zonelist *zonelist = &NODE_DATA(slab_node(current->mempolicy))
3144 ->node_zonelists[gfp_zone(flags)];
3145 struct zone **z;
3146 void *obj = NULL;
3147
3148 for (z = zonelist->zones; *z && !obj; z++)
3149 if (zone_idx(*z) <= ZONE_NORMAL &&
3150 cpuset_zone_allowed(*z, flags))
3151 obj = __cache_alloc_node(cache,
3152 flags | __GFP_THISNODE,
3153 zone_to_nid(*z));
3154 return obj;
3155 }
3156
3157 /*
3158 * A interface to enable slab creation on nodeid
3159 */
3160 static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3161 int nodeid)
3162 {
3163 struct list_head *entry;
3164 struct slab *slabp;
3165 struct kmem_list3 *l3;
3166 void *obj;
3167 int x;
3168
3169 l3 = cachep->nodelists[nodeid];
3170 BUG_ON(!l3);
3171
3172 retry:
3173 check_irq_off();
3174 spin_lock(&l3->list_lock);
3175 entry = l3->slabs_partial.next;
3176 if (entry == &l3->slabs_partial) {
3177 l3->free_touched = 1;
3178 entry = l3->slabs_free.next;
3179 if (entry == &l3->slabs_free)
3180 goto must_grow;
3181 }
3182
3183 slabp = list_entry(entry, struct slab, list);
3184 check_spinlock_acquired_node(cachep, nodeid);
3185 check_slabp(cachep, slabp);
3186
3187 STATS_INC_NODEALLOCS(cachep);
3188 STATS_INC_ACTIVE(cachep);
3189 STATS_SET_HIGH(cachep);
3190
3191 BUG_ON(slabp->inuse == cachep->num);
3192
3193 obj = slab_get_obj(cachep, slabp, nodeid);
3194 check_slabp(cachep, slabp);
3195 l3->free_objects--;
3196 /* move slabp to correct slabp list: */
3197 list_del(&slabp->list);
3198
3199 if (slabp->free == BUFCTL_END)
3200 list_add(&slabp->list, &l3->slabs_full);
3201 else
3202 list_add(&slabp->list, &l3->slabs_partial);
3203
3204 spin_unlock(&l3->list_lock);
3205 goto done;
3206
3207 must_grow:
3208 spin_unlock(&l3->list_lock);
3209 x = cache_grow(cachep, flags, nodeid);
3210 if (x)
3211 goto retry;
3212
3213 if (!(flags & __GFP_THISNODE))
3214 /* Unable to grow the cache. Fall back to other nodes. */
3215 return fallback_alloc(cachep, flags);
3216
3217 return NULL;
3218
3219 done:
3220 return obj;
3221 }
3222 #endif
3223
3224 /*
3225 * Caller needs to acquire correct kmem_list's list_lock
3226 */
3227 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3228 int node)
3229 {
3230 int i;
3231 struct kmem_list3 *l3;
3232
3233 for (i = 0; i < nr_objects; i++) {
3234 void *objp = objpp[i];
3235 struct slab *slabp;
3236
3237 slabp = virt_to_slab(objp);
3238 l3 = cachep->nodelists[node];
3239 list_del(&slabp->list);
3240 check_spinlock_acquired_node(cachep, node);
3241 check_slabp(cachep, slabp);
3242 slab_put_obj(cachep, slabp, objp, node);
3243 STATS_DEC_ACTIVE(cachep);
3244 l3->free_objects++;
3245 check_slabp(cachep, slabp);
3246
3247 /* fixup slab chains */
3248 if (slabp->inuse == 0) {
3249 if (l3->free_objects > l3->free_limit) {
3250 l3->free_objects -= cachep->num;
3251 /* No need to drop any previously held
3252 * lock here, even if we have a off-slab slab
3253 * descriptor it is guaranteed to come from
3254 * a different cache, refer to comments before
3255 * alloc_slabmgmt.
3256 */
3257 slab_destroy(cachep, slabp);
3258 } else {
3259 list_add(&slabp->list, &l3->slabs_free);
3260 }
3261 } else {
3262 /* Unconditionally move a slab to the end of the
3263 * partial list on free - maximum time for the
3264 * other objects to be freed, too.
