mm/slab: fix the theoretical race by holding proper lock
[deliverable/linux.git] / mm / slab.c
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'slab_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
87 */
88
89 #include <linux/slab.h>
90 #include <linux/mm.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/notifier.h>
101 #include <linux/kallsyms.h>
102 #include <linux/cpu.h>
103 #include <linux/sysctl.h>
104 #include <linux/module.h>
105 #include <linux/rcupdate.h>
106 #include <linux/string.h>
107 #include <linux/uaccess.h>
108 #include <linux/nodemask.h>
109 #include <linux/kmemleak.h>
110 #include <linux/mempolicy.h>
111 #include <linux/mutex.h>
112 #include <linux/fault-inject.h>
113 #include <linux/rtmutex.h>
114 #include <linux/reciprocal_div.h>
115 #include <linux/debugobjects.h>
116 #include <linux/kmemcheck.h>
117 #include <linux/memory.h>
118 #include <linux/prefetch.h>
119
120 #include <net/sock.h>
121
122 #include <asm/cacheflush.h>
123 #include <asm/tlbflush.h>
124 #include <asm/page.h>
125
126 #include <trace/events/kmem.h>
127
128 #include "internal.h"
129
130 #include "slab.h"
131
132 /*
133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
134 * 0 for faster, smaller code (especially in the critical paths).
135 *
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
138 *
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140 */
141
142 #ifdef CONFIG_DEBUG_SLAB
143 #define DEBUG 1
144 #define STATS 1
145 #define FORCED_DEBUG 1
146 #else
147 #define DEBUG 0
148 #define STATS 0
149 #define FORCED_DEBUG 0
150 #endif
151
152 /* Shouldn't this be in a header file somewhere? */
153 #define BYTES_PER_WORD sizeof(void *)
154 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
155
156 #ifndef ARCH_KMALLOC_FLAGS
157 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158 #endif
159
160 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
162
163 #if FREELIST_BYTE_INDEX
164 typedef unsigned char freelist_idx_t;
165 #else
166 typedef unsigned short freelist_idx_t;
167 #endif
168
169 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
170
171 /*
172 * struct array_cache
173 *
174 * Purpose:
175 * - LIFO ordering, to hand out cache-warm objects from _alloc
176 * - reduce the number of linked list operations
177 * - reduce spinlock operations
178 *
179 * The limit is stored in the per-cpu structure to reduce the data cache
180 * footprint.
181 *
182 */
183 struct array_cache {
184 unsigned int avail;
185 unsigned int limit;
186 unsigned int batchcount;
187 unsigned int touched;
188 void *entry[]; /*
189 * Must have this definition in here for the proper
190 * alignment of array_cache. Also simplifies accessing
191 * the entries.
192 */
193 };
194
195 struct alien_cache {
196 spinlock_t lock;
197 struct array_cache ac;
198 };
199
200 /*
201 * Need this for bootstrapping a per node allocator.
202 */
203 #define NUM_INIT_LISTS (2 * MAX_NUMNODES)
204 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
205 #define CACHE_CACHE 0
206 #define SIZE_NODE (MAX_NUMNODES)
207
208 static int drain_freelist(struct kmem_cache *cache,
209 struct kmem_cache_node *n, int tofree);
210 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
211 int node, struct list_head *list);
212 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
213 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
214 static void cache_reap(struct work_struct *unused);
215
216 static int slab_early_init = 1;
217
218 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
219
220 static void kmem_cache_node_init(struct kmem_cache_node *parent)
221 {
222 INIT_LIST_HEAD(&parent->slabs_full);
223 INIT_LIST_HEAD(&parent->slabs_partial);
224 INIT_LIST_HEAD(&parent->slabs_free);
225 parent->shared = NULL;
226 parent->alien = NULL;
227 parent->colour_next = 0;
228 spin_lock_init(&parent->list_lock);
229 parent->free_objects = 0;
230 parent->free_touched = 0;
231 }
232
233 #define MAKE_LIST(cachep, listp, slab, nodeid) \
234 do { \
235 INIT_LIST_HEAD(listp); \
236 list_splice(&get_node(cachep, nodeid)->slab, listp); \
237 } while (0)
238
239 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
240 do { \
241 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
242 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
243 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
244 } while (0)
245
246 #define CFLGS_OBJFREELIST_SLAB (0x40000000UL)
247 #define CFLGS_OFF_SLAB (0x80000000UL)
248 #define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB)
249 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
250
251 #define BATCHREFILL_LIMIT 16
252 /*
253 * Optimization question: fewer reaps means less probability for unnessary
254 * cpucache drain/refill cycles.
255 *
256 * OTOH the cpuarrays can contain lots of objects,
257 * which could lock up otherwise freeable slabs.
258 */
259 #define REAPTIMEOUT_AC (2*HZ)
260 #define REAPTIMEOUT_NODE (4*HZ)
261
262 #if STATS
263 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
264 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
265 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
266 #define STATS_INC_GROWN(x) ((x)->grown++)
267 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
268 #define STATS_SET_HIGH(x) \
269 do { \
270 if ((x)->num_active > (x)->high_mark) \
271 (x)->high_mark = (x)->num_active; \
272 } while (0)
273 #define STATS_INC_ERR(x) ((x)->errors++)
274 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
275 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
276 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
277 #define STATS_SET_FREEABLE(x, i) \
278 do { \
279 if ((x)->max_freeable < i) \
280 (x)->max_freeable = i; \
281 } while (0)
282 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
283 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
284 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
285 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
286 #else
287 #define STATS_INC_ACTIVE(x) do { } while (0)
288 #define STATS_DEC_ACTIVE(x) do { } while (0)
289 #define STATS_INC_ALLOCED(x) do { } while (0)
290 #define STATS_INC_GROWN(x) do { } while (0)
291 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
292 #define STATS_SET_HIGH(x) do { } while (0)
293 #define STATS_INC_ERR(x) do { } while (0)
294 #define STATS_INC_NODEALLOCS(x) do { } while (0)
295 #define STATS_INC_NODEFREES(x) do { } while (0)
296 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
297 #define STATS_SET_FREEABLE(x, i) do { } while (0)
298 #define STATS_INC_ALLOCHIT(x) do { } while (0)
299 #define STATS_INC_ALLOCMISS(x) do { } while (0)
300 #define STATS_INC_FREEHIT(x) do { } while (0)
301 #define STATS_INC_FREEMISS(x) do { } while (0)
302 #endif
303
304 #if DEBUG
305
306 /*
307 * memory layout of objects:
308 * 0 : objp
309 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
310 * the end of an object is aligned with the end of the real
311 * allocation. Catches writes behind the end of the allocation.
312 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
313 * redzone word.
314 * cachep->obj_offset: The real object.
315 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
316 * cachep->size - 1* BYTES_PER_WORD: last caller address
317 * [BYTES_PER_WORD long]
318 */
319 static int obj_offset(struct kmem_cache *cachep)
320 {
321 return cachep->obj_offset;
322 }
323
324 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
325 {
326 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
327 return (unsigned long long*) (objp + obj_offset(cachep) -
328 sizeof(unsigned long long));
329 }
330
331 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
332 {
333 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
334 if (cachep->flags & SLAB_STORE_USER)
335 return (unsigned long long *)(objp + cachep->size -
336 sizeof(unsigned long long) -
337 REDZONE_ALIGN);
338 return (unsigned long long *) (objp + cachep->size -
339 sizeof(unsigned long long));
340 }
341
342 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
343 {
344 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
345 return (void **)(objp + cachep->size - BYTES_PER_WORD);
346 }
347
348 #else
349
350 #define obj_offset(x) 0
351 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
352 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
353 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
354
355 #endif
356
357 #ifdef CONFIG_DEBUG_SLAB_LEAK
358
359 static inline bool is_store_user_clean(struct kmem_cache *cachep)
360 {
361 return atomic_read(&cachep->store_user_clean) == 1;
362 }
363
364 static inline void set_store_user_clean(struct kmem_cache *cachep)
365 {
366 atomic_set(&cachep->store_user_clean, 1);
367 }
368
369 static inline void set_store_user_dirty(struct kmem_cache *cachep)
370 {
371 if (is_store_user_clean(cachep))
372 atomic_set(&cachep->store_user_clean, 0);
373 }
374
375 #else
376 static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
377
378 #endif
379
380 /*
381 * Do not go above this order unless 0 objects fit into the slab or
382 * overridden on the command line.
383 */
384 #define SLAB_MAX_ORDER_HI 1
385 #define SLAB_MAX_ORDER_LO 0
386 static int slab_max_order = SLAB_MAX_ORDER_LO;
387 static bool slab_max_order_set __initdata;
388
389 static inline struct kmem_cache *virt_to_cache(const void *obj)
390 {
391 struct page *page = virt_to_head_page(obj);
392 return page->slab_cache;
393 }
394
395 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
396 unsigned int idx)
397 {
398 return page->s_mem + cache->size * idx;
399 }
400
401 /*
402 * We want to avoid an expensive divide : (offset / cache->size)
403 * Using the fact that size is a constant for a particular cache,
404 * we can replace (offset / cache->size) by
405 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
406 */
407 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
408 const struct page *page, void *obj)
409 {
410 u32 offset = (obj - page->s_mem);
411 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
412 }
413
414 #define BOOT_CPUCACHE_ENTRIES 1
415 /* internal cache of cache description objs */
416 static struct kmem_cache kmem_cache_boot = {
417 .batchcount = 1,
418 .limit = BOOT_CPUCACHE_ENTRIES,
419 .shared = 1,
420 .size = sizeof(struct kmem_cache),
421 .name = "kmem_cache",
422 };
423
424 #define BAD_ALIEN_MAGIC 0x01020304ul
425
426 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
427
428 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
429 {
430 return this_cpu_ptr(cachep->cpu_cache);
431 }
432
433 /*
434 * Calculate the number of objects and left-over bytes for a given buffer size.
435 */
436 static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
437 unsigned long flags, size_t *left_over)
438 {
439 unsigned int num;
440 size_t slab_size = PAGE_SIZE << gfporder;
441
442 /*
443 * The slab management structure can be either off the slab or
444 * on it. For the latter case, the memory allocated for a
445 * slab is used for:
446 *
447 * - @buffer_size bytes for each object
448 * - One freelist_idx_t for each object
449 *
450 * We don't need to consider alignment of freelist because
451 * freelist will be at the end of slab page. The objects will be
452 * at the correct alignment.
453 *
454 * If the slab management structure is off the slab, then the
455 * alignment will already be calculated into the size. Because
456 * the slabs are all pages aligned, the objects will be at the
457 * correct alignment when allocated.
458 */
459 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
460 num = slab_size / buffer_size;
461 *left_over = slab_size % buffer_size;
462 } else {
463 num = slab_size / (buffer_size + sizeof(freelist_idx_t));
464 *left_over = slab_size %
465 (buffer_size + sizeof(freelist_idx_t));
466 }
467
468 return num;
469 }
470
471 #if DEBUG
472 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
473
474 static void __slab_error(const char *function, struct kmem_cache *cachep,
475 char *msg)
476 {
477 pr_err("slab error in %s(): cache `%s': %s\n",
478 function, cachep->name, msg);
479 dump_stack();
480 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
481 }
482 #endif
483
484 /*
485 * By default on NUMA we use alien caches to stage the freeing of
486 * objects allocated from other nodes. This causes massive memory
487 * inefficiencies when using fake NUMA setup to split memory into a
488 * large number of small nodes, so it can be disabled on the command
489 * line
490 */
491
492 static int use_alien_caches __read_mostly = 1;
493 static int __init noaliencache_setup(char *s)
494 {
495 use_alien_caches = 0;
496 return 1;
497 }
498 __setup("noaliencache", noaliencache_setup);
499
500 static int __init slab_max_order_setup(char *str)
501 {
502 get_option(&str, &slab_max_order);
503 slab_max_order = slab_max_order < 0 ? 0 :
504 min(slab_max_order, MAX_ORDER - 1);
505 slab_max_order_set = true;
506
507 return 1;
508 }
509 __setup("slab_max_order=", slab_max_order_setup);
510
511 #ifdef CONFIG_NUMA
512 /*
513 * Special reaping functions for NUMA systems called from cache_reap().
514 * These take care of doing round robin flushing of alien caches (containing
515 * objects freed on different nodes from which they were allocated) and the
516 * flushing of remote pcps by calling drain_node_pages.
517 */
518 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
519
520 static void init_reap_node(int cpu)
521 {
522 int node;
523
524 node = next_node(cpu_to_mem(cpu), node_online_map);
525 if (node == MAX_NUMNODES)
526 node = first_node(node_online_map);
527
528 per_cpu(slab_reap_node, cpu) = node;
529 }
530
531 static void next_reap_node(void)
532 {
533 int node = __this_cpu_read(slab_reap_node);
534
535 node = next_node(node, node_online_map);
536 if (unlikely(node >= MAX_NUMNODES))
537 node = first_node(node_online_map);
538 __this_cpu_write(slab_reap_node, node);
539 }
540
541 #else
542 #define init_reap_node(cpu) do { } while (0)
543 #define next_reap_node(void) do { } while (0)
544 #endif
545
546 /*
547 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
548 * via the workqueue/eventd.
549 * Add the CPU number into the expiration time to minimize the possibility of
550 * the CPUs getting into lockstep and contending for the global cache chain
551 * lock.
552 */
553 static void start_cpu_timer(int cpu)
554 {
555 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
556
557 /*
558 * When this gets called from do_initcalls via cpucache_init(),
559 * init_workqueues() has already run, so keventd will be setup
560 * at that time.
561 */
562 if (keventd_up() && reap_work->work.func == NULL) {
563 init_reap_node(cpu);
564 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
565 schedule_delayed_work_on(cpu, reap_work,
566 __round_jiffies_relative(HZ, cpu));
567 }
568 }
569
570 static void init_arraycache(struct array_cache *ac, int limit, int batch)
571 {
572 /*
573 * The array_cache structures contain pointers to free object.
574 * However, when such objects are allocated or transferred to another
575 * cache the pointers are not cleared and they could be counted as
576 * valid references during a kmemleak scan. Therefore, kmemleak must
577 * not scan such objects.
578 */
579 kmemleak_no_scan(ac);
580 if (ac) {
581 ac->avail = 0;
582 ac->limit = limit;
583 ac->batchcount = batch;
584 ac->touched = 0;
585 }
586 }
587
588 static struct array_cache *alloc_arraycache(int node, int entries,
589 int batchcount, gfp_t gfp)
590 {
591 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
592 struct array_cache *ac = NULL;
593
594 ac = kmalloc_node(memsize, gfp, node);
595 init_arraycache(ac, entries, batchcount);
596 return ac;
597 }
598
599 static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
600 struct page *page, void *objp)
601 {
602 struct kmem_cache_node *n;
603 int page_node;
604 LIST_HEAD(list);
605
606 page_node = page_to_nid(page);
607 n = get_node(cachep, page_node);
608
609 spin_lock(&n->list_lock);
610 free_block(cachep, &objp, 1, page_node, &list);
611 spin_unlock(&n->list_lock);
612
613 slabs_destroy(cachep, &list);
614 }
615
616 /*
617 * Transfer objects in one arraycache to another.
618 * Locking must be handled by the caller.
619 *
620 * Return the number of entries transferred.
