slab: correct pfmemalloc check
[deliverable/linux.git] / mm / slab.c
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'slab_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
87 */
88
89 #include <linux/slab.h>
90 #include <linux/mm.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/notifier.h>
101 #include <linux/kallsyms.h>
102 #include <linux/cpu.h>
103 #include <linux/sysctl.h>
104 #include <linux/module.h>
105 #include <linux/rcupdate.h>
106 #include <linux/string.h>
107 #include <linux/uaccess.h>
108 #include <linux/nodemask.h>
109 #include <linux/kmemleak.h>
110 #include <linux/mempolicy.h>
111 #include <linux/mutex.h>
112 #include <linux/fault-inject.h>
113 #include <linux/rtmutex.h>
114 #include <linux/reciprocal_div.h>
115 #include <linux/debugobjects.h>
116 #include <linux/kmemcheck.h>
117 #include <linux/memory.h>
118 #include <linux/prefetch.h>
119
120 #include <net/sock.h>
121
122 #include <asm/cacheflush.h>
123 #include <asm/tlbflush.h>
124 #include <asm/page.h>
125
126 #include <trace/events/kmem.h>
127
128 #include "internal.h"
129
130 #include "slab.h"
131
132 /*
133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
134 * 0 for faster, smaller code (especially in the critical paths).
135 *
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
138 *
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140 */
141
142 #ifdef CONFIG_DEBUG_SLAB
143 #define DEBUG 1
144 #define STATS 1
145 #define FORCED_DEBUG 1
146 #else
147 #define DEBUG 0
148 #define STATS 0
149 #define FORCED_DEBUG 0
150 #endif
151
152 /* Shouldn't this be in a header file somewhere? */
153 #define BYTES_PER_WORD sizeof(void *)
154 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
155
156 #ifndef ARCH_KMALLOC_FLAGS
157 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158 #endif
159
160 /*
161 * true if a page was allocated from pfmemalloc reserves for network-based
162 * swap
163 */
164 static bool pfmemalloc_active __read_mostly;
165
166 /*
167 * kmem_bufctl_t:
168 *
169 * Bufctl's are used for linking objs within a slab
170 * linked offsets.
171 *
172 * This implementation relies on "struct page" for locating the cache &
173 * slab an object belongs to.
174 * This allows the bufctl structure to be small (one int), but limits
175 * the number of objects a slab (not a cache) can contain when off-slab
176 * bufctls are used. The limit is the size of the largest general cache
177 * that does not use off-slab slabs.
178 * For 32bit archs with 4 kB pages, is this 56.
179 * This is not serious, as it is only for large objects, when it is unwise
180 * to have too many per slab.
181 * Note: This limit can be raised by introducing a general cache whose size
182 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
183 */
184
185 typedef unsigned int kmem_bufctl_t;
186 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
187 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
188 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
189 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
190
191 /*
192 * struct slab_rcu
193 *
194 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
195 * arrange for kmem_freepages to be called via RCU. This is useful if
196 * we need to approach a kernel structure obliquely, from its address
197 * obtained without the usual locking. We can lock the structure to
198 * stabilize it and check it's still at the given address, only if we
199 * can be sure that the memory has not been meanwhile reused for some
200 * other kind of object (which our subsystem's lock might corrupt).
201 *
202 * rcu_read_lock before reading the address, then rcu_read_unlock after
203 * taking the spinlock within the structure expected at that address.
204 */
205 struct slab_rcu {
206 struct rcu_head head;
207 struct kmem_cache *cachep;
208 void *addr;
209 };
210
211 /*
212 * struct slab
213 *
214 * Manages the objs in a slab. Placed either at the beginning of mem allocated
215 * for a slab, or allocated from an general cache.
216 * Slabs are chained into three list: fully used, partial, fully free slabs.
217 */
218 struct slab {
219 union {
220 struct {
221 struct list_head list;
222 unsigned long colouroff;
223 void *s_mem; /* including colour offset */
224 unsigned int inuse; /* num of objs active in slab */
225 kmem_bufctl_t free;
226 unsigned short nodeid;
227 };
228 struct slab_rcu __slab_cover_slab_rcu;
229 };
230 };
231
232 /*
233 * struct array_cache
234 *
235 * Purpose:
236 * - LIFO ordering, to hand out cache-warm objects from _alloc
237 * - reduce the number of linked list operations
238 * - reduce spinlock operations
239 *
240 * The limit is stored in the per-cpu structure to reduce the data cache
241 * footprint.
242 *
243 */
244 struct array_cache {
245 unsigned int avail;
246 unsigned int limit;
247 unsigned int batchcount;
248 unsigned int touched;
249 spinlock_t lock;
250 void *entry[]; /*
251 * Must have this definition in here for the proper
252 * alignment of array_cache. Also simplifies accessing
253 * the entries.
254 *
255 * Entries should not be directly dereferenced as
256 * entries belonging to slabs marked pfmemalloc will
257 * have the lower bits set SLAB_OBJ_PFMEMALLOC
258 */
259 };
260
261 #define SLAB_OBJ_PFMEMALLOC 1
262 static inline bool is_obj_pfmemalloc(void *objp)
263 {
264 return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
265 }
266
267 static inline void set_obj_pfmemalloc(void **objp)
268 {
269 *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
270 return;
271 }
272
273 static inline void clear_obj_pfmemalloc(void **objp)
274 {
275 *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
276 }
277
278 /*
279 * bootstrap: The caches do not work without cpuarrays anymore, but the
280 * cpuarrays are allocated from the generic caches...
281 */
282 #define BOOT_CPUCACHE_ENTRIES 1
283 struct arraycache_init {
284 struct array_cache cache;
285 void *entries[BOOT_CPUCACHE_ENTRIES];
286 };
287
288 /*
289 * Need this for bootstrapping a per node allocator.
290 */
291 #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
292 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
293 #define CACHE_CACHE 0
294 #define SIZE_AC MAX_NUMNODES
295 #define SIZE_NODE (2 * MAX_NUMNODES)
296
297 static int drain_freelist(struct kmem_cache *cache,
298 struct kmem_cache_node *n, int tofree);
299 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
300 int node);
301 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
302 static void cache_reap(struct work_struct *unused);
303
304 static int slab_early_init = 1;
305
306 #define INDEX_AC kmalloc_index(sizeof(struct arraycache_init))
307 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
308
309 static void kmem_cache_node_init(struct kmem_cache_node *parent)
310 {
311 INIT_LIST_HEAD(&parent->slabs_full);
312 INIT_LIST_HEAD(&parent->slabs_partial);
313 INIT_LIST_HEAD(&parent->slabs_free);
314 parent->shared = NULL;
315 parent->alien = NULL;
316 parent->colour_next = 0;
317 spin_lock_init(&parent->list_lock);
318 parent->free_objects = 0;
319 parent->free_touched = 0;
320 }
321
322 #define MAKE_LIST(cachep, listp, slab, nodeid) \
323 do { \
324 INIT_LIST_HEAD(listp); \
325 list_splice(&(cachep->node[nodeid]->slab), listp); \
326 } while (0)
327
328 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
329 do { \
330 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
331 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
332 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
333 } while (0)
334
335 #define CFLGS_OFF_SLAB (0x80000000UL)
336 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
337
338 #define BATCHREFILL_LIMIT 16
339 /*
340 * Optimization question: fewer reaps means less probability for unnessary
341 * cpucache drain/refill cycles.
342 *
343 * OTOH the cpuarrays can contain lots of objects,
344 * which could lock up otherwise freeable slabs.
345 */
346 #define REAPTIMEOUT_CPUC (2*HZ)
347 #define REAPTIMEOUT_LIST3 (4*HZ)
348
349 #if STATS
350 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
351 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
352 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
353 #define STATS_INC_GROWN(x) ((x)->grown++)
354 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
355 #define STATS_SET_HIGH(x) \
356 do { \
357 if ((x)->num_active > (x)->high_mark) \
358 (x)->high_mark = (x)->num_active; \
359 } while (0)
360 #define STATS_INC_ERR(x) ((x)->errors++)
361 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
362 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
363 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
364 #define STATS_SET_FREEABLE(x, i) \
365 do { \
366 if ((x)->max_freeable < i) \
367 (x)->max_freeable = i; \
368 } while (0)
369 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
370 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
371 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
372 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
373 #else
374 #define STATS_INC_ACTIVE(x) do { } while (0)
375 #define STATS_DEC_ACTIVE(x) do { } while (0)
376 #define STATS_INC_ALLOCED(x) do { } while (0)
377 #define STATS_INC_GROWN(x) do { } while (0)
378 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
379 #define STATS_SET_HIGH(x) do { } while (0)
380 #define STATS_INC_ERR(x) do { } while (0)
381 #define STATS_INC_NODEALLOCS(x) do { } while (0)
382 #define STATS_INC_NODEFREES(x) do { } while (0)
383 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
384 #define STATS_SET_FREEABLE(x, i) do { } while (0)
385 #define STATS_INC_ALLOCHIT(x) do { } while (0)
386 #define STATS_INC_ALLOCMISS(x) do { } while (0)
387 #define STATS_INC_FREEHIT(x) do { } while (0)
388 #define STATS_INC_FREEMISS(x) do { } while (0)
389 #endif
390
391 #if DEBUG
392
393 /*
394 * memory layout of objects:
395 * 0 : objp
396 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
397 * the end of an object is aligned with the end of the real
398 * allocation. Catches writes behind the end of the allocation.
399 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
400 * redzone word.
401 * cachep->obj_offset: The real object.
402 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
403 * cachep->size - 1* BYTES_PER_WORD: last caller address
404 * [BYTES_PER_WORD long]
405 */
406 static int obj_offset(struct kmem_cache *cachep)
407 {
408 return cachep->obj_offset;
409 }
410
411 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
412 {
413 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
414 return (unsigned long long*) (objp + obj_offset(cachep) -
415 sizeof(unsigned long long));
416 }
417
418 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
419 {
420 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
421 if (cachep->flags & SLAB_STORE_USER)
422 return (unsigned long long *)(objp + cachep->size -
423 sizeof(unsigned long long) -
424 REDZONE_ALIGN);
425 return (unsigned long long *) (objp + cachep->size -
426 sizeof(unsigned long long));
427 }
428
429 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
430 {
431 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
432 return (void **)(objp + cachep->size - BYTES_PER_WORD);
433 }
434
435 #else
436
437 #define obj_offset(x) 0
438 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
439 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
440 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
441
442 #endif
443
444 /*
445 * Do not go above this order unless 0 objects fit into the slab or
446 * overridden on the command line.