3265 */
3266 list_add_tail(&slabp->list, &l3->slabs_partial);
3267 }
3268 }
3269 }
3270
3271 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3272 {
3273 int batchcount;
3274 struct kmem_list3 *l3;
3275 int node = numa_node_id();
3276
3277 batchcount = ac->batchcount;
3278 #if DEBUG
3279 BUG_ON(!batchcount || batchcount > ac->avail);
3280 #endif
3281 check_irq_off();
3282 l3 = cachep->nodelists[node];
3283 spin_lock(&l3->list_lock);
3284 if (l3->shared) {
3285 struct array_cache *shared_array = l3->shared;
3286 int max = shared_array->limit - shared_array->avail;
3287 if (max) {
3288 if (batchcount > max)
3289 batchcount = max;
3290 memcpy(&(shared_array->entry[shared_array->avail]),
3291 ac->entry, sizeof(void *) * batchcount);
3292 shared_array->avail += batchcount;
3293 goto free_done;
3294 }
3295 }
3296
3297 free_block(cachep, ac->entry, batchcount, node);
3298 free_done:
3299 #if STATS
3300 {
3301 int i = 0;
3302 struct list_head *p;
3303
3304 p = l3->slabs_free.next;
3305 while (p != &(l3->slabs_free)) {
3306 struct slab *slabp;
3307
3308 slabp = list_entry(p, struct slab, list);
3309 BUG_ON(slabp->inuse);
3310
3311 i++;
3312 p = p->next;
3313 }
3314 STATS_SET_FREEABLE(cachep, i);
3315 }
3316 #endif
3317 spin_unlock(&l3->list_lock);
3318 ac->avail -= batchcount;
3319 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3320 }
3321
3322 /*
3323 * Release an obj back to its cache. If the obj has a constructed state, it must
3324 * be in this state _before_ it is released. Called with disabled ints.
3325 */
3326 static inline void __cache_free(struct kmem_cache *cachep, void *objp)
3327 {
3328 struct array_cache *ac = cpu_cache_get(cachep);
3329
3330 check_irq_off();
3331 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3332
3333 if (cache_free_alien(cachep, objp))
3334 return;
3335
3336 if (likely(ac->avail < ac->limit)) {
3337 STATS_INC_FREEHIT(cachep);
3338 ac->entry[ac->avail++] = objp;
3339 return;
3340 } else {
3341 STATS_INC_FREEMISS(cachep);
3342 cache_flusharray(cachep, ac);
3343 ac->entry[ac->avail++] = objp;
3344 }
3345 }
3346
3347 /**
3348 * kmem_cache_alloc - Allocate an object
3349 * @cachep: The cache to allocate from.
3350 * @flags: See kmalloc().
3351 *
3352 * Allocate an object from this cache. The flags are only relevant
3353 * if the cache has no available objects.
3354 */
3355 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3356 {
3357 return __cache_alloc(cachep, flags, __builtin_return_address(0));
3358 }
3359 EXPORT_SYMBOL(kmem_cache_alloc);
3360
3361 /**
3362 * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
3363 * @cache: The cache to allocate from.
3364 * @flags: See kmalloc().
3365 *
3366 * Allocate an object from this cache and set the allocated memory to zero.
3367 * The flags are only relevant if the cache has no available objects.
3368 */
3369 void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
3370 {
3371 void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
3372 if (ret)
3373 memset(ret, 0, obj_size(cache));
3374 return ret;
3375 }
3376 EXPORT_SYMBOL(kmem_cache_zalloc);
3377
3378 /**
3379 * kmem_ptr_validate - check if an untrusted pointer might
3380 * be a slab entry.
3381 * @cachep: the cache we're checking against
3382 * @ptr: pointer to validate
3383 *
3384 * This verifies that the untrusted pointer looks sane:
3385 * it is _not_ a guarantee that the pointer is actually
3386 * part of the slab cache in question, but it at least
3387 * validates that the pointer can be dereferenced and
3388 * looks half-way sane.
3389 *
3390 * Currently only used for dentry validation.
3391 */
3392 int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
3393 {
3394 unsigned long addr = (unsigned long)ptr;
3395 unsigned long min_addr = PAGE_OFFSET;
3396 unsigned long align_mask = BYTES_PER_WORD - 1;
3397 unsigned long size = cachep->buffer_size;
3398 struct page *page;
3399
3400 if (unlikely(addr < min_addr))
3401 goto out;
3402 if (unlikely(addr > (unsigned long)high_memory - size))
3403 goto out;
3404 if (unlikely(addr & align_mask))
3405 goto out;
3406 if (unlikely(!kern_addr_valid(addr)))
3407 goto out;
3408 if (unlikely(!kern_addr_valid(addr + size - 1)))
3409 goto out;
3410 page = virt_to_page(ptr);
3411 if (unlikely(!PageSlab(page)))
3412 goto out;
3413 if (unlikely(page_get_cache(page) != cachep))
3414 goto out;
3415 return 1;
3416 out:
3417 return 0;
3418 }
3419
3420 #ifdef CONFIG_NUMA
3421 /**
3422 * kmem_cache_alloc_node - Allocate an object on the specified node
3423 * @cachep: The cache to allocate from.