621 */
622 static int transfer_objects(struct array_cache *to,
623 struct array_cache *from, unsigned int max)
624 {
625 /* Figure out how many entries to transfer */
626 int nr = min3(from->avail, max, to->limit - to->avail);
627
628 if (!nr)
629 return 0;
630
631 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
632 sizeof(void *) *nr);
633
634 from->avail -= nr;
635 to->avail += nr;
636 return nr;
637 }
638
639 #ifndef CONFIG_NUMA
640
641 #define drain_alien_cache(cachep, alien) do { } while (0)
642 #define reap_alien(cachep, n) do { } while (0)
643
644 static inline struct alien_cache **alloc_alien_cache(int node,
645 int limit, gfp_t gfp)
646 {
647 return (struct alien_cache **)BAD_ALIEN_MAGIC;
648 }
649
650 static inline void free_alien_cache(struct alien_cache **ac_ptr)
651 {
652 }
653
654 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
655 {
656 return 0;
657 }
658
659 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
660 gfp_t flags)
661 {
662 return NULL;
663 }
664
665 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
666 gfp_t flags, int nodeid)
667 {
668 return NULL;
669 }
670
671 static inline gfp_t gfp_exact_node(gfp_t flags)
672 {
673 return flags & ~__GFP_NOFAIL;
674 }
675
676 #else /* CONFIG_NUMA */
677
678 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
679 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
680
681 static struct alien_cache *__alloc_alien_cache(int node, int entries,
682 int batch, gfp_t gfp)
683 {
684 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
685 struct alien_cache *alc = NULL;
686
687 alc = kmalloc_node(memsize, gfp, node);
688 init_arraycache(&alc->ac, entries, batch);
689 spin_lock_init(&alc->lock);
690 return alc;
691 }
692
693 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
694 {
695 struct alien_cache **alc_ptr;
696 size_t memsize = sizeof(void *) * nr_node_ids;
697 int i;
698
699 if (limit > 1)
700 limit = 12;
701 alc_ptr = kzalloc_node(memsize, gfp, node);
702 if (!alc_ptr)
703 return NULL;
704
705 for_each_node(i) {
706 if (i == node || !node_online(i))
707 continue;
708 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
709 if (!alc_ptr[i]) {
710 for (i--; i >= 0; i--)
711 kfree(alc_ptr[i]);
712 kfree(alc_ptr);
713 return NULL;
714 }
715 }
716 return alc_ptr;
717 }
718
719 static void free_alien_cache(struct alien_cache **alc_ptr)
720 {
721 int i;
722
723 if (!alc_ptr)
724 return;
725 for_each_node(i)
726 kfree(alc_ptr[i]);
727 kfree(alc_ptr);
728 }
729
730 static void __drain_alien_cache(struct kmem_cache *cachep,
731 struct array_cache *ac, int node,
732 struct list_head *list)
733 {
734 struct kmem_cache_node *n = get_node(cachep, node);
735
736 if (ac->avail) {
737 spin_lock(&n->list_lock);
738 /*
739 * Stuff objects into the remote nodes shared array first.
740 * That way we could avoid the overhead of putting the objects
741 * into the free lists and getting them back later.
742 */
743 if (n->shared)
744 transfer_objects(n->shared, ac, ac->limit);
745
746 free_block(cachep, ac->entry, ac->avail, node, list);
747 ac->avail = 0;
748 spin_unlock(&n->list_lock);
749 }
750 }
751
752 /*
753 * Called from cache_reap() to regularly drain alien caches round robin.
754 */
755 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
756 {
757 int node = __this_cpu_read(slab_reap_node);
758
759 if (n->alien) {
760 struct alien_cache *alc = n->alien[node];
761 struct array_cache *ac;
762
763 if (alc) {
764 ac = &alc->ac;
765 if (ac->avail && spin_trylock_irq(&alc->lock)) {
766 LIST_HEAD(list);
767
768 __drain_alien_cache(cachep, ac, node, &list);
769 spin_unlock_irq(&alc->lock);
770 slabs_destroy(cachep, &list);
771 }
772 }
773 }
774 }
775
776 static void drain_alien_cache(struct kmem_cache *cachep,
777 struct alien_cache **alien)
778 {
779 int i = 0;
780 struct alien_cache *alc;
781 struct array_cache *ac;
782 unsigned long flags;
783
784 for_each_online_node(i) {
785 alc = alien[i];
786 if (alc) {
787 LIST_HEAD(list);
788
789 ac = &alc->ac;
790 spin_lock_irqsave(&alc->lock, flags);
791 __drain_alien_cache(cachep, ac, i, &list);
792 spin_unlock_irqrestore(&alc->lock, flags);
793 slabs_destroy(cachep, &list);
794 }
795 }
796 }
797
798 static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
799 int node, int page_node)
800 {
801 struct kmem_cache_node *n;
802 struct alien_cache *alien = NULL;
803 struct array_cache *ac;
804 LIST_HEAD(list);
805
806 n = get_node(cachep, node);
807 STATS_INC_NODEFREES(cachep);
808 if (n->alien && n->alien[page_node]) {
809 alien = n->alien[page_node];
810 ac = &alien->ac;
811 spin_lock(&alien->lock);
812 if (unlikely(ac->avail == ac->limit)) {
813 STATS_INC_ACOVERFLOW(cachep);
814 __drain_alien_cache(cachep, ac, page_node, &list);
815 }
816 ac->entry[ac->avail++] = objp;
817 spin_unlock(&alien->lock);
818 slabs_destroy(cachep, &list);
819 } else {
820 n = get_node(cachep, page_node);
821 spin_lock(&n->list_lock);
822 free_block(cachep, &objp, 1, page_node, &list);
823 spin_unlock(&n->list_lock);
824 slabs_destroy(cachep, &list);
825 }
826 return 1;
827 }
828
829 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
830 {
831 int page_node = page_to_nid(virt_to_page(objp));
832 int node = numa_mem_id();
833 /*
834 * Make sure we are not freeing a object from another node to the array
835 * cache on this cpu.
836 */
837 if (likely(node == page_node))
838 return 0;
839
840 return __cache_free_alien(cachep, objp, node, page_node);
841 }
842
843 /*
844 * Construct gfp mask to allocate from a specific node but do not reclaim or
845 * warn about failures.
846 */
847 static inline gfp_t gfp_exact_node(gfp_t flags)
848 {
849 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
850 }
851 #endif
852
853 /*
854 * Allocates and initializes node for a node on each slab cache, used for
855 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
856 * will be allocated off-node since memory is not yet online for the new node.
857 * When hotplugging memory or a cpu, existing node are not replaced if
858 * already in use.
859 *
860 * Must hold slab_mutex.
861 */
862 static int init_cache_node_node(int node)
863 {
864 struct kmem_cache *cachep;
865 struct kmem_cache_node *n;
866 const size_t memsize = sizeof(struct kmem_cache_node);
867
868 list_for_each_entry(cachep, &slab_caches, list) {
869 /*
870 * Set up the kmem_cache_node for cpu before we can
871 * begin anything. Make sure some other cpu on this
872 * node has not already allocated this
873 */
874 n = get_node(cachep, node);
875 if (!n) {
876 n = kmalloc_node(memsize, GFP_KERNEL, node);
877 if (!n)
878 return -ENOMEM;
879 kmem_cache_node_init(n);
880 n->next_reap = jiffies + REAPTIMEOUT_NODE +
881 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
882
883 /*
884 * The kmem_cache_nodes don't come and go as CPUs
885 * come and go. slab_mutex is sufficient
886 * protection here.
887 */
888 cachep->node[node] = n;
889 }
890
891 spin_lock_irq(&n->list_lock);
892 n->free_limit =
893 (1 + nr_cpus_node(node)) *
894 cachep->batchcount + cachep->num;
895 spin_unlock_irq(&n->list_lock);
896 }
897 return 0;
898 }
899
900 static inline int slabs_tofree(struct kmem_cache *cachep,
901 struct kmem_cache_node *n)
902 {
903 return (n->free_objects + cachep->num - 1) / cachep->num;
904 }
905
906 static void cpuup_canceled(long cpu)
907 {
908 struct kmem_cache *cachep;
909 struct kmem_cache_node *n = NULL;
910 int node = cpu_to_mem(cpu);
911 const struct cpumask *mask = cpumask_of_node(node);
912
913 list_for_each_entry(cachep, &slab_caches, list) {
914 struct array_cache *nc;
915 struct array_cache *shared;
916 struct alien_cache **alien;
917 LIST_HEAD(list);
918
919 n = get_node(cachep, node);
920 if (!n)
921 continue;
922
923 spin_lock_irq(&n->list_lock);
924
925 /* Free limit for this kmem_cache_node */
926 n->free_limit -= cachep->batchcount;
927
928 /* cpu is dead; no one can alloc from it. */
929 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
930 if (nc) {
931 free_block(cachep, nc->entry, nc->avail, node, &list);
932 nc->avail = 0;
933 }
934
935 if (!cpumask_empty(mask)) {
936 spin_unlock_irq(&n->list_lock);
937 goto free_slab;
938 }
939
940 shared = n->shared;
941 if (shared) {
942 free_block(cachep, shared->entry,
943 shared->avail, node, &list);
944 n->shared = NULL;
945 }
946
947 alien = n->alien;
948 n->alien = NULL;
949
950 spin_unlock_irq(&n->list_lock);
951
952 kfree(shared);
953 if (alien) {
954 drain_alien_cache(cachep, alien);
955 free_alien_cache(alien);
956 }
957
958 free_slab:
959 slabs_destroy(cachep, &list);
960 }
961 /*
962 * In the previous loop, all the objects were freed to
963 * the respective cache's slabs, now we can go ahead and
964 * shrink each nodelist to its limit.
965 */
966 list_for_each_entry(cachep, &slab_caches, list) {
967 n = get_node(cachep, node);
968 if (!n)
969 continue;
970 drain_freelist(cachep, n, slabs_tofree(cachep, n));
971 }
972 }
973
974 static int cpuup_prepare(long cpu)
975 {
976 struct kmem_cache *cachep;
977 struct kmem_cache_node *n = NULL;
978 int node = cpu_to_mem(cpu);
979 int err;
980
981 /*
982 * We need to do this right in the beginning since
983 * alloc_arraycache's are going to use this list.
984 * kmalloc_node allows us to add the slab to the right
985 * kmem_cache_node and not this cpu's kmem_cache_node
986 */
987 err = init_cache_node_node(node);
988 if (err < 0)
989 goto bad;
990
991 /*
992 * Now we can go ahead with allocating the shared arrays and
993 * array caches
994 */
995 list_for_each_entry(cachep, &slab_caches, list) {
996 struct array_cache *shared = NULL;
997 struct alien_cache **alien = NULL;
998
999 if (cachep->shared) {
1000 shared = alloc_arraycache(node,
1001 cachep->shared * cachep->batchcount,
1002 0xbaadf00d, GFP_KERNEL);
1003 if (!shared)
1004 goto bad;
1005 }
1006 if (use_alien_caches) {
1007 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1008 if (!alien) {
1009 kfree(shared);
1010 goto bad;
1011 }
1012 }
1013 n = get_node(cachep, node);
1014 BUG_ON(!n);
1015
1016 spin_lock_irq(&n->list_lock);
1017 if (!n->shared) {
1018 /*
1019 * We are serialised from CPU_DEAD or
1020 * CPU_UP_CANCELLED by the cpucontrol lock
1021 */
1022 n->shared = shared;
1023 shared = NULL;
1024 }
1025 #ifdef CONFIG_NUMA
1026 if (!n->alien) {
1027 n->alien = alien;
1028 alien = NULL;
1029 }
1030 #endif
1031 spin_unlock_irq(&n->list_lock);
1032 kfree(shared);
1033 free_alien_cache(alien);
1034 }
1035
1036 return 0;
1037 bad:
1038 cpuup_canceled(cpu);
1039 return -ENOMEM;
1040 }
1041
1042 static int cpuup_callback(struct notifier_block *nfb,
1043 unsigned long action, void *hcpu)
1044 {
1045 long cpu = (long)hcpu;
1046 int err = 0;
1047
1048 switch (action) {
1049 case CPU_UP_PREPARE:
1050 case CPU_UP_PREPARE_FROZEN:
1051 mutex_lock(&slab_mutex);
1052 err = cpuup_prepare(cpu);
1053 mutex_unlock(&slab_mutex);
1054 break;
1055 case CPU_ONLINE:
1056 case CPU_ONLINE_FROZEN:
1057 start_cpu_timer(cpu);
1058 break;
1059 #ifdef CONFIG_HOTPLUG_CPU
1060 case CPU_DOWN_PREPARE:
1061 case CPU_DOWN_PREPARE_FROZEN:
1062 /*
1063 * Shutdown cache reaper. Note that the slab_mutex is
1064 * held so that if cache_reap() is invoked it cannot do
1065 * anything expensive but will only modify reap_work
1066 * and reschedule the timer.
1067 */
1068 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1069 /* Now the cache_reaper is guaranteed to be not running. */
1070 per_cpu(slab_reap_work, cpu).work.func = NULL;
1071 break;
1072 case CPU_DOWN_FAILED:
1073 case CPU_DOWN_FAILED_FROZEN:
1074 start_cpu_timer(cpu);
1075 break;
1076 case CPU_DEAD:
1077 case CPU_DEAD_FROZEN:
1078 /*
1079 * Even if all the cpus of a node are down, we don't free the
1080 * kmem_cache_node of any cache. This to avoid a race between
1081 * cpu_down, and a kmalloc allocation from another cpu for
1082 * memory from the node of the cpu going down. The node
1083 * structure is usually allocated from kmem_cache_create() and
1084 * gets destroyed at kmem_cache_destroy().
1085 */
1086 /* fall through */
1087 #endif
1088 case CPU_UP_CANCELED:
1089 case CPU_UP_CANCELED_FROZEN:
1090 mutex_lock(&slab_mutex);
1091 cpuup_canceled(cpu);
1092 mutex_unlock(&slab_mutex);
1093 break;
1094 }
1095 return notifier_from_errno(err);
1096 }
1097
1098 static struct notifier_block cpucache_notifier = {
1099 &cpuup_callback, NULL, 0
1100 };
1101
1102 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1103 /*
1104 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1105 * Returns -EBUSY if all objects cannot be drained so that the node is not
1106 * removed.
1107 *
1108 * Must hold slab_mutex.
1109 */
1110 static int __meminit drain_cache_node_node(int node)
1111 {
1112 struct kmem_cache *cachep;
1113 int ret = 0;
1114
1115 list_for_each_entry(cachep, &slab_caches, list) {
1116 struct kmem_cache_node *n;
1117
1118 n = get_node(cachep, node);
1119 if (!n)
1120 continue;
1121
1122 drain_freelist(cachep, n, slabs_tofree(cachep, n));
1123
1124 if (!list_empty(&n->slabs_full) ||
1125 !list_empty(&n->slabs_partial)) {
1126 ret = -EBUSY;
1127 break;
1128 }
1129 }
1130 return ret;
1131 }
1132
1133 static int __meminit slab_memory_callback(struct notifier_block *self,
1134 unsigned long action, void *arg)
1135 {
1136 struct memory_notify *mnb = arg;
1137 int ret = 0;
1138 int nid;
1139
1140 nid = mnb->status_change_nid;
1141 if (nid < 0)
1142 goto out;
1143
1144 switch (action) {
1145 case MEM_GOING_ONLINE:
1146 mutex_lock(&slab_mutex);
1147 ret = init_cache_node_node(nid);
1148 mutex_unlock(&slab_mutex);
1149 break;
1150 case MEM_GOING_OFFLINE:
1151 mutex_lock(&slab_mutex);
1152 ret = drain_cache_node_node(nid);
1153 mutex_unlock(&slab_mutex);
1154 break;
1155 case MEM_ONLINE:
1156 case MEM_OFFLINE:
1157 case MEM_CANCEL_ONLINE:
1158 case MEM_CANCEL_OFFLINE:
1159 break;
1160 }
1161 out:
1162 return notifier_from_errno(ret);
1163 }
1164 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1165
1166 /*
1167 * swap the static kmem_cache_node with kmalloced memory
1168 */
1169 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1170 int nodeid)
1171 {
1172 struct kmem_cache_node *ptr;
1173
1174 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1175 BUG_ON(!ptr);
1176
1177 memcpy(ptr, list, sizeof(struct kmem_cache_node));
1178 /*
1179 * Do not assume that spinlocks can be initialized via memcpy:
1180 */
1181 spin_lock_init(&ptr->list_lock);
1182
1183 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1184 cachep->node[nodeid] = ptr;
1185 }
1186
1187 /*
1188 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1189 * size of kmem_cache_node.
