mm/slab: make cache_grow() handle the page allocated on arbitrary node
[deliverable/linux.git] / mm / slab.c
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'slab_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
87 */
88
89 #include <linux/slab.h>
90 #include <linux/mm.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/notifier.h>
101 #include <linux/kallsyms.h>
102 #include <linux/cpu.h>
103 #include <linux/sysctl.h>
104 #include <linux/module.h>
105 #include <linux/rcupdate.h>
106 #include <linux/string.h>
107 #include <linux/uaccess.h>
108 #include <linux/nodemask.h>
109 #include <linux/kmemleak.h>
110 #include <linux/mempolicy.h>
111 #include <linux/mutex.h>
112 #include <linux/fault-inject.h>
113 #include <linux/rtmutex.h>
114 #include <linux/reciprocal_div.h>
115 #include <linux/debugobjects.h>
116 #include <linux/kmemcheck.h>
117 #include <linux/memory.h>
118 #include <linux/prefetch.h>
119
120 #include <net/sock.h>
121
122 #include <asm/cacheflush.h>
123 #include <asm/tlbflush.h>
124 #include <asm/page.h>
125
126 #include <trace/events/kmem.h>
127
128 #include "internal.h"
129
130 #include "slab.h"
131
132 /*
133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
134 * 0 for faster, smaller code (especially in the critical paths).
135 *
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
138 *
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140 */
141
142 #ifdef CONFIG_DEBUG_SLAB
143 #define DEBUG 1
144 #define STATS 1
145 #define FORCED_DEBUG 1
146 #else
147 #define DEBUG 0
148 #define STATS 0
149 #define FORCED_DEBUG 0
150 #endif
151
152 /* Shouldn't this be in a header file somewhere? */
153 #define BYTES_PER_WORD sizeof(void *)
154 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
155
156 #ifndef ARCH_KMALLOC_FLAGS
157 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158 #endif
159
160 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
162
163 #if FREELIST_BYTE_INDEX
164 typedef unsigned char freelist_idx_t;
165 #else
166 typedef unsigned short freelist_idx_t;
167 #endif
168
169 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
170
171 /*
172 * struct array_cache
173 *
174 * Purpose:
175 * - LIFO ordering, to hand out cache-warm objects from _alloc
176 * - reduce the number of linked list operations
177 * - reduce spinlock operations
178 *
179 * The limit is stored in the per-cpu structure to reduce the data cache
180 * footprint.
181 *
182 */
183 struct array_cache {
184 unsigned int avail;
185 unsigned int limit;
186 unsigned int batchcount;
187 unsigned int touched;
188 void *entry[]; /*
189 * Must have this definition in here for the proper
190 * alignment of array_cache. Also simplifies accessing
191 * the entries.
192 */
193 };
194
195 struct alien_cache {
196 spinlock_t lock;
197 struct array_cache ac;
198 };
199
200 /*
201 * Need this for bootstrapping a per node allocator.
202 */
203 #define NUM_INIT_LISTS (2 * MAX_NUMNODES)
204 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
205 #define CACHE_CACHE 0
206 #define SIZE_NODE (MAX_NUMNODES)
207
208 static int drain_freelist(struct kmem_cache *cache,
209 struct kmem_cache_node *n, int tofree);
210 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
211 int node, struct list_head *list);
212 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
213 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
214 static void cache_reap(struct work_struct *unused);
215
216 static int slab_early_init = 1;
217
218 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
219
220 static void kmem_cache_node_init(struct kmem_cache_node *parent)
221 {
222 INIT_LIST_HEAD(&parent->slabs_full);
223 INIT_LIST_HEAD(&parent->slabs_partial);
224 INIT_LIST_HEAD(&parent->slabs_free);
225 parent->shared = NULL;
226 parent->alien = NULL;
227 parent->colour_next = 0;
228 spin_lock_init(&parent->list_lock);
229 parent->free_objects = 0;
230 parent->free_touched = 0;
231 }
232
233 #define MAKE_LIST(cachep, listp, slab, nodeid) \
234 do { \
235 INIT_LIST_HEAD(listp); \
236 list_splice(&get_node(cachep, nodeid)->slab, listp); \
237 } while (0)
238
239 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
240 do { \
241 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
242 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
243 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
244 } while (0)
245
246 #define CFLGS_OBJFREELIST_SLAB (0x40000000UL)
247 #define CFLGS_OFF_SLAB (0x80000000UL)
248 #define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB)
249 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
250
251 #define BATCHREFILL_LIMIT 16
252 /*
253 * Optimization question: fewer reaps means less probability for unnessary
254 * cpucache drain/refill cycles.
255 *
256 * OTOH the cpuarrays can contain lots of objects,
257 * which could lock up otherwise freeable slabs.
258 */
259 #define REAPTIMEOUT_AC (2*HZ)
260 #define REAPTIMEOUT_NODE (4*HZ)
261
262 #if STATS
263 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
264 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
265 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
266 #define STATS_INC_GROWN(x) ((x)->grown++)
267 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
268 #define STATS_SET_HIGH(x) \
269 do { \
270 if ((x)->num_active > (x)->high_mark) \
271 (x)->high_mark = (x)->num_active; \
272 } while (0)
273 #define STATS_INC_ERR(x) ((x)->errors++)
274 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
275 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
276 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
277 #define STATS_SET_FREEABLE(x, i) \
278 do { \
279 if ((x)->max_freeable < i) \
280 (x)->max_freeable = i; \
281 } while (0)
282 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
283 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
284 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
285 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
286 #else
287 #define STATS_INC_ACTIVE(x) do { } while (0)
288 #define STATS_DEC_ACTIVE(x) do { } while (0)
289 #define STATS_INC_ALLOCED(x) do { } while (0)
290 #define STATS_INC_GROWN(x) do { } while (0)
291 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
292 #define STATS_SET_HIGH(x) do { } while (0)
293 #define STATS_INC_ERR(x) do { } while (0)
294 #define STATS_INC_NODEALLOCS(x) do { } while (0)
295 #define STATS_INC_NODEFREES(x) do { } while (0)
296 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
297 #define STATS_SET_FREEABLE(x, i) do { } while (0)
298 #define STATS_INC_ALLOCHIT(x) do { } while (0)
299 #define STATS_INC_ALLOCMISS(x) do { } while (0)
300 #define STATS_INC_FREEHIT(x) do { } while (0)
301 #define STATS_INC_FREEMISS(x) do { } while (0)
302 #endif
303
304 #if DEBUG
305
306 /*
307 * memory layout of objects:
308 * 0 : objp
309 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
310 * the end of an object is aligned with the end of the real
311 * allocation. Catches writes behind the end of the allocation.
312 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
313 * redzone word.
314 * cachep->obj_offset: The real object.
315 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
316 * cachep->size - 1* BYTES_PER_WORD: last caller address
317 * [BYTES_PER_WORD long]
318 */
319 static int obj_offset(struct kmem_cache *cachep)
320 {
321 return cachep->obj_offset;
322 }
323
324 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
325 {
326 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
327 return (unsigned long long*) (objp + obj_offset(cachep) -
328 sizeof(unsigned long long));
329 }
330
331 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
332 {
333 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
334 if (cachep->flags & SLAB_STORE_USER)
335 return (unsigned long long *)(objp + cachep->size -
336 sizeof(unsigned long long) -
337 REDZONE_ALIGN);
338 return (unsigned long long *) (objp + cachep->size -
339 sizeof(unsigned long long));
340 }
341
342 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
343 {
344 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
345 return (void **)(objp + cachep->size - BYTES_PER_WORD);
346 }
347
348 #else
349
350 #define obj_offset(x) 0
351 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
352 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
353 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
354
355 #endif
356
357 #ifdef CONFIG_DEBUG_SLAB_LEAK
358
359 static inline bool is_store_user_clean(struct kmem_cache *cachep)
360 {
361 return atomic_read(&cachep->store_user_clean) == 1;
362 }
363
364 static inline void set_store_user_clean(struct kmem_cache *cachep)
365 {
366 atomic_set(&cachep->store_user_clean, 1);
367 }
368
369 static inline void set_store_user_dirty(struct kmem_cache *cachep)
370 {
371 if (is_store_user_clean(cachep))
372 atomic_set(&cachep->store_user_clean, 0);
373 }
374
375 #else
376 static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
377
378 #endif
379
380 /*
381 * Do not go above this order unless 0 objects fit into the slab or
382 * overridden on the command line.
383 */
384 #define SLAB_MAX_ORDER_HI 1
385 #define SLAB_MAX_ORDER_LO 0
386 static int slab_max_order = SLAB_MAX_ORDER_LO;
387 static bool slab_max_order_set __initdata;
388
389 static inline struct kmem_cache *virt_to_cache(const void *obj)
390 {
391 struct page *page = virt_to_head_page(obj);
392 return page->slab_cache;
393 }
394
395 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
396 unsigned int idx)
397 {
398 return page->s_mem + cache->size * idx;
399 }
400
401 /*
402 * We want to avoid an expensive divide : (offset / cache->size)
403 * Using the fact that size is a constant for a particular cache,
404 * we can replace (offset / cache->size) by
405 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
406 */
407 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
408 const struct page *page, void *obj)
409 {
410 u32 offset = (obj - page->s_mem);
411 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
412 }
413
414 #define BOOT_CPUCACHE_ENTRIES 1
415 /* internal cache of cache description objs */
416 static struct kmem_cache kmem_cache_boot = {
417 .batchcount = 1,
418 .limit = BOOT_CPUCACHE_ENTRIES,
419 .shared = 1,
420 .size = sizeof(struct kmem_cache),
421 .name = "kmem_cache",
422 };
423
424 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
425
426 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
427 {
428 return this_cpu_ptr(cachep->cpu_cache);
429 }
430
431 /*
432 * Calculate the number of objects and left-over bytes for a given buffer size.
433 */
434 static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
435 unsigned long flags, size_t *left_over)
436 {
437 unsigned int num;
438 size_t slab_size = PAGE_SIZE << gfporder;
439
440 /*
441 * The slab management structure can be either off the slab or
442 * on it. For the latter case, the memory allocated for a
443 * slab is used for:
444 *
445 * - @buffer_size bytes for each object
446 * - One freelist_idx_t for each object
447 *
448 * We don't need to consider alignment of freelist because
449 * freelist will be at the end of slab page. The objects will be
450 * at the correct alignment.
451 *
452 * If the slab management structure is off the slab, then the
453 * alignment will already be calculated into the size. Because
454 * the slabs are all pages aligned, the objects will be at the
455 * correct alignment when allocated.
456 */
457 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
458 num = slab_size / buffer_size;
459 *left_over = slab_size % buffer_size;
460 } else {
461 num = slab_size / (buffer_size + sizeof(freelist_idx_t));
462 *left_over = slab_size %
463 (buffer_size + sizeof(freelist_idx_t));
464 }
465
466 return num;
467 }
468
469 #if DEBUG
470 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
471
472 static void __slab_error(const char *function, struct kmem_cache *cachep,
473 char *msg)
474 {
475 pr_err("slab error in %s(): cache `%s': %s\n",
476 function, cachep->name, msg);
477 dump_stack();
478 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
479 }
480 #endif
481
482 /*
483 * By default on NUMA we use alien caches to stage the freeing of
484 * objects allocated from other nodes. This causes massive memory
485 * inefficiencies when using fake NUMA setup to split memory into a
486 * large number of small nodes, so it can be disabled on the command
487 * line
488 */
489
490 static int use_alien_caches __read_mostly = 1;
491 static int __init noaliencache_setup(char *s)
492 {
493 use_alien_caches = 0;
494 return 1;
495 }
496 __setup("noaliencache", noaliencache_setup);
497
498 static int __init slab_max_order_setup(char *str)
499 {
500 get_option(&str, &slab_max_order);
501 slab_max_order = slab_max_order < 0 ? 0 :
502 min(slab_max_order, MAX_ORDER - 1);
503 slab_max_order_set = true;
504
505 return 1;
506 }
507 __setup("slab_max_order=", slab_max_order_setup);
508
509 #ifdef CONFIG_NUMA
510 /*
511 * Special reaping functions for NUMA systems called from cache_reap().
512 * These take care of doing round robin flushing of alien caches (containing
513 * objects freed on different nodes from which they were allocated) and the
514 * flushing of remote pcps by calling drain_node_pages.
515 */
516 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
517
518 static void init_reap_node(int cpu)
519 {
520 int node;
521
522 node = next_node(cpu_to_mem(cpu), node_online_map);
523 if (node == MAX_NUMNODES)
524 node = first_node(node_online_map);
525
526 per_cpu(slab_reap_node, cpu) = node;
527 }
528
529 static void next_reap_node(void)
530 {
531 int node = __this_cpu_read(slab_reap_node);
532
533 node = next_node(node, node_online_map);
534 if (unlikely(node >= MAX_NUMNODES))
535 node = first_node(node_online_map);
536 __this_cpu_write(slab_reap_node, node);
537 }
538
539 #else
540 #define init_reap_node(cpu) do { } while (0)
541 #define next_reap_node(void) do { } while (0)
542 #endif
543
544 /*
545 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
546 * via the workqueue/eventd.
547 * Add the CPU number into the expiration time to minimize the possibility of
548 * the CPUs getting into lockstep and contending for the global cache chain
549 * lock.
550 */
551 static void start_cpu_timer(int cpu)
552 {
553 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
554
555 /*
556 * When this gets called from do_initcalls via cpucache_init(),
557 * init_workqueues() has already run, so keventd will be setup
558 * at that time.
559 */
560 if (keventd_up() && reap_work->work.func == NULL) {
561 init_reap_node(cpu);
562 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
563 schedule_delayed_work_on(cpu, reap_work,
564 __round_jiffies_relative(HZ, cpu));
565 }
566 }
567
568 static void init_arraycache(struct array_cache *ac, int limit, int batch)
569 {
570 /*
571 * The array_cache structures contain pointers to free object.
572 * However, when such objects are allocated or transferred to another
573 * cache the pointers are not cleared and they could be counted as
574 * valid references during a kmemleak scan. Therefore, kmemleak must
575 * not scan such objects.
576 */
577 kmemleak_no_scan(ac);
578 if (ac) {
579 ac->avail = 0;
580 ac->limit = limit;
581 ac->batchcount = batch;
582 ac->touched = 0;
583 }
584 }
585
586 static struct array_cache *alloc_arraycache(int node, int entries,
587 int batchcount, gfp_t gfp)
588 {
589 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
590 struct array_cache *ac = NULL;
591
592 ac = kmalloc_node(memsize, gfp, node);
593 init_arraycache(ac, entries, batchcount);
594 return ac;
595 }
596
597 static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
598 struct page *page, void *objp)
599 {
600 struct kmem_cache_node *n;
601 int page_node;
602 LIST_HEAD(list);
603
604 page_node = page_to_nid(page);
605 n = get_node(cachep, page_node);
606
607 spin_lock(&n->list_lock);
608 free_block(cachep, &objp, 1, page_node, &list);
609 spin_unlock(&n->list_lock);
610
611 slabs_destroy(cachep, &list);
612 }
613
614 /*
615 * Transfer objects in one arraycache to another.
616 * Locking must be handled by the caller.
617 *
618 * Return the number of entries transferred.