3424 * @flags: See kmalloc().
3425 * @nodeid: node number of the target node.
3426 *
3427 * Identical to kmem_cache_alloc, except that this function is slow
3428 * and can sleep. And it will allocate memory on the given node, which
3429 * can improve the performance for cpu bound structures.
3430 * New and improved: it will now make sure that the object gets
3431 * put on the correct node list so that there is no false sharing.
3432 */
3433 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3434 {
3435 unsigned long save_flags;
3436 void *ptr;
3437
3438 cache_alloc_debugcheck_before(cachep, flags);
3439 local_irq_save(save_flags);
3440
3441 if (nodeid == -1 || nodeid == numa_node_id() ||
3442 !cachep->nodelists[nodeid])
3443 ptr = ____cache_alloc(cachep, flags);
3444 else
3445 ptr = __cache_alloc_node(cachep, flags, nodeid);
3446 local_irq_restore(save_flags);
3447
3448 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
3449 __builtin_return_address(0));
3450
3451 return ptr;
3452 }
3453 EXPORT_SYMBOL(kmem_cache_alloc_node);
3454
3455 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3456 {
3457 struct kmem_cache *cachep;
3458
3459 cachep = kmem_find_general_cachep(size, flags);
3460 if (unlikely(cachep == NULL))
3461 return NULL;
3462 return kmem_cache_alloc_node(cachep, flags, node);
3463 }
3464 EXPORT_SYMBOL(__kmalloc_node);
3465 #endif
3466
3467 /**
3468 * __do_kmalloc - allocate memory
3469 * @size: how many bytes of memory are required.
3470 * @flags: the type of memory to allocate (see kmalloc).
3471 * @caller: function caller for debug tracking of the caller
3472 */
3473 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3474 void *caller)
3475 {
3476 struct kmem_cache *cachep;
3477
3478 /* If you want to save a few bytes .text space: replace
3479 * __ with kmem_.
3480 * Then kmalloc uses the uninlined functions instead of the inline
3481 * functions.
3482 */
3483 cachep = __find_general_cachep(size, flags);
3484 if (unlikely(cachep == NULL))
3485 return NULL;
3486 return __cache_alloc(cachep, flags, caller);
3487 }
3488
3489
3490 #ifdef CONFIG_DEBUG_SLAB
3491 void *__kmalloc(size_t size, gfp_t flags)
3492 {
3493 return __do_kmalloc(size, flags, __builtin_return_address(0));
3494 }
3495 EXPORT_SYMBOL(__kmalloc);
3496
3497 void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3498 {
3499 return __do_kmalloc(size, flags, caller);
3500 }
3501 EXPORT_SYMBOL(__kmalloc_track_caller);
3502
3503 #else
3504 void *__kmalloc(size_t size, gfp_t flags)
3505 {
3506 return __do_kmalloc(size, flags, NULL);
3507 }
3508 EXPORT_SYMBOL(__kmalloc);
3509 #endif
3510
3511 /**
3512 * kmem_cache_free - Deallocate an object
3513 * @cachep: The cache the allocation was from.
3514 * @objp: The previously allocated object.
3515 *
3516 * Free an object which was previously allocated from this
3517 * cache.
3518 */
3519 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3520 {
3521 unsigned long flags;
3522
3523 BUG_ON(virt_to_cache(objp) != cachep);
3524
3525 local_irq_save(flags);
3526 __cache_free(cachep, objp);
3527 local_irq_restore(flags);
3528 }
3529 EXPORT_SYMBOL(kmem_cache_free);
3530
3531 /**
3532 * kfree - free previously allocated memory
3533 * @objp: pointer returned by kmalloc.
3534 *
3535 * If @objp is NULL, no operation is performed.
3536 *
3537 * Don't free memory not originally allocated by kmalloc()
3538 * or you will run into trouble.