1190 */
1191 static void __init set_up_node(struct kmem_cache *cachep, int index)
1192 {
1193 int node;
1194
1195 for_each_online_node(node) {
1196 cachep->node[node] = &init_kmem_cache_node[index + node];
1197 cachep->node[node]->next_reap = jiffies +
1198 REAPTIMEOUT_NODE +
1199 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1200 }
1201 }
1202
1203 /*
1204 * Initialisation. Called after the page allocator have been initialised and
1205 * before smp_init().
1206 */
1207 void __init kmem_cache_init(void)
1208 {
1209 int i;
1210
1211 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1212 sizeof(struct rcu_head));
1213 kmem_cache = &kmem_cache_boot;
1214
1215 if (num_possible_nodes() == 1)
1216 use_alien_caches = 0;
1217
1218 for (i = 0; i < NUM_INIT_LISTS; i++)
1219 kmem_cache_node_init(&init_kmem_cache_node[i]);
1220
1221 /*
1222 * Fragmentation resistance on low memory - only use bigger
1223 * page orders on machines with more than 32MB of memory if
1224 * not overridden on the command line.
1225 */
1226 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1227 slab_max_order = SLAB_MAX_ORDER_HI;
1228
1229 /* Bootstrap is tricky, because several objects are allocated
1230 * from caches that do not exist yet:
1231 * 1) initialize the kmem_cache cache: it contains the struct
1232 * kmem_cache structures of all caches, except kmem_cache itself:
1233 * kmem_cache is statically allocated.
1234 * Initially an __init data area is used for the head array and the
1235 * kmem_cache_node structures, it's replaced with a kmalloc allocated
1236 * array at the end of the bootstrap.
1237 * 2) Create the first kmalloc cache.
1238 * The struct kmem_cache for the new cache is allocated normally.
1239 * An __init data area is used for the head array.
1240 * 3) Create the remaining kmalloc caches, with minimally sized
1241 * head arrays.
1242 * 4) Replace the __init data head arrays for kmem_cache and the first
1243 * kmalloc cache with kmalloc allocated arrays.
1244 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1245 * the other cache's with kmalloc allocated memory.
1246 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1247 */
1248
1249 /* 1) create the kmem_cache */
1250
1251 /*
1252 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1253 */
1254 create_boot_cache(kmem_cache, "kmem_cache",
1255 offsetof(struct kmem_cache, node) +
1256 nr_node_ids * sizeof(struct kmem_cache_node *),
1257 SLAB_HWCACHE_ALIGN);
1258 list_add(&kmem_cache->list, &slab_caches);
1259 slab_state = PARTIAL;
1260
1261 /*
1262 * Initialize the caches that provide memory for the kmem_cache_node
1263 * structures first. Without this, further allocations will bug.
1264 */
1265 kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node",
1266 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1267 slab_state = PARTIAL_NODE;
1268 setup_kmalloc_cache_index_table();
1269
1270 slab_early_init = 0;
1271
1272 /* 5) Replace the bootstrap kmem_cache_node */
1273 {
1274 int nid;
1275
1276 for_each_online_node(nid) {
1277 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1278
1279 init_list(kmalloc_caches[INDEX_NODE],
1280 &init_kmem_cache_node[SIZE_NODE + nid], nid);
1281 }
1282 }
1283
1284 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1285 }
1286
1287 void __init kmem_cache_init_late(void)
1288 {
1289 struct kmem_cache *cachep;
1290
1291 slab_state = UP;
1292
1293 /* 6) resize the head arrays to their final sizes */
1294 mutex_lock(&slab_mutex);
1295 list_for_each_entry(cachep, &slab_caches, list)
1296 if (enable_cpucache(cachep, GFP_NOWAIT))
1297 BUG();
1298 mutex_unlock(&slab_mutex);
1299
1300 /* Done! */
1301 slab_state = FULL;
1302
1303 /*
1304 * Register a cpu startup notifier callback that initializes
1305 * cpu_cache_get for all new cpus
1306 */
1307 register_cpu_notifier(&cpucache_notifier);
1308
1309 #ifdef CONFIG_NUMA
1310 /*
1311 * Register a memory hotplug callback that initializes and frees
1312 * node.
1313 */
1314 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1315 #endif
1316
1317 /*
1318 * The reap timers are started later, with a module init call: That part
1319 * of the kernel is not yet operational.
1320 */
1321 }
1322
1323 static int __init cpucache_init(void)
1324 {
1325 int cpu;
1326
1327 /*
1328 * Register the timers that return unneeded pages to the page allocator
1329 */
1330 for_each_online_cpu(cpu)
1331 start_cpu_timer(cpu);
1332
1333 /* Done! */
1334 slab_state = FULL;
1335 return 0;
1336 }
1337 __initcall(cpucache_init);
1338
1339 static noinline void
1340 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1341 {
1342 #if DEBUG
1343 struct kmem_cache_node *n;
1344 struct page *page;
1345 unsigned long flags;
1346 int node;
1347 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1348 DEFAULT_RATELIMIT_BURST);
1349
1350 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1351 return;
1352
1353 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1354 nodeid, gfpflags, &gfpflags);
1355 pr_warn(" cache: %s, object size: %d, order: %d\n",
1356 cachep->name, cachep->size, cachep->gfporder);
1357
1358 for_each_kmem_cache_node(cachep, node, n) {
1359 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1360 unsigned long active_slabs = 0, num_slabs = 0;
1361
1362 spin_lock_irqsave(&n->list_lock, flags);
1363 list_for_each_entry(page, &n->slabs_full, lru) {
1364 active_objs += cachep->num;
1365 active_slabs++;
1366 }
1367 list_for_each_entry(page, &n->slabs_partial, lru) {
1368 active_objs += page->active;
1369 active_slabs++;
1370 }
1371 list_for_each_entry(page, &n->slabs_free, lru)
1372 num_slabs++;
1373
1374 free_objects += n->free_objects;
1375 spin_unlock_irqrestore(&n->list_lock, flags);
1376
1377 num_slabs += active_slabs;
1378 num_objs = num_slabs * cachep->num;
1379 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1380 node, active_slabs, num_slabs, active_objs, num_objs,
1381 free_objects);
1382 }
1383 #endif
1384 }
1385
1386 /*
1387 * Interface to system's page allocator. No need to hold the
1388 * kmem_cache_node ->list_lock.
1389 *
1390 * If we requested dmaable memory, we will get it. Even if we
1391 * did not request dmaable memory, we might get it, but that
1392 * would be relatively rare and ignorable.
1393 */
1394 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1395 int nodeid)
1396 {
1397 struct page *page;
1398 int nr_pages;
1399
1400 flags |= cachep->allocflags;
1401 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1402 flags |= __GFP_RECLAIMABLE;
1403
1404 page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1405 if (!page) {
1406 slab_out_of_memory(cachep, flags, nodeid);
1407 return NULL;
1408 }
1409
1410 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1411 __free_pages(page, cachep->gfporder);
1412 return NULL;
1413 }
1414
1415 nr_pages = (1 << cachep->gfporder);
1416 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1417 add_zone_page_state(page_zone(page),
1418 NR_SLAB_RECLAIMABLE, nr_pages);
1419 else
1420 add_zone_page_state(page_zone(page),
1421 NR_SLAB_UNRECLAIMABLE, nr_pages);
1422
1423 __SetPageSlab(page);
1424 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1425 if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1426 SetPageSlabPfmemalloc(page);
1427
1428 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1429 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1430
1431 if (cachep->ctor)
1432 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1433 else
1434 kmemcheck_mark_unallocated_pages(page, nr_pages);
1435 }
1436
1437 return page;
1438 }
1439
1440 /*
1441 * Interface to system's page release.
1442 */
1443 static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1444 {
1445 int order = cachep->gfporder;
1446 unsigned long nr_freed = (1 << order);
1447
1448 kmemcheck_free_shadow(page, order);
1449
1450 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1451 sub_zone_page_state(page_zone(page),
1452 NR_SLAB_RECLAIMABLE, nr_freed);
1453 else
1454 sub_zone_page_state(page_zone(page),
1455 NR_SLAB_UNRECLAIMABLE, nr_freed);
1456
1457 BUG_ON(!PageSlab(page));
1458 __ClearPageSlabPfmemalloc(page);
1459 __ClearPageSlab(page);
1460 page_mapcount_reset(page);
1461 page->mapping = NULL;
1462
1463 if (current->reclaim_state)
1464 current->reclaim_state->reclaimed_slab += nr_freed;
1465 memcg_uncharge_slab(page, order, cachep);
1466 __free_pages(page, order);
1467 }
1468
1469 static void kmem_rcu_free(struct rcu_head *head)
1470 {
1471 struct kmem_cache *cachep;
1472 struct page *page;
1473
1474 page = container_of(head, struct page, rcu_head);
1475 cachep = page->slab_cache;
1476
1477 kmem_freepages(cachep, page);
1478 }
1479
1480 #if DEBUG
1481 static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1482 {
1483 if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1484 (cachep->size % PAGE_SIZE) == 0)
1485 return true;
1486
1487 return false;
1488 }
1489
1490 #ifdef CONFIG_DEBUG_PAGEALLOC
1491 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1492 unsigned long caller)
1493 {
1494 int size = cachep->object_size;
1495
1496 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1497
1498 if (size < 5 * sizeof(unsigned long))
1499 return;
1500
1501 *addr++ = 0x12345678;
1502 *addr++ = caller;
1503 *addr++ = smp_processor_id();
1504 size -= 3 * sizeof(unsigned long);
1505 {
1506 unsigned long *sptr = &caller;
1507 unsigned long svalue;
1508
1509 while (!kstack_end(sptr)) {
1510 svalue = *sptr++;
1511 if (kernel_text_address(svalue)) {
1512 *addr++ = svalue;
1513 size -= sizeof(unsigned long);
1514 if (size <= sizeof(unsigned long))
1515 break;
1516 }
1517 }
1518
1519 }
1520 *addr++ = 0x87654321;
1521 }
1522
1523 static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1524 int map, unsigned long caller)
1525 {
1526 if (!is_debug_pagealloc_cache(cachep))
1527 return;
1528
1529 if (caller)
1530 store_stackinfo(cachep, objp, caller);
1531
1532 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1533 }
1534
1535 #else
1536 static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1537 int map, unsigned long caller) {}
1538
1539 #endif
1540
1541 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1542 {
1543 int size = cachep->object_size;
1544 addr = &((char *)addr)[obj_offset(cachep)];
1545
1546 memset(addr, val, size);
1547 *(unsigned char *)(addr + size - 1) = POISON_END;
1548 }
1549
1550 static void dump_line(char *data, int offset, int limit)
1551 {
1552 int i;
1553 unsigned char error = 0;
1554 int bad_count = 0;
1555
1556 pr_err("%03x: ", offset);
1557 for (i = 0; i < limit; i++) {
1558 if (data[offset + i] != POISON_FREE) {
1559 error = data[offset + i];
1560 bad_count++;
1561 }
1562 }
1563 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1564 &data[offset], limit, 1);
1565
1566 if (bad_count == 1) {
1567 error ^= POISON_FREE;
1568 if (!(error & (error - 1))) {
1569 pr_err("Single bit error detected. Probably bad RAM.\n");
1570 #ifdef CONFIG_X86
1571 pr_err("Run memtest86+ or a similar memory test tool.\n");
1572 #else
1573 pr_err("Run a memory test tool.\n");
1574 #endif
1575 }
1576 }
1577 }
1578 #endif
1579
1580 #if DEBUG
1581
1582 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1583 {
1584 int i, size;
1585 char *realobj;
1586
1587 if (cachep->flags & SLAB_RED_ZONE) {
1588 pr_err("Redzone: 0x%llx/0x%llx\n",
1589 *dbg_redzone1(cachep, objp),
1590 *dbg_redzone2(cachep, objp));
1591 }
1592
1593 if (cachep->flags & SLAB_STORE_USER) {
1594 pr_err("Last user: [<%p>](%pSR)\n",
1595 *dbg_userword(cachep, objp),
1596 *dbg_userword(cachep, objp));
1597 }
1598 realobj = (char *)objp + obj_offset(cachep);
1599 size = cachep->object_size;
1600 for (i = 0; i < size && lines; i += 16, lines--) {
1601 int limit;
1602 limit = 16;
1603 if (i + limit > size)
1604 limit = size - i;
1605 dump_line(realobj, i, limit);
1606 }
1607 }
1608
1609 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1610 {
1611 char *realobj;
1612 int size, i;
1613 int lines = 0;
1614
1615 if (is_debug_pagealloc_cache(cachep))
1616 return;
1617
1618 realobj = (char *)objp + obj_offset(cachep);
1619 size = cachep->object_size;
1620
1621 for (i = 0; i < size; i++) {
1622 char exp = POISON_FREE;
1623 if (i == size - 1)
1624 exp = POISON_END;
1625 if (realobj[i] != exp) {
1626 int limit;
1627 /* Mismatch ! */
1628 /* Print header */
1629 if (lines == 0) {
1630 pr_err("Slab corruption (%s): %s start=%p, len=%d\n",
1631 print_tainted(), cachep->name,
1632 realobj, size);
1633 print_objinfo(cachep, objp, 0);
1634 }
1635 /* Hexdump the affected line */
1636 i = (i / 16) * 16;
1637 limit = 16;
1638 if (i + limit > size)
1639 limit = size - i;
1640 dump_line(realobj, i, limit);
1641 i += 16;
1642 lines++;
1643 /* Limit to 5 lines */
1644 if (lines > 5)
1645 break;
1646 }
1647 }
1648 if (lines != 0) {
1649 /* Print some data about the neighboring objects, if they
1650 * exist:
1651 */
1652 struct page *page = virt_to_head_page(objp);
1653 unsigned int objnr;
1654
1655 objnr = obj_to_index(cachep, page, objp);
1656 if (objnr) {
1657 objp = index_to_obj(cachep, page, objnr - 1);
1658 realobj = (char *)objp + obj_offset(cachep);
1659 pr_err("Prev obj: start=%p, len=%d\n", realobj, size);
1660 print_objinfo(cachep, objp, 2);
1661 }
1662 if (objnr + 1 < cachep->num) {
1663 objp = index_to_obj(cachep, page, objnr + 1);
1664 realobj = (char *)objp + obj_offset(cachep);
1665 pr_err("Next obj: start=%p, len=%d\n", realobj, size);
1666 print_objinfo(cachep, objp, 2);
1667 }
1668 }
1669 }
1670 #endif
1671
1672 #if DEBUG
1673 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1674 struct page *page)
1675 {
1676 int i;
1677
1678 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1679 poison_obj(cachep, page->freelist - obj_offset(cachep),
1680 POISON_FREE);
1681 }
1682
1683 for (i = 0; i < cachep->num; i++) {
1684 void *objp = index_to_obj(cachep, page, i);
1685
1686 if (cachep->flags & SLAB_POISON) {
1687 check_poison_obj(cachep, objp);
1688 slab_kernel_map(cachep, objp, 1, 0);
1689 }
1690 if (cachep->flags & SLAB_RED_ZONE) {
1691 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1692 slab_error(cachep, "start of a freed object was overwritten");
1693 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1694 slab_error(cachep, "end of a freed object was overwritten");
1695 }
1696 }
1697 }
1698 #else
1699 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1700 struct page *page)
1701 {
1702 }
1703 #endif
1704
1705 /**
1706 * slab_destroy - destroy and release all objects in a slab
1707 * @cachep: cache pointer being destroyed
1708 * @page: page pointer being destroyed
1709 *
1710 * Destroy all the objs in a slab page, and release the mem back to the system.