619 */
620 static int transfer_objects(struct array_cache *to,
621 struct array_cache *from, unsigned int max)
622 {
623 /* Figure out how many entries to transfer */
624 int nr = min3(from->avail, max, to->limit - to->avail);
625
626 if (!nr)
627 return 0;
628
629 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
630 sizeof(void *) *nr);
631
632 from->avail -= nr;
633 to->avail += nr;
634 return nr;
635 }
636
637 #ifndef CONFIG_NUMA
638
639 #define drain_alien_cache(cachep, alien) do { } while (0)
640 #define reap_alien(cachep, n) do { } while (0)
641
642 static inline struct alien_cache **alloc_alien_cache(int node,
643 int limit, gfp_t gfp)
644 {
645 return NULL;
646 }
647
648 static inline void free_alien_cache(struct alien_cache **ac_ptr)
649 {
650 }
651
652 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
653 {
654 return 0;
655 }
656
657 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
658 gfp_t flags)
659 {
660 return NULL;
661 }
662
663 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
664 gfp_t flags, int nodeid)
665 {
666 return NULL;
667 }
668
669 static inline gfp_t gfp_exact_node(gfp_t flags)
670 {
671 return flags & ~__GFP_NOFAIL;
672 }
673
674 #else /* CONFIG_NUMA */
675
676 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
677 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
678
679 static struct alien_cache *__alloc_alien_cache(int node, int entries,
680 int batch, gfp_t gfp)
681 {
682 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
683 struct alien_cache *alc = NULL;
684
685 alc = kmalloc_node(memsize, gfp, node);
686 init_arraycache(&alc->ac, entries, batch);
687 spin_lock_init(&alc->lock);
688 return alc;
689 }
690
691 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
692 {
693 struct alien_cache **alc_ptr;
694 size_t memsize = sizeof(void *) * nr_node_ids;
695 int i;
696
697 if (limit > 1)
698 limit = 12;
699 alc_ptr = kzalloc_node(memsize, gfp, node);
700 if (!alc_ptr)
701 return NULL;
702
703 for_each_node(i) {
704 if (i == node || !node_online(i))
705 continue;
706 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
707 if (!alc_ptr[i]) {
708 for (i--; i >= 0; i--)
709 kfree(alc_ptr[i]);
710 kfree(alc_ptr);
711 return NULL;
712 }
713 }
714 return alc_ptr;
715 }
716
717 static void free_alien_cache(struct alien_cache **alc_ptr)
718 {
719 int i;
720
721 if (!alc_ptr)
722 return;
723 for_each_node(i)
724 kfree(alc_ptr[i]);
725 kfree(alc_ptr);
726 }
727
728 static void __drain_alien_cache(struct kmem_cache *cachep,
729 struct array_cache *ac, int node,
730 struct list_head *list)
731 {
732 struct kmem_cache_node *n = get_node(cachep, node);
733
734 if (ac->avail) {
735 spin_lock(&n->list_lock);
736 /*
737 * Stuff objects into the remote nodes shared array first.
738 * That way we could avoid the overhead of putting the objects
739 * into the free lists and getting them back later.
740 */
741 if (n->shared)
742 transfer_objects(n->shared, ac, ac->limit);
743
744 free_block(cachep, ac->entry, ac->avail, node, list);
745 ac->avail = 0;
746 spin_unlock(&n->list_lock);
747 }
748 }
749
750 /*
751 * Called from cache_reap() to regularly drain alien caches round robin.
752 */
753 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
754 {
755 int node = __this_cpu_read(slab_reap_node);
756
757 if (n->alien) {
758 struct alien_cache *alc = n->alien[node];
759 struct array_cache *ac;
760
761 if (alc) {
762 ac = &alc->ac;
763 if (ac->avail && spin_trylock_irq(&alc->lock)) {
764 LIST_HEAD(list);
765
766 __drain_alien_cache(cachep, ac, node, &list);
767 spin_unlock_irq(&alc->lock);
768 slabs_destroy(cachep, &list);
769 }
770 }
771 }
772 }
773
774 static void drain_alien_cache(struct kmem_cache *cachep,
775 struct alien_cache **alien)
776 {
777 int i = 0;
778 struct alien_cache *alc;
779 struct array_cache *ac;
780 unsigned long flags;
781
782 for_each_online_node(i) {
783 alc = alien[i];
784 if (alc) {
785 LIST_HEAD(list);
786
787 ac = &alc->ac;
788 spin_lock_irqsave(&alc->lock, flags);
789 __drain_alien_cache(cachep, ac, i, &list);
790 spin_unlock_irqrestore(&alc->lock, flags);
791 slabs_destroy(cachep, &list);
792 }
793 }
794 }
795
796 static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
797 int node, int page_node)
798 {
799 struct kmem_cache_node *n;
800 struct alien_cache *alien = NULL;
801 struct array_cache *ac;
802 LIST_HEAD(list);
803
804 n = get_node(cachep, node);
805 STATS_INC_NODEFREES(cachep);
806 if (n->alien && n->alien[page_node]) {
807 alien = n->alien[page_node];
808 ac = &alien->ac;
809 spin_lock(&alien->lock);
810 if (unlikely(ac->avail == ac->limit)) {
811 STATS_INC_ACOVERFLOW(cachep);
812 __drain_alien_cache(cachep, ac, page_node, &list);
813 }
814 ac->entry[ac->avail++] = objp;
815 spin_unlock(&alien->lock);
816 slabs_destroy(cachep, &list);
817 } else {
818 n = get_node(cachep, page_node);
819 spin_lock(&n->list_lock);
820 free_block(cachep, &objp, 1, page_node, &list);
821 spin_unlock(&n->list_lock);
822 slabs_destroy(cachep, &list);
823 }
824 return 1;
825 }
826
827 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
828 {
829 int page_node = page_to_nid(virt_to_page(objp));
830 int node = numa_mem_id();
831 /*
832 * Make sure we are not freeing a object from another node to the array
833 * cache on this cpu.
834 */
835 if (likely(node == page_node))
836 return 0;
837
838 return __cache_free_alien(cachep, objp, node, page_node);
839 }
840
841 /*
842 * Construct gfp mask to allocate from a specific node but do not reclaim or
843 * warn about failures.
844 */
845 static inline gfp_t gfp_exact_node(gfp_t flags)
846 {
847 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
848 }
849 #endif
850
851 static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
852 {
853 struct kmem_cache_node *n;
854
855 /*
856 * Set up the kmem_cache_node for cpu before we can
857 * begin anything. Make sure some other cpu on this
858 * node has not already allocated this
859 */
860 n = get_node(cachep, node);
861 if (n) {
862 spin_lock_irq(&n->list_lock);
863 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
864 cachep->num;
865 spin_unlock_irq(&n->list_lock);
866
867 return 0;
868 }
869
870 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
871 if (!n)
872 return -ENOMEM;
873
874 kmem_cache_node_init(n);
875 n->next_reap = jiffies + REAPTIMEOUT_NODE +
876 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
877
878 n->free_limit =
879 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
880
881 /*
882 * The kmem_cache_nodes don't come and go as CPUs
883 * come and go. slab_mutex is sufficient
884 * protection here.
885 */
886 cachep->node[node] = n;
887
888 return 0;
889 }
890
891 /*
892 * Allocates and initializes node for a node on each slab cache, used for
893 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
894 * will be allocated off-node since memory is not yet online for the new node.
895 * When hotplugging memory or a cpu, existing node are not replaced if
896 * already in use.
897 *
898 * Must hold slab_mutex.
899 */
900 static int init_cache_node_node(int node)
901 {
902 int ret;
903 struct kmem_cache *cachep;
904
905 list_for_each_entry(cachep, &slab_caches, list) {
906 ret = init_cache_node(cachep, node, GFP_KERNEL);
907 if (ret)
908 return ret;
909 }
910
911 return 0;
912 }
913
914 static int setup_kmem_cache_node(struct kmem_cache *cachep,
915 int node, gfp_t gfp, bool force_change)
916 {
917 int ret = -ENOMEM;
918 struct kmem_cache_node *n;
919 struct array_cache *old_shared = NULL;
920 struct array_cache *new_shared = NULL;
921 struct alien_cache **new_alien = NULL;
922 LIST_HEAD(list);
923
924 if (use_alien_caches) {
925 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
926 if (!new_alien)
927 goto fail;
928 }
929
930 if (cachep->shared) {
931 new_shared = alloc_arraycache(node,
932 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
933 if (!new_shared)
934 goto fail;
935 }
936
937 ret = init_cache_node(cachep, node, gfp);
938 if (ret)
939 goto fail;
940
941 n = get_node(cachep, node);
942 spin_lock_irq(&n->list_lock);
943 if (n->shared && force_change) {
944 free_block(cachep, n->shared->entry,
945 n->shared->avail, node, &list);
946 n->shared->avail = 0;
947 }
948
949 if (!n->shared || force_change) {
950 old_shared = n->shared;
951 n->shared = new_shared;
952 new_shared = NULL;
953 }
954
955 if (!n->alien) {
956 n->alien = new_alien;
957 new_alien = NULL;
958 }
959
960 spin_unlock_irq(&n->list_lock);
961 slabs_destroy(cachep, &list);
962
963 fail:
964 kfree(old_shared);
965 kfree(new_shared);
966 free_alien_cache(new_alien);
967
968 return ret;
969 }
970
971 static void cpuup_canceled(long cpu)
972 {
973 struct kmem_cache *cachep;
974 struct kmem_cache_node *n = NULL;
975 int node = cpu_to_mem(cpu);
976 const struct cpumask *mask = cpumask_of_node(node);
977
978 list_for_each_entry(cachep, &slab_caches, list) {
979 struct array_cache *nc;
980 struct array_cache *shared;
981 struct alien_cache **alien;
982 LIST_HEAD(list);
983
984 n = get_node(cachep, node);
985 if (!n)
986 continue;
987
988 spin_lock_irq(&n->list_lock);
989
990 /* Free limit for this kmem_cache_node */
991 n->free_limit -= cachep->batchcount;
992
993 /* cpu is dead; no one can alloc from it. */
994 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
995 if (nc) {
996 free_block(cachep, nc->entry, nc->avail, node, &list);
997 nc->avail = 0;
998 }
999
1000 if (!cpumask_empty(mask)) {
1001 spin_unlock_irq(&n->list_lock);
1002 goto free_slab;
1003 }
1004
1005 shared = n->shared;
1006 if (shared) {
1007 free_block(cachep, shared->entry,
1008 shared->avail, node, &list);
1009 n->shared = NULL;
1010 }
1011
1012 alien = n->alien;
1013 n->alien = NULL;
1014
1015 spin_unlock_irq(&n->list_lock);
1016
1017 kfree(shared);
1018 if (alien) {
1019 drain_alien_cache(cachep, alien);
1020 free_alien_cache(alien);
1021 }
1022
1023 free_slab:
1024 slabs_destroy(cachep, &list);
1025 }
1026 /*
1027 * In the previous loop, all the objects were freed to
1028 * the respective cache's slabs, now we can go ahead and
1029 * shrink each nodelist to its limit.
1030 */
1031 list_for_each_entry(cachep, &slab_caches, list) {
1032 n = get_node(cachep, node);
1033 if (!n)
1034 continue;
1035 drain_freelist(cachep, n, INT_MAX);
1036 }
1037 }
1038
1039 static int cpuup_prepare(long cpu)
1040 {
1041 struct kmem_cache *cachep;
1042 int node = cpu_to_mem(cpu);
1043 int err;
1044
1045 /*
1046 * We need to do this right in the beginning since
1047 * alloc_arraycache's are going to use this list.
1048 * kmalloc_node allows us to add the slab to the right
1049 * kmem_cache_node and not this cpu's kmem_cache_node
1050 */
1051 err = init_cache_node_node(node);
1052 if (err < 0)
1053 goto bad;
1054
1055 /*
1056 * Now we can go ahead with allocating the shared arrays and
1057 * array caches
1058 */
1059 list_for_each_entry(cachep, &slab_caches, list) {
1060 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1061 if (err)
1062 goto bad;
1063 }
1064
1065 return 0;
1066 bad:
1067 cpuup_canceled(cpu);
1068 return -ENOMEM;
1069 }
1070
1071 static int cpuup_callback(struct notifier_block *nfb,
1072 unsigned long action, void *hcpu)
1073 {
1074 long cpu = (long)hcpu;
1075 int err = 0;
1076
1077 switch (action) {
1078 case CPU_UP_PREPARE:
1079 case CPU_UP_PREPARE_FROZEN:
1080 mutex_lock(&slab_mutex);
1081 err = cpuup_prepare(cpu);
1082 mutex_unlock(&slab_mutex);
1083 break;
1084 case CPU_ONLINE:
1085 case CPU_ONLINE_FROZEN:
1086 start_cpu_timer(cpu);
1087 break;
1088 #ifdef CONFIG_HOTPLUG_CPU
1089 case CPU_DOWN_PREPARE:
1090 case CPU_DOWN_PREPARE_FROZEN:
1091 /*
1092 * Shutdown cache reaper. Note that the slab_mutex is
1093 * held so that if cache_reap() is invoked it cannot do
1094 * anything expensive but will only modify reap_work
1095 * and reschedule the timer.
1096 */
1097 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1098 /* Now the cache_reaper is guaranteed to be not running. */
1099 per_cpu(slab_reap_work, cpu).work.func = NULL;
1100 break;
1101 case CPU_DOWN_FAILED:
1102 case CPU_DOWN_FAILED_FROZEN:
1103 start_cpu_timer(cpu);
1104 break;
1105 case CPU_DEAD:
1106 case CPU_DEAD_FROZEN:
1107 /*
1108 * Even if all the cpus of a node are down, we don't free the
1109 * kmem_cache_node of any cache. This to avoid a race between
1110 * cpu_down, and a kmalloc allocation from another cpu for
1111 * memory from the node of the cpu going down. The node
1112 * structure is usually allocated from kmem_cache_create() and
1113 * gets destroyed at kmem_cache_destroy().
1114 */
1115 /* fall through */
1116 #endif
1117 case CPU_UP_CANCELED:
1118 case CPU_UP_CANCELED_FROZEN:
1119 mutex_lock(&slab_mutex);
1120 cpuup_canceled(cpu);
1121 mutex_unlock(&slab_mutex);
1122 break;
1123 }
1124 return notifier_from_errno(err);
1125 }
1126
1127 static struct notifier_block cpucache_notifier = {
1128 &cpuup_callback, NULL, 0
1129 };
1130
1131 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1132 /*
1133 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1134 * Returns -EBUSY if all objects cannot be drained so that the node is not
1135 * removed.
1136 *
1137 * Must hold slab_mutex.
1138 */
1139 static int __meminit drain_cache_node_node(int node)
1140 {
1141 struct kmem_cache *cachep;
1142 int ret = 0;
1143
1144 list_for_each_entry(cachep, &slab_caches, list) {
1145 struct kmem_cache_node *n;
1146
1147 n = get_node(cachep, node);
1148 if (!n)
1149 continue;
1150
1151 drain_freelist(cachep, n, INT_MAX);
1152
1153 if (!list_empty(&n->slabs_full) ||
1154 !list_empty(&n->slabs_partial)) {
1155 ret = -EBUSY;
1156 break;
1157 }
1158 }
1159 return ret;
1160 }
1161
1162 static int __meminit slab_memory_callback(struct notifier_block *self,
1163 unsigned long action, void *arg)
1164 {
1165 struct memory_notify *mnb = arg;
1166 int ret = 0;
1167 int nid;
1168
1169 nid = mnb->status_change_nid;
1170 if (nid < 0)
1171 goto out;
1172
1173 switch (action) {
1174 case MEM_GOING_ONLINE:
1175 mutex_lock(&slab_mutex);
1176 ret = init_cache_node_node(nid);
1177 mutex_unlock(&slab_mutex);
1178 break;
1179 case MEM_GOING_OFFLINE:
1180 mutex_lock(&slab_mutex);
1181 ret = drain_cache_node_node(nid);
1182 mutex_unlock(&slab_mutex);
1183 break;
1184 case MEM_ONLINE:
1185 case MEM_OFFLINE:
1186 case MEM_CANCEL_ONLINE:
1187 case MEM_CANCEL_OFFLINE:
1188 break;
1189 }
1190 out:
1191 return notifier_from_errno(ret);
1192 }
1193 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1194
1195 /*
1196 * swap the static kmem_cache_node with kmalloced memory
1197 */
1198 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1199 int nodeid)
1200 {
1201 struct kmem_cache_node *ptr;
1202
1203 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1204 BUG_ON(!ptr);
1205
1206 memcpy(ptr, list, sizeof(struct kmem_cache_node));
1207 /*
1208 * Do not assume that spinlocks can be initialized via memcpy:
1209 */
1210 spin_lock_init(&ptr->list_lock);
1211
1212 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1213 cachep->node[nodeid] = ptr;
1214 }
1215
1216 /*
1217 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1218 * size of kmem_cache_node.