447 */
448 #define SLAB_MAX_ORDER_HI 1
449 #define SLAB_MAX_ORDER_LO 0
450 static int slab_max_order = SLAB_MAX_ORDER_LO;
451 static bool slab_max_order_set __initdata;
452
453 static inline struct kmem_cache *virt_to_cache(const void *obj)
454 {
455 struct page *page = virt_to_head_page(obj);
456 return page->slab_cache;
457 }
458
459 static inline struct slab *virt_to_slab(const void *obj)
460 {
461 struct page *page = virt_to_head_page(obj);
462
463 VM_BUG_ON(!PageSlab(page));
464 return page->slab_page;
465 }
466
467 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
468 unsigned int idx)
469 {
470 return slab->s_mem + cache->size * idx;
471 }
472
473 /*
474 * We want to avoid an expensive divide : (offset / cache->size)
475 * Using the fact that size is a constant for a particular cache,
476 * we can replace (offset / cache->size) by
477 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
478 */
479 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
480 const struct slab *slab, void *obj)
481 {
482 u32 offset = (obj - slab->s_mem);
483 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
484 }
485
486 static struct arraycache_init initarray_generic =
487 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
488
489 /* internal cache of cache description objs */
490 static struct kmem_cache kmem_cache_boot = {
491 .batchcount = 1,
492 .limit = BOOT_CPUCACHE_ENTRIES,
493 .shared = 1,
494 .size = sizeof(struct kmem_cache),
495 .name = "kmem_cache",
496 };
497
498 #define BAD_ALIEN_MAGIC 0x01020304ul
499
500 #ifdef CONFIG_LOCKDEP
501
502 /*
503 * Slab sometimes uses the kmalloc slabs to store the slab headers
504 * for other slabs "off slab".
505 * The locking for this is tricky in that it nests within the locks
506 * of all other slabs in a few places; to deal with this special
507 * locking we put on-slab caches into a separate lock-class.
508 *
509 * We set lock class for alien array caches which are up during init.
510 * The lock annotation will be lost if all cpus of a node goes down and
511 * then comes back up during hotplug
512 */
513 static struct lock_class_key on_slab_l3_key;
514 static struct lock_class_key on_slab_alc_key;
515
516 static struct lock_class_key debugobj_l3_key;
517 static struct lock_class_key debugobj_alc_key;
518
519 static void slab_set_lock_classes(struct kmem_cache *cachep,
520 struct lock_class_key *l3_key, struct lock_class_key *alc_key,
521 int q)
522 {
523 struct array_cache **alc;
524 struct kmem_cache_node *n;
525 int r;
526
527 n = cachep->node[q];
528 if (!n)
529 return;
530
531 lockdep_set_class(&n->list_lock, l3_key);
532 alc = n->alien;
533 /*
534 * FIXME: This check for BAD_ALIEN_MAGIC
535 * should go away when common slab code is taught to
536 * work even without alien caches.
537 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
538 * for alloc_alien_cache,
539 */
540 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
541 return;
542 for_each_node(r) {
543 if (alc[r])
544 lockdep_set_class(&alc[r]->lock, alc_key);
545 }
546 }
547
548 static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
549 {
550 slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
551 }
552
553 static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
554 {
555 int node;
556
557 for_each_online_node(node)
558 slab_set_debugobj_lock_classes_node(cachep, node);
559 }
560
561 static void init_node_lock_keys(int q)
562 {
563 int i;
564
565 if (slab_state < UP)
566 return;
567
568 for (i = 1; i <= KMALLOC_SHIFT_HIGH; i++) {
569 struct kmem_cache_node *n;
570 struct kmem_cache *cache = kmalloc_caches[i];
571
572 if (!cache)
573 continue;
574
575 n = cache->node[q];
576 if (!n || OFF_SLAB(cache))
577 continue;
578
579 slab_set_lock_classes(cache, &on_slab_l3_key,
580 &on_slab_alc_key, q);
581 }
582 }
583
584 static void on_slab_lock_classes_node(struct kmem_cache *cachep, int q)
585 {
586 if (!cachep->node[q])
587 return;
588
589 slab_set_lock_classes(cachep, &on_slab_l3_key,
590 &on_slab_alc_key, q);
591 }
592
593 static inline void on_slab_lock_classes(struct kmem_cache *cachep)
594 {
595 int node;
596
597 VM_BUG_ON(OFF_SLAB(cachep));
598 for_each_node(node)
599 on_slab_lock_classes_node(cachep, node);
600 }
601
602 static inline void init_lock_keys(void)
603 {
604 int node;
605
606 for_each_node(node)
607 init_node_lock_keys(node);
608 }
609 #else
610 static void init_node_lock_keys(int q)
611 {
612 }
613
614 static inline void init_lock_keys(void)
615 {
616 }
617
618 static inline void on_slab_lock_classes(struct kmem_cache *cachep)
619 {
620 }
621
622 static inline void on_slab_lock_classes_node(struct kmem_cache *cachep, int node)
623 {
624 }
625
626 static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
627 {
628 }
629
630 static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
631 {
632 }
633 #endif
634
635 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
636
637 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
638 {
639 return cachep->array[smp_processor_id()];
640 }
641
642 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
643 {
644 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
645 }
646
647 /*
648 * Calculate the number of objects and left-over bytes for a given buffer size.
649 */
650 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
651 size_t align, int flags, size_t *left_over,
652 unsigned int *num)
653 {
654 int nr_objs;
655 size_t mgmt_size;
656 size_t slab_size = PAGE_SIZE << gfporder;
657
658 /*
659 * The slab management structure can be either off the slab or
660 * on it. For the latter case, the memory allocated for a
661 * slab is used for:
662 *
663 * - The struct slab
664 * - One kmem_bufctl_t for each object
665 * - Padding to respect alignment of @align
666 * - @buffer_size bytes for each object
667 *
668 * If the slab management structure is off the slab, then the
669 * alignment will already be calculated into the size. Because
670 * the slabs are all pages aligned, the objects will be at the
671 * correct alignment when allocated.
672 */
673 if (flags & CFLGS_OFF_SLAB) {
674 mgmt_size = 0;
675 nr_objs = slab_size / buffer_size;
676
677 if (nr_objs > SLAB_LIMIT)
678 nr_objs = SLAB_LIMIT;
679 } else {
680 /*
681 * Ignore padding for the initial guess. The padding
682 * is at most @align-1 bytes, and @buffer_size is at
683 * least @align. In the worst case, this result will
684 * be one greater than the number of objects that fit
685 * into the memory allocation when taking the padding
686 * into account.
687 */
688 nr_objs = (slab_size - sizeof(struct slab)) /
689 (buffer_size + sizeof(kmem_bufctl_t));
690
691 /*
692 * This calculated number will be either the right
693 * amount, or one greater than what we want.
694 */
695 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
696 > slab_size)
697 nr_objs--;
698
699 if (nr_objs > SLAB_LIMIT)
700 nr_objs = SLAB_LIMIT;
701
702 mgmt_size = slab_mgmt_size(nr_objs, align);
703 }
704 *num = nr_objs;
705 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
706 }
707
708 #if DEBUG
709 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
710
711 static void __slab_error(const char *function, struct kmem_cache *cachep,
712 char *msg)
713 {
714 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
715 function, cachep->name, msg);
716 dump_stack();
717 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
718 }
719 #endif
720
721 /*
722 * By default on NUMA we use alien caches to stage the freeing of
723 * objects allocated from other nodes. This causes massive memory
724 * inefficiencies when using fake NUMA setup to split memory into a
725 * large number of small nodes, so it can be disabled on the command
726 * line
727 */
728
729 static int use_alien_caches __read_mostly = 1;
730 static int __init noaliencache_setup(char *s)
731 {
732 use_alien_caches = 0;
733 return 1;
734 }
735 __setup("noaliencache", noaliencache_setup);
736
737 static int __init slab_max_order_setup(char *str)
738 {
739 get_option(&str, &slab_max_order);
740 slab_max_order = slab_max_order < 0 ? 0 :
741 min(slab_max_order, MAX_ORDER - 1);
742 slab_max_order_set = true;
743
744 return 1;
745 }
746 __setup("slab_max_order=", slab_max_order_setup);
747
748 #ifdef CONFIG_NUMA
749 /*
750 * Special reaping functions for NUMA systems called from cache_reap().
751 * These take care of doing round robin flushing of alien caches (containing
752 * objects freed on different nodes from which they were allocated) and the
753 * flushing of remote pcps by calling drain_node_pages.
754 */
755 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
756
757 static void init_reap_node(int cpu)
758 {
759 int node;
760
761 node = next_node(cpu_to_mem(cpu), node_online_map);
762 if (node == MAX_NUMNODES)
763 node = first_node(node_online_map);
764
765 per_cpu(slab_reap_node, cpu) = node;
766 }
767
768 static void next_reap_node(void)
769 {
770 int node = __this_cpu_read(slab_reap_node);
771
772 node = next_node(node, node_online_map);
773 if (unlikely(node >= MAX_NUMNODES))
774 node = first_node(node_online_map);
775 __this_cpu_write(slab_reap_node, node);
776 }
777
778 #else
779 #define init_reap_node(cpu) do { } while (0)
780 #define next_reap_node(void) do { } while (0)
781 #endif
782
783 /*
784 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
785 * via the workqueue/eventd.
786 * Add the CPU number into the expiration time to minimize the possibility of
787 * the CPUs getting into lockstep and contending for the global cache chain
788 * lock.
789 */
790 static void start_cpu_timer(int cpu)
791 {
792 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
793
794 /*
795 * When this gets called from do_initcalls via cpucache_init(),
796 * init_workqueues() has already run, so keventd will be setup
797 * at that time.
798 */
799 if (keventd_up() && reap_work->work.func == NULL) {
800 init_reap_node(cpu);
801 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
802 schedule_delayed_work_on(cpu, reap_work,
803 __round_jiffies_relative(HZ, cpu));
804 }
805 }
806
807 static struct array_cache *alloc_arraycache(int node, int entries,
808 int batchcount, gfp_t gfp)
809 {
810 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
811 struct array_cache *nc = NULL;
812
813 nc = kmalloc_node(memsize, gfp, node);
814 /*
815 * The array_cache structures contain pointers to free object.
