slab: fix regression in touched logic
[deliverable/linux.git] / mm / slab.c
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
87 */
88
89 #include <linux/slab.h>
90 #include <linux/mm.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/notifier.h>
101 #include <linux/kallsyms.h>
102 #include <linux/cpu.h>
103 #include <linux/sysctl.h>
104 #include <linux/module.h>
105 #include <linux/kmemtrace.h>
106 #include <linux/rcupdate.h>
107 #include <linux/string.h>
108 #include <linux/uaccess.h>
109 #include <linux/nodemask.h>
110 #include <linux/kmemleak.h>
111 #include <linux/mempolicy.h>
112 #include <linux/mutex.h>
113 #include <linux/fault-inject.h>
114 #include <linux/rtmutex.h>
115 #include <linux/reciprocal_div.h>
116 #include <linux/debugobjects.h>
117 #include <linux/kmemcheck.h>
118
119 #include <asm/cacheflush.h>
120 #include <asm/tlbflush.h>
121 #include <asm/page.h>
122
123 /*
124 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
125 * 0 for faster, smaller code (especially in the critical paths).
126 *
127 * STATS - 1 to collect stats for /proc/slabinfo.
128 * 0 for faster, smaller code (especially in the critical paths).
129 *
130 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
131 */
132
133 #ifdef CONFIG_DEBUG_SLAB
134 #define DEBUG 1
135 #define STATS 1
136 #define FORCED_DEBUG 1
137 #else
138 #define DEBUG 0
139 #define STATS 0
140 #define FORCED_DEBUG 0
141 #endif
142
143 /* Shouldn't this be in a header file somewhere? */
144 #define BYTES_PER_WORD sizeof(void *)
145 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
146
147 #ifndef ARCH_KMALLOC_MINALIGN
148 /*
149 * Enforce a minimum alignment for the kmalloc caches.
150 * Usually, the kmalloc caches are cache_line_size() aligned, except when
151 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
152 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
153 * alignment larger than the alignment of a 64-bit integer.
154 * ARCH_KMALLOC_MINALIGN allows that.
155 * Note that increasing this value may disable some debug features.
156 */
157 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
158 #endif
159
160 #ifndef ARCH_SLAB_MINALIGN
161 /*
162 * Enforce a minimum alignment for all caches.
163 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
164 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
165 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
166 * some debug features.
167 */
168 #define ARCH_SLAB_MINALIGN 0
169 #endif
170
171 #ifndef ARCH_KMALLOC_FLAGS
172 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
173 #endif
174
175 /* Legal flag mask for kmem_cache_create(). */
176 #if DEBUG
177 # define CREATE_MASK (SLAB_RED_ZONE | \
178 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
179 SLAB_CACHE_DMA | \
180 SLAB_STORE_USER | \
181 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
182 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
183 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
184 #else
185 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
186 SLAB_CACHE_DMA | \
187 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
188 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
189 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
190 #endif
191
192 /*
193 * kmem_bufctl_t:
194 *
195 * Bufctl's are used for linking objs within a slab
196 * linked offsets.
197 *
198 * This implementation relies on "struct page" for locating the cache &
199 * slab an object belongs to.
200 * This allows the bufctl structure to be small (one int), but limits
201 * the number of objects a slab (not a cache) can contain when off-slab
202 * bufctls are used. The limit is the size of the largest general cache
203 * that does not use off-slab slabs.
204 * For 32bit archs with 4 kB pages, is this 56.
205 * This is not serious, as it is only for large objects, when it is unwise
206 * to have too many per slab.
207 * Note: This limit can be raised by introducing a general cache whose size
208 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
209 */
210
211 typedef unsigned int kmem_bufctl_t;
212 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
213 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
214 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
215 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
216
217 /*
218 * struct slab
219 *
220 * Manages the objs in a slab. Placed either at the beginning of mem allocated
221 * for a slab, or allocated from an general cache.
222 * Slabs are chained into three list: fully used, partial, fully free slabs.
223 */
224 struct slab {
225 struct list_head list;
226 unsigned long colouroff;
227 void *s_mem; /* including colour offset */
228 unsigned int inuse; /* num of objs active in slab */
229 kmem_bufctl_t free;
230 unsigned short nodeid;
231 };
232
233 /*
234 * struct slab_rcu
235 *
236 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
237 * arrange for kmem_freepages to be called via RCU. This is useful if
238 * we need to approach a kernel structure obliquely, from its address
239 * obtained without the usual locking. We can lock the structure to
240 * stabilize it and check it's still at the given address, only if we
241 * can be sure that the memory has not been meanwhile reused for some
242 * other kind of object (which our subsystem's lock might corrupt).
243 *
244 * rcu_read_lock before reading the address, then rcu_read_unlock after
245 * taking the spinlock within the structure expected at that address.
246 *
247 * We assume struct slab_rcu can overlay struct slab when destroying.
248 */
249 struct slab_rcu {
250 struct rcu_head head;
251 struct kmem_cache *cachep;
252 void *addr;
253 };
254
255 /*
256 * struct array_cache
257 *
258 * Purpose:
259 * - LIFO ordering, to hand out cache-warm objects from _alloc
260 * - reduce the number of linked list operations
261 * - reduce spinlock operations
262 *
263 * The limit is stored in the per-cpu structure to reduce the data cache
264 * footprint.
265 *
266 */
267 struct array_cache {
268 unsigned int avail;
269 unsigned int limit;
270 unsigned int batchcount;
271 unsigned int touched;
272 spinlock_t lock;
273 void *entry[]; /*
274 * Must have this definition in here for the proper
275 * alignment of array_cache. Also simplifies accessing
276 * the entries.
277 */
278 };
279
280 /*
281 * bootstrap: The caches do not work without cpuarrays anymore, but the
282 * cpuarrays are allocated from the generic caches...
283 */
284 #define BOOT_CPUCACHE_ENTRIES 1
285 struct arraycache_init {
286 struct array_cache cache;
287 void *entries[BOOT_CPUCACHE_ENTRIES];
288 };
289
290 /*
291 * The slab lists for all objects.
292 */
293 struct kmem_list3 {
294 struct list_head slabs_partial; /* partial list first, better asm code */
295 struct list_head slabs_full;
296 struct list_head slabs_free;
297 unsigned long free_objects;
298 unsigned int free_limit;
299 unsigned int colour_next; /* Per-node cache coloring */
300 spinlock_t list_lock;
301 struct array_cache *shared; /* shared per node */
302 struct array_cache **alien; /* on other nodes */
303 unsigned long next_reap; /* updated without locking */
304 int free_touched; /* updated without locking */
305 };
306
307 /*
308 * Need this for bootstrapping a per node allocator.
309 */
310 #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
311 struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
312 #define CACHE_CACHE 0
313 #define SIZE_AC MAX_NUMNODES
314 #define SIZE_L3 (2 * MAX_NUMNODES)
315
316 static int drain_freelist(struct kmem_cache *cache,
317 struct kmem_list3 *l3, int tofree);
318 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
319 int node);
320 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
321 static void cache_reap(struct work_struct *unused);
322
323 /*
324 * This function must be completely optimized away if a constant is passed to
325 * it. Mostly the same as what is in linux/slab.h except it returns an index.
326 */
327 static __always_inline int index_of(const size_t size)
328 {
329 extern void __bad_size(void);
330
331 if (__builtin_constant_p(size)) {
332 int i = 0;
333
334 #define CACHE(x) \
335 if (size <=x) \
336 return i; \
337 else \
338 i++;
339 #include <linux/kmalloc_sizes.h>
340 #undef CACHE
341 __bad_size();
342 } else
343 __bad_size();
344 return 0;
345 }
346
347 static int slab_early_init = 1;
348
349 #define INDEX_AC index_of(sizeof(struct arraycache_init))
350 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
351
352 static void kmem_list3_init(struct kmem_list3 *parent)
353 {
354 INIT_LIST_HEAD(&parent->slabs_full);
355 INIT_LIST_HEAD(&parent->slabs_partial);
356 INIT_LIST_HEAD(&parent->slabs_free);
357 parent->shared = NULL;
358 parent->alien = NULL;
359 parent->colour_next = 0;
360 spin_lock_init(&parent->list_lock);
361 parent->free_objects = 0;
362 parent->free_touched = 0;
363 }
364
365 #define MAKE_LIST(cachep, listp, slab, nodeid) \
366 do { \
367 INIT_LIST_HEAD(listp); \
368 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
369 } while (0)
370
371 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
372 do { \
373 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
374 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
375 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
376 } while (0)
377
378 #define CFLGS_OFF_SLAB (0x80000000UL)
379 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
380
381 #define BATCHREFILL_LIMIT 16
382 /*
383 * Optimization question: fewer reaps means less probability for unnessary
384 * cpucache drain/refill cycles.
385 *
386 * OTOH the cpuarrays can contain lots of objects,
387 * which could lock up otherwise freeable slabs.
388 */
389 #define REAPTIMEOUT_CPUC (2*HZ)
390 #define REAPTIMEOUT_LIST3 (4*HZ)
391
392 #if STATS
393 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
394 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
395 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
396 #define STATS_INC_GROWN(x) ((x)->grown++)
397 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
398 #define STATS_SET_HIGH(x) \
399 do { \
400 if ((x)->num_active > (x)->high_mark) \
401 (x)->high_mark = (x)->num_active; \
402 } while (0)
403 #define STATS_INC_ERR(x) ((x)->errors++)
404 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
405 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
406 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
407 #define STATS_SET_FREEABLE(x, i) \
408 do { \
409 if ((x)->max_freeable < i) \
410 (x)->max_freeable = i; \
411 } while (0)
412 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
413 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
414 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
415 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
416 #else
417 #define STATS_INC_ACTIVE(x) do { } while (0)
418 #define STATS_DEC_ACTIVE(x) do { } while (0)
419 #define STATS_INC_ALLOCED(x) do { } while (0)
420 #define STATS_INC_GROWN(x) do { } while (0)
421 #define STATS_ADD_REAPED(x,y) do { } while (0)
422 #define STATS_SET_HIGH(x) do { } while (0)
423 #define STATS_INC_ERR(x) do { } while (0)
424 #define STATS_INC_NODEALLOCS(x) do { } while (0)
425 #define STATS_INC_NODEFREES(x) do { } while (0)
426 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
427 #define STATS_SET_FREEABLE(x, i) do { } while (0)
428 #define STATS_INC_ALLOCHIT(x) do { } while (0)
429 #define STATS_INC_ALLOCMISS(x) do { } while (0)
430 #define STATS_INC_FREEHIT(x) do { } while (0)
431 #define STATS_INC_FREEMISS(x) do { } while (0)
432 #endif
433
434 #if DEBUG
435
436 /*
437 * memory layout of objects:
438 * 0 : objp
439 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
440 * the end of an object is aligned with the end of the real
441 * allocation. Catches writes behind the end of the allocation.
442 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
443 * redzone word.
444 * cachep->obj_offset: The real object.
445 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
446 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
447 * [BYTES_PER_WORD long]
448 */
449 static int obj_offset(struct kmem_cache *cachep)
450 {
451 return cachep->obj_offset;
452 }
453
454 static int obj_size(struct kmem_cache *cachep)
455 {
456 return cachep->obj_size;
457 }
458
459 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
460 {
461 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
462 return (unsigned long long*) (objp + obj_offset(cachep) -
463 sizeof(unsigned long long));
464 }
465
466 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
467 {
468 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
469 if (cachep->flags & SLAB_STORE_USER)
470 return (unsigned long long *)(objp + cachep->buffer_size -
471 sizeof(unsigned long long) -
472 REDZONE_ALIGN);
473 return (unsigned long long *) (objp + cachep->buffer_size -
474 sizeof(unsigned long long));
475 }
476
477 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
478 {
479 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
480 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
481 }
482
483 #else
484
485 #define obj_offset(x) 0
486 #define obj_size(cachep) (cachep->buffer_size)
487 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
488 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
489 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
490
491 #endif
492
493 #ifdef CONFIG_TRACING
494 size_t slab_buffer_size(struct kmem_cache *cachep)
495 {
496 return cachep->buffer_size;
497 }
498 EXPORT_SYMBOL(slab_buffer_size);
499 #endif
500
501 /*
502 * Do not go above this order unless 0 objects fit into the slab.
503 */
504 #define BREAK_GFP_ORDER_HI 1
505 #define BREAK_GFP_ORDER_LO 0
506 static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
507
508 /*
509 * Functions for storing/retrieving the cachep and or slab from the page
510 * allocator. These are used to find the slab an obj belongs to. With kfree(),
511 * these are used to find the cache which an obj belongs to.
512 */
513 static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
514 {
515 page->lru.next = (struct list_head *)cache;
516 }
517
518 static inline struct kmem_cache *page_get_cache(struct page *page)
519 {
520 page = compound_head(page);
521 BUG_ON(!PageSlab(page));
522 return (struct kmem_cache *)page->lru.next;
523 }
524
525 static inline void page_set_slab(struct page *page, struct slab *slab)
526 {
527 page->lru.prev = (struct list_head *)slab;
528 }
529
530 static inline struct slab *page_get_slab(struct page *page)
531 {
532 BUG_ON(!PageSlab(page));
533 return (struct slab *)page->lru.prev;
534 }
535
536 static inline struct kmem_cache *virt_to_cache(const void *obj)
537 {
538 struct page *page = virt_to_head_page(obj);
539 return page_get_cache(page);
540 }
541
542 static inline struct slab *virt_to_slab(const void *obj)
543 {
544 struct page *page = virt_to_head_page(obj);
545 return page_get_slab(page);
546 }
547
548 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
549 unsigned int idx)
550 {
551 return slab->s_mem + cache->buffer_size * idx;
552 }
553
554 /*
555 * We want to avoid an expensive divide : (offset / cache->buffer_size)
556 * Using the fact that buffer_size is a constant for a particular cache,
557 * we can replace (offset / cache->buffer_size) by
558 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
559 */
560 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
561 const struct slab *slab, void *obj)
562 {
563 u32 offset = (obj - slab->s_mem);
564 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
565 }
566
567 /*
568 * These are the default caches for kmalloc. Custom caches can have other sizes.
569 */
570 struct cache_sizes malloc_sizes[] = {
571 #define CACHE(x) { .cs_size = (x) },
572 #include <linux/kmalloc_sizes.h>
573 CACHE(ULONG_MAX)
574 #undef CACHE
575 };
576 EXPORT_SYMBOL(malloc_sizes);
577
578 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
579 struct cache_names {
580 char *name;
581 char *name_dma;
582 };
583
584 static struct cache_names __initdata cache_names[] = {
585 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
586 #include <linux/kmalloc_sizes.h>
587 {NULL,}
588 #undef CACHE
589 };
590
591 static struct arraycache_init initarray_cache __initdata =
592 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
593 static struct arraycache_init initarray_generic =
594 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
595
596 /* internal cache of cache description objs */
597 static struct kmem_cache cache_cache = {
598 .batchcount = 1,
599 .limit = BOOT_CPUCACHE_ENTRIES,
600 .shared = 1,
601 .buffer_size = sizeof(struct kmem_cache),
602 .name = "kmem_cache",
603 };
604
605 #define BAD_ALIEN_MAGIC 0x01020304ul
606
607 /*
608 * chicken and egg problem: delay the per-cpu array allocation
609 * until the general caches are up.
610 */
611 static enum {
612 NONE,
613 PARTIAL_AC,
614 PARTIAL_L3,
615 EARLY,
616 FULL
617 } g_cpucache_up;
618
619 /*
620 * used by boot code to determine if it can use slab based allocator
621 */
622 int slab_is_available(void)
623 {
624 return g_cpucache_up >= EARLY;
625 }
626
627 #ifdef CONFIG_LOCKDEP
628
629 /*
630 * Slab sometimes uses the kmalloc slabs to store the slab headers
631 * for other slabs "off slab".
632 * The locking for this is tricky in that it nests within the locks
633 * of all other slabs in a few places; to deal with this special
634 * locking we put on-slab caches into a separate lock-class.
635 *
636 * We set lock class for alien array caches which are up during init.
637 * The lock annotation will be lost if all cpus of a node goes down and
638 * then comes back up during hotplug
639 */
640 static struct lock_class_key on_slab_l3_key;
641 static struct lock_class_key on_slab_alc_key;
642
643 static void init_node_lock_keys(int q)
644 {
645 struct cache_sizes *s = malloc_sizes;
646
647 if (g_cpucache_up != FULL)
648 return;
649
650 for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
651 struct array_cache **alc;
652 struct kmem_list3 *l3;
653 int r;
654
655 l3 = s->cs_cachep->nodelists[q];
656 if (!l3 || OFF_SLAB(s->cs_cachep))
657 continue;
658 lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
659 alc = l3->alien;
660 /*
661 * FIXME: This check for BAD_ALIEN_MAGIC
662 * should go away when common slab code is taught to
663 * work even without alien caches.