1219 */
1220 static void __init set_up_node(struct kmem_cache *cachep, int index)
1221 {
1222 int node;
1223
1224 for_each_online_node(node) {
1225 cachep->node[node] = &init_kmem_cache_node[index + node];
1226 cachep->node[node]->next_reap = jiffies +
1227 REAPTIMEOUT_NODE +
1228 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1229 }
1230 }
1231
1232 /*
1233 * Initialisation. Called after the page allocator have been initialised and
1234 * before smp_init().
1235 */
1236 void __init kmem_cache_init(void)
1237 {
1238 int i;
1239
1240 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1241 sizeof(struct rcu_head));
1242 kmem_cache = &kmem_cache_boot;
1243
1244 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1245 use_alien_caches = 0;
1246
1247 for (i = 0; i < NUM_INIT_LISTS; i++)
1248 kmem_cache_node_init(&init_kmem_cache_node[i]);
1249
1250 /*
1251 * Fragmentation resistance on low memory - only use bigger
1252 * page orders on machines with more than 32MB of memory if
1253 * not overridden on the command line.
1254 */
1255 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1256 slab_max_order = SLAB_MAX_ORDER_HI;
1257
1258 /* Bootstrap is tricky, because several objects are allocated
1259 * from caches that do not exist yet:
1260 * 1) initialize the kmem_cache cache: it contains the struct
1261 * kmem_cache structures of all caches, except kmem_cache itself:
1262 * kmem_cache is statically allocated.
1263 * Initially an __init data area is used for the head array and the
1264 * kmem_cache_node structures, it's replaced with a kmalloc allocated
1265 * array at the end of the bootstrap.
1266 * 2) Create the first kmalloc cache.
1267 * The struct kmem_cache for the new cache is allocated normally.
1268 * An __init data area is used for the head array.
1269 * 3) Create the remaining kmalloc caches, with minimally sized
1270 * head arrays.
1271 * 4) Replace the __init data head arrays for kmem_cache and the first
1272 * kmalloc cache with kmalloc allocated arrays.
1273 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1274 * the other cache's with kmalloc allocated memory.
1275 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1276 */
1277
1278 /* 1) create the kmem_cache */
1279
1280 /*
1281 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1282 */
1283 create_boot_cache(kmem_cache, "kmem_cache",
1284 offsetof(struct kmem_cache, node) +
1285 nr_node_ids * sizeof(struct kmem_cache_node *),
1286 SLAB_HWCACHE_ALIGN);
1287 list_add(&kmem_cache->list, &slab_caches);
1288 slab_state = PARTIAL;
1289
1290 /*
1291 * Initialize the caches that provide memory for the kmem_cache_node
1292 * structures first. Without this, further allocations will bug.
1293 */
1294 kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node",
1295 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1296 slab_state = PARTIAL_NODE;
1297 setup_kmalloc_cache_index_table();
1298
1299 slab_early_init = 0;
1300
1301 /* 5) Replace the bootstrap kmem_cache_node */
1302 {
1303 int nid;
1304
1305 for_each_online_node(nid) {
1306 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1307
1308 init_list(kmalloc_caches[INDEX_NODE],
1309 &init_kmem_cache_node[SIZE_NODE + nid], nid);
1310 }
1311 }
1312
1313 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1314 }
1315
1316 void __init kmem_cache_init_late(void)
1317 {
1318 struct kmem_cache *cachep;
1319
1320 slab_state = UP;
1321
1322 /* 6) resize the head arrays to their final sizes */
1323 mutex_lock(&slab_mutex);
1324 list_for_each_entry(cachep, &slab_caches, list)
1325 if (enable_cpucache(cachep, GFP_NOWAIT))
1326 BUG();
1327 mutex_unlock(&slab_mutex);
1328
1329 /* Done! */
1330 slab_state = FULL;
1331
1332 /*
1333 * Register a cpu startup notifier callback that initializes
1334 * cpu_cache_get for all new cpus
1335 */
1336 register_cpu_notifier(&cpucache_notifier);
1337
1338 #ifdef CONFIG_NUMA
1339 /*
1340 * Register a memory hotplug callback that initializes and frees
1341 * node.
1342 */
1343 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1344 #endif
1345
1346 /*
1347 * The reap timers are started later, with a module init call: That part
1348 * of the kernel is not yet operational.
1349 */
1350 }
1351
1352 static int __init cpucache_init(void)
1353 {
1354 int cpu;
1355
1356 /*
1357 * Register the timers that return unneeded pages to the page allocator
1358 */
1359 for_each_online_cpu(cpu)
1360 start_cpu_timer(cpu);
1361
1362 /* Done! */
1363 slab_state = FULL;
1364 return 0;
1365 }
1366 __initcall(cpucache_init);
1367
1368 static noinline void
1369 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1370 {
1371 #if DEBUG
1372 struct kmem_cache_node *n;
1373 struct page *page;
1374 unsigned long flags;
1375 int node;
1376 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1377 DEFAULT_RATELIMIT_BURST);
1378
1379 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1380 return;
1381
1382 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1383 nodeid, gfpflags, &gfpflags);
1384 pr_warn(" cache: %s, object size: %d, order: %d\n",
1385 cachep->name, cachep->size, cachep->gfporder);
1386
1387 for_each_kmem_cache_node(cachep, node, n) {
1388 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1389 unsigned long active_slabs = 0, num_slabs = 0;
1390
1391 spin_lock_irqsave(&n->list_lock, flags);
1392 list_for_each_entry(page, &n->slabs_full, lru) {
1393 active_objs += cachep->num;
1394 active_slabs++;
1395 }
1396 list_for_each_entry(page, &n->slabs_partial, lru) {
1397 active_objs += page->active;
1398 active_slabs++;
1399 }
1400 list_for_each_entry(page, &n->slabs_free, lru)
1401 num_slabs++;
1402
1403 free_objects += n->free_objects;
1404 spin_unlock_irqrestore(&n->list_lock, flags);
1405
1406 num_slabs += active_slabs;
1407 num_objs = num_slabs * cachep->num;
1408 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1409 node, active_slabs, num_slabs, active_objs, num_objs,
1410 free_objects);
1411 }
1412 #endif
1413 }
1414
1415 /*
1416 * Interface to system's page allocator. No need to hold the
1417 * kmem_cache_node ->list_lock.
1418 *
1419 * If we requested dmaable memory, we will get it. Even if we
1420 * did not request dmaable memory, we might get it, but that
1421 * would be relatively rare and ignorable.
1422 */
1423 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1424 int nodeid)
1425 {
1426 struct page *page;
1427 int nr_pages;
1428
1429 flags |= cachep->allocflags;
1430 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1431 flags |= __GFP_RECLAIMABLE;
1432
1433 page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1434 if (!page) {
1435 slab_out_of_memory(cachep, flags, nodeid);
1436 return NULL;
1437 }
1438
1439 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1440 __free_pages(page, cachep->gfporder);
1441 return NULL;
1442 }
1443
1444 nr_pages = (1 << cachep->gfporder);
1445 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1446 add_zone_page_state(page_zone(page),
1447 NR_SLAB_RECLAIMABLE, nr_pages);
1448 else
1449 add_zone_page_state(page_zone(page),
1450 NR_SLAB_UNRECLAIMABLE, nr_pages);
1451
1452 __SetPageSlab(page);
1453 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1454 if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1455 SetPageSlabPfmemalloc(page);
1456
1457 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1458 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1459
1460 if (cachep->ctor)
1461 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1462 else
1463 kmemcheck_mark_unallocated_pages(page, nr_pages);
1464 }
1465
1466 return page;
1467 }
1468
1469 /*
1470 * Interface to system's page release.
1471 */
1472 static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1473 {
1474 int order = cachep->gfporder;
1475 unsigned long nr_freed = (1 << order);
1476
1477 kmemcheck_free_shadow(page, order);
1478
1479 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1480 sub_zone_page_state(page_zone(page),
1481 NR_SLAB_RECLAIMABLE, nr_freed);
1482 else
1483 sub_zone_page_state(page_zone(page),
1484 NR_SLAB_UNRECLAIMABLE, nr_freed);
1485
1486 BUG_ON(!PageSlab(page));
1487 __ClearPageSlabPfmemalloc(page);
1488 __ClearPageSlab(page);
1489 page_mapcount_reset(page);
1490 page->mapping = NULL;
1491
1492 if (current->reclaim_state)
1493 current->reclaim_state->reclaimed_slab += nr_freed;
1494 memcg_uncharge_slab(page, order, cachep);
1495 __free_pages(page, order);
1496 }
1497
1498 static void kmem_rcu_free(struct rcu_head *head)
1499 {
1500 struct kmem_cache *cachep;
1501 struct page *page;
1502
1503 page = container_of(head, struct page, rcu_head);
1504 cachep = page->slab_cache;
1505
1506 kmem_freepages(cachep, page);
1507 }
1508
1509 #if DEBUG
1510 static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1511 {
1512 if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1513 (cachep->size % PAGE_SIZE) == 0)
1514 return true;
1515
1516 return false;
1517 }
1518
1519 #ifdef CONFIG_DEBUG_PAGEALLOC
1520 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1521 unsigned long caller)
1522 {
1523 int size = cachep->object_size;
1524
1525 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1526
1527 if (size < 5 * sizeof(unsigned long))
1528 return;
1529
1530 *addr++ = 0x12345678;
1531 *addr++ = caller;
1532 *addr++ = smp_processor_id();
1533 size -= 3 * sizeof(unsigned long);
1534 {
1535 unsigned long *sptr = &caller;
1536 unsigned long svalue;
1537
1538 while (!kstack_end(sptr)) {
1539 svalue = *sptr++;
1540 if (kernel_text_address(svalue)) {
1541 *addr++ = svalue;
1542 size -= sizeof(unsigned long);
1543 if (size <= sizeof(unsigned long))
1544 break;
1545 }
1546 }
1547
1548 }
1549 *addr++ = 0x87654321;
1550 }
1551
1552 static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1553 int map, unsigned long caller)
1554 {
1555 if (!is_debug_pagealloc_cache(cachep))
1556 return;
1557
1558 if (caller)
1559 store_stackinfo(cachep, objp, caller);
1560
1561 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1562 }
1563
1564 #else
1565 static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1566 int map, unsigned long caller) {}
1567
1568 #endif
1569
1570 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1571 {
1572 int size = cachep->object_size;
1573 addr = &((char *)addr)[obj_offset(cachep)];
1574
1575 memset(addr, val, size);
1576 *(unsigned char *)(addr + size - 1) = POISON_END;
1577 }
1578
1579 static void dump_line(char *data, int offset, int limit)
1580 {
1581 int i;
1582 unsigned char error = 0;
1583 int bad_count = 0;
1584
1585 pr_err("%03x: ", offset);
1586 for (i = 0; i < limit; i++) {
1587 if (data[offset + i] != POISON_FREE) {
1588 error = data[offset + i];
1589 bad_count++;
1590 }
1591 }
1592 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1593 &data[offset], limit, 1);
1594
1595 if (bad_count == 1) {
1596 error ^= POISON_FREE;
1597 if (!(error & (error - 1))) {
1598 pr_err("Single bit error detected. Probably bad RAM.\n");
1599 #ifdef CONFIG_X86
1600 pr_err("Run memtest86+ or a similar memory test tool.\n");
1601 #else
1602 pr_err("Run a memory test tool.\n");
1603 #endif
1604 }
1605 }
1606 }
1607 #endif
1608
1609 #if DEBUG
1610
1611 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1612 {
1613 int i, size;
1614 char *realobj;
1615
1616 if (cachep->flags & SLAB_RED_ZONE) {
1617 pr_err("Redzone: 0x%llx/0x%llx\n",
1618 *dbg_redzone1(cachep, objp),
1619 *dbg_redzone2(cachep, objp));
1620 }
1621
1622 if (cachep->flags & SLAB_STORE_USER) {
1623 pr_err("Last user: [<%p>](%pSR)\n",
1624 *dbg_userword(cachep, objp),
1625 *dbg_userword(cachep, objp));
1626 }
1627 realobj = (char *)objp + obj_offset(cachep);
1628 size = cachep->object_size;
1629 for (i = 0; i < size && lines; i += 16, lines--) {
1630 int limit;
1631 limit = 16;
1632 if (i + limit > size)
1633 limit = size - i;
1634 dump_line(realobj, i, limit);
1635 }
1636 }
1637
1638 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1639 {
1640 char *realobj;
1641 int size, i;
1642 int lines = 0;
1643
1644 if (is_debug_pagealloc_cache(cachep))
1645 return;
1646
1647 realobj = (char *)objp + obj_offset(cachep);
1648 size = cachep->object_size;
1649
1650 for (i = 0; i < size; i++) {
1651 char exp = POISON_FREE;
1652 if (i == size - 1)
1653 exp = POISON_END;
1654 if (realobj[i] != exp) {
1655 int limit;
1656 /* Mismatch ! */
1657 /* Print header */
1658 if (lines == 0) {
1659 pr_err("Slab corruption (%s): %s start=%p, len=%d\n",
1660 print_tainted(), cachep->name,
1661 realobj, size);
1662 print_objinfo(cachep, objp, 0);
1663 }
1664 /* Hexdump the affected line */
1665 i = (i / 16) * 16;
1666 limit = 16;
1667 if (i + limit > size)
1668 limit = size - i;
1669 dump_line(realobj, i, limit);
1670 i += 16;
1671 lines++;
1672 /* Limit to 5 lines */
1673 if (lines > 5)
1674 break;
1675 }
1676 }
1677 if (lines != 0) {
1678 /* Print some data about the neighboring objects, if they
1679 * exist:
1680 */
1681 struct page *page = virt_to_head_page(objp);
1682 unsigned int objnr;
1683
1684 objnr = obj_to_index(cachep, page, objp);
1685 if (objnr) {
1686 objp = index_to_obj(cachep, page, objnr - 1);
1687 realobj = (char *)objp + obj_offset(cachep);
1688 pr_err("Prev obj: start=%p, len=%d\n", realobj, size);
1689 print_objinfo(cachep, objp, 2);
1690 }
1691 if (objnr + 1 < cachep->num) {
1692 objp = index_to_obj(cachep, page, objnr + 1);
1693 realobj = (char *)objp + obj_offset(cachep);
1694 pr_err("Next obj: start=%p, len=%d\n", realobj, size);
1695 print_objinfo(cachep, objp, 2);
1696 }
1697 }
1698 }
1699 #endif
1700
1701 #if DEBUG
1702 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1703 struct page *page)
1704 {
1705 int i;
1706
1707 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1708 poison_obj(cachep, page->freelist - obj_offset(cachep),
1709 POISON_FREE);
1710 }
1711
1712 for (i = 0; i < cachep->num; i++) {
1713 void *objp = index_to_obj(cachep, page, i);
1714
1715 if (cachep->flags & SLAB_POISON) {
1716 check_poison_obj(cachep, objp);
1717 slab_kernel_map(cachep, objp, 1, 0);
1718 }
1719 if (cachep->flags & SLAB_RED_ZONE) {
1720 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1721 slab_error(cachep, "start of a freed object was overwritten");
1722 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1723 slab_error(cachep, "end of a freed object was overwritten");
1724 }
1725 }
1726 }
1727 #else
1728 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1729 struct page *page)
1730 {
1731 }
1732 #endif
1733
1734 /**
1735 * slab_destroy - destroy and release all objects in a slab
1736 * @cachep: cache pointer being destroyed
1737 * @page: page pointer being destroyed
1738 *
1739 * Destroy all the objs in a slab page, and release the mem back to the system.