816 * However, when such objects are allocated or transferred to another
817 * cache the pointers are not cleared and they could be counted as
818 * valid references during a kmemleak scan. Therefore, kmemleak must
819 * not scan such objects.
820 */
821 kmemleak_no_scan(nc);
822 if (nc) {
823 nc->avail = 0;
824 nc->limit = entries;
825 nc->batchcount = batchcount;
826 nc->touched = 0;
827 spin_lock_init(&nc->lock);
828 }
829 return nc;
830 }
831
832 static inline bool is_slab_pfmemalloc(struct slab *slabp)
833 {
834 struct page *page = virt_to_page(slabp->s_mem);
835
836 return PageSlabPfmemalloc(page);
837 }
838
839 /* Clears pfmemalloc_active if no slabs have pfmalloc set */
840 static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
841 struct array_cache *ac)
842 {
843 struct kmem_cache_node *n = cachep->node[numa_mem_id()];
844 struct slab *slabp;
845 unsigned long flags;
846
847 if (!pfmemalloc_active)
848 return;
849
850 spin_lock_irqsave(&n->list_lock, flags);
851 list_for_each_entry(slabp, &n->slabs_full, list)
852 if (is_slab_pfmemalloc(slabp))
853 goto out;
854
855 list_for_each_entry(slabp, &n->slabs_partial, list)
856 if (is_slab_pfmemalloc(slabp))
857 goto out;
858
859 list_for_each_entry(slabp, &n->slabs_free, list)
860 if (is_slab_pfmemalloc(slabp))
861 goto out;
862
863 pfmemalloc_active = false;
864 out:
865 spin_unlock_irqrestore(&n->list_lock, flags);
866 }
867
868 static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
869 gfp_t flags, bool force_refill)
870 {
871 int i;
872 void *objp = ac->entry[--ac->avail];
873
874 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
875 if (unlikely(is_obj_pfmemalloc(objp))) {
876 struct kmem_cache_node *n;
877
878 if (gfp_pfmemalloc_allowed(flags)) {
879 clear_obj_pfmemalloc(&objp);
880 return objp;
881 }
882
883 /* The caller cannot use PFMEMALLOC objects, find another one */
884 for (i = 0; i < ac->avail; i++) {
885 /* If a !PFMEMALLOC object is found, swap them */
886 if (!is_obj_pfmemalloc(ac->entry[i])) {
887 objp = ac->entry[i];
888 ac->entry[i] = ac->entry[ac->avail];
889 ac->entry[ac->avail] = objp;
890 return objp;
891 }
892 }
893
894 /*
895 * If there are empty slabs on the slabs_free list and we are
896 * being forced to refill the cache, mark this one !pfmemalloc.
897 */
898 n = cachep->node[numa_mem_id()];
899 if (!list_empty(&n->slabs_free) && force_refill) {
900 struct slab *slabp = virt_to_slab(objp);
901 ClearPageSlabPfmemalloc(virt_to_head_page(slabp->s_mem));
902 clear_obj_pfmemalloc(&objp);
903 recheck_pfmemalloc_active(cachep, ac);
904 return objp;
905 }
906
907 /* No !PFMEMALLOC objects available */
908 ac->avail++;
909 objp = NULL;
910 }
911
912 return objp;
913 }
914
915 static inline void *ac_get_obj(struct kmem_cache *cachep,
916 struct array_cache *ac, gfp_t flags, bool force_refill)
917 {
918 void *objp;
919
920 if (unlikely(sk_memalloc_socks()))
921 objp = __ac_get_obj(cachep, ac, flags, force_refill);
922 else
923 objp = ac->entry[--ac->avail];
924
925 return objp;
926 }
927
928 static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
929 void *objp)
930 {
931 if (unlikely(pfmemalloc_active)) {
932 /* Some pfmemalloc slabs exist, check if this is one */
933 struct slab *slabp = virt_to_slab(objp);
934 struct page *page = virt_to_head_page(slabp->s_mem);
935 if (PageSlabPfmemalloc(page))
936 set_obj_pfmemalloc(&objp);
937 }
938
939 return objp;
940 }
941
942 static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
943 void *objp)
944 {
945 if (unlikely(sk_memalloc_socks()))
946 objp = __ac_put_obj(cachep, ac, objp);
947
948 ac->entry[ac->avail++] = objp;
949 }
950
951 /*
952 * Transfer objects in one arraycache to another.
953 * Locking must be handled by the caller.
954 *
955 * Return the number of entries transferred.
956 */
957 static int transfer_objects(struct array_cache *to,
958 struct array_cache *from, unsigned int max)
959 {
960 /* Figure out how many entries to transfer */
961 int nr = min3(from->avail, max, to->limit - to->avail);
962
963 if (!nr)
964 return 0;
965
966 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
967 sizeof(void *) *nr);
968
969 from->avail -= nr;
970 to->avail += nr;
971 return nr;
972 }
973
974 #ifndef CONFIG_NUMA
975
976 #define drain_alien_cache(cachep, alien) do { } while (0)
977 #define reap_alien(cachep, n) do { } while (0)
978
979 static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
980 {
981 return (struct array_cache **)BAD_ALIEN_MAGIC;
982 }
983
984 static inline void free_alien_cache(struct array_cache **ac_ptr)
985 {
986 }
987
988 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
989 {
990 return 0;
991 }
992
993 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
994 gfp_t flags)
995 {
996 return NULL;
997 }
998
999 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1000 gfp_t flags, int nodeid)
1001 {
1002 return NULL;
1003 }
1004
1005 #else /* CONFIG_NUMA */
1006
1007 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1008 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1009
1010 static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1011 {
1012 struct array_cache **ac_ptr;
1013 int memsize = sizeof(void *) * nr_node_ids;
1014 int i;
1015
1016 if (limit > 1)
1017 limit = 12;
1018 ac_ptr = kzalloc_node(memsize, gfp, node);
1019 if (ac_ptr) {
1020 for_each_node(i) {
1021 if (i == node || !node_online(i))
1022 continue;
1023 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
1024 if (!ac_ptr[i]) {
1025 for (i--; i >= 0; i--)
1026 kfree(ac_ptr[i]);
1027 kfree(ac_ptr);
1028 return NULL;
1029 }
1030 }
1031 }
1032 return ac_ptr;
1033 }
1034
1035 static void free_alien_cache(struct array_cache **ac_ptr)
1036 {
1037 int i;
1038
1039 if (!ac_ptr)
1040 return;
1041 for_each_node(i)
1042 kfree(ac_ptr[i]);
1043 kfree(ac_ptr);
1044 }
1045
1046 static void __drain_alien_cache(struct kmem_cache *cachep,
1047 struct array_cache *ac, int node)
1048 {
1049 struct kmem_cache_node *n = cachep->node[node];
1050
1051 if (ac->avail) {
1052 spin_lock(&n->list_lock);
1053 /*
1054 * Stuff objects into the remote nodes shared array first.
1055 * That way we could avoid the overhead of putting the objects
1056 * into the free lists and getting them back later.
1057 */
1058 if (n->shared)
1059 transfer_objects(n->shared, ac, ac->limit);
1060
1061 free_block(cachep, ac->entry, ac->avail, node);
1062 ac->avail = 0;
1063 spin_unlock(&n->list_lock);
1064 }
1065 }
1066
1067 /*
1068 * Called from cache_reap() to regularly drain alien caches round robin.
1069 */
1070 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
1071 {
1072 int node = __this_cpu_read(slab_reap_node);
1073
1074 if (n->alien) {
1075 struct array_cache *ac = n->alien[node];
1076
1077 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1078 __drain_alien_cache(cachep, ac, node);
1079 spin_unlock_irq(&ac->lock);
1080 }
1081 }
1082 }
1083
1084 static void drain_alien_cache(struct kmem_cache *cachep,
1085 struct array_cache **alien)
1086 {
1087 int i = 0;
1088 struct array_cache *ac;
1089 unsigned long flags;
1090
1091 for_each_online_node(i) {
1092 ac = alien[i];
1093 if (ac) {
1094 spin_lock_irqsave(&ac->lock, flags);
1095 __drain_alien_cache(cachep, ac, i);
1096 spin_unlock_irqrestore(&ac->lock, flags);
1097 }
1098 }
1099 }
1100
1101 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1102 {
1103 struct slab *slabp = virt_to_slab(objp);
1104 int nodeid = slabp->nodeid;
1105 struct kmem_cache_node *n;
1106 struct array_cache *alien = NULL;
1107 int node;
1108
1109 node = numa_mem_id();
1110
1111 /*
1112 * Make sure we are not freeing a object from another node to the array
1113 * cache on this cpu.
1114 */
1115 if (likely(slabp->nodeid == node))
1116 return 0;
1117
1118 n = cachep->node[node];
1119 STATS_INC_NODEFREES(cachep);
1120 if (n->alien && n->alien[nodeid]) {
1121 alien = n->alien[nodeid];
1122 spin_lock(&alien->lock);
1123 if (unlikely(alien->avail == alien->limit)) {
1124 STATS_INC_ACOVERFLOW(cachep);
1125 __drain_alien_cache(cachep, alien, nodeid);
1126 }
1127 ac_put_obj(cachep, alien, objp);
1128 spin_unlock(&alien->lock);
1129 } else {
1130 spin_lock(&(cachep->node[nodeid])->list_lock);
1131 free_block(cachep, &objp, 1, nodeid);
1132 spin_unlock(&(cachep->node[nodeid])->list_lock);
1133 }
1134 return 1;
1135 }
1136 #endif
1137
1138 /*
1139 * Allocates and initializes node for a node on each slab cache, used for
1140 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
1141 * will be allocated off-node since memory is not yet online for the new node.
1142 * When hotplugging memory or a cpu, existing node are not replaced if
1143 * already in use.
1144 *
1145 * Must hold slab_mutex.
1146 */
1147 static int init_cache_node_node(int node)
1148 {
1149 struct kmem_cache *cachep;
1150 struct kmem_cache_node *n;
1151 const int memsize = sizeof(struct kmem_cache_node);
1152
1153 list_for_each_entry(cachep, &slab_caches, list) {
1154 /*
1155 * Set up the size64 kmemlist for cpu before we can
1156 * begin anything. Make sure some other cpu on this
1157 * node has not already allocated this
1158 */
1159 if (!cachep->node[node]) {
1160 n = kmalloc_node(memsize, GFP_KERNEL, node);
1161 if (!n)
1162 return -ENOMEM;
1163 kmem_cache_node_init(n);
1164 n->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1165 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1166
1167 /*
1168 * The l3s don't come and go as CPUs come and
1169 * go. slab_mutex is sufficient
1170 * protection here.