3539 */
3540 void kfree(const void *objp)
3541 {
3542 struct kmem_cache *c;
3543 unsigned long flags;
3544
3545 if (unlikely(!objp))
3546 return;
3547 local_irq_save(flags);
3548 kfree_debugcheck(objp);
3549 c = virt_to_cache(objp);
3550 debug_check_no_locks_freed(objp, obj_size(c));
3551 __cache_free(c, (void *)objp);
3552 local_irq_restore(flags);
3553 }
3554 EXPORT_SYMBOL(kfree);
3555
3556 unsigned int kmem_cache_size(struct kmem_cache *cachep)
3557 {
3558 return obj_size(cachep);
3559 }
3560 EXPORT_SYMBOL(kmem_cache_size);
3561
3562 const char *kmem_cache_name(struct kmem_cache *cachep)
3563 {
3564 return cachep->name;
3565 }
3566 EXPORT_SYMBOL_GPL(kmem_cache_name);
3567
3568 /*
3569 * This initializes kmem_list3 or resizes varioius caches for all nodes.
3570 */
3571 static int alloc_kmemlist(struct kmem_cache *cachep)
3572 {
3573 int node;
3574 struct kmem_list3 *l3;
3575 struct array_cache *new_shared;
3576 struct array_cache **new_alien;
3577
3578 for_each_online_node(node) {
3579
3580 new_alien = alloc_alien_cache(node, cachep->limit);
3581 if (!new_alien)
3582 goto fail;
3583
3584 new_shared = alloc_arraycache(node,
3585 cachep->shared*cachep->batchcount,
3586 0xbaadf00d);
3587 if (!new_shared) {
3588 free_alien_cache(new_alien);
3589 goto fail;
3590 }
3591
3592 l3 = cachep->nodelists[node];
3593 if (l3) {
3594 struct array_cache *shared = l3->shared;
3595
3596 spin_lock_irq(&l3->list_lock);
3597
3598 if (shared)
3599 free_block(cachep, shared->entry,
3600 shared->avail, node);
3601
3602 l3->shared = new_shared;
3603 if (!l3->alien) {
3604 l3->alien = new_alien;
3605 new_alien = NULL;
3606 }
3607 l3->free_limit = (1 + nr_cpus_node(node)) *
3608 cachep->batchcount + cachep->num;
3609 spin_unlock_irq(&l3->list_lock);
3610 kfree(shared);
3611 free_alien_cache(new_alien);
3612 continue;
3613 }
3614 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3615 if (!l3) {
3616 free_alien_cache(new_alien);
3617 kfree(new_shared);
3618 goto fail;
3619 }
3620
3621 kmem_list3_init(l3);
3622 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3623 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3624 l3->shared = new_shared;
3625 l3->alien = new_alien;
3626 l3->free_limit = (1 + nr_cpus_node(node)) *
3627 cachep->batchcount + cachep->num;
3628 cachep->nodelists[node] = l3;
3629 }
3630 return 0;
3631
3632 fail:
3633 if (!cachep->next.next) {
3634 /* Cache is not active yet. Roll back what we did */
3635 node--;
3636 while (node >= 0) {
3637 if (cachep->nodelists[node]) {
3638 l3 = cachep->nodelists[node];
3639
3640 kfree(l3->shared);
3641 free_alien_cache(l3->alien);
3642 kfree(l3);
3643 cachep->nodelists[node] = NULL;
3644 }
3645 node--;
3646 }
3647 }
3648 return -ENOMEM;
3649 }
3650
3651 struct ccupdate_struct {
3652 struct kmem_cache *cachep;
3653 struct array_cache *new[NR_CPUS];
3654 };
3655
3656 static void do_ccupdate_local(void *info)
3657 {
3658 struct ccupdate_struct *new = info;
3659 struct array_cache *old;
3660
3661 check_irq_off();
3662 old = cpu_cache_get(new->cachep);
3663
3664 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3665 new->new[smp_processor_id()] = old;
3666 }
3667
3668 /* Always called with the cache_chain_mutex held */
3669 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3670 int batchcount, int shared)
3671 {
3672 struct ccupdate_struct *new;
3673 int i;
3674
3675 new = kzalloc(sizeof(*new), GFP_KERNEL);
3676 if (!new)
3677 return -ENOMEM;
3678
3679 for_each_online_cpu(i) {
3680 new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
3681 batchcount);
3682 if (!new->new[i]) {
3683 for (i--; i >= 0; i--)
3684 kfree(new->new[i]);
3685 kfree(new);
3686 return -ENOMEM;
3687 }
3688 }
3689 new->cachep = cachep;
3690
3691 on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
3692
3693 check_irq_on();
3694 cachep->batchcount = batchcount;
3695 cachep->limit = limit;
3696 cachep->shared = shared;
3697
3698 for_each_online_cpu(i) {
3699 struct array_cache *ccold = new->new[i];
3700 if (!ccold)
3701 continue;
3702 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3703 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3704 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3705 kfree(ccold);
3706 }
3707 kfree(new);
3708 return alloc_kmemlist(cachep);
3709 }
3710
3711 /* Called with cache_chain_mutex held always */
3712 static int enable_cpucache(struct kmem_cache *cachep)
3713 {
3714 int err;
3715 int limit, shared;
3716
3717 /*
3718 * The head array serves three purposes:
3719 * - create a LIFO ordering, i.e. return objects that are cache-warm
3720 * - reduce the number of spinlock operations.