1740 * Before calling the slab page must have been unlinked from the cache. The
1741 * kmem_cache_node ->list_lock is not held/needed.
1742 */
1743 static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1744 {
1745 void *freelist;
1746
1747 freelist = page->freelist;
1748 slab_destroy_debugcheck(cachep, page);
1749 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
1750 call_rcu(&page->rcu_head, kmem_rcu_free);
1751 else
1752 kmem_freepages(cachep, page);
1753
1754 /*
1755 * From now on, we don't use freelist
1756 * although actual page can be freed in rcu context
1757 */
1758 if (OFF_SLAB(cachep))
1759 kmem_cache_free(cachep->freelist_cache, freelist);
1760 }
1761
1762 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1763 {
1764 struct page *page, *n;
1765
1766 list_for_each_entry_safe(page, n, list, lru) {
1767 list_del(&page->lru);
1768 slab_destroy(cachep, page);
1769 }
1770 }
1771
1772 /**
1773 * calculate_slab_order - calculate size (page order) of slabs
1774 * @cachep: pointer to the cache that is being created
1775 * @size: size of objects to be created in this cache.
1776 * @flags: slab allocation flags
1777 *
1778 * Also calculates the number of objects per slab.
1779 *
1780 * This could be made much more intelligent. For now, try to avoid using
1781 * high order pages for slabs. When the gfp() functions are more friendly
1782 * towards high-order requests, this should be changed.
1783 */
1784 static size_t calculate_slab_order(struct kmem_cache *cachep,
1785 size_t size, unsigned long flags)
1786 {
1787 size_t left_over = 0;
1788 int gfporder;
1789
1790 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1791 unsigned int num;
1792 size_t remainder;
1793
1794 num = cache_estimate(gfporder, size, flags, &remainder);
1795 if (!num)
1796 continue;
1797
1798 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1799 if (num > SLAB_OBJ_MAX_NUM)
1800 break;
1801
1802 if (flags & CFLGS_OFF_SLAB) {
1803 struct kmem_cache *freelist_cache;
1804 size_t freelist_size;
1805
1806 freelist_size = num * sizeof(freelist_idx_t);
1807 freelist_cache = kmalloc_slab(freelist_size, 0u);
1808 if (!freelist_cache)
1809 continue;
1810
1811 /*
1812 * Needed to avoid possible looping condition
1813 * in cache_grow()
1814 */
1815 if (OFF_SLAB(freelist_cache))
1816 continue;
1817
1818 /* check if off slab has enough benefit */
1819 if (freelist_cache->size > cachep->size / 2)
1820 continue;
1821 }
1822
1823 /* Found something acceptable - save it away */
1824 cachep->num = num;
1825 cachep->gfporder = gfporder;
1826 left_over = remainder;
1827
1828 /*
1829 * A VFS-reclaimable slab tends to have most allocations
1830 * as GFP_NOFS and we really don't want to have to be allocating
1831 * higher-order pages when we are unable to shrink dcache.
1832 */
1833 if (flags & SLAB_RECLAIM_ACCOUNT)
1834 break;
1835
1836 /*
1837 * Large number of objects is good, but very large slabs are
1838 * currently bad for the gfp()s.
1839 */
1840 if (gfporder >= slab_max_order)
1841 break;
1842
1843 /*
1844 * Acceptable internal fragmentation?
1845 */
1846 if (left_over * 8 <= (PAGE_SIZE << gfporder))
1847 break;
1848 }
1849 return left_over;
1850 }
1851
1852 static struct array_cache __percpu *alloc_kmem_cache_cpus(
1853 struct kmem_cache *cachep, int entries, int batchcount)
1854 {
1855 int cpu;
1856 size_t size;
1857 struct array_cache __percpu *cpu_cache;
1858
1859 size = sizeof(void *) * entries + sizeof(struct array_cache);
1860 cpu_cache = __alloc_percpu(size, sizeof(void *));
1861
1862 if (!cpu_cache)
1863 return NULL;
1864
1865 for_each_possible_cpu(cpu) {
1866 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1867 entries, batchcount);
1868 }
1869
1870 return cpu_cache;
1871 }
1872
1873 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1874 {
1875 if (slab_state >= FULL)
1876 return enable_cpucache(cachep, gfp);
1877
1878 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1879 if (!cachep->cpu_cache)
1880 return 1;
1881
1882 if (slab_state == DOWN) {
1883 /* Creation of first cache (kmem_cache). */
1884 set_up_node(kmem_cache, CACHE_CACHE);
1885 } else if (slab_state == PARTIAL) {
1886 /* For kmem_cache_node */
1887 set_up_node(cachep, SIZE_NODE);
1888 } else {
1889 int node;
1890
1891 for_each_online_node(node) {
1892 cachep->node[node] = kmalloc_node(
1893 sizeof(struct kmem_cache_node), gfp, node);
1894 BUG_ON(!cachep->node[node]);
1895 kmem_cache_node_init(cachep->node[node]);
1896 }
1897 }
1898
1899 cachep->node[numa_mem_id()]->next_reap =
1900 jiffies + REAPTIMEOUT_NODE +
1901 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1902
1903 cpu_cache_get(cachep)->avail = 0;
1904 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1905 cpu_cache_get(cachep)->batchcount = 1;
1906 cpu_cache_get(cachep)->touched = 0;
1907 cachep->batchcount = 1;
1908 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1909 return 0;
1910 }
1911
1912 unsigned long kmem_cache_flags(unsigned long object_size,
1913 unsigned long flags, const char *name,
1914 void (*ctor)(void *))
1915 {
1916 return flags;
1917 }
1918
1919 struct kmem_cache *
1920 __kmem_cache_alias(const char *name, size_t size, size_t align,
1921 unsigned long flags, void (*ctor)(void *))
1922 {
1923 struct kmem_cache *cachep;
1924
1925 cachep = find_mergeable(size, align, flags, name, ctor);
1926 if (cachep) {
1927 cachep->refcount++;
1928
1929 /*
1930 * Adjust the object sizes so that we clear
1931 * the complete object on kzalloc.
1932 */
1933 cachep->object_size = max_t(int, cachep->object_size, size);
1934 }
1935 return cachep;
1936 }
1937
1938 static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1939 size_t size, unsigned long flags)
1940 {
1941 size_t left;
1942
1943 cachep->num = 0;
1944
1945 if (cachep->ctor || flags & SLAB_DESTROY_BY_RCU)
1946 return false;
1947
1948 left = calculate_slab_order(cachep, size,
1949 flags | CFLGS_OBJFREELIST_SLAB);
1950 if (!cachep->num)
1951 return false;
1952
1953 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1954 return false;
1955
1956 cachep->colour = left / cachep->colour_off;
1957
1958 return true;
1959 }
1960
1961 static bool set_off_slab_cache(struct kmem_cache *cachep,
1962 size_t size, unsigned long flags)
1963 {
1964 size_t left;
1965
1966 cachep->num = 0;
1967
1968 /*
1969 * Always use on-slab management when SLAB_NOLEAKTRACE
1970 * to avoid recursive calls into kmemleak.
1971 */
1972 if (flags & SLAB_NOLEAKTRACE)
1973 return false;
1974
1975 /*
1976 * Size is large, assume best to place the slab management obj
1977 * off-slab (should allow better packing of objs).
1978 */
1979 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1980 if (!cachep->num)
1981 return false;
1982
1983 /*
1984 * If the slab has been placed off-slab, and we have enough space then
1985 * move it on-slab. This is at the expense of any extra colouring.
1986 */
1987 if (left >= cachep->num * sizeof(freelist_idx_t))
1988 return false;
1989
1990 cachep->colour = left / cachep->colour_off;
1991
1992 return true;
1993 }
1994
1995 static bool set_on_slab_cache(struct kmem_cache *cachep,
1996 size_t size, unsigned long flags)
1997 {
1998 size_t left;
1999
2000 cachep->num = 0;
2001
2002 left = calculate_slab_order(cachep, size, flags);
2003 if (!cachep->num)
2004 return false;
2005
2006 cachep->colour = left / cachep->colour_off;
2007
2008 return true;
2009 }
2010
2011 /**
2012 * __kmem_cache_create - Create a cache.
2013 * @cachep: cache management descriptor
2014 * @flags: SLAB flags
2015 *
2016 * Returns a ptr to the cache on success, NULL on failure.
2017 * Cannot be called within a int, but can be interrupted.
2018 * The @ctor is run when new pages are allocated by the cache.
2019 *
2020 * The flags are
2021 *
2022 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2023 * to catch references to uninitialised memory.
2024 *
2025 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2026 * for buffer overruns.
2027 *
2028 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2029 * cacheline. This can be beneficial if you're counting cycles as closely
2030 * as davem.
2031 */
2032 int
2033 __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2034 {
2035 size_t ralign = BYTES_PER_WORD;
2036 gfp_t gfp;
2037 int err;
2038 size_t size = cachep->size;
2039
2040 #if DEBUG
2041 #if FORCED_DEBUG
2042 /*
2043 * Enable redzoning and last user accounting, except for caches with
2044 * large objects, if the increased size would increase the object size
2045 * above the next power of two: caches with object sizes just above a
2046 * power of two have a significant amount of internal fragmentation.
2047 */
2048 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2049 2 * sizeof(unsigned long long)))
2050 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2051 if (!(flags & SLAB_DESTROY_BY_RCU))
2052 flags |= SLAB_POISON;
2053 #endif
2054 #endif
2055
2056 /*
2057 * Check that size is in terms of words. This is needed to avoid
2058 * unaligned accesses for some archs when redzoning is used, and makes
2059 * sure any on-slab bufctl's are also correctly aligned.
2060 */
2061 if (size & (BYTES_PER_WORD - 1)) {
2062 size += (BYTES_PER_WORD - 1);
2063 size &= ~(BYTES_PER_WORD - 1);
2064 }
2065
2066 if (flags & SLAB_RED_ZONE) {
2067 ralign = REDZONE_ALIGN;
2068 /* If redzoning, ensure that the second redzone is suitably
2069 * aligned, by adjusting the object size accordingly. */
2070 size += REDZONE_ALIGN - 1;
2071 size &= ~(REDZONE_ALIGN - 1);
2072 }
2073
2074 /* 3) caller mandated alignment */
2075 if (ralign < cachep->align) {
2076 ralign = cachep->align;
2077 }
2078 /* disable debug if necessary */
2079 if (ralign > __alignof__(unsigned long long))
2080 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2081 /*
2082 * 4) Store it.
2083 */
2084 cachep->align = ralign;
2085 cachep->colour_off = cache_line_size();
2086 /* Offset must be a multiple of the alignment. */
2087 if (cachep->colour_off < cachep->align)
2088 cachep->colour_off = cachep->align;
2089
2090 if (slab_is_available())
2091 gfp = GFP_KERNEL;
2092 else
2093 gfp = GFP_NOWAIT;
2094
2095 #if DEBUG
2096
2097 /*
2098 * Both debugging options require word-alignment which is calculated
2099 * into align above.
2100 */
2101 if (flags & SLAB_RED_ZONE) {
2102 /* add space for red zone words */
2103 cachep->obj_offset += sizeof(unsigned long long);
2104 size += 2 * sizeof(unsigned long long);
2105 }
2106 if (flags & SLAB_STORE_USER) {
2107 /* user store requires one word storage behind the end of
2108 * the real object. But if the second red zone needs to be
2109 * aligned to 64 bits, we must allow that much space.
2110 */
2111 if (flags & SLAB_RED_ZONE)
2112 size += REDZONE_ALIGN;
2113 else
2114 size += BYTES_PER_WORD;
2115 }
2116 #endif
2117
2118 kasan_cache_create(cachep, &size, &flags);
2119
2120 size = ALIGN(size, cachep->align);
2121 /*
2122 * We should restrict the number of objects in a slab to implement
2123 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2124 */
2125 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2126 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2127
2128 #if DEBUG
2129 /*
2130 * To activate debug pagealloc, off-slab management is necessary
2131 * requirement. In early phase of initialization, small sized slab
2132 * doesn't get initialized so it would not be possible. So, we need
2133 * to check size >= 256. It guarantees that all necessary small
2134 * sized slab is initialized in current slab initialization sequence.
2135 */
2136 if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2137 size >= 256 && cachep->object_size > cache_line_size()) {
2138 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2139 size_t tmp_size = ALIGN(size, PAGE_SIZE);
2140
2141 if (set_off_slab_cache(cachep, tmp_size, flags)) {
2142 flags |= CFLGS_OFF_SLAB;
2143 cachep->obj_offset += tmp_size - size;
2144 size = tmp_size;
2145 goto done;
2146 }
2147 }
2148 }
2149 #endif
2150
2151 if (set_objfreelist_slab_cache(cachep, size, flags)) {
2152 flags |= CFLGS_OBJFREELIST_SLAB;
2153 goto done;
2154 }
2155
2156 if (set_off_slab_cache(cachep, size, flags)) {
2157 flags |= CFLGS_OFF_SLAB;
2158 goto done;
2159 }
2160
2161 if (set_on_slab_cache(cachep, size, flags))
2162 goto done;
2163
2164 return -E2BIG;
2165
2166 done:
2167 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
2168 cachep->flags = flags;
2169 cachep->allocflags = __GFP_COMP;
2170 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2171 cachep->allocflags |= GFP_DMA;
2172 cachep->size = size;
2173 cachep->reciprocal_buffer_size = reciprocal_value(size);
2174
2175 #if DEBUG
2176 /*
2177 * If we're going to use the generic kernel_map_pages()
2178 * poisoning, then it's going to smash the contents of
2179 * the redzone and userword anyhow, so switch them off.