664 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
665 * for alloc_alien_cache,
666 */
667 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
668 continue;
669 for_each_node(r) {
670 if (alc[r])
671 lockdep_set_class(&alc[r]->lock,
672 &on_slab_alc_key);
673 }
674 }
675 }
676
677 static inline void init_lock_keys(void)
678 {
679 int node;
680
681 for_each_node(node)
682 init_node_lock_keys(node);
683 }
684 #else
685 static void init_node_lock_keys(int q)
686 {
687 }
688
689 static inline void init_lock_keys(void)
690 {
691 }
692 #endif
693
694 /*
695 * Guard access to the cache-chain.
696 */
697 static DEFINE_MUTEX(cache_chain_mutex);
698 static struct list_head cache_chain;
699
700 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
701
702 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
703 {
704 return cachep->array[smp_processor_id()];
705 }
706
707 static inline struct kmem_cache *__find_general_cachep(size_t size,
708 gfp_t gfpflags)
709 {
710 struct cache_sizes *csizep = malloc_sizes;
711
712 #if DEBUG
713 /* This happens if someone tries to call
714 * kmem_cache_create(), or __kmalloc(), before
715 * the generic caches are initialized.
716 */
717 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
718 #endif
719 if (!size)
720 return ZERO_SIZE_PTR;
721
722 while (size > csizep->cs_size)
723 csizep++;
724
725 /*
726 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
727 * has cs_{dma,}cachep==NULL. Thus no special case
728 * for large kmalloc calls required.
729 */
730 #ifdef CONFIG_ZONE_DMA
731 if (unlikely(gfpflags & GFP_DMA))
732 return csizep->cs_dmacachep;
733 #endif
734 return csizep->cs_cachep;
735 }
736
737 static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
738 {
739 return __find_general_cachep(size, gfpflags);
740 }
741
742 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
743 {
744 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
745 }
746
747 /*
748 * Calculate the number of objects and left-over bytes for a given buffer size.
749 */
750 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
751 size_t align, int flags, size_t *left_over,
752 unsigned int *num)
753 {
754 int nr_objs;
755 size_t mgmt_size;
756 size_t slab_size = PAGE_SIZE << gfporder;
757
758 /*
759 * The slab management structure can be either off the slab or
760 * on it. For the latter case, the memory allocated for a
761 * slab is used for:
762 *
763 * - The struct slab
764 * - One kmem_bufctl_t for each object
765 * - Padding to respect alignment of @align
766 * - @buffer_size bytes for each object
767 *
768 * If the slab management structure is off the slab, then the
769 * alignment will already be calculated into the size. Because
770 * the slabs are all pages aligned, the objects will be at the
771 * correct alignment when allocated.
772 */
773 if (flags & CFLGS_OFF_SLAB) {
774 mgmt_size = 0;
775 nr_objs = slab_size / buffer_size;
776
777 if (nr_objs > SLAB_LIMIT)
778 nr_objs = SLAB_LIMIT;
779 } else {
780 /*
781 * Ignore padding for the initial guess. The padding
782 * is at most @align-1 bytes, and @buffer_size is at
783 * least @align. In the worst case, this result will
784 * be one greater than the number of objects that fit
785 * into the memory allocation when taking the padding
786 * into account.
787 */
788 nr_objs = (slab_size - sizeof(struct slab)) /
789 (buffer_size + sizeof(kmem_bufctl_t));
790
791 /*
792 * This calculated number will be either the right
793 * amount, or one greater than what we want.
794 */
795 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
796 > slab_size)
797 nr_objs--;
798
799 if (nr_objs > SLAB_LIMIT)
800 nr_objs = SLAB_LIMIT;
801
802 mgmt_size = slab_mgmt_size(nr_objs, align);
803 }
804 *num = nr_objs;
805 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
806 }
807
808 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
809
810 static void __slab_error(const char *function, struct kmem_cache *cachep,
811 char *msg)
812 {
813 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
814 function, cachep->name, msg);
815 dump_stack();
816 }
817
818 /*
819 * By default on NUMA we use alien caches to stage the freeing of
820 * objects allocated from other nodes. This causes massive memory
821 * inefficiencies when using fake NUMA setup to split memory into a
822 * large number of small nodes, so it can be disabled on the command
823 * line
824 */
825
826 static int use_alien_caches __read_mostly = 1;
827 static int __init noaliencache_setup(char *s)
828 {
829 use_alien_caches = 0;
830 return 1;
831 }
832 __setup("noaliencache", noaliencache_setup);
833
834 #ifdef CONFIG_NUMA
835 /*
836 * Special reaping functions for NUMA systems called from cache_reap().
837 * These take care of doing round robin flushing of alien caches (containing
838 * objects freed on different nodes from which they were allocated) and the
839 * flushing of remote pcps by calling drain_node_pages.
840 */
841 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
842
843 static void init_reap_node(int cpu)
844 {
845 int node;
846
847 node = next_node(cpu_to_node(cpu), node_online_map);
848 if (node == MAX_NUMNODES)
849 node = first_node(node_online_map);
850
851 per_cpu(slab_reap_node, cpu) = node;
852 }
853
854 static void next_reap_node(void)
855 {
856 int node = __get_cpu_var(slab_reap_node);
857
858 node = next_node(node, node_online_map);
859 if (unlikely(node >= MAX_NUMNODES))
860 node = first_node(node_online_map);
861 __get_cpu_var(slab_reap_node) = node;
862 }
863
864 #else
865 #define init_reap_node(cpu) do { } while (0)
866 #define next_reap_node(void) do { } while (0)
867 #endif
868
869 /*
870 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
871 * via the workqueue/eventd.
872 * Add the CPU number into the expiration time to minimize the possibility of
873 * the CPUs getting into lockstep and contending for the global cache chain
874 * lock.
875 */
876 static void __cpuinit start_cpu_timer(int cpu)
877 {
878 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
879
880 /*
881 * When this gets called from do_initcalls via cpucache_init(),
882 * init_workqueues() has already run, so keventd will be setup
883 * at that time.
884 */
885 if (keventd_up() && reap_work->work.func == NULL) {
886 init_reap_node(cpu);
887 INIT_DELAYED_WORK(reap_work, cache_reap);
888 schedule_delayed_work_on(cpu, reap_work,
889 __round_jiffies_relative(HZ, cpu));
890 }
891 }
892
893 static struct array_cache *alloc_arraycache(int node, int entries,
894 int batchcount, gfp_t gfp)
895 {
896 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
897 struct array_cache *nc = NULL;
898
899 nc = kmalloc_node(memsize, gfp, node);
900 /*
901 * The array_cache structures contain pointers to free object.
902 * However, when such objects are allocated or transfered to another
903 * cache the pointers are not cleared and they could be counted as
904 * valid references during a kmemleak scan. Therefore, kmemleak must
905 * not scan such objects.
906 */
907 kmemleak_no_scan(nc);
908 if (nc) {
909 nc->avail = 0;
910 nc->limit = entries;
911 nc->batchcount = batchcount;
912 nc->touched = 0;
913 spin_lock_init(&nc->lock);
914 }
915 return nc;
916 }
917
918 /*
919 * Transfer objects in one arraycache to another.
920 * Locking must be handled by the caller.
921 *
922 * Return the number of entries transferred.
923 */
924 static int transfer_objects(struct array_cache *to,
925 struct array_cache *from, unsigned int max)
926 {
927 /* Figure out how many entries to transfer */
928 int nr = min(min(from->avail, max), to->limit - to->avail);
929
930 if (!nr)
931 return 0;
932
933 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
934 sizeof(void *) *nr);
935
936 from->avail -= nr;
937 to->avail += nr;
938 return nr;
939 }
940
941 #ifndef CONFIG_NUMA
942
943 #define drain_alien_cache(cachep, alien) do { } while (0)
944 #define reap_alien(cachep, l3) do { } while (0)
945
946 static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
947 {
948 return (struct array_cache **)BAD_ALIEN_MAGIC;
949 }
950
951 static inline void free_alien_cache(struct array_cache **ac_ptr)
952 {
953 }
954
955 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
956 {
957 return 0;
958 }
959
960 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
961 gfp_t flags)
962 {
963 return NULL;
964 }
965
966 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
967 gfp_t flags, int nodeid)
968 {
969 return NULL;
970 }
971
972 #else /* CONFIG_NUMA */
973
974 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
975 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
976
977 static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
978 {
979 struct array_cache **ac_ptr;
980 int memsize = sizeof(void *) * nr_node_ids;
981 int i;
982
983 if (limit > 1)
984 limit = 12;
985 ac_ptr = kmalloc_node(memsize, gfp, node);
986 if (ac_ptr) {
987 for_each_node(i) {
988 if (i == node || !node_online(i)) {
989 ac_ptr[i] = NULL;
990 continue;
991 }
992 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
993 if (!ac_ptr[i]) {
994 for (i--; i >= 0; i--)
995 kfree(ac_ptr[i]);
996 kfree(ac_ptr);
997 return NULL;
998 }
999 }
1000 }
1001 return ac_ptr;
1002 }
1003
1004 static void free_alien_cache(struct array_cache **ac_ptr)
1005 {
1006 int i;
1007
1008 if (!ac_ptr)
1009 return;
1010 for_each_node(i)
1011 kfree(ac_ptr[i]);
1012 kfree(ac_ptr);
1013 }
1014
1015 static void __drain_alien_cache(struct kmem_cache *cachep,
1016 struct array_cache *ac, int node)
1017 {
1018 struct kmem_list3 *rl3 = cachep->nodelists[node];
1019
1020 if (ac->avail) {
1021 spin_lock(&rl3->list_lock);
1022 /*
1023 * Stuff objects into the remote nodes shared array first.
1024 * That way we could avoid the overhead of putting the objects
1025 * into the free lists and getting them back later.
1026 */
1027 if (rl3->shared)
1028 transfer_objects(rl3->shared, ac, ac->limit);
1029
1030 free_block(cachep, ac->entry, ac->avail, node);
1031 ac->avail = 0;
1032 spin_unlock(&rl3->list_lock);
1033 }
1034 }
1035
1036 /*
1037 * Called from cache_reap() to regularly drain alien caches round robin.
1038 */
1039 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1040 {
1041 int node = __get_cpu_var(slab_reap_node);
1042
1043 if (l3->alien) {
1044 struct array_cache *ac = l3->alien[node];
1045
1046 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1047 __drain_alien_cache(cachep, ac, node);
1048 spin_unlock_irq(&ac->lock);
1049 }
1050 }
1051 }
1052
1053 static void drain_alien_cache(struct kmem_cache *cachep,
1054 struct array_cache **alien)
1055 {
1056 int i = 0;
1057 struct array_cache *ac;
1058 unsigned long flags;
1059
1060 for_each_online_node(i) {
1061 ac = alien[i];
1062 if (ac) {
1063 spin_lock_irqsave(&ac->lock, flags);
1064 __drain_alien_cache(cachep, ac, i);
1065 spin_unlock_irqrestore(&ac->lock, flags);
1066 }
1067 }
1068 }
1069
1070 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1071 {
1072 struct slab *slabp = virt_to_slab(objp);
1073 int nodeid = slabp->nodeid;
1074 struct kmem_list3 *l3;
1075 struct array_cache *alien = NULL;
1076 int node;
1077
1078 node = numa_node_id();
1079
1080 /*
1081 * Make sure we are not freeing a object from another node to the array
1082 * cache on this cpu.
1083 */
1084 if (likely(slabp->nodeid == node))
1085 return 0;
1086
1087 l3 = cachep->nodelists[node];
1088 STATS_INC_NODEFREES(cachep);
1089 if (l3->alien && l3->alien[nodeid]) {
1090 alien = l3->alien[nodeid];
1091 spin_lock(&alien->lock);
1092 if (unlikely(alien->avail == alien->limit)) {
1093 STATS_INC_ACOVERFLOW(cachep);
1094 __drain_alien_cache(cachep, alien, nodeid);
1095 }
1096 alien->entry[alien->avail++] = objp;
1097 spin_unlock(&alien->lock);
1098 } else {
1099 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1100 free_block(cachep, &objp, 1, nodeid);
1101 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1102 }
1103 return 1;
1104 }
1105 #endif
1106
1107 static void __cpuinit cpuup_canceled(long cpu)
1108 {
1109 struct kmem_cache *cachep;
1110 struct kmem_list3 *l3 = NULL;
1111 int node = cpu_to_node(cpu);
1112 const struct cpumask *mask = cpumask_of_node(node);
1113
1114 list_for_each_entry(cachep, &cache_chain, next) {
1115 struct array_cache *nc;
1116 struct array_cache *shared;
1117 struct array_cache **alien;
1118
1119 /* cpu is dead; no one can alloc from it. */
1120 nc = cachep->array[cpu];
1121 cachep->array[cpu] = NULL;
1122 l3 = cachep->nodelists[node];
1123
1124 if (!l3)
1125 goto free_array_cache;
1126
1127 spin_lock_irq(&l3->list_lock);
1128
1129 /* Free limit for this kmem_list3 */
1130 l3->free_limit -= cachep->batchcount;
1131 if (nc)
1132 free_block(cachep, nc->entry, nc->avail, node);
1133
1134 if (!cpumask_empty(mask)) {
1135 spin_unlock_irq(&l3->list_lock);
1136 goto free_array_cache;
1137 }
1138
1139 shared = l3->shared;
1140 if (shared) {
1141 free_block(cachep, shared->entry,
1142 shared->avail, node);
1143 l3->shared = NULL;
1144 }
1145
1146 alien = l3->alien;
1147 l3->alien = NULL;
1148
1149 spin_unlock_irq(&l3->list_lock);
1150
1151 kfree(shared);
1152 if (alien) {
1153 drain_alien_cache(cachep, alien);
1154 free_alien_cache(alien);
1155 }
1156 free_array_cache:
1157 kfree(nc);
1158 }
1159 /*
1160 * In the previous loop, all the objects were freed to
1161 * the respective cache's slabs, now we can go ahead and
1162 * shrink each nodelist to its limit.
1163 */
1164 list_for_each_entry(cachep, &cache_chain, next) {
1165 l3 = cachep->nodelists[node];
1166 if (!l3)
1167 continue;
1168 drain_freelist(cachep, l3, l3->free_objects);
1169 }
1170 }
1171
1172 static int __cpuinit cpuup_prepare(long cpu)
1173 {
1174 struct kmem_cache *cachep;
1175 struct kmem_list3 *l3 = NULL;
1176 int node = cpu_to_node(cpu);
1177 const int memsize = sizeof(struct kmem_list3);
1178
1179 /*
1180 * We need to do this right in the beginning since
1181 * alloc_arraycache's are going to use this list.
1182 * kmalloc_node allows us to add the slab to the right
1183 * kmem_list3 and not this cpu's kmem_list3
1184 */
1185
1186 list_for_each_entry(cachep, &cache_chain, next) {
1187 /*
1188 * Set up the size64 kmemlist for cpu before we can
1189 * begin anything. Make sure some other cpu on this
1190 * node has not already allocated this
1191 */
1192 if (!cachep->nodelists[node]) {
1193 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1194 if (!l3)
1195 goto bad;
1196 kmem_list3_init(l3);
1197 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1198 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1199
1200 /*
1201 * The l3s don't come and go as CPUs come and
1202 * go. cache_chain_mutex is sufficient
1203 * protection here.
1204 */
1205 cachep->nodelists[node] = l3;
1206 }
1207
1208 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1209 cachep->nodelists[node]->free_limit =
1210 (1 + nr_cpus_node(node)) *
1211 cachep->batchcount + cachep->num;
1212 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1213 }
1214
1215 /*
1216 * Now we can go ahead with allocating the shared arrays and
1217 * array caches
1218 */
1219 list_for_each_entry(cachep, &cache_chain, next) {
1220 struct array_cache *nc;
1221 struct array_cache *shared = NULL;
1222 struct array_cache **alien = NULL;
1223
1224 nc = alloc_arraycache(node, cachep->limit,
1225 cachep->batchcount, GFP_KERNEL);
1226 if (!nc)
1227 goto bad;
1228 if (cachep->shared) {
1229 shared = alloc_arraycache(node,
1230 cachep->shared * cachep->batchcount,
1231 0xbaadf00d, GFP_KERNEL);
1232 if (!shared) {
1233 kfree(nc);
1234 goto bad;
1235 }
1236 }
1237 if (use_alien_caches) {
1238 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1239 if (!alien) {
1240 kfree(shared);
1241 kfree(nc);
1242 goto bad;
1243 }
1244 }
1245 cachep->array[cpu] = nc;
1246 l3 = cachep->nodelists[node];
1247 BUG_ON(!l3);
1248
1249 spin_lock_irq(&l3->list_lock);
1250 if (!l3->shared) {
1251 /*
1252 * We are serialised from CPU_DEAD or
1253 * CPU_UP_CANCELLED by the cpucontrol lock
1254 */
1255 l3->shared = shared;
1256 shared = NULL;
1257 }
1258 #ifdef CONFIG_NUMA
1259 if (!l3->alien) {
1260 l3->alien = alien;
1261 alien = NULL;
1262 }
1263 #endif
1264 spin_unlock_irq(&l3->list_lock);
1265 kfree(shared);
1266 free_alien_cache(alien);
1267 }
1268 init_node_lock_keys(node);
1269
1270 return 0;
1271 bad:
1272 cpuup_canceled(cpu);
1273 return -ENOMEM;
1274 }
1275
1276 static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1277 unsigned long action, void *hcpu)
1278 {
1279 long cpu = (long)hcpu;
1280 int err = 0;
1281
1282 switch (action) {
1283 case CPU_UP_PREPARE:
1284 case CPU_UP_PREPARE_FROZEN:
1285 mutex_lock(&cache_chain_mutex);
1286 err = cpuup_prepare(cpu);
1287 mutex_unlock(&cache_chain_mutex);
1288 break;
1289 case CPU_ONLINE:
1290 case CPU_ONLINE_FROZEN:
1291 start_cpu_timer(cpu);
1292 break;
1293 #ifdef CONFIG_HOTPLUG_CPU
1294 case CPU_DOWN_PREPARE:
1295 case CPU_DOWN_PREPARE_FROZEN:
1296 /*
1297 * Shutdown cache reaper. Note that the cache_chain_mutex is
1298 * held so that if cache_reap() is invoked it cannot do
1299 * anything expensive but will only modify reap_work
1300 * and reschedule the timer.