1711 * Before calling the slab page must have been unlinked from the cache. The
1712 * kmem_cache_node ->list_lock is not held/needed.
1713 */
1714 static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1715 {
1716 void *freelist;
1717
1718 freelist = page->freelist;
1719 slab_destroy_debugcheck(cachep, page);
1720 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
1721 call_rcu(&page->rcu_head, kmem_rcu_free);
1722 else
1723 kmem_freepages(cachep, page);
1724
1725 /*
1726 * From now on, we don't use freelist
1727 * although actual page can be freed in rcu context
1728 */
1729 if (OFF_SLAB(cachep))
1730 kmem_cache_free(cachep->freelist_cache, freelist);
1731 }
1732
1733 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1734 {
1735 struct page *page, *n;
1736
1737 list_for_each_entry_safe(page, n, list, lru) {
1738 list_del(&page->lru);
1739 slab_destroy(cachep, page);
1740 }
1741 }
1742
1743 /**
1744 * calculate_slab_order - calculate size (page order) of slabs
1745 * @cachep: pointer to the cache that is being created
1746 * @size: size of objects to be created in this cache.
1747 * @flags: slab allocation flags
1748 *
1749 * Also calculates the number of objects per slab.
1750 *
1751 * This could be made much more intelligent. For now, try to avoid using
1752 * high order pages for slabs. When the gfp() functions are more friendly
1753 * towards high-order requests, this should be changed.
1754 */
1755 static size_t calculate_slab_order(struct kmem_cache *cachep,
1756 size_t size, unsigned long flags)
1757 {
1758 size_t left_over = 0;
1759 int gfporder;
1760
1761 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1762 unsigned int num;
1763 size_t remainder;
1764
1765 num = cache_estimate(gfporder, size, flags, &remainder);
1766 if (!num)
1767 continue;
1768
1769 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1770 if (num > SLAB_OBJ_MAX_NUM)
1771 break;
1772
1773 if (flags & CFLGS_OFF_SLAB) {
1774 struct kmem_cache *freelist_cache;
1775 size_t freelist_size;
1776
1777 freelist_size = num * sizeof(freelist_idx_t);
1778 freelist_cache = kmalloc_slab(freelist_size, 0u);
1779 if (!freelist_cache)
1780 continue;
1781
1782 /*
1783 * Needed to avoid possible looping condition
1784 * in cache_grow()
1785 */
1786 if (OFF_SLAB(freelist_cache))
1787 continue;
1788
1789 /* check if off slab has enough benefit */
1790 if (freelist_cache->size > cachep->size / 2)
1791 continue;
1792 }
1793
1794 /* Found something acceptable - save it away */
1795 cachep->num = num;
1796 cachep->gfporder = gfporder;
1797 left_over = remainder;
1798
1799 /*
1800 * A VFS-reclaimable slab tends to have most allocations
1801 * as GFP_NOFS and we really don't want to have to be allocating
1802 * higher-order pages when we are unable to shrink dcache.
1803 */
1804 if (flags & SLAB_RECLAIM_ACCOUNT)
1805 break;
1806
1807 /*
1808 * Large number of objects is good, but very large slabs are
1809 * currently bad for the gfp()s.
1810 */
1811 if (gfporder >= slab_max_order)
1812 break;
1813
1814 /*
1815 * Acceptable internal fragmentation?
1816 */
1817 if (left_over * 8 <= (PAGE_SIZE << gfporder))
1818 break;
1819 }
1820 return left_over;
1821 }
1822
1823 static struct array_cache __percpu *alloc_kmem_cache_cpus(
1824 struct kmem_cache *cachep, int entries, int batchcount)
1825 {
1826 int cpu;
1827 size_t size;
1828 struct array_cache __percpu *cpu_cache;
1829
1830 size = sizeof(void *) * entries + sizeof(struct array_cache);
1831 cpu_cache = __alloc_percpu(size, sizeof(void *));
1832
1833 if (!cpu_cache)
1834 return NULL;
1835
1836 for_each_possible_cpu(cpu) {
1837 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1838 entries, batchcount);
1839 }
1840
1841 return cpu_cache;
1842 }
1843
1844 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1845 {
1846 if (slab_state >= FULL)
1847 return enable_cpucache(cachep, gfp);
1848
1849 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1850 if (!cachep->cpu_cache)
1851 return 1;
1852
1853 if (slab_state == DOWN) {
1854 /* Creation of first cache (kmem_cache). */
1855 set_up_node(kmem_cache, CACHE_CACHE);
1856 } else if (slab_state == PARTIAL) {
1857 /* For kmem_cache_node */
1858 set_up_node(cachep, SIZE_NODE);
1859 } else {
1860 int node;
1861
1862 for_each_online_node(node) {
1863 cachep->node[node] = kmalloc_node(
1864 sizeof(struct kmem_cache_node), gfp, node);
1865 BUG_ON(!cachep->node[node]);
1866 kmem_cache_node_init(cachep->node[node]);
1867 }
1868 }
1869
1870 cachep->node[numa_mem_id()]->next_reap =
1871 jiffies + REAPTIMEOUT_NODE +
1872 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1873
1874 cpu_cache_get(cachep)->avail = 0;
1875 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1876 cpu_cache_get(cachep)->batchcount = 1;
1877 cpu_cache_get(cachep)->touched = 0;
1878 cachep->batchcount = 1;
1879 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1880 return 0;
1881 }
1882
1883 unsigned long kmem_cache_flags(unsigned long object_size,
1884 unsigned long flags, const char *name,
1885 void (*ctor)(void *))
1886 {
1887 return flags;
1888 }
1889
1890 struct kmem_cache *
1891 __kmem_cache_alias(const char *name, size_t size, size_t align,
1892 unsigned long flags, void (*ctor)(void *))
1893 {
1894 struct kmem_cache *cachep;
1895
1896 cachep = find_mergeable(size, align, flags, name, ctor);
1897 if (cachep) {
1898 cachep->refcount++;
1899
1900 /*
1901 * Adjust the object sizes so that we clear
1902 * the complete object on kzalloc.
1903 */
1904 cachep->object_size = max_t(int, cachep->object_size, size);
1905 }
1906 return cachep;
1907 }
1908
1909 static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1910 size_t size, unsigned long flags)
1911 {
1912 size_t left;
1913
1914 cachep->num = 0;
1915
1916 if (cachep->ctor || flags & SLAB_DESTROY_BY_RCU)
1917 return false;
1918
1919 left = calculate_slab_order(cachep, size,
1920 flags | CFLGS_OBJFREELIST_SLAB);
1921 if (!cachep->num)
1922 return false;
1923
1924 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1925 return false;
1926
1927 cachep->colour = left / cachep->colour_off;
1928
1929 return true;
1930 }
1931
1932 static bool set_off_slab_cache(struct kmem_cache *cachep,
1933 size_t size, unsigned long flags)
1934 {
1935 size_t left;
1936
1937 cachep->num = 0;
1938
1939 /*
1940 * Always use on-slab management when SLAB_NOLEAKTRACE
1941 * to avoid recursive calls into kmemleak.
1942 */
1943 if (flags & SLAB_NOLEAKTRACE)
1944 return false;
1945
1946 /*
1947 * Size is large, assume best to place the slab management obj
1948 * off-slab (should allow better packing of objs).
1949 */
1950 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1951 if (!cachep->num)
1952 return false;
1953
1954 /*
1955 * If the slab has been placed off-slab, and we have enough space then
1956 * move it on-slab. This is at the expense of any extra colouring.
1957 */
1958 if (left >= cachep->num * sizeof(freelist_idx_t))
1959 return false;
1960
1961 cachep->colour = left / cachep->colour_off;
1962
1963 return true;
1964 }
1965
1966 static bool set_on_slab_cache(struct kmem_cache *cachep,
1967 size_t size, unsigned long flags)
1968 {
1969 size_t left;
1970
1971 cachep->num = 0;
1972
1973 left = calculate_slab_order(cachep, size, flags);
1974 if (!cachep->num)
1975 return false;
1976
1977 cachep->colour = left / cachep->colour_off;
1978
1979 return true;
1980 }
1981
1982 /**
1983 * __kmem_cache_create - Create a cache.
1984 * @cachep: cache management descriptor
1985 * @flags: SLAB flags
1986 *
1987 * Returns a ptr to the cache on success, NULL on failure.
1988 * Cannot be called within a int, but can be interrupted.
1989 * The @ctor is run when new pages are allocated by the cache.
1990 *
1991 * The flags are
1992 *
1993 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1994 * to catch references to uninitialised memory.
1995 *
1996 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1997 * for buffer overruns.
1998 *
1999 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2000 * cacheline. This can be beneficial if you're counting cycles as closely
2001 * as davem.
2002 */
2003 int
2004 __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2005 {
2006 size_t ralign = BYTES_PER_WORD;
2007 gfp_t gfp;
2008 int err;
2009 size_t size = cachep->size;
2010
2011 #if DEBUG
2012 #if FORCED_DEBUG
2013 /*
2014 * Enable redzoning and last user accounting, except for caches with
2015 * large objects, if the increased size would increase the object size
2016 * above the next power of two: caches with object sizes just above a
2017 * power of two have a significant amount of internal fragmentation.
2018 */
2019 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2020 2 * sizeof(unsigned long long)))
2021 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2022 if (!(flags & SLAB_DESTROY_BY_RCU))
2023 flags |= SLAB_POISON;
2024 #endif
2025 #endif
2026
2027 /*
2028 * Check that size is in terms of words. This is needed to avoid
2029 * unaligned accesses for some archs when redzoning is used, and makes
2030 * sure any on-slab bufctl's are also correctly aligned.
2031 */
2032 if (size & (BYTES_PER_WORD - 1)) {
2033 size += (BYTES_PER_WORD - 1);
2034 size &= ~(BYTES_PER_WORD - 1);
2035 }
2036
2037 if (flags & SLAB_RED_ZONE) {
2038 ralign = REDZONE_ALIGN;
2039 /* If redzoning, ensure that the second redzone is suitably
2040 * aligned, by adjusting the object size accordingly. */
2041 size += REDZONE_ALIGN - 1;
2042 size &= ~(REDZONE_ALIGN - 1);
2043 }
2044
2045 /* 3) caller mandated alignment */
2046 if (ralign < cachep->align) {
2047 ralign = cachep->align;
2048 }
2049 /* disable debug if necessary */
2050 if (ralign > __alignof__(unsigned long long))
2051 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2052 /*
2053 * 4) Store it.
2054 */
2055 cachep->align = ralign;
2056 cachep->colour_off = cache_line_size();
2057 /* Offset must be a multiple of the alignment. */
2058 if (cachep->colour_off < cachep->align)
2059 cachep->colour_off = cachep->align;
2060
2061 if (slab_is_available())
2062 gfp = GFP_KERNEL;
2063 else
2064 gfp = GFP_NOWAIT;
2065
2066 #if DEBUG
2067
2068 /*
2069 * Both debugging options require word-alignment which is calculated
2070 * into align above.
2071 */
2072 if (flags & SLAB_RED_ZONE) {
2073 /* add space for red zone words */
2074 cachep->obj_offset += sizeof(unsigned long long);
2075 size += 2 * sizeof(unsigned long long);
2076 }
2077 if (flags & SLAB_STORE_USER) {
2078 /* user store requires one word storage behind the end of
2079 * the real object. But if the second red zone needs to be
2080 * aligned to 64 bits, we must allow that much space.
2081 */
2082 if (flags & SLAB_RED_ZONE)
2083 size += REDZONE_ALIGN;
2084 else
2085 size += BYTES_PER_WORD;
2086 }
2087 #endif
2088
2089 kasan_cache_create(cachep, &size, &flags);
2090
2091 size = ALIGN(size, cachep->align);
2092 /*
2093 * We should restrict the number of objects in a slab to implement
2094 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2095 */
2096 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2097 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2098
2099 #if DEBUG
2100 /*
2101 * To activate debug pagealloc, off-slab management is necessary
2102 * requirement. In early phase of initialization, small sized slab
2103 * doesn't get initialized so it would not be possible. So, we need
2104 * to check size >= 256. It guarantees that all necessary small
2105 * sized slab is initialized in current slab initialization sequence.
2106 */
2107 if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2108 size >= 256 && cachep->object_size > cache_line_size()) {
2109 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2110 size_t tmp_size = ALIGN(size, PAGE_SIZE);
2111
2112 if (set_off_slab_cache(cachep, tmp_size, flags)) {
2113 flags |= CFLGS_OFF_SLAB;
2114 cachep->obj_offset += tmp_size - size;
2115 size = tmp_size;
2116 goto done;
2117 }
2118 }
2119 }
2120 #endif
2121
2122 if (set_objfreelist_slab_cache(cachep, size, flags)) {
2123 flags |= CFLGS_OBJFREELIST_SLAB;
2124 goto done;
2125 }
2126
2127 if (set_off_slab_cache(cachep, size, flags)) {
2128 flags |= CFLGS_OFF_SLAB;
2129 goto done;
2130 }
2131
2132 if (set_on_slab_cache(cachep, size, flags))
2133 goto done;
2134
2135 return -E2BIG;
2136
2137 done:
2138 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
2139 cachep->flags = flags;
2140 cachep->allocflags = __GFP_COMP;
2141 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2142 cachep->allocflags |= GFP_DMA;
2143 cachep->size = size;
2144 cachep->reciprocal_buffer_size = reciprocal_value(size);
2145
2146 #if DEBUG
2147 /*
2148 * If we're going to use the generic kernel_map_pages()
2149 * poisoning, then it's going to smash the contents of
2150 * the redzone and userword anyhow, so switch them off.
2151 */
2152 if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2153 (cachep->flags & SLAB_POISON) &&
2154 is_debug_pagealloc_cache(cachep))
2155 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2156 #endif
2157
2158 if (OFF_SLAB(cachep)) {
2159 cachep->freelist_cache =
2160 kmalloc_slab(cachep->freelist_size, 0u);
2161 }
2162
2163 err = setup_cpu_cache(cachep, gfp);
2164 if (err) {
2165 __kmem_cache_release(cachep);
2166 return err;
2167 }
2168
2169 return 0;
2170 }
2171
2172 #if DEBUG
2173 static void check_irq_off(void)
2174 {
2175 BUG_ON(!irqs_disabled());
2176 }
2177
2178 static void check_irq_on(void)
2179 {
2180 BUG_ON(irqs_disabled());
2181 }
2182
2183 static void check_mutex_acquired(void)
2184 {
2185 BUG_ON(!mutex_is_locked(&slab_mutex));
2186 }
2187
2188 static void check_spinlock_acquired(struct kmem_cache *cachep)
2189 {
2190 #ifdef CONFIG_SMP
2191 check_irq_off();
2192 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2193 #endif
2194 }
2195
2196 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2197 {
2198 #ifdef CONFIG_SMP
2199 check_irq_off();
2200 assert_spin_locked(&get_node(cachep, node)->list_lock);
2201 #endif
2202 }
2203
2204 #else
2205 #define check_irq_off() do { } while(0)
2206 #define check_irq_on() do { } while(0)
2207 #define check_mutex_acquired() do { } while(0)
2208 #define check_spinlock_acquired(x) do { } while(0)
2209 #define check_spinlock_acquired_node(x, y) do { } while(0)
2210 #endif
2211
2212 static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2213 int node, bool free_all, struct list_head *list)
2214 {
2215 int tofree;
2216
2217 if (!ac || !ac->avail)
2218 return;
2219
2220 tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2221 if (tofree > ac->avail)
2222 tofree = (ac->avail + 1) / 2;
2223
2224 free_block(cachep, ac->entry, tofree, node, list);
2225 ac->avail -= tofree;
2226 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2227 }
2228
2229 static void do_drain(void *arg)
2230 {
2231 struct kmem_cache *cachep = arg;
2232 struct array_cache *ac;
2233 int node = numa_mem_id();
2234 struct kmem_cache_node *n;
2235 LIST_HEAD(list);
2236
2237 check_irq_off();
2238 ac = cpu_cache_get(cachep);
2239 n = get_node(cachep, node);
2240 spin_lock(&n->list_lock);
2241 free_block(cachep, ac->entry, ac->avail, node, &list);
2242 spin_unlock(&n->list_lock);
2243 slabs_destroy(cachep, &list);
2244 ac->avail = 0;
2245 }
2246
2247 static void drain_cpu_caches(struct kmem_cache *cachep)
2248 {
2249 struct kmem_cache_node *n;
2250 int node;
2251 LIST_HEAD(list);
2252
2253 on_each_cpu(do_drain, cachep, 1);
2254 check_irq_on();
2255 for_each_kmem_cache_node(cachep, node, n)
2256 if (n->alien)
2257 drain_alien_cache(cachep, n->alien);
2258
2259 for_each_kmem_cache_node(cachep, node, n) {
2260 spin_lock_irq(&n->list_lock);
2261 drain_array_locked(cachep, n->shared, node, true, &list);
2262 spin_unlock_irq(&n->list_lock);
2263
2264 slabs_destroy(cachep, &list);
2265 }
2266 }
2267
2268 /*
2269 * Remove slabs from the list of free slabs.