1171 */
1172 cachep->node[node] = n;
1173 }
1174
1175 spin_lock_irq(&cachep->node[node]->list_lock);
1176 cachep->node[node]->free_limit =
1177 (1 + nr_cpus_node(node)) *
1178 cachep->batchcount + cachep->num;
1179 spin_unlock_irq(&cachep->node[node]->list_lock);
1180 }
1181 return 0;
1182 }
1183
1184 static inline int slabs_tofree(struct kmem_cache *cachep,
1185 struct kmem_cache_node *n)
1186 {
1187 return (n->free_objects + cachep->num - 1) / cachep->num;
1188 }
1189
1190 static void cpuup_canceled(long cpu)
1191 {
1192 struct kmem_cache *cachep;
1193 struct kmem_cache_node *n = NULL;
1194 int node = cpu_to_mem(cpu);
1195 const struct cpumask *mask = cpumask_of_node(node);
1196
1197 list_for_each_entry(cachep, &slab_caches, list) {
1198 struct array_cache *nc;
1199 struct array_cache *shared;
1200 struct array_cache **alien;
1201
1202 /* cpu is dead; no one can alloc from it. */
1203 nc = cachep->array[cpu];
1204 cachep->array[cpu] = NULL;
1205 n = cachep->node[node];
1206
1207 if (!n)
1208 goto free_array_cache;
1209
1210 spin_lock_irq(&n->list_lock);
1211
1212 /* Free limit for this kmem_cache_node */
1213 n->free_limit -= cachep->batchcount;
1214 if (nc)
1215 free_block(cachep, nc->entry, nc->avail, node);
1216
1217 if (!cpumask_empty(mask)) {
1218 spin_unlock_irq(&n->list_lock);
1219 goto free_array_cache;
1220 }
1221
1222 shared = n->shared;
1223 if (shared) {
1224 free_block(cachep, shared->entry,
1225 shared->avail, node);
1226 n->shared = NULL;
1227 }
1228
1229 alien = n->alien;
1230 n->alien = NULL;
1231
1232 spin_unlock_irq(&n->list_lock);
1233
1234 kfree(shared);
1235 if (alien) {
1236 drain_alien_cache(cachep, alien);
1237 free_alien_cache(alien);
1238 }
1239 free_array_cache:
1240 kfree(nc);
1241 }
1242 /*
1243 * In the previous loop, all the objects were freed to
1244 * the respective cache's slabs, now we can go ahead and
1245 * shrink each nodelist to its limit.
1246 */
1247 list_for_each_entry(cachep, &slab_caches, list) {
1248 n = cachep->node[node];
1249 if (!n)
1250 continue;
1251 drain_freelist(cachep, n, slabs_tofree(cachep, n));
1252 }
1253 }
1254
1255 static int cpuup_prepare(long cpu)
1256 {
1257 struct kmem_cache *cachep;
1258 struct kmem_cache_node *n = NULL;
1259 int node = cpu_to_mem(cpu);
1260 int err;
1261
1262 /*
1263 * We need to do this right in the beginning since
1264 * alloc_arraycache's are going to use this list.
1265 * kmalloc_node allows us to add the slab to the right
1266 * kmem_cache_node and not this cpu's kmem_cache_node
1267 */
1268 err = init_cache_node_node(node);
1269 if (err < 0)
1270 goto bad;
1271
1272 /*
1273 * Now we can go ahead with allocating the shared arrays and
1274 * array caches
1275 */
1276 list_for_each_entry(cachep, &slab_caches, list) {
1277 struct array_cache *nc;
1278 struct array_cache *shared = NULL;
1279 struct array_cache **alien = NULL;
1280
1281 nc = alloc_arraycache(node, cachep->limit,
1282 cachep->batchcount, GFP_KERNEL);
1283 if (!nc)
1284 goto bad;
1285 if (cachep->shared) {
1286 shared = alloc_arraycache(node,
1287 cachep->shared * cachep->batchcount,
1288 0xbaadf00d, GFP_KERNEL);
1289 if (!shared) {
1290 kfree(nc);
1291 goto bad;
1292 }
1293 }
1294 if (use_alien_caches) {
1295 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1296 if (!alien) {
1297 kfree(shared);
1298 kfree(nc);
1299 goto bad;
1300 }
1301 }
1302 cachep->array[cpu] = nc;
1303 n = cachep->node[node];
1304 BUG_ON(!n);
1305
1306 spin_lock_irq(&n->list_lock);
1307 if (!n->shared) {
1308 /*
1309 * We are serialised from CPU_DEAD or
1310 * CPU_UP_CANCELLED by the cpucontrol lock
1311 */
1312 n->shared = shared;
1313 shared = NULL;
1314 }
1315 #ifdef CONFIG_NUMA
1316 if (!n->alien) {
1317 n->alien = alien;
1318 alien = NULL;
1319 }
1320 #endif
1321 spin_unlock_irq(&n->list_lock);
1322 kfree(shared);
1323 free_alien_cache(alien);
1324 if (cachep->flags & SLAB_DEBUG_OBJECTS)
1325 slab_set_debugobj_lock_classes_node(cachep, node);
1326 else if (!OFF_SLAB(cachep) &&
1327 !(cachep->flags & SLAB_DESTROY_BY_RCU))
1328 on_slab_lock_classes_node(cachep, node);
1329 }
1330 init_node_lock_keys(node);
1331
1332 return 0;
1333 bad:
1334 cpuup_canceled(cpu);
1335 return -ENOMEM;
1336 }
1337
1338 static int cpuup_callback(struct notifier_block *nfb,
1339 unsigned long action, void *hcpu)
1340 {
1341 long cpu = (long)hcpu;
1342 int err = 0;
1343
1344 switch (action) {
1345 case CPU_UP_PREPARE:
1346 case CPU_UP_PREPARE_FROZEN:
1347 mutex_lock(&slab_mutex);
1348 err = cpuup_prepare(cpu);
1349 mutex_unlock(&slab_mutex);
1350 break;
1351 case CPU_ONLINE:
1352 case CPU_ONLINE_FROZEN:
1353 start_cpu_timer(cpu);
1354 break;
1355 #ifdef CONFIG_HOTPLUG_CPU
1356 case CPU_DOWN_PREPARE:
1357 case CPU_DOWN_PREPARE_FROZEN:
1358 /*
1359 * Shutdown cache reaper. Note that the slab_mutex is
1360 * held so that if cache_reap() is invoked it cannot do
1361 * anything expensive but will only modify reap_work
1362 * and reschedule the timer.
1363 */
1364 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1365 /* Now the cache_reaper is guaranteed to be not running. */
1366 per_cpu(slab_reap_work, cpu).work.func = NULL;
1367 break;
1368 case CPU_DOWN_FAILED:
1369 case CPU_DOWN_FAILED_FROZEN:
1370 start_cpu_timer(cpu);
1371 break;
1372 case CPU_DEAD:
1373 case CPU_DEAD_FROZEN:
1374 /*
1375 * Even if all the cpus of a node are down, we don't free the
1376 * kmem_cache_node of any cache. This to avoid a race between
1377 * cpu_down, and a kmalloc allocation from another cpu for
1378 * memory from the node of the cpu going down. The node
1379 * structure is usually allocated from kmem_cache_create() and
1380 * gets destroyed at kmem_cache_destroy().
1381 */
1382 /* fall through */
1383 #endif
1384 case CPU_UP_CANCELED:
1385 case CPU_UP_CANCELED_FROZEN:
1386 mutex_lock(&slab_mutex);
1387 cpuup_canceled(cpu);
1388 mutex_unlock(&slab_mutex);
1389 break;
1390 }
1391 return notifier_from_errno(err);
1392 }
1393
1394 static struct notifier_block cpucache_notifier = {
1395 &cpuup_callback, NULL, 0
1396 };
1397
1398 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1399 /*
1400 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1401 * Returns -EBUSY if all objects cannot be drained so that the node is not
1402 * removed.
1403 *
1404 * Must hold slab_mutex.
1405 */
1406 static int __meminit drain_cache_node_node(int node)
1407 {
1408 struct kmem_cache *cachep;
1409 int ret = 0;
1410
1411 list_for_each_entry(cachep, &slab_caches, list) {
1412 struct kmem_cache_node *n;
1413
1414 n = cachep->node[node];
1415 if (!n)
1416 continue;
1417
1418 drain_freelist(cachep, n, slabs_tofree(cachep, n));
1419
1420 if (!list_empty(&n->slabs_full) ||
1421 !list_empty(&n->slabs_partial)) {
1422 ret = -EBUSY;
1423 break;
1424 }
1425 }
1426 return ret;
1427 }
1428
1429 static int __meminit slab_memory_callback(struct notifier_block *self,
1430 unsigned long action, void *arg)
1431 {
1432 struct memory_notify *mnb = arg;
1433 int ret = 0;
1434 int nid;
1435
1436 nid = mnb->status_change_nid;
1437 if (nid < 0)
1438 goto out;
1439
1440 switch (action) {
1441 case MEM_GOING_ONLINE:
1442 mutex_lock(&slab_mutex);
1443 ret = init_cache_node_node(nid);
1444 mutex_unlock(&slab_mutex);
1445 break;
1446 case MEM_GOING_OFFLINE:
1447 mutex_lock(&slab_mutex);
1448 ret = drain_cache_node_node(nid);
1449 mutex_unlock(&slab_mutex);
1450 break;
1451 case MEM_ONLINE:
1452 case MEM_OFFLINE:
1453 case MEM_CANCEL_ONLINE:
1454 case MEM_CANCEL_OFFLINE:
1455 break;
1456 }
1457 out:
1458 return notifier_from_errno(ret);
1459 }
1460 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1461
1462 /*
1463 * swap the static kmem_cache_node with kmalloced memory
1464 */
1465 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1466 int nodeid)
1467 {
1468 struct kmem_cache_node *ptr;
1469
1470 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1471 BUG_ON(!ptr);
1472
1473 memcpy(ptr, list, sizeof(struct kmem_cache_node));
1474 /*
1475 * Do not assume that spinlocks can be initialized via memcpy:
1476 */
1477 spin_lock_init(&ptr->list_lock);
1478
1479 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1480 cachep->node[nodeid] = ptr;
1481 }
1482
1483 /*
1484 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1485 * size of kmem_cache_node.