1301 */
1302 cancel_rearming_delayed_work(&per_cpu(slab_reap_work, cpu));
1303 /* Now the cache_reaper is guaranteed to be not running. */
1304 per_cpu(slab_reap_work, cpu).work.func = NULL;
1305 break;
1306 case CPU_DOWN_FAILED:
1307 case CPU_DOWN_FAILED_FROZEN:
1308 start_cpu_timer(cpu);
1309 break;
1310 case CPU_DEAD:
1311 case CPU_DEAD_FROZEN:
1312 /*
1313 * Even if all the cpus of a node are down, we don't free the
1314 * kmem_list3 of any cache. This to avoid a race between
1315 * cpu_down, and a kmalloc allocation from another cpu for
1316 * memory from the node of the cpu going down. The list3
1317 * structure is usually allocated from kmem_cache_create() and
1318 * gets destroyed at kmem_cache_destroy().
1319 */
1320 /* fall through */
1321 #endif
1322 case CPU_UP_CANCELED:
1323 case CPU_UP_CANCELED_FROZEN:
1324 mutex_lock(&cache_chain_mutex);
1325 cpuup_canceled(cpu);
1326 mutex_unlock(&cache_chain_mutex);
1327 break;
1328 }
1329 return err ? NOTIFY_BAD : NOTIFY_OK;
1330 }
1331
1332 static struct notifier_block __cpuinitdata cpucache_notifier = {
1333 &cpuup_callback, NULL, 0
1334 };
1335
1336 /*
1337 * swap the static kmem_list3 with kmalloced memory
1338 */
1339 static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1340 int nodeid)
1341 {
1342 struct kmem_list3 *ptr;
1343
1344 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
1345 BUG_ON(!ptr);
1346
1347 memcpy(ptr, list, sizeof(struct kmem_list3));
1348 /*
1349 * Do not assume that spinlocks can be initialized via memcpy:
1350 */
1351 spin_lock_init(&ptr->list_lock);
1352
1353 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1354 cachep->nodelists[nodeid] = ptr;
1355 }
1356
1357 /*
1358 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1359 * size of kmem_list3.
1360 */
1361 static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1362 {
1363 int node;
1364
1365 for_each_online_node(node) {
1366 cachep->nodelists[node] = &initkmem_list3[index + node];
1367 cachep->nodelists[node]->next_reap = jiffies +
1368 REAPTIMEOUT_LIST3 +
1369 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1370 }
1371 }
1372
1373 /*
1374 * Initialisation. Called after the page allocator have been initialised and
1375 * before smp_init().
1376 */
1377 void __init kmem_cache_init(void)
1378 {
1379 size_t left_over;
1380 struct cache_sizes *sizes;
1381 struct cache_names *names;
1382 int i;
1383 int order;
1384 int node;
1385
1386 if (num_possible_nodes() == 1)
1387 use_alien_caches = 0;
1388
1389 for (i = 0; i < NUM_INIT_LISTS; i++) {
1390 kmem_list3_init(&initkmem_list3[i]);
1391 if (i < MAX_NUMNODES)
1392 cache_cache.nodelists[i] = NULL;
1393 }
1394 set_up_list3s(&cache_cache, CACHE_CACHE);
1395
1396 /*
1397 * Fragmentation resistance on low memory - only use bigger
1398 * page orders on machines with more than 32MB of memory.
1399 */
1400 if (totalram_pages > (32 << 20) >> PAGE_SHIFT)
1401 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1402
1403 /* Bootstrap is tricky, because several objects are allocated
1404 * from caches that do not exist yet:
1405 * 1) initialize the cache_cache cache: it contains the struct
1406 * kmem_cache structures of all caches, except cache_cache itself:
1407 * cache_cache is statically allocated.
1408 * Initially an __init data area is used for the head array and the
1409 * kmem_list3 structures, it's replaced with a kmalloc allocated
1410 * array at the end of the bootstrap.
1411 * 2) Create the first kmalloc cache.
1412 * The struct kmem_cache for the new cache is allocated normally.
1413 * An __init data area is used for the head array.
1414 * 3) Create the remaining kmalloc caches, with minimally sized
1415 * head arrays.
1416 * 4) Replace the __init data head arrays for cache_cache and the first
1417 * kmalloc cache with kmalloc allocated arrays.
1418 * 5) Replace the __init data for kmem_list3 for cache_cache and
1419 * the other cache's with kmalloc allocated memory.
1420 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1421 */
1422
1423 node = numa_node_id();
1424
1425 /* 1) create the cache_cache */
1426 INIT_LIST_HEAD(&cache_chain);
1427 list_add(&cache_cache.next, &cache_chain);
1428 cache_cache.colour_off = cache_line_size();
1429 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1430 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
1431
1432 /*
1433 * struct kmem_cache size depends on nr_node_ids, which
1434 * can be less than MAX_NUMNODES.
1435 */
1436 cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
1437 nr_node_ids * sizeof(struct kmem_list3 *);
1438 #if DEBUG
1439 cache_cache.obj_size = cache_cache.buffer_size;
1440 #endif
1441 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1442 cache_line_size());
1443 cache_cache.reciprocal_buffer_size =
1444 reciprocal_value(cache_cache.buffer_size);
1445
1446 for (order = 0; order < MAX_ORDER; order++) {
1447 cache_estimate(order, cache_cache.buffer_size,
1448 cache_line_size(), 0, &left_over, &cache_cache.num);
1449 if (cache_cache.num)
1450 break;
1451 }
1452 BUG_ON(!cache_cache.num);
1453 cache_cache.gfporder = order;
1454 cache_cache.colour = left_over / cache_cache.colour_off;
1455 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1456 sizeof(struct slab), cache_line_size());
1457
1458 /* 2+3) create the kmalloc caches */
1459 sizes = malloc_sizes;
1460 names = cache_names;
1461
1462 /*
1463 * Initialize the caches that provide memory for the array cache and the
1464 * kmem_list3 structures first. Without this, further allocations will
1465 * bug.
1466 */
1467
1468 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1469 sizes[INDEX_AC].cs_size,
1470 ARCH_KMALLOC_MINALIGN,
1471 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1472 NULL);
1473
1474 if (INDEX_AC != INDEX_L3) {
1475 sizes[INDEX_L3].cs_cachep =
1476 kmem_cache_create(names[INDEX_L3].name,
1477 sizes[INDEX_L3].cs_size,
1478 ARCH_KMALLOC_MINALIGN,
1479 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1480 NULL);
1481 }
1482
1483 slab_early_init = 0;
1484
1485 while (sizes->cs_size != ULONG_MAX) {
1486 /*
1487 * For performance, all the general caches are L1 aligned.
1488 * This should be particularly beneficial on SMP boxes, as it
1489 * eliminates "false sharing".
1490 * Note for systems short on memory removing the alignment will
1491 * allow tighter packing of the smaller caches.
1492 */
1493 if (!sizes->cs_cachep) {
1494 sizes->cs_cachep = kmem_cache_create(names->name,
1495 sizes->cs_size,
1496 ARCH_KMALLOC_MINALIGN,
1497 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1498 NULL);
1499 }
1500 #ifdef CONFIG_ZONE_DMA
1501 sizes->cs_dmacachep = kmem_cache_create(
1502 names->name_dma,
1503 sizes->cs_size,
1504 ARCH_KMALLOC_MINALIGN,
1505 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1506 SLAB_PANIC,
1507 NULL);
1508 #endif
1509 sizes++;
1510 names++;
1511 }
1512 /* 4) Replace the bootstrap head arrays */
1513 {
1514 struct array_cache *ptr;
1515
1516 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1517
1518 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1519 memcpy(ptr, cpu_cache_get(&cache_cache),
1520 sizeof(struct arraycache_init));
1521 /*
1522 * Do not assume that spinlocks can be initialized via memcpy:
1523 */
1524 spin_lock_init(&ptr->lock);
1525
1526 cache_cache.array[smp_processor_id()] = ptr;
1527
1528 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1529
1530 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1531 != &initarray_generic.cache);
1532 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1533 sizeof(struct arraycache_init));
1534 /*
1535 * Do not assume that spinlocks can be initialized via memcpy:
1536 */
1537 spin_lock_init(&ptr->lock);
1538
1539 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1540 ptr;
1541 }
1542 /* 5) Replace the bootstrap kmem_list3's */
1543 {
1544 int nid;
1545
1546 for_each_online_node(nid) {
1547 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
1548
1549 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1550 &initkmem_list3[SIZE_AC + nid], nid);
1551
1552 if (INDEX_AC != INDEX_L3) {
1553 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1554 &initkmem_list3[SIZE_L3 + nid], nid);
1555 }
1556 }
1557 }
1558
1559 g_cpucache_up = EARLY;
1560 }
1561
1562 void __init kmem_cache_init_late(void)
1563 {
1564 struct kmem_cache *cachep;
1565
1566 /* 6) resize the head arrays to their final sizes */
1567 mutex_lock(&cache_chain_mutex);
1568 list_for_each_entry(cachep, &cache_chain, next)
1569 if (enable_cpucache(cachep, GFP_NOWAIT))
1570 BUG();
1571 mutex_unlock(&cache_chain_mutex);
1572
1573 /* Done! */
1574 g_cpucache_up = FULL;
1575
1576 /* Annotate slab for lockdep -- annotate the malloc caches */
1577 init_lock_keys();
1578
1579 /*
1580 * Register a cpu startup notifier callback that initializes
1581 * cpu_cache_get for all new cpus
1582 */
1583 register_cpu_notifier(&cpucache_notifier);
1584
1585 /*
1586 * The reap timers are started later, with a module init call: That part
1587 * of the kernel is not yet operational.
1588 */
1589 }
1590
1591 static int __init cpucache_init(void)
1592 {
1593 int cpu;
1594
1595 /*
1596 * Register the timers that return unneeded pages to the page allocator
1597 */
1598 for_each_online_cpu(cpu)
1599 start_cpu_timer(cpu);
1600 return 0;
1601 }
1602 __initcall(cpucache_init);
1603
1604 /*
1605 * Interface to system's page allocator. No need to hold the cache-lock.
1606 *
1607 * If we requested dmaable memory, we will get it. Even if we
1608 * did not request dmaable memory, we might get it, but that
1609 * would be relatively rare and ignorable.
1610 */
1611 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1612 {
1613 struct page *page;
1614 int nr_pages;
1615 int i;
1616
1617 #ifndef CONFIG_MMU
1618 /*
1619 * Nommu uses slab's for process anonymous memory allocations, and thus
1620 * requires __GFP_COMP to properly refcount higher order allocations
1621 */
1622 flags |= __GFP_COMP;
1623 #endif
1624
1625 flags |= cachep->gfpflags;
1626 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1627 flags |= __GFP_RECLAIMABLE;
1628
1629 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1630 if (!page)
1631 return NULL;
1632
1633 nr_pages = (1 << cachep->gfporder);
1634 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1635 add_zone_page_state(page_zone(page),
1636 NR_SLAB_RECLAIMABLE, nr_pages);
1637 else
1638 add_zone_page_state(page_zone(page),
1639 NR_SLAB_UNRECLAIMABLE, nr_pages);
1640 for (i = 0; i < nr_pages; i++)
1641 __SetPageSlab(page + i);
1642
1643 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1644 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1645
1646 if (cachep->ctor)
1647 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1648 else
1649 kmemcheck_mark_unallocated_pages(page, nr_pages);
1650 }
1651
1652 return page_address(page);
1653 }
1654
1655 /*
1656 * Interface to system's page release.
1657 */
1658 static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1659 {
1660 unsigned long i = (1 << cachep->gfporder);
1661 struct page *page = virt_to_page(addr);
1662 const unsigned long nr_freed = i;
1663
1664 kmemcheck_free_shadow(page, cachep->gfporder);
1665
1666 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1667 sub_zone_page_state(page_zone(page),
1668 NR_SLAB_RECLAIMABLE, nr_freed);
1669 else
1670 sub_zone_page_state(page_zone(page),
1671 NR_SLAB_UNRECLAIMABLE, nr_freed);
1672 while (i--) {
1673 BUG_ON(!PageSlab(page));
1674 __ClearPageSlab(page);
1675 page++;
1676 }
1677 if (current->reclaim_state)
1678 current->reclaim_state->reclaimed_slab += nr_freed;
1679 free_pages((unsigned long)addr, cachep->gfporder);
1680 }
1681
1682 static void kmem_rcu_free(struct rcu_head *head)
1683 {
1684 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1685 struct kmem_cache *cachep = slab_rcu->cachep;
1686
1687 kmem_freepages(cachep, slab_rcu->addr);
1688 if (OFF_SLAB(cachep))
1689 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1690 }
1691
1692 #if DEBUG
1693
1694 #ifdef CONFIG_DEBUG_PAGEALLOC
1695 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1696 unsigned long caller)
1697 {
1698 int size = obj_size(cachep);
1699
1700 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1701
1702 if (size < 5 * sizeof(unsigned long))
1703 return;
1704
1705 *addr++ = 0x12345678;
1706 *addr++ = caller;
1707 *addr++ = smp_processor_id();
1708 size -= 3 * sizeof(unsigned long);
1709 {
1710 unsigned long *sptr = &caller;
1711 unsigned long svalue;
1712
1713 while (!kstack_end(sptr)) {
1714 svalue = *sptr++;
1715 if (kernel_text_address(svalue)) {
1716 *addr++ = svalue;
1717 size -= sizeof(unsigned long);
1718 if (size <= sizeof(unsigned long))
1719 break;
1720 }
1721 }
1722
1723 }
1724 *addr++ = 0x87654321;
1725 }
1726 #endif
1727
1728 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1729 {
1730 int size = obj_size(cachep);
1731 addr = &((char *)addr)[obj_offset(cachep)];
1732
1733 memset(addr, val, size);
1734 *(unsigned char *)(addr + size - 1) = POISON_END;
1735 }
1736
1737 static void dump_line(char *data, int offset, int limit)
1738 {
1739 int i;
1740 unsigned char error = 0;
1741 int bad_count = 0;
1742
1743 printk(KERN_ERR "%03x:", offset);
1744 for (i = 0; i < limit; i++) {
1745 if (data[offset + i] != POISON_FREE) {
1746 error = data[offset + i];
1747 bad_count++;
1748 }
1749 printk(" %02x", (unsigned char)data[offset + i]);
1750 }
1751 printk("\n");
1752
1753 if (bad_count == 1) {
1754 error ^= POISON_FREE;
1755 if (!(error & (error - 1))) {
1756 printk(KERN_ERR "Single bit error detected. Probably "
1757 "bad RAM.\n");
1758 #ifdef CONFIG_X86
1759 printk(KERN_ERR "Run memtest86+ or a similar memory "
1760 "test tool.\n");
1761 #else
1762 printk(KERN_ERR "Run a memory test tool.\n");
1763 #endif
1764 }
1765 }
1766 }
1767 #endif
1768
1769 #if DEBUG
1770
1771 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1772 {
1773 int i, size;
1774 char *realobj;
1775
1776 if (cachep->flags & SLAB_RED_ZONE) {
1777 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1778 *dbg_redzone1(cachep, objp),
1779 *dbg_redzone2(cachep, objp));
1780 }
1781
1782 if (cachep->flags & SLAB_STORE_USER) {
1783 printk(KERN_ERR "Last user: [<%p>]",
1784 *dbg_userword(cachep, objp));
1785 print_symbol("(%s)",
1786 (unsigned long)*dbg_userword(cachep, objp));
1787 printk("\n");
1788 }
1789 realobj = (char *)objp + obj_offset(cachep);
1790 size = obj_size(cachep);
1791 for (i = 0; i < size && lines; i += 16, lines--) {
1792 int limit;
1793 limit = 16;
1794 if (i + limit > size)
1795 limit = size - i;
1796 dump_line(realobj, i, limit);
1797 }
1798 }
1799
1800 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1801 {
1802 char *realobj;
1803 int size, i;
1804 int lines = 0;
1805
1806 realobj = (char *)objp + obj_offset(cachep);
1807 size = obj_size(cachep);
1808
1809 for (i = 0; i < size; i++) {
1810 char exp = POISON_FREE;
1811 if (i == size - 1)
1812 exp = POISON_END;
1813 if (realobj[i] != exp) {
1814 int limit;
1815 /* Mismatch ! */
1816 /* Print header */
1817 if (lines == 0) {
1818 printk(KERN_ERR
1819 "Slab corruption: %s start=%p, len=%d\n",
1820 cachep->name, realobj, size);
1821 print_objinfo(cachep, objp, 0);
1822 }
1823 /* Hexdump the affected line */
1824 i = (i / 16) * 16;
1825 limit = 16;
1826 if (i + limit > size)
1827 limit = size - i;
1828 dump_line(realobj, i, limit);
1829 i += 16;
1830 lines++;
1831 /* Limit to 5 lines */
1832 if (lines > 5)
1833 break;
1834 }
1835 }
1836 if (lines != 0) {
1837 /* Print some data about the neighboring objects, if they
1838 * exist:
1839 */
1840 struct slab *slabp = virt_to_slab(objp);
1841 unsigned int objnr;
1842
1843 objnr = obj_to_index(cachep, slabp, objp);
1844 if (objnr) {
1845 objp = index_to_obj(cachep, slabp, objnr - 1);
1846 realobj = (char *)objp + obj_offset(cachep);
1847 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1848 realobj, size);
1849 print_objinfo(cachep, objp, 2);
1850 }
1851 if (objnr + 1 < cachep->num) {
1852 objp = index_to_obj(cachep, slabp, objnr + 1);
1853 realobj = (char *)objp + obj_offset(cachep);
1854 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1855 realobj, size);
1856 print_objinfo(cachep, objp, 2);
1857 }
1858 }
1859 }
1860 #endif
1861
1862 #if DEBUG
1863 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1864 {
1865 int i;
1866 for (i = 0; i < cachep->num; i++) {
1867 void *objp = index_to_obj(cachep, slabp, i);
1868
1869 if (cachep->flags & SLAB_POISON) {
1870 #ifdef CONFIG_DEBUG_PAGEALLOC
1871 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1872 OFF_SLAB(cachep))
1873 kernel_map_pages(virt_to_page(objp),
1874 cachep->buffer_size / PAGE_SIZE, 1);
1875 else
1876 check_poison_obj(cachep, objp);
1877 #else
1878 check_poison_obj(cachep, objp);
1879 #endif
1880 }
1881 if (cachep->flags & SLAB_RED_ZONE) {
1882 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1883 slab_error(cachep, "start of a freed object "
1884 "was overwritten");
1885 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1886 slab_error(cachep, "end of a freed object "
1887 "was overwritten");
1888 }
1889 }
1890 }
1891 #else
1892 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1893 {
1894 }
1895 #endif
1896
1897 /**
1898 * slab_destroy - destroy and release all objects in a slab
1899 * @cachep: cache pointer being destroyed
1900 * @slabp: slab pointer being destroyed
1901 *
1902 * Destroy all the objs in a slab, and release the mem back to the system.