2270 * Specify the number of slabs to drain in tofree.
2271 *
2272 * Returns the actual number of slabs released.
2273 */
2274 static int drain_freelist(struct kmem_cache *cache,
2275 struct kmem_cache_node *n, int tofree)
2276 {
2277 struct list_head *p;
2278 int nr_freed;
2279 struct page *page;
2280
2281 nr_freed = 0;
2282 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2283
2284 spin_lock_irq(&n->list_lock);
2285 p = n->slabs_free.prev;
2286 if (p == &n->slabs_free) {
2287 spin_unlock_irq(&n->list_lock);
2288 goto out;
2289 }
2290
2291 page = list_entry(p, struct page, lru);
2292 list_del(&page->lru);
2293 /*
2294 * Safe to drop the lock. The slab is no longer linked
2295 * to the cache.
2296 */
2297 n->free_objects -= cache->num;
2298 spin_unlock_irq(&n->list_lock);
2299 slab_destroy(cache, page);
2300 nr_freed++;
2301 }
2302 out:
2303 return nr_freed;
2304 }
2305
2306 int __kmem_cache_shrink(struct kmem_cache *cachep, bool deactivate)
2307 {
2308 int ret = 0;
2309 int node;
2310 struct kmem_cache_node *n;
2311
2312 drain_cpu_caches(cachep);
2313
2314 check_irq_on();
2315 for_each_kmem_cache_node(cachep, node, n) {
2316 drain_freelist(cachep, n, slabs_tofree(cachep, n));
2317
2318 ret += !list_empty(&n->slabs_full) ||
2319 !list_empty(&n->slabs_partial);
2320 }
2321 return (ret ? 1 : 0);
2322 }
2323
2324 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2325 {
2326 return __kmem_cache_shrink(cachep, false);
2327 }
2328
2329 void __kmem_cache_release(struct kmem_cache *cachep)
2330 {
2331 int i;
2332 struct kmem_cache_node *n;
2333
2334 free_percpu(cachep->cpu_cache);
2335
2336 /* NUMA: free the node structures */
2337 for_each_kmem_cache_node(cachep, i, n) {
2338 kfree(n->shared);
2339 free_alien_cache(n->alien);
2340 kfree(n);
2341 cachep->node[i] = NULL;
2342 }
2343 }
2344
2345 /*
2346 * Get the memory for a slab management obj.
2347 *
2348 * For a slab cache when the slab descriptor is off-slab, the
2349 * slab descriptor can't come from the same cache which is being created,
2350 * Because if it is the case, that means we defer the creation of
2351 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2352 * And we eventually call down to __kmem_cache_create(), which
2353 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2354 * This is a "chicken-and-egg" problem.
2355 *
2356 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2357 * which are all initialized during kmem_cache_init().
2358 */
2359 static void *alloc_slabmgmt(struct kmem_cache *cachep,
2360 struct page *page, int colour_off,
2361 gfp_t local_flags, int nodeid)
2362 {
2363 void *freelist;
2364 void *addr = page_address(page);
2365
2366 page->s_mem = addr + colour_off;
2367 page->active = 0;
2368
2369 if (OBJFREELIST_SLAB(cachep))
2370 freelist = NULL;
2371 else if (OFF_SLAB(cachep)) {
2372 /* Slab management obj is off-slab. */
2373 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2374 local_flags, nodeid);
2375 if (!freelist)
2376 return NULL;
2377 } else {
2378 /* We will use last bytes at the slab for freelist */
2379 freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2380 cachep->freelist_size;
2381 }
2382
2383 return freelist;
2384 }
2385
2386 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2387 {
2388 return ((freelist_idx_t *)page->freelist)[idx];
2389 }
2390
2391 static inline void set_free_obj(struct page *page,
2392 unsigned int idx, freelist_idx_t val)
2393 {
2394 ((freelist_idx_t *)(page->freelist))[idx] = val;
2395 }
2396
2397 static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
2398 {
2399 #if DEBUG
2400 int i;
2401
2402 for (i = 0; i < cachep->num; i++) {
2403 void *objp = index_to_obj(cachep, page, i);
2404
2405 if (cachep->flags & SLAB_STORE_USER)
2406 *dbg_userword(cachep, objp) = NULL;
2407
2408 if (cachep->flags & SLAB_RED_ZONE) {
2409 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2410 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2411 }
2412 /*
2413 * Constructors are not allowed to allocate memory from the same
2414 * cache which they are a constructor for. Otherwise, deadlock.
2415 * They must also be threaded.
2416 */
2417 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2418 kasan_unpoison_object_data(cachep,
2419 objp + obj_offset(cachep));
2420 cachep->ctor(objp + obj_offset(cachep));
2421 kasan_poison_object_data(
2422 cachep, objp + obj_offset(cachep));
2423 }
2424
2425 if (cachep->flags & SLAB_RED_ZONE) {
2426 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2427 slab_error(cachep, "constructor overwrote the end of an object");
2428 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2429 slab_error(cachep, "constructor overwrote the start of an object");
2430 }
2431 /* need to poison the objs? */
2432 if (cachep->flags & SLAB_POISON) {
2433 poison_obj(cachep, objp, POISON_FREE);
2434 slab_kernel_map(cachep, objp, 0, 0);
2435 }
2436 }
2437 #endif
2438 }
2439
2440 static void cache_init_objs(struct kmem_cache *cachep,
2441 struct page *page)
2442 {
2443 int i;
2444 void *objp;
2445
2446 cache_init_objs_debug(cachep, page);
2447
2448 if (OBJFREELIST_SLAB(cachep)) {
2449 page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2450 obj_offset(cachep);
2451 }
2452
2453 for (i = 0; i < cachep->num; i++) {
2454 /* constructor could break poison info */
2455 if (DEBUG == 0 && cachep->ctor) {
2456 objp = index_to_obj(cachep, page, i);
2457 kasan_unpoison_object_data(cachep, objp);
2458 cachep->ctor(objp);
2459 kasan_poison_object_data(cachep, objp);
2460 }
2461
2462 set_free_obj(page, i, i);
2463 }
2464 }
2465
2466 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2467 {
2468 if (CONFIG_ZONE_DMA_FLAG) {
2469 if (flags & GFP_DMA)
2470 BUG_ON(!(cachep->allocflags & GFP_DMA));
2471 else
2472 BUG_ON(cachep->allocflags & GFP_DMA);
2473 }
2474 }
2475
2476 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2477 {
2478 void *objp;
2479
2480 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2481 page->active++;
2482
2483 #if DEBUG
2484 if (cachep->flags & SLAB_STORE_USER)
2485 set_store_user_dirty(cachep);
2486 #endif
2487
2488 return objp;
2489 }
2490
2491 static void slab_put_obj(struct kmem_cache *cachep,
2492 struct page *page, void *objp)
2493 {
2494 unsigned int objnr = obj_to_index(cachep, page, objp);
2495 #if DEBUG
2496 unsigned int i;
2497
2498 /* Verify double free bug */
2499 for (i = page->active; i < cachep->num; i++) {
2500 if (get_free_obj(page, i) == objnr) {
2501 pr_err("slab: double free detected in cache '%s', objp %p\n",
2502 cachep->name, objp);
2503 BUG();
2504 }
2505 }
2506 #endif
2507 page->active--;
2508 if (!page->freelist)
2509 page->freelist = objp + obj_offset(cachep);
2510
2511 set_free_obj(page, page->active, objnr);
2512 }
2513
2514 /*
2515 * Map pages beginning at addr to the given cache and slab. This is required
2516 * for the slab allocator to be able to lookup the cache and slab of a
2517 * virtual address for kfree, ksize, and slab debugging.
2518 */
2519 static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2520 void *freelist)
2521 {
2522 page->slab_cache = cache;
2523 page->freelist = freelist;
2524 }
2525
2526 /*
2527 * Grow (by 1) the number of slabs within a cache. This is called by
2528 * kmem_cache_alloc() when there are no active objs left in a cache.
2529 */
2530 static int cache_grow(struct kmem_cache *cachep,
2531 gfp_t flags, int nodeid, struct page *page)
2532 {
2533 void *freelist;
2534 size_t offset;
2535 gfp_t local_flags;
2536 struct kmem_cache_node *n;
2537
2538 /*
2539 * Be lazy and only check for valid flags here, keeping it out of the
2540 * critical path in kmem_cache_alloc().
2541 */
2542 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2543 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
2544 BUG();
2545 }
2546 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2547
2548 /* Take the node list lock to change the colour_next on this node */
2549 check_irq_off();
2550 n = get_node(cachep, nodeid);
2551 spin_lock(&n->list_lock);
2552
2553 /* Get colour for the slab, and cal the next value. */
2554 offset = n->colour_next;
2555 n->colour_next++;
2556 if (n->colour_next >= cachep->colour)
2557 n->colour_next = 0;
2558 spin_unlock(&n->list_lock);
2559
2560 offset *= cachep->colour_off;
2561
2562 if (gfpflags_allow_blocking(local_flags))
2563 local_irq_enable();
2564
2565 /*
2566 * The test for missing atomic flag is performed here, rather than
2567 * the more obvious place, simply to reduce the critical path length
2568 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2569 * will eventually be caught here (where it matters).
2570 */
2571 kmem_flagcheck(cachep, flags);
2572
2573 /*
2574 * Get mem for the objs. Attempt to allocate a physical page from
2575 * 'nodeid'.
2576 */
2577 if (!page)
2578 page = kmem_getpages(cachep, local_flags, nodeid);
2579 if (!page)
2580 goto failed;
2581
2582 /* Get slab management. */
2583 freelist = alloc_slabmgmt(cachep, page, offset,
2584 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2585 if (OFF_SLAB(cachep) && !freelist)
2586 goto opps1;
2587
2588 slab_map_pages(cachep, page, freelist);
2589
2590 kasan_poison_slab(page);
2591 cache_init_objs(cachep, page);
2592
2593 if (gfpflags_allow_blocking(local_flags))
2594 local_irq_disable();
2595 check_irq_off();
2596 spin_lock(&n->list_lock);
2597
2598 /* Make slab active. */
2599 list_add_tail(&page->lru, &(n->slabs_free));
2600 STATS_INC_GROWN(cachep);
2601 n->free_objects += cachep->num;
2602 spin_unlock(&n->list_lock);
2603 return 1;
2604 opps1:
2605 kmem_freepages(cachep, page);
2606 failed:
2607 if (gfpflags_allow_blocking(local_flags))
2608 local_irq_disable();
2609 return 0;
2610 }
2611
2612 #if DEBUG
2613
2614 /*
2615 * Perform extra freeing checks:
2616 * - detect bad pointers.
2617 * - POISON/RED_ZONE checking
2618 */
2619 static void kfree_debugcheck(const void *objp)
2620 {
2621 if (!virt_addr_valid(objp)) {
2622 pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2623 (unsigned long)objp);
2624 BUG();
2625 }
2626 }
2627
2628 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2629 {
2630 unsigned long long redzone1, redzone2;
2631
2632 redzone1 = *dbg_redzone1(cache, obj);
2633 redzone2 = *dbg_redzone2(cache, obj);
2634
2635 /*
2636 * Redzone is ok.
2637 */
2638 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2639 return;
2640
2641 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2642 slab_error(cache, "double free detected");
2643 else
2644 slab_error(cache, "memory outside object was overwritten");
2645
2646 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2647 obj, redzone1, redzone2);
2648 }
2649
2650 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2651 unsigned long caller)
2652 {
2653 unsigned int objnr;
2654 struct page *page;
2655
2656 BUG_ON(virt_to_cache(objp) != cachep);
2657
2658 objp -= obj_offset(cachep);
2659 kfree_debugcheck(objp);
2660 page = virt_to_head_page(objp);
2661
2662 if (cachep->flags & SLAB_RED_ZONE) {
2663 verify_redzone_free(cachep, objp);
2664 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2665 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2666 }
2667 if (cachep->flags & SLAB_STORE_USER) {
2668 set_store_user_dirty(cachep);
2669 *dbg_userword(cachep, objp) = (void *)caller;
2670 }
2671
2672 objnr = obj_to_index(cachep, page, objp);
2673
2674 BUG_ON(objnr >= cachep->num);
2675 BUG_ON(objp != index_to_obj(cachep, page, objnr));
2676
2677 if (cachep->flags & SLAB_POISON) {
2678 poison_obj(cachep, objp, POISON_FREE);
2679 slab_kernel_map(cachep, objp, 0, caller);
2680 }
2681 return objp;
2682 }
2683
2684 #else
2685 #define kfree_debugcheck(x) do { } while(0)
2686 #define cache_free_debugcheck(x,objp,z) (objp)
2687 #endif
2688
2689 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2690 void **list)
2691 {
2692 #if DEBUG
2693 void *next = *list;
2694 void *objp;
2695
2696 while (next) {
2697 objp = next - obj_offset(cachep);
2698 next = *(void **)next;
2699 poison_obj(cachep, objp, POISON_FREE);
2700 }
2701 #endif
2702 }
2703
2704 static inline void fixup_slab_list(struct kmem_cache *cachep,
2705 struct kmem_cache_node *n, struct page *page,
2706 void **list)
2707 {
2708 /* move slabp to correct slabp list: */
2709 list_del(&page->lru);
2710 if (page->active == cachep->num) {
2711 list_add(&page->lru, &n->slabs_full);
2712 if (OBJFREELIST_SLAB(cachep)) {
2713 #if DEBUG
2714 /* Poisoning will be done without holding the lock */
2715 if (cachep->flags & SLAB_POISON) {
2716 void **objp = page->freelist;
2717
2718 *objp = *list;
2719 *list = objp;
2720 }
2721 #endif
2722 page->freelist = NULL;
2723 }
2724 } else
2725 list_add(&page->lru, &n->slabs_partial);
2726 }
2727
2728 /* Try to find non-pfmemalloc slab if needed */
2729 static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2730 struct page *page, bool pfmemalloc)
2731 {
2732 if (!page)
2733 return NULL;
2734
2735 if (pfmemalloc)
2736 return page;
2737
2738 if (!PageSlabPfmemalloc(page))
2739 return page;
2740
2741 /* No need to keep pfmemalloc slab if we have enough free objects */
2742 if (n->free_objects > n->free_limit) {
2743 ClearPageSlabPfmemalloc(page);
2744 return page;
2745 }
2746
2747 /* Move pfmemalloc slab to the end of list to speed up next search */
2748 list_del(&page->lru);
2749 if (!page->active)
2750 list_add_tail(&page->lru, &n->slabs_free);
2751 else
2752 list_add_tail(&page->lru, &n->slabs_partial);
2753
2754 list_for_each_entry(page, &n->slabs_partial, lru) {
2755 if (!PageSlabPfmemalloc(page))
2756 return page;
2757 }
2758
2759 list_for_each_entry(page, &n->slabs_free, lru) {
2760 if (!PageSlabPfmemalloc(page))
2761 return page;
2762 }
2763
2764 return NULL;
2765 }
2766
2767 static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2768 {
2769 struct page *page;
2770
2771 page = list_first_entry_or_null(&n->slabs_partial,
2772 struct page, lru);
2773 if (!page) {
2774 n->free_touched = 1;
2775 page = list_first_entry_or_null(&n->slabs_free,
2776 struct page, lru);
2777 }
2778
2779 if (sk_memalloc_socks())
2780 return get_valid_first_slab(n, page, pfmemalloc);
2781
2782 return page;
2783 }
2784
2785 static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2786 struct kmem_cache_node *n, gfp_t flags)
2787 {
2788 struct page *page;
2789 void *obj;
2790 void *list = NULL;
2791
2792 if (!gfp_pfmemalloc_allowed(flags))
2793 return NULL;
2794
2795 spin_lock(&n->list_lock);
2796 page = get_first_slab(n, true);
2797 if (!page) {
2798 spin_unlock(&n->list_lock);
2799 return NULL;
2800 }
2801
2802 obj = slab_get_obj(cachep, page);
2803 n->free_objects--;
2804
2805 fixup_slab_list(cachep, n, page, &list);
2806
2807 spin_unlock(&n->list_lock);
2808 fixup_objfreelist_debug(cachep, &list);
2809
2810 return obj;
2811 }
2812
2813 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2814 {
2815 int batchcount;
2816 struct kmem_cache_node *n;
2817 struct array_cache *ac;
2818 int node;
2819 void *list = NULL;
2820
2821 check_irq_off();
2822 node = numa_mem_id();
2823
2824 retry:
2825 ac = cpu_cache_get(cachep);
2826 batchcount = ac->batchcount;
2827 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2828 /*
2829 * If there was little recent activity on this cache, then
2830 * perform only a partial refill. Otherwise we could generate
2831 * refill bouncing.