1486 */
1487 static void __init set_up_node(struct kmem_cache *cachep, int index)
1488 {
1489 int node;
1490
1491 for_each_online_node(node) {
1492 cachep->node[node] = &init_kmem_cache_node[index + node];
1493 cachep->node[node]->next_reap = jiffies +
1494 REAPTIMEOUT_LIST3 +
1495 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1496 }
1497 }
1498
1499 /*
1500 * The memory after the last cpu cache pointer is used for the
1501 * the node pointer.
1502 */
1503 static void setup_node_pointer(struct kmem_cache *cachep)
1504 {
1505 cachep->node = (struct kmem_cache_node **)&cachep->array[nr_cpu_ids];
1506 }
1507
1508 /*
1509 * Initialisation. Called after the page allocator have been initialised and
1510 * before smp_init().
1511 */
1512 void __init kmem_cache_init(void)
1513 {
1514 int i;
1515
1516 kmem_cache = &kmem_cache_boot;
1517 setup_node_pointer(kmem_cache);
1518
1519 if (num_possible_nodes() == 1)
1520 use_alien_caches = 0;
1521
1522 for (i = 0; i < NUM_INIT_LISTS; i++)
1523 kmem_cache_node_init(&init_kmem_cache_node[i]);
1524
1525 set_up_node(kmem_cache, CACHE_CACHE);
1526
1527 /*
1528 * Fragmentation resistance on low memory - only use bigger
1529 * page orders on machines with more than 32MB of memory if
1530 * not overridden on the command line.
1531 */
1532 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1533 slab_max_order = SLAB_MAX_ORDER_HI;
1534
1535 /* Bootstrap is tricky, because several objects are allocated
1536 * from caches that do not exist yet:
1537 * 1) initialize the kmem_cache cache: it contains the struct
1538 * kmem_cache structures of all caches, except kmem_cache itself:
1539 * kmem_cache is statically allocated.
1540 * Initially an __init data area is used for the head array and the
1541 * kmem_cache_node structures, it's replaced with a kmalloc allocated
1542 * array at the end of the bootstrap.
1543 * 2) Create the first kmalloc cache.
1544 * The struct kmem_cache for the new cache is allocated normally.
1545 * An __init data area is used for the head array.
1546 * 3) Create the remaining kmalloc caches, with minimally sized
1547 * head arrays.
1548 * 4) Replace the __init data head arrays for kmem_cache and the first
1549 * kmalloc cache with kmalloc allocated arrays.
1550 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1551 * the other cache's with kmalloc allocated memory.
1552 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1553 */
1554
1555 /* 1) create the kmem_cache */
1556
1557 /*
1558 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1559 */
1560 create_boot_cache(kmem_cache, "kmem_cache",
1561 offsetof(struct kmem_cache, array[nr_cpu_ids]) +
1562 nr_node_ids * sizeof(struct kmem_cache_node *),
1563 SLAB_HWCACHE_ALIGN);
1564 list_add(&kmem_cache->list, &slab_caches);
1565
1566 /* 2+3) create the kmalloc caches */
1567
1568 /*
1569 * Initialize the caches that provide memory for the array cache and the
1570 * kmem_cache_node structures first. Without this, further allocations will
1571 * bug.
1572 */
1573
1574 kmalloc_caches[INDEX_AC] = create_kmalloc_cache("kmalloc-ac",
1575 kmalloc_size(INDEX_AC), ARCH_KMALLOC_FLAGS);
1576
1577 if (INDEX_AC != INDEX_NODE)
1578 kmalloc_caches[INDEX_NODE] =
1579 create_kmalloc_cache("kmalloc-node",
1580 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1581
1582 slab_early_init = 0;
1583
1584 /* 4) Replace the bootstrap head arrays */
1585 {
1586 struct array_cache *ptr;
1587
1588 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1589
1590 memcpy(ptr, cpu_cache_get(kmem_cache),
1591 sizeof(struct arraycache_init));
1592 /*
1593 * Do not assume that spinlocks can be initialized via memcpy:
1594 */
1595 spin_lock_init(&ptr->lock);
1596
1597 kmem_cache->array[smp_processor_id()] = ptr;
1598
1599 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1600
1601 BUG_ON(cpu_cache_get(kmalloc_caches[INDEX_AC])
1602 != &initarray_generic.cache);
1603 memcpy(ptr, cpu_cache_get(kmalloc_caches[INDEX_AC]),
1604 sizeof(struct arraycache_init));
1605 /*
1606 * Do not assume that spinlocks can be initialized via memcpy:
1607 */
1608 spin_lock_init(&ptr->lock);
1609
1610 kmalloc_caches[INDEX_AC]->array[smp_processor_id()] = ptr;
1611 }
1612 /* 5) Replace the bootstrap kmem_cache_node */
1613 {
1614 int nid;
1615
1616 for_each_online_node(nid) {
1617 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1618
1619 init_list(kmalloc_caches[INDEX_AC],
1620 &init_kmem_cache_node[SIZE_AC + nid], nid);
1621
1622 if (INDEX_AC != INDEX_NODE) {
1623 init_list(kmalloc_caches[INDEX_NODE],
1624 &init_kmem_cache_node[SIZE_NODE + nid], nid);
1625 }
1626 }
1627 }
1628
1629 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1630 }
1631
1632 void __init kmem_cache_init_late(void)
1633 {
1634 struct kmem_cache *cachep;
1635
1636 slab_state = UP;
1637
1638 /* 6) resize the head arrays to their final sizes */
1639 mutex_lock(&slab_mutex);
1640 list_for_each_entry(cachep, &slab_caches, list)
1641 if (enable_cpucache(cachep, GFP_NOWAIT))
1642 BUG();
1643 mutex_unlock(&slab_mutex);
1644
1645 /* Annotate slab for lockdep -- annotate the malloc caches */
1646 init_lock_keys();
1647
1648 /* Done! */
1649 slab_state = FULL;
1650
1651 /*
1652 * Register a cpu startup notifier callback that initializes
1653 * cpu_cache_get for all new cpus
1654 */
1655 register_cpu_notifier(&cpucache_notifier);
1656
1657 #ifdef CONFIG_NUMA
1658 /*
1659 * Register a memory hotplug callback that initializes and frees
1660 * node.
1661 */
1662 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1663 #endif
1664
1665 /*
1666 * The reap timers are started later, with a module init call: That part
1667 * of the kernel is not yet operational.
1668 */
1669 }
1670
1671 static int __init cpucache_init(void)
1672 {
1673 int cpu;
1674
1675 /*
1676 * Register the timers that return unneeded pages to the page allocator
1677 */
1678 for_each_online_cpu(cpu)
1679 start_cpu_timer(cpu);
1680
1681 /* Done! */
1682 slab_state = FULL;
1683 return 0;
1684 }
1685 __initcall(cpucache_init);
1686
1687 static noinline void
1688 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1689 {
1690 struct kmem_cache_node *n;
1691 struct slab *slabp;
1692 unsigned long flags;
1693 int node;
1694
1695 printk(KERN_WARNING
1696 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1697 nodeid, gfpflags);
1698 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
1699 cachep->name, cachep->size, cachep->gfporder);
1700
1701 for_each_online_node(node) {
1702 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1703 unsigned long active_slabs = 0, num_slabs = 0;
1704
1705 n = cachep->node[node];
1706 if (!n)
1707 continue;
1708
1709 spin_lock_irqsave(&n->list_lock, flags);
1710 list_for_each_entry(slabp, &n->slabs_full, list) {
1711 active_objs += cachep->num;
1712 active_slabs++;
1713 }
1714 list_for_each_entry(slabp, &n->slabs_partial, list) {
1715 active_objs += slabp->inuse;
1716 active_slabs++;
1717 }
1718 list_for_each_entry(slabp, &n->slabs_free, list)
1719 num_slabs++;
1720
1721 free_objects += n->free_objects;
1722 spin_unlock_irqrestore(&n->list_lock, flags);
1723
1724 num_slabs += active_slabs;
1725 num_objs = num_slabs * cachep->num;
1726 printk(KERN_WARNING
1727 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1728 node, active_slabs, num_slabs, active_objs, num_objs,
1729 free_objects);
1730 }
1731 }
1732
1733 /*
1734 * Interface to system's page allocator. No need to hold the cache-lock.
1735 *
1736 * If we requested dmaable memory, we will get it. Even if we
1737 * did not request dmaable memory, we might get it, but that
1738 * would be relatively rare and ignorable.
1739 */
1740 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1741 {
1742 struct page *page;
1743 int nr_pages;
1744 int i;
1745
1746 #ifndef CONFIG_MMU
1747 /*
1748 * Nommu uses slab's for process anonymous memory allocations, and thus
1749 * requires __GFP_COMP to properly refcount higher order allocations
1750 */
1751 flags |= __GFP_COMP;
1752 #endif
1753
1754 flags |= cachep->allocflags;
1755 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1756 flags |= __GFP_RECLAIMABLE;
1757
1758 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1759 if (!page) {
1760 if (!(flags & __GFP_NOWARN) && printk_ratelimit())
1761 slab_out_of_memory(cachep, flags, nodeid);
1762 return NULL;
1763 }
1764
1765 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1766 if (unlikely(page->pfmemalloc))
1767 pfmemalloc_active = true;
1768
1769 nr_pages = (1 << cachep->gfporder);
1770 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1771 add_zone_page_state(page_zone(page),
1772 NR_SLAB_RECLAIMABLE, nr_pages);
1773 else
1774 add_zone_page_state(page_zone(page),
1775 NR_SLAB_UNRECLAIMABLE, nr_pages);
1776 for (i = 0; i < nr_pages; i++) {
1777 __SetPageSlab(page + i);
1778
1779 if (page->pfmemalloc)
1780 SetPageSlabPfmemalloc(page);
1781 }
1782 memcg_bind_pages(cachep, cachep->gfporder);
1783
1784 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1785 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1786
1787 if (cachep->ctor)
1788 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1789 else
1790 kmemcheck_mark_unallocated_pages(page, nr_pages);
1791 }
1792
1793 return page_address(page);
1794 }
1795
1796 /*
1797 * Interface to system's page release.