1903 * Before calling the slab must have been unlinked from the cache. The
1904 * cache-lock is not held/needed.
1905 */
1906 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1907 {
1908 void *addr = slabp->s_mem - slabp->colouroff;
1909
1910 slab_destroy_debugcheck(cachep, slabp);
1911 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1912 struct slab_rcu *slab_rcu;
1913
1914 slab_rcu = (struct slab_rcu *)slabp;
1915 slab_rcu->cachep = cachep;
1916 slab_rcu->addr = addr;
1917 call_rcu(&slab_rcu->head, kmem_rcu_free);
1918 } else {
1919 kmem_freepages(cachep, addr);
1920 if (OFF_SLAB(cachep))
1921 kmem_cache_free(cachep->slabp_cache, slabp);
1922 }
1923 }
1924
1925 static void __kmem_cache_destroy(struct kmem_cache *cachep)
1926 {
1927 int i;
1928 struct kmem_list3 *l3;
1929
1930 for_each_online_cpu(i)
1931 kfree(cachep->array[i]);
1932
1933 /* NUMA: free the list3 structures */
1934 for_each_online_node(i) {
1935 l3 = cachep->nodelists[i];
1936 if (l3) {
1937 kfree(l3->shared);
1938 free_alien_cache(l3->alien);
1939 kfree(l3);
1940 }
1941 }
1942 kmem_cache_free(&cache_cache, cachep);
1943 }
1944
1945
1946 /**
1947 * calculate_slab_order - calculate size (page order) of slabs
1948 * @cachep: pointer to the cache that is being created
1949 * @size: size of objects to be created in this cache.
1950 * @align: required alignment for the objects.
1951 * @flags: slab allocation flags
1952 *
1953 * Also calculates the number of objects per slab.
1954 *
1955 * This could be made much more intelligent. For now, try to avoid using
1956 * high order pages for slabs. When the gfp() functions are more friendly
1957 * towards high-order requests, this should be changed.
1958 */
1959 static size_t calculate_slab_order(struct kmem_cache *cachep,
1960 size_t size, size_t align, unsigned long flags)
1961 {
1962 unsigned long offslab_limit;
1963 size_t left_over = 0;
1964 int gfporder;
1965
1966 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1967 unsigned int num;
1968 size_t remainder;
1969
1970 cache_estimate(gfporder, size, align, flags, &remainder, &num);
1971 if (!num)
1972 continue;
1973
1974 if (flags & CFLGS_OFF_SLAB) {
1975 /*
1976 * Max number of objs-per-slab for caches which
1977 * use off-slab slabs. Needed to avoid a possible
1978 * looping condition in cache_grow().
1979 */
1980 offslab_limit = size - sizeof(struct slab);
1981 offslab_limit /= sizeof(kmem_bufctl_t);
1982
1983 if (num > offslab_limit)
1984 break;
1985 }
1986
1987 /* Found something acceptable - save it away */
1988 cachep->num = num;
1989 cachep->gfporder = gfporder;
1990 left_over = remainder;
1991
1992 /*
1993 * A VFS-reclaimable slab tends to have most allocations
1994 * as GFP_NOFS and we really don't want to have to be allocating
1995 * higher-order pages when we are unable to shrink dcache.
1996 */
1997 if (flags & SLAB_RECLAIM_ACCOUNT)
1998 break;
1999
2000 /*
2001 * Large number of objects is good, but very large slabs are
2002 * currently bad for the gfp()s.
2003 */
2004 if (gfporder >= slab_break_gfp_order)
2005 break;
2006
2007 /*
2008 * Acceptable internal fragmentation?
2009 */
2010 if (left_over * 8 <= (PAGE_SIZE << gfporder))
2011 break;
2012 }
2013 return left_over;
2014 }
2015
2016 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2017 {
2018 if (g_cpucache_up == FULL)
2019 return enable_cpucache(cachep, gfp);
2020
2021 if (g_cpucache_up == NONE) {
2022 /*
2023 * Note: the first kmem_cache_create must create the cache
2024 * that's used by kmalloc(24), otherwise the creation of
2025 * further caches will BUG().
2026 */
2027 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2028
2029 /*
2030 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2031 * the first cache, then we need to set up all its list3s,
2032 * otherwise the creation of further caches will BUG().
2033 */
2034 set_up_list3s(cachep, SIZE_AC);
2035 if (INDEX_AC == INDEX_L3)
2036 g_cpucache_up = PARTIAL_L3;
2037 else
2038 g_cpucache_up = PARTIAL_AC;
2039 } else {
2040 cachep->array[smp_processor_id()] =
2041 kmalloc(sizeof(struct arraycache_init), gfp);
2042
2043 if (g_cpucache_up == PARTIAL_AC) {
2044 set_up_list3s(cachep, SIZE_L3);
2045 g_cpucache_up = PARTIAL_L3;
2046 } else {
2047 int node;
2048 for_each_online_node(node) {
2049 cachep->nodelists[node] =
2050 kmalloc_node(sizeof(struct kmem_list3),
2051 gfp, node);
2052 BUG_ON(!cachep->nodelists[node]);
2053 kmem_list3_init(cachep->nodelists[node]);
2054 }
2055 }
2056 }
2057 cachep->nodelists[numa_node_id()]->next_reap =
2058 jiffies + REAPTIMEOUT_LIST3 +
2059 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2060
2061 cpu_cache_get(cachep)->avail = 0;
2062 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2063 cpu_cache_get(cachep)->batchcount = 1;
2064 cpu_cache_get(cachep)->touched = 0;
2065 cachep->batchcount = 1;
2066 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2067 return 0;
2068 }
2069
2070 /**
2071 * kmem_cache_create - Create a cache.
2072 * @name: A string which is used in /proc/slabinfo to identify this cache.
2073 * @size: The size of objects to be created in this cache.
2074 * @align: The required alignment for the objects.
2075 * @flags: SLAB flags
2076 * @ctor: A constructor for the objects.
2077 *
2078 * Returns a ptr to the cache on success, NULL on failure.
2079 * Cannot be called within a int, but can be interrupted.
2080 * The @ctor is run when new pages are allocated by the cache.
2081 *
2082 * @name must be valid until the cache is destroyed. This implies that
2083 * the module calling this has to destroy the cache before getting unloaded.
2084 * Note that kmem_cache_name() is not guaranteed to return the same pointer,
2085 * therefore applications must manage it themselves.
2086 *
2087 * The flags are
2088 *
2089 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2090 * to catch references to uninitialised memory.
2091 *
2092 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2093 * for buffer overruns.
2094 *
2095 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2096 * cacheline. This can be beneficial if you're counting cycles as closely
2097 * as davem.
2098 */
2099 struct kmem_cache *
2100 kmem_cache_create (const char *name, size_t size, size_t align,
2101 unsigned long flags, void (*ctor)(void *))
2102 {
2103 size_t left_over, slab_size, ralign;
2104 struct kmem_cache *cachep = NULL, *pc;
2105 gfp_t gfp;
2106
2107 /*
2108 * Sanity checks... these are all serious usage bugs.
2109 */
2110 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2111 size > KMALLOC_MAX_SIZE) {
2112 printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
2113 name);
2114 BUG();
2115 }
2116
2117 /*
2118 * We use cache_chain_mutex to ensure a consistent view of
2119 * cpu_online_mask as well. Please see cpuup_callback
2120 */
2121 if (slab_is_available()) {
2122 get_online_cpus();
2123 mutex_lock(&cache_chain_mutex);
2124 }
2125
2126 list_for_each_entry(pc, &cache_chain, next) {
2127 char tmp;
2128 int res;
2129
2130 /*
2131 * This happens when the module gets unloaded and doesn't
2132 * destroy its slab cache and no-one else reuses the vmalloc
2133 * area of the module. Print a warning.
2134 */
2135 res = probe_kernel_address(pc->name, tmp);
2136 if (res) {
2137 printk(KERN_ERR
2138 "SLAB: cache with size %d has lost its name\n",
2139 pc->buffer_size);
2140 continue;
2141 }
2142
2143 if (!strcmp(pc->name, name)) {
2144 printk(KERN_ERR
2145 "kmem_cache_create: duplicate cache %s\n", name);
2146 dump_stack();
2147 goto oops;
2148 }
2149 }
2150
2151 #if DEBUG
2152 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
2153 #if FORCED_DEBUG
2154 /*
2155 * Enable redzoning and last user accounting, except for caches with
2156 * large objects, if the increased size would increase the object size
2157 * above the next power of two: caches with object sizes just above a
2158 * power of two have a significant amount of internal fragmentation.
2159 */
2160 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2161 2 * sizeof(unsigned long long)))
2162 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2163 if (!(flags & SLAB_DESTROY_BY_RCU))
2164 flags |= SLAB_POISON;
2165 #endif
2166 if (flags & SLAB_DESTROY_BY_RCU)
2167 BUG_ON(flags & SLAB_POISON);
2168 #endif
2169 /*
2170 * Always checks flags, a caller might be expecting debug support which
2171 * isn't available.
2172 */
2173 BUG_ON(flags & ~CREATE_MASK);
2174
2175 /*
2176 * Check that size is in terms of words. This is needed to avoid
2177 * unaligned accesses for some archs when redzoning is used, and makes
2178 * sure any on-slab bufctl's are also correctly aligned.
2179 */
2180 if (size & (BYTES_PER_WORD - 1)) {
2181 size += (BYTES_PER_WORD - 1);
2182 size &= ~(BYTES_PER_WORD - 1);
2183 }
2184
2185 /* calculate the final buffer alignment: */
2186
2187 /* 1) arch recommendation: can be overridden for debug */
2188 if (flags & SLAB_HWCACHE_ALIGN) {
2189 /*
2190 * Default alignment: as specified by the arch code. Except if
2191 * an object is really small, then squeeze multiple objects into
2192 * one cacheline.
2193 */
2194 ralign = cache_line_size();
2195 while (size <= ralign / 2)
2196 ralign /= 2;
2197 } else {
2198 ralign = BYTES_PER_WORD;
2199 }
2200
2201 /*
2202 * Redzoning and user store require word alignment or possibly larger.
2203 * Note this will be overridden by architecture or caller mandated
2204 * alignment if either is greater than BYTES_PER_WORD.
2205 */
2206 if (flags & SLAB_STORE_USER)
2207 ralign = BYTES_PER_WORD;
2208
2209 if (flags & SLAB_RED_ZONE) {
2210 ralign = REDZONE_ALIGN;
2211 /* If redzoning, ensure that the second redzone is suitably
2212 * aligned, by adjusting the object size accordingly. */
2213 size += REDZONE_ALIGN - 1;
2214 size &= ~(REDZONE_ALIGN - 1);
2215 }
2216
2217 /* 2) arch mandated alignment */
2218 if (ralign < ARCH_SLAB_MINALIGN) {
2219 ralign = ARCH_SLAB_MINALIGN;
2220 }
2221 /* 3) caller mandated alignment */
2222 if (ralign < align) {
2223 ralign = align;
2224 }
2225 /* disable debug if necessary */
2226 if (ralign > __alignof__(unsigned long long))
2227 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2228 /*
2229 * 4) Store it.
2230 */
2231 align = ralign;
2232
2233 if (slab_is_available())
2234 gfp = GFP_KERNEL;
2235 else
2236 gfp = GFP_NOWAIT;
2237
2238 /* Get cache's description obj. */
2239 cachep = kmem_cache_zalloc(&cache_cache, gfp);
2240 if (!cachep)
2241 goto oops;
2242
2243 #if DEBUG
2244 cachep->obj_size = size;
2245
2246 /*
2247 * Both debugging options require word-alignment which is calculated
2248 * into align above.
2249 */
2250 if (flags & SLAB_RED_ZONE) {
2251 /* add space for red zone words */
2252 cachep->obj_offset += sizeof(unsigned long long);
2253 size += 2 * sizeof(unsigned long long);
2254 }
2255 if (flags & SLAB_STORE_USER) {
2256 /* user store requires one word storage behind the end of
2257 * the real object. But if the second red zone needs to be
2258 * aligned to 64 bits, we must allow that much space.
2259 */
2260 if (flags & SLAB_RED_ZONE)
2261 size += REDZONE_ALIGN;
2262 else
2263 size += BYTES_PER_WORD;
2264 }
2265 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2266 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2267 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2268 cachep->obj_offset += PAGE_SIZE - size;
2269 size = PAGE_SIZE;
2270 }
2271 #endif
2272 #endif
2273
2274 /*
2275 * Determine if the slab management is 'on' or 'off' slab.
2276 * (bootstrapping cannot cope with offslab caches so don't do
2277 * it too early on. Always use on-slab management when
2278 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2279 */
2280 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
2281 !(flags & SLAB_NOLEAKTRACE))
2282 /*
2283 * Size is large, assume best to place the slab management obj
2284 * off-slab (should allow better packing of objs).
2285 */
2286 flags |= CFLGS_OFF_SLAB;
2287
2288 size = ALIGN(size, align);
2289
2290 left_over = calculate_slab_order(cachep, size, align, flags);
2291
2292 if (!cachep->num) {
2293 printk(KERN_ERR
2294 "kmem_cache_create: couldn't create cache %s.\n", name);
2295 kmem_cache_free(&cache_cache, cachep);
2296 cachep = NULL;
2297 goto oops;
2298 }
2299 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2300 + sizeof(struct slab), align);
2301
2302 /*
2303 * If the slab has been placed off-slab, and we have enough space then
2304 * move it on-slab. This is at the expense of any extra colouring.