2180 */
2181 if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2182 (cachep->flags & SLAB_POISON) &&
2183 is_debug_pagealloc_cache(cachep))
2184 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2185 #endif
2186
2187 if (OFF_SLAB(cachep)) {
2188 cachep->freelist_cache =
2189 kmalloc_slab(cachep->freelist_size, 0u);
2190 }
2191
2192 err = setup_cpu_cache(cachep, gfp);
2193 if (err) {
2194 __kmem_cache_release(cachep);
2195 return err;
2196 }
2197
2198 return 0;
2199 }
2200
2201 #if DEBUG
2202 static void check_irq_off(void)
2203 {
2204 BUG_ON(!irqs_disabled());
2205 }
2206
2207 static void check_irq_on(void)
2208 {
2209 BUG_ON(irqs_disabled());
2210 }
2211
2212 static void check_mutex_acquired(void)
2213 {
2214 BUG_ON(!mutex_is_locked(&slab_mutex));
2215 }
2216
2217 static void check_spinlock_acquired(struct kmem_cache *cachep)
2218 {
2219 #ifdef CONFIG_SMP
2220 check_irq_off();
2221 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2222 #endif
2223 }
2224
2225 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2226 {
2227 #ifdef CONFIG_SMP
2228 check_irq_off();
2229 assert_spin_locked(&get_node(cachep, node)->list_lock);
2230 #endif
2231 }
2232
2233 #else
2234 #define check_irq_off() do { } while(0)
2235 #define check_irq_on() do { } while(0)
2236 #define check_mutex_acquired() do { } while(0)
2237 #define check_spinlock_acquired(x) do { } while(0)
2238 #define check_spinlock_acquired_node(x, y) do { } while(0)
2239 #endif
2240
2241 static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2242 int node, bool free_all, struct list_head *list)
2243 {
2244 int tofree;
2245
2246 if (!ac || !ac->avail)
2247 return;
2248
2249 tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2250 if (tofree > ac->avail)
2251 tofree = (ac->avail + 1) / 2;
2252
2253 free_block(cachep, ac->entry, tofree, node, list);
2254 ac->avail -= tofree;
2255 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2256 }
2257
2258 static void do_drain(void *arg)
2259 {
2260 struct kmem_cache *cachep = arg;
2261 struct array_cache *ac;
2262 int node = numa_mem_id();
2263 struct kmem_cache_node *n;
2264 LIST_HEAD(list);
2265
2266 check_irq_off();
2267 ac = cpu_cache_get(cachep);
2268 n = get_node(cachep, node);
2269 spin_lock(&n->list_lock);
2270 free_block(cachep, ac->entry, ac->avail, node, &list);
2271 spin_unlock(&n->list_lock);
2272 slabs_destroy(cachep, &list);
2273 ac->avail = 0;
2274 }
2275
2276 static void drain_cpu_caches(struct kmem_cache *cachep)
2277 {
2278 struct kmem_cache_node *n;
2279 int node;
2280 LIST_HEAD(list);
2281
2282 on_each_cpu(do_drain, cachep, 1);
2283 check_irq_on();
2284 for_each_kmem_cache_node(cachep, node, n)
2285 if (n->alien)
2286 drain_alien_cache(cachep, n->alien);
2287
2288 for_each_kmem_cache_node(cachep, node, n) {
2289 spin_lock_irq(&n->list_lock);
2290 drain_array_locked(cachep, n->shared, node, true, &list);
2291 spin_unlock_irq(&n->list_lock);
2292
2293 slabs_destroy(cachep, &list);
2294 }
2295 }
2296
2297 /*
2298 * Remove slabs from the list of free slabs.
2299 * Specify the number of slabs to drain in tofree.
2300 *
2301 * Returns the actual number of slabs released.
2302 */
2303 static int drain_freelist(struct kmem_cache *cache,
2304 struct kmem_cache_node *n, int tofree)
2305 {
2306 struct list_head *p;
2307 int nr_freed;
2308 struct page *page;
2309
2310 nr_freed = 0;
2311 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2312
2313 spin_lock_irq(&n->list_lock);
2314 p = n->slabs_free.prev;
2315 if (p == &n->slabs_free) {
2316 spin_unlock_irq(&n->list_lock);
2317 goto out;
2318 }
2319
2320 page = list_entry(p, struct page, lru);
2321 list_del(&page->lru);
2322 /*
2323 * Safe to drop the lock. The slab is no longer linked
2324 * to the cache.
2325 */
2326 n->free_objects -= cache->num;
2327 spin_unlock_irq(&n->list_lock);
2328 slab_destroy(cache, page);
2329 nr_freed++;
2330 }
2331 out:
2332 return nr_freed;
2333 }
2334
2335 int __kmem_cache_shrink(struct kmem_cache *cachep, bool deactivate)
2336 {
2337 int ret = 0;
2338 int node;
2339 struct kmem_cache_node *n;
2340
2341 drain_cpu_caches(cachep);
2342
2343 check_irq_on();
2344 for_each_kmem_cache_node(cachep, node, n) {
2345 drain_freelist(cachep, n, INT_MAX);
2346
2347 ret += !list_empty(&n->slabs_full) ||
2348 !list_empty(&n->slabs_partial);
2349 }
2350 return (ret ? 1 : 0);
2351 }
2352
2353 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2354 {
2355 return __kmem_cache_shrink(cachep, false);
2356 }
2357
2358 void __kmem_cache_release(struct kmem_cache *cachep)
2359 {
2360 int i;
2361 struct kmem_cache_node *n;
2362
2363 free_percpu(cachep->cpu_cache);
2364
2365 /* NUMA: free the node structures */
2366 for_each_kmem_cache_node(cachep, i, n) {
2367 kfree(n->shared);
2368 free_alien_cache(n->alien);
2369 kfree(n);
2370 cachep->node[i] = NULL;
2371 }
2372 }
2373
2374 /*
2375 * Get the memory for a slab management obj.
2376 *
2377 * For a slab cache when the slab descriptor is off-slab, the
2378 * slab descriptor can't come from the same cache which is being created,
2379 * Because if it is the case, that means we defer the creation of
2380 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2381 * And we eventually call down to __kmem_cache_create(), which
2382 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2383 * This is a "chicken-and-egg" problem.
2384 *
2385 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2386 * which are all initialized during kmem_cache_init().
2387 */
2388 static void *alloc_slabmgmt(struct kmem_cache *cachep,
2389 struct page *page, int colour_off,
2390 gfp_t local_flags, int nodeid)
2391 {
2392 void *freelist;
2393 void *addr = page_address(page);
2394
2395 page->s_mem = addr + colour_off;
2396 page->active = 0;
2397
2398 if (OBJFREELIST_SLAB(cachep))
2399 freelist = NULL;
2400 else if (OFF_SLAB(cachep)) {
2401 /* Slab management obj is off-slab. */
2402 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2403 local_flags, nodeid);
2404 if (!freelist)
2405 return NULL;
2406 } else {
2407 /* We will use last bytes at the slab for freelist */
2408 freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2409 cachep->freelist_size;
2410 }
2411
2412 return freelist;
2413 }
2414
2415 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2416 {
2417 return ((freelist_idx_t *)page->freelist)[idx];
2418 }
2419
2420 static inline void set_free_obj(struct page *page,
2421 unsigned int idx, freelist_idx_t val)
2422 {
2423 ((freelist_idx_t *)(page->freelist))[idx] = val;
2424 }
2425
2426 static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
2427 {
2428 #if DEBUG
2429 int i;
2430
2431 for (i = 0; i < cachep->num; i++) {
2432 void *objp = index_to_obj(cachep, page, i);
2433
2434 if (cachep->flags & SLAB_STORE_USER)
2435 *dbg_userword(cachep, objp) = NULL;
2436
2437 if (cachep->flags & SLAB_RED_ZONE) {
2438 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2439 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2440 }
2441 /*
2442 * Constructors are not allowed to allocate memory from the same
2443 * cache which they are a constructor for. Otherwise, deadlock.
2444 * They must also be threaded.
2445 */
2446 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2447 kasan_unpoison_object_data(cachep,
2448 objp + obj_offset(cachep));
2449 cachep->ctor(objp + obj_offset(cachep));
2450 kasan_poison_object_data(
2451 cachep, objp + obj_offset(cachep));
2452 }
2453
2454 if (cachep->flags & SLAB_RED_ZONE) {
2455 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2456 slab_error(cachep, "constructor overwrote the end of an object");
2457 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2458 slab_error(cachep, "constructor overwrote the start of an object");
2459 }
2460 /* need to poison the objs? */
2461 if (cachep->flags & SLAB_POISON) {
2462 poison_obj(cachep, objp, POISON_FREE);
2463 slab_kernel_map(cachep, objp, 0, 0);
2464 }
2465 }
2466 #endif
2467 }
2468
2469 static void cache_init_objs(struct kmem_cache *cachep,
2470 struct page *page)
2471 {
2472 int i;
2473 void *objp;
2474
2475 cache_init_objs_debug(cachep, page);
2476
2477 if (OBJFREELIST_SLAB(cachep)) {
2478 page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2479 obj_offset(cachep);
2480 }
2481
2482 for (i = 0; i < cachep->num; i++) {
2483 /* constructor could break poison info */
2484 if (DEBUG == 0 && cachep->ctor) {
2485 objp = index_to_obj(cachep, page, i);
2486 kasan_unpoison_object_data(cachep, objp);
2487 cachep->ctor(objp);
2488 kasan_poison_object_data(cachep, objp);
2489 }
2490
2491 set_free_obj(page, i, i);
2492 }
2493 }
2494
2495 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2496 {
2497 if (CONFIG_ZONE_DMA_FLAG) {
2498 if (flags & GFP_DMA)
2499 BUG_ON(!(cachep->allocflags & GFP_DMA));
2500 else
2501 BUG_ON(cachep->allocflags & GFP_DMA);
2502 }
2503 }
2504
2505 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2506 {
2507 void *objp;
2508
2509 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2510 page->active++;
2511
2512 #if DEBUG
2513 if (cachep->flags & SLAB_STORE_USER)
2514 set_store_user_dirty(cachep);
2515 #endif
2516
2517 return objp;
2518 }
2519
2520 static void slab_put_obj(struct kmem_cache *cachep,
2521 struct page *page, void *objp)
2522 {
2523 unsigned int objnr = obj_to_index(cachep, page, objp);
2524 #if DEBUG
2525 unsigned int i;
2526
2527 /* Verify double free bug */
2528 for (i = page->active; i < cachep->num; i++) {
2529 if (get_free_obj(page, i) == objnr) {
2530 pr_err("slab: double free detected in cache '%s', objp %p\n",
2531 cachep->name, objp);
2532 BUG();
2533 }
2534 }
2535 #endif
2536 page->active--;
2537 if (!page->freelist)
2538 page->freelist = objp + obj_offset(cachep);
2539
2540 set_free_obj(page, page->active, objnr);
2541 }
2542
2543 /*
2544 * Map pages beginning at addr to the given cache and slab. This is required
2545 * for the slab allocator to be able to lookup the cache and slab of a
2546 * virtual address for kfree, ksize, and slab debugging.
2547 */
2548 static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2549 void *freelist)
2550 {
2551 page->slab_cache = cache;
2552 page->freelist = freelist;
2553 }
2554
2555 /*
2556 * Grow (by 1) the number of slabs within a cache. This is called by
2557 * kmem_cache_alloc() when there are no active objs left in a cache.
2558 */
2559 static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
2560 {
2561 void *freelist;
2562 size_t offset;
2563 gfp_t local_flags;
2564 int page_node;
2565 struct kmem_cache_node *n;
2566 struct page *page;
2567
2568 /*
2569 * Be lazy and only check for valid flags here, keeping it out of the
2570 * critical path in kmem_cache_alloc().
2571 */
2572 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2573 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
2574 BUG();
2575 }
2576 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2577
2578 check_irq_off();
2579 if (gfpflags_allow_blocking(local_flags))
2580 local_irq_enable();
2581
2582 /*
2583 * The test for missing atomic flag is performed here, rather than
2584 * the more obvious place, simply to reduce the critical path length
2585 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2586 * will eventually be caught here (where it matters).
2587 */
2588 kmem_flagcheck(cachep, flags);
2589
2590 /*
2591 * Get mem for the objs. Attempt to allocate a physical page from
2592 * 'nodeid'.
2593 */
2594 page = kmem_getpages(cachep, local_flags, nodeid);
2595 if (!page)
2596 goto failed;
2597
2598 page_node = page_to_nid(page);
2599 n = get_node(cachep, page_node);
2600
2601 /* Get colour for the slab, and cal the next value. */
2602 n->colour_next++;
2603 if (n->colour_next >= cachep->colour)
2604 n->colour_next = 0;
2605
2606 offset = n->colour_next;
2607 if (offset >= cachep->colour)
2608 offset = 0;
2609
2610 offset *= cachep->colour_off;
2611
2612 /* Get slab management. */
2613 freelist = alloc_slabmgmt(cachep, page, offset,
2614 local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2615 if (OFF_SLAB(cachep) && !freelist)
2616 goto opps1;
2617
2618 slab_map_pages(cachep, page, freelist);
2619
2620 kasan_poison_slab(page);
2621 cache_init_objs(cachep, page);
2622
2623 if (gfpflags_allow_blocking(local_flags))
2624 local_irq_disable();
2625 check_irq_off();
2626 spin_lock(&n->list_lock);
2627
2628 /* Make slab active. */
2629 list_add_tail(&page->lru, &(n->slabs_free));
2630 STATS_INC_GROWN(cachep);
2631 n->free_objects += cachep->num;
2632 spin_unlock(&n->list_lock);
2633 return page_node;
2634 opps1:
2635 kmem_freepages(cachep, page);
2636 failed:
2637 if (gfpflags_allow_blocking(local_flags))
2638 local_irq_disable();
2639 return -1;
2640 }
2641
2642 #if DEBUG
2643
2644 /*
2645 * Perform extra freeing checks:
2646 * - detect bad pointers.
2647 * - POISON/RED_ZONE checking
2648 */
2649 static void kfree_debugcheck(const void *objp)
2650 {
2651 if (!virt_addr_valid(objp)) {
2652 pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2653 (unsigned long)objp);
2654 BUG();
2655 }
2656 }
2657
2658 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2659 {
2660 unsigned long long redzone1, redzone2;
2661
2662 redzone1 = *dbg_redzone1(cache, obj);
2663 redzone2 = *dbg_redzone2(cache, obj);
2664
2665 /*
2666 * Redzone is ok.