3721 * - reduce the number of linked list operations on the slab and
3722 * bufctl chains: array operations are cheaper.
3723 * The numbers are guessed, we should auto-tune as described by
3724 * Bonwick.
3725 */
3726 if (cachep->buffer_size > 131072)
3727 limit = 1;
3728 else if (cachep->buffer_size > PAGE_SIZE)
3729 limit = 8;
3730 else if (cachep->buffer_size > 1024)
3731 limit = 24;
3732 else if (cachep->buffer_size > 256)
3733 limit = 54;
3734 else
3735 limit = 120;
3736
3737 /*
3738 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3739 * allocation behaviour: Most allocs on one cpu, most free operations
3740 * on another cpu. For these cases, an efficient object passing between
3741 * cpus is necessary. This is provided by a shared array. The array
3742 * replaces Bonwick's magazine layer.
3743 * On uniprocessor, it's functionally equivalent (but less efficient)
3744 * to a larger limit. Thus disabled by default.
3745 */
3746 shared = 0;
3747 #ifdef CONFIG_SMP
3748 if (cachep->buffer_size <= PAGE_SIZE)
3749 shared = 8;
3750 #endif
3751
3752 #if DEBUG
3753 /*
3754 * With debugging enabled, large batchcount lead to excessively long
3755 * periods with disabled local interrupts. Limit the batchcount
3756 */
3757 if (limit > 32)
3758 limit = 32;
3759 #endif
3760 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
3761 if (err)
3762 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3763 cachep->name, -err);
3764 return err;
3765 }
3766
3767 /*
3768 * Drain an array if it contains any elements taking the l3 lock only if
3769 * necessary. Note that the l3 listlock also protects the array_cache
3770 * if drain_array() is used on the shared array.
3771 */
3772 void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
3773 struct array_cache *ac, int force, int node)
3774 {
3775 int tofree;
3776
3777 if (!ac || !ac->avail)
3778 return;
3779 if (ac->touched && !force) {
3780 ac->touched = 0;
3781 } else {
3782 spin_lock_irq(&l3->list_lock);
3783 if (ac->avail) {
3784 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3785 if (tofree > ac->avail)
3786 tofree = (ac->avail + 1) / 2;
3787 free_block(cachep, ac->entry, tofree, node);
3788 ac->avail -= tofree;
3789 memmove(ac->entry, &(ac->entry[tofree]),
3790 sizeof(void *) * ac->avail);
3791 }
3792 spin_unlock_irq(&l3->list_lock);
3793 }
3794 }
3795
3796 /**
3797 * cache_reap - Reclaim memory from caches.
3798 * @unused: unused parameter
3799 *
3800 * Called from workqueue/eventd every few seconds.
3801 * Purpose:
3802 * - clear the per-cpu caches for this CPU.
3803 * - return freeable pages to the main free memory pool.
3804 *
3805 * If we cannot acquire the cache chain mutex then just give up - we'll try
3806 * again on the next iteration.
3807 */
3808 static void cache_reap(void *unused)
3809 {
3810 struct kmem_cache *searchp;
3811 struct kmem_list3 *l3;
3812 int node = numa_node_id();
3813
3814 if (!mutex_trylock(&cache_chain_mutex)) {
3815 /* Give up. Setup the next iteration. */
3816 schedule_delayed_work(&__get_cpu_var(reap_work),
3817 REAPTIMEOUT_CPUC);
3818 return;
3819 }
3820
3821 list_for_each_entry(searchp, &cache_chain, next) {
3822 check_irq_on();
3823
3824 /*
3825 * We only take the l3 lock if absolutely necessary and we
3826 * have established with reasonable certainty that
3827 * we can do some work if the lock was obtained.