2305 */
2306 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2307 flags &= ~CFLGS_OFF_SLAB;
2308 left_over -= slab_size;
2309 }
2310
2311 if (flags & CFLGS_OFF_SLAB) {
2312 /* really off slab. No need for manual alignment */
2313 slab_size =
2314 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2315
2316 #ifdef CONFIG_PAGE_POISONING
2317 /* If we're going to use the generic kernel_map_pages()
2318 * poisoning, then it's going to smash the contents of
2319 * the redzone and userword anyhow, so switch them off.
2320 */
2321 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2322 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2323 #endif
2324 }
2325
2326 cachep->colour_off = cache_line_size();
2327 /* Offset must be a multiple of the alignment. */
2328 if (cachep->colour_off < align)
2329 cachep->colour_off = align;
2330 cachep->colour = left_over / cachep->colour_off;
2331 cachep->slab_size = slab_size;
2332 cachep->flags = flags;
2333 cachep->gfpflags = 0;
2334 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2335 cachep->gfpflags |= GFP_DMA;
2336 cachep->buffer_size = size;
2337 cachep->reciprocal_buffer_size = reciprocal_value(size);
2338
2339 if (flags & CFLGS_OFF_SLAB) {
2340 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2341 /*
2342 * This is a possibility for one of the malloc_sizes caches.
2343 * But since we go off slab only for object size greater than
2344 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2345 * this should not happen at all.
2346 * But leave a BUG_ON for some lucky dude.
2347 */
2348 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2349 }
2350 cachep->ctor = ctor;
2351 cachep->name = name;
2352
2353 if (setup_cpu_cache(cachep, gfp)) {
2354 __kmem_cache_destroy(cachep);
2355 cachep = NULL;
2356 goto oops;
2357 }
2358
2359 /* cache setup completed, link it into the list */
2360 list_add(&cachep->next, &cache_chain);
2361 oops:
2362 if (!cachep && (flags & SLAB_PANIC))
2363 panic("kmem_cache_create(): failed to create slab `%s'\n",
2364 name);
2365 if (slab_is_available()) {
2366 mutex_unlock(&cache_chain_mutex);
2367 put_online_cpus();
2368 }
2369 return cachep;
2370 }
2371 EXPORT_SYMBOL(kmem_cache_create);
2372
2373 #if DEBUG
2374 static void check_irq_off(void)
2375 {
2376 BUG_ON(!irqs_disabled());
2377 }
2378
2379 static void check_irq_on(void)
2380 {
2381 BUG_ON(irqs_disabled());
2382 }
2383
2384 static void check_spinlock_acquired(struct kmem_cache *cachep)
2385 {
2386 #ifdef CONFIG_SMP
2387 check_irq_off();
2388 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
2389 #endif
2390 }
2391
2392 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2393 {
2394 #ifdef CONFIG_SMP
2395 check_irq_off();
2396 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2397 #endif
2398 }
2399
2400 #else
2401 #define check_irq_off() do { } while(0)
2402 #define check_irq_on() do { } while(0)
2403 #define check_spinlock_acquired(x) do { } while(0)
2404 #define check_spinlock_acquired_node(x, y) do { } while(0)
2405 #endif
2406
2407 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2408 struct array_cache *ac,
2409 int force, int node);
2410
2411 static void do_drain(void *arg)
2412 {
2413 struct kmem_cache *cachep = arg;
2414 struct array_cache *ac;
2415 int node = numa_node_id();
2416
2417 check_irq_off();
2418 ac = cpu_cache_get(cachep);
2419 spin_lock(&cachep->nodelists[node]->list_lock);
2420 free_block(cachep, ac->entry, ac->avail, node);
2421 spin_unlock(&cachep->nodelists[node]->list_lock);
2422 ac->avail = 0;
2423 }
2424
2425 static void drain_cpu_caches(struct kmem_cache *cachep)
2426 {
2427 struct kmem_list3 *l3;
2428 int node;
2429
2430 on_each_cpu(do_drain, cachep, 1);
2431 check_irq_on();
2432 for_each_online_node(node) {
2433 l3 = cachep->nodelists[node];
2434 if (l3 && l3->alien)
2435 drain_alien_cache(cachep, l3->alien);
2436 }
2437
2438 for_each_online_node(node) {
2439 l3 = cachep->nodelists[node];
2440 if (l3)
2441 drain_array(cachep, l3, l3->shared, 1, node);
2442 }
2443 }
2444
2445 /*
2446 * Remove slabs from the list of free slabs.
2447 * Specify the number of slabs to drain in tofree.
2448 *
2449 * Returns the actual number of slabs released.
2450 */
2451 static int drain_freelist(struct kmem_cache *cache,
2452 struct kmem_list3 *l3, int tofree)
2453 {
2454 struct list_head *p;
2455 int nr_freed;
2456 struct slab *slabp;
2457
2458 nr_freed = 0;
2459 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
2460
2461 spin_lock_irq(&l3->list_lock);
2462 p = l3->slabs_free.prev;
2463 if (p == &l3->slabs_free) {
2464 spin_unlock_irq(&l3->list_lock);
2465 goto out;
2466 }
2467
2468 slabp = list_entry(p, struct slab, list);
2469 #if DEBUG
2470 BUG_ON(slabp->inuse);
2471 #endif
2472 list_del(&slabp->list);
2473 /*
2474 * Safe to drop the lock. The slab is no longer linked
2475 * to the cache.
2476 */
2477 l3->free_objects -= cache->num;
2478 spin_unlock_irq(&l3->list_lock);
2479 slab_destroy(cache, slabp);
2480 nr_freed++;
2481 }
2482 out:
2483 return nr_freed;
2484 }
2485
2486 /* Called with cache_chain_mutex held to protect against cpu hotplug */
2487 static int __cache_shrink(struct kmem_cache *cachep)
2488 {
2489 int ret = 0, i = 0;
2490 struct kmem_list3 *l3;
2491
2492 drain_cpu_caches(cachep);
2493
2494 check_irq_on();
2495 for_each_online_node(i) {
2496 l3 = cachep->nodelists[i];
2497 if (!l3)
2498 continue;
2499
2500 drain_freelist(cachep, l3, l3->free_objects);
2501
2502 ret += !list_empty(&l3->slabs_full) ||
2503 !list_empty(&l3->slabs_partial);
2504 }
2505 return (ret ? 1 : 0);
2506 }
2507
2508 /**
2509 * kmem_cache_shrink - Shrink a cache.
2510 * @cachep: The cache to shrink.
2511 *
2512 * Releases as many slabs as possible for a cache.
2513 * To help debugging, a zero exit status indicates all slabs were released.
2514 */
2515 int kmem_cache_shrink(struct kmem_cache *cachep)
2516 {
2517 int ret;
2518 BUG_ON(!cachep || in_interrupt());
2519
2520 get_online_cpus();
2521 mutex_lock(&cache_chain_mutex);
2522 ret = __cache_shrink(cachep);
2523 mutex_unlock(&cache_chain_mutex);
2524 put_online_cpus();
2525 return ret;
2526 }
2527 EXPORT_SYMBOL(kmem_cache_shrink);
2528
2529 /**
2530 * kmem_cache_destroy - delete a cache
2531 * @cachep: the cache to destroy
2532 *
2533 * Remove a &struct kmem_cache object from the slab cache.
2534 *
2535 * It is expected this function will be called by a module when it is
2536 * unloaded. This will remove the cache completely, and avoid a duplicate
2537 * cache being allocated each time a module is loaded and unloaded, if the
2538 * module doesn't have persistent in-kernel storage across loads and unloads.
2539 *
2540 * The cache must be empty before calling this function.
2541 *
2542 * The caller must guarantee that noone will allocate memory from the cache
2543 * during the kmem_cache_destroy().
2544 */
2545 void kmem_cache_destroy(struct kmem_cache *cachep)
2546 {
2547 BUG_ON(!cachep || in_interrupt());
2548
2549 /* Find the cache in the chain of caches. */
2550 get_online_cpus();
2551 mutex_lock(&cache_chain_mutex);
2552 /*
2553 * the chain is never empty, cache_cache is never destroyed
2554 */
2555 list_del(&cachep->next);
2556 if (__cache_shrink(cachep)) {
2557 slab_error(cachep, "Can't free all objects");
2558 list_add(&cachep->next, &cache_chain);
2559 mutex_unlock(&cache_chain_mutex);
2560 put_online_cpus();
2561 return;
2562 }
2563
2564 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2565 rcu_barrier();
2566
2567 __kmem_cache_destroy(cachep);
2568 mutex_unlock(&cache_chain_mutex);
2569 put_online_cpus();
2570 }
2571 EXPORT_SYMBOL(kmem_cache_destroy);
2572
2573 /*
2574 * Get the memory for a slab management obj.
2575 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2576 * always come from malloc_sizes caches. The slab descriptor cannot
2577 * come from the same cache which is getting created because,
2578 * when we are searching for an appropriate cache for these
2579 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2580 * If we are creating a malloc_sizes cache here it would not be visible to
2581 * kmem_find_general_cachep till the initialization is complete.
2582 * Hence we cannot have slabp_cache same as the original cache.
2583 */
2584 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2585 int colour_off, gfp_t local_flags,
2586 int nodeid)
2587 {
2588 struct slab *slabp;
2589
2590 if (OFF_SLAB(cachep)) {
2591 /* Slab management obj is off-slab. */
2592 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2593 local_flags, nodeid);
2594 /*
2595 * If the first object in the slab is leaked (it's allocated
2596 * but no one has a reference to it), we want to make sure
2597 * kmemleak does not treat the ->s_mem pointer as a reference
2598 * to the object. Otherwise we will not report the leak.
2599 */
2600 kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
2601 local_flags);
2602 if (!slabp)
2603 return NULL;
2604 } else {
2605 slabp = objp + colour_off;
2606 colour_off += cachep->slab_size;
2607 }
2608 slabp->inuse = 0;
2609 slabp->colouroff = colour_off;
2610 slabp->s_mem = objp + colour_off;
2611 slabp->nodeid = nodeid;
2612 slabp->free = 0;
2613 return slabp;
2614 }
2615
2616 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2617 {
2618 return (kmem_bufctl_t *) (slabp + 1);
2619 }
2620
2621 static void cache_init_objs(struct kmem_cache *cachep,
2622 struct slab *slabp)
2623 {
2624 int i;
2625
2626 for (i = 0; i < cachep->num; i++) {
2627 void *objp = index_to_obj(cachep, slabp, i);
2628 #if DEBUG
2629 /* need to poison the objs? */
2630 if (cachep->flags & SLAB_POISON)
2631 poison_obj(cachep, objp, POISON_FREE);
2632 if (cachep->flags & SLAB_STORE_USER)
2633 *dbg_userword(cachep, objp) = NULL;
2634
2635 if (cachep->flags & SLAB_RED_ZONE) {
2636 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2637 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2638 }
2639 /*
2640 * Constructors are not allowed to allocate memory from the same
2641 * cache which they are a constructor for. Otherwise, deadlock.
2642 * They must also be threaded.
2643 */
2644 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2645 cachep->ctor(objp + obj_offset(cachep));
2646
2647 if (cachep->flags & SLAB_RED_ZONE) {
2648 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2649 slab_error(cachep, "constructor overwrote the"
2650 " end of an object");
2651 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2652 slab_error(cachep, "constructor overwrote the"
2653 " start of an object");
2654 }
2655 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2656 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2657 kernel_map_pages(virt_to_page(objp),
2658 cachep->buffer_size / PAGE_SIZE, 0);
2659 #else
2660 if (cachep->ctor)
2661 cachep->ctor(objp);
2662 #endif
2663 slab_bufctl(slabp)[i] = i + 1;
2664 }
2665 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2666 }
2667
2668 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2669 {
2670 if (CONFIG_ZONE_DMA_FLAG) {
2671 if (flags & GFP_DMA)
2672 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2673 else
2674 BUG_ON(cachep->gfpflags & GFP_DMA);
2675 }
2676 }
2677
2678 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2679 int nodeid)
2680 {
2681 void *objp = index_to_obj(cachep, slabp, slabp->free);
2682 kmem_bufctl_t next;
2683
2684 slabp->inuse++;
2685 next = slab_bufctl(slabp)[slabp->free];
2686 #if DEBUG
2687 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2688 WARN_ON(slabp->nodeid != nodeid);
2689 #endif
2690 slabp->free = next;
2691
2692 return objp;
2693 }
2694
2695 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2696 void *objp, int nodeid)
2697 {
2698 unsigned int objnr = obj_to_index(cachep, slabp, objp);
2699
2700 #if DEBUG
2701 /* Verify that the slab belongs to the intended node */
2702 WARN_ON(slabp->nodeid != nodeid);
2703
2704 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2705 printk(KERN_ERR "slab: double free detected in cache "
2706 "'%s', objp %p\n", cachep->name, objp);
2707 BUG();
2708 }
2709 #endif
2710 slab_bufctl(slabp)[objnr] = slabp->free;
2711 slabp->free = objnr;
2712 slabp->inuse--;
2713 }
2714
2715 /*
2716 * Map pages beginning at addr to the given cache and slab. This is required
2717 * for the slab allocator to be able to lookup the cache and slab of a
2718 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2719 */
2720 static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2721 void *addr)
2722 {
2723 int nr_pages;
2724 struct page *page;
2725
2726 page = virt_to_page(addr);
2727
2728 nr_pages = 1;
2729 if (likely(!PageCompound(page)))
2730 nr_pages <<= cache->gfporder;
2731
2732 do {
2733 page_set_cache(page, cache);
2734 page_set_slab(page, slab);
2735 page++;
2736 } while (--nr_pages);
2737 }
2738
2739 /*
2740 * Grow (by 1) the number of slabs within a cache. This is called by
2741 * kmem_cache_alloc() when there are no active objs left in a cache.
2742 */
2743 static int cache_grow(struct kmem_cache *cachep,
2744 gfp_t flags, int nodeid, void *objp)
2745 {
2746 struct slab *slabp;
2747 size_t offset;
2748 gfp_t local_flags;
2749 struct kmem_list3 *l3;
2750
2751 /*
2752 * Be lazy and only check for valid flags here, keeping it out of the
2753 * critical path in kmem_cache_alloc().
2754 */
2755 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2756 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2757
2758 /* Take the l3 list lock to change the colour_next on this node */
2759 check_irq_off();
2760 l3 = cachep->nodelists[nodeid];
2761 spin_lock(&l3->list_lock);
2762
2763 /* Get colour for the slab, and cal the next value. */
2764 offset = l3->colour_next;
2765 l3->colour_next++;
2766 if (l3->colour_next >= cachep->colour)
2767 l3->colour_next = 0;
2768 spin_unlock(&l3->list_lock);
2769
2770 offset *= cachep->colour_off;
2771
2772 if (local_flags & __GFP_WAIT)
2773 local_irq_enable();
2774
2775 /*
2776 * The test for missing atomic flag is performed here, rather than
2777 * the more obvious place, simply to reduce the critical path length
2778 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2779 * will eventually be caught here (where it matters).
2780 */
2781 kmem_flagcheck(cachep, flags);
2782
2783 /*
2784 * Get mem for the objs. Attempt to allocate a physical page from
2785 * 'nodeid'.
2786 */
2787 if (!objp)
2788 objp = kmem_getpages(cachep, local_flags, nodeid);
2789 if (!objp)
2790 goto failed;
2791
2792 /* Get slab management. */
2793 slabp = alloc_slabmgmt(cachep, objp, offset,
2794 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2795 if (!slabp)
2796 goto opps1;
2797
2798 slab_map_pages(cachep, slabp, objp);
2799
2800 cache_init_objs(cachep, slabp);
2801
2802 if (local_flags & __GFP_WAIT)
2803 local_irq_disable();
2804 check_irq_off();
2805 spin_lock(&l3->list_lock);
2806
2807 /* Make slab active. */
2808 list_add_tail(&slabp->list, &(l3->slabs_free));
2809 STATS_INC_GROWN(cachep);
2810 l3->free_objects += cachep->num;
2811 spin_unlock(&l3->list_lock);
2812 return 1;
2813 opps1:
2814 kmem_freepages(cachep, objp);
2815 failed:
2816 if (local_flags & __GFP_WAIT)
2817 local_irq_disable();
2818 return 0;
2819 }
2820
2821 #if DEBUG
2822
2823 /*
2824 * Perform extra freeing checks:
2825 * - detect bad pointers.
2826 * - POISON/RED_ZONE checking
2827 */
2828 static void kfree_debugcheck(const void *objp)
2829 {
2830 if (!virt_addr_valid(objp)) {
2831 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2832 (unsigned long)objp);
2833 BUG();
2834 }
2835 }
2836
2837 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2838 {
2839 unsigned long long redzone1, redzone2;
2840
2841 redzone1 = *dbg_redzone1(cache, obj);
2842 redzone2 = *dbg_redzone2(cache, obj);
2843
2844 /*
2845 * Redzone is ok.