2667 */
2668 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2669 return;
2670
2671 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2672 slab_error(cache, "double free detected");
2673 else
2674 slab_error(cache, "memory outside object was overwritten");
2675
2676 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2677 obj, redzone1, redzone2);
2678 }
2679
2680 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2681 unsigned long caller)
2682 {
2683 unsigned int objnr;
2684 struct page *page;
2685
2686 BUG_ON(virt_to_cache(objp) != cachep);
2687
2688 objp -= obj_offset(cachep);
2689 kfree_debugcheck(objp);
2690 page = virt_to_head_page(objp);
2691
2692 if (cachep->flags & SLAB_RED_ZONE) {
2693 verify_redzone_free(cachep, objp);
2694 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2695 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2696 }
2697 if (cachep->flags & SLAB_STORE_USER) {
2698 set_store_user_dirty(cachep);
2699 *dbg_userword(cachep, objp) = (void *)caller;
2700 }
2701
2702 objnr = obj_to_index(cachep, page, objp);
2703
2704 BUG_ON(objnr >= cachep->num);
2705 BUG_ON(objp != index_to_obj(cachep, page, objnr));
2706
2707 if (cachep->flags & SLAB_POISON) {
2708 poison_obj(cachep, objp, POISON_FREE);
2709 slab_kernel_map(cachep, objp, 0, caller);
2710 }
2711 return objp;
2712 }
2713
2714 #else
2715 #define kfree_debugcheck(x) do { } while(0)
2716 #define cache_free_debugcheck(x,objp,z) (objp)
2717 #endif
2718
2719 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2720 void **list)
2721 {
2722 #if DEBUG
2723 void *next = *list;
2724 void *objp;
2725
2726 while (next) {
2727 objp = next - obj_offset(cachep);
2728 next = *(void **)next;
2729 poison_obj(cachep, objp, POISON_FREE);
2730 }
2731 #endif
2732 }
2733
2734 static inline void fixup_slab_list(struct kmem_cache *cachep,
2735 struct kmem_cache_node *n, struct page *page,
2736 void **list)
2737 {
2738 /* move slabp to correct slabp list: */
2739 list_del(&page->lru);
2740 if (page->active == cachep->num) {
2741 list_add(&page->lru, &n->slabs_full);
2742 if (OBJFREELIST_SLAB(cachep)) {
2743 #if DEBUG
2744 /* Poisoning will be done without holding the lock */
2745 if (cachep->flags & SLAB_POISON) {
2746 void **objp = page->freelist;
2747
2748 *objp = *list;
2749 *list = objp;
2750 }
2751 #endif
2752 page->freelist = NULL;
2753 }
2754 } else
2755 list_add(&page->lru, &n->slabs_partial);
2756 }
2757
2758 /* Try to find non-pfmemalloc slab if needed */
2759 static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2760 struct page *page, bool pfmemalloc)
2761 {
2762 if (!page)
2763 return NULL;
2764
2765 if (pfmemalloc)
2766 return page;
2767
2768 if (!PageSlabPfmemalloc(page))
2769 return page;
2770
2771 /* No need to keep pfmemalloc slab if we have enough free objects */
2772 if (n->free_objects > n->free_limit) {
2773 ClearPageSlabPfmemalloc(page);
2774 return page;
2775 }
2776
2777 /* Move pfmemalloc slab to the end of list to speed up next search */
2778 list_del(&page->lru);
2779 if (!page->active)
2780 list_add_tail(&page->lru, &n->slabs_free);
2781 else
2782 list_add_tail(&page->lru, &n->slabs_partial);
2783
2784 list_for_each_entry(page, &n->slabs_partial, lru) {
2785 if (!PageSlabPfmemalloc(page))
2786 return page;
2787 }
2788
2789 list_for_each_entry(page, &n->slabs_free, lru) {
2790 if (!PageSlabPfmemalloc(page))
2791 return page;
2792 }
2793
2794 return NULL;
2795 }
2796
2797 static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2798 {
2799 struct page *page;
2800
2801 page = list_first_entry_or_null(&n->slabs_partial,
2802 struct page, lru);
2803 if (!page) {
2804 n->free_touched = 1;
2805 page = list_first_entry_or_null(&n->slabs_free,
2806 struct page, lru);
2807 }
2808
2809 if (sk_memalloc_socks())
2810 return get_valid_first_slab(n, page, pfmemalloc);
2811
2812 return page;
2813 }
2814
2815 static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2816 struct kmem_cache_node *n, gfp_t flags)
2817 {
2818 struct page *page;
2819 void *obj;
2820 void *list = NULL;
2821
2822 if (!gfp_pfmemalloc_allowed(flags))
2823 return NULL;
2824
2825 spin_lock(&n->list_lock);
2826 page = get_first_slab(n, true);
2827 if (!page) {
2828 spin_unlock(&n->list_lock);
2829 return NULL;
2830 }
2831
2832 obj = slab_get_obj(cachep, page);
2833 n->free_objects--;
2834
2835 fixup_slab_list(cachep, n, page, &list);
2836
2837 spin_unlock(&n->list_lock);
2838 fixup_objfreelist_debug(cachep, &list);
2839
2840 return obj;
2841 }
2842
2843 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2844 {
2845 int batchcount;
2846 struct kmem_cache_node *n;
2847 struct array_cache *ac;
2848 int node;
2849 void *list = NULL;
2850
2851 check_irq_off();
2852 node = numa_mem_id();
2853
2854 retry:
2855 ac = cpu_cache_get(cachep);
2856 batchcount = ac->batchcount;
2857 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2858 /*
2859 * If there was little recent activity on this cache, then
2860 * perform only a partial refill. Otherwise we could generate
2861 * refill bouncing.
2862 */
2863 batchcount = BATCHREFILL_LIMIT;
2864 }
2865 n = get_node(cachep, node);
2866
2867 BUG_ON(ac->avail > 0 || !n);
2868 spin_lock(&n->list_lock);
2869
2870 /* See if we can refill from the shared array */
2871 if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2872 n->shared->touched = 1;
2873 goto alloc_done;
2874 }
2875
2876 while (batchcount > 0) {
2877 struct page *page;
2878 /* Get slab alloc is to come from. */
2879 page = get_first_slab(n, false);
2880 if (!page)
2881 goto must_grow;
2882
2883 check_spinlock_acquired(cachep);
2884
2885 /*
2886 * The slab was either on partial or free list so
2887 * there must be at least one object available for
2888 * allocation.
2889 */
2890 BUG_ON(page->active >= cachep->num);
2891
2892 while (page->active < cachep->num && batchcount--) {
2893 STATS_INC_ALLOCED(cachep);
2894 STATS_INC_ACTIVE(cachep);
2895 STATS_SET_HIGH(cachep);
2896
2897 ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2898 }
2899
2900 fixup_slab_list(cachep, n, page, &list);
2901 }
2902
2903 must_grow:
2904 n->free_objects -= ac->avail;
2905 alloc_done:
2906 spin_unlock(&n->list_lock);
2907 fixup_objfreelist_debug(cachep, &list);
2908
2909 if (unlikely(!ac->avail)) {
2910 int x;
2911
2912 /* Check if we can use obj in pfmemalloc slab */
2913 if (sk_memalloc_socks()) {
2914 void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
2915
2916 if (obj)
2917 return obj;
2918 }
2919
2920 x = cache_grow(cachep, gfp_exact_node(flags), node);
2921
2922 /* cache_grow can reenable interrupts, then ac could change. */
2923 ac = cpu_cache_get(cachep);
2924 node = numa_mem_id();
2925
2926 /* no objects in sight? abort */
2927 if (x < 0 && ac->avail == 0)
2928 return NULL;
2929
2930 if (!ac->avail) /* objects refilled by interrupt? */
2931 goto retry;
2932 }
2933 ac->touched = 1;
2934
2935 return ac->entry[--ac->avail];
2936 }
2937
2938 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2939 gfp_t flags)
2940 {
2941 might_sleep_if(gfpflags_allow_blocking(flags));
2942 #if DEBUG
2943 kmem_flagcheck(cachep, flags);
2944 #endif
2945 }
2946
2947 #if DEBUG
2948 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2949 gfp_t flags, void *objp, unsigned long caller)
2950 {
2951 if (!objp)
2952 return objp;
2953 if (cachep->flags & SLAB_POISON) {
2954 check_poison_obj(cachep, objp);
2955 slab_kernel_map(cachep, objp, 1, 0);
2956 poison_obj(cachep, objp, POISON_INUSE);
2957 }
2958 if (cachep->flags & SLAB_STORE_USER)
2959 *dbg_userword(cachep, objp) = (void *)caller;
2960
2961 if (cachep->flags & SLAB_RED_ZONE) {
2962 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2963 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2964 slab_error(cachep, "double free, or memory outside object was overwritten");
2965 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2966 objp, *dbg_redzone1(cachep, objp),
2967 *dbg_redzone2(cachep, objp));
2968 }
2969 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2970 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2971 }
2972
2973 objp += obj_offset(cachep);
2974 if (cachep->ctor && cachep->flags & SLAB_POISON)
2975 cachep->ctor(objp);
2976 if (ARCH_SLAB_MINALIGN &&
2977 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
2978 pr_err("0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
2979 objp, (int)ARCH_SLAB_MINALIGN);
2980 }
2981 return objp;
2982 }
2983 #else
2984 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2985 #endif
2986
2987 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
2988 {
2989 void *objp;
2990 struct array_cache *ac;
2991
2992 check_irq_off();
2993
2994 ac = cpu_cache_get(cachep);
2995 if (likely(ac->avail)) {
2996 ac->touched = 1;
2997 objp = ac->entry[--ac->avail];
2998
2999 STATS_INC_ALLOCHIT(cachep);
3000 goto out;
3001 }
3002
3003 STATS_INC_ALLOCMISS(cachep);
3004 objp = cache_alloc_refill(cachep, flags);
3005 /*
3006 * the 'ac' may be updated by cache_alloc_refill(),
3007 * and kmemleak_erase() requires its correct value.
3008 */
3009 ac = cpu_cache_get(cachep);
3010
3011 out:
3012 /*
3013 * To avoid a false negative, if an object that is in one of the
3014 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3015 * treat the array pointers as a reference to the object.
3016 */
3017 if (objp)
3018 kmemleak_erase(&ac->entry[ac->avail]);
3019 return objp;
3020 }
3021
3022 #ifdef CONFIG_NUMA
3023 /*
3024 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3025 *
3026 * If we are in_interrupt, then process context, including cpusets and
3027 * mempolicy, may not apply and should not be used for allocation policy.
3028 */
3029 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3030 {
3031 int nid_alloc, nid_here;
3032
3033 if (in_interrupt() || (flags & __GFP_THISNODE))
3034 return NULL;
3035 nid_alloc = nid_here = numa_mem_id();
3036 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3037 nid_alloc = cpuset_slab_spread_node();
3038 else if (current->mempolicy)
3039 nid_alloc = mempolicy_slab_node();
3040 if (nid_alloc != nid_here)
3041 return ____cache_alloc_node(cachep, flags, nid_alloc);
3042 return NULL;
3043 }
3044
3045 /*
3046 * Fallback function if there was no memory available and no objects on a
3047 * certain node and fall back is permitted. First we scan all the
3048 * available node for available objects. If that fails then we
3049 * perform an allocation without specifying a node. This allows the page
3050 * allocator to do its reclaim / fallback magic. We then insert the
3051 * slab into the proper nodelist and then allocate from it.
3052 */
3053 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3054 {
3055 struct zonelist *zonelist;
3056 struct zoneref *z;
3057 struct zone *zone;
3058 enum zone_type high_zoneidx = gfp_zone(flags);
3059 void *obj = NULL;
3060 int nid;
3061 unsigned int cpuset_mems_cookie;
3062
3063 if (flags & __GFP_THISNODE)
3064 return NULL;
3065
3066 retry_cpuset:
3067 cpuset_mems_cookie = read_mems_allowed_begin();
3068 zonelist = node_zonelist(mempolicy_slab_node(), flags);
3069
3070 retry:
3071 /*
3072 * Look through allowed nodes for objects available
3073 * from existing per node queues.
3074 */
3075 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3076 nid = zone_to_nid(zone);
3077
3078 if (cpuset_zone_allowed(zone, flags) &&
3079 get_node(cache, nid) &&
3080 get_node(cache, nid)->free_objects) {
3081 obj = ____cache_alloc_node(cache,
3082 gfp_exact_node(flags), nid);
3083 if (obj)
3084 break;
3085 }
3086 }
3087
3088 if (!obj) {
3089 /*
3090 * This allocation will be performed within the constraints
3091 * of the current cpuset / memory policy requirements.
3092 * We may trigger various forms of reclaim on the allowed
3093 * set and go into memory reserves if necessary.
3094 */
3095 nid = cache_grow(cache, flags, numa_mem_id());
3096 if (nid >= 0) {
3097 obj = ____cache_alloc_node(cache,
3098 gfp_exact_node(flags), nid);
3099
3100 /*
3101 * Another processor may allocate the objects in
3102 * the slab since we are not holding any locks.
3103 */
3104 if (!obj)
3105 goto retry;
3106 }
3107 }
3108
3109 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3110 goto retry_cpuset;
3111 return obj;
3112 }
3113
3114 /*
3115 * A interface to enable slab creation on nodeid
3116 */
3117 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3118 int nodeid)
3119 {
3120 struct page *page;
3121 struct kmem_cache_node *n;
3122 void *obj;
3123 void *list = NULL;
3124 int x;
3125
3126 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3127 n = get_node(cachep, nodeid);
3128 BUG_ON(!n);
3129
3130 retry:
3131 check_irq_off();
3132 spin_lock(&n->list_lock);
3133 page = get_first_slab(n, false);
3134 if (!page)
3135 goto must_grow;
3136
3137 check_spinlock_acquired_node(cachep, nodeid);
3138
3139 STATS_INC_NODEALLOCS(cachep);
3140 STATS_INC_ACTIVE(cachep);
3141 STATS_SET_HIGH(cachep);
3142
3143 BUG_ON(page->active == cachep->num);
3144
3145 obj = slab_get_obj(cachep, page);
3146 n->free_objects--;
3147
3148 fixup_slab_list(cachep, n, page, &list);
3149
3150 spin_unlock(&n->list_lock);
3151 fixup_objfreelist_debug(cachep, &list);
3152 goto done;
3153
3154 must_grow:
3155 spin_unlock(&n->list_lock);
3156 x = cache_grow(cachep, gfp_exact_node(flags), nodeid);
3157 if (x >= 0)
3158 goto retry;
3159
3160 return fallback_alloc(cachep, flags);
3161
3162 done:
3163 return obj;
3164 }
3165
3166 static __always_inline void *
3167 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3168 unsigned long caller)
3169 {
3170 unsigned long save_flags;
3171 void *ptr;
3172 int slab_node = numa_mem_id();
3173
3174 flags &= gfp_allowed_mask;
3175 cachep = slab_pre_alloc_hook(cachep, flags);
3176 if (unlikely(!cachep))
3177 return NULL;
3178
3179 cache_alloc_debugcheck_before(cachep, flags);
3180 local_irq_save(save_flags);
3181
3182 if (nodeid == NUMA_NO_NODE)
3183 nodeid = slab_node;
3184
3185 if (unlikely(!get_node(cachep, nodeid))) {
3186 /* Node not bootstrapped yet */
3187 ptr = fallback_alloc(cachep, flags);
3188 goto out;
3189 }
3190
3191 if (nodeid == slab_node) {
3192 /*
3193 * Use the locally cached objects if possible.
3194 * However ____cache_alloc does not allow fallback
3195 * to other nodes. It may fail while we still have
3196 * objects on other nodes available.
3197 */
3198 ptr = ____cache_alloc(cachep, flags);
3199 if (ptr)
3200 goto out;
3201 }
3202 /* ___cache_alloc_node can fall back to other nodes */
3203 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3204 out:
3205 local_irq_restore(save_flags);
3206 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3207
3208 if (unlikely(flags & __GFP_ZERO) && ptr)
3209 memset(ptr, 0, cachep->object_size);
3210
3211 slab_post_alloc_hook(cachep, flags, 1, &ptr);
3212 return ptr;
3213 }
3214
3215 static __always_inline void *
3216 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3217 {
3218 void *objp;
3219
3220 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3221 objp = alternate_node_alloc(cache, flags);
3222 if (objp)
3223 goto out;
3224 }
3225 objp = ____cache_alloc(cache, flags);
3226
3227 /*
3228 * We may just have run out of memory on the local node.
3229 * ____cache_alloc_node() knows how to locate memory on other nodes
3230 */
3231 if (!objp)
3232 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3233
3234 out:
3235 return objp;
3236 }
3237 #else
3238
3239 static __always_inline void *
3240 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3241 {
3242 return ____cache_alloc(cachep, flags);
3243 }
3244
3245 #endif /* CONFIG_NUMA */
3246
3247 static __always_inline void *
3248 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3249 {
3250 unsigned long save_flags;
3251 void *objp;
3252
3253 flags &= gfp_allowed_mask;
3254 cachep = slab_pre_alloc_hook(cachep, flags);
3255 if (unlikely(!cachep))
3256 return NULL;
3257
3258 cache_alloc_debugcheck_before(cachep, flags);
3259 local_irq_save(save_flags);
3260 objp = __do_cache_alloc(cachep, flags);
3261 local_irq_restore(save_flags);
3262 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3263 prefetchw(objp);
3264
3265 if (unlikely(flags & __GFP_ZERO) && objp)
3266 memset(objp, 0, cachep->object_size);
3267
3268 slab_post_alloc_hook(cachep, flags, 1, &objp);
3269 return objp;
3270 }
3271
3272 /*
3273 * Caller needs to acquire correct kmem_cache_node's list_lock
3274 * @list: List of detached free slabs should be freed by caller
3275 */
3276 static void free_block(struct kmem_cache *cachep, void **objpp,
3277 int nr_objects, int node, struct list_head *list)
3278 {
3279 int i;
3280 struct kmem_cache_node *n = get_node(cachep, node);
3281 struct page *page;
3282
3283 n->free_objects += nr_objects;
3284
3285 for (i = 0; i < nr_objects; i++) {
3286 void *objp;
3287 struct page *page;
3288
3289 objp = objpp[i];
3290
3291 page = virt_to_head_page(objp);
3292 list_del(&page->lru);
3293 check_spinlock_acquired_node(cachep, node);
3294 slab_put_obj(cachep, page, objp);
3295 STATS_DEC_ACTIVE(cachep);
3296
3297 /* fixup slab chains */
3298 if (page->active == 0)
3299 list_add(&page->lru, &n->slabs_free);
3300 else {
3301 /* Unconditionally move a slab to the end of the
3302 * partial list on free - maximum time for the
3303 * other objects to be freed, too.