1798 */
1799 static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1800 {
1801 unsigned long i = (1 << cachep->gfporder);
1802 struct page *page = virt_to_page(addr);
1803 const unsigned long nr_freed = i;
1804
1805 kmemcheck_free_shadow(page, cachep->gfporder);
1806
1807 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1808 sub_zone_page_state(page_zone(page),
1809 NR_SLAB_RECLAIMABLE, nr_freed);
1810 else
1811 sub_zone_page_state(page_zone(page),
1812 NR_SLAB_UNRECLAIMABLE, nr_freed);
1813
1814 __ClearPageSlabPfmemalloc(page);
1815 while (i--) {
1816 BUG_ON(!PageSlab(page));
1817 __ClearPageSlab(page);
1818 page++;
1819 }
1820
1821 memcg_release_pages(cachep, cachep->gfporder);
1822 if (current->reclaim_state)
1823 current->reclaim_state->reclaimed_slab += nr_freed;
1824 free_memcg_kmem_pages((unsigned long)addr, cachep->gfporder);
1825 }
1826
1827 static void kmem_rcu_free(struct rcu_head *head)
1828 {
1829 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1830 struct kmem_cache *cachep = slab_rcu->cachep;
1831
1832 kmem_freepages(cachep, slab_rcu->addr);
1833 if (OFF_SLAB(cachep))
1834 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1835 }
1836
1837 #if DEBUG
1838
1839 #ifdef CONFIG_DEBUG_PAGEALLOC
1840 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1841 unsigned long caller)
1842 {
1843 int size = cachep->object_size;
1844
1845 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1846
1847 if (size < 5 * sizeof(unsigned long))
1848 return;
1849
1850 *addr++ = 0x12345678;
1851 *addr++ = caller;
1852 *addr++ = smp_processor_id();
1853 size -= 3 * sizeof(unsigned long);
1854 {
1855 unsigned long *sptr = &caller;
1856 unsigned long svalue;
1857
1858 while (!kstack_end(sptr)) {
1859 svalue = *sptr++;
1860 if (kernel_text_address(svalue)) {
1861 *addr++ = svalue;
1862 size -= sizeof(unsigned long);
1863 if (size <= sizeof(unsigned long))
1864 break;
1865 }
1866 }
1867
1868 }
1869 *addr++ = 0x87654321;
1870 }
1871 #endif
1872
1873 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1874 {
1875 int size = cachep->object_size;
1876 addr = &((char *)addr)[obj_offset(cachep)];
1877
1878 memset(addr, val, size);
1879 *(unsigned char *)(addr + size - 1) = POISON_END;
1880 }
1881
1882 static void dump_line(char *data, int offset, int limit)
1883 {
1884 int i;
1885 unsigned char error = 0;
1886 int bad_count = 0;
1887
1888 printk(KERN_ERR "%03x: ", offset);
1889 for (i = 0; i < limit; i++) {
1890 if (data[offset + i] != POISON_FREE) {
1891 error = data[offset + i];
1892 bad_count++;
1893 }
1894 }
1895 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1896 &data[offset], limit, 1);
1897
1898 if (bad_count == 1) {
1899 error ^= POISON_FREE;
1900 if (!(error & (error - 1))) {
1901 printk(KERN_ERR "Single bit error detected. Probably "
1902 "bad RAM.\n");
1903 #ifdef CONFIG_X86
1904 printk(KERN_ERR "Run memtest86+ or a similar memory "
1905 "test tool.\n");
1906 #else
1907 printk(KERN_ERR "Run a memory test tool.\n");
1908 #endif
1909 }
1910 }
1911 }
1912 #endif
1913
1914 #if DEBUG
1915
1916 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1917 {
1918 int i, size;
1919 char *realobj;
1920
1921 if (cachep->flags & SLAB_RED_ZONE) {
1922 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1923 *dbg_redzone1(cachep, objp),
1924 *dbg_redzone2(cachep, objp));
1925 }
1926
1927 if (cachep->flags & SLAB_STORE_USER) {
1928 printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
1929 *dbg_userword(cachep, objp),
1930 *dbg_userword(cachep, objp));
1931 }
1932 realobj = (char *)objp + obj_offset(cachep);
1933 size = cachep->object_size;
1934 for (i = 0; i < size && lines; i += 16, lines--) {
1935 int limit;
1936 limit = 16;
1937 if (i + limit > size)
1938 limit = size - i;
1939 dump_line(realobj, i, limit);
1940 }
1941 }
1942
1943 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1944 {
1945 char *realobj;
1946 int size, i;
1947 int lines = 0;
1948
1949 realobj = (char *)objp + obj_offset(cachep);
1950 size = cachep->object_size;
1951
1952 for (i = 0; i < size; i++) {
1953 char exp = POISON_FREE;
1954 if (i == size - 1)
1955 exp = POISON_END;
1956 if (realobj[i] != exp) {
1957 int limit;
1958 /* Mismatch ! */
1959 /* Print header */
1960 if (lines == 0) {
1961 printk(KERN_ERR
1962 "Slab corruption (%s): %s start=%p, len=%d\n",
1963 print_tainted(), cachep->name, realobj, size);
1964 print_objinfo(cachep, objp, 0);
1965 }
1966 /* Hexdump the affected line */
1967 i = (i / 16) * 16;
1968 limit = 16;
1969 if (i + limit > size)
1970 limit = size - i;
1971 dump_line(realobj, i, limit);
1972 i += 16;
1973 lines++;
1974 /* Limit to 5 lines */
1975 if (lines > 5)
1976 break;
1977 }
1978 }
1979 if (lines != 0) {
1980 /* Print some data about the neighboring objects, if they
1981 * exist:
1982 */
1983 struct slab *slabp = virt_to_slab(objp);
1984 unsigned int objnr;
1985
1986 objnr = obj_to_index(cachep, slabp, objp);
1987 if (objnr) {
1988 objp = index_to_obj(cachep, slabp, objnr - 1);
1989 realobj = (char *)objp + obj_offset(cachep);
1990 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1991 realobj, size);
1992 print_objinfo(cachep, objp, 2);
1993 }
1994 if (objnr + 1 < cachep->num) {
1995 objp = index_to_obj(cachep, slabp, objnr + 1);
1996 realobj = (char *)objp + obj_offset(cachep);
1997 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1998 realobj, size);
1999 print_objinfo(cachep, objp, 2);
2000 }
2001 }
2002 }
2003 #endif
2004
2005 #if DEBUG
2006 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
2007 {
2008 int i;
2009 for (i = 0; i < cachep->num; i++) {
2010 void *objp = index_to_obj(cachep, slabp, i);
2011
2012 if (cachep->flags & SLAB_POISON) {
2013 #ifdef CONFIG_DEBUG_PAGEALLOC
2014 if (cachep->size % PAGE_SIZE == 0 &&
2015 OFF_SLAB(cachep))
2016 kernel_map_pages(virt_to_page(objp),
2017 cachep->size / PAGE_SIZE, 1);
2018 else
2019 check_poison_obj(cachep, objp);
2020 #else
2021 check_poison_obj(cachep, objp);
2022 #endif
2023 }
2024 if (cachep->flags & SLAB_RED_ZONE) {
2025 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2026 slab_error(cachep, "start of a freed object "
2027 "was overwritten");
2028 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2029 slab_error(cachep, "end of a freed object "
2030 "was overwritten");
2031 }
2032 }
2033 }
2034 #else
2035 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
2036 {
2037 }
2038 #endif
2039
2040 /**
2041 * slab_destroy - destroy and release all objects in a slab
2042 * @cachep: cache pointer being destroyed
2043 * @slabp: slab pointer being destroyed
2044 *
2045 * Destroy all the objs in a slab, and release the mem back to the system.
2046 * Before calling the slab must have been unlinked from the cache. The
2047 * cache-lock is not held/needed.
2048 */
2049 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
2050 {
2051 void *addr = slabp->s_mem - slabp->colouroff;
2052
2053 slab_destroy_debugcheck(cachep, slabp);
2054 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
2055 struct slab_rcu *slab_rcu;
2056
2057 slab_rcu = (struct slab_rcu *)slabp;
2058 slab_rcu->cachep = cachep;
2059 slab_rcu->addr = addr;
2060 call_rcu(&slab_rcu->head, kmem_rcu_free);
2061 } else {
2062 kmem_freepages(cachep, addr);
2063 if (OFF_SLAB(cachep))
2064 kmem_cache_free(cachep->slabp_cache, slabp);
2065 }
2066 }
2067
2068 /**
2069 * calculate_slab_order - calculate size (page order) of slabs
2070 * @cachep: pointer to the cache that is being created
2071 * @size: size of objects to be created in this cache.
2072 * @align: required alignment for the objects.
2073 * @flags: slab allocation flags
2074 *
2075 * Also calculates the number of objects per slab.
2076 *
2077 * This could be made much more intelligent. For now, try to avoid using
2078 * high order pages for slabs. When the gfp() functions are more friendly
2079 * towards high-order requests, this should be changed.
2080 */
2081 static size_t calculate_slab_order(struct kmem_cache *cachep,
2082 size_t size, size_t align, unsigned long flags)
2083 {
2084 unsigned long offslab_limit;
2085 size_t left_over = 0;
2086 int gfporder;
2087
2088 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2089 unsigned int num;
2090 size_t remainder;
2091
2092 cache_estimate(gfporder, size, align, flags, &remainder, &num);
2093 if (!num)
2094 continue;
2095
2096 if (flags & CFLGS_OFF_SLAB) {
2097 /*
2098 * Max number of objs-per-slab for caches which
2099 * use off-slab slabs. Needed to avoid a possible
2100 * looping condition in cache_grow().
2101 */
2102 offslab_limit = size - sizeof(struct slab);
2103 offslab_limit /= sizeof(kmem_bufctl_t);
2104
2105 if (num > offslab_limit)
2106 break;
2107 }
2108
2109 /* Found something acceptable - save it away */
2110 cachep->num = num;
2111 cachep->gfporder = gfporder;
2112 left_over = remainder;
2113
2114 /*
2115 * A VFS-reclaimable slab tends to have most allocations
2116 * as GFP_NOFS and we really don't want to have to be allocating
2117 * higher-order pages when we are unable to shrink dcache.
2118 */
2119 if (flags & SLAB_RECLAIM_ACCOUNT)
2120 break;
2121
2122 /*
2123 * Large number of objects is good, but very large slabs are
2124 * currently bad for the gfp()s.
2125 */
2126 if (gfporder >= slab_max_order)
2127 break;
2128
2129 /*
2130 * Acceptable internal fragmentation?