2832 */
2833 batchcount = BATCHREFILL_LIMIT;
2834 }
2835 n = get_node(cachep, node);
2836
2837 BUG_ON(ac->avail > 0 || !n);
2838 spin_lock(&n->list_lock);
2839
2840 /* See if we can refill from the shared array */
2841 if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2842 n->shared->touched = 1;
2843 goto alloc_done;
2844 }
2845
2846 while (batchcount > 0) {
2847 struct page *page;
2848 /* Get slab alloc is to come from. */
2849 page = get_first_slab(n, false);
2850 if (!page)
2851 goto must_grow;
2852
2853 check_spinlock_acquired(cachep);
2854
2855 /*
2856 * The slab was either on partial or free list so
2857 * there must be at least one object available for
2858 * allocation.
2859 */
2860 BUG_ON(page->active >= cachep->num);
2861
2862 while (page->active < cachep->num && batchcount--) {
2863 STATS_INC_ALLOCED(cachep);
2864 STATS_INC_ACTIVE(cachep);
2865 STATS_SET_HIGH(cachep);
2866
2867 ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2868 }
2869
2870 fixup_slab_list(cachep, n, page, &list);
2871 }
2872
2873 must_grow:
2874 n->free_objects -= ac->avail;
2875 alloc_done:
2876 spin_unlock(&n->list_lock);
2877 fixup_objfreelist_debug(cachep, &list);
2878
2879 if (unlikely(!ac->avail)) {
2880 int x;
2881
2882 /* Check if we can use obj in pfmemalloc slab */
2883 if (sk_memalloc_socks()) {
2884 void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
2885
2886 if (obj)
2887 return obj;
2888 }
2889
2890 x = cache_grow(cachep, gfp_exact_node(flags), node, NULL);
2891
2892 /* cache_grow can reenable interrupts, then ac could change. */
2893 ac = cpu_cache_get(cachep);
2894 node = numa_mem_id();
2895
2896 /* no objects in sight? abort */
2897 if (!x && ac->avail == 0)
2898 return NULL;
2899
2900 if (!ac->avail) /* objects refilled by interrupt? */
2901 goto retry;
2902 }
2903 ac->touched = 1;
2904
2905 return ac->entry[--ac->avail];
2906 }
2907
2908 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2909 gfp_t flags)
2910 {
2911 might_sleep_if(gfpflags_allow_blocking(flags));
2912 #if DEBUG
2913 kmem_flagcheck(cachep, flags);
2914 #endif
2915 }
2916
2917 #if DEBUG
2918 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2919 gfp_t flags, void *objp, unsigned long caller)
2920 {
2921 if (!objp)
2922 return objp;
2923 if (cachep->flags & SLAB_POISON) {
2924 check_poison_obj(cachep, objp);
2925 slab_kernel_map(cachep, objp, 1, 0);
2926 poison_obj(cachep, objp, POISON_INUSE);
2927 }
2928 if (cachep->flags & SLAB_STORE_USER)
2929 *dbg_userword(cachep, objp) = (void *)caller;
2930
2931 if (cachep->flags & SLAB_RED_ZONE) {
2932 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2933 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2934 slab_error(cachep, "double free, or memory outside object was overwritten");
2935 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2936 objp, *dbg_redzone1(cachep, objp),
2937 *dbg_redzone2(cachep, objp));
2938 }
2939 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2940 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2941 }
2942
2943 objp += obj_offset(cachep);
2944 if (cachep->ctor && cachep->flags & SLAB_POISON)
2945 cachep->ctor(objp);
2946 if (ARCH_SLAB_MINALIGN &&
2947 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
2948 pr_err("0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
2949 objp, (int)ARCH_SLAB_MINALIGN);
2950 }
2951 return objp;
2952 }
2953 #else
2954 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2955 #endif
2956
2957 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
2958 {
2959 void *objp;
2960 struct array_cache *ac;
2961
2962 check_irq_off();
2963
2964 ac = cpu_cache_get(cachep);
2965 if (likely(ac->avail)) {
2966 ac->touched = 1;
2967 objp = ac->entry[--ac->avail];
2968
2969 STATS_INC_ALLOCHIT(cachep);
2970 goto out;
2971 }
2972
2973 STATS_INC_ALLOCMISS(cachep);
2974 objp = cache_alloc_refill(cachep, flags);
2975 /*
2976 * the 'ac' may be updated by cache_alloc_refill(),
2977 * and kmemleak_erase() requires its correct value.
2978 */
2979 ac = cpu_cache_get(cachep);
2980
2981 out:
2982 /*
2983 * To avoid a false negative, if an object that is in one of the
2984 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
2985 * treat the array pointers as a reference to the object.
2986 */
2987 if (objp)
2988 kmemleak_erase(&ac->entry[ac->avail]);
2989 return objp;
2990 }
2991
2992 #ifdef CONFIG_NUMA
2993 /*
2994 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
2995 *
2996 * If we are in_interrupt, then process context, including cpusets and
2997 * mempolicy, may not apply and should not be used for allocation policy.
2998 */
2999 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3000 {
3001 int nid_alloc, nid_here;
3002
3003 if (in_interrupt() || (flags & __GFP_THISNODE))
3004 return NULL;
3005 nid_alloc = nid_here = numa_mem_id();
3006 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3007 nid_alloc = cpuset_slab_spread_node();
3008 else if (current->mempolicy)
3009 nid_alloc = mempolicy_slab_node();
3010 if (nid_alloc != nid_here)
3011 return ____cache_alloc_node(cachep, flags, nid_alloc);
3012 return NULL;
3013 }
3014
3015 /*
3016 * Fallback function if there was no memory available and no objects on a
3017 * certain node and fall back is permitted. First we scan all the
3018 * available node for available objects. If that fails then we
3019 * perform an allocation without specifying a node. This allows the page
3020 * allocator to do its reclaim / fallback magic. We then insert the
3021 * slab into the proper nodelist and then allocate from it.
3022 */
3023 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3024 {
3025 struct zonelist *zonelist;
3026 gfp_t local_flags;
3027 struct zoneref *z;
3028 struct zone *zone;
3029 enum zone_type high_zoneidx = gfp_zone(flags);
3030 void *obj = NULL;
3031 int nid;
3032 unsigned int cpuset_mems_cookie;
3033
3034 if (flags & __GFP_THISNODE)
3035 return NULL;
3036
3037 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3038
3039 retry_cpuset:
3040 cpuset_mems_cookie = read_mems_allowed_begin();
3041 zonelist = node_zonelist(mempolicy_slab_node(), flags);
3042
3043 retry:
3044 /*
3045 * Look through allowed nodes for objects available
3046 * from existing per node queues.
3047 */
3048 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3049 nid = zone_to_nid(zone);
3050
3051 if (cpuset_zone_allowed(zone, flags) &&
3052 get_node(cache, nid) &&
3053 get_node(cache, nid)->free_objects) {
3054 obj = ____cache_alloc_node(cache,
3055 gfp_exact_node(flags), nid);
3056 if (obj)
3057 break;
3058 }
3059 }
3060
3061 if (!obj) {
3062 /*
3063 * This allocation will be performed within the constraints
3064 * of the current cpuset / memory policy requirements.
3065 * We may trigger various forms of reclaim on the allowed
3066 * set and go into memory reserves if necessary.
3067 */
3068 struct page *page;
3069
3070 if (gfpflags_allow_blocking(local_flags))
3071 local_irq_enable();
3072 kmem_flagcheck(cache, flags);
3073 page = kmem_getpages(cache, local_flags, numa_mem_id());
3074 if (gfpflags_allow_blocking(local_flags))
3075 local_irq_disable();
3076 if (page) {
3077 /*
3078 * Insert into the appropriate per node queues
3079 */
3080 nid = page_to_nid(page);
3081 if (cache_grow(cache, flags, nid, page)) {
3082 obj = ____cache_alloc_node(cache,
3083 gfp_exact_node(flags), nid);
3084 if (!obj)
3085 /*
3086 * Another processor may allocate the
3087 * objects in the slab since we are
3088 * not holding any locks.
3089 */
3090 goto retry;
3091 } else {
3092 /* cache_grow already freed obj */
3093 obj = NULL;
3094 }
3095 }
3096 }
3097
3098 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3099 goto retry_cpuset;
3100 return obj;
3101 }
3102
3103 /*
3104 * A interface to enable slab creation on nodeid
3105 */
3106 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3107 int nodeid)
3108 {
3109 struct page *page;
3110 struct kmem_cache_node *n;
3111 void *obj;
3112 void *list = NULL;
3113 int x;
3114
3115 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3116 n = get_node(cachep, nodeid);
3117 BUG_ON(!n);
3118
3119 retry:
3120 check_irq_off();
3121 spin_lock(&n->list_lock);
3122 page = get_first_slab(n, false);
3123 if (!page)
3124 goto must_grow;
3125
3126 check_spinlock_acquired_node(cachep, nodeid);
3127
3128 STATS_INC_NODEALLOCS(cachep);
3129 STATS_INC_ACTIVE(cachep);
3130 STATS_SET_HIGH(cachep);
3131
3132 BUG_ON(page->active == cachep->num);
3133
3134 obj = slab_get_obj(cachep, page);
3135 n->free_objects--;
3136
3137 fixup_slab_list(cachep, n, page, &list);
3138
3139 spin_unlock(&n->list_lock);
3140 fixup_objfreelist_debug(cachep, &list);
3141 goto done;
3142
3143 must_grow:
3144 spin_unlock(&n->list_lock);
3145 x = cache_grow(cachep, gfp_exact_node(flags), nodeid, NULL);
3146 if (x)
3147 goto retry;
3148
3149 return fallback_alloc(cachep, flags);
3150
3151 done:
3152 return obj;
3153 }
3154
3155 static __always_inline void *
3156 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3157 unsigned long caller)
3158 {
3159 unsigned long save_flags;
3160 void *ptr;
3161 int slab_node = numa_mem_id();
3162
3163 flags &= gfp_allowed_mask;
3164 cachep = slab_pre_alloc_hook(cachep, flags);
3165 if (unlikely(!cachep))
3166 return NULL;
3167
3168 cache_alloc_debugcheck_before(cachep, flags);
3169 local_irq_save(save_flags);
3170
3171 if (nodeid == NUMA_NO_NODE)
3172 nodeid = slab_node;
3173
3174 if (unlikely(!get_node(cachep, nodeid))) {
3175 /* Node not bootstrapped yet */
3176 ptr = fallback_alloc(cachep, flags);
3177 goto out;
3178 }
3179
3180 if (nodeid == slab_node) {
3181 /*
3182 * Use the locally cached objects if possible.
3183 * However ____cache_alloc does not allow fallback
3184 * to other nodes. It may fail while we still have
3185 * objects on other nodes available.
3186 */
3187 ptr = ____cache_alloc(cachep, flags);
3188 if (ptr)
3189 goto out;
3190 }
3191 /* ___cache_alloc_node can fall back to other nodes */
3192 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3193 out:
3194 local_irq_restore(save_flags);
3195 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3196
3197 if (unlikely(flags & __GFP_ZERO) && ptr)
3198 memset(ptr, 0, cachep->object_size);
3199
3200 slab_post_alloc_hook(cachep, flags, 1, &ptr);
3201 return ptr;
3202 }
3203
3204 static __always_inline void *
3205 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3206 {
3207 void *objp;
3208
3209 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3210 objp = alternate_node_alloc(cache, flags);
3211 if (objp)
3212 goto out;
3213 }
3214 objp = ____cache_alloc(cache, flags);
3215
3216 /*
3217 * We may just have run out of memory on the local node.
3218 * ____cache_alloc_node() knows how to locate memory on other nodes
3219 */
3220 if (!objp)
3221 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3222
3223 out:
3224 return objp;
3225 }
3226 #else
3227
3228 static __always_inline void *
3229 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3230 {
3231 return ____cache_alloc(cachep, flags);
3232 }
3233
3234 #endif /* CONFIG_NUMA */
3235
3236 static __always_inline void *
3237 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3238 {
3239 unsigned long save_flags;
3240 void *objp;
3241
3242 flags &= gfp_allowed_mask;
3243 cachep = slab_pre_alloc_hook(cachep, flags);
3244 if (unlikely(!cachep))
3245 return NULL;
3246
3247 cache_alloc_debugcheck_before(cachep, flags);
3248 local_irq_save(save_flags);
3249 objp = __do_cache_alloc(cachep, flags);
3250 local_irq_restore(save_flags);
3251 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3252 prefetchw(objp);
3253
3254 if (unlikely(flags & __GFP_ZERO) && objp)
3255 memset(objp, 0, cachep->object_size);
3256
3257 slab_post_alloc_hook(cachep, flags, 1, &objp);
3258 return objp;
3259 }
3260
3261 /*
3262 * Caller needs to acquire correct kmem_cache_node's list_lock
3263 * @list: List of detached free slabs should be freed by caller
3264 */
3265 static void free_block(struct kmem_cache *cachep, void **objpp,
3266 int nr_objects, int node, struct list_head *list)
3267 {
3268 int i;
3269 struct kmem_cache_node *n = get_node(cachep, node);
3270
3271 for (i = 0; i < nr_objects; i++) {
3272 void *objp;
3273 struct page *page;
3274
3275 objp = objpp[i];
3276
3277 page = virt_to_head_page(objp);
3278 list_del(&page->lru);
3279 check_spinlock_acquired_node(cachep, node);
3280 slab_put_obj(cachep, page, objp);
3281 STATS_DEC_ACTIVE(cachep);
3282 n->free_objects++;
3283
3284 /* fixup slab chains */
3285 if (page->active == 0) {
3286 if (n->free_objects > n->free_limit) {
3287 n->free_objects -= cachep->num;
3288 list_add_tail(&page->lru, list);
3289 } else {
3290 list_add(&page->lru, &n->slabs_free);
3291 }
3292 } else {
3293 /* Unconditionally move a slab to the end of the
3294 * partial list on free - maximum time for the
3295 * other objects to be freed, too.