2846 */
2847 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2848 return;
2849
2850 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2851 slab_error(cache, "double free detected");
2852 else
2853 slab_error(cache, "memory outside object was overwritten");
2854
2855 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2856 obj, redzone1, redzone2);
2857 }
2858
2859 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2860 void *caller)
2861 {
2862 struct page *page;
2863 unsigned int objnr;
2864 struct slab *slabp;
2865
2866 BUG_ON(virt_to_cache(objp) != cachep);
2867
2868 objp -= obj_offset(cachep);
2869 kfree_debugcheck(objp);
2870 page = virt_to_head_page(objp);
2871
2872 slabp = page_get_slab(page);
2873
2874 if (cachep->flags & SLAB_RED_ZONE) {
2875 verify_redzone_free(cachep, objp);
2876 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2877 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2878 }
2879 if (cachep->flags & SLAB_STORE_USER)
2880 *dbg_userword(cachep, objp) = caller;
2881
2882 objnr = obj_to_index(cachep, slabp, objp);
2883
2884 BUG_ON(objnr >= cachep->num);
2885 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2886
2887 #ifdef CONFIG_DEBUG_SLAB_LEAK
2888 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2889 #endif
2890 if (cachep->flags & SLAB_POISON) {
2891 #ifdef CONFIG_DEBUG_PAGEALLOC
2892 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2893 store_stackinfo(cachep, objp, (unsigned long)caller);
2894 kernel_map_pages(virt_to_page(objp),
2895 cachep->buffer_size / PAGE_SIZE, 0);
2896 } else {
2897 poison_obj(cachep, objp, POISON_FREE);
2898 }
2899 #else
2900 poison_obj(cachep, objp, POISON_FREE);
2901 #endif
2902 }
2903 return objp;
2904 }
2905
2906 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2907 {
2908 kmem_bufctl_t i;
2909 int entries = 0;
2910
2911 /* Check slab's freelist to see if this obj is there. */
2912 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2913 entries++;
2914 if (entries > cachep->num || i >= cachep->num)
2915 goto bad;
2916 }
2917 if (entries != cachep->num - slabp->inuse) {
2918 bad:
2919 printk(KERN_ERR "slab: Internal list corruption detected in "
2920 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2921 cachep->name, cachep->num, slabp, slabp->inuse);
2922 for (i = 0;
2923 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
2924 i++) {
2925 if (i % 16 == 0)
2926 printk("\n%03x:", i);
2927 printk(" %02x", ((unsigned char *)slabp)[i]);
2928 }
2929 printk("\n");
2930 BUG();
2931 }
2932 }
2933 #else
2934 #define kfree_debugcheck(x) do { } while(0)
2935 #define cache_free_debugcheck(x,objp,z) (objp)
2936 #define check_slabp(x,y) do { } while(0)
2937 #endif
2938
2939 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2940 {
2941 int batchcount;
2942 struct kmem_list3 *l3;
2943 struct array_cache *ac;
2944 int node;
2945
2946 retry:
2947 check_irq_off();
2948 node = numa_node_id();
2949 ac = cpu_cache_get(cachep);
2950 batchcount = ac->batchcount;
2951 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2952 /*
2953 * If there was little recent activity on this cache, then
2954 * perform only a partial refill. Otherwise we could generate
2955 * refill bouncing.
2956 */
2957 batchcount = BATCHREFILL_LIMIT;
2958 }
2959 l3 = cachep->nodelists[node];
2960
2961 BUG_ON(ac->avail > 0 || !l3);
2962 spin_lock(&l3->list_lock);
2963
2964 /* See if we can refill from the shared array */
2965 if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
2966 l3->shared->touched = 1;
2967 goto alloc_done;
2968 }
2969
2970 while (batchcount > 0) {
2971 struct list_head *entry;
2972 struct slab *slabp;
2973 /* Get slab alloc is to come from. */
2974 entry = l3->slabs_partial.next;
2975 if (entry == &l3->slabs_partial) {
2976 l3->free_touched = 1;
2977 entry = l3->slabs_free.next;
2978 if (entry == &l3->slabs_free)
2979 goto must_grow;
2980 }
2981
2982 slabp = list_entry(entry, struct slab, list);
2983 check_slabp(cachep, slabp);
2984 check_spinlock_acquired(cachep);
2985
2986 /*
2987 * The slab was either on partial or free list so
2988 * there must be at least one object available for
2989 * allocation.
2990 */
2991 BUG_ON(slabp->inuse >= cachep->num);
2992
2993 while (slabp->inuse < cachep->num && batchcount--) {
2994 STATS_INC_ALLOCED(cachep);
2995 STATS_INC_ACTIVE(cachep);
2996 STATS_SET_HIGH(cachep);
2997
2998 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
2999 node);
3000 }
3001 check_slabp(cachep, slabp);
3002
3003 /* move slabp to correct slabp list: */
3004 list_del(&slabp->list);
3005 if (slabp->free == BUFCTL_END)
3006 list_add(&slabp->list, &l3->slabs_full);
3007 else
3008 list_add(&slabp->list, &l3->slabs_partial);
3009 }
3010
3011 must_grow:
3012 l3->free_objects -= ac->avail;
3013 alloc_done:
3014 spin_unlock(&l3->list_lock);
3015
3016 if (unlikely(!ac->avail)) {
3017 int x;
3018 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3019
3020 /* cache_grow can reenable interrupts, then ac could change. */
3021 ac = cpu_cache_get(cachep);
3022 if (!x && ac->avail == 0) /* no objects in sight? abort */
3023 return NULL;
3024
3025 if (!ac->avail) /* objects refilled by interrupt? */
3026 goto retry;
3027 }
3028 ac->touched = 1;
3029 return ac->entry[--ac->avail];
3030 }
3031
3032 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3033 gfp_t flags)
3034 {
3035 might_sleep_if(flags & __GFP_WAIT);
3036 #if DEBUG
3037 kmem_flagcheck(cachep, flags);
3038 #endif
3039 }
3040
3041 #if DEBUG
3042 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3043 gfp_t flags, void *objp, void *caller)
3044 {
3045 if (!objp)
3046 return objp;
3047 if (cachep->flags & SLAB_POISON) {
3048 #ifdef CONFIG_DEBUG_PAGEALLOC
3049 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3050 kernel_map_pages(virt_to_page(objp),
3051 cachep->buffer_size / PAGE_SIZE, 1);
3052 else
3053 check_poison_obj(cachep, objp);
3054 #else
3055 check_poison_obj(cachep, objp);
3056 #endif
3057 poison_obj(cachep, objp, POISON_INUSE);
3058 }
3059 if (cachep->flags & SLAB_STORE_USER)
3060 *dbg_userword(cachep, objp) = caller;
3061
3062 if (cachep->flags & SLAB_RED_ZONE) {
3063 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3064 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3065 slab_error(cachep, "double free, or memory outside"
3066 " object was overwritten");
3067 printk(KERN_ERR
3068 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3069 objp, *dbg_redzone1(cachep, objp),
3070 *dbg_redzone2(cachep, objp));
3071 }
3072 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3073 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3074 }
3075 #ifdef CONFIG_DEBUG_SLAB_LEAK
3076 {
3077 struct slab *slabp;
3078 unsigned objnr;
3079
3080 slabp = page_get_slab(virt_to_head_page(objp));
3081 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3082 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3083 }
3084 #endif
3085 objp += obj_offset(cachep);
3086 if (cachep->ctor && cachep->flags & SLAB_POISON)
3087 cachep->ctor(objp);
3088 #if ARCH_SLAB_MINALIGN
3089 if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3090 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3091 objp, ARCH_SLAB_MINALIGN);
3092 }
3093 #endif
3094 return objp;
3095 }
3096 #else
3097 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3098 #endif
3099
3100 static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3101 {
3102 if (cachep == &cache_cache)
3103 return false;
3104
3105 return should_failslab(obj_size(cachep), flags);
3106 }
3107
3108 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3109 {
3110 void *objp;
3111 struct array_cache *ac;
3112
3113 check_irq_off();
3114
3115 ac = cpu_cache_get(cachep);
3116 if (likely(ac->avail)) {
3117 STATS_INC_ALLOCHIT(cachep);
3118 ac->touched = 1;
3119 objp = ac->entry[--ac->avail];
3120 } else {
3121 STATS_INC_ALLOCMISS(cachep);
3122 objp = cache_alloc_refill(cachep, flags);
3123 /*
3124 * the 'ac' may be updated by cache_alloc_refill(),
3125 * and kmemleak_erase() requires its correct value.
3126 */
3127 ac = cpu_cache_get(cachep);
3128 }
3129 /*
3130 * To avoid a false negative, if an object that is in one of the
3131 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3132 * treat the array pointers as a reference to the object.
3133 */
3134 if (objp)
3135 kmemleak_erase(&ac->entry[ac->avail]);
3136 return objp;
3137 }
3138
3139 #ifdef CONFIG_NUMA
3140 /*
3141 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3142 *
3143 * If we are in_interrupt, then process context, including cpusets and
3144 * mempolicy, may not apply and should not be used for allocation policy.
3145 */
3146 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3147 {
3148 int nid_alloc, nid_here;
3149
3150 if (in_interrupt() || (flags & __GFP_THISNODE))
3151 return NULL;
3152 nid_alloc = nid_here = numa_node_id();
3153 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3154 nid_alloc = cpuset_mem_spread_node();
3155 else if (current->mempolicy)
3156 nid_alloc = slab_node(current->mempolicy);
3157 if (nid_alloc != nid_here)
3158 return ____cache_alloc_node(cachep, flags, nid_alloc);
3159 return NULL;
3160 }
3161
3162 /*
3163 * Fallback function if there was no memory available and no objects on a
3164 * certain node and fall back is permitted. First we scan all the
3165 * available nodelists for available objects. If that fails then we
3166 * perform an allocation without specifying a node. This allows the page
3167 * allocator to do its reclaim / fallback magic. We then insert the
3168 * slab into the proper nodelist and then allocate from it.
3169 */
3170 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3171 {
3172 struct zonelist *zonelist;
3173 gfp_t local_flags;
3174 struct zoneref *z;
3175 struct zone *zone;
3176 enum zone_type high_zoneidx = gfp_zone(flags);
3177 void *obj = NULL;
3178 int nid;
3179
3180 if (flags & __GFP_THISNODE)
3181 return NULL;
3182
3183 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
3184 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3185
3186 retry:
3187 /*
3188 * Look through allowed nodes for objects available
3189 * from existing per node queues.
3190 */
3191 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3192 nid = zone_to_nid(zone);
3193
3194 if (cpuset_zone_allowed_hardwall(zone, flags) &&
3195 cache->nodelists[nid] &&
3196 cache->nodelists[nid]->free_objects) {
3197 obj = ____cache_alloc_node(cache,
3198 flags | GFP_THISNODE, nid);
3199 if (obj)
3200 break;
3201 }
3202 }
3203
3204 if (!obj) {
3205 /*
3206 * This allocation will be performed within the constraints
3207 * of the current cpuset / memory policy requirements.
3208 * We may trigger various forms of reclaim on the allowed
3209 * set and go into memory reserves if necessary.
3210 */
3211 if (local_flags & __GFP_WAIT)
3212 local_irq_enable();
3213 kmem_flagcheck(cache, flags);
3214 obj = kmem_getpages(cache, local_flags, numa_node_id());
3215 if (local_flags & __GFP_WAIT)
3216 local_irq_disable();
3217 if (obj) {
3218 /*
3219 * Insert into the appropriate per node queues
3220 */
3221 nid = page_to_nid(virt_to_page(obj));
3222 if (cache_grow(cache, flags, nid, obj)) {
3223 obj = ____cache_alloc_node(cache,
3224 flags | GFP_THISNODE, nid);
3225 if (!obj)
3226 /*
3227 * Another processor may allocate the
3228 * objects in the slab since we are
3229 * not holding any locks.
3230 */
3231 goto retry;
3232 } else {
3233 /* cache_grow already freed obj */
3234 obj = NULL;
3235 }
3236 }
3237 }
3238 return obj;
3239 }
3240
3241 /*
3242 * A interface to enable slab creation on nodeid
3243 */
3244 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3245 int nodeid)
3246 {
3247 struct list_head *entry;
3248 struct slab *slabp;
3249 struct kmem_list3 *l3;
3250 void *obj;
3251 int x;
3252
3253 l3 = cachep->nodelists[nodeid];
3254 BUG_ON(!l3);
3255
3256 retry:
3257 check_irq_off();
3258 spin_lock(&l3->list_lock);
3259 entry = l3->slabs_partial.next;
3260 if (entry == &l3->slabs_partial) {
3261 l3->free_touched = 1;
3262 entry = l3->slabs_free.next;
3263 if (entry == &l3->slabs_free)
3264 goto must_grow;
3265 }
3266
3267 slabp = list_entry(entry, struct slab, list);
3268 check_spinlock_acquired_node(cachep, nodeid);
3269 check_slabp(cachep, slabp);
3270
3271 STATS_INC_NODEALLOCS(cachep);
3272 STATS_INC_ACTIVE(cachep);
3273 STATS_SET_HIGH(cachep);
3274
3275 BUG_ON(slabp->inuse == cachep->num);
3276
3277 obj = slab_get_obj(cachep, slabp, nodeid);
3278 check_slabp(cachep, slabp);
3279 l3->free_objects--;
3280 /* move slabp to correct slabp list: */
3281 list_del(&slabp->list);
3282
3283 if (slabp->free == BUFCTL_END)
3284 list_add(&slabp->list, &l3->slabs_full);
3285 else
3286 list_add(&slabp->list, &l3->slabs_partial);
3287
3288 spin_unlock(&l3->list_lock);
3289 goto done;
3290
3291 must_grow:
3292 spin_unlock(&l3->list_lock);
3293 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3294 if (x)
3295 goto retry;
3296
3297 return fallback_alloc(cachep, flags);
3298
3299 done:
3300 return obj;
3301 }
3302
3303 /**
3304 * kmem_cache_alloc_node - Allocate an object on the specified node
3305 * @cachep: The cache to allocate from.
3306 * @flags: See kmalloc().
3307 * @nodeid: node number of the target node.
3308 * @caller: return address of caller, used for debug information
3309 *
3310 * Identical to kmem_cache_alloc but it will allocate memory on the given
3311 * node, which can improve the performance for cpu bound structures.
3312 *
3313 * Fallback to other node is possible if __GFP_THISNODE is not set.
3314 */
3315 static __always_inline void *
3316 __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3317 void *caller)
3318 {
3319 unsigned long save_flags;
3320 void *ptr;
3321
3322 flags &= gfp_allowed_mask;
3323
3324 lockdep_trace_alloc(flags);
3325
3326 if (slab_should_failslab(cachep, flags))
3327 return NULL;
3328
3329 cache_alloc_debugcheck_before(cachep, flags);
3330 local_irq_save(save_flags);
3331
3332 if (nodeid == -1)
3333 nodeid = numa_node_id();
3334
3335 if (unlikely(!cachep->nodelists[nodeid])) {
3336 /* Node not bootstrapped yet */
3337 ptr = fallback_alloc(cachep, flags);
3338 goto out;
3339 }
3340
3341 if (nodeid == numa_node_id()) {
3342 /*
3343 * Use the locally cached objects if possible.
3344 * However ____cache_alloc does not allow fallback
3345 * to other nodes. It may fail while we still have
3346 * objects on other nodes available.
3347 */
3348 ptr = ____cache_alloc(cachep, flags);
3349 if (ptr)
3350 goto out;
3351 }
3352 /* ___cache_alloc_node can fall back to other nodes */
3353 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3354 out:
3355 local_irq_restore(save_flags);
3356 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3357 kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags,
3358 flags);
3359
3360 if (likely(ptr))
3361 kmemcheck_slab_alloc(cachep, flags, ptr, obj_size(cachep));
3362
3363 if (unlikely((flags & __GFP_ZERO) && ptr))
3364 memset(ptr, 0, obj_size(cachep));
3365
3366 return ptr;
3367 }
3368
3369 static __always_inline void *
3370 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3371 {
3372 void *objp;
3373
3374 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3375 objp = alternate_node_alloc(cache, flags);
3376 if (objp)
3377 goto out;
3378 }
3379 objp = ____cache_alloc(cache, flags);
3380
3381 /*
3382 * We may just have run out of memory on the local node.