2131 */
2132 if (left_over * 8 <= (PAGE_SIZE << gfporder))
2133 break;
2134 }
2135 return left_over;
2136 }
2137
2138 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2139 {
2140 if (slab_state >= FULL)
2141 return enable_cpucache(cachep, gfp);
2142
2143 if (slab_state == DOWN) {
2144 /*
2145 * Note: Creation of first cache (kmem_cache).
2146 * The setup_node is taken care
2147 * of by the caller of __kmem_cache_create
2148 */
2149 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2150 slab_state = PARTIAL;
2151 } else if (slab_state == PARTIAL) {
2152 /*
2153 * Note: the second kmem_cache_create must create the cache
2154 * that's used by kmalloc(24), otherwise the creation of
2155 * further caches will BUG().
2156 */
2157 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2158
2159 /*
2160 * If the cache that's used by kmalloc(sizeof(kmem_cache_node)) is
2161 * the second cache, then we need to set up all its node/,
2162 * otherwise the creation of further caches will BUG().
2163 */
2164 set_up_node(cachep, SIZE_AC);
2165 if (INDEX_AC == INDEX_NODE)
2166 slab_state = PARTIAL_NODE;
2167 else
2168 slab_state = PARTIAL_ARRAYCACHE;
2169 } else {
2170 /* Remaining boot caches */
2171 cachep->array[smp_processor_id()] =
2172 kmalloc(sizeof(struct arraycache_init), gfp);
2173
2174 if (slab_state == PARTIAL_ARRAYCACHE) {
2175 set_up_node(cachep, SIZE_NODE);
2176 slab_state = PARTIAL_NODE;
2177 } else {
2178 int node;
2179 for_each_online_node(node) {
2180 cachep->node[node] =
2181 kmalloc_node(sizeof(struct kmem_cache_node),
2182 gfp, node);
2183 BUG_ON(!cachep->node[node]);
2184 kmem_cache_node_init(cachep->node[node]);
2185 }
2186 }
2187 }
2188 cachep->node[numa_mem_id()]->next_reap =
2189 jiffies + REAPTIMEOUT_LIST3 +
2190 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2191
2192 cpu_cache_get(cachep)->avail = 0;
2193 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2194 cpu_cache_get(cachep)->batchcount = 1;
2195 cpu_cache_get(cachep)->touched = 0;
2196 cachep->batchcount = 1;
2197 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2198 return 0;
2199 }
2200
2201 /**
2202 * __kmem_cache_create - Create a cache.
2203 * @cachep: cache management descriptor
2204 * @flags: SLAB flags
2205 *
2206 * Returns a ptr to the cache on success, NULL on failure.
2207 * Cannot be called within a int, but can be interrupted.
2208 * The @ctor is run when new pages are allocated by the cache.
2209 *
2210 * The flags are
2211 *
2212 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2213 * to catch references to uninitialised memory.
2214 *
2215 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2216 * for buffer overruns.
2217 *
2218 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2219 * cacheline. This can be beneficial if you're counting cycles as closely
2220 * as davem.
2221 */
2222 int
2223 __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2224 {
2225 size_t left_over, slab_size, ralign;
2226 gfp_t gfp;
2227 int err;
2228 size_t size = cachep->size;
2229
2230 #if DEBUG
2231 #if FORCED_DEBUG
2232 /*
2233 * Enable redzoning and last user accounting, except for caches with
2234 * large objects, if the increased size would increase the object size
2235 * above the next power of two: caches with object sizes just above a
2236 * power of two have a significant amount of internal fragmentation.
2237 */
2238 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2239 2 * sizeof(unsigned long long)))
2240 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2241 if (!(flags & SLAB_DESTROY_BY_RCU))
2242 flags |= SLAB_POISON;
2243 #endif
2244 if (flags & SLAB_DESTROY_BY_RCU)
2245 BUG_ON(flags & SLAB_POISON);
2246 #endif
2247
2248 /*
2249 * Check that size is in terms of words. This is needed to avoid
2250 * unaligned accesses for some archs when redzoning is used, and makes
2251 * sure any on-slab bufctl's are also correctly aligned.
2252 */
2253 if (size & (BYTES_PER_WORD - 1)) {
2254 size += (BYTES_PER_WORD - 1);
2255 size &= ~(BYTES_PER_WORD - 1);
2256 }
2257
2258 /*
2259 * Redzoning and user store require word alignment or possibly larger.
2260 * Note this will be overridden by architecture or caller mandated
2261 * alignment if either is greater than BYTES_PER_WORD.
2262 */
2263 if (flags & SLAB_STORE_USER)
2264 ralign = BYTES_PER_WORD;
2265
2266 if (flags & SLAB_RED_ZONE) {
2267 ralign = REDZONE_ALIGN;
2268 /* If redzoning, ensure that the second redzone is suitably
2269 * aligned, by adjusting the object size accordingly. */
2270 size += REDZONE_ALIGN - 1;
2271 size &= ~(REDZONE_ALIGN - 1);
2272 }
2273
2274 /* 3) caller mandated alignment */
2275 if (ralign < cachep->align) {
2276 ralign = cachep->align;
2277 }
2278 /* disable debug if necessary */
2279 if (ralign > __alignof__(unsigned long long))
2280 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2281 /*
2282 * 4) Store it.
2283 */
2284 cachep->align = ralign;
2285
2286 if (slab_is_available())
2287 gfp = GFP_KERNEL;
2288 else
2289 gfp = GFP_NOWAIT;
2290
2291 setup_node_pointer(cachep);
2292 #if DEBUG
2293
2294 /*
2295 * Both debugging options require word-alignment which is calculated
2296 * into align above.
2297 */
2298 if (flags & SLAB_RED_ZONE) {
2299 /* add space for red zone words */
2300 cachep->obj_offset += sizeof(unsigned long long);
2301 size += 2 * sizeof(unsigned long long);
2302 }
2303 if (flags & SLAB_STORE_USER) {
2304 /* user store requires one word storage behind the end of
2305 * the real object. But if the second red zone needs to be
2306 * aligned to 64 bits, we must allow that much space.
2307 */
2308 if (flags & SLAB_RED_ZONE)
2309 size += REDZONE_ALIGN;
2310 else
2311 size += BYTES_PER_WORD;
2312 }
2313 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2314 if (size >= kmalloc_size(INDEX_NODE + 1)
2315 && cachep->object_size > cache_line_size()
2316 && ALIGN(size, cachep->align) < PAGE_SIZE) {
2317 cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
2318 size = PAGE_SIZE;
2319 }
2320 #endif
2321 #endif
2322
2323 /*
2324 * Determine if the slab management is 'on' or 'off' slab.
2325 * (bootstrapping cannot cope with offslab caches so don't do
2326 * it too early on. Always use on-slab management when
2327 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2328 */
2329 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
2330 !(flags & SLAB_NOLEAKTRACE))
2331 /*
2332 * Size is large, assume best to place the slab management obj
2333 * off-slab (should allow better packing of objs).
2334 */
2335 flags |= CFLGS_OFF_SLAB;
2336
2337 size = ALIGN(size, cachep->align);
2338
2339 left_over = calculate_slab_order(cachep, size, cachep->align, flags);
2340
2341 if (!cachep->num)
2342 return -E2BIG;
2343
2344 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2345 + sizeof(struct slab), cachep->align);
2346
2347 /*
2348 * If the slab has been placed off-slab, and we have enough space then
2349 * move it on-slab. This is at the expense of any extra colouring.
2350 */
2351 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2352 flags &= ~CFLGS_OFF_SLAB;
2353 left_over -= slab_size;
2354 }
2355
2356 if (flags & CFLGS_OFF_SLAB) {
2357 /* really off slab. No need for manual alignment */
2358 slab_size =
2359 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2360
2361 #ifdef CONFIG_PAGE_POISONING
2362 /* If we're going to use the generic kernel_map_pages()
2363 * poisoning, then it's going to smash the contents of
2364 * the redzone and userword anyhow, so switch them off.
2365 */
2366 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2367 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2368 #endif
2369 }
2370
2371 cachep->colour_off = cache_line_size();
2372 /* Offset must be a multiple of the alignment. */
2373 if (cachep->colour_off < cachep->align)
2374 cachep->colour_off = cachep->align;
2375 cachep->colour = left_over / cachep->colour_off;
2376 cachep->slab_size = slab_size;
2377 cachep->flags = flags;
2378 cachep->allocflags = 0;
2379 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2380 cachep->allocflags |= GFP_DMA;
2381 cachep->size = size;
2382 cachep->reciprocal_buffer_size = reciprocal_value(size);
2383
2384 if (flags & CFLGS_OFF_SLAB) {
2385 cachep->slabp_cache = kmalloc_slab(slab_size, 0u);
2386 /*
2387 * This is a possibility for one of the malloc_sizes caches.
2388 * But since we go off slab only for object size greater than
2389 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2390 * this should not happen at all.
2391 * But leave a BUG_ON for some lucky dude.
2392 */
2393 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2394 }
2395
2396 err = setup_cpu_cache(cachep, gfp);
2397 if (err) {
2398 __kmem_cache_shutdown(cachep);
2399 return err;
2400 }
2401
2402 if (flags & SLAB_DEBUG_OBJECTS) {
2403 /*
2404 * Would deadlock through slab_destroy()->call_rcu()->
2405 * debug_object_activate()->kmem_cache_alloc().