3296 */
3297 list_add_tail(&page->lru, &n->slabs_partial);
3298 }
3299 }
3300 }
3301
3302 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3303 {
3304 int batchcount;
3305 struct kmem_cache_node *n;
3306 int node = numa_mem_id();
3307 LIST_HEAD(list);
3308
3309 batchcount = ac->batchcount;
3310
3311 check_irq_off();
3312 n = get_node(cachep, node);
3313 spin_lock(&n->list_lock);
3314 if (n->shared) {
3315 struct array_cache *shared_array = n->shared;
3316 int max = shared_array->limit - shared_array->avail;
3317 if (max) {
3318 if (batchcount > max)
3319 batchcount = max;
3320 memcpy(&(shared_array->entry[shared_array->avail]),
3321 ac->entry, sizeof(void *) * batchcount);
3322 shared_array->avail += batchcount;
3323 goto free_done;
3324 }
3325 }
3326
3327 free_block(cachep, ac->entry, batchcount, node, &list);
3328 free_done:
3329 #if STATS
3330 {
3331 int i = 0;
3332 struct page *page;
3333
3334 list_for_each_entry(page, &n->slabs_free, lru) {
3335 BUG_ON(page->active);
3336
3337 i++;
3338 }
3339 STATS_SET_FREEABLE(cachep, i);
3340 }
3341 #endif
3342 spin_unlock(&n->list_lock);
3343 slabs_destroy(cachep, &list);
3344 ac->avail -= batchcount;
3345 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3346 }
3347
3348 /*
3349 * Release an obj back to its cache. If the obj has a constructed state, it must
3350 * be in this state _before_ it is released. Called with disabled ints.
3351 */
3352 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3353 unsigned long caller)
3354 {
3355 struct array_cache *ac = cpu_cache_get(cachep);
3356
3357 kasan_slab_free(cachep, objp);
3358
3359 check_irq_off();
3360 kmemleak_free_recursive(objp, cachep->flags);
3361 objp = cache_free_debugcheck(cachep, objp, caller);
3362
3363 kmemcheck_slab_free(cachep, objp, cachep->object_size);
3364
3365 /*
3366 * Skip calling cache_free_alien() when the platform is not numa.
3367 * This will avoid cache misses that happen while accessing slabp (which
3368 * is per page memory reference) to get nodeid. Instead use a global
3369 * variable to skip the call, which is mostly likely to be present in
3370 * the cache.
3371 */
3372 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3373 return;
3374
3375 if (ac->avail < ac->limit) {
3376 STATS_INC_FREEHIT(cachep);
3377 } else {
3378 STATS_INC_FREEMISS(cachep);
3379 cache_flusharray(cachep, ac);
3380 }
3381
3382 if (sk_memalloc_socks()) {
3383 struct page *page = virt_to_head_page(objp);
3384
3385 if (unlikely(PageSlabPfmemalloc(page))) {
3386 cache_free_pfmemalloc(cachep, page, objp);
3387 return;
3388 }
3389 }
3390
3391 ac->entry[ac->avail++] = objp;
3392 }
3393
3394 /**
3395 * kmem_cache_alloc - Allocate an object
3396 * @cachep: The cache to allocate from.
3397 * @flags: See kmalloc().
3398 *
3399 * Allocate an object from this cache. The flags are only relevant
3400 * if the cache has no available objects.
3401 */
3402 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3403 {
3404 void *ret = slab_alloc(cachep, flags, _RET_IP_);
3405
3406 kasan_slab_alloc(cachep, ret, flags);
3407 trace_kmem_cache_alloc(_RET_IP_, ret,
3408 cachep->object_size, cachep->size, flags);
3409
3410 return ret;
3411 }
3412 EXPORT_SYMBOL(kmem_cache_alloc);
3413
3414 static __always_inline void
3415 cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3416 size_t size, void **p, unsigned long caller)
3417 {
3418 size_t i;
3419
3420 for (i = 0; i < size; i++)
3421 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3422 }
3423
3424 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3425 void **p)
3426 {
3427 size_t i;
3428
3429 s = slab_pre_alloc_hook(s, flags);
3430 if (!s)
3431 return 0;
3432
3433 cache_alloc_debugcheck_before(s, flags);
3434
3435 local_irq_disable();
3436 for (i = 0; i < size; i++) {
3437 void *objp = __do_cache_alloc(s, flags);
3438
3439 if (unlikely(!objp))
3440 goto error;
3441 p[i] = objp;
3442 }
3443 local_irq_enable();
3444
3445 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3446
3447 /* Clear memory outside IRQ disabled section */
3448 if (unlikely(flags & __GFP_ZERO))
3449 for (i = 0; i < size; i++)
3450 memset(p[i], 0, s->object_size);
3451
3452 slab_post_alloc_hook(s, flags, size, p);
3453 /* FIXME: Trace call missing. Christoph would like a bulk variant */
3454 return size;
3455 error:
3456 local_irq_enable();
3457 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3458 slab_post_alloc_hook(s, flags, i, p);
3459 __kmem_cache_free_bulk(s, i, p);
3460 return 0;
3461 }
3462 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3463
3464 #ifdef CONFIG_TRACING
3465 void *
3466 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3467 {
3468 void *ret;
3469
3470 ret = slab_alloc(cachep, flags, _RET_IP_);
3471
3472 kasan_kmalloc(cachep, ret, size, flags);
3473 trace_kmalloc(_RET_IP_, ret,
3474 size, cachep->size, flags);
3475 return ret;
3476 }
3477 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3478 #endif
3479
3480 #ifdef CONFIG_NUMA
3481 /**
3482 * kmem_cache_alloc_node - Allocate an object on the specified node
3483 * @cachep: The cache to allocate from.
3484 * @flags: See kmalloc().
3485 * @nodeid: node number of the target node.
3486 *
3487 * Identical to kmem_cache_alloc but it will allocate memory on the given
3488 * node, which can improve the performance for cpu bound structures.
3489 *
3490 * Fallback to other node is possible if __GFP_THISNODE is not set.
3491 */
3492 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3493 {
3494 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3495
3496 kasan_slab_alloc(cachep, ret, flags);
3497 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3498 cachep->object_size, cachep->size,
3499 flags, nodeid);
3500
3501 return ret;
3502 }
3503 EXPORT_SYMBOL(kmem_cache_alloc_node);
3504
3505 #ifdef CONFIG_TRACING
3506 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3507 gfp_t flags,
3508 int nodeid,
3509 size_t size)
3510 {
3511 void *ret;
3512
3513 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3514
3515 kasan_kmalloc(cachep, ret, size, flags);
3516 trace_kmalloc_node(_RET_IP_, ret,
3517 size, cachep->size,
3518 flags, nodeid);
3519 return ret;
3520 }
3521 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3522 #endif
3523
3524 static __always_inline void *
3525 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3526 {
3527 struct kmem_cache *cachep;
3528 void *ret;
3529
3530 cachep = kmalloc_slab(size, flags);
3531 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3532 return cachep;
3533 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3534 kasan_kmalloc(cachep, ret, size, flags);
3535
3536 return ret;
3537 }
3538
3539 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3540 {
3541 return __do_kmalloc_node(size, flags, node, _RET_IP_);
3542 }
3543 EXPORT_SYMBOL(__kmalloc_node);
3544
3545 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3546 int node, unsigned long caller)
3547 {
3548 return __do_kmalloc_node(size, flags, node, caller);
3549 }
3550 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3551 #endif /* CONFIG_NUMA */
3552
3553 /**
3554 * __do_kmalloc - allocate memory
3555 * @size: how many bytes of memory are required.
3556 * @flags: the type of memory to allocate (see kmalloc).
3557 * @caller: function caller for debug tracking of the caller
3558 */
3559 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3560 unsigned long caller)
3561 {
3562 struct kmem_cache *cachep;
3563 void *ret;
3564
3565 cachep = kmalloc_slab(size, flags);
3566 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3567 return cachep;
3568 ret = slab_alloc(cachep, flags, caller);
3569
3570 kasan_kmalloc(cachep, ret, size, flags);
3571 trace_kmalloc(caller, ret,
3572 size, cachep->size, flags);
3573
3574 return ret;
3575 }
3576
3577 void *__kmalloc(size_t size, gfp_t flags)
3578 {
3579 return __do_kmalloc(size, flags, _RET_IP_);
3580 }
3581 EXPORT_SYMBOL(__kmalloc);
3582
3583 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3584 {
3585 return __do_kmalloc(size, flags, caller);
3586 }
3587 EXPORT_SYMBOL(__kmalloc_track_caller);
3588
3589 /**
3590 * kmem_cache_free - Deallocate an object
3591 * @cachep: The cache the allocation was from.
3592 * @objp: The previously allocated object.
3593 *
3594 * Free an object which was previously allocated from this
3595 * cache.
3596 */
3597 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3598 {
3599 unsigned long flags;
3600 cachep = cache_from_obj(cachep, objp);
3601 if (!cachep)
3602 return;
3603
3604 local_irq_save(flags);
3605 debug_check_no_locks_freed(objp, cachep->object_size);
3606 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3607 debug_check_no_obj_freed(objp, cachep->object_size);
3608 __cache_free(cachep, objp, _RET_IP_);
3609 local_irq_restore(flags);
3610
3611 trace_kmem_cache_free(_RET_IP_, objp);
3612 }
3613 EXPORT_SYMBOL(kmem_cache_free);
3614
3615 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3616 {
3617 struct kmem_cache *s;
3618 size_t i;
3619
3620 local_irq_disable();
3621 for (i = 0; i < size; i++) {
3622 void *objp = p[i];
3623
3624 if (!orig_s) /* called via kfree_bulk */
3625 s = virt_to_cache(objp);
3626 else
3627 s = cache_from_obj(orig_s, objp);
3628
3629 debug_check_no_locks_freed(objp, s->object_size);
3630 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3631 debug_check_no_obj_freed(objp, s->object_size);
3632
3633 __cache_free(s, objp, _RET_IP_);
3634 }
3635 local_irq_enable();
3636
3637 /* FIXME: add tracing */
3638 }
3639 EXPORT_SYMBOL(kmem_cache_free_bulk);
3640
3641 /**
3642 * kfree - free previously allocated memory
3643 * @objp: pointer returned by kmalloc.
3644 *
3645 * If @objp is NULL, no operation is performed.
3646 *
3647 * Don't free memory not originally allocated by kmalloc()
3648 * or you will run into trouble.
3649 */
3650 void kfree(const void *objp)
3651 {
3652 struct kmem_cache *c;
3653 unsigned long flags;
3654
3655 trace_kfree(_RET_IP_, objp);
3656
3657 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3658 return;
3659 local_irq_save(flags);
3660 kfree_debugcheck(objp);
3661 c = virt_to_cache(objp);
3662 debug_check_no_locks_freed(objp, c->object_size);
3663
3664 debug_check_no_obj_freed(objp, c->object_size);
3665 __cache_free(c, (void *)objp, _RET_IP_);
3666 local_irq_restore(flags);
3667 }
3668 EXPORT_SYMBOL(kfree);
3669
3670 /*
3671 * This initializes kmem_cache_node or resizes various caches for all nodes.
3672 */
3673 static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp)
3674 {
3675 int node;
3676 struct kmem_cache_node *n;
3677 struct array_cache *new_shared;
3678 struct alien_cache **new_alien = NULL;
3679
3680 for_each_online_node(node) {
3681
3682 if (use_alien_caches) {
3683 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3684 if (!new_alien)
3685 goto fail;
3686 }
3687
3688 new_shared = NULL;
3689 if (cachep->shared) {
3690 new_shared = alloc_arraycache(node,
3691 cachep->shared*cachep->batchcount,
3692 0xbaadf00d, gfp);
3693 if (!new_shared) {
3694 free_alien_cache(new_alien);
3695 goto fail;
3696 }
3697 }
3698
3699 n = get_node(cachep, node);
3700 if (n) {
3701 struct array_cache *shared = n->shared;
3702 LIST_HEAD(list);
3703
3704 spin_lock_irq(&n->list_lock);
3705
3706 if (shared)
3707 free_block(cachep, shared->entry,
3708 shared->avail, node, &list);
3709
3710 n->shared = new_shared;
3711 if (!n->alien) {
3712 n->alien = new_alien;
3713 new_alien = NULL;
3714 }
3715 n->free_limit = (1 + nr_cpus_node(node)) *
3716 cachep->batchcount + cachep->num;
3717 spin_unlock_irq(&n->list_lock);
3718 slabs_destroy(cachep, &list);
3719 kfree(shared);
3720 free_alien_cache(new_alien);
3721 continue;
3722 }
3723 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3724 if (!n) {
3725 free_alien_cache(new_alien);
3726 kfree(new_shared);
3727 goto fail;
3728 }
3729
3730 kmem_cache_node_init(n);
3731 n->next_reap = jiffies + REAPTIMEOUT_NODE +
3732 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
3733 n->shared = new_shared;
3734 n->alien = new_alien;
3735 n->free_limit = (1 + nr_cpus_node(node)) *
3736 cachep->batchcount + cachep->num;
3737 cachep->node[node] = n;
3738 }
3739 return 0;
3740
3741 fail:
3742 if (!cachep->list.next) {
3743 /* Cache is not active yet. Roll back what we did */
3744 node--;
3745 while (node >= 0) {
3746 n = get_node(cachep, node);
3747 if (n) {
3748 kfree(n->shared);
3749 free_alien_cache(n->alien);
3750 kfree(n);
3751 cachep->node[node] = NULL;
3752 }
3753 node--;
3754 }
3755 }
3756 return -ENOMEM;
3757 }
3758
3759 /* Always called with the slab_mutex held */
3760 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3761 int batchcount, int shared, gfp_t gfp)
3762 {
3763 struct array_cache __percpu *cpu_cache, *prev;
3764 int cpu;
3765
3766 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3767 if (!cpu_cache)
3768 return -ENOMEM;
3769
3770 prev = cachep->cpu_cache;
3771 cachep->cpu_cache = cpu_cache;
3772 kick_all_cpus_sync();
3773
3774 check_irq_on();
3775 cachep->batchcount = batchcount;
3776 cachep->limit = limit;
3777 cachep->shared = shared;
3778
3779 if (!prev)
3780 goto alloc_node;
3781
3782 for_each_online_cpu(cpu) {
3783 LIST_HEAD(list);
3784 int node;
3785 struct kmem_cache_node *n;
3786 struct array_cache *ac = per_cpu_ptr(prev, cpu);
3787
3788 node = cpu_to_mem(cpu);
3789 n = get_node(cachep, node);
3790 spin_lock_irq(&n->list_lock);
3791 free_block(cachep, ac->entry, ac->avail, node, &list);
3792 spin_unlock_irq(&n->list_lock);
3793 slabs_destroy(cachep, &list);
3794 }
3795 free_percpu(prev);
3796
3797 alloc_node:
3798 return alloc_kmem_cache_node(cachep, gfp);
3799 }
3800
3801 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3802 int batchcount, int shared, gfp_t gfp)
3803 {
3804 int ret;
3805 struct kmem_cache *c;
3806
3807 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3808
3809 if (slab_state < FULL)
3810 return ret;
3811
3812 if ((ret < 0) || !is_root_cache(cachep))
3813 return ret;
3814
3815 lockdep_assert_held(&slab_mutex);
3816 for_each_memcg_cache(c, cachep) {
3817 /* return value determined by the root cache only */
3818 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3819 }
3820
3821 return ret;
3822 }
3823
3824 /* Called with slab_mutex held always */
3825 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3826 {
3827 int err;
3828 int limit = 0;
3829 int shared = 0;
3830 int batchcount = 0;
3831
3832 if (!is_root_cache(cachep)) {
3833 struct kmem_cache *root = memcg_root_cache(cachep);
3834 limit = root->limit;
3835 shared = root->shared;
3836 batchcount = root->batchcount;
3837 }
3838
3839 if (limit && shared && batchcount)
3840 goto skip_setup;
3841 /*
3842 * The head array serves three purposes:
3843 * - create a LIFO ordering, i.e. return objects that are cache-warm
3844 * - reduce the number of spinlock operations.