3828 */
3829 l3 = searchp->nodelists[node];
3830
3831 reap_alien(searchp, l3);
3832
3833 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
3834
3835 /*
3836 * These are racy checks but it does not matter
3837 * if we skip one check or scan twice.
3838 */
3839 if (time_after(l3->next_reap, jiffies))
3840 goto next;
3841
3842 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
3843
3844 drain_array(searchp, l3, l3->shared, 0, node);
3845
3846 if (l3->free_touched)
3847 l3->free_touched = 0;
3848 else {
3849 int freed;
3850
3851 freed = drain_freelist(searchp, l3, (l3->free_limit +
3852 5 * searchp->num - 1) / (5 * searchp->num));
3853 STATS_ADD_REAPED(searchp, freed);
3854 }
3855 next:
3856 cond_resched();
3857 }
3858 check_irq_on();
3859 mutex_unlock(&cache_chain_mutex);
3860 next_reap_node();
3861 refresh_cpu_vm_stats(smp_processor_id());
3862 /* Set up the next iteration */
3863 schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
3864 }
3865
3866 #ifdef CONFIG_PROC_FS
3867
3868 static void print_slabinfo_header(struct seq_file *m)
3869 {
3870 /*
3871 * Output format version, so at least we can change it
3872 * without _too_ many complaints.
3873 */
3874 #if STATS
3875 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
3876 #else
3877 seq_puts(m, "slabinfo - version: 2.1\n");
3878 #endif
3879 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
3880 "<objperslab> <pagesperslab>");
3881 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
3882 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
3883 #if STATS
3884 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
3885 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
3886 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
3887 #endif
3888 seq_putc(m, '\n');
3889 }
3890
3891 static void *s_start(struct seq_file *m, loff_t *pos)
3892 {
3893 loff_t n = *pos;
3894 struct list_head *p;
3895
3896 mutex_lock(&cache_chain_mutex);
3897 if (!n)
3898 print_slabinfo_header(m);
3899 p = cache_chain.next;
3900 while (n--) {
3901 p = p->next;
3902 if (p == &cache_chain)
3903 return NULL;
3904 }
3905 return list_entry(p, struct kmem_cache, next);
3906 }
3907
3908 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3909 {
3910 struct kmem_cache *cachep = p;
3911 ++*pos;
3912 return cachep->next.next == &cache_chain ?
3913 NULL : list_entry(cachep->next.next, struct kmem_cache, next);
3914 }
3915
3916 static void s_stop(struct seq_file *m, void *p)
3917 {
3918 mutex_unlock(&cache_chain_mutex);
3919 }
3920
3921 static int s_show(struct seq_file *m, void *p)
3922 {
3923 struct kmem_cache *cachep = p;
3924 struct slab *slabp;
3925 unsigned long active_objs;
3926 unsigned long num_objs;
3927 unsigned long active_slabs = 0;
3928 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3929 const char *name;
3930 char *error = NULL;
3931 int node;
3932 struct kmem_list3 *l3;
3933
3934 active_objs = 0;
3935 num_slabs = 0;
3936 for_each_online_node(node) {
3937 l3 = cachep->nodelists[node];
3938 if (!l3)
3939 continue;
3940
3941 check_irq_on();
3942 spin_lock_irq(&l3->list_lock);
3943
3944 list_for_each_entry(slabp, &l3->slabs_full, list) {
3945 if (slabp->inuse != cachep->num && !error)
3946 error = "slabs_full accounting error";
3947 active_objs += cachep->num;
3948 active_slabs++;
3949 }
3950 list_for_each_entry(slabp, &l3->slabs_partial, list) {
3951 if (slabp->inuse == cachep->num && !error)
3952 error = "slabs_partial inuse accounting error";
3953 if (!slabp->inuse && !error)
3954 error = "slabs_partial/inuse accounting error";
3955 active_objs += slabp->inuse;
3956 active_slabs++;
3957 }
3958 list_for_each_entry(slabp, &l3->slabs_free, list) {
3959 if (slabp->inuse && !error)
3960 error = "slabs_free/inuse accounting error";
3961 num_slabs++;
3962 }
3963 free_objects += l3->free_objects;
3964 if (l3->shared)
3965 shared_avail += l3->shared->avail;
3966
3967 spin_unlock_irq(&l3->list_lock);
3968 }