3383 * ____cache_alloc_node() knows how to locate memory on other nodes
3384 */
3385 if (!objp)
3386 objp = ____cache_alloc_node(cache, flags, numa_node_id());
3387
3388 out:
3389 return objp;
3390 }
3391 #else
3392
3393 static __always_inline void *
3394 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3395 {
3396 return ____cache_alloc(cachep, flags);
3397 }
3398
3399 #endif /* CONFIG_NUMA */
3400
3401 static __always_inline void *
3402 __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3403 {
3404 unsigned long save_flags;
3405 void *objp;
3406
3407 flags &= gfp_allowed_mask;
3408
3409 lockdep_trace_alloc(flags);
3410
3411 if (slab_should_failslab(cachep, flags))
3412 return NULL;
3413
3414 cache_alloc_debugcheck_before(cachep, flags);
3415 local_irq_save(save_flags);
3416 objp = __do_cache_alloc(cachep, flags);
3417 local_irq_restore(save_flags);
3418 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3419 kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags,
3420 flags);
3421 prefetchw(objp);
3422
3423 if (likely(objp))
3424 kmemcheck_slab_alloc(cachep, flags, objp, obj_size(cachep));
3425
3426 if (unlikely((flags & __GFP_ZERO) && objp))
3427 memset(objp, 0, obj_size(cachep));
3428
3429 return objp;
3430 }
3431
3432 /*
3433 * Caller needs to acquire correct kmem_list's list_lock
3434 */
3435 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3436 int node)
3437 {
3438 int i;
3439 struct kmem_list3 *l3;
3440
3441 for (i = 0; i < nr_objects; i++) {
3442 void *objp = objpp[i];
3443 struct slab *slabp;
3444
3445 slabp = virt_to_slab(objp);
3446 l3 = cachep->nodelists[node];
3447 list_del(&slabp->list);
3448 check_spinlock_acquired_node(cachep, node);
3449 check_slabp(cachep, slabp);
3450 slab_put_obj(cachep, slabp, objp, node);
3451 STATS_DEC_ACTIVE(cachep);
3452 l3->free_objects++;
3453 check_slabp(cachep, slabp);
3454
3455 /* fixup slab chains */
3456 if (slabp->inuse == 0) {
3457 if (l3->free_objects > l3->free_limit) {
3458 l3->free_objects -= cachep->num;
3459 /* No need to drop any previously held
3460 * lock here, even if we have a off-slab slab
3461 * descriptor it is guaranteed to come from
3462 * a different cache, refer to comments before
3463 * alloc_slabmgmt.
3464 */
3465 slab_destroy(cachep, slabp);
3466 } else {
3467 list_add(&slabp->list, &l3->slabs_free);
3468 }
3469 } else {
3470 /* Unconditionally move a slab to the end of the
3471 * partial list on free - maximum time for the
3472 * other objects to be freed, too.
3473 */
3474 list_add_tail(&slabp->list, &l3->slabs_partial);
3475 }
3476 }
3477 }
3478
3479 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3480 {
3481 int batchcount;
3482 struct kmem_list3 *l3;
3483 int node = numa_node_id();
3484
3485 batchcount = ac->batchcount;
3486 #if DEBUG
3487 BUG_ON(!batchcount || batchcount > ac->avail);
3488 #endif
3489 check_irq_off();
3490 l3 = cachep->nodelists[node];
3491 spin_lock(&l3->list_lock);
3492 if (l3->shared) {
3493 struct array_cache *shared_array = l3->shared;
3494 int max = shared_array->limit - shared_array->avail;
3495 if (max) {
3496 if (batchcount > max)
3497 batchcount = max;
3498 memcpy(&(shared_array->entry[shared_array->avail]),
3499 ac->entry, sizeof(void *) * batchcount);
3500 shared_array->avail += batchcount;
3501 goto free_done;
3502 }
3503 }
3504
3505 free_block(cachep, ac->entry, batchcount, node);
3506 free_done:
3507 #if STATS
3508 {
3509 int i = 0;
3510 struct list_head *p;
3511
3512 p = l3->slabs_free.next;
3513 while (p != &(l3->slabs_free)) {
3514 struct slab *slabp;
3515
3516 slabp = list_entry(p, struct slab, list);
3517 BUG_ON(slabp->inuse);
3518
3519 i++;
3520 p = p->next;
3521 }
3522 STATS_SET_FREEABLE(cachep, i);
3523 }
3524 #endif
3525 spin_unlock(&l3->list_lock);
3526 ac->avail -= batchcount;
3527 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3528 }
3529
3530 /*
3531 * Release an obj back to its cache. If the obj has a constructed state, it must
3532 * be in this state _before_ it is released. Called with disabled ints.
3533 */
3534 static inline void __cache_free(struct kmem_cache *cachep, void *objp)
3535 {
3536 struct array_cache *ac = cpu_cache_get(cachep);
3537
3538 check_irq_off();
3539 kmemleak_free_recursive(objp, cachep->flags);
3540 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3541
3542 kmemcheck_slab_free(cachep, objp, obj_size(cachep));
3543
3544 /*
3545 * Skip calling cache_free_alien() when the platform is not numa.
3546 * This will avoid cache misses that happen while accessing slabp (which
3547 * is per page memory reference) to get nodeid. Instead use a global
3548 * variable to skip the call, which is mostly likely to be present in
3549 * the cache.
3550 */
3551 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3552 return;
3553
3554 if (likely(ac->avail < ac->limit)) {
3555 STATS_INC_FREEHIT(cachep);
3556 ac->entry[ac->avail++] = objp;
3557 return;
3558 } else {
3559 STATS_INC_FREEMISS(cachep);
3560 cache_flusharray(cachep, ac);
3561 ac->entry[ac->avail++] = objp;
3562 }
3563 }
3564
3565 /**
3566 * kmem_cache_alloc - Allocate an object
3567 * @cachep: The cache to allocate from.
3568 * @flags: See kmalloc().
3569 *
3570 * Allocate an object from this cache. The flags are only relevant
3571 * if the cache has no available objects.
3572 */
3573 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3574 {
3575 void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3576
3577 trace_kmem_cache_alloc(_RET_IP_, ret,
3578 obj_size(cachep), cachep->buffer_size, flags);
3579
3580 return ret;
3581 }
3582 EXPORT_SYMBOL(kmem_cache_alloc);
3583
3584 #ifdef CONFIG_TRACING
3585 void *kmem_cache_alloc_notrace(struct kmem_cache *cachep, gfp_t flags)
3586 {
3587 return __cache_alloc(cachep, flags, __builtin_return_address(0));
3588 }
3589 EXPORT_SYMBOL(kmem_cache_alloc_notrace);
3590 #endif
3591
3592 /**
3593 * kmem_ptr_validate - check if an untrusted pointer might be a slab entry.
3594 * @cachep: the cache we're checking against
3595 * @ptr: pointer to validate
3596 *
3597 * This verifies that the untrusted pointer looks sane;
3598 * it is _not_ a guarantee that the pointer is actually
3599 * part of the slab cache in question, but it at least
3600 * validates that the pointer can be dereferenced and
3601 * looks half-way sane.
3602 *
3603 * Currently only used for dentry validation.
3604 */
3605 int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
3606 {
3607 unsigned long addr = (unsigned long)ptr;
3608 unsigned long min_addr = PAGE_OFFSET;
3609 unsigned long align_mask = BYTES_PER_WORD - 1;
3610 unsigned long size = cachep->buffer_size;
3611 struct page *page;
3612
3613 if (unlikely(addr < min_addr))
3614 goto out;
3615 if (unlikely(addr > (unsigned long)high_memory - size))
3616 goto out;
3617 if (unlikely(addr & align_mask))
3618 goto out;
3619 if (unlikely(!kern_addr_valid(addr)))
3620 goto out;
3621 if (unlikely(!kern_addr_valid(addr + size - 1)))
3622 goto out;
3623 page = virt_to_page(ptr);
3624 if (unlikely(!PageSlab(page)))
3625 goto out;
3626 if (unlikely(page_get_cache(page) != cachep))
3627 goto out;
3628 return 1;
3629 out:
3630 return 0;
3631 }
3632
3633 #ifdef CONFIG_NUMA
3634 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3635 {
3636 void *ret = __cache_alloc_node(cachep, flags, nodeid,
3637 __builtin_return_address(0));
3638
3639 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3640 obj_size(cachep), cachep->buffer_size,
3641 flags, nodeid);
3642
3643 return ret;
3644 }
3645 EXPORT_SYMBOL(kmem_cache_alloc_node);
3646
3647 #ifdef CONFIG_TRACING
3648 void *kmem_cache_alloc_node_notrace(struct kmem_cache *cachep,
3649 gfp_t flags,
3650 int nodeid)
3651 {
3652 return __cache_alloc_node(cachep, flags, nodeid,
3653 __builtin_return_address(0));
3654 }
3655 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
3656 #endif
3657
3658 static __always_inline void *
3659 __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3660 {
3661 struct kmem_cache *cachep;
3662 void *ret;
3663
3664 cachep = kmem_find_general_cachep(size, flags);
3665 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3666 return cachep;
3667 ret = kmem_cache_alloc_node_notrace(cachep, flags, node);
3668
3669 trace_kmalloc_node((unsigned long) caller, ret,
3670 size, cachep->buffer_size, flags, node);
3671
3672 return ret;
3673 }
3674
3675 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3676 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3677 {
3678 return __do_kmalloc_node(size, flags, node,
3679 __builtin_return_address(0));
3680 }
3681 EXPORT_SYMBOL(__kmalloc_node);
3682
3683 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3684 int node, unsigned long caller)
3685 {
3686 return __do_kmalloc_node(size, flags, node, (void *)caller);
3687 }
3688 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3689 #else
3690 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3691 {
3692 return __do_kmalloc_node(size, flags, node, NULL);
3693 }
3694 EXPORT_SYMBOL(__kmalloc_node);
3695 #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3696 #endif /* CONFIG_NUMA */
3697
3698 /**
3699 * __do_kmalloc - allocate memory
3700 * @size: how many bytes of memory are required.
3701 * @flags: the type of memory to allocate (see kmalloc).
3702 * @caller: function caller for debug tracking of the caller
3703 */
3704 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3705 void *caller)
3706 {
3707 struct kmem_cache *cachep;
3708 void *ret;
3709
3710 /* If you want to save a few bytes .text space: replace
3711 * __ with kmem_.
3712 * Then kmalloc uses the uninlined functions instead of the inline
3713 * functions.
3714 */
3715 cachep = __find_general_cachep(size, flags);
3716 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3717 return cachep;
3718 ret = __cache_alloc(cachep, flags, caller);
3719
3720 trace_kmalloc((unsigned long) caller, ret,
3721 size, cachep->buffer_size, flags);
3722
3723 return ret;
3724 }
3725
3726
3727 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3728 void *__kmalloc(size_t size, gfp_t flags)
3729 {
3730 return __do_kmalloc(size, flags, __builtin_return_address(0));
3731 }
3732 EXPORT_SYMBOL(__kmalloc);
3733
3734 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3735 {
3736 return __do_kmalloc(size, flags, (void *)caller);
3737 }
3738 EXPORT_SYMBOL(__kmalloc_track_caller);
3739
3740 #else
3741 void *__kmalloc(size_t size, gfp_t flags)
3742 {
3743 return __do_kmalloc(size, flags, NULL);
3744 }
3745 EXPORT_SYMBOL(__kmalloc);
3746 #endif
3747
3748 /**
3749 * kmem_cache_free - Deallocate an object
3750 * @cachep: The cache the allocation was from.
3751 * @objp: The previously allocated object.
3752 *
3753 * Free an object which was previously allocated from this
3754 * cache.
3755 */
3756 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3757 {
3758 unsigned long flags;
3759
3760 local_irq_save(flags);
3761 debug_check_no_locks_freed(objp, obj_size(cachep));
3762 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3763 debug_check_no_obj_freed(objp, obj_size(cachep));
3764 __cache_free(cachep, objp);
3765 local_irq_restore(flags);
3766
3767 trace_kmem_cache_free(_RET_IP_, objp);
3768 }
3769 EXPORT_SYMBOL(kmem_cache_free);
3770
3771 /**
3772 * kfree - free previously allocated memory
3773 * @objp: pointer returned by kmalloc.
3774 *
3775 * If @objp is NULL, no operation is performed.
3776 *
3777 * Don't free memory not originally allocated by kmalloc()
3778 * or you will run into trouble.
3779 */
3780 void kfree(const void *objp)
3781 {
3782 struct kmem_cache *c;
3783 unsigned long flags;
3784
3785 trace_kfree(_RET_IP_, objp);
3786
3787 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3788 return;
3789 local_irq_save(flags);
3790 kfree_debugcheck(objp);
3791 c = virt_to_cache(objp);
3792 debug_check_no_locks_freed(objp, obj_size(c));
3793 debug_check_no_obj_freed(objp, obj_size(c));
3794 __cache_free(c, (void *)objp);
3795 local_irq_restore(flags);
3796 }
3797 EXPORT_SYMBOL(kfree);
3798
3799 unsigned int kmem_cache_size(struct kmem_cache *cachep)
3800 {
3801 return obj_size(cachep);
3802 }
3803 EXPORT_SYMBOL(kmem_cache_size);
3804
3805 const char *kmem_cache_name(struct kmem_cache *cachep)
3806 {
3807 return cachep->name;
3808 }
3809 EXPORT_SYMBOL_GPL(kmem_cache_name);
3810
3811 /*
3812 * This initializes kmem_list3 or resizes various caches for all nodes.
3813 */
3814 static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
3815 {
3816 int node;
3817 struct kmem_list3 *l3;
3818 struct array_cache *new_shared;
3819 struct array_cache **new_alien = NULL;
3820
3821 for_each_online_node(node) {
3822
3823 if (use_alien_caches) {
3824 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3825 if (!new_alien)
3826 goto fail;
3827 }
3828
3829 new_shared = NULL;
3830 if (cachep->shared) {
3831 new_shared = alloc_arraycache(node,
3832 cachep->shared*cachep->batchcount,
3833 0xbaadf00d, gfp);
3834 if (!new_shared) {
3835 free_alien_cache(new_alien);
3836 goto fail;
3837 }
3838 }
3839
3840 l3 = cachep->nodelists[node];
3841 if (l3) {
3842 struct array_cache *shared = l3->shared;
3843
3844 spin_lock_irq(&l3->list_lock);
3845
3846 if (shared)
3847 free_block(cachep, shared->entry,
3848 shared->avail, node);
3849
3850 l3->shared = new_shared;
3851 if (!l3->alien) {
3852 l3->alien = new_alien;
3853 new_alien = NULL;
3854 }
3855 l3->free_limit = (1 + nr_cpus_node(node)) *
3856 cachep->batchcount + cachep->num;
3857 spin_unlock_irq(&l3->list_lock);
3858 kfree(shared);
3859 free_alien_cache(new_alien);
3860 continue;
3861 }
3862 l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
3863 if (!l3) {
3864 free_alien_cache(new_alien);
3865 kfree(new_shared);
3866 goto fail;
3867 }
3868
3869 kmem_list3_init(l3);
3870 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3871 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3872 l3->shared = new_shared;
3873 l3->alien = new_alien;
3874 l3->free_limit = (1 + nr_cpus_node(node)) *
3875 cachep->batchcount + cachep->num;
3876 cachep->nodelists[node] = l3;
3877 }
3878 return 0;
3879
3880 fail:
3881 if (!cachep->next.next) {
3882 /* Cache is not active yet. Roll back what we did */
3883 node--;
3884 while (node >= 0) {
3885 if (cachep->nodelists[node]) {
3886 l3 = cachep->nodelists[node];
3887
3888 kfree(l3->shared);
3889 free_alien_cache(l3->alien);
3890 kfree(l3);
3891 cachep->nodelists[node] = NULL;
3892 }
3893 node--;
3894 }
3895 }
3896 return -ENOMEM;
3897 }
3898
3899 struct ccupdate_struct {
3900 struct kmem_cache *cachep;
3901 struct array_cache *new[NR_CPUS];
3902 };
3903
3904 static void do_ccupdate_local(void *info)
3905 {
3906 struct ccupdate_struct *new = info;
3907 struct array_cache *old;
3908
3909 check_irq_off();
3910 old = cpu_cache_get(new->cachep);
3911
3912 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3913 new->new[smp_processor_id()] = old;
3914 }
3915
3916 /* Always called with the cache_chain_mutex held */
3917 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3918 int batchcount, int shared, gfp_t gfp)
3919 {
3920 struct ccupdate_struct *new;
3921 int i;
3922
3923 new = kzalloc(sizeof(*new), gfp);
3924 if (!new)
3925 return -ENOMEM;
3926
3927 for_each_online_cpu(i) {
3928 new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
3929 batchcount, gfp);
3930 if (!new->new[i]) {
3931 for (i--; i >= 0; i--)
3932 kfree(new->new[i]);
3933 kfree(new);
3934 return -ENOMEM;
3935 }
3936 }
3937 new->cachep = cachep;
3938
3939 on_each_cpu(do_ccupdate_local, (void *)new, 1);
3940
3941 check_irq_on();
3942 cachep->batchcount = batchcount;
3943 cachep->limit = limit;
3944 cachep->shared = shared;
3945
3946 for_each_online_cpu(i) {
3947 struct array_cache *ccold = new->new[i];
3948 if (!ccold)
3949 continue;
3950 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3951 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3952 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3953 kfree(ccold);
3954 }
3955 kfree(new);
3956 return alloc_kmemlist(cachep, gfp);
3957 }
3958
3959 /* Called with cache_chain_mutex held always */
3960 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3961 {
3962 int err;
3963 int limit, shared;
3964
3965 /*
3966 * The head array serves three purposes:
3967 * - create a LIFO ordering, i.e. return objects that are cache-warm
3968 * - reduce the number of spinlock operations.