3845 * - reduce the number of linked list operations on the slab and
3846 * bufctl chains: array operations are cheaper.
3847 * The numbers are guessed, we should auto-tune as described by
3848 * Bonwick.
3849 */
3850 if (cachep->size > 131072)
3851 limit = 1;
3852 else if (cachep->size > PAGE_SIZE)
3853 limit = 8;
3854 else if (cachep->size > 1024)
3855 limit = 24;
3856 else if (cachep->size > 256)
3857 limit = 54;
3858 else
3859 limit = 120;
3860
3861 /*
3862 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3863 * allocation behaviour: Most allocs on one cpu, most free operations
3864 * on another cpu. For these cases, an efficient object passing between
3865 * cpus is necessary. This is provided by a shared array. The array
3866 * replaces Bonwick's magazine layer.
3867 * On uniprocessor, it's functionally equivalent (but less efficient)
3868 * to a larger limit. Thus disabled by default.
3869 */
3870 shared = 0;
3871 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3872 shared = 8;
3873
3874 #if DEBUG
3875 /*
3876 * With debugging enabled, large batchcount lead to excessively long
3877 * periods with disabled local interrupts. Limit the batchcount
3878 */
3879 if (limit > 32)
3880 limit = 32;
3881 #endif
3882 batchcount = (limit + 1) / 2;
3883 skip_setup:
3884 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3885 if (err)
3886 pr_err("enable_cpucache failed for %s, error %d\n",
3887 cachep->name, -err);
3888 return err;
3889 }
3890
3891 /*
3892 * Drain an array if it contains any elements taking the node lock only if
3893 * necessary. Note that the node listlock also protects the array_cache
3894 * if drain_array() is used on the shared array.
3895 */
3896 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3897 struct array_cache *ac, int node)
3898 {
3899 LIST_HEAD(list);
3900
3901 /* ac from n->shared can be freed if we don't hold the slab_mutex. */
3902 check_mutex_acquired();
3903
3904 if (!ac || !ac->avail)
3905 return;
3906
3907 if (ac->touched) {
3908 ac->touched = 0;
3909 return;
3910 }
3911
3912 spin_lock_irq(&n->list_lock);
3913 drain_array_locked(cachep, ac, node, false, &list);
3914 spin_unlock_irq(&n->list_lock);
3915
3916 slabs_destroy(cachep, &list);
3917 }
3918
3919 /**
3920 * cache_reap - Reclaim memory from caches.
3921 * @w: work descriptor
3922 *
3923 * Called from workqueue/eventd every few seconds.
3924 * Purpose:
3925 * - clear the per-cpu caches for this CPU.
3926 * - return freeable pages to the main free memory pool.
3927 *
3928 * If we cannot acquire the cache chain mutex then just give up - we'll try
3929 * again on the next iteration.
3930 */
3931 static void cache_reap(struct work_struct *w)
3932 {
3933 struct kmem_cache *searchp;
3934 struct kmem_cache_node *n;
3935 int node = numa_mem_id();
3936 struct delayed_work *work = to_delayed_work(w);
3937
3938 if (!mutex_trylock(&slab_mutex))
3939 /* Give up. Setup the next iteration. */
3940 goto out;
3941
3942 list_for_each_entry(searchp, &slab_caches, list) {
3943 check_irq_on();
3944
3945 /*
3946 * We only take the node lock if absolutely necessary and we
3947 * have established with reasonable certainty that
3948 * we can do some work if the lock was obtained.
3949 */
3950 n = get_node(searchp, node);
3951
3952 reap_alien(searchp, n);
3953
3954 drain_array(searchp, n, cpu_cache_get(searchp), node);
3955
3956 /*
3957 * These are racy checks but it does not matter
3958 * if we skip one check or scan twice.
3959 */
3960 if (time_after(n->next_reap, jiffies))
3961 goto next;
3962
3963 n->next_reap = jiffies + REAPTIMEOUT_NODE;
3964
3965 drain_array(searchp, n, n->shared, node);
3966
3967 if (n->free_touched)
3968 n->free_touched = 0;
3969 else {
3970 int freed;
3971
3972 freed = drain_freelist(searchp, n, (n->free_limit +
3973 5 * searchp->num - 1) / (5 * searchp->num));
3974 STATS_ADD_REAPED(searchp, freed);
3975 }
3976 next:
3977 cond_resched();
3978 }
3979 check_irq_on();
3980 mutex_unlock(&slab_mutex);
3981 next_reap_node();
3982 out:
3983 /* Set up the next iteration */
3984 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
3985 }
3986
3987 #ifdef CONFIG_SLABINFO
3988 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
3989 {
3990 struct page *page;
3991 unsigned long active_objs;
3992 unsigned long num_objs;
3993 unsigned long active_slabs = 0;
3994 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3995 const char *name;
3996 char *error = NULL;
3997 int node;
3998 struct kmem_cache_node *n;
3999
4000 active_objs = 0;
4001 num_slabs = 0;
4002 for_each_kmem_cache_node(cachep, node, n) {
4003
4004 check_irq_on();
4005 spin_lock_irq(&n->list_lock);
4006
4007 list_for_each_entry(page, &n->slabs_full, lru) {
4008 if (page->active != cachep->num && !error)
4009 error = "slabs_full accounting error";
4010 active_objs += cachep->num;
4011 active_slabs++;
4012 }
4013 list_for_each_entry(page, &n->slabs_partial, lru) {
4014 if (page->active == cachep->num && !error)
4015 error = "slabs_partial accounting error";
4016 if (!page->active && !error)
4017 error = "slabs_partial accounting error";
4018 active_objs += page->active;
4019 active_slabs++;
4020 }
4021 list_for_each_entry(page, &n->slabs_free, lru) {
4022 if (page->active && !error)
4023 error = "slabs_free accounting error";
4024 num_slabs++;
4025 }
4026 free_objects += n->free_objects;
4027 if (n->shared)
4028 shared_avail += n->shared->avail;
4029
4030 spin_unlock_irq(&n->list_lock);
4031 }
4032 num_slabs += active_slabs;
4033 num_objs = num_slabs * cachep->num;
4034 if (num_objs - active_objs != free_objects && !error)
4035 error = "free_objects accounting error";
4036
4037 name = cachep->name;
4038 if (error)
4039 pr_err("slab: cache %s error: %s\n", name, error);
4040
4041 sinfo->active_objs = active_objs;
4042 sinfo->num_objs = num_objs;
4043 sinfo->active_slabs = active_slabs;
4044 sinfo->num_slabs = num_slabs;
4045 sinfo->shared_avail = shared_avail;
4046 sinfo->limit = cachep->limit;
4047 sinfo->batchcount = cachep->batchcount;
4048 sinfo->shared = cachep->shared;
4049 sinfo->objects_per_slab = cachep->num;
4050 sinfo->cache_order = cachep->gfporder;
4051 }
4052
4053 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4054 {
4055 #if STATS
4056 { /* node stats */
4057 unsigned long high = cachep->high_mark;
4058 unsigned long allocs = cachep->num_allocations;
4059 unsigned long grown = cachep->grown;
4060 unsigned long reaped = cachep->reaped;
4061 unsigned long errors = cachep->errors;
4062 unsigned long max_freeable = cachep->max_freeable;
4063 unsigned long node_allocs = cachep->node_allocs;
4064 unsigned long node_frees = cachep->node_frees;
4065 unsigned long overflows = cachep->node_overflow;
4066
4067 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
4068 allocs, high, grown,
4069 reaped, errors, max_freeable, node_allocs,
4070 node_frees, overflows);
4071 }
4072 /* cpu stats */
4073 {
4074 unsigned long allochit = atomic_read(&cachep->allochit);
4075 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4076 unsigned long freehit = atomic_read(&cachep->freehit);
4077 unsigned long freemiss = atomic_read(&cachep->freemiss);
4078
4079 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4080 allochit, allocmiss, freehit, freemiss);
4081 }
4082 #endif
4083 }
4084
4085 #define MAX_SLABINFO_WRITE 128
4086 /**
4087 * slabinfo_write - Tuning for the slab allocator
4088 * @file: unused
4089 * @buffer: user buffer
4090 * @count: data length
4091 * @ppos: unused
4092 */
4093 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4094 size_t count, loff_t *ppos)
4095 {
4096 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4097 int limit, batchcount, shared, res;
4098 struct kmem_cache *cachep;
4099
4100 if (count > MAX_SLABINFO_WRITE)
4101 return -EINVAL;
4102 if (copy_from_user(&kbuf, buffer, count))
4103 return -EFAULT;
4104 kbuf[MAX_SLABINFO_WRITE] = '\0';
4105
4106 tmp = strchr(kbuf, ' ');
4107 if (!tmp)
4108 return -EINVAL;
4109 *tmp = '\0';
4110 tmp++;
4111 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4112 return -EINVAL;
4113
4114 /* Find the cache in the chain of caches. */
4115 mutex_lock(&slab_mutex);
4116 res = -EINVAL;
4117 list_for_each_entry(cachep, &slab_caches, list) {
4118 if (!strcmp(cachep->name, kbuf)) {
4119 if (limit < 1 || batchcount < 1 ||
4120 batchcount > limit || shared < 0) {
4121 res = 0;
4122 } else {
4123 res = do_tune_cpucache(cachep, limit,
4124 batchcount, shared,
4125 GFP_KERNEL);
4126 }
4127 break;
4128 }
4129 }
4130 mutex_unlock(&slab_mutex);
4131 if (res >= 0)
4132 res = count;
4133 return res;
4134 }
4135
4136 #ifdef CONFIG_DEBUG_SLAB_LEAK
4137
4138 static inline int add_caller(unsigned long *n, unsigned long v)
4139 {
4140 unsigned long *p;
4141 int l;
4142 if (!v)
4143 return 1;
4144 l = n[1];
4145 p = n + 2;
4146 while (l) {
4147 int i = l/2;
4148 unsigned long *q = p + 2 * i;
4149 if (*q == v) {
4150 q[1]++;
4151 return 1;
4152 }
4153 if (*q > v) {
4154 l = i;
4155 } else {
4156 p = q + 2;
4157 l -= i + 1;
4158 }
4159 }
4160 if (++n[1] == n[0])
4161 return 0;
4162 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4163 p[0] = v;
4164 p[1] = 1;
4165 return 1;
4166 }
4167
4168 static void handle_slab(unsigned long *n, struct kmem_cache *c,
4169 struct page *page)
4170 {
4171 void *p;
4172 int i, j;
4173 unsigned long v;
4174
4175 if (n[0] == n[1])
4176 return;
4177 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4178 bool active = true;
4179
4180 for (j = page->active; j < c->num; j++) {
4181 if (get_free_obj(page, j) == i) {
4182 active = false;
4183 break;
4184 }
4185 }
4186
4187 if (!active)
4188 continue;
4189
4190 /*
4191 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4192 * mapping is established when actual object allocation and
4193 * we could mistakenly access the unmapped object in the cpu
4194 * cache.
4195 */
4196 if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4197 continue;
4198
4199 if (!add_caller(n, v))
4200 return;
4201 }
4202 }
4203
4204 static void show_symbol(struct seq_file *m, unsigned long address)
4205 {
4206 #ifdef CONFIG_KALLSYMS
4207 unsigned long offset, size;
4208 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4209
4210 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4211 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4212 if (modname[0])
4213 seq_printf(m, " [%s]", modname);
4214 return;
4215 }
4216 #endif
4217 seq_printf(m, "%p", (void *)address);
4218 }
4219
4220 static int leaks_show(struct seq_file *m, void *p)
4221 {
4222 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4223 struct page *page;
4224 struct kmem_cache_node *n;
4225 const char *name;
4226 unsigned long *x = m->private;
4227 int node;
4228 int i;
4229
4230 if (!(cachep->flags & SLAB_STORE_USER))
4231 return 0;
4232 if (!(cachep->flags & SLAB_RED_ZONE))
4233 return 0;
4234
4235 /*
4236 * Set store_user_clean and start to grab stored user information
4237 * for all objects on this cache. If some alloc/free requests comes
4238 * during the processing, information would be wrong so restart
4239 * whole processing.
4240 */
4241 do {
4242 set_store_user_clean(cachep);
4243 drain_cpu_caches(cachep);
4244
4245 x[1] = 0;
4246
4247 for_each_kmem_cache_node(cachep, node, n) {
4248
4249 check_irq_on();
4250 spin_lock_irq(&n->list_lock);
4251
4252 list_for_each_entry(page, &n->slabs_full, lru)
4253 handle_slab(x, cachep, page);
4254 list_for_each_entry(page, &n->slabs_partial, lru)
4255 handle_slab(x, cachep, page);
4256 spin_unlock_irq(&n->list_lock);
4257 }
4258 } while (!is_store_user_clean(cachep));
4259
4260 name = cachep->name;
4261 if (x[0] == x[1]) {
4262 /* Increase the buffer size */
4263 mutex_unlock(&slab_mutex);
4264 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4265 if (!m->private) {
4266 /* Too bad, we are really out */
4267 m->private = x;
4268 mutex_lock(&slab_mutex);
4269 return -ENOMEM;
4270 }
4271 *(unsigned long *)m->private = x[0] * 2;
4272 kfree(x);
4273 mutex_lock(&slab_mutex);
4274 /* Now make sure this entry will be retried */
4275 m->count = m->size;
4276 return 0;
4277 }
4278 for (i = 0; i < x[1]; i++) {
4279 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4280 show_symbol(m, x[2*i+2]);
4281 seq_putc(m, '\n');
4282 }
4283
4284 return 0;
4285 }
4286
4287 static const struct seq_operations slabstats_op = {
4288 .start = slab_start,
4289 .next = slab_next,
4290 .stop = slab_stop,
4291 .show = leaks_show,
4292 };
4293
4294 static int slabstats_open(struct inode *inode, struct file *file)
4295 {
4296 unsigned long *n;
4297
4298 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4299 if (!n)
4300 return -ENOMEM;
4301
4302 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4303
4304 return 0;
4305 }
4306
4307 static const struct file_operations proc_slabstats_operations = {
4308 .open = slabstats_open,
4309 .read = seq_read,
4310 .llseek = seq_lseek,
4311 .release = seq_release_private,
4312 };
4313 #endif
4314
4315 static int __init slab_proc_init(void)
4316 {
4317 #ifdef CONFIG_DEBUG_SLAB_LEAK
4318 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4319 #endif
4320 return 0;
4321 }
4322 module_init(slab_proc_init);
4323 #endif
4324
4325 /**
4326 * ksize - get the actual amount of memory allocated for a given object
4327 * @objp: Pointer to the object
4328 *
4329 * kmalloc may internally round up allocations and return more memory
4330 * than requested. ksize() can be used to determine the actual amount of
4331 * memory allocated. The caller may use this additional memory, even though
4332 * a smaller amount of memory was initially specified with the kmalloc call.
4333 * The caller must guarantee that objp points to a valid object previously
4334 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4335 * must not be freed during the duration of the call.
4336 */
4337 size_t ksize(const void *objp)
4338 {
4339 size_t size;
4340
4341 BUG_ON(!objp);
4342 if (unlikely(objp == ZERO_SIZE_PTR))
4343 return 0;
4344
4345 size = virt_to_cache(objp)->object_size;
4346 /* We assume that ksize callers could use the whole allocated area,
4347 * so we need to unpoison this area.
4348 */
4349 kasan_krealloc(objp, size, GFP_NOWAIT);
4350
4351 return size;
4352 }
4353 EXPORT_SYMBOL(ksize);
This page took 0.174642 seconds and 6 git commands to generate.