3969 num_slabs += active_slabs;
3970 num_objs = num_slabs * cachep->num;
3971 if (num_objs - active_objs != free_objects && !error)
3972 error = "free_objects accounting error";
3973
3974 name = cachep->name;
3975 if (error)
3976 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3977
3978 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3979 name, active_objs, num_objs, cachep->buffer_size,
3980 cachep->num, (1 << cachep->gfporder));
3981 seq_printf(m, " : tunables %4u %4u %4u",
3982 cachep->limit, cachep->batchcount, cachep->shared);
3983 seq_printf(m, " : slabdata %6lu %6lu %6lu",
3984 active_slabs, num_slabs, shared_avail);
3985 #if STATS
3986 { /* list3 stats */
3987 unsigned long high = cachep->high_mark;
3988 unsigned long allocs = cachep->num_allocations;
3989 unsigned long grown = cachep->grown;
3990 unsigned long reaped = cachep->reaped;
3991 unsigned long errors = cachep->errors;
3992 unsigned long max_freeable = cachep->max_freeable;
3993 unsigned long node_allocs = cachep->node_allocs;
3994 unsigned long node_frees = cachep->node_frees;
3995 unsigned long overflows = cachep->node_overflow;
3996
3997 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
3998 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
3999 reaped, errors, max_freeable, node_allocs,
4000 node_frees, overflows);
4001 }
4002 /* cpu stats */
4003 {
4004 unsigned long allochit = atomic_read(&cachep->allochit);
4005 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4006 unsigned long freehit = atomic_read(&cachep->freehit);
4007 unsigned long freemiss = atomic_read(&cachep->freemiss);
4008
4009 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4010 allochit, allocmiss, freehit, freemiss);
4011 }
4012 #endif
4013 seq_putc(m, '\n');
4014 return 0;
4015 }
4016
4017 /*
4018 * slabinfo_op - iterator that generates /proc/slabinfo
4019 *
4020 * Output layout:
4021 * cache-name
4022 * num-active-objs
4023 * total-objs
4024 * object size
4025 * num-active-slabs
4026 * total-slabs
4027 * num-pages-per-slab
4028 * + further values on SMP and with statistics enabled
4029 */
4030
4031 struct seq_operations slabinfo_op = {
4032 .start = s_start,
4033 .next = s_next,
4034 .stop = s_stop,
4035 .show = s_show,
4036 };
4037
4038 #define MAX_SLABINFO_WRITE 128
4039 /**
4040 * slabinfo_write - Tuning for the slab allocator
4041 * @file: unused
4042 * @buffer: user buffer
4043 * @count: data length
4044 * @ppos: unused
4045 */
4046 ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4047 size_t count, loff_t *ppos)
4048 {
4049 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4050 int limit, batchcount, shared, res;
4051 struct kmem_cache *cachep;
4052
4053 if (count > MAX_SLABINFO_WRITE)
4054 return -EINVAL;
4055 if (copy_from_user(&kbuf, buffer, count))
4056 return -EFAULT;
4057 kbuf[MAX_SLABINFO_WRITE] = '\0';
4058
4059 tmp = strchr(kbuf, ' ');
4060 if (!tmp)
4061 return -EINVAL;
4062 *tmp = '\0';
4063 tmp++;
4064 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4065 return -EINVAL;
4066
4067 /* Find the cache in the chain of caches. */
4068 mutex_lock(&cache_chain_mutex);
4069 res = -EINVAL;
4070 list_for_each_entry(cachep, &cache_chain, next) {
4071 if (!strcmp(cachep->name, kbuf)) {
4072 if (limit < 1 || batchcount < 1 ||
4073 batchcount > limit || shared < 0) {
4074 res = 0;
4075 } else {
4076 res = do_tune_cpucache(cachep, limit,
4077 batchcount, shared);
4078 }
4079 break;
4080 }
4081 }
4082 mutex_unlock(&cache_chain_mutex);
4083 if (res >= 0)
4084 res = count;
4085 return res;
4086 }
4087
4088 #ifdef CONFIG_DEBUG_SLAB_LEAK
4089
4090 static void *leaks_start(struct seq_file *m, loff_t *pos)
4091 {
4092 loff_t n = *pos;
4093 struct list_head *p;
4094
4095 mutex_lock(&cache_chain_mutex);
4096 p = cache_chain.next;
4097 while (n--) {
4098 p = p->next;
4099 if (p == &cache_chain)
4100 return NULL;
4101 }
4102 return list_entry(p, struct kmem_cache, next);
4103 }
4104