2406 */
2407 WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);
2408
2409 slab_set_debugobj_lock_classes(cachep);
2410 } else if (!OFF_SLAB(cachep) && !(flags & SLAB_DESTROY_BY_RCU))
2411 on_slab_lock_classes(cachep);
2412
2413 return 0;
2414 }
2415
2416 #if DEBUG
2417 static void check_irq_off(void)
2418 {
2419 BUG_ON(!irqs_disabled());
2420 }
2421
2422 static void check_irq_on(void)
2423 {
2424 BUG_ON(irqs_disabled());
2425 }
2426
2427 static void check_spinlock_acquired(struct kmem_cache *cachep)
2428 {
2429 #ifdef CONFIG_SMP
2430 check_irq_off();
2431 assert_spin_locked(&cachep->node[numa_mem_id()]->list_lock);
2432 #endif
2433 }
2434
2435 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2436 {
2437 #ifdef CONFIG_SMP
2438 check_irq_off();
2439 assert_spin_locked(&cachep->node[node]->list_lock);
2440 #endif
2441 }
2442
2443 #else
2444 #define check_irq_off() do { } while(0)
2445 #define check_irq_on() do { } while(0)
2446 #define check_spinlock_acquired(x) do { } while(0)
2447 #define check_spinlock_acquired_node(x, y) do { } while(0)
2448 #endif
2449
2450 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
2451 struct array_cache *ac,
2452 int force, int node);
2453
2454 static void do_drain(void *arg)
2455 {
2456 struct kmem_cache *cachep = arg;
2457 struct array_cache *ac;
2458 int node = numa_mem_id();
2459
2460 check_irq_off();
2461 ac = cpu_cache_get(cachep);
2462 spin_lock(&cachep->node[node]->list_lock);
2463 free_block(cachep, ac->entry, ac->avail, node);
2464 spin_unlock(&cachep->node[node]->list_lock);
2465 ac->avail = 0;
2466 }
2467
2468 static void drain_cpu_caches(struct kmem_cache *cachep)
2469 {
2470 struct kmem_cache_node *n;
2471 int node;
2472
2473 on_each_cpu(do_drain, cachep, 1);
2474 check_irq_on();
2475 for_each_online_node(node) {
2476 n = cachep->node[node];
2477 if (n && n->alien)
2478 drain_alien_cache(cachep, n->alien);
2479 }
2480
2481 for_each_online_node(node) {
2482 n = cachep->node[node];
2483 if (n)
2484 drain_array(cachep, n, n->shared, 1, node);
2485 }
2486 }
2487
2488 /*
2489 * Remove slabs from the list of free slabs.
2490 * Specify the number of slabs to drain in tofree.
2491 *
2492 * Returns the actual number of slabs released.
2493 */
2494 static int drain_freelist(struct kmem_cache *cache,
2495 struct kmem_cache_node *n, int tofree)
2496 {
2497 struct list_head *p;
2498 int nr_freed;
2499 struct slab *slabp;
2500
2501 nr_freed = 0;
2502 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2503
2504 spin_lock_irq(&n->list_lock);
2505 p = n->slabs_free.prev;
2506 if (p == &n->slabs_free) {
2507 spin_unlock_irq(&n->list_lock);
2508 goto out;
2509 }
2510
2511 slabp = list_entry(p, struct slab, list);
2512 #if DEBUG
2513 BUG_ON(slabp->inuse);
2514 #endif
2515 list_del(&slabp->list);
2516 /*
2517 * Safe to drop the lock. The slab is no longer linked
2518 * to the cache.
2519 */
2520 n->free_objects -= cache->num;
2521 spin_unlock_irq(&n->list_lock);
2522 slab_destroy(cache, slabp);
2523 nr_freed++;
2524 }
2525 out:
2526 return nr_freed;
2527 }
2528
2529 /* Called with slab_mutex held to protect against cpu hotplug */
2530 static int __cache_shrink(struct kmem_cache *cachep)
2531 {
2532 int ret = 0, i = 0;
2533 struct kmem_cache_node *n;
2534
2535 drain_cpu_caches(cachep);
2536
2537 check_irq_on();
2538 for_each_online_node(i) {
2539 n = cachep->node[i];
2540 if (!n)
2541 continue;
2542
2543 drain_freelist(cachep, n, slabs_tofree(cachep, n));
2544
2545 ret += !list_empty(&n->slabs_full) ||
2546 !list_empty(&n->slabs_partial);
2547 }
2548 return (ret ? 1 : 0);
2549 }
2550
2551 /**
2552 * kmem_cache_shrink - Shrink a cache.
2553 * @cachep: The cache to shrink.
2554 *
2555 * Releases as many slabs as possible for a cache.
2556 * To help debugging, a zero exit status indicates all slabs were released.
2557 */
2558 int kmem_cache_shrink(struct kmem_cache *cachep)
2559 {
2560 int ret;
2561 BUG_ON(!cachep || in_interrupt());
2562
2563 get_online_cpus();
2564 mutex_lock(&slab_mutex);
2565 ret = __cache_shrink(cachep);
2566 mutex_unlock(&slab_mutex);
2567 put_online_cpus();
2568 return ret;
2569 }
2570 EXPORT_SYMBOL(kmem_cache_shrink);
2571
2572 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2573 {
2574 int i;
2575 struct kmem_cache_node *n;
2576 int rc = __cache_shrink(cachep);
2577
2578 if (rc)
2579 return rc;
2580
2581 for_each_online_cpu(i)
2582 kfree(cachep->array[i]);
2583
2584 /* NUMA: free the node structures */
2585 for_each_online_node(i) {
2586 n = cachep->node[i];
2587 if (n) {
2588 kfree(n->shared);
2589 free_alien_cache(n->alien);
2590 kfree(n);
2591 }
2592 }
2593 return 0;
2594 }
2595
2596 /*
2597 * Get the memory for a slab management obj.
2598 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2599 * always come from malloc_sizes caches. The slab descriptor cannot
2600 * come from the same cache which is getting created because,
2601 * when we are searching for an appropriate cache for these
2602 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2603 * If we are creating a malloc_sizes cache here it would not be visible to
2604 * kmem_find_general_cachep till the initialization is complete.
2605 * Hence we cannot have slabp_cache same as the original cache.
2606 */
2607 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2608 int colour_off, gfp_t local_flags,
2609 int nodeid)
2610 {
2611 struct slab *slabp;
2612
2613 if (OFF_SLAB(cachep)) {
2614 /* Slab management obj is off-slab. */
2615 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2616 local_flags, nodeid);
2617 /*
2618 * If the first object in the slab is leaked (it's allocated
2619 * but no one has a reference to it), we want to make sure
2620 * kmemleak does not treat the ->s_mem pointer as a reference
2621 * to the object. Otherwise we will not report the leak.
2622 */
2623 kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
2624 local_flags);
2625 if (!slabp)
2626 return NULL;
2627 } else {
2628 slabp = objp + colour_off;
2629 colour_off += cachep->slab_size;
2630 }
2631 slabp->inuse = 0;
2632 slabp->colouroff = colour_off;
2633 slabp->s_mem = objp + colour_off;
2634 slabp->nodeid = nodeid;
2635 slabp->free = 0;
2636 return slabp;
2637 }
2638
2639 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2640 {
2641 return (kmem_bufctl_t *) (slabp + 1);
2642 }
2643
2644 static void cache_init_objs(struct kmem_cache *cachep,
2645 struct slab *slabp)
2646 {
2647 int i;
2648
2649 for (i = 0; i < cachep->num; i++) {
2650 void *objp = index_to_obj(cachep, slabp, i);
2651 #if DEBUG
2652 /* need to poison the objs? */
2653 if (cachep->flags & SLAB_POISON)
2654 poison_obj(cachep, objp, POISON_FREE);
2655 if (cachep->flags & SLAB_STORE_USER)
2656 *dbg_userword(cachep, objp) = NULL;
2657
2658 if (cachep->flags & SLAB_RED_ZONE) {
2659 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2660 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2661 }
2662 /*
2663 * Constructors are not allowed to allocate memory from the same
2664 * cache which they are a constructor for. Otherwise, deadlock.
2665 * They must also be threaded.
2666 */
2667 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2668 cachep->ctor(objp + obj_offset(cachep));
2669
2670 if (cachep->flags & SLAB_RED_ZONE) {
2671 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2672 slab_error(cachep, "constructor overwrote the"
2673 " end of an object");
2674 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2675 slab_error(cachep, "constructor overwrote the"
2676 " start of an object");
2677 }
2678 if ((cachep->size % PAGE_SIZE) == 0 &&
2679 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2680 kernel_map_pages(virt_to_page(objp),
2681 cachep->size / PAGE_SIZE, 0);
2682 #else
2683 if (cachep->ctor)
2684 cachep->ctor(objp);
2685 #endif
2686 slab_bufctl(slabp)[i] = i + 1;
2687 }
2688 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2689 }
2690
2691 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2692 {
2693 if (CONFIG_ZONE_DMA_FLAG) {
2694 if (flags & GFP_DMA)
2695 BUG_ON(!(cachep->allocflags & GFP_DMA));
2696 else
2697 BUG_ON(cachep->allocflags & GFP_DMA);
2698 }
2699 }
2700
2701 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2702 int nodeid)
2703 {
2704 void *objp = index_to_obj(cachep, slabp, slabp->free);
2705 kmem_bufctl_t next;
2706
2707 slabp->inuse++;
2708 next = slab_bufctl(slabp)[slabp->free];
2709 #if DEBUG
2710 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2711 WARN_ON(slabp->nodeid != nodeid);
2712 #endif
2713 slabp->free = next;
2714
2715 return objp;
2716 }
2717
2718 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2719 void *objp, int nodeid)
2720 {
2721 unsigned int objnr = obj_to_index(cachep, slabp, objp);
2722
2723 #if DEBUG
2724 /* Verify that the slab belongs to the intended node */
2725 WARN_ON(slabp->nodeid != nodeid);
2726
2727 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2728 printk(KERN_ERR "slab: double free detected in cache "
2729 "'%s', objp %p\n", cachep->name, objp);
2730 BUG();
2731 }
2732 #endif
2733 slab_bufctl(slabp)[objnr] = slabp->free;
2734 slabp->free = objnr;
2735 slabp->inuse--;
2736 }
2737
2738 /*
2739 * Map pages beginning at addr to the given cache and slab. This is required
2740 * for the slab allocator to be able to lookup the cache and slab of a
2741 * virtual address for kfree, ksize, and slab debugging.
2742 */
2743 static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2744 void *addr)
2745 {
2746 int nr_pages;
2747 struct page *page;
2748
2749 page = virt_to_page(addr);
2750
2751 nr_pages = 1;
2752 if (likely(!PageCompound(page)))
2753 nr_pages <<= cache->gfporder;
2754
2755 do {
2756 page->slab_cache = cache;
2757 page->slab_page = slab;
2758 page++;
2759 } while (--nr_pages);
2760 }
2761
2762 /*
2763 * Grow (by 1) the number of slabs within a cache. This is called by
2764 * kmem_cache_alloc() when there are no active objs left in a cache.
2765 */
2766 static int cache_grow(struct kmem_cache *cachep,
2767 gfp_t flags, int nodeid, void *objp)
2768 {
2769 struct slab *slabp;
2770 size_t offset;
2771 gfp_t local_flags;
2772 struct kmem_cache_node *n