3304 */
3305 list_add_tail(&page->lru, &n->slabs_partial);
3306 }
3307 }
3308
3309 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3310 n->free_objects -= cachep->num;
3311
3312 page = list_last_entry(&n->slabs_free, struct page, lru);
3313 list_del(&page->lru);
3314 list_add(&page->lru, list);
3315 }
3316 }
3317
3318 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3319 {
3320 int batchcount;
3321 struct kmem_cache_node *n;
3322 int node = numa_mem_id();
3323 LIST_HEAD(list);
3324
3325 batchcount = ac->batchcount;
3326
3327 check_irq_off();
3328 n = get_node(cachep, node);
3329 spin_lock(&n->list_lock);
3330 if (n->shared) {
3331 struct array_cache *shared_array = n->shared;
3332 int max = shared_array->limit - shared_array->avail;
3333 if (max) {
3334 if (batchcount > max)
3335 batchcount = max;
3336 memcpy(&(shared_array->entry[shared_array->avail]),
3337 ac->entry, sizeof(void *) * batchcount);
3338 shared_array->avail += batchcount;
3339 goto free_done;
3340 }
3341 }
3342
3343 free_block(cachep, ac->entry, batchcount, node, &list);
3344 free_done:
3345 #if STATS
3346 {
3347 int i = 0;
3348 struct page *page;
3349
3350 list_for_each_entry(page, &n->slabs_free, lru) {
3351 BUG_ON(page->active);
3352
3353 i++;
3354 }
3355 STATS_SET_FREEABLE(cachep, i);
3356 }
3357 #endif
3358 spin_unlock(&n->list_lock);
3359 slabs_destroy(cachep, &list);
3360 ac->avail -= batchcount;
3361 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3362 }
3363
3364 /*
3365 * Release an obj back to its cache. If the obj has a constructed state, it must
3366 * be in this state _before_ it is released. Called with disabled ints.
3367 */
3368 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3369 unsigned long caller)
3370 {
3371 struct array_cache *ac = cpu_cache_get(cachep);
3372
3373 kasan_slab_free(cachep, objp);
3374
3375 check_irq_off();
3376 kmemleak_free_recursive(objp, cachep->flags);
3377 objp = cache_free_debugcheck(cachep, objp, caller);
3378
3379 kmemcheck_slab_free(cachep, objp, cachep->object_size);
3380
3381 /*
3382 * Skip calling cache_free_alien() when the platform is not numa.
3383 * This will avoid cache misses that happen while accessing slabp (which
3384 * is per page memory reference) to get nodeid. Instead use a global
3385 * variable to skip the call, which is mostly likely to be present in
3386 * the cache.
3387 */
3388 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3389 return;
3390
3391 if (ac->avail < ac->limit) {
3392 STATS_INC_FREEHIT(cachep);
3393 } else {
3394 STATS_INC_FREEMISS(cachep);
3395 cache_flusharray(cachep, ac);
3396 }
3397
3398 if (sk_memalloc_socks()) {
3399 struct page *page = virt_to_head_page(objp);
3400
3401 if (unlikely(PageSlabPfmemalloc(page))) {
3402 cache_free_pfmemalloc(cachep, page, objp);
3403 return;
3404 }
3405 }
3406
3407 ac->entry[ac->avail++] = objp;
3408 }
3409
3410 /**
3411 * kmem_cache_alloc - Allocate an object
3412 * @cachep: The cache to allocate from.
3413 * @flags: See kmalloc().
3414 *
3415 * Allocate an object from this cache. The flags are only relevant
3416 * if the cache has no available objects.
3417 */
3418 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3419 {
3420 void *ret = slab_alloc(cachep, flags, _RET_IP_);
3421
3422 kasan_slab_alloc(cachep, ret, flags);
3423 trace_kmem_cache_alloc(_RET_IP_, ret,
3424 cachep->object_size, cachep->size, flags);
3425
3426 return ret;
3427 }
3428 EXPORT_SYMBOL(kmem_cache_alloc);
3429
3430 static __always_inline void
3431 cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3432 size_t size, void **p, unsigned long caller)
3433 {
3434 size_t i;
3435
3436 for (i = 0; i < size; i++)
3437 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3438 }
3439
3440 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3441 void **p)
3442 {
3443 size_t i;
3444
3445 s = slab_pre_alloc_hook(s, flags);
3446 if (!s)
3447 return 0;
3448
3449 cache_alloc_debugcheck_before(s, flags);
3450
3451 local_irq_disable();
3452 for (i = 0; i < size; i++) {
3453 void *objp = __do_cache_alloc(s, flags);
3454
3455 if (unlikely(!objp))
3456 goto error;
3457 p[i] = objp;
3458 }
3459 local_irq_enable();
3460
3461 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3462
3463 /* Clear memory outside IRQ disabled section */
3464 if (unlikely(flags & __GFP_ZERO))
3465 for (i = 0; i < size; i++)
3466 memset(p[i], 0, s->object_size);
3467
3468 slab_post_alloc_hook(s, flags, size, p);
3469 /* FIXME: Trace call missing. Christoph would like a bulk variant */
3470 return size;
3471 error:
3472 local_irq_enable();
3473 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3474 slab_post_alloc_hook(s, flags, i, p);
3475 __kmem_cache_free_bulk(s, i, p);
3476 return 0;
3477 }
3478 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3479
3480 #ifdef CONFIG_TRACING
3481 void *
3482 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3483 {
3484 void *ret;
3485
3486 ret = slab_alloc(cachep, flags, _RET_IP_);
3487
3488 kasan_kmalloc(cachep, ret, size, flags);
3489 trace_kmalloc(_RET_IP_, ret,
3490 size, cachep->size, flags);
3491 return ret;
3492 }
3493 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3494 #endif
3495
3496 #ifdef CONFIG_NUMA
3497 /**
3498 * kmem_cache_alloc_node - Allocate an object on the specified node
3499 * @cachep: The cache to allocate from.
3500 * @flags: See kmalloc().
3501 * @nodeid: node number of the target node.
3502 *
3503 * Identical to kmem_cache_alloc but it will allocate memory on the given
3504 * node, which can improve the performance for cpu bound structures.
3505 *
3506 * Fallback to other node is possible if __GFP_THISNODE is not set.
3507 */
3508 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3509 {
3510 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3511
3512 kasan_slab_alloc(cachep, ret, flags);
3513 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3514 cachep->object_size, cachep->size,
3515 flags, nodeid);
3516
3517 return ret;
3518 }
3519 EXPORT_SYMBOL(kmem_cache_alloc_node);
3520
3521 #ifdef CONFIG_TRACING
3522 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3523 gfp_t flags,
3524 int nodeid,
3525 size_t size)
3526 {
3527 void *ret;
3528
3529 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3530
3531 kasan_kmalloc(cachep, ret, size, flags);
3532 trace_kmalloc_node(_RET_IP_, ret,
3533 size, cachep->size,
3534 flags, nodeid);
3535 return ret;
3536 }
3537 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3538 #endif
3539
3540 static __always_inline void *
3541 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3542 {
3543 struct kmem_cache *cachep;
3544 void *ret;
3545
3546 cachep = kmalloc_slab(size, flags);
3547 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3548 return cachep;
3549 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3550 kasan_kmalloc(cachep, ret, size, flags);
3551
3552 return ret;
3553 }
3554
3555 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3556 {
3557 return __do_kmalloc_node(size, flags, node, _RET_IP_);
3558 }
3559 EXPORT_SYMBOL(__kmalloc_node);
3560
3561 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3562 int node, unsigned long caller)
3563 {
3564 return __do_kmalloc_node(size, flags, node, caller);
3565 }
3566 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3567 #endif /* CONFIG_NUMA */
3568
3569 /**
3570 * __do_kmalloc - allocate memory
3571 * @size: how many bytes of memory are required.
3572 * @flags: the type of memory to allocate (see kmalloc).
3573 * @caller: function caller for debug tracking of the caller
3574 */
3575 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3576 unsigned long caller)
3577 {
3578 struct kmem_cache *cachep;
3579 void *ret;
3580
3581 cachep = kmalloc_slab(size, flags);
3582 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3583 return cachep;
3584 ret = slab_alloc(cachep, flags, caller);
3585
3586 kasan_kmalloc(cachep, ret, size, flags);
3587 trace_kmalloc(caller, ret,
3588 size, cachep->size, flags);
3589
3590 return ret;
3591 }
3592
3593 void *__kmalloc(size_t size, gfp_t flags)
3594 {
3595 return __do_kmalloc(size, flags, _RET_IP_);
3596 }
3597 EXPORT_SYMBOL(__kmalloc);
3598
3599 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3600 {
3601 return __do_kmalloc(size, flags, caller);
3602 }
3603 EXPORT_SYMBOL(__kmalloc_track_caller);
3604
3605 /**
3606 * kmem_cache_free - Deallocate an object
3607 * @cachep: The cache the allocation was from.
3608 * @objp: The previously allocated object.
3609 *
3610 * Free an object which was previously allocated from this
3611 * cache.
3612 */
3613 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3614 {
3615 unsigned long flags;
3616 cachep = cache_from_obj(cachep, objp);
3617 if (!cachep)
3618 return;
3619
3620 local_irq_save(flags);
3621 debug_check_no_locks_freed(objp, cachep->object_size);
3622 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3623 debug_check_no_obj_freed(objp, cachep->object_size);
3624 __cache_free(cachep, objp, _RET_IP_);
3625 local_irq_restore(flags);
3626
3627 trace_kmem_cache_free(_RET_IP_, objp);
3628 }
3629 EXPORT_SYMBOL(kmem_cache_free);
3630
3631 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3632 {
3633 struct kmem_cache *s;
3634 size_t i;
3635
3636 local_irq_disable();
3637 for (i = 0; i < size; i++) {
3638 void *objp = p[i];
3639
3640 if (!orig_s) /* called via kfree_bulk */
3641 s = virt_to_cache(objp);
3642 else
3643 s = cache_from_obj(orig_s, objp);
3644
3645 debug_check_no_locks_freed(objp, s->object_size);
3646 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3647 debug_check_no_obj_freed(objp, s->object_size);
3648
3649 __cache_free(s, objp, _RET_IP_);
3650 }
3651 local_irq_enable();
3652
3653 /* FIXME: add tracing */
3654 }
3655 EXPORT_SYMBOL(kmem_cache_free_bulk);
3656
3657 /**
3658 * kfree - free previously allocated memory
3659 * @objp: pointer returned by kmalloc.
3660 *
3661 * If @objp is NULL, no operation is performed.
3662 *
3663 * Don't free memory not originally allocated by kmalloc()
3664 * or you will run into trouble.
3665 */
3666 void kfree(const void *objp)
3667 {
3668 struct kmem_cache *c;
3669 unsigned long flags;
3670
3671 trace_kfree(_RET_IP_, objp);
3672
3673 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3674 return;
3675 local_irq_save(flags);
3676 kfree_debugcheck(objp);
3677 c = virt_to_cache(objp);
3678 debug_check_no_locks_freed(objp, c->object_size);
3679
3680 debug_check_no_obj_freed(objp, c->object_size);
3681 __cache_free(c, (void *)objp, _RET_IP_);
3682 local_irq_restore(flags);
3683 }
3684 EXPORT_SYMBOL(kfree);
3685
3686 /*
3687 * This initializes kmem_cache_node or resizes various caches for all nodes.
3688 */
3689 static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3690 {
3691 int ret;
3692 int node;
3693 struct kmem_cache_node *n;
3694
3695 for_each_online_node(node) {
3696 ret = setup_kmem_cache_node(cachep, node, gfp, true);
3697 if (ret)
3698 goto fail;
3699
3700 }
3701
3702 return 0;
3703
3704 fail:
3705 if (!cachep->list.next) {
3706 /* Cache is not active yet. Roll back what we did */
3707 node--;
3708 while (node >= 0) {
3709 n = get_node(cachep, node);
3710 if (n) {
3711 kfree(n->shared);
3712 free_alien_cache(n->alien);
3713 kfree(n);
3714 cachep->node[node] = NULL;
3715 }
3716 node--;
3717 }
3718 }
3719 return -ENOMEM;
3720 }
3721
3722 /* Always called with the slab_mutex held */
3723 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3724 int batchcount, int shared, gfp_t gfp)
3725 {
3726 struct array_cache __percpu *cpu_cache, *prev;
3727 int cpu;
3728
3729 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3730 if (!cpu_cache)
3731 return -ENOMEM;
3732
3733 prev = cachep->cpu_cache;
3734 cachep->cpu_cache = cpu_cache;
3735 kick_all_cpus_sync();
3736
3737 check_irq_on();
3738 cachep->batchcount = batchcount;
3739 cachep->limit = limit;
3740 cachep->shared = shared;
3741
3742 if (!prev)
3743 goto setup_node;
3744
3745 for_each_online_cpu(cpu) {
3746 LIST_HEAD(list);
3747 int node;
3748 struct kmem_cache_node *n;
3749 struct array_cache *ac = per_cpu_ptr(prev, cpu);
3750
3751 node = cpu_to_mem(cpu);
3752 n = get_node(cachep, node);
3753 spin_lock_irq(&n->list_lock);
3754 free_block(cachep, ac->entry, ac->avail, node, &list);
3755 spin_unlock_irq(&n->list_lock);
3756 slabs_destroy(cachep, &list);
3757 }
3758 free_percpu(prev);
3759
3760 setup_node:
3761 return setup_kmem_cache_nodes(cachep, gfp);
3762 }
3763
3764 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3765 int batchcount, int shared, gfp_t gfp)
3766 {
3767 int ret;
3768 struct kmem_cache *c;
3769
3770 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3771
3772 if (slab_state < FULL)
3773 return ret;
3774
3775 if ((ret < 0) || !is_root_cache(cachep))
3776 return ret;
3777
3778 lockdep_assert_held(&slab_mutex);
3779 for_each_memcg_cache(c, cachep) {
3780 /* return value determined by the root cache only */
3781 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3782 }
3783
3784 return ret;
3785 }
3786
3787 /* Called with slab_mutex held always */
3788 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3789 {
3790 int err;
3791 int limit = 0;
3792 int shared = 0;
3793 int batchcount = 0;
3794
3795 if (!is_root_cache(cachep)) {
3796 struct kmem_cache *root = memcg_root_cache(cachep);
3797 limit = root->limit;
3798 shared = root->shared;
3799 batchcount = root->batchcount;
3800 }
3801
3802 if (limit && shared && batchcount)
3803 goto skip_setup;
3804 /*
3805 * The head array serves three purposes:
3806 * - create a LIFO ordering, i.e. return objects that are cache-warm
3807 * - reduce the number of spinlock operations.
3808 * - reduce the number of linked list operations on the slab and
3809 * bufctl chains: array operations are cheaper.
3810 * The numbers are guessed, we should auto-tune as described by
3811 * Bonwick.
3812 */
3813 if (cachep->size > 131072)
3814 limit = 1;
3815 else if (cachep->size > PAGE_SIZE)
3816 limit = 8;
3817 else if (cachep->size > 1024)
3818 limit = 24;
3819 else if (cachep->size > 256)
3820 limit = 54;
3821 else
3822 limit = 120;
3823
3824 /*
3825 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3826 * allocation behaviour: Most allocs on one cpu, most free operations
3827 * on another cpu. For these cases, an efficient object passing between
3828 * cpus is necessary. This is provided by a shared array. The array
3829 * replaces Bonwick's magazine layer.
3830 * On uniprocessor, it's functionally equivalent (but less efficient)
3831 * to a larger limit. Thus disabled by default.
3832 */
3833 shared = 0;
3834 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3835 shared = 8;
3836
3837 #if DEBUG
3838 /*
3839 * With debugging enabled, large batchcount lead to excessively long
3840 * periods with disabled local interrupts. Limit the batchcount
3841 */
3842 if (limit > 32)
3843 limit = 32;
3844 #endif
3845 batchcount = (limit + 1) / 2;
3846 skip_setup:
3847 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3848 if (err)
3849 pr_err("enable_cpucache failed for %s, error %d\n",
3850 cachep->name, -err);
3851 return err;
3852 }
3853
3854 /*
3855 * Drain an array if it contains any elements taking the node lock only if
3856 * necessary. Note that the node listlock also protects the array_cache
3857 * if drain_array() is used on the shared array.
3858 */
3859 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3860 struct array_cache *ac, int node)
3861 {
3862 LIST_HEAD(list);
3863
3864 /* ac from n->shared can be freed if we don't hold the slab_mutex. */
3865 check_mutex_acquired();
3866
3867 if (!ac || !ac->avail)
3868 return;
3869
3870 if (ac->touched) {
3871 ac->touched = 0;
3872 return;
3873 }
3874
3875 spin_lock_irq(&n->list_lock);
3876 drain_array_locked(cachep, ac, node, false, &list);
3877 spin_unlock_irq(&n->list_lock);
3878
3879 slabs_destroy(cachep, &list);
3880 }
3881
3882 /**
3883 * cache_reap - Reclaim memory from caches.
3884 * @w: work descriptor
3885 *
3886 * Called from workqueue/eventd every few seconds.
3887 * Purpose:
3888 * - clear the per-cpu caches for this CPU.
3889 * - return freeable pages to the main free memory pool.
3890 *
3891 * If we cannot acquire the cache chain mutex then just give up - we'll try
3892 * again on the next iteration.
3893 */
3894 static void cache_reap(struct work_struct *w)
3895 {
3896 struct kmem_cache *searchp;
3897 struct kmem_cache_node *n;
3898 int node = numa_mem_id();
3899 struct delayed_work *work = to_delayed_work(w);
3900
3901 if (!mutex_trylock(&slab_mutex))
3902 /* Give up. Setup the next iteration. */
3903 goto out;
3904
3905 list_for_each_entry(searchp, &slab_caches, list) {
3906 check_irq_on();
3907
3908 /*
3909 * We only take the node lock if absolutely necessary and we
3910 * have established with reasonable certainty that
3911 * we can do some work if the lock was obtained.
3912 */
3913 n = get_node(searchp, node);
3914
3915 reap_alien(searchp, n);
3916
3917 drain_array(searchp, n, cpu_cache_get(searchp), node);
3918
3919 /*
3920 * These are racy checks but it does not matter
3921 * if we skip one check or scan twice.
3922 */
3923 if (time_after(n->next_reap, jiffies))
3924 goto next;
3925
3926 n->next_reap = jiffies + REAPTIMEOUT_NODE;
3927
3928 drain_array(searchp, n, n->shared, node);
3929
3930 if (n->free_touched)
3931 n->free_touched = 0;
3932 else {
3933 int freed;
3934
3935 freed = drain_freelist(searchp, n, (n->free_limit +
3936 5 * searchp->num - 1) / (5 * searchp->num));
3937 STATS_ADD_REAPED(searchp, freed);
3938 }
3939 next:
3940 cond_resched();
3941 }
3942 check_irq_on();
3943 mutex_unlock(&slab_mutex);
3944 next_reap_node();
3945 out:
3946 /* Set up the next iteration */
3947 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
3948 }
3949
3950 #ifdef CONFIG_SLABINFO
3951 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
3952 {
3953 struct page *page;
3954 unsigned long active_objs;
3955 unsigned long num_objs;
3956 unsigned long active_slabs = 0;
3957 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3958 const char *name;
3959 char *error = NULL;
3960 int node;
3961 struct kmem_cache_node *n;
3962
3963 active_objs = 0;
3964 num_slabs = 0;
3965 for_each_kmem_cache_node(cachep, node, n) {
3966
3967 check_irq_on();
3968 spin_lock_irq(&n->list_lock);
3969
3970 list_for_each_entry(page, &n->slabs_full, lru) {
3971 if (page->active != cachep->num && !error)
3972 error = "slabs_full accounting error";
3973 active_objs += cachep->num;
3974 active_slabs++;
3975 }
3976 list_for_each_entry(page, &n->slabs_partial, lru) {
3977 if (page->active == cachep->num && !error)
3978 error = "slabs_partial accounting error";
3979 if (!page->active && !error)
3980 error = "slabs_partial accounting error";
3981 active_objs += page->active;
3982 active_slabs++;
3983 }
3984 list_for_each_entry(page, &n->slabs_free, lru) {
3985 if (page->active && !error)
3986 error = "slabs_free accounting error";
3987 num_slabs++;
3988 }
3989 free_objects += n->free_objects;
3990 if (n->shared)
3991 shared_avail += n->shared->avail;
3992
3993 spin_unlock_irq(&n->list_lock);
3994 }
3995 num_slabs += active_slabs;
3996 num_objs = num_slabs * cachep->num;
3997 if (num_objs - active_objs != free_objects && !error)
3998 error = "free_objects accounting error";
3999
4000 name = cachep->name;
4001 if (error)
4002 pr_err("slab: cache %s error: %s\n", name, error);
4003
4004 sinfo->active_objs = active_objs;
4005 sinfo->num_objs = num_objs;
4006 sinfo->active_slabs = active_slabs;
4007 sinfo->num_slabs = num_slabs;
4008 sinfo->shared_avail = shared_avail;
4009 sinfo->limit = cachep->limit;
4010 sinfo->batchcount = cachep->batchcount;
4011 sinfo->shared = cachep->shared;
4012 sinfo->objects_per_slab = cachep->num;
4013 sinfo->cache_order = cachep->gfporder;
4014 }
4015
4016 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4017 {
4018 #if STATS
4019 { /* node stats */
4020 unsigned long high = cachep->high_mark;
4021 unsigned long allocs = cachep->num_allocations;
4022 unsigned long grown = cachep->grown;
4023 unsigned long reaped = cachep->reaped;
4024 unsigned long errors = cachep->errors;
4025 unsigned long max_freeable = cachep->max_freeable;
4026 unsigned long node_allocs = cachep->node_allocs;
4027 unsigned long node_frees = cachep->node_frees;
4028 unsigned long overflows = cachep->node_overflow;
4029
4030 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
4031 allocs, high, grown,
4032 reaped, errors, max_freeable, node_allocs,
4033 node_frees, overflows);
4034 }
4035 /* cpu stats */
4036 {
4037 unsigned long allochit = atomic_read(&cachep->allochit);
4038 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4039 unsigned long freehit = atomic_read(&cachep->freehit);
4040 unsigned long freemiss = atomic_read(&cachep->freemiss);
4041
4042 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4043 allochit, allocmiss, freehit, freemiss);
4044 }
4045 #endif
4046 }
4047
4048 #define MAX_SLABINFO_WRITE 128
4049 /**
4050 * slabinfo_write - Tuning for the slab allocator
4051 * @file: unused
4052 * @buffer: user buffer
4053 * @count: data length
4054 * @ppos: unused
4055 */
4056 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4057 size_t count, loff_t *ppos)
4058 {
4059 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4060 int limit, batchcount, shared, res;
4061 struct kmem_cache *cachep;
4062
4063 if (count > MAX_SLABINFO_WRITE)
4064 return -EINVAL;
4065 if (copy_from_user(&kbuf, buffer, count))
4066 return -EFAULT;
4067 kbuf[MAX_SLABINFO_WRITE] = '\0';
4068
4069 tmp = strchr(kbuf, ' ');
4070 if (!tmp)
4071 return -EINVAL;
4072 *tmp = '\0';
4073 tmp++;
4074 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4075 return -EINVAL;
4076
4077 /* Find the cache in the chain of caches. */
4078 mutex_lock(&slab_mutex);
4079 res = -EINVAL;
4080 list_for_each_entry(cachep, &slab_caches, list) {
4081 if (!strcmp(cachep->name, kbuf)) {
4082 if (limit < 1 || batchcount < 1 ||
4083 batchcount > limit || shared < 0) {
4084 res = 0;
4085 } else {
4086 res = do_tune_cpucache(cachep, limit,
4087 batchcount, shared,
4088 GFP_KERNEL);
4089 }
4090 break;
4091 }
4092 }
4093 mutex_unlock(&slab_mutex);
4094 if (res >= 0)
4095 res = count;
4096 return res;
4097 }
4098
4099 #ifdef CONFIG_DEBUG_SLAB_LEAK
4100
4101 static inline int add_caller(unsigned long *n, unsigned long v)
4102 {
4103 unsigned long *p;
4104 int l;
4105 if (!v)
4106 return 1;
4107 l = n[1];
4108 p = n + 2;
4109 while (l) {
4110 int i = l/2;
4111 unsigned long *q = p + 2 * i;
4112 if (*q == v) {
4113 q[1]++;
4114 return 1;
4115 }
4116 if (*q > v) {
4117 l = i;
4118 } else {
4119 p = q + 2;
4120 l -= i + 1;
4121 }
4122 }
4123 if (++n[1] == n[0])
4124 return 0;
4125 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4126 p[0] = v;
4127 p[1] = 1;
4128 return 1;
4129 }
4130
4131 static void handle_slab(unsigned long *n, struct kmem_cache *c,
4132 struct page *page)
4133 {
4134 void *p;
4135 int i, j;
4136 unsigned long v;
4137
4138 if (n[0] == n[1])
4139 return;
4140 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4141 bool active = true;
4142
4143 for (j = page->active; j < c->num; j++) {
4144 if (get_free_obj(page, j) == i) {
4145 active = false;
4146 break;
4147 }
4148 }
4149
4150 if (!active)
4151 continue;
4152
4153 /*
4154 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4155 * mapping is established when actual object allocation and
4156 * we could mistakenly access the unmapped object in the cpu
4157 * cache.
4158 */
4159 if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4160 continue;
4161
4162 if (!add_caller(n, v))
4163 return;
4164 }
4165 }
4166
4167 static void show_symbol(struct seq_file *m, unsigned long address)
4168 {
4169 #ifdef CONFIG_KALLSYMS
4170 unsigned long offset, size;
4171 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4172
4173 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4174 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4175 if (modname[0])
4176 seq_printf(m, " [%s]", modname);
4177 return;
4178 }
4179 #endif
4180 seq_printf(m, "%p", (void *)address);
4181 }
4182
4183 static int leaks_show(struct seq_file *m, void *p)
4184 {
4185 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4186 struct page *page;
4187 struct kmem_cache_node *n;
4188 const char *name;
4189 unsigned long *x = m->private;
4190 int node;
4191 int i;
4192
4193 if (!(cachep->flags & SLAB_STORE_USER))
4194 return 0;
4195 if (!(cachep->flags & SLAB_RED_ZONE))
4196 return 0;
4197
4198 /*
4199 * Set store_user_clean and start to grab stored user information
4200 * for all objects on this cache. If some alloc/free requests comes
4201 * during the processing, information would be wrong so restart
4202 * whole processing.
4203 */
4204 do {
4205 set_store_user_clean(cachep);
4206 drain_cpu_caches(cachep);
4207
4208 x[1] = 0;
4209
4210 for_each_kmem_cache_node(cachep, node, n) {
4211
4212 check_irq_on();
4213 spin_lock_irq(&n->list_lock);
4214
4215 list_for_each_entry(page, &n->slabs_full, lru)
4216 handle_slab(x, cachep, page);
4217 list_for_each_entry(page, &n->slabs_partial, lru)
4218 handle_slab(x, cachep, page);
4219 spin_unlock_irq(&n->list_lock);
4220 }
4221 } while (!is_store_user_clean(cachep));
4222
4223 name = cachep->name;
4224 if (x[0] == x[1]) {
4225 /* Increase the buffer size */
4226 mutex_unlock(&slab_mutex);
4227 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4228 if (!m->private) {
4229 /* Too bad, we are really out */
4230 m->private = x;
4231 mutex_lock(&slab_mutex);
4232 return -ENOMEM;
4233 }
4234 *(unsigned long *)m->private = x[0] * 2;
4235 kfree(x);
4236 mutex_lock(&slab_mutex);
4237 /* Now make sure this entry will be retried */
4238 m->count = m->size;
4239 return 0;
4240 }
4241 for (i = 0; i < x[1]; i++) {
4242 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4243 show_symbol(m, x[2*i+2]);
4244 seq_putc(m, '\n');
4245 }
4246
4247 return 0;
4248 }
4249
4250 static const struct seq_operations slabstats_op = {
4251 .start = slab_start,
4252 .next = slab_next,
4253 .stop = slab_stop,
4254 .show = leaks_show,
4255 };
4256
4257 static int slabstats_open(struct inode *inode, struct file *file)
4258 {
4259 unsigned long *n;
4260
4261 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4262 if (!n)
4263 return -ENOMEM;
4264
4265 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4266
4267 return 0;
4268 }
4269
4270 static const struct file_operations proc_slabstats_operations = {
4271 .open = slabstats_open,
4272 .read = seq_read,
4273 .llseek = seq_lseek,
4274 .release = seq_release_private,
4275 };
4276 #endif
4277
4278 static int __init slab_proc_init(void)
4279 {
4280 #ifdef CONFIG_DEBUG_SLAB_LEAK
4281 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4282 #endif
4283 return 0;
4284 }
4285 module_init(slab_proc_init);
4286 #endif
4287
4288 /**
4289 * ksize - get the actual amount of memory allocated for a given object
4290 * @objp: Pointer to the object
4291 *
4292 * kmalloc may internally round up allocations and return more memory
4293 * than requested. ksize() can be used to determine the actual amount of
4294 * memory allocated. The caller may use this additional memory, even though
4295 * a smaller amount of memory was initially specified with the kmalloc call.
4296 * The caller must guarantee that objp points to a valid object previously
4297 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4298 * must not be freed during the duration of the call.
4299 */
4300 size_t ksize(const void *objp)
4301 {
4302 size_t size;
4303
4304 BUG_ON(!objp);
4305 if (unlikely(objp == ZERO_SIZE_PTR))
4306 return 0;
4307
4308 size = virt_to_cache(objp)->object_size;
4309 /* We assume that ksize callers could use the whole allocated area,
4310 * so we need to unpoison this area.
4311 */
4312 kasan_krealloc(objp, size, GFP_NOWAIT);
4313
4314 return size;
4315 }
4316 EXPORT_SYMBOL(ksize);
This page took 0.111033 seconds and 6 git commands to generate.