4105 static inline int add_caller(unsigned long *n, unsigned long v)
4106 {
4107 unsigned long *p;
4108 int l;
4109 if (!v)
4110 return 1;
4111 l = n[1];
4112 p = n + 2;
4113 while (l) {
4114 int i = l/2;
4115 unsigned long *q = p + 2 * i;
4116 if (*q == v) {
4117 q[1]++;
4118 return 1;
4119 }
4120 if (*q > v) {
4121 l = i;
4122 } else {
4123 p = q + 2;
4124 l -= i + 1;
4125 }
4126 }
4127 if (++n[1] == n[0])
4128 return 0;
4129 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4130 p[0] = v;
4131 p[1] = 1;
4132 return 1;
4133 }
4134
4135 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4136 {
4137 void *p;
4138 int i;
4139 if (n[0] == n[1])
4140 return;
4141 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4142 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4143 continue;
4144 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4145 return;
4146 }
4147 }
4148
4149 static void show_symbol(struct seq_file *m, unsigned long address)
4150 {
4151 #ifdef CONFIG_KALLSYMS
4152 char *modname;
4153 const char *name;
4154 unsigned long offset, size;
4155 char namebuf[KSYM_NAME_LEN+1];
4156
4157 name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);
4158
4159 if (name) {
4160 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4161 if (modname)
4162 seq_printf(m, " [%s]", modname);
4163 return;
4164 }
4165 #endif
4166 seq_printf(m, "%p", (void *)address);
4167 }
4168
4169 static int leaks_show(struct seq_file *m, void *p)
4170 {
4171 struct kmem_cache *cachep = p;
4172 struct slab *slabp;
4173 struct kmem_list3 *l3;
4174 const char *name;
4175 unsigned long *n = m->private;
4176 int node;
4177 int i;
4178
4179 if (!(cachep->flags & SLAB_STORE_USER))
4180 return 0;
4181 if (!(cachep->flags & SLAB_RED_ZONE))
4182 return 0;
4183
4184 /* OK, we can do it */
4185
4186 n[1] = 0;
4187
4188 for_each_online_node(node) {
4189 l3 = cachep->nodelists[node];
4190 if (!l3)
4191 continue;
4192
4193 check_irq_on();
4194 spin_lock_irq(&l3->list_lock);
4195
4196 list_for_each_entry(slabp, &l3->slabs_full, list)
4197 handle_slab(n, cachep, slabp);
4198 list_for_each_entry(slabp, &l3->slabs_partial, list)
4199 handle_slab(n, cachep, slabp);
4200 spin_unlock_irq(&l3->list_lock);
4201 }
4202 name = cachep->name;
4203 if (n[0] == n[1]) {
4204 /* Increase the buffer size */
4205 mutex_unlock(&cache_chain_mutex);
4206 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4207 if (!m->private) {
4208 /* Too bad, we are really out */
4209 m->private = n;
4210 mutex_lock(&cache_chain_mutex);
4211 return -ENOMEM;
4212 }
4213 *(unsigned long *)m->private = n[0] * 2;
4214 kfree(n);
4215 mutex_lock(&cache_chain_mutex);
4216 /* Now make sure this entry will be retried */
4217 m->count = m->size;
4218 return 0;
4219 }
4220 for (i = 0; i < n[1]; i++) {
4221 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4222 show_symbol(m, n[2*i+2]);
4223 seq_putc(m, '\n');
4224 }
4225
4226 return 0;
4227 }
4228
4229 struct seq_operations slabstats_op = {
4230 .start = leaks_start,
4231 .next = s_next,
4232 .stop = s_stop,
4233 .show = leaks_show,
4234 };
4235 #endif
4236 #endif
4237
4238 /**
4239 * ksize - get the actual amount of memory allocated for a given object
4240 * @objp: Pointer to the object
4241 *
4242 * kmalloc may internally round up allocations and return more memory
4243 * than requested. ksize() can be used to determine the actual amount of
4244 * memory allocated. The caller may use this additional memory, even though
4245 * a smaller amount of memory was initially specified with the kmalloc call.
4246 * The caller must guarantee that objp points to a valid object previously
4247 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4248 * must not be freed during the duration of the call.
4249 */
4250 unsigned int ksize(const void *objp)
4251 {
4252 if (unlikely(objp == NULL))
4253 return 0;
4254
4255 return obj_size(virt_to_cache(objp));
4256 }
This page took 0.22117 seconds and 5 git commands to generate.