3969 * - reduce the number of linked list operations on the slab and
3970 * bufctl chains: array operations are cheaper.
3971 * The numbers are guessed, we should auto-tune as described by
3972 * Bonwick.
3973 */
3974 if (cachep->buffer_size > 131072)
3975 limit = 1;
3976 else if (cachep->buffer_size > PAGE_SIZE)
3977 limit = 8;
3978 else if (cachep->buffer_size > 1024)
3979 limit = 24;
3980 else if (cachep->buffer_size > 256)
3981 limit = 54;
3982 else
3983 limit = 120;
3984
3985 /*
3986 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3987 * allocation behaviour: Most allocs on one cpu, most free operations
3988 * on another cpu. For these cases, an efficient object passing between
3989 * cpus is necessary. This is provided by a shared array. The array
3990 * replaces Bonwick's magazine layer.
3991 * On uniprocessor, it's functionally equivalent (but less efficient)
3992 * to a larger limit. Thus disabled by default.
3993 */
3994 shared = 0;
3995 if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
3996 shared = 8;
3997
3998 #if DEBUG
3999 /*
4000 * With debugging enabled, large batchcount lead to excessively long
4001 * periods with disabled local interrupts. Limit the batchcount
4002 */
4003 if (limit > 32)
4004 limit = 32;
4005 #endif
4006 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
4007 if (err)
4008 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
4009 cachep->name, -err);
4010 return err;
4011 }
4012
4013 /*
4014 * Drain an array if it contains any elements taking the l3 lock only if
4015 * necessary. Note that the l3 listlock also protects the array_cache
4016 * if drain_array() is used on the shared array.
4017 */
4018 void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4019 struct array_cache *ac, int force, int node)
4020 {
4021 int tofree;
4022
4023 if (!ac || !ac->avail)
4024 return;
4025 if (ac->touched && !force) {
4026 ac->touched = 0;
4027 } else {
4028 spin_lock_irq(&l3->list_lock);
4029 if (ac->avail) {
4030 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4031 if (tofree > ac->avail)
4032 tofree = (ac->avail + 1) / 2;
4033 free_block(cachep, ac->entry, tofree, node);
4034 ac->avail -= tofree;
4035 memmove(ac->entry, &(ac->entry[tofree]),
4036 sizeof(void *) * ac->avail);
4037 }
4038 spin_unlock_irq(&l3->list_lock);
4039 }
4040 }
4041
4042 /**
4043 * cache_reap - Reclaim memory from caches.
4044 * @w: work descriptor
4045 *
4046 * Called from workqueue/eventd every few seconds.
4047 * Purpose:
4048 * - clear the per-cpu caches for this CPU.
4049 * - return freeable pages to the main free memory pool.
4050 *
4051 * If we cannot acquire the cache chain mutex then just give up - we'll try
4052 * again on the next iteration.
4053 */
4054 static void cache_reap(struct work_struct *w)
4055 {
4056 struct kmem_cache *searchp;
4057 struct kmem_list3 *l3;
4058 int node = numa_node_id();
4059 struct delayed_work *work = to_delayed_work(w);
4060
4061 if (!mutex_trylock(&cache_chain_mutex))
4062 /* Give up. Setup the next iteration. */
4063 goto out;
4064
4065 list_for_each_entry(searchp, &cache_chain, next) {
4066 check_irq_on();
4067
4068 /*
4069 * We only take the l3 lock if absolutely necessary and we
4070 * have established with reasonable certainty that
4071 * we can do some work if the lock was obtained.
4072 */
4073 l3 = searchp->nodelists[node];
4074
4075 reap_alien(searchp, l3);
4076
4077 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
4078
4079 /*
4080 * These are racy checks but it does not matter
4081 * if we skip one check or scan twice.
4082 */
4083 if (time_after(l3->next_reap, jiffies))
4084 goto next;
4085
4086 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
4087
4088 drain_array(searchp, l3, l3->shared, 0, node);
4089
4090 if (l3->free_touched)
4091 l3->free_touched = 0;
4092 else {
4093 int freed;
4094
4095 freed = drain_freelist(searchp, l3, (l3->free_limit +
4096 5 * searchp->num - 1) / (5 * searchp->num));
4097 STATS_ADD_REAPED(searchp, freed);
4098 }
4099 next:
4100 cond_resched();
4101 }
4102 check_irq_on();
4103 mutex_unlock(&cache_chain_mutex);
4104 next_reap_node();
4105 out:
4106 /* Set up the next iteration */
4107 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
4108 }
4109
4110 #ifdef CONFIG_SLABINFO
4111
4112 static void print_slabinfo_header(struct seq_file *m)
4113 {
4114 /*
4115 * Output format version, so at least we can change it
4116 * without _too_ many complaints.
4117 */
4118 #if STATS
4119 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
4120 #else
4121 seq_puts(m, "slabinfo - version: 2.1\n");
4122 #endif
4123 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4124 "<objperslab> <pagesperslab>");
4125 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4126 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4127 #if STATS
4128 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4129 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4130 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4131 #endif
4132 seq_putc(m, '\n');
4133 }
4134
4135 static void *s_start(struct seq_file *m, loff_t *pos)
4136 {
4137 loff_t n = *pos;
4138
4139 mutex_lock(&cache_chain_mutex);
4140 if (!n)
4141 print_slabinfo_header(m);
4142
4143 return seq_list_start(&cache_chain, *pos);
4144 }
4145
4146 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4147 {
4148 return seq_list_next(p, &cache_chain, pos);
4149 }
4150
4151 static void s_stop(struct seq_file *m, void *p)
4152 {
4153 mutex_unlock(&cache_chain_mutex);
4154 }
4155
4156 static int s_show(struct seq_file *m, void *p)
4157 {
4158 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4159 struct slab *slabp;
4160 unsigned long active_objs;
4161 unsigned long num_objs;
4162 unsigned long active_slabs = 0;
4163 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4164 const char *name;
4165 char *error = NULL;
4166 int node;
4167 struct kmem_list3 *l3;
4168
4169 active_objs = 0;
4170 num_slabs = 0;
4171 for_each_online_node(node) {
4172 l3 = cachep->nodelists[node];
4173 if (!l3)
4174 continue;
4175
4176 check_irq_on();
4177 spin_lock_irq(&l3->list_lock);
4178
4179 list_for_each_entry(slabp, &l3->slabs_full, list) {
4180 if (slabp->inuse != cachep->num && !error)
4181 error = "slabs_full accounting error";
4182 active_objs += cachep->num;
4183 active_slabs++;
4184 }
4185 list_for_each_entry(slabp, &l3->slabs_partial, list) {
4186 if (slabp->inuse == cachep->num && !error)
4187 error = "slabs_partial inuse accounting error";
4188 if (!slabp->inuse && !error)
4189 error = "slabs_partial/inuse accounting error";
4190 active_objs += slabp->inuse;
4191 active_slabs++;
4192 }
4193 list_for_each_entry(slabp, &l3->slabs_free, list) {
4194 if (slabp->inuse && !error)
4195 error = "slabs_free/inuse accounting error";
4196 num_slabs++;
4197 }
4198 free_objects += l3->free_objects;
4199 if (l3->shared)
4200 shared_avail += l3->shared->avail;
4201
4202 spin_unlock_irq(&l3->list_lock);
4203 }
4204 num_slabs += active_slabs;
4205 num_objs = num_slabs * cachep->num;
4206 if (num_objs - active_objs != free_objects && !error)
4207 error = "free_objects accounting error";
4208
4209 name = cachep->name;
4210 if (error)
4211 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4212
4213 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4214 name, active_objs, num_objs, cachep->buffer_size,
4215 cachep->num, (1 << cachep->gfporder));
4216 seq_printf(m, " : tunables %4u %4u %4u",
4217 cachep->limit, cachep->batchcount, cachep->shared);
4218 seq_printf(m, " : slabdata %6lu %6lu %6lu",
4219 active_slabs, num_slabs, shared_avail);
4220 #if STATS
4221 { /* list3 stats */
4222 unsigned long high = cachep->high_mark;
4223 unsigned long allocs = cachep->num_allocations;
4224 unsigned long grown = cachep->grown;
4225 unsigned long reaped = cachep->reaped;
4226 unsigned long errors = cachep->errors;
4227 unsigned long max_freeable = cachep->max_freeable;
4228 unsigned long node_allocs = cachep->node_allocs;
4229 unsigned long node_frees = cachep->node_frees;
4230 unsigned long overflows = cachep->node_overflow;
4231
4232 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
4233 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
4234 reaped, errors, max_freeable, node_allocs,
4235 node_frees, overflows);
4236 }
4237 /* cpu stats */
4238 {
4239 unsigned long allochit = atomic_read(&cachep->allochit);
4240 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4241 unsigned long freehit = atomic_read(&cachep->freehit);
4242 unsigned long freemiss = atomic_read(&cachep->freemiss);
4243
4244 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4245 allochit, allocmiss, freehit, freemiss);
4246 }
4247 #endif
4248 seq_putc(m, '\n');
4249 return 0;
4250 }
4251
4252 /*
4253 * slabinfo_op - iterator that generates /proc/slabinfo
4254 *
4255 * Output layout:
4256 * cache-name
4257 * num-active-objs
4258 * total-objs
4259 * object size
4260 * num-active-slabs
4261 * total-slabs
4262 * num-pages-per-slab
4263 * + further values on SMP and with statistics enabled
4264 */
4265
4266 static const struct seq_operations slabinfo_op = {
4267 .start = s_start,
4268 .next = s_next,
4269 .stop = s_stop,
4270 .show = s_show,
4271 };
4272
4273 #define MAX_SLABINFO_WRITE 128
4274 /**
4275 * slabinfo_write - Tuning for the slab allocator
4276 * @file: unused
4277 * @buffer: user buffer
4278 * @count: data length
4279 * @ppos: unused
4280 */
4281 ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4282 size_t count, loff_t *ppos)
4283 {
4284 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4285 int limit, batchcount, shared, res;
4286 struct kmem_cache *cachep;
4287
4288 if (count > MAX_SLABINFO_WRITE)
4289 return -EINVAL;
4290 if (copy_from_user(&kbuf, buffer, count))
4291 return -EFAULT;
4292 kbuf[MAX_SLABINFO_WRITE] = '\0';
4293
4294 tmp = strchr(kbuf, ' ');
4295 if (!tmp)
4296 return -EINVAL;
4297 *tmp = '\0';
4298 tmp++;
4299 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4300 return -EINVAL;
4301
4302 /* Find the cache in the chain of caches. */
4303 mutex_lock(&cache_chain_mutex);
4304 res = -EINVAL;
4305 list_for_each_entry(cachep, &cache_chain, next) {
4306 if (!strcmp(cachep->name, kbuf)) {
4307 if (limit < 1 || batchcount < 1 ||
4308 batchcount > limit || shared < 0) {
4309 res = 0;
4310 } else {
4311 res = do_tune_cpucache(cachep, limit,
4312 batchcount, shared,
4313 GFP_KERNEL);
4314 }
4315 break;
4316 }
4317 }
4318 mutex_unlock(&cache_chain_mutex);
4319 if (res >= 0)
4320 res = count;
4321 return res;
4322 }
4323
4324 static int slabinfo_open(struct inode *inode, struct file *file)
4325 {
4326 return seq_open(file, &slabinfo_op);
4327 }
4328
4329 static const struct file_operations proc_slabinfo_operations = {
4330 .open = slabinfo_open,
4331 .read = seq_read,
4332 .write = slabinfo_write,
4333 .llseek = seq_lseek,
4334 .release = seq_release,
4335 };
4336
4337 #ifdef CONFIG_DEBUG_SLAB_LEAK
4338
4339 static void *leaks_start(struct seq_file *m, loff_t *pos)
4340 {
4341 mutex_lock(&cache_chain_mutex);
4342 return seq_list_start(&cache_chain, *pos);
4343 }
4344
4345 static inline int add_caller(unsigned long *n, unsigned long v)
4346 {
4347 unsigned long *p;
4348 int l;
4349 if (!v)
4350 return 1;
4351 l = n[1];
4352 p = n + 2;
4353 while (l) {
4354 int i = l/2;
4355 unsigned long *q = p + 2 * i;
4356 if (*q == v) {
4357 q[1]++;
4358 return 1;
4359 }
4360 if (*q > v) {
4361 l = i;
4362 } else {
4363 p = q + 2;
4364 l -= i + 1;
4365 }
4366 }
4367 if (++n[1] == n[0])
4368 return 0;
4369 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4370 p[0] = v;
4371 p[1] = 1;
4372 return 1;
4373 }
4374
4375 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4376 {
4377 void *p;
4378 int i;
4379 if (n[0] == n[1])
4380 return;
4381 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4382 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4383 continue;
4384 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4385 return;
4386 }
4387 }
4388
4389 static void show_symbol(struct seq_file *m, unsigned long address)
4390 {
4391 #ifdef CONFIG_KALLSYMS
4392 unsigned long offset, size;
4393 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4394
4395 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4396 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4397 if (modname[0])
4398 seq_printf(m, " [%s]", modname);
4399 return;
4400 }
4401 #endif
4402 seq_printf(m, "%p", (void *)address);
4403 }
4404
4405 static int leaks_show(struct seq_file *m, void *p)
4406 {
4407 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4408 struct slab *slabp;
4409 struct kmem_list3 *l3;
4410 const char *name;
4411 unsigned long *n = m->private;
4412 int node;
4413 int i;
4414
4415 if (!(cachep->flags & SLAB_STORE_USER))
4416 return 0;
4417 if (!(cachep->flags & SLAB_RED_ZONE))
4418 return 0;
4419
4420 /* OK, we can do it */
4421
4422 n[1] = 0;
4423
4424 for_each_online_node(node) {
4425 l3 = cachep->nodelists[node];
4426 if (!l3)
4427 continue;
4428
4429 check_irq_on();
4430 spin_lock_irq(&l3->list_lock);
4431
4432 list_for_each_entry(slabp, &l3->slabs_full, list)
4433 handle_slab(n, cachep, slabp);
4434 list_for_each_entry(slabp, &l3->slabs_partial, list)
4435 handle_slab(n, cachep, slabp);
4436 spin_unlock_irq(&l3->list_lock);
4437 }
4438 name = cachep->name;
4439 if (n[0] == n[1]) {
4440 /* Increase the buffer size */
4441 mutex_unlock(&cache_chain_mutex);
4442 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4443 if (!m->private) {
4444 /* Too bad, we are really out */
4445 m->private = n;
4446 mutex_lock(&cache_chain_mutex);
4447 return -ENOMEM;
4448 }
4449 *(unsigned long *)m->private = n[0] * 2;
4450 kfree(n);
4451 mutex_lock(&cache_chain_mutex);
4452 /* Now make sure this entry will be retried */
4453 m->count = m->size;
4454 return 0;
4455 }
4456 for (i = 0; i < n[1]; i++) {
4457 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4458 show_symbol(m, n[2*i+2]);
4459 seq_putc(m, '\n');
4460 }
4461
4462 return 0;
4463 }
4464
4465 static const struct seq_operations slabstats_op = {
4466 .start = leaks_start,
4467 .next = s_next,
4468 .stop = s_stop,
4469 .show = leaks_show,
4470 };
4471
4472 static int slabstats_open(struct inode *inode, struct file *file)
4473 {
4474 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4475 int ret = -ENOMEM;
4476 if (n) {
4477 ret = seq_open(file, &slabstats_op);
4478 if (!ret) {
4479 struct seq_file *m = file->private_data;
4480 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4481 m->private = n;
4482 n = NULL;
4483 }
4484 kfree(n);
4485 }
4486 return ret;
4487 }
4488
4489 static const struct file_operations proc_slabstats_operations = {
4490 .open = slabstats_open,
4491 .read = seq_read,
4492 .llseek = seq_lseek,
4493 .release = seq_release_private,
4494 };
4495 #endif
4496
4497 static int __init slab_proc_init(void)
4498 {
4499 proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
4500 #ifdef CONFIG_DEBUG_SLAB_LEAK
4501 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4502 #endif
4503 return 0;
4504 }
4505 module_init(slab_proc_init);
4506 #endif
4507
4508 /**
4509 * ksize - get the actual amount of memory allocated for a given object
4510 * @objp: Pointer to the object
4511 *
4512 * kmalloc may internally round up allocations and return more memory
4513 * than requested. ksize() can be used to determine the actual amount of
4514 * memory allocated. The caller may use this additional memory, even though
4515 * a smaller amount of memory was initially specified with the kmalloc call.
4516 * The caller must guarantee that objp points to a valid object previously
4517 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4518 * must not be freed during the duration of the call.
4519 */
4520 size_t ksize(const void *objp)
4521 {
4522 BUG_ON(!objp);
4523 if (unlikely(objp == ZERO_SIZE_PTR))
4524 return 0;
4525
4526 return obj_size(virt_to_cache(objp));
4527 }
4528 EXPORT_SYMBOL(ksize);
This page took 0.375313 seconds and 6 git commands to generate.