SLAB: don't allocate empty shared caches
[deliverable/linux.git] / mm / slab.c
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
87 */
88
89 #include <linux/slab.h>
90 #include <linux/mm.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/seq_file.h>
99 #include <linux/notifier.h>
100 #include <linux/kallsyms.h>
101 #include <linux/cpu.h>
102 #include <linux/sysctl.h>
103 #include <linux/module.h>
104 #include <linux/rcupdate.h>
105 #include <linux/string.h>
106 #include <linux/uaccess.h>
107 #include <linux/nodemask.h>
108 #include <linux/mempolicy.h>
109 #include <linux/mutex.h>
110 #include <linux/fault-inject.h>
111 #include <linux/rtmutex.h>
112 #include <linux/reciprocal_div.h>
113
114 #include <asm/cacheflush.h>
115 #include <asm/tlbflush.h>
116 #include <asm/page.h>
117
118 /*
119 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
120 * SLAB_RED_ZONE & SLAB_POISON.
121 * 0 for faster, smaller code (especially in the critical paths).
122 *
123 * STATS - 1 to collect stats for /proc/slabinfo.
124 * 0 for faster, smaller code (especially in the critical paths).
125 *
126 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
127 */
128
129 #ifdef CONFIG_DEBUG_SLAB
130 #define DEBUG 1
131 #define STATS 1
132 #define FORCED_DEBUG 1
133 #else
134 #define DEBUG 0
135 #define STATS 0
136 #define FORCED_DEBUG 0
137 #endif
138
139 /* Shouldn't this be in a header file somewhere? */
140 #define BYTES_PER_WORD sizeof(void *)
141
142 #ifndef cache_line_size
143 #define cache_line_size() L1_CACHE_BYTES
144 #endif
145
146 #ifndef ARCH_KMALLOC_MINALIGN
147 /*
148 * Enforce a minimum alignment for the kmalloc caches.
149 * Usually, the kmalloc caches are cache_line_size() aligned, except when
150 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
151 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
152 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
153 * Note that this flag disables some debug features.
154 */
155 #define ARCH_KMALLOC_MINALIGN 0
156 #endif
157
158 #ifndef ARCH_SLAB_MINALIGN
159 /*
160 * Enforce a minimum alignment for all caches.
161 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
162 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
163 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
164 * some debug features.
165 */
166 #define ARCH_SLAB_MINALIGN 0
167 #endif
168
169 #ifndef ARCH_KMALLOC_FLAGS
170 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
171 #endif
172
173 /* Legal flag mask for kmem_cache_create(). */
174 #if DEBUG
175 # define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
176 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
177 SLAB_CACHE_DMA | \
178 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
179 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
180 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
181 #else
182 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
183 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
184 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
185 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
186 #endif
187
188 /*
189 * kmem_bufctl_t:
190 *
191 * Bufctl's are used for linking objs within a slab
192 * linked offsets.
193 *
194 * This implementation relies on "struct page" for locating the cache &
195 * slab an object belongs to.
196 * This allows the bufctl structure to be small (one int), but limits
197 * the number of objects a slab (not a cache) can contain when off-slab
198 * bufctls are used. The limit is the size of the largest general cache
199 * that does not use off-slab slabs.
200 * For 32bit archs with 4 kB pages, is this 56.
201 * This is not serious, as it is only for large objects, when it is unwise
202 * to have too many per slab.
203 * Note: This limit can be raised by introducing a general cache whose size
204 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
205 */
206
207 typedef unsigned int kmem_bufctl_t;
208 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
209 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
210 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
211 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
212
213 /*
214 * struct slab
215 *
216 * Manages the objs in a slab. Placed either at the beginning of mem allocated
217 * for a slab, or allocated from an general cache.
218 * Slabs are chained into three list: fully used, partial, fully free slabs.
219 */
220 struct slab {
221 struct list_head list;
222 unsigned long colouroff;
223 void *s_mem; /* including colour offset */
224 unsigned int inuse; /* num of objs active in slab */
225 kmem_bufctl_t free;
226 unsigned short nodeid;
227 };
228
229 /*
230 * struct slab_rcu
231 *
232 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
233 * arrange for kmem_freepages to be called via RCU. This is useful if
234 * we need to approach a kernel structure obliquely, from its address
235 * obtained without the usual locking. We can lock the structure to
236 * stabilize it and check it's still at the given address, only if we
237 * can be sure that the memory has not been meanwhile reused for some
238 * other kind of object (which our subsystem's lock might corrupt).
239 *
240 * rcu_read_lock before reading the address, then rcu_read_unlock after
241 * taking the spinlock within the structure expected at that address.
242 *
243 * We assume struct slab_rcu can overlay struct slab when destroying.
244 */
245 struct slab_rcu {
246 struct rcu_head head;
247 struct kmem_cache *cachep;
248 void *addr;
249 };
250
251 /*
252 * struct array_cache
253 *
254 * Purpose:
255 * - LIFO ordering, to hand out cache-warm objects from _alloc
256 * - reduce the number of linked list operations
257 * - reduce spinlock operations
258 *
259 * The limit is stored in the per-cpu structure to reduce the data cache
260 * footprint.
261 *
262 */
263 struct array_cache {
264 unsigned int avail;
265 unsigned int limit;
266 unsigned int batchcount;
267 unsigned int touched;
268 spinlock_t lock;
269 void *entry[0]; /*
270 * Must have this definition in here for the proper
271 * alignment of array_cache. Also simplifies accessing
272 * the entries.
273 * [0] is for gcc 2.95. It should really be [].
274 */
275 };
276
277 /*
278 * bootstrap: The caches do not work without cpuarrays anymore, but the
279 * cpuarrays are allocated from the generic caches...
280 */
281 #define BOOT_CPUCACHE_ENTRIES 1
282 struct arraycache_init {
283 struct array_cache cache;
284 void *entries[BOOT_CPUCACHE_ENTRIES];
285 };
286
287 /*
288 * The slab lists for all objects.
289 */
290 struct kmem_list3 {
291 struct list_head slabs_partial; /* partial list first, better asm code */
292 struct list_head slabs_full;
293 struct list_head slabs_free;
294 unsigned long free_objects;
295 unsigned int free_limit;
296 unsigned int colour_next; /* Per-node cache coloring */
297 spinlock_t list_lock;
298 struct array_cache *shared; /* shared per node */
299 struct array_cache **alien; /* on other nodes */
300 unsigned long next_reap; /* updated without locking */
301 int free_touched; /* updated without locking */
302 };
303
304 /*
305 * Need this for bootstrapping a per node allocator.
306 */
307 #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
308 struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
309 #define CACHE_CACHE 0
310 #define SIZE_AC 1
311 #define SIZE_L3 (1 + MAX_NUMNODES)
312
313 static int drain_freelist(struct kmem_cache *cache,
314 struct kmem_list3 *l3, int tofree);
315 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
316 int node);
317 static int enable_cpucache(struct kmem_cache *cachep);
318 static void cache_reap(struct work_struct *unused);
319
320 /*
321 * This function must be completely optimized away if a constant is passed to
322 * it. Mostly the same as what is in linux/slab.h except it returns an index.
323 */
324 static __always_inline int index_of(const size_t size)
325 {
326 extern void __bad_size(void);
327
328 if (__builtin_constant_p(size)) {
329 int i = 0;
330
331 #define CACHE(x) \
332 if (size <=x) \
333 return i; \
334 else \
335 i++;
336 #include "linux/kmalloc_sizes.h"
337 #undef CACHE
338 __bad_size();
339 } else
340 __bad_size();
341 return 0;
342 }
343
344 static int slab_early_init = 1;
345
346 #define INDEX_AC index_of(sizeof(struct arraycache_init))
347 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
348
349 static void kmem_list3_init(struct kmem_list3 *parent)
350 {
351 INIT_LIST_HEAD(&parent->slabs_full);
352 INIT_LIST_HEAD(&parent->slabs_partial);
353 INIT_LIST_HEAD(&parent->slabs_free);
354 parent->shared = NULL;
355 parent->alien = NULL;
356 parent->colour_next = 0;
357 spin_lock_init(&parent->list_lock);
358 parent->free_objects = 0;
359 parent->free_touched = 0;
360 }
361
362 #define MAKE_LIST(cachep, listp, slab, nodeid) \
363 do { \
364 INIT_LIST_HEAD(listp); \
365 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
366 } while (0)
367
368 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
369 do { \
370 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
371 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
372 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
373 } while (0)
374
375 /*
376 * struct kmem_cache
377 *
378 * manages a cache.
379 */
380
381 struct kmem_cache {
382 /* 1) per-cpu data, touched during every alloc/free */
383 struct array_cache *array[NR_CPUS];
384 /* 2) Cache tunables. Protected by cache_chain_mutex */
385 unsigned int batchcount;
386 unsigned int limit;
387 unsigned int shared;
388
389 unsigned int buffer_size;
390 u32 reciprocal_buffer_size;
391 /* 3) touched by every alloc & free from the backend */
392 struct kmem_list3 *nodelists[MAX_NUMNODES];
393
394 unsigned int flags; /* constant flags */
395 unsigned int num; /* # of objs per slab */
396
397 /* 4) cache_grow/shrink */
398 /* order of pgs per slab (2^n) */
399 unsigned int gfporder;
400
401 /* force GFP flags, e.g. GFP_DMA */
402 gfp_t gfpflags;
403
404 size_t colour; /* cache colouring range */
405 unsigned int colour_off; /* colour offset */
406 struct kmem_cache *slabp_cache;
407 unsigned int slab_size;
408 unsigned int dflags; /* dynamic flags */
409
410 /* constructor func */
411 void (*ctor) (void *, struct kmem_cache *, unsigned long);
412
413 /* de-constructor func */
414 void (*dtor) (void *, struct kmem_cache *, unsigned long);
415
416 /* 5) cache creation/removal */
417 const char *name;
418 struct list_head next;
419
420 /* 6) statistics */
421 #if STATS
422 unsigned long num_active;
423 unsigned long num_allocations;
424 unsigned long high_mark;
425 unsigned long grown;
426 unsigned long reaped;
427 unsigned long errors;
428 unsigned long max_freeable;
429 unsigned long node_allocs;
430 unsigned long node_frees;
431 unsigned long node_overflow;
432 atomic_t allochit;
433 atomic_t allocmiss;
434 atomic_t freehit;
435 atomic_t freemiss;
436 #endif
437 #if DEBUG
438 /*
439 * If debugging is enabled, then the allocator can add additional
440 * fields and/or padding to every object. buffer_size contains the total
441 * object size including these internal fields, the following two
442 * variables contain the offset to the user object and its size.
443 */
444 int obj_offset;
445 int obj_size;
446 #endif
447 };
448
449 #define CFLGS_OFF_SLAB (0x80000000UL)
450 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
451
452 #define BATCHREFILL_LIMIT 16
453 /*
454 * Optimization question: fewer reaps means less probability for unnessary
455 * cpucache drain/refill cycles.
456 *
457 * OTOH the cpuarrays can contain lots of objects,
458 * which could lock up otherwise freeable slabs.
459 */
460 #define REAPTIMEOUT_CPUC (2*HZ)
461 #define REAPTIMEOUT_LIST3 (4*HZ)
462
463 #if STATS
464 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
465 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
466 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
467 #define STATS_INC_GROWN(x) ((x)->grown++)
468 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
469 #define STATS_SET_HIGH(x) \
470 do { \
471 if ((x)->num_active > (x)->high_mark) \
472 (x)->high_mark = (x)->num_active; \
473 } while (0)
474 #define STATS_INC_ERR(x) ((x)->errors++)
475 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
476 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
477 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
478 #define STATS_SET_FREEABLE(x, i) \
479 do { \
480 if ((x)->max_freeable < i) \
481 (x)->max_freeable = i; \
482 } while (0)
483 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
484 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
485 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
486 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
487 #else
488 #define STATS_INC_ACTIVE(x) do { } while (0)
489 #define STATS_DEC_ACTIVE(x) do { } while (0)
490 #define STATS_INC_ALLOCED(x) do { } while (0)
491 #define STATS_INC_GROWN(x) do { } while (0)
492 #define STATS_ADD_REAPED(x,y) do { } while (0)
493 #define STATS_SET_HIGH(x) do { } while (0)
494 #define STATS_INC_ERR(x) do { } while (0)
495 #define STATS_INC_NODEALLOCS(x) do { } while (0)
496 #define STATS_INC_NODEFREES(x) do { } while (0)
497 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
498 #define STATS_SET_FREEABLE(x, i) do { } while (0)
499 #define STATS_INC_ALLOCHIT(x) do { } while (0)
500 #define STATS_INC_ALLOCMISS(x) do { } while (0)
501 #define STATS_INC_FREEHIT(x) do { } while (0)
502 #define STATS_INC_FREEMISS(x) do { } while (0)
503 #endif
504
505 #if DEBUG
506
507 /*
508 * memory layout of objects:
509 * 0 : objp
510 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
511 * the end of an object is aligned with the end of the real
512 * allocation. Catches writes behind the end of the allocation.
513 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
514 * redzone word.
515 * cachep->obj_offset: The real object.
516 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
517 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
518 * [BYTES_PER_WORD long]
519 */
520 static int obj_offset(struct kmem_cache *cachep)
521 {
522 return cachep->obj_offset;
523 }
524
525 static int obj_size(struct kmem_cache *cachep)
526 {
527 return cachep->obj_size;
528 }
529
530 static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
531 {
532 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
533 return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
534 }
535
536 static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
537 {
538 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
539 if (cachep->flags & SLAB_STORE_USER)
540 return (unsigned long *)(objp + cachep->buffer_size -
541 2 * BYTES_PER_WORD);
542 return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
543 }
544
545 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
546 {
547 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
548 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
549 }
550
551 #else
552
553 #define obj_offset(x) 0
554 #define obj_size(cachep) (cachep->buffer_size)
555 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
556 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
557 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
558
559 #endif
560
561 /*
562 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
563 * order.
564 */
565 #if defined(CONFIG_LARGE_ALLOCS)
566 #define MAX_OBJ_ORDER 13 /* up to 32Mb */
567 #define MAX_GFP_ORDER 13 /* up to 32Mb */
568 #elif defined(CONFIG_MMU)
569 #define MAX_OBJ_ORDER 5 /* 32 pages */
570 #define MAX_GFP_ORDER 5 /* 32 pages */
571 #else
572 #define MAX_OBJ_ORDER 8 /* up to 1Mb */
573 #define MAX_GFP_ORDER 8 /* up to 1Mb */
574 #endif
575
576 /*
577 * Do not go above this order unless 0 objects fit into the slab.
578 */
579 #define BREAK_GFP_ORDER_HI 1
580 #define BREAK_GFP_ORDER_LO 0
581 static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
582
583 /*
584 * Functions for storing/retrieving the cachep and or slab from the page
585 * allocator. These are used to find the slab an obj belongs to. With kfree(),
586 * these are used to find the cache which an obj belongs to.
587 */
588 static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
589 {
590 page->lru.next = (struct list_head *)cache;
591 }
592
593 static inline struct kmem_cache *page_get_cache(struct page *page)
594 {
595 if (unlikely(PageCompound(page)))
596 page = (struct page *)page_private(page);
597 BUG_ON(!PageSlab(page));
598 return (struct kmem_cache *)page->lru.next;
599 }
600
601 static inline void page_set_slab(struct page *page, struct slab *slab)
602 {
603 page->lru.prev = (struct list_head *)slab;
604 }
605
606 static inline struct slab *page_get_slab(struct page *page)
607 {
608 if (unlikely(PageCompound(page)))
609 page = (struct page *)page_private(page);
610 BUG_ON(!PageSlab(page));
611 return (struct slab *)page->lru.prev;
612 }
613
614 static inline struct kmem_cache *virt_to_cache(const void *obj)
615 {
616 struct page *page = virt_to_page(obj);
617 return page_get_cache(page);
618 }
619
620 static inline struct slab *virt_to_slab(const void *obj)
621 {
622 struct page *page = virt_to_page(obj);
623 return page_get_slab(page);
624 }
625
626 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
627 unsigned int idx)
628 {
629 return slab->s_mem + cache->buffer_size * idx;
630 }
631
632 /*
633 * We want to avoid an expensive divide : (offset / cache->buffer_size)
634 * Using the fact that buffer_size is a constant for a particular cache,
635 * we can replace (offset / cache->buffer_size) by
636 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
637 */
638 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
639 const struct slab *slab, void *obj)
640 {
641 u32 offset = (obj - slab->s_mem);
642 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
643 }
644
645 /*
646 * These are the default caches for kmalloc. Custom caches can have other sizes.
647 */
648 struct cache_sizes malloc_sizes[] = {
649 #define CACHE(x) { .cs_size = (x) },
650 #include <linux/kmalloc_sizes.h>
651 CACHE(ULONG_MAX)
652 #undef CACHE
653 };
654 EXPORT_SYMBOL(malloc_sizes);
655
656 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
657 struct cache_names {
658 char *name;
659 char *name_dma;
660 };
661
662 static struct cache_names __initdata cache_names[] = {
663 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
664 #include <linux/kmalloc_sizes.h>
665 {NULL,}
666 #undef CACHE
667 };
668
669 static struct arraycache_init initarray_cache __initdata =
670 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
671 static struct arraycache_init initarray_generic =
672 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
673
674 /* internal cache of cache description objs */
675 static struct kmem_cache cache_cache = {
676 .batchcount = 1,
677 .limit = BOOT_CPUCACHE_ENTRIES,
678 .shared = 1,
679 .buffer_size = sizeof(struct kmem_cache),
680 .name = "kmem_cache",
681 #if DEBUG
682 .obj_size = sizeof(struct kmem_cache),
683 #endif
684 };
685
686 #define BAD_ALIEN_MAGIC 0x01020304ul
687
688 #ifdef CONFIG_LOCKDEP
689
690 /*
691 * Slab sometimes uses the kmalloc slabs to store the slab headers
692 * for other slabs "off slab".
693 * The locking for this is tricky in that it nests within the locks
694 * of all other slabs in a few places; to deal with this special
695 * locking we put on-slab caches into a separate lock-class.
696 *
697 * We set lock class for alien array caches which are up during init.
698 * The lock annotation will be lost if all cpus of a node goes down and
699 * then comes back up during hotplug
700 */
701 static struct lock_class_key on_slab_l3_key;
702 static struct lock_class_key on_slab_alc_key;
703
704 static inline void init_lock_keys(void)
705
706 {
707 int q;
708 struct cache_sizes *s = malloc_sizes;
709
710 while (s->cs_size != ULONG_MAX) {
711 for_each_node(q) {
712 struct array_cache **alc;
713 int r;
714 struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
715 if (!l3 || OFF_SLAB(s->cs_cachep))
716 continue;
717 lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
718 alc = l3->alien;
719 /*
720 * FIXME: This check for BAD_ALIEN_MAGIC
721 * should go away when common slab code is taught to
722 * work even without alien caches.
723 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
724 * for alloc_alien_cache,
725 */
726 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
727 continue;
728 for_each_node(r) {
729 if (alc[r])
730 lockdep_set_class(&alc[r]->lock,
731 &on_slab_alc_key);
732 }
733 }
734 s++;
735 }
736 }
737 #else
738 static inline void init_lock_keys(void)
739 {
740 }
741 #endif
742
743 /*
744 * 1. Guard access to the cache-chain.
745 * 2. Protect sanity of cpu_online_map against cpu hotplug events
746 */
747 static DEFINE_MUTEX(cache_chain_mutex);
748 static struct list_head cache_chain;
749
750 /*
751 * chicken and egg problem: delay the per-cpu array allocation
752 * until the general caches are up.
753 */
754 static enum {
755 NONE,
756 PARTIAL_AC,
757 PARTIAL_L3,
758 FULL
759 } g_cpucache_up;
760
761 /*
762 * used by boot code to determine if it can use slab based allocator
763 */
764 int slab_is_available(void)
765 {
766 return g_cpucache_up == FULL;
767 }
768
769 static DEFINE_PER_CPU(struct delayed_work, reap_work);
770
771 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
772 {
773 return cachep->array[smp_processor_id()];
774 }
775
776 static inline struct kmem_cache *__find_general_cachep(size_t size,
777 gfp_t gfpflags)
778 {
779 struct cache_sizes *csizep = malloc_sizes;
780
781 #if DEBUG
782 /* This happens if someone tries to call
783 * kmem_cache_create(), or __kmalloc(), before
784 * the generic caches are initialized.
785 */
786 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
787 #endif
788 while (size > csizep->cs_size)
789 csizep++;
790
791 /*
792 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
793 * has cs_{dma,}cachep==NULL. Thus no special case
794 * for large kmalloc calls required.
795 */
796 #ifdef CONFIG_ZONE_DMA
797 if (unlikely(gfpflags & GFP_DMA))
798 return csizep->cs_dmacachep;
799 #endif
800 return csizep->cs_cachep;
801 }
802
803 static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
804 {
805 return __find_general_cachep(size, gfpflags);
806 }
807
808 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
809 {
810 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
811 }
812
813 /*
814 * Calculate the number of objects and left-over bytes for a given buffer size.
815 */
816 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
817 size_t align, int flags, size_t *left_over,
818 unsigned int *num)
819 {
820 int nr_objs;
821 size_t mgmt_size;
822 size_t slab_size = PAGE_SIZE << gfporder;
823
824 /*
825 * The slab management structure can be either off the slab or
826 * on it. For the latter case, the memory allocated for a
827 * slab is used for:
828 *
829 * - The struct slab
830 * - One kmem_bufctl_t for each object
831 * - Padding to respect alignment of @align
832 * - @buffer_size bytes for each object
833 *
834 * If the slab management structure is off the slab, then the
835 * alignment will already be calculated into the size. Because
836 * the slabs are all pages aligned, the objects will be at the
837 * correct alignment when allocated.
838 */
839 if (flags & CFLGS_OFF_SLAB) {
840 mgmt_size = 0;
841 nr_objs = slab_size / buffer_size;
842
843 if (nr_objs > SLAB_LIMIT)
844 nr_objs = SLAB_LIMIT;
845 } else {
846 /*
847 * Ignore padding for the initial guess. The padding
848 * is at most @align-1 bytes, and @buffer_size is at
849 * least @align. In the worst case, this result will
850 * be one greater than the number of objects that fit
851 * into the memory allocation when taking the padding
852 * into account.
853 */
854 nr_objs = (slab_size - sizeof(struct slab)) /
855 (buffer_size + sizeof(kmem_bufctl_t));
856
857 /*
858 * This calculated number will be either the right
859 * amount, or one greater than what we want.
860 */
861 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
862 > slab_size)
863 nr_objs--;
864
865 if (nr_objs > SLAB_LIMIT)
866 nr_objs = SLAB_LIMIT;
867
868 mgmt_size = slab_mgmt_size(nr_objs, align);
869 }
870 *num = nr_objs;
871 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
872 }
873
874 #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
875
876 static void __slab_error(const char *function, struct kmem_cache *cachep,
877 char *msg)
878 {
879 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
880 function, cachep->name, msg);
881 dump_stack();
882 }
883
884 /*
885 * By default on NUMA we use alien caches to stage the freeing of
886 * objects allocated from other nodes. This causes massive memory
887 * inefficiencies when using fake NUMA setup to split memory into a
888 * large number of small nodes, so it can be disabled on the command
889 * line
890 */
891
892 static int use_alien_caches __read_mostly = 1;
893 static int __init noaliencache_setup(char *s)
894 {
895 use_alien_caches = 0;
896 return 1;
897 }
898 __setup("noaliencache", noaliencache_setup);
899
900 #ifdef CONFIG_NUMA
901 /*
902 * Special reaping functions for NUMA systems called from cache_reap().
903 * These take care of doing round robin flushing of alien caches (containing
904 * objects freed on different nodes from which they were allocated) and the
905 * flushing of remote pcps by calling drain_node_pages.
906 */
907 static DEFINE_PER_CPU(unsigned long, reap_node);
908
909 static void init_reap_node(int cpu)
910 {
911 int node;
912
913 node = next_node(cpu_to_node(cpu), node_online_map);
914 if (node == MAX_NUMNODES)
915 node = first_node(node_online_map);
916
917 per_cpu(reap_node, cpu) = node;
918 }
919
920 static void next_reap_node(void)
921 {
922 int node = __get_cpu_var(reap_node);
923
924 /*
925 * Also drain per cpu pages on remote zones
926 */
927 if (node != numa_node_id())
928 drain_node_pages(node);
929
930 node = next_node(node, node_online_map);
931 if (unlikely(node >= MAX_NUMNODES))
932 node = first_node(node_online_map);
933 __get_cpu_var(reap_node) = node;
934 }
935
936 #else
937 #define init_reap_node(cpu) do { } while (0)
938 #define next_reap_node(void) do { } while (0)
939 #endif
940
941 /*
942 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
943 * via the workqueue/eventd.
944 * Add the CPU number into the expiration time to minimize the possibility of
945 * the CPUs getting into lockstep and contending for the global cache chain
946 * lock.
947 */
948 static void __devinit start_cpu_timer(int cpu)
949 {
950 struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
951
952 /*
953 * When this gets called from do_initcalls via cpucache_init(),
954 * init_workqueues() has already run, so keventd will be setup
955 * at that time.
956 */
957 if (keventd_up() && reap_work->work.func == NULL) {
958 init_reap_node(cpu);
959 INIT_DELAYED_WORK(reap_work, cache_reap);
960 schedule_delayed_work_on(cpu, reap_work,
961 __round_jiffies_relative(HZ, cpu));
962 }
963 }
964
965 static struct array_cache *alloc_arraycache(int node, int entries,
966 int batchcount)
967 {
968 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
969 struct array_cache *nc = NULL;
970
971 nc = kmalloc_node(memsize, GFP_KERNEL, node);
972 if (nc) {
973 nc->avail = 0;
974 nc->limit = entries;
975 nc->batchcount = batchcount;
976 nc->touched = 0;
977 spin_lock_init(&nc->lock);
978 }
979 return nc;
980 }
981
982 /*
983 * Transfer objects in one arraycache to another.
984 * Locking must be handled by the caller.
985 *
986 * Return the number of entries transferred.
987 */
988 static int transfer_objects(struct array_cache *to,
989 struct array_cache *from, unsigned int max)
990 {
991 /* Figure out how many entries to transfer */
992 int nr = min(min(from->avail, max), to->limit - to->avail);
993
994 if (!nr)
995 return 0;
996
997 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
998 sizeof(void *) *nr);
999
1000 from->avail -= nr;
1001 to->avail += nr;
1002 to->touched = 1;
1003 return nr;
1004 }
1005
1006 #ifndef CONFIG_NUMA
1007
1008 #define drain_alien_cache(cachep, alien) do { } while (0)
1009 #define reap_alien(cachep, l3) do { } while (0)
1010
1011 static inline struct array_cache **alloc_alien_cache(int node, int limit)
1012 {
1013 return (struct array_cache **)BAD_ALIEN_MAGIC;
1014 }
1015
1016 static inline void free_alien_cache(struct array_cache **ac_ptr)
1017 {
1018 }
1019
1020 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1021 {
1022 return 0;
1023 }
1024
1025 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1026 gfp_t flags)
1027 {
1028 return NULL;
1029 }
1030
1031 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1032 gfp_t flags, int nodeid)
1033 {
1034 return NULL;
1035 }
1036
1037 #else /* CONFIG_NUMA */
1038
1039 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1040 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1041
1042 static struct array_cache **alloc_alien_cache(int node, int limit)
1043 {
1044 struct array_cache **ac_ptr;
1045 int memsize = sizeof(void *) * nr_node_ids;
1046 int i;
1047
1048 if (limit > 1)
1049 limit = 12;
1050 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
1051 if (ac_ptr) {
1052 for_each_node(i) {
1053 if (i == node || !node_online(i)) {
1054 ac_ptr[i] = NULL;
1055 continue;
1056 }
1057 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
1058 if (!ac_ptr[i]) {
1059 for (i--; i <= 0; i--)
1060 kfree(ac_ptr[i]);
1061 kfree(ac_ptr);
1062 return NULL;
1063 }
1064 }
1065 }
1066 return ac_ptr;
1067 }
1068
1069 static void free_alien_cache(struct array_cache **ac_ptr)
1070 {
1071 int i;
1072
1073 if (!ac_ptr)
1074 return;
1075 for_each_node(i)
1076 kfree(ac_ptr[i]);
1077 kfree(ac_ptr);
1078 }
1079
1080 static void __drain_alien_cache(struct kmem_cache *cachep,
1081 struct array_cache *ac, int node)
1082 {
1083 struct kmem_list3 *rl3 = cachep->nodelists[node];
1084
1085 if (ac->avail) {
1086 spin_lock(&rl3->list_lock);
1087 /*
1088 * Stuff objects into the remote nodes shared array first.
1089 * That way we could avoid the overhead of putting the objects
1090 * into the free lists and getting them back later.
1091 */
1092 if (rl3->shared)
1093 transfer_objects(rl3->shared, ac, ac->limit);
1094
1095 free_block(cachep, ac->entry, ac->avail, node);
1096 ac->avail = 0;
1097 spin_unlock(&rl3->list_lock);
1098 }
1099 }
1100
1101 /*
1102 * Called from cache_reap() to regularly drain alien caches round robin.
1103 */
1104 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1105 {
1106 int node = __get_cpu_var(reap_node);
1107
1108 if (l3->alien) {
1109 struct array_cache *ac = l3->alien[node];
1110
1111 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1112 __drain_alien_cache(cachep, ac, node);
1113 spin_unlock_irq(&ac->lock);
1114 }
1115 }
1116 }
1117
1118 static void drain_alien_cache(struct kmem_cache *cachep,
1119 struct array_cache **alien)
1120 {
1121 int i = 0;
1122 struct array_cache *ac;
1123 unsigned long flags;
1124
1125 for_each_online_node(i) {
1126 ac = alien[i];
1127 if (ac) {
1128 spin_lock_irqsave(&ac->lock, flags);
1129 __drain_alien_cache(cachep, ac, i);
1130 spin_unlock_irqrestore(&ac->lock, flags);
1131 }
1132 }
1133 }
1134
1135 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1136 {
1137 struct slab *slabp = virt_to_slab(objp);
1138 int nodeid = slabp->nodeid;
1139 struct kmem_list3 *l3;
1140 struct array_cache *alien = NULL;
1141 int node;
1142
1143 node = numa_node_id();
1144
1145 /*
1146 * Make sure we are not freeing a object from another node to the array
1147 * cache on this cpu.
1148 */
1149 if (likely(slabp->nodeid == node))
1150 return 0;
1151
1152 l3 = cachep->nodelists[node];
1153 STATS_INC_NODEFREES(cachep);
1154 if (l3->alien && l3->alien[nodeid]) {
1155 alien = l3->alien[nodeid];
1156 spin_lock(&alien->lock);
1157 if (unlikely(alien->avail == alien->limit)) {
1158 STATS_INC_ACOVERFLOW(cachep);
1159 __drain_alien_cache(cachep, alien, nodeid);
1160 }
1161 alien->entry[alien->avail++] = objp;
1162 spin_unlock(&alien->lock);
1163 } else {
1164 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1165 free_block(cachep, &objp, 1, nodeid);
1166 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1167 }
1168 return 1;
1169 }
1170 #endif
1171
1172 static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1173 unsigned long action, void *hcpu)
1174 {
1175 long cpu = (long)hcpu;
1176 struct kmem_cache *cachep;
1177 struct kmem_list3 *l3 = NULL;
1178 int node = cpu_to_node(cpu);
1179 int memsize = sizeof(struct kmem_list3);
1180
1181 switch (action) {
1182 case CPU_UP_PREPARE:
1183 mutex_lock(&cache_chain_mutex);
1184 /*
1185 * We need to do this right in the beginning since
1186 * alloc_arraycache's are going to use this list.
1187 * kmalloc_node allows us to add the slab to the right
1188 * kmem_list3 and not this cpu's kmem_list3
1189 */
1190
1191 list_for_each_entry(cachep, &cache_chain, next) {
1192 /*
1193 * Set up the size64 kmemlist for cpu before we can
1194 * begin anything. Make sure some other cpu on this
1195 * node has not already allocated this
1196 */
1197 if (!cachep->nodelists[node]) {
1198 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1199 if (!l3)
1200 goto bad;
1201 kmem_list3_init(l3);
1202 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1203 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1204
1205 /*
1206 * The l3s don't come and go as CPUs come and
1207 * go. cache_chain_mutex is sufficient
1208 * protection here.
1209 */
1210 cachep->nodelists[node] = l3;
1211 }
1212
1213 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1214 cachep->nodelists[node]->free_limit =
1215 (1 + nr_cpus_node(node)) *
1216 cachep->batchcount + cachep->num;
1217 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1218 }
1219
1220 /*
1221 * Now we can go ahead with allocating the shared arrays and
1222 * array caches
1223 */
1224 list_for_each_entry(cachep, &cache_chain, next) {
1225 struct array_cache *nc;
1226 struct array_cache *shared = NULL;
1227 struct array_cache **alien = NULL;
1228
1229 nc = alloc_arraycache(node, cachep->limit,
1230 cachep->batchcount);
1231 if (!nc)
1232 goto bad;
1233 if (cachep->shared) {
1234 shared = alloc_arraycache(node,
1235 cachep->shared * cachep->batchcount,
1236 0xbaadf00d);
1237 if (!shared)
1238 goto bad;
1239 }
1240 if (use_alien_caches) {
1241 alien = alloc_alien_cache(node, cachep->limit);
1242 if (!alien)
1243 goto bad;
1244 }
1245 cachep->array[cpu] = nc;
1246 l3 = cachep->nodelists[node];
1247 BUG_ON(!l3);
1248
1249 spin_lock_irq(&l3->list_lock);
1250 if (!l3->shared) {
1251 /*
1252 * We are serialised from CPU_DEAD or
1253 * CPU_UP_CANCELLED by the cpucontrol lock
1254 */
1255 l3->shared = shared;
1256 shared = NULL;
1257 }
1258 #ifdef CONFIG_NUMA
1259 if (!l3->alien) {
1260 l3->alien = alien;
1261 alien = NULL;
1262 }
1263 #endif
1264 spin_unlock_irq(&l3->list_lock);
1265 kfree(shared);
1266 free_alien_cache(alien);
1267 }
1268 break;
1269 case CPU_ONLINE:
1270 mutex_unlock(&cache_chain_mutex);
1271 start_cpu_timer(cpu);
1272 break;
1273 #ifdef CONFIG_HOTPLUG_CPU
1274 case CPU_DOWN_PREPARE:
1275 mutex_lock(&cache_chain_mutex);
1276 break;
1277 case CPU_DOWN_FAILED:
1278 mutex_unlock(&cache_chain_mutex);
1279 break;
1280 case CPU_DEAD:
1281 /*
1282 * Even if all the cpus of a node are down, we don't free the
1283 * kmem_list3 of any cache. This to avoid a race between
1284 * cpu_down, and a kmalloc allocation from another cpu for
1285 * memory from the node of the cpu going down. The list3
1286 * structure is usually allocated from kmem_cache_create() and
1287 * gets destroyed at kmem_cache_destroy().
1288 */
1289 /* fall thru */
1290 #endif
1291 case CPU_UP_CANCELED:
1292 list_for_each_entry(cachep, &cache_chain, next) {
1293 struct array_cache *nc;
1294 struct array_cache *shared;
1295 struct array_cache **alien;
1296 cpumask_t mask;
1297
1298 mask = node_to_cpumask(node);
1299 /* cpu is dead; no one can alloc from it. */
1300 nc = cachep->array[cpu];
1301 cachep->array[cpu] = NULL;
1302 l3 = cachep->nodelists[node];
1303
1304 if (!l3)
1305 goto free_array_cache;
1306
1307 spin_lock_irq(&l3->list_lock);
1308
1309 /* Free limit for this kmem_list3 */
1310 l3->free_limit -= cachep->batchcount;
1311 if (nc)
1312 free_block(cachep, nc->entry, nc->avail, node);
1313
1314 if (!cpus_empty(mask)) {
1315 spin_unlock_irq(&l3->list_lock);
1316 goto free_array_cache;
1317 }
1318
1319 shared = l3->shared;
1320 if (shared) {
1321 free_block(cachep, shared->entry,
1322 shared->avail, node);
1323 l3->shared = NULL;
1324 }
1325
1326 alien = l3->alien;
1327 l3->alien = NULL;
1328
1329 spin_unlock_irq(&l3->list_lock);
1330
1331 kfree(shared);
1332 if (alien) {
1333 drain_alien_cache(cachep, alien);
1334 free_alien_cache(alien);
1335 }
1336 free_array_cache:
1337 kfree(nc);
1338 }
1339 /*
1340 * In the previous loop, all the objects were freed to
1341 * the respective cache's slabs, now we can go ahead and
1342 * shrink each nodelist to its limit.
1343 */
1344 list_for_each_entry(cachep, &cache_chain, next) {
1345 l3 = cachep->nodelists[node];
1346 if (!l3)
1347 continue;
1348 drain_freelist(cachep, l3, l3->free_objects);
1349 }
1350 mutex_unlock(&cache_chain_mutex);
1351 break;
1352 }
1353 return NOTIFY_OK;
1354 bad:
1355 return NOTIFY_BAD;
1356 }
1357
1358 static struct notifier_block __cpuinitdata cpucache_notifier = {
1359 &cpuup_callback, NULL, 0
1360 };
1361
1362 /*
1363 * swap the static kmem_list3 with kmalloced memory
1364 */
1365 static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1366 int nodeid)
1367 {
1368 struct kmem_list3 *ptr;
1369
1370 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1371 BUG_ON(!ptr);
1372
1373 local_irq_disable();
1374 memcpy(ptr, list, sizeof(struct kmem_list3));
1375 /*
1376 * Do not assume that spinlocks can be initialized via memcpy:
1377 */
1378 spin_lock_init(&ptr->list_lock);
1379
1380 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1381 cachep->nodelists[nodeid] = ptr;
1382 local_irq_enable();
1383 }
1384
1385 /*
1386 * Initialisation. Called after the page allocator have been initialised and
1387 * before smp_init().
1388 */
1389 void __init kmem_cache_init(void)
1390 {
1391 size_t left_over;
1392 struct cache_sizes *sizes;
1393 struct cache_names *names;
1394 int i;
1395 int order;
1396 int node;
1397
1398 if (num_possible_nodes() == 1)
1399 use_alien_caches = 0;
1400
1401 for (i = 0; i < NUM_INIT_LISTS; i++) {
1402 kmem_list3_init(&initkmem_list3[i]);
1403 if (i < MAX_NUMNODES)
1404 cache_cache.nodelists[i] = NULL;
1405 }
1406
1407 /*
1408 * Fragmentation resistance on low memory - only use bigger
1409 * page orders on machines with more than 32MB of memory.
1410 */
1411 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1412 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1413
1414 /* Bootstrap is tricky, because several objects are allocated
1415 * from caches that do not exist yet:
1416 * 1) initialize the cache_cache cache: it contains the struct
1417 * kmem_cache structures of all caches, except cache_cache itself:
1418 * cache_cache is statically allocated.
1419 * Initially an __init data area is used for the head array and the
1420 * kmem_list3 structures, it's replaced with a kmalloc allocated
1421 * array at the end of the bootstrap.
1422 * 2) Create the first kmalloc cache.
1423 * The struct kmem_cache for the new cache is allocated normally.
1424 * An __init data area is used for the head array.
1425 * 3) Create the remaining kmalloc caches, with minimally sized
1426 * head arrays.
1427 * 4) Replace the __init data head arrays for cache_cache and the first
1428 * kmalloc cache with kmalloc allocated arrays.
1429 * 5) Replace the __init data for kmem_list3 for cache_cache and
1430 * the other cache's with kmalloc allocated memory.
1431 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1432 */
1433
1434 node = numa_node_id();
1435
1436 /* 1) create the cache_cache */
1437 INIT_LIST_HEAD(&cache_chain);
1438 list_add(&cache_cache.next, &cache_chain);
1439 cache_cache.colour_off = cache_line_size();
1440 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1441 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE];
1442
1443 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1444 cache_line_size());
1445 cache_cache.reciprocal_buffer_size =
1446 reciprocal_value(cache_cache.buffer_size);
1447
1448 for (order = 0; order < MAX_ORDER; order++) {
1449 cache_estimate(order, cache_cache.buffer_size,
1450 cache_line_size(), 0, &left_over, &cache_cache.num);
1451 if (cache_cache.num)
1452 break;
1453 }
1454 BUG_ON(!cache_cache.num);
1455 cache_cache.gfporder = order;
1456 cache_cache.colour = left_over / cache_cache.colour_off;
1457 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1458 sizeof(struct slab), cache_line_size());
1459
1460 /* 2+3) create the kmalloc caches */
1461 sizes = malloc_sizes;
1462 names = cache_names;
1463
1464 /*
1465 * Initialize the caches that provide memory for the array cache and the
1466 * kmem_list3 structures first. Without this, further allocations will
1467 * bug.
1468 */
1469
1470 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1471 sizes[INDEX_AC].cs_size,
1472 ARCH_KMALLOC_MINALIGN,
1473 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1474 NULL, NULL);
1475
1476 if (INDEX_AC != INDEX_L3) {
1477 sizes[INDEX_L3].cs_cachep =
1478 kmem_cache_create(names[INDEX_L3].name,
1479 sizes[INDEX_L3].cs_size,
1480 ARCH_KMALLOC_MINALIGN,
1481 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1482 NULL, NULL);
1483 }
1484
1485 slab_early_init = 0;
1486
1487 while (sizes->cs_size != ULONG_MAX) {
1488 /*
1489 * For performance, all the general caches are L1 aligned.
1490 * This should be particularly beneficial on SMP boxes, as it
1491 * eliminates "false sharing".
1492 * Note for systems short on memory removing the alignment will
1493 * allow tighter packing of the smaller caches.
1494 */
1495 if (!sizes->cs_cachep) {
1496 sizes->cs_cachep = kmem_cache_create(names->name,
1497 sizes->cs_size,
1498 ARCH_KMALLOC_MINALIGN,
1499 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1500 NULL, NULL);
1501 }
1502 #ifdef CONFIG_ZONE_DMA
1503 sizes->cs_dmacachep = kmem_cache_create(
1504 names->name_dma,
1505 sizes->cs_size,
1506 ARCH_KMALLOC_MINALIGN,
1507 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1508 SLAB_PANIC,
1509 NULL, NULL);
1510 #endif
1511 sizes++;
1512 names++;
1513 }
1514 /* 4) Replace the bootstrap head arrays */
1515 {
1516 struct array_cache *ptr;
1517
1518 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1519
1520 local_irq_disable();
1521 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1522 memcpy(ptr, cpu_cache_get(&cache_cache),
1523 sizeof(struct arraycache_init));
1524 /*
1525 * Do not assume that spinlocks can be initialized via memcpy:
1526 */
1527 spin_lock_init(&ptr->lock);
1528
1529 cache_cache.array[smp_processor_id()] = ptr;
1530 local_irq_enable();
1531
1532 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1533
1534 local_irq_disable();
1535 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1536 != &initarray_generic.cache);
1537 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1538 sizeof(struct arraycache_init));
1539 /*
1540 * Do not assume that spinlocks can be initialized via memcpy:
1541 */
1542 spin_lock_init(&ptr->lock);
1543
1544 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1545 ptr;
1546 local_irq_enable();
1547 }
1548 /* 5) Replace the bootstrap kmem_list3's */
1549 {
1550 int nid;
1551
1552 /* Replace the static kmem_list3 structures for the boot cpu */
1553 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], node);
1554
1555 for_each_online_node(nid) {
1556 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1557 &initkmem_list3[SIZE_AC + nid], nid);
1558
1559 if (INDEX_AC != INDEX_L3) {
1560 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1561 &initkmem_list3[SIZE_L3 + nid], nid);
1562 }
1563 }
1564 }
1565
1566 /* 6) resize the head arrays to their final sizes */
1567 {
1568 struct kmem_cache *cachep;
1569 mutex_lock(&cache_chain_mutex);
1570 list_for_each_entry(cachep, &cache_chain, next)
1571 if (enable_cpucache(cachep))
1572 BUG();
1573 mutex_unlock(&cache_chain_mutex);
1574 }
1575
1576 /* Annotate slab for lockdep -- annotate the malloc caches */
1577 init_lock_keys();
1578
1579
1580 /* Done! */
1581 g_cpucache_up = FULL;
1582
1583 /*
1584 * Register a cpu startup notifier callback that initializes
1585 * cpu_cache_get for all new cpus
1586 */
1587 register_cpu_notifier(&cpucache_notifier);
1588
1589 /*
1590 * The reap timers are started later, with a module init call: That part
1591 * of the kernel is not yet operational.
1592 */
1593 }
1594
1595 static int __init cpucache_init(void)
1596 {
1597 int cpu;
1598
1599 /*
1600 * Register the timers that return unneeded pages to the page allocator
1601 */
1602 for_each_online_cpu(cpu)
1603 start_cpu_timer(cpu);
1604 return 0;
1605 }
1606 __initcall(cpucache_init);
1607
1608 /*
1609 * Interface to system's page allocator. No need to hold the cache-lock.
1610 *
1611 * If we requested dmaable memory, we will get it. Even if we
1612 * did not request dmaable memory, we might get it, but that
1613 * would be relatively rare and ignorable.
1614 */
1615 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1616 {
1617 struct page *page;
1618 int nr_pages;
1619 int i;
1620
1621 #ifndef CONFIG_MMU
1622 /*
1623 * Nommu uses slab's for process anonymous memory allocations, and thus
1624 * requires __GFP_COMP to properly refcount higher order allocations
1625 */
1626 flags |= __GFP_COMP;
1627 #endif
1628
1629 flags |= cachep->gfpflags;
1630
1631 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1632 if (!page)
1633 return NULL;
1634
1635 nr_pages = (1 << cachep->gfporder);
1636 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1637 add_zone_page_state(page_zone(page),
1638 NR_SLAB_RECLAIMABLE, nr_pages);
1639 else
1640 add_zone_page_state(page_zone(page),
1641 NR_SLAB_UNRECLAIMABLE, nr_pages);
1642 for (i = 0; i < nr_pages; i++)
1643 __SetPageSlab(page + i);
1644 return page_address(page);
1645 }
1646
1647 /*
1648 * Interface to system's page release.
1649 */
1650 static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1651 {
1652 unsigned long i = (1 << cachep->gfporder);
1653 struct page *page = virt_to_page(addr);
1654 const unsigned long nr_freed = i;
1655
1656 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1657 sub_zone_page_state(page_zone(page),
1658 NR_SLAB_RECLAIMABLE, nr_freed);
1659 else
1660 sub_zone_page_state(page_zone(page),
1661 NR_SLAB_UNRECLAIMABLE, nr_freed);
1662 while (i--) {
1663 BUG_ON(!PageSlab(page));
1664 __ClearPageSlab(page);
1665 page++;
1666 }
1667 if (current->reclaim_state)
1668 current->reclaim_state->reclaimed_slab += nr_freed;
1669 free_pages((unsigned long)addr, cachep->gfporder);
1670 }
1671
1672 static void kmem_rcu_free(struct rcu_head *head)
1673 {
1674 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1675 struct kmem_cache *cachep = slab_rcu->cachep;
1676
1677 kmem_freepages(cachep, slab_rcu->addr);
1678 if (OFF_SLAB(cachep))
1679 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1680 }
1681
1682 #if DEBUG
1683
1684 #ifdef CONFIG_DEBUG_PAGEALLOC
1685 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1686 unsigned long caller)
1687 {
1688 int size = obj_size(cachep);
1689
1690 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1691
1692 if (size < 5 * sizeof(unsigned long))
1693 return;
1694
1695 *addr++ = 0x12345678;
1696 *addr++ = caller;
1697 *addr++ = smp_processor_id();
1698 size -= 3 * sizeof(unsigned long);
1699 {
1700 unsigned long *sptr = &caller;
1701 unsigned long svalue;
1702
1703 while (!kstack_end(sptr)) {
1704 svalue = *sptr++;
1705 if (kernel_text_address(svalue)) {
1706 *addr++ = svalue;
1707 size -= sizeof(unsigned long);
1708 if (size <= sizeof(unsigned long))
1709 break;
1710 }
1711 }
1712
1713 }
1714 *addr++ = 0x87654321;
1715 }
1716 #endif
1717
1718 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1719 {
1720 int size = obj_size(cachep);
1721 addr = &((char *)addr)[obj_offset(cachep)];
1722
1723 memset(addr, val, size);
1724 *(unsigned char *)(addr + size - 1) = POISON_END;
1725 }
1726
1727 static void dump_line(char *data, int offset, int limit)
1728 {
1729 int i;
1730 unsigned char error = 0;
1731 int bad_count = 0;
1732
1733 printk(KERN_ERR "%03x:", offset);
1734 for (i = 0; i < limit; i++) {
1735 if (data[offset + i] != POISON_FREE) {
1736 error = data[offset + i];
1737 bad_count++;
1738 }
1739 printk(" %02x", (unsigned char)data[offset + i]);
1740 }
1741 printk("\n");
1742
1743 if (bad_count == 1) {
1744 error ^= POISON_FREE;
1745 if (!(error & (error - 1))) {
1746 printk(KERN_ERR "Single bit error detected. Probably "
1747 "bad RAM.\n");
1748 #ifdef CONFIG_X86
1749 printk(KERN_ERR "Run memtest86+ or a similar memory "
1750 "test tool.\n");
1751 #else
1752 printk(KERN_ERR "Run a memory test tool.\n");
1753 #endif
1754 }
1755 }
1756 }
1757 #endif
1758
1759 #if DEBUG
1760
1761 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1762 {
1763 int i, size;
1764 char *realobj;
1765
1766 if (cachep->flags & SLAB_RED_ZONE) {
1767 printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
1768 *dbg_redzone1(cachep, objp),
1769 *dbg_redzone2(cachep, objp));
1770 }
1771
1772 if (cachep->flags & SLAB_STORE_USER) {
1773 printk(KERN_ERR "Last user: [<%p>]",
1774 *dbg_userword(cachep, objp));
1775 print_symbol("(%s)",
1776 (unsigned long)*dbg_userword(cachep, objp));
1777 printk("\n");
1778 }
1779 realobj = (char *)objp + obj_offset(cachep);
1780 size = obj_size(cachep);
1781 for (i = 0; i < size && lines; i += 16, lines--) {
1782 int limit;
1783 limit = 16;
1784 if (i + limit > size)
1785 limit = size - i;
1786 dump_line(realobj, i, limit);
1787 }
1788 }
1789
1790 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1791 {
1792 char *realobj;
1793 int size, i;
1794 int lines = 0;
1795
1796 realobj = (char *)objp + obj_offset(cachep);
1797 size = obj_size(cachep);
1798
1799 for (i = 0; i < size; i++) {
1800 char exp = POISON_FREE;
1801 if (i == size - 1)
1802 exp = POISON_END;
1803 if (realobj[i] != exp) {
1804 int limit;
1805 /* Mismatch ! */
1806 /* Print header */
1807 if (lines == 0) {
1808 printk(KERN_ERR
1809 "Slab corruption: %s start=%p, len=%d\n",
1810 cachep->name, realobj, size);
1811 print_objinfo(cachep, objp, 0);
1812 }
1813 /* Hexdump the affected line */
1814 i = (i / 16) * 16;
1815 limit = 16;
1816 if (i + limit > size)
1817 limit = size - i;
1818 dump_line(realobj, i, limit);
1819 i += 16;
1820 lines++;
1821 /* Limit to 5 lines */
1822 if (lines > 5)
1823 break;
1824 }
1825 }
1826 if (lines != 0) {
1827 /* Print some data about the neighboring objects, if they
1828 * exist:
1829 */
1830 struct slab *slabp = virt_to_slab(objp);
1831 unsigned int objnr;
1832
1833 objnr = obj_to_index(cachep, slabp, objp);
1834 if (objnr) {
1835 objp = index_to_obj(cachep, slabp, objnr - 1);
1836 realobj = (char *)objp + obj_offset(cachep);
1837 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1838 realobj, size);
1839 print_objinfo(cachep, objp, 2);
1840 }
1841 if (objnr + 1 < cachep->num) {
1842 objp = index_to_obj(cachep, slabp, objnr + 1);
1843 realobj = (char *)objp + obj_offset(cachep);
1844 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1845 realobj, size);
1846 print_objinfo(cachep, objp, 2);
1847 }
1848 }
1849 }
1850 #endif
1851
1852 #if DEBUG
1853 /**
1854 * slab_destroy_objs - destroy a slab and its objects
1855 * @cachep: cache pointer being destroyed
1856 * @slabp: slab pointer being destroyed
1857 *
1858 * Call the registered destructor for each object in a slab that is being
1859 * destroyed.
1860 */
1861 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1862 {
1863 int i;
1864 for (i = 0; i < cachep->num; i++) {
1865 void *objp = index_to_obj(cachep, slabp, i);
1866
1867 if (cachep->flags & SLAB_POISON) {
1868 #ifdef CONFIG_DEBUG_PAGEALLOC
1869 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1870 OFF_SLAB(cachep))
1871 kernel_map_pages(virt_to_page(objp),
1872 cachep->buffer_size / PAGE_SIZE, 1);
1873 else
1874 check_poison_obj(cachep, objp);
1875 #else
1876 check_poison_obj(cachep, objp);
1877 #endif
1878 }
1879 if (cachep->flags & SLAB_RED_ZONE) {
1880 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1881 slab_error(cachep, "start of a freed object "
1882 "was overwritten");
1883 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1884 slab_error(cachep, "end of a freed object "
1885 "was overwritten");
1886 }
1887 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
1888 (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
1889 }
1890 }
1891 #else
1892 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1893 {
1894 if (cachep->dtor) {
1895 int i;
1896 for (i = 0; i < cachep->num; i++) {
1897 void *objp = index_to_obj(cachep, slabp, i);
1898 (cachep->dtor) (objp, cachep, 0);
1899 }
1900 }
1901 }
1902 #endif
1903
1904 /**
1905 * slab_destroy - destroy and release all objects in a slab
1906 * @cachep: cache pointer being destroyed
1907 * @slabp: slab pointer being destroyed
1908 *
1909 * Destroy all the objs in a slab, and release the mem back to the system.
1910 * Before calling the slab must have been unlinked from the cache. The
1911 * cache-lock is not held/needed.
1912 */
1913 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1914 {
1915 void *addr = slabp->s_mem - slabp->colouroff;
1916
1917 slab_destroy_objs(cachep, slabp);
1918 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1919 struct slab_rcu *slab_rcu;
1920
1921 slab_rcu = (struct slab_rcu *)slabp;
1922 slab_rcu->cachep = cachep;
1923 slab_rcu->addr = addr;
1924 call_rcu(&slab_rcu->head, kmem_rcu_free);
1925 } else {
1926 kmem_freepages(cachep, addr);
1927 if (OFF_SLAB(cachep))
1928 kmem_cache_free(cachep->slabp_cache, slabp);
1929 }
1930 }
1931
1932 /*
1933 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1934 * size of kmem_list3.
1935 */
1936 static void set_up_list3s(struct kmem_cache *cachep, int index)
1937 {
1938 int node;
1939
1940 for_each_online_node(node) {
1941 cachep->nodelists[node] = &initkmem_list3[index + node];
1942 cachep->nodelists[node]->next_reap = jiffies +
1943 REAPTIMEOUT_LIST3 +
1944 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1945 }
1946 }
1947
1948 static void __kmem_cache_destroy(struct kmem_cache *cachep)
1949 {
1950 int i;
1951 struct kmem_list3 *l3;
1952
1953 for_each_online_cpu(i)
1954 kfree(cachep->array[i]);
1955
1956 /* NUMA: free the list3 structures */
1957 for_each_online_node(i) {
1958 l3 = cachep->nodelists[i];
1959 if (l3) {
1960 kfree(l3->shared);
1961 free_alien_cache(l3->alien);
1962 kfree(l3);
1963 }
1964 }
1965 kmem_cache_free(&cache_cache, cachep);
1966 }
1967
1968
1969 /**
1970 * calculate_slab_order - calculate size (page order) of slabs
1971 * @cachep: pointer to the cache that is being created
1972 * @size: size of objects to be created in this cache.
1973 * @align: required alignment for the objects.
1974 * @flags: slab allocation flags
1975 *
1976 * Also calculates the number of objects per slab.
1977 *
1978 * This could be made much more intelligent. For now, try to avoid using
1979 * high order pages for slabs. When the gfp() functions are more friendly
1980 * towards high-order requests, this should be changed.
1981 */
1982 static size_t calculate_slab_order(struct kmem_cache *cachep,
1983 size_t size, size_t align, unsigned long flags)
1984 {
1985 unsigned long offslab_limit;
1986 size_t left_over = 0;
1987 int gfporder;
1988
1989 for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
1990 unsigned int num;
1991 size_t remainder;
1992
1993 cache_estimate(gfporder, size, align, flags, &remainder, &num);
1994 if (!num)
1995 continue;
1996
1997 if (flags & CFLGS_OFF_SLAB) {
1998 /*
1999 * Max number of objs-per-slab for caches which
2000 * use off-slab slabs. Needed to avoid a possible
2001 * looping condition in cache_grow().
2002 */
2003 offslab_limit = size - sizeof(struct slab);
2004 offslab_limit /= sizeof(kmem_bufctl_t);
2005
2006 if (num > offslab_limit)
2007 break;
2008 }
2009
2010 /* Found something acceptable - save it away */
2011 cachep->num = num;
2012 cachep->gfporder = gfporder;
2013 left_over = remainder;
2014
2015 /*
2016 * A VFS-reclaimable slab tends to have most allocations
2017 * as GFP_NOFS and we really don't want to have to be allocating
2018 * higher-order pages when we are unable to shrink dcache.
2019 */
2020 if (flags & SLAB_RECLAIM_ACCOUNT)
2021 break;
2022
2023 /*
2024 * Large number of objects is good, but very large slabs are
2025 * currently bad for the gfp()s.
2026 */
2027 if (gfporder >= slab_break_gfp_order)
2028 break;
2029
2030 /*
2031 * Acceptable internal fragmentation?
2032 */
2033 if (left_over * 8 <= (PAGE_SIZE << gfporder))
2034 break;
2035 }
2036 return left_over;
2037 }
2038
2039 static int setup_cpu_cache(struct kmem_cache *cachep)
2040 {
2041 if (g_cpucache_up == FULL)
2042 return enable_cpucache(cachep);
2043
2044 if (g_cpucache_up == NONE) {
2045 /*
2046 * Note: the first kmem_cache_create must create the cache
2047 * that's used by kmalloc(24), otherwise the creation of
2048 * further caches will BUG().
2049 */
2050 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2051
2052 /*
2053 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2054 * the first cache, then we need to set up all its list3s,
2055 * otherwise the creation of further caches will BUG().
2056 */
2057 set_up_list3s(cachep, SIZE_AC);
2058 if (INDEX_AC == INDEX_L3)
2059 g_cpucache_up = PARTIAL_L3;
2060 else
2061 g_cpucache_up = PARTIAL_AC;
2062 } else {
2063 cachep->array[smp_processor_id()] =
2064 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
2065
2066 if (g_cpucache_up == PARTIAL_AC) {
2067 set_up_list3s(cachep, SIZE_L3);
2068 g_cpucache_up = PARTIAL_L3;
2069 } else {
2070 int node;
2071 for_each_online_node(node) {
2072 cachep->nodelists[node] =
2073 kmalloc_node(sizeof(struct kmem_list3),
2074 GFP_KERNEL, node);
2075 BUG_ON(!cachep->nodelists[node]);
2076 kmem_list3_init(cachep->nodelists[node]);
2077 }
2078 }
2079 }
2080 cachep->nodelists[numa_node_id()]->next_reap =
2081 jiffies + REAPTIMEOUT_LIST3 +
2082 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2083
2084 cpu_cache_get(cachep)->avail = 0;
2085 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2086 cpu_cache_get(cachep)->batchcount = 1;
2087 cpu_cache_get(cachep)->touched = 0;
2088 cachep->batchcount = 1;
2089 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2090 return 0;
2091 }
2092
2093 /**
2094 * kmem_cache_create - Create a cache.
2095 * @name: A string which is used in /proc/slabinfo to identify this cache.
2096 * @size: The size of objects to be created in this cache.
2097 * @align: The required alignment for the objects.
2098 * @flags: SLAB flags
2099 * @ctor: A constructor for the objects.
2100 * @dtor: A destructor for the objects.
2101 *
2102 * Returns a ptr to the cache on success, NULL on failure.
2103 * Cannot be called within a int, but can be interrupted.
2104 * The @ctor is run when new pages are allocated by the cache
2105 * and the @dtor is run before the pages are handed back.
2106 *
2107 * @name must be valid until the cache is destroyed. This implies that
2108 * the module calling this has to destroy the cache before getting unloaded.
2109 *
2110 * The flags are
2111 *
2112 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2113 * to catch references to uninitialised memory.
2114 *
2115 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2116 * for buffer overruns.
2117 *
2118 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2119 * cacheline. This can be beneficial if you're counting cycles as closely
2120 * as davem.
2121 */
2122 struct kmem_cache *
2123 kmem_cache_create (const char *name, size_t size, size_t align,
2124 unsigned long flags,
2125 void (*ctor)(void*, struct kmem_cache *, unsigned long),
2126 void (*dtor)(void*, struct kmem_cache *, unsigned long))
2127 {
2128 size_t left_over, slab_size, ralign;
2129 struct kmem_cache *cachep = NULL, *pc;
2130
2131 /*
2132 * Sanity checks... these are all serious usage bugs.
2133 */
2134 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2135 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
2136 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
2137 name);
2138 BUG();
2139 }
2140
2141 /*
2142 * We use cache_chain_mutex to ensure a consistent view of
2143 * cpu_online_map as well. Please see cpuup_callback
2144 */
2145 mutex_lock(&cache_chain_mutex);
2146
2147 list_for_each_entry(pc, &cache_chain, next) {
2148 char tmp;
2149 int res;
2150
2151 /*
2152 * This happens when the module gets unloaded and doesn't
2153 * destroy its slab cache and no-one else reuses the vmalloc
2154 * area of the module. Print a warning.
2155 */
2156 res = probe_kernel_address(pc->name, tmp);
2157 if (res) {
2158 printk("SLAB: cache with size %d has lost its name\n",
2159 pc->buffer_size);
2160 continue;
2161 }
2162
2163 if (!strcmp(pc->name, name)) {
2164 printk("kmem_cache_create: duplicate cache %s\n", name);
2165 dump_stack();
2166 goto oops;
2167 }
2168 }
2169
2170 #if DEBUG
2171 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
2172 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
2173 /* No constructor, but inital state check requested */
2174 printk(KERN_ERR "%s: No con, but init state check "
2175 "requested - %s\n", __FUNCTION__, name);
2176 flags &= ~SLAB_DEBUG_INITIAL;
2177 }
2178 #if FORCED_DEBUG
2179 /*
2180 * Enable redzoning and last user accounting, except for caches with
2181 * large objects, if the increased size would increase the object size
2182 * above the next power of two: caches with object sizes just above a
2183 * power of two have a significant amount of internal fragmentation.
2184 */
2185 if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
2186 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2187 if (!(flags & SLAB_DESTROY_BY_RCU))
2188 flags |= SLAB_POISON;
2189 #endif
2190 if (flags & SLAB_DESTROY_BY_RCU)
2191 BUG_ON(flags & SLAB_POISON);
2192 #endif
2193 if (flags & SLAB_DESTROY_BY_RCU)
2194 BUG_ON(dtor);
2195
2196 /*
2197 * Always checks flags, a caller might be expecting debug support which
2198 * isn't available.
2199 */
2200 BUG_ON(flags & ~CREATE_MASK);
2201
2202 /*
2203 * Check that size is in terms of words. This is needed to avoid
2204 * unaligned accesses for some archs when redzoning is used, and makes
2205 * sure any on-slab bufctl's are also correctly aligned.
2206 */
2207 if (size & (BYTES_PER_WORD - 1)) {
2208 size += (BYTES_PER_WORD - 1);
2209 size &= ~(BYTES_PER_WORD - 1);
2210 }
2211
2212 /* calculate the final buffer alignment: */
2213
2214 /* 1) arch recommendation: can be overridden for debug */
2215 if (flags & SLAB_HWCACHE_ALIGN) {
2216 /*
2217 * Default alignment: as specified by the arch code. Except if
2218 * an object is really small, then squeeze multiple objects into
2219 * one cacheline.
2220 */
2221 ralign = cache_line_size();
2222 while (size <= ralign / 2)
2223 ralign /= 2;
2224 } else {
2225 ralign = BYTES_PER_WORD;
2226 }
2227
2228 /*
2229 * Redzoning and user store require word alignment. Note this will be
2230 * overridden by architecture or caller mandated alignment if either
2231 * is greater than BYTES_PER_WORD.
2232 */
2233 if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER)
2234 ralign = BYTES_PER_WORD;
2235
2236 /* 2) arch mandated alignment */
2237 if (ralign < ARCH_SLAB_MINALIGN) {
2238 ralign = ARCH_SLAB_MINALIGN;
2239 }
2240 /* 3) caller mandated alignment */
2241 if (ralign < align) {
2242 ralign = align;
2243 }
2244 /* disable debug if necessary */
2245 if (ralign > BYTES_PER_WORD)
2246 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2247 /*
2248 * 4) Store it.
2249 */
2250 align = ralign;
2251
2252 /* Get cache's description obj. */
2253 cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
2254 if (!cachep)
2255 goto oops;
2256
2257 #if DEBUG
2258 cachep->obj_size = size;
2259
2260 /*
2261 * Both debugging options require word-alignment which is calculated
2262 * into align above.
2263 */
2264 if (flags & SLAB_RED_ZONE) {
2265 /* add space for red zone words */
2266 cachep->obj_offset += BYTES_PER_WORD;
2267 size += 2 * BYTES_PER_WORD;
2268 }
2269 if (flags & SLAB_STORE_USER) {
2270 /* user store requires one word storage behind the end of
2271 * the real object.
2272 */
2273 size += BYTES_PER_WORD;
2274 }
2275 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2276 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2277 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2278 cachep->obj_offset += PAGE_SIZE - size;
2279 size = PAGE_SIZE;
2280 }
2281 #endif
2282 #endif
2283
2284 /*
2285 * Determine if the slab management is 'on' or 'off' slab.
2286 * (bootstrapping cannot cope with offslab caches so don't do
2287 * it too early on.)
2288 */
2289 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
2290 /*
2291 * Size is large, assume best to place the slab management obj
2292 * off-slab (should allow better packing of objs).
2293 */
2294 flags |= CFLGS_OFF_SLAB;
2295
2296 size = ALIGN(size, align);
2297
2298 left_over = calculate_slab_order(cachep, size, align, flags);
2299
2300 if (!cachep->num) {
2301 printk("kmem_cache_create: couldn't create cache %s.\n", name);
2302 kmem_cache_free(&cache_cache, cachep);
2303 cachep = NULL;
2304 goto oops;
2305 }
2306 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2307 + sizeof(struct slab), align);
2308
2309 /*
2310 * If the slab has been placed off-slab, and we have enough space then
2311 * move it on-slab. This is at the expense of any extra colouring.
2312 */
2313 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2314 flags &= ~CFLGS_OFF_SLAB;
2315 left_over -= slab_size;
2316 }
2317
2318 if (flags & CFLGS_OFF_SLAB) {
2319 /* really off slab. No need for manual alignment */
2320 slab_size =
2321 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2322 }
2323
2324 cachep->colour_off = cache_line_size();
2325 /* Offset must be a multiple of the alignment. */
2326 if (cachep->colour_off < align)
2327 cachep->colour_off = align;
2328 cachep->colour = left_over / cachep->colour_off;
2329 cachep->slab_size = slab_size;
2330 cachep->flags = flags;
2331 cachep->gfpflags = 0;
2332 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2333 cachep->gfpflags |= GFP_DMA;
2334 cachep->buffer_size = size;
2335 cachep->reciprocal_buffer_size = reciprocal_value(size);
2336
2337 if (flags & CFLGS_OFF_SLAB) {
2338 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2339 /*
2340 * This is a possibility for one of the malloc_sizes caches.
2341 * But since we go off slab only for object size greater than
2342 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2343 * this should not happen at all.
2344 * But leave a BUG_ON for some lucky dude.
2345 */
2346 BUG_ON(!cachep->slabp_cache);
2347 }
2348 cachep->ctor = ctor;
2349 cachep->dtor = dtor;
2350 cachep->name = name;
2351
2352 if (setup_cpu_cache(cachep)) {
2353 __kmem_cache_destroy(cachep);
2354 cachep = NULL;
2355 goto oops;
2356 }
2357
2358 /* cache setup completed, link it into the list */
2359 list_add(&cachep->next, &cache_chain);
2360 oops:
2361 if (!cachep && (flags & SLAB_PANIC))
2362 panic("kmem_cache_create(): failed to create slab `%s'\n",
2363 name);
2364 mutex_unlock(&cache_chain_mutex);
2365 return cachep;
2366 }
2367 EXPORT_SYMBOL(kmem_cache_create);
2368
2369 #if DEBUG
2370 static void check_irq_off(void)
2371 {
2372 BUG_ON(!irqs_disabled());
2373 }
2374
2375 static void check_irq_on(void)
2376 {
2377 BUG_ON(irqs_disabled());
2378 }
2379
2380 static void check_spinlock_acquired(struct kmem_cache *cachep)
2381 {
2382 #ifdef CONFIG_SMP
2383 check_irq_off();
2384 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
2385 #endif
2386 }
2387
2388 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2389 {
2390 #ifdef CONFIG_SMP
2391 check_irq_off();
2392 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2393 #endif
2394 }
2395
2396 #else
2397 #define check_irq_off() do { } while(0)
2398 #define check_irq_on() do { } while(0)
2399 #define check_spinlock_acquired(x) do { } while(0)
2400 #define check_spinlock_acquired_node(x, y) do { } while(0)
2401 #endif
2402
2403 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2404 struct array_cache *ac,
2405 int force, int node);
2406
2407 static void do_drain(void *arg)
2408 {
2409 struct kmem_cache *cachep = arg;
2410 struct array_cache *ac;
2411 int node = numa_node_id();
2412
2413 check_irq_off();
2414 ac = cpu_cache_get(cachep);
2415 spin_lock(&cachep->nodelists[node]->list_lock);
2416 free_block(cachep, ac->entry, ac->avail, node);
2417 spin_unlock(&cachep->nodelists[node]->list_lock);
2418 ac->avail = 0;
2419 }
2420
2421 static void drain_cpu_caches(struct kmem_cache *cachep)
2422 {
2423 struct kmem_list3 *l3;
2424 int node;
2425
2426 on_each_cpu(do_drain, cachep, 1, 1);
2427 check_irq_on();
2428 for_each_online_node(node) {
2429 l3 = cachep->nodelists[node];
2430 if (l3 && l3->alien)
2431 drain_alien_cache(cachep, l3->alien);
2432 }
2433
2434 for_each_online_node(node) {
2435 l3 = cachep->nodelists[node];
2436 if (l3)
2437 drain_array(cachep, l3, l3->shared, 1, node);
2438 }
2439 }
2440
2441 /*
2442 * Remove slabs from the list of free slabs.
2443 * Specify the number of slabs to drain in tofree.
2444 *
2445 * Returns the actual number of slabs released.
2446 */
2447 static int drain_freelist(struct kmem_cache *cache,
2448 struct kmem_list3 *l3, int tofree)
2449 {
2450 struct list_head *p;
2451 int nr_freed;
2452 struct slab *slabp;
2453
2454 nr_freed = 0;
2455 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
2456
2457 spin_lock_irq(&l3->list_lock);
2458 p = l3->slabs_free.prev;
2459 if (p == &l3->slabs_free) {
2460 spin_unlock_irq(&l3->list_lock);
2461 goto out;
2462 }
2463
2464 slabp = list_entry(p, struct slab, list);
2465 #if DEBUG
2466 BUG_ON(slabp->inuse);
2467 #endif
2468 list_del(&slabp->list);
2469 /*
2470 * Safe to drop the lock. The slab is no longer linked
2471 * to the cache.
2472 */
2473 l3->free_objects -= cache->num;
2474 spin_unlock_irq(&l3->list_lock);
2475 slab_destroy(cache, slabp);
2476 nr_freed++;
2477 }
2478 out:
2479 return nr_freed;
2480 }
2481
2482 /* Called with cache_chain_mutex held to protect against cpu hotplug */
2483 static int __cache_shrink(struct kmem_cache *cachep)
2484 {
2485 int ret = 0, i = 0;
2486 struct kmem_list3 *l3;
2487
2488 drain_cpu_caches(cachep);
2489
2490 check_irq_on();
2491 for_each_online_node(i) {
2492 l3 = cachep->nodelists[i];
2493 if (!l3)
2494 continue;
2495
2496 drain_freelist(cachep, l3, l3->free_objects);
2497
2498 ret += !list_empty(&l3->slabs_full) ||
2499 !list_empty(&l3->slabs_partial);
2500 }
2501 return (ret ? 1 : 0);
2502 }
2503
2504 /**
2505 * kmem_cache_shrink - Shrink a cache.
2506 * @cachep: The cache to shrink.
2507 *
2508 * Releases as many slabs as possible for a cache.
2509 * To help debugging, a zero exit status indicates all slabs were released.
2510 */
2511 int kmem_cache_shrink(struct kmem_cache *cachep)
2512 {
2513 int ret;
2514 BUG_ON(!cachep || in_interrupt());
2515
2516 mutex_lock(&cache_chain_mutex);
2517 ret = __cache_shrink(cachep);
2518 mutex_unlock(&cache_chain_mutex);
2519 return ret;
2520 }
2521 EXPORT_SYMBOL(kmem_cache_shrink);
2522
2523 /**
2524 * kmem_cache_destroy - delete a cache
2525 * @cachep: the cache to destroy
2526 *
2527 * Remove a &struct kmem_cache object from the slab cache.
2528 *
2529 * It is expected this function will be called by a module when it is
2530 * unloaded. This will remove the cache completely, and avoid a duplicate
2531 * cache being allocated each time a module is loaded and unloaded, if the
2532 * module doesn't have persistent in-kernel storage across loads and unloads.
2533 *
2534 * The cache must be empty before calling this function.
2535 *
2536 * The caller must guarantee that noone will allocate memory from the cache
2537 * during the kmem_cache_destroy().
2538 */
2539 void kmem_cache_destroy(struct kmem_cache *cachep)
2540 {
2541 BUG_ON(!cachep || in_interrupt());
2542
2543 /* Find the cache in the chain of caches. */
2544 mutex_lock(&cache_chain_mutex);
2545 /*
2546 * the chain is never empty, cache_cache is never destroyed
2547 */
2548 list_del(&cachep->next);
2549 if (__cache_shrink(cachep)) {
2550 slab_error(cachep, "Can't free all objects");
2551 list_add(&cachep->next, &cache_chain);
2552 mutex_unlock(&cache_chain_mutex);
2553 return;
2554 }
2555
2556 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2557 synchronize_rcu();
2558
2559 __kmem_cache_destroy(cachep);
2560 mutex_unlock(&cache_chain_mutex);
2561 }
2562 EXPORT_SYMBOL(kmem_cache_destroy);
2563
2564 /*
2565 * Get the memory for a slab management obj.
2566 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2567 * always come from malloc_sizes caches. The slab descriptor cannot
2568 * come from the same cache which is getting created because,
2569 * when we are searching for an appropriate cache for these
2570 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2571 * If we are creating a malloc_sizes cache here it would not be visible to
2572 * kmem_find_general_cachep till the initialization is complete.
2573 * Hence we cannot have slabp_cache same as the original cache.
2574 */
2575 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2576 int colour_off, gfp_t local_flags,
2577 int nodeid)
2578 {
2579 struct slab *slabp;
2580
2581 if (OFF_SLAB(cachep)) {
2582 /* Slab management obj is off-slab. */
2583 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2584 local_flags & ~GFP_THISNODE, nodeid);
2585 if (!slabp)
2586 return NULL;
2587 } else {
2588 slabp = objp + colour_off;
2589 colour_off += cachep->slab_size;
2590 }
2591 slabp->inuse = 0;
2592 slabp->colouroff = colour_off;
2593 slabp->s_mem = objp + colour_off;
2594 slabp->nodeid = nodeid;
2595 return slabp;
2596 }
2597
2598 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2599 {
2600 return (kmem_bufctl_t *) (slabp + 1);
2601 }
2602
2603 static void cache_init_objs(struct kmem_cache *cachep,
2604 struct slab *slabp, unsigned long ctor_flags)
2605 {
2606 int i;
2607
2608 for (i = 0; i < cachep->num; i++) {
2609 void *objp = index_to_obj(cachep, slabp, i);
2610 #if DEBUG
2611 /* need to poison the objs? */
2612 if (cachep->flags & SLAB_POISON)
2613 poison_obj(cachep, objp, POISON_FREE);
2614 if (cachep->flags & SLAB_STORE_USER)
2615 *dbg_userword(cachep, objp) = NULL;
2616
2617 if (cachep->flags & SLAB_RED_ZONE) {
2618 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2619 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2620 }
2621 /*
2622 * Constructors are not allowed to allocate memory from the same
2623 * cache which they are a constructor for. Otherwise, deadlock.
2624 * They must also be threaded.
2625 */
2626 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2627 cachep->ctor(objp + obj_offset(cachep), cachep,
2628 ctor_flags);
2629
2630 if (cachep->flags & SLAB_RED_ZONE) {
2631 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2632 slab_error(cachep, "constructor overwrote the"
2633 " end of an object");
2634 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2635 slab_error(cachep, "constructor overwrote the"
2636 " start of an object");
2637 }
2638 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2639 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2640 kernel_map_pages(virt_to_page(objp),
2641 cachep->buffer_size / PAGE_SIZE, 0);
2642 #else
2643 if (cachep->ctor)
2644 cachep->ctor(objp, cachep, ctor_flags);
2645 #endif
2646 slab_bufctl(slabp)[i] = i + 1;
2647 }
2648 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2649 slabp->free = 0;
2650 }
2651
2652 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2653 {
2654 if (CONFIG_ZONE_DMA_FLAG) {
2655 if (flags & GFP_DMA)
2656 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2657 else
2658 BUG_ON(cachep->gfpflags & GFP_DMA);
2659 }
2660 }
2661
2662 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2663 int nodeid)
2664 {
2665 void *objp = index_to_obj(cachep, slabp, slabp->free);
2666 kmem_bufctl_t next;
2667
2668 slabp->inuse++;
2669 next = slab_bufctl(slabp)[slabp->free];
2670 #if DEBUG
2671 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2672 WARN_ON(slabp->nodeid != nodeid);
2673 #endif
2674 slabp->free = next;
2675
2676 return objp;
2677 }
2678
2679 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2680 void *objp, int nodeid)
2681 {
2682 unsigned int objnr = obj_to_index(cachep, slabp, objp);
2683
2684 #if DEBUG
2685 /* Verify that the slab belongs to the intended node */
2686 WARN_ON(slabp->nodeid != nodeid);
2687
2688 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2689 printk(KERN_ERR "slab: double free detected in cache "
2690 "'%s', objp %p\n", cachep->name, objp);
2691 BUG();
2692 }
2693 #endif
2694 slab_bufctl(slabp)[objnr] = slabp->free;
2695 slabp->free = objnr;
2696 slabp->inuse--;
2697 }
2698
2699 /*
2700 * Map pages beginning at addr to the given cache and slab. This is required
2701 * for the slab allocator to be able to lookup the cache and slab of a
2702 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2703 */
2704 static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2705 void *addr)
2706 {
2707 int nr_pages;
2708 struct page *page;
2709
2710 page = virt_to_page(addr);
2711
2712 nr_pages = 1;
2713 if (likely(!PageCompound(page)))
2714 nr_pages <<= cache->gfporder;
2715
2716 do {
2717 page_set_cache(page, cache);
2718 page_set_slab(page, slab);
2719 page++;
2720 } while (--nr_pages);
2721 }
2722
2723 /*
2724 * Grow (by 1) the number of slabs within a cache. This is called by
2725 * kmem_cache_alloc() when there are no active objs left in a cache.
2726 */
2727 static int cache_grow(struct kmem_cache *cachep,
2728 gfp_t flags, int nodeid, void *objp)
2729 {
2730 struct slab *slabp;
2731 size_t offset;
2732 gfp_t local_flags;
2733 unsigned long ctor_flags;
2734 struct kmem_list3 *l3;
2735
2736 /*
2737 * Be lazy and only check for valid flags here, keeping it out of the
2738 * critical path in kmem_cache_alloc().
2739 */
2740 BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK | __GFP_NO_GROW));
2741 if (flags & __GFP_NO_GROW)
2742 return 0;
2743
2744 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2745 local_flags = (flags & GFP_LEVEL_MASK);
2746 if (!(local_flags & __GFP_WAIT))
2747 /*
2748 * Not allowed to sleep. Need to tell a constructor about
2749 * this - it might need to know...
2750 */
2751 ctor_flags |= SLAB_CTOR_ATOMIC;
2752
2753 /* Take the l3 list lock to change the colour_next on this node */
2754 check_irq_off();
2755 l3 = cachep->nodelists[nodeid];
2756 spin_lock(&l3->list_lock);
2757
2758 /* Get colour for the slab, and cal the next value. */
2759 offset = l3->colour_next;
2760 l3->colour_next++;
2761 if (l3->colour_next >= cachep->colour)
2762 l3->colour_next = 0;
2763 spin_unlock(&l3->list_lock);
2764
2765 offset *= cachep->colour_off;
2766
2767 if (local_flags & __GFP_WAIT)
2768 local_irq_enable();
2769
2770 /*
2771 * The test for missing atomic flag is performed here, rather than
2772 * the more obvious place, simply to reduce the critical path length
2773 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2774 * will eventually be caught here (where it matters).
2775 */
2776 kmem_flagcheck(cachep, flags);
2777
2778 /*
2779 * Get mem for the objs. Attempt to allocate a physical page from
2780 * 'nodeid'.
2781 */
2782 if (!objp)
2783 objp = kmem_getpages(cachep, flags, nodeid);
2784 if (!objp)
2785 goto failed;
2786
2787 /* Get slab management. */
2788 slabp = alloc_slabmgmt(cachep, objp, offset,
2789 local_flags & ~GFP_THISNODE, nodeid);
2790 if (!slabp)
2791 goto opps1;
2792
2793 slabp->nodeid = nodeid;
2794 slab_map_pages(cachep, slabp, objp);
2795
2796 cache_init_objs(cachep, slabp, ctor_flags);
2797
2798 if (local_flags & __GFP_WAIT)
2799 local_irq_disable();
2800 check_irq_off();
2801 spin_lock(&l3->list_lock);
2802
2803 /* Make slab active. */
2804 list_add_tail(&slabp->list, &(l3->slabs_free));
2805 STATS_INC_GROWN(cachep);
2806 l3->free_objects += cachep->num;
2807 spin_unlock(&l3->list_lock);
2808 return 1;
2809 opps1:
2810 kmem_freepages(cachep, objp);
2811 failed:
2812 if (local_flags & __GFP_WAIT)
2813 local_irq_disable();
2814 return 0;
2815 }
2816
2817 #if DEBUG
2818
2819 /*
2820 * Perform extra freeing checks:
2821 * - detect bad pointers.
2822 * - POISON/RED_ZONE checking
2823 * - destructor calls, for caches with POISON+dtor
2824 */
2825 static void kfree_debugcheck(const void *objp)
2826 {
2827 if (!virt_addr_valid(objp)) {
2828 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2829 (unsigned long)objp);
2830 BUG();
2831 }
2832 }
2833
2834 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2835 {
2836 unsigned long redzone1, redzone2;
2837
2838 redzone1 = *dbg_redzone1(cache, obj);
2839 redzone2 = *dbg_redzone2(cache, obj);
2840
2841 /*
2842 * Redzone is ok.
2843 */
2844 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2845 return;
2846
2847 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2848 slab_error(cache, "double free detected");
2849 else
2850 slab_error(cache, "memory outside object was overwritten");
2851
2852 printk(KERN_ERR "%p: redzone 1:0x%lx, redzone 2:0x%lx.\n",
2853 obj, redzone1, redzone2);
2854 }
2855
2856 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2857 void *caller)
2858 {
2859 struct page *page;
2860 unsigned int objnr;
2861 struct slab *slabp;
2862
2863 objp -= obj_offset(cachep);
2864 kfree_debugcheck(objp);
2865 page = virt_to_page(objp);
2866
2867 slabp = page_get_slab(page);
2868
2869 if (cachep->flags & SLAB_RED_ZONE) {
2870 verify_redzone_free(cachep, objp);
2871 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2872 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2873 }
2874 if (cachep->flags & SLAB_STORE_USER)
2875 *dbg_userword(cachep, objp) = caller;
2876
2877 objnr = obj_to_index(cachep, slabp, objp);
2878
2879 BUG_ON(objnr >= cachep->num);
2880 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2881
2882 if (cachep->flags & SLAB_DEBUG_INITIAL) {
2883 /*
2884 * Need to call the slab's constructor so the caller can
2885 * perform a verify of its state (debugging). Called without
2886 * the cache-lock held.
2887 */
2888 cachep->ctor(objp + obj_offset(cachep),
2889 cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
2890 }
2891 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2892 /* we want to cache poison the object,
2893 * call the destruction callback
2894 */
2895 cachep->dtor(objp + obj_offset(cachep), cachep, 0);
2896 }
2897 #ifdef CONFIG_DEBUG_SLAB_LEAK
2898 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2899 #endif
2900 if (cachep->flags & SLAB_POISON) {
2901 #ifdef CONFIG_DEBUG_PAGEALLOC
2902 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2903 store_stackinfo(cachep, objp, (unsigned long)caller);
2904 kernel_map_pages(virt_to_page(objp),
2905 cachep->buffer_size / PAGE_SIZE, 0);
2906 } else {
2907 poison_obj(cachep, objp, POISON_FREE);
2908 }
2909 #else
2910 poison_obj(cachep, objp, POISON_FREE);
2911 #endif
2912 }
2913 return objp;
2914 }
2915
2916 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2917 {
2918 kmem_bufctl_t i;
2919 int entries = 0;
2920
2921 /* Check slab's freelist to see if this obj is there. */
2922 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2923 entries++;
2924 if (entries > cachep->num || i >= cachep->num)
2925 goto bad;
2926 }
2927 if (entries != cachep->num - slabp->inuse) {
2928 bad:
2929 printk(KERN_ERR "slab: Internal list corruption detected in "
2930 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2931 cachep->name, cachep->num, slabp, slabp->inuse);
2932 for (i = 0;
2933 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
2934 i++) {
2935 if (i % 16 == 0)
2936 printk("\n%03x:", i);
2937 printk(" %02x", ((unsigned char *)slabp)[i]);
2938 }
2939 printk("\n");
2940 BUG();
2941 }
2942 }
2943 #else
2944 #define kfree_debugcheck(x) do { } while(0)
2945 #define cache_free_debugcheck(x,objp,z) (objp)
2946 #define check_slabp(x,y) do { } while(0)
2947 #endif
2948
2949 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2950 {
2951 int batchcount;
2952 struct kmem_list3 *l3;
2953 struct array_cache *ac;
2954 int node;
2955
2956 node = numa_node_id();
2957
2958 check_irq_off();
2959 ac = cpu_cache_get(cachep);
2960 retry:
2961 batchcount = ac->batchcount;
2962 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2963 /*
2964 * If there was little recent activity on this cache, then
2965 * perform only a partial refill. Otherwise we could generate
2966 * refill bouncing.
2967 */
2968 batchcount = BATCHREFILL_LIMIT;
2969 }
2970 l3 = cachep->nodelists[node];
2971
2972 BUG_ON(ac->avail > 0 || !l3);
2973 spin_lock(&l3->list_lock);
2974
2975 /* See if we can refill from the shared array */
2976 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2977 goto alloc_done;
2978
2979 while (batchcount > 0) {
2980 struct list_head *entry;
2981 struct slab *slabp;
2982 /* Get slab alloc is to come from. */
2983 entry = l3->slabs_partial.next;
2984 if (entry == &l3->slabs_partial) {
2985 l3->free_touched = 1;
2986 entry = l3->slabs_free.next;
2987 if (entry == &l3->slabs_free)
2988 goto must_grow;
2989 }
2990
2991 slabp = list_entry(entry, struct slab, list);
2992 check_slabp(cachep, slabp);
2993 check_spinlock_acquired(cachep);
2994
2995 /*
2996 * The slab was either on partial or free list so
2997 * there must be at least one object available for
2998 * allocation.
2999 */
3000 BUG_ON(slabp->inuse < 0 || slabp->inuse >= cachep->num);
3001
3002 while (slabp->inuse < cachep->num && batchcount--) {
3003 STATS_INC_ALLOCED(cachep);
3004 STATS_INC_ACTIVE(cachep);
3005 STATS_SET_HIGH(cachep);
3006
3007 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
3008 node);
3009 }
3010 check_slabp(cachep, slabp);
3011
3012 /* move slabp to correct slabp list: */
3013 list_del(&slabp->list);
3014 if (slabp->free == BUFCTL_END)
3015 list_add(&slabp->list, &l3->slabs_full);
3016 else
3017 list_add(&slabp->list, &l3->slabs_partial);
3018 }
3019
3020 must_grow:
3021 l3->free_objects -= ac->avail;
3022 alloc_done:
3023 spin_unlock(&l3->list_lock);
3024
3025 if (unlikely(!ac->avail)) {
3026 int x;
3027 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3028
3029 /* cache_grow can reenable interrupts, then ac could change. */
3030 ac = cpu_cache_get(cachep);
3031 if (!x && ac->avail == 0) /* no objects in sight? abort */
3032 return NULL;
3033
3034 if (!ac->avail) /* objects refilled by interrupt? */
3035 goto retry;
3036 }
3037 ac->touched = 1;
3038 return ac->entry[--ac->avail];
3039 }
3040
3041 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3042 gfp_t flags)
3043 {
3044 might_sleep_if(flags & __GFP_WAIT);
3045 #if DEBUG
3046 kmem_flagcheck(cachep, flags);
3047 #endif
3048 }
3049
3050 #if DEBUG
3051 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3052 gfp_t flags, void *objp, void *caller)
3053 {
3054 if (!objp)
3055 return objp;
3056 if (cachep->flags & SLAB_POISON) {
3057 #ifdef CONFIG_DEBUG_PAGEALLOC
3058 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3059 kernel_map_pages(virt_to_page(objp),
3060 cachep->buffer_size / PAGE_SIZE, 1);
3061 else
3062 check_poison_obj(cachep, objp);
3063 #else
3064 check_poison_obj(cachep, objp);
3065 #endif
3066 poison_obj(cachep, objp, POISON_INUSE);
3067 }
3068 if (cachep->flags & SLAB_STORE_USER)
3069 *dbg_userword(cachep, objp) = caller;
3070
3071 if (cachep->flags & SLAB_RED_ZONE) {
3072 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3073 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3074 slab_error(cachep, "double free, or memory outside"
3075 " object was overwritten");
3076 printk(KERN_ERR
3077 "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
3078 objp, *dbg_redzone1(cachep, objp),
3079 *dbg_redzone2(cachep, objp));
3080 }
3081 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3082 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3083 }
3084 #ifdef CONFIG_DEBUG_SLAB_LEAK
3085 {
3086 struct slab *slabp;
3087 unsigned objnr;
3088
3089 slabp = page_get_slab(virt_to_page(objp));
3090 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3091 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3092 }
3093 #endif
3094 objp += obj_offset(cachep);
3095 if (cachep->ctor && cachep->flags & SLAB_POISON) {
3096 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
3097
3098 if (!(flags & __GFP_WAIT))
3099 ctor_flags |= SLAB_CTOR_ATOMIC;
3100
3101 cachep->ctor(objp, cachep, ctor_flags);
3102 }
3103 #if ARCH_SLAB_MINALIGN
3104 if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3105 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3106 objp, ARCH_SLAB_MINALIGN);
3107 }
3108 #endif
3109 return objp;
3110 }
3111 #else
3112 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3113 #endif
3114
3115 #ifdef CONFIG_FAILSLAB
3116
3117 static struct failslab_attr {
3118
3119 struct fault_attr attr;
3120
3121 u32 ignore_gfp_wait;
3122 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3123 struct dentry *ignore_gfp_wait_file;
3124 #endif
3125
3126 } failslab = {
3127 .attr = FAULT_ATTR_INITIALIZER,
3128 .ignore_gfp_wait = 1,
3129 };
3130
3131 static int __init setup_failslab(char *str)
3132 {
3133 return setup_fault_attr(&failslab.attr, str);
3134 }
3135 __setup("failslab=", setup_failslab);
3136
3137 static int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3138 {
3139 if (cachep == &cache_cache)
3140 return 0;
3141 if (flags & __GFP_NOFAIL)
3142 return 0;
3143 if (failslab.ignore_gfp_wait && (flags & __GFP_WAIT))
3144 return 0;
3145
3146 return should_fail(&failslab.attr, obj_size(cachep));
3147 }
3148
3149 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3150
3151 static int __init failslab_debugfs(void)
3152 {
3153 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
3154 struct dentry *dir;
3155 int err;
3156
3157 err = init_fault_attr_dentries(&failslab.attr, "failslab");
3158 if (err)
3159 return err;
3160 dir = failslab.attr.dentries.dir;
3161
3162 failslab.ignore_gfp_wait_file =
3163 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3164 &failslab.ignore_gfp_wait);
3165
3166 if (!failslab.ignore_gfp_wait_file) {
3167 err = -ENOMEM;
3168 debugfs_remove(failslab.ignore_gfp_wait_file);
3169 cleanup_fault_attr_dentries(&failslab.attr);
3170 }
3171
3172 return err;
3173 }
3174
3175 late_initcall(failslab_debugfs);
3176
3177 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3178
3179 #else /* CONFIG_FAILSLAB */
3180
3181 static inline int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3182 {
3183 return 0;
3184 }
3185
3186 #endif /* CONFIG_FAILSLAB */
3187
3188 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3189 {
3190 void *objp;
3191 struct array_cache *ac;
3192
3193 check_irq_off();
3194
3195 if (should_failslab(cachep, flags))
3196 return NULL;
3197
3198 ac = cpu_cache_get(cachep);
3199 if (likely(ac->avail)) {
3200 STATS_INC_ALLOCHIT(cachep);
3201 ac->touched = 1;
3202 objp = ac->entry[--ac->avail];
3203 } else {
3204 STATS_INC_ALLOCMISS(cachep);
3205 objp = cache_alloc_refill(cachep, flags);
3206 }
3207 return objp;
3208 }
3209
3210 #ifdef CONFIG_NUMA
3211 /*
3212 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3213 *
3214 * If we are in_interrupt, then process context, including cpusets and
3215 * mempolicy, may not apply and should not be used for allocation policy.
3216 */
3217 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3218 {
3219 int nid_alloc, nid_here;
3220
3221 if (in_interrupt() || (flags & __GFP_THISNODE))
3222 return NULL;
3223 nid_alloc = nid_here = numa_node_id();
3224 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3225 nid_alloc = cpuset_mem_spread_node();
3226 else if (current->mempolicy)
3227 nid_alloc = slab_node(current->mempolicy);
3228 if (nid_alloc != nid_here)
3229 return ____cache_alloc_node(cachep, flags, nid_alloc);
3230 return NULL;
3231 }
3232
3233 /*
3234 * Fallback function if there was no memory available and no objects on a
3235 * certain node and fall back is permitted. First we scan all the
3236 * available nodelists for available objects. If that fails then we
3237 * perform an allocation without specifying a node. This allows the page
3238 * allocator to do its reclaim / fallback magic. We then insert the
3239 * slab into the proper nodelist and then allocate from it.
3240 */
3241 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3242 {
3243 struct zonelist *zonelist;
3244 gfp_t local_flags;
3245 struct zone **z;
3246 void *obj = NULL;
3247 int nid;
3248
3249 if (flags & __GFP_THISNODE)
3250 return NULL;
3251
3252 zonelist = &NODE_DATA(slab_node(current->mempolicy))
3253 ->node_zonelists[gfp_zone(flags)];
3254 local_flags = (flags & GFP_LEVEL_MASK);
3255
3256 retry:
3257 /*
3258 * Look through allowed nodes for objects available
3259 * from existing per node queues.
3260 */
3261 for (z = zonelist->zones; *z && !obj; z++) {
3262 nid = zone_to_nid(*z);
3263
3264 if (cpuset_zone_allowed_hardwall(*z, flags) &&
3265 cache->nodelists[nid] &&
3266 cache->nodelists[nid]->free_objects)
3267 obj = ____cache_alloc_node(cache,
3268 flags | GFP_THISNODE, nid);
3269 }
3270
3271 if (!obj && !(flags & __GFP_NO_GROW)) {
3272 /*
3273 * This allocation will be performed within the constraints
3274 * of the current cpuset / memory policy requirements.
3275 * We may trigger various forms of reclaim on the allowed
3276 * set and go into memory reserves if necessary.
3277 */
3278 if (local_flags & __GFP_WAIT)
3279 local_irq_enable();
3280 kmem_flagcheck(cache, flags);
3281 obj = kmem_getpages(cache, flags, -1);
3282 if (local_flags & __GFP_WAIT)
3283 local_irq_disable();
3284 if (obj) {
3285 /*
3286 * Insert into the appropriate per node queues
3287 */
3288 nid = page_to_nid(virt_to_page(obj));
3289 if (cache_grow(cache, flags, nid, obj)) {
3290 obj = ____cache_alloc_node(cache,
3291 flags | GFP_THISNODE, nid);
3292 if (!obj)
3293 /*
3294 * Another processor may allocate the
3295 * objects in the slab since we are
3296 * not holding any locks.
3297 */
3298 goto retry;
3299 } else {
3300 /* cache_grow already freed obj */
3301 obj = NULL;
3302 }
3303 }
3304 }
3305 return obj;
3306 }
3307
3308 /*
3309 * A interface to enable slab creation on nodeid
3310 */
3311 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3312 int nodeid)
3313 {
3314 struct list_head *entry;
3315 struct slab *slabp;
3316 struct kmem_list3 *l3;
3317 void *obj;
3318 int x;
3319
3320 l3 = cachep->nodelists[nodeid];
3321 BUG_ON(!l3);
3322
3323 retry:
3324 check_irq_off();
3325 spin_lock(&l3->list_lock);
3326 entry = l3->slabs_partial.next;
3327 if (entry == &l3->slabs_partial) {
3328 l3->free_touched = 1;
3329 entry = l3->slabs_free.next;
3330 if (entry == &l3->slabs_free)
3331 goto must_grow;
3332 }
3333
3334 slabp = list_entry(entry, struct slab, list);
3335 check_spinlock_acquired_node(cachep, nodeid);
3336 check_slabp(cachep, slabp);
3337
3338 STATS_INC_NODEALLOCS(cachep);
3339 STATS_INC_ACTIVE(cachep);
3340 STATS_SET_HIGH(cachep);
3341
3342 BUG_ON(slabp->inuse == cachep->num);
3343
3344 obj = slab_get_obj(cachep, slabp, nodeid);
3345 check_slabp(cachep, slabp);
3346 l3->free_objects--;
3347 /* move slabp to correct slabp list: */
3348 list_del(&slabp->list);
3349
3350 if (slabp->free == BUFCTL_END)
3351 list_add(&slabp->list, &l3->slabs_full);
3352 else
3353 list_add(&slabp->list, &l3->slabs_partial);
3354
3355 spin_unlock(&l3->list_lock);
3356 goto done;
3357
3358 must_grow:
3359 spin_unlock(&l3->list_lock);
3360 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3361 if (x)
3362 goto retry;
3363
3364 return fallback_alloc(cachep, flags);
3365
3366 done:
3367 return obj;
3368 }
3369
3370 /**
3371 * kmem_cache_alloc_node - Allocate an object on the specified node
3372 * @cachep: The cache to allocate from.
3373 * @flags: See kmalloc().
3374 * @nodeid: node number of the target node.
3375 * @caller: return address of caller, used for debug information
3376 *
3377 * Identical to kmem_cache_alloc but it will allocate memory on the given
3378 * node, which can improve the performance for cpu bound structures.
3379 *
3380 * Fallback to other node is possible if __GFP_THISNODE is not set.
3381 */
3382 static __always_inline void *
3383 __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3384 void *caller)
3385 {
3386 unsigned long save_flags;
3387 void *ptr;
3388
3389 cache_alloc_debugcheck_before(cachep, flags);
3390 local_irq_save(save_flags);
3391
3392 if (unlikely(nodeid == -1))
3393 nodeid = numa_node_id();
3394
3395 if (unlikely(!cachep->nodelists[nodeid])) {
3396 /* Node not bootstrapped yet */
3397 ptr = fallback_alloc(cachep, flags);
3398 goto out;
3399 }
3400
3401 if (nodeid == numa_node_id()) {
3402 /*
3403 * Use the locally cached objects if possible.
3404 * However ____cache_alloc does not allow fallback
3405 * to other nodes. It may fail while we still have
3406 * objects on other nodes available.
3407 */
3408 ptr = ____cache_alloc(cachep, flags);
3409 if (ptr)
3410 goto out;
3411 }
3412 /* ___cache_alloc_node can fall back to other nodes */
3413 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3414 out:
3415 local_irq_restore(save_flags);
3416 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3417
3418 return ptr;
3419 }
3420
3421 static __always_inline void *
3422 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3423 {
3424 void *objp;
3425
3426 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3427 objp = alternate_node_alloc(cache, flags);
3428 if (objp)
3429 goto out;
3430 }
3431 objp = ____cache_alloc(cache, flags);
3432
3433 /*
3434 * We may just have run out of memory on the local node.
3435 * ____cache_alloc_node() knows how to locate memory on other nodes
3436 */
3437 if (!objp)
3438 objp = ____cache_alloc_node(cache, flags, numa_node_id());
3439
3440 out:
3441 return objp;
3442 }
3443 #else
3444
3445 static __always_inline void *
3446 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3447 {
3448 return ____cache_alloc(cachep, flags);
3449 }
3450
3451 #endif /* CONFIG_NUMA */
3452
3453 static __always_inline void *
3454 __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3455 {
3456 unsigned long save_flags;
3457 void *objp;
3458
3459 cache_alloc_debugcheck_before(cachep, flags);
3460 local_irq_save(save_flags);
3461 objp = __do_cache_alloc(cachep, flags);
3462 local_irq_restore(save_flags);
3463 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3464 prefetchw(objp);
3465
3466 return objp;
3467 }
3468
3469 /*
3470 * Caller needs to acquire correct kmem_list's list_lock
3471 */
3472 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3473 int node)
3474 {
3475 int i;
3476 struct kmem_list3 *l3;
3477
3478 for (i = 0; i < nr_objects; i++) {
3479 void *objp = objpp[i];
3480 struct slab *slabp;
3481
3482 slabp = virt_to_slab(objp);
3483 l3 = cachep->nodelists[node];
3484 list_del(&slabp->list);
3485 check_spinlock_acquired_node(cachep, node);
3486 check_slabp(cachep, slabp);
3487 slab_put_obj(cachep, slabp, objp, node);
3488 STATS_DEC_ACTIVE(cachep);
3489 l3->free_objects++;
3490 check_slabp(cachep, slabp);
3491
3492 /* fixup slab chains */
3493 if (slabp->inuse == 0) {
3494 if (l3->free_objects > l3->free_limit) {
3495 l3->free_objects -= cachep->num;
3496 /* No need to drop any previously held
3497 * lock here, even if we have a off-slab slab
3498 * descriptor it is guaranteed to come from
3499 * a different cache, refer to comments before
3500 * alloc_slabmgmt.
3501 */
3502 slab_destroy(cachep, slabp);
3503 } else {
3504 list_add(&slabp->list, &l3->slabs_free);
3505 }
3506 } else {
3507 /* Unconditionally move a slab to the end of the
3508 * partial list on free - maximum time for the
3509 * other objects to be freed, too.
3510 */
3511 list_add_tail(&slabp->list, &l3->slabs_partial);
3512 }
3513 }
3514 }
3515
3516 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3517 {
3518 int batchcount;
3519 struct kmem_list3 *l3;
3520 int node = numa_node_id();
3521
3522 batchcount = ac->batchcount;
3523 #if DEBUG
3524 BUG_ON(!batchcount || batchcount > ac->avail);
3525 #endif
3526 check_irq_off();
3527 l3 = cachep->nodelists[node];
3528 spin_lock(&l3->list_lock);
3529 if (l3->shared) {
3530 struct array_cache *shared_array = l3->shared;
3531 int max = shared_array->limit - shared_array->avail;
3532 if (max) {
3533 if (batchcount > max)
3534 batchcount = max;
3535 memcpy(&(shared_array->entry[shared_array->avail]),
3536 ac->entry, sizeof(void *) * batchcount);
3537 shared_array->avail += batchcount;
3538 goto free_done;
3539 }
3540 }
3541
3542 free_block(cachep, ac->entry, batchcount, node);
3543 free_done:
3544 #if STATS
3545 {
3546 int i = 0;
3547 struct list_head *p;
3548
3549 p = l3->slabs_free.next;
3550 while (p != &(l3->slabs_free)) {
3551 struct slab *slabp;
3552
3553 slabp = list_entry(p, struct slab, list);
3554 BUG_ON(slabp->inuse);
3555
3556 i++;
3557 p = p->next;
3558 }
3559 STATS_SET_FREEABLE(cachep, i);
3560 }
3561 #endif
3562 spin_unlock(&l3->list_lock);
3563 ac->avail -= batchcount;
3564 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3565 }
3566
3567 /*
3568 * Release an obj back to its cache. If the obj has a constructed state, it must
3569 * be in this state _before_ it is released. Called with disabled ints.
3570 */
3571 static inline void __cache_free(struct kmem_cache *cachep, void *objp)
3572 {
3573 struct array_cache *ac = cpu_cache_get(cachep);
3574
3575 check_irq_off();
3576 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3577
3578 if (use_alien_caches && cache_free_alien(cachep, objp))
3579 return;
3580
3581 if (likely(ac->avail < ac->limit)) {
3582 STATS_INC_FREEHIT(cachep);
3583 ac->entry[ac->avail++] = objp;
3584 return;
3585 } else {
3586 STATS_INC_FREEMISS(cachep);
3587 cache_flusharray(cachep, ac);
3588 ac->entry[ac->avail++] = objp;
3589 }
3590 }
3591
3592 /**
3593 * kmem_cache_alloc - Allocate an object
3594 * @cachep: The cache to allocate from.
3595 * @flags: See kmalloc().
3596 *
3597 * Allocate an object from this cache. The flags are only relevant
3598 * if the cache has no available objects.
3599 */
3600 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3601 {
3602 return __cache_alloc(cachep, flags, __builtin_return_address(0));
3603 }
3604 EXPORT_SYMBOL(kmem_cache_alloc);
3605
3606 /**
3607 * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
3608 * @cache: The cache to allocate from.
3609 * @flags: See kmalloc().
3610 *
3611 * Allocate an object from this cache and set the allocated memory to zero.
3612 * The flags are only relevant if the cache has no available objects.
3613 */
3614 void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
3615 {
3616 void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
3617 if (ret)
3618 memset(ret, 0, obj_size(cache));
3619 return ret;
3620 }
3621 EXPORT_SYMBOL(kmem_cache_zalloc);
3622
3623 /**
3624 * kmem_ptr_validate - check if an untrusted pointer might
3625 * be a slab entry.
3626 * @cachep: the cache we're checking against
3627 * @ptr: pointer to validate
3628 *
3629 * This verifies that the untrusted pointer looks sane:
3630 * it is _not_ a guarantee that the pointer is actually
3631 * part of the slab cache in question, but it at least
3632 * validates that the pointer can be dereferenced and
3633 * looks half-way sane.
3634 *
3635 * Currently only used for dentry validation.
3636 */
3637 int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
3638 {
3639 unsigned long addr = (unsigned long)ptr;
3640 unsigned long min_addr = PAGE_OFFSET;
3641 unsigned long align_mask = BYTES_PER_WORD - 1;
3642 unsigned long size = cachep->buffer_size;
3643 struct page *page;
3644
3645 if (unlikely(addr < min_addr))
3646 goto out;
3647 if (unlikely(addr > (unsigned long)high_memory - size))
3648 goto out;
3649 if (unlikely(addr & align_mask))
3650 goto out;
3651 if (unlikely(!kern_addr_valid(addr)))
3652 goto out;
3653 if (unlikely(!kern_addr_valid(addr + size - 1)))
3654 goto out;
3655 page = virt_to_page(ptr);
3656 if (unlikely(!PageSlab(page)))
3657 goto out;
3658 if (unlikely(page_get_cache(page) != cachep))
3659 goto out;
3660 return 1;
3661 out:
3662 return 0;
3663 }
3664
3665 #ifdef CONFIG_NUMA
3666 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3667 {
3668 return __cache_alloc_node(cachep, flags, nodeid,
3669 __builtin_return_address(0));
3670 }
3671 EXPORT_SYMBOL(kmem_cache_alloc_node);
3672
3673 static __always_inline void *
3674 __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3675 {
3676 struct kmem_cache *cachep;
3677
3678 cachep = kmem_find_general_cachep(size, flags);
3679 if (unlikely(cachep == NULL))
3680 return NULL;
3681 return kmem_cache_alloc_node(cachep, flags, node);
3682 }
3683
3684 #ifdef CONFIG_DEBUG_SLAB
3685 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3686 {
3687 return __do_kmalloc_node(size, flags, node,
3688 __builtin_return_address(0));
3689 }
3690 EXPORT_SYMBOL(__kmalloc_node);
3691
3692 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3693 int node, void *caller)
3694 {
3695 return __do_kmalloc_node(size, flags, node, caller);
3696 }
3697 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3698 #else
3699 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3700 {
3701 return __do_kmalloc_node(size, flags, node, NULL);
3702 }
3703 EXPORT_SYMBOL(__kmalloc_node);
3704 #endif /* CONFIG_DEBUG_SLAB */
3705 #endif /* CONFIG_NUMA */
3706
3707 /**
3708 * __do_kmalloc - allocate memory
3709 * @size: how many bytes of memory are required.
3710 * @flags: the type of memory to allocate (see kmalloc).
3711 * @caller: function caller for debug tracking of the caller
3712 */
3713 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3714 void *caller)
3715 {
3716 struct kmem_cache *cachep;
3717
3718 /* If you want to save a few bytes .text space: replace
3719 * __ with kmem_.
3720 * Then kmalloc uses the uninlined functions instead of the inline
3721 * functions.
3722 */
3723 cachep = __find_general_cachep(size, flags);
3724 if (unlikely(cachep == NULL))
3725 return NULL;
3726 return __cache_alloc(cachep, flags, caller);
3727 }
3728
3729
3730 #ifdef CONFIG_DEBUG_SLAB
3731 void *__kmalloc(size_t size, gfp_t flags)
3732 {
3733 return __do_kmalloc(size, flags, __builtin_return_address(0));
3734 }
3735 EXPORT_SYMBOL(__kmalloc);
3736
3737 void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3738 {
3739 return __do_kmalloc(size, flags, caller);
3740 }
3741 EXPORT_SYMBOL(__kmalloc_track_caller);
3742
3743 #else
3744 void *__kmalloc(size_t size, gfp_t flags)
3745 {
3746 return __do_kmalloc(size, flags, NULL);
3747 }
3748 EXPORT_SYMBOL(__kmalloc);
3749 #endif
3750
3751 /**
3752 * krealloc - reallocate memory. The contents will remain unchanged.
3753 *
3754 * @p: object to reallocate memory for.
3755 * @new_size: how many bytes of memory are required.
3756 * @flags: the type of memory to allocate.
3757 *
3758 * The contents of the object pointed to are preserved up to the
3759 * lesser of the new and old sizes. If @p is %NULL, krealloc()
3760 * behaves exactly like kmalloc(). If @size is 0 and @p is not a
3761 * %NULL pointer, the object pointed to is freed.
3762 */
3763 void *krealloc(const void *p, size_t new_size, gfp_t flags)
3764 {
3765 struct kmem_cache *cache, *new_cache;
3766 void *ret;
3767
3768 if (unlikely(!p))
3769 return kmalloc_track_caller(new_size, flags);
3770
3771 if (unlikely(!new_size)) {
3772 kfree(p);
3773 return NULL;
3774 }
3775
3776 cache = virt_to_cache(p);
3777 new_cache = __find_general_cachep(new_size, flags);
3778
3779 /*
3780 * If new size fits in the current cache, bail out.
3781 */
3782 if (likely(cache == new_cache))
3783 return (void *)p;
3784
3785 /*
3786 * We are on the slow-path here so do not use __cache_alloc
3787 * because it bloats kernel text.
3788 */
3789 ret = kmalloc_track_caller(new_size, flags);
3790 if (ret) {
3791 memcpy(ret, p, min(new_size, ksize(p)));
3792 kfree(p);
3793 }
3794 return ret;
3795 }
3796 EXPORT_SYMBOL(krealloc);
3797
3798 /**
3799 * kmem_cache_free - Deallocate an object
3800 * @cachep: The cache the allocation was from.
3801 * @objp: The previously allocated object.
3802 *
3803 * Free an object which was previously allocated from this
3804 * cache.
3805 */
3806 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3807 {
3808 unsigned long flags;
3809
3810 BUG_ON(virt_to_cache(objp) != cachep);
3811
3812 local_irq_save(flags);
3813 debug_check_no_locks_freed(objp, obj_size(cachep));
3814 __cache_free(cachep, objp);
3815 local_irq_restore(flags);
3816 }
3817 EXPORT_SYMBOL(kmem_cache_free);
3818
3819 /**
3820 * kfree - free previously allocated memory
3821 * @objp: pointer returned by kmalloc.
3822 *
3823 * If @objp is NULL, no operation is performed.
3824 *
3825 * Don't free memory not originally allocated by kmalloc()
3826 * or you will run into trouble.
3827 */
3828 void kfree(const void *objp)
3829 {
3830 struct kmem_cache *c;
3831 unsigned long flags;
3832
3833 if (unlikely(!objp))
3834 return;
3835 local_irq_save(flags);
3836 kfree_debugcheck(objp);
3837 c = virt_to_cache(objp);
3838 debug_check_no_locks_freed(objp, obj_size(c));
3839 __cache_free(c, (void *)objp);
3840 local_irq_restore(flags);
3841 }
3842 EXPORT_SYMBOL(kfree);
3843
3844 unsigned int kmem_cache_size(struct kmem_cache *cachep)
3845 {
3846 return obj_size(cachep);
3847 }
3848 EXPORT_SYMBOL(kmem_cache_size);
3849
3850 const char *kmem_cache_name(struct kmem_cache *cachep)
3851 {
3852 return cachep->name;
3853 }
3854 EXPORT_SYMBOL_GPL(kmem_cache_name);
3855
3856 /*
3857 * This initializes kmem_list3 or resizes varioius caches for all nodes.
3858 */
3859 static int alloc_kmemlist(struct kmem_cache *cachep)
3860 {
3861 int node;
3862 struct kmem_list3 *l3;
3863 struct array_cache *new_shared;
3864 struct array_cache **new_alien = NULL;
3865
3866 for_each_online_node(node) {
3867
3868 if (use_alien_caches) {
3869 new_alien = alloc_alien_cache(node, cachep->limit);
3870 if (!new_alien)
3871 goto fail;
3872 }
3873
3874 new_shared = NULL;
3875 if (cachep->shared) {
3876 new_shared = alloc_arraycache(node,
3877 cachep->shared*cachep->batchcount,
3878 0xbaadf00d);
3879 if (!new_shared) {
3880 free_alien_cache(new_alien);
3881 goto fail;
3882 }
3883 }
3884
3885 l3 = cachep->nodelists[node];
3886 if (l3) {
3887 struct array_cache *shared = l3->shared;
3888
3889 spin_lock_irq(&l3->list_lock);
3890
3891 if (shared)
3892 free_block(cachep, shared->entry,
3893 shared->avail, node);
3894
3895 l3->shared = new_shared;
3896 if (!l3->alien) {
3897 l3->alien = new_alien;
3898 new_alien = NULL;
3899 }
3900 l3->free_limit = (1 + nr_cpus_node(node)) *
3901 cachep->batchcount + cachep->num;
3902 spin_unlock_irq(&l3->list_lock);
3903 kfree(shared);
3904 free_alien_cache(new_alien);
3905 continue;
3906 }
3907 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3908 if (!l3) {
3909 free_alien_cache(new_alien);
3910 kfree(new_shared);
3911 goto fail;
3912 }
3913
3914 kmem_list3_init(l3);
3915 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3916 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3917 l3->shared = new_shared;
3918 l3->alien = new_alien;
3919 l3->free_limit = (1 + nr_cpus_node(node)) *
3920 cachep->batchcount + cachep->num;
3921 cachep->nodelists[node] = l3;
3922 }
3923 return 0;
3924
3925 fail:
3926 if (!cachep->next.next) {
3927 /* Cache is not active yet. Roll back what we did */
3928 node--;
3929 while (node >= 0) {
3930 if (cachep->nodelists[node]) {
3931 l3 = cachep->nodelists[node];
3932
3933 kfree(l3->shared);
3934 free_alien_cache(l3->alien);
3935 kfree(l3);
3936 cachep->nodelists[node] = NULL;
3937 }
3938 node--;
3939 }
3940 }
3941 return -ENOMEM;
3942 }
3943
3944 struct ccupdate_struct {
3945 struct kmem_cache *cachep;
3946 struct array_cache *new[NR_CPUS];
3947 };
3948
3949 static void do_ccupdate_local(void *info)
3950 {
3951 struct ccupdate_struct *new = info;
3952 struct array_cache *old;
3953
3954 check_irq_off();
3955 old = cpu_cache_get(new->cachep);
3956
3957 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3958 new->new[smp_processor_id()] = old;
3959 }
3960
3961 /* Always called with the cache_chain_mutex held */
3962 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3963 int batchcount, int shared)
3964 {
3965 struct ccupdate_struct *new;
3966 int i;
3967
3968 new = kzalloc(sizeof(*new), GFP_KERNEL);
3969 if (!new)
3970 return -ENOMEM;
3971
3972 for_each_online_cpu(i) {
3973 new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
3974 batchcount);
3975 if (!new->new[i]) {
3976 for (i--; i >= 0; i--)
3977 kfree(new->new[i]);
3978 kfree(new);
3979 return -ENOMEM;
3980 }
3981 }
3982 new->cachep = cachep;
3983
3984 on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
3985
3986 check_irq_on();
3987 cachep->batchcount = batchcount;
3988 cachep->limit = limit;
3989 cachep->shared = shared;
3990
3991 for_each_online_cpu(i) {
3992 struct array_cache *ccold = new->new[i];
3993 if (!ccold)
3994 continue;
3995 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3996 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3997 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3998 kfree(ccold);
3999 }
4000 kfree(new);
4001 return alloc_kmemlist(cachep);
4002 }
4003
4004 /* Called with cache_chain_mutex held always */
4005 static int enable_cpucache(struct kmem_cache *cachep)
4006 {
4007 int err;
4008 int limit, shared;
4009
4010 /*
4011 * The head array serves three purposes:
4012 * - create a LIFO ordering, i.e. return objects that are cache-warm
4013 * - reduce the number of spinlock operations.
4014 * - reduce the number of linked list operations on the slab and
4015 * bufctl chains: array operations are cheaper.
4016 * The numbers are guessed, we should auto-tune as described by
4017 * Bonwick.
4018 */
4019 if (cachep->buffer_size > 131072)
4020 limit = 1;
4021 else if (cachep->buffer_size > PAGE_SIZE)
4022 limit = 8;
4023 else if (cachep->buffer_size > 1024)
4024 limit = 24;
4025 else if (cachep->buffer_size > 256)
4026 limit = 54;
4027 else
4028 limit = 120;
4029
4030 /*
4031 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
4032 * allocation behaviour: Most allocs on one cpu, most free operations
4033 * on another cpu. For these cases, an efficient object passing between
4034 * cpus is necessary. This is provided by a shared array. The array
4035 * replaces Bonwick's magazine layer.
4036 * On uniprocessor, it's functionally equivalent (but less efficient)
4037 * to a larger limit. Thus disabled by default.
4038 */
4039 shared = 0;
4040 if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
4041 shared = 8;
4042
4043 #if DEBUG
4044 /*
4045 * With debugging enabled, large batchcount lead to excessively long
4046 * periods with disabled local interrupts. Limit the batchcount
4047 */
4048 if (limit > 32)
4049 limit = 32;
4050 #endif
4051 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
4052 if (err)
4053 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
4054 cachep->name, -err);
4055 return err;
4056 }
4057
4058 /*
4059 * Drain an array if it contains any elements taking the l3 lock only if
4060 * necessary. Note that the l3 listlock also protects the array_cache
4061 * if drain_array() is used on the shared array.
4062 */
4063 void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4064 struct array_cache *ac, int force, int node)
4065 {
4066 int tofree;
4067
4068 if (!ac || !ac->avail)
4069 return;
4070 if (ac->touched && !force) {
4071 ac->touched = 0;
4072 } else {
4073 spin_lock_irq(&l3->list_lock);
4074 if (ac->avail) {
4075 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4076 if (tofree > ac->avail)
4077 tofree = (ac->avail + 1) / 2;
4078 free_block(cachep, ac->entry, tofree, node);
4079 ac->avail -= tofree;
4080 memmove(ac->entry, &(ac->entry[tofree]),
4081 sizeof(void *) * ac->avail);
4082 }
4083 spin_unlock_irq(&l3->list_lock);
4084 }
4085 }
4086
4087 /**
4088 * cache_reap - Reclaim memory from caches.
4089 * @w: work descriptor
4090 *
4091 * Called from workqueue/eventd every few seconds.
4092 * Purpose:
4093 * - clear the per-cpu caches for this CPU.
4094 * - return freeable pages to the main free memory pool.
4095 *
4096 * If we cannot acquire the cache chain mutex then just give up - we'll try
4097 * again on the next iteration.
4098 */
4099 static void cache_reap(struct work_struct *w)
4100 {
4101 struct kmem_cache *searchp;
4102 struct kmem_list3 *l3;
4103 int node = numa_node_id();
4104 struct delayed_work *work =
4105 container_of(w, struct delayed_work, work);
4106
4107 if (!mutex_trylock(&cache_chain_mutex))
4108 /* Give up. Setup the next iteration. */
4109 goto out;
4110
4111 list_for_each_entry(searchp, &cache_chain, next) {
4112 check_irq_on();
4113
4114 /*
4115 * We only take the l3 lock if absolutely necessary and we
4116 * have established with reasonable certainty that
4117 * we can do some work if the lock was obtained.
4118 */
4119 l3 = searchp->nodelists[node];
4120
4121 reap_alien(searchp, l3);
4122
4123 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
4124
4125 /*
4126 * These are racy checks but it does not matter
4127 * if we skip one check or scan twice.
4128 */
4129 if (time_after(l3->next_reap, jiffies))
4130 goto next;
4131
4132 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
4133
4134 drain_array(searchp, l3, l3->shared, 0, node);
4135
4136 if (l3->free_touched)
4137 l3->free_touched = 0;
4138 else {
4139 int freed;
4140
4141 freed = drain_freelist(searchp, l3, (l3->free_limit +
4142 5 * searchp->num - 1) / (5 * searchp->num));
4143 STATS_ADD_REAPED(searchp, freed);
4144 }
4145 next:
4146 cond_resched();
4147 }
4148 check_irq_on();
4149 mutex_unlock(&cache_chain_mutex);
4150 next_reap_node();
4151 refresh_cpu_vm_stats(smp_processor_id());
4152 out:
4153 /* Set up the next iteration */
4154 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
4155 }
4156
4157 #ifdef CONFIG_PROC_FS
4158
4159 static void print_slabinfo_header(struct seq_file *m)
4160 {
4161 /*
4162 * Output format version, so at least we can change it
4163 * without _too_ many complaints.
4164 */
4165 #if STATS
4166 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
4167 #else
4168 seq_puts(m, "slabinfo - version: 2.1\n");
4169 #endif
4170 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4171 "<objperslab> <pagesperslab>");
4172 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4173 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4174 #if STATS
4175 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4176 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4177 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4178 #endif
4179 seq_putc(m, '\n');
4180 }
4181
4182 static void *s_start(struct seq_file *m, loff_t *pos)
4183 {
4184 loff_t n = *pos;
4185 struct list_head *p;
4186
4187 mutex_lock(&cache_chain_mutex);
4188 if (!n)
4189 print_slabinfo_header(m);
4190 p = cache_chain.next;
4191 while (n--) {
4192 p = p->next;
4193 if (p == &cache_chain)
4194 return NULL;
4195 }
4196 return list_entry(p, struct kmem_cache, next);
4197 }
4198
4199 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4200 {
4201 struct kmem_cache *cachep = p;
4202 ++*pos;
4203 return cachep->next.next == &cache_chain ?
4204 NULL : list_entry(cachep->next.next, struct kmem_cache, next);
4205 }
4206
4207 static void s_stop(struct seq_file *m, void *p)
4208 {
4209 mutex_unlock(&cache_chain_mutex);
4210 }
4211
4212 static int s_show(struct seq_file *m, void *p)
4213 {
4214 struct kmem_cache *cachep = p;
4215 struct slab *slabp;
4216 unsigned long active_objs;
4217 unsigned long num_objs;
4218 unsigned long active_slabs = 0;
4219 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4220 const char *name;
4221 char *error = NULL;
4222 int node;
4223 struct kmem_list3 *l3;
4224
4225 active_objs = 0;
4226 num_slabs = 0;
4227 for_each_online_node(node) {
4228 l3 = cachep->nodelists[node];
4229 if (!l3)
4230 continue;
4231
4232 check_irq_on();
4233 spin_lock_irq(&l3->list_lock);
4234
4235 list_for_each_entry(slabp, &l3->slabs_full, list) {
4236 if (slabp->inuse != cachep->num && !error)
4237 error = "slabs_full accounting error";
4238 active_objs += cachep->num;
4239 active_slabs++;
4240 }
4241 list_for_each_entry(slabp, &l3->slabs_partial, list) {
4242 if (slabp->inuse == cachep->num && !error)
4243 error = "slabs_partial inuse accounting error";
4244 if (!slabp->inuse && !error)
4245 error = "slabs_partial/inuse accounting error";
4246 active_objs += slabp->inuse;
4247 active_slabs++;
4248 }
4249 list_for_each_entry(slabp, &l3->slabs_free, list) {
4250 if (slabp->inuse && !error)
4251 error = "slabs_free/inuse accounting error";
4252 num_slabs++;
4253 }
4254 free_objects += l3->free_objects;
4255 if (l3->shared)
4256 shared_avail += l3->shared->avail;
4257
4258 spin_unlock_irq(&l3->list_lock);
4259 }
4260 num_slabs += active_slabs;
4261 num_objs = num_slabs * cachep->num;
4262 if (num_objs - active_objs != free_objects && !error)
4263 error = "free_objects accounting error";
4264
4265 name = cachep->name;
4266 if (error)
4267 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4268
4269 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4270 name, active_objs, num_objs, cachep->buffer_size,
4271 cachep->num, (1 << cachep->gfporder));
4272 seq_printf(m, " : tunables %4u %4u %4u",
4273 cachep->limit, cachep->batchcount, cachep->shared);
4274 seq_printf(m, " : slabdata %6lu %6lu %6lu",
4275 active_slabs, num_slabs, shared_avail);
4276 #if STATS
4277 { /* list3 stats */
4278 unsigned long high = cachep->high_mark;
4279 unsigned long allocs = cachep->num_allocations;
4280 unsigned long grown = cachep->grown;
4281 unsigned long reaped = cachep->reaped;
4282 unsigned long errors = cachep->errors;
4283 unsigned long max_freeable = cachep->max_freeable;
4284 unsigned long node_allocs = cachep->node_allocs;
4285 unsigned long node_frees = cachep->node_frees;
4286 unsigned long overflows = cachep->node_overflow;
4287
4288 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
4289 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
4290 reaped, errors, max_freeable, node_allocs,
4291 node_frees, overflows);
4292 }
4293 /* cpu stats */
4294 {
4295 unsigned long allochit = atomic_read(&cachep->allochit);
4296 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4297 unsigned long freehit = atomic_read(&cachep->freehit);
4298 unsigned long freemiss = atomic_read(&cachep->freemiss);
4299
4300 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4301 allochit, allocmiss, freehit, freemiss);
4302 }
4303 #endif
4304 seq_putc(m, '\n');
4305 return 0;
4306 }
4307
4308 /*
4309 * slabinfo_op - iterator that generates /proc/slabinfo
4310 *
4311 * Output layout:
4312 * cache-name
4313 * num-active-objs
4314 * total-objs
4315 * object size
4316 * num-active-slabs
4317 * total-slabs
4318 * num-pages-per-slab
4319 * + further values on SMP and with statistics enabled
4320 */
4321
4322 const struct seq_operations slabinfo_op = {
4323 .start = s_start,
4324 .next = s_next,
4325 .stop = s_stop,
4326 .show = s_show,
4327 };
4328
4329 #define MAX_SLABINFO_WRITE 128
4330 /**
4331 * slabinfo_write - Tuning for the slab allocator
4332 * @file: unused
4333 * @buffer: user buffer
4334 * @count: data length
4335 * @ppos: unused
4336 */
4337 ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4338 size_t count, loff_t *ppos)
4339 {
4340 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4341 int limit, batchcount, shared, res;
4342 struct kmem_cache *cachep;
4343
4344 if (count > MAX_SLABINFO_WRITE)
4345 return -EINVAL;
4346 if (copy_from_user(&kbuf, buffer, count))
4347 return -EFAULT;
4348 kbuf[MAX_SLABINFO_WRITE] = '\0';
4349
4350 tmp = strchr(kbuf, ' ');
4351 if (!tmp)
4352 return -EINVAL;
4353 *tmp = '\0';
4354 tmp++;
4355 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4356 return -EINVAL;
4357
4358 /* Find the cache in the chain of caches. */
4359 mutex_lock(&cache_chain_mutex);
4360 res = -EINVAL;
4361 list_for_each_entry(cachep, &cache_chain, next) {
4362 if (!strcmp(cachep->name, kbuf)) {
4363 if (limit < 1 || batchcount < 1 ||
4364 batchcount > limit || shared < 0) {
4365 res = 0;
4366 } else {
4367 res = do_tune_cpucache(cachep, limit,
4368 batchcount, shared);
4369 }
4370 break;
4371 }
4372 }
4373 mutex_unlock(&cache_chain_mutex);
4374 if (res >= 0)
4375 res = count;
4376 return res;
4377 }
4378
4379 #ifdef CONFIG_DEBUG_SLAB_LEAK
4380
4381 static void *leaks_start(struct seq_file *m, loff_t *pos)
4382 {
4383 loff_t n = *pos;
4384 struct list_head *p;
4385
4386 mutex_lock(&cache_chain_mutex);
4387 p = cache_chain.next;
4388 while (n--) {
4389 p = p->next;
4390 if (p == &cache_chain)
4391 return NULL;
4392 }
4393 return list_entry(p, struct kmem_cache, next);
4394 }
4395
4396 static inline int add_caller(unsigned long *n, unsigned long v)
4397 {
4398 unsigned long *p;
4399 int l;
4400 if (!v)
4401 return 1;
4402 l = n[1];
4403 p = n + 2;
4404 while (l) {
4405 int i = l/2;
4406 unsigned long *q = p + 2 * i;
4407 if (*q == v) {
4408 q[1]++;
4409 return 1;
4410 }
4411 if (*q > v) {
4412 l = i;
4413 } else {
4414 p = q + 2;
4415 l -= i + 1;
4416 }
4417 }
4418 if (++n[1] == n[0])
4419 return 0;
4420 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4421 p[0] = v;
4422 p[1] = 1;
4423 return 1;
4424 }
4425
4426 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4427 {
4428 void *p;
4429 int i;
4430 if (n[0] == n[1])
4431 return;
4432 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4433 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4434 continue;
4435 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4436 return;
4437 }
4438 }
4439
4440 static void show_symbol(struct seq_file *m, unsigned long address)
4441 {
4442 #ifdef CONFIG_KALLSYMS
4443 char *modname;
4444 const char *name;
4445 unsigned long offset, size;
4446 char namebuf[KSYM_NAME_LEN+1];
4447
4448 name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);
4449
4450 if (name) {
4451 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4452 if (modname)
4453 seq_printf(m, " [%s]", modname);
4454 return;
4455 }
4456 #endif
4457 seq_printf(m, "%p", (void *)address);
4458 }
4459
4460 static int leaks_show(struct seq_file *m, void *p)
4461 {
4462 struct kmem_cache *cachep = p;
4463 struct slab *slabp;
4464 struct kmem_list3 *l3;
4465 const char *name;
4466 unsigned long *n = m->private;
4467 int node;
4468 int i;
4469
4470 if (!(cachep->flags & SLAB_STORE_USER))
4471 return 0;
4472 if (!(cachep->flags & SLAB_RED_ZONE))
4473 return 0;
4474
4475 /* OK, we can do it */
4476
4477 n[1] = 0;
4478
4479 for_each_online_node(node) {
4480 l3 = cachep->nodelists[node];
4481 if (!l3)
4482 continue;
4483
4484 check_irq_on();
4485 spin_lock_irq(&l3->list_lock);
4486
4487 list_for_each_entry(slabp, &l3->slabs_full, list)
4488 handle_slab(n, cachep, slabp);
4489 list_for_each_entry(slabp, &l3->slabs_partial, list)
4490 handle_slab(n, cachep, slabp);
4491 spin_unlock_irq(&l3->list_lock);
4492 }
4493 name = cachep->name;
4494 if (n[0] == n[1]) {
4495 /* Increase the buffer size */
4496 mutex_unlock(&cache_chain_mutex);
4497 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4498 if (!m->private) {
4499 /* Too bad, we are really out */
4500 m->private = n;
4501 mutex_lock(&cache_chain_mutex);
4502 return -ENOMEM;
4503 }
4504 *(unsigned long *)m->private = n[0] * 2;
4505 kfree(n);
4506 mutex_lock(&cache_chain_mutex);
4507 /* Now make sure this entry will be retried */
4508 m->count = m->size;
4509 return 0;
4510 }
4511 for (i = 0; i < n[1]; i++) {
4512 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4513 show_symbol(m, n[2*i+2]);
4514 seq_putc(m, '\n');
4515 }
4516
4517 return 0;
4518 }
4519
4520 const struct seq_operations slabstats_op = {
4521 .start = leaks_start,
4522 .next = s_next,
4523 .stop = s_stop,
4524 .show = leaks_show,
4525 };
4526 #endif
4527 #endif
4528
4529 /**
4530 * ksize - get the actual amount of memory allocated for a given object
4531 * @objp: Pointer to the object
4532 *
4533 * kmalloc may internally round up allocations and return more memory
4534 * than requested. ksize() can be used to determine the actual amount of
4535 * memory allocated. The caller may use this additional memory, even though
4536 * a smaller amount of memory was initially specified with the kmalloc call.
4537 * The caller must guarantee that objp points to a valid object previously
4538 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4539 * must not be freed during the duration of the call.
4540 */
4541 size_t ksize(const void *objp)
4542 {
4543 if (unlikely(objp == NULL))
4544 return 0;
4545
4546 return obj_size(virt_to_cache(objp));
4547 }
This page took 0.114723 seconds and 6 git commands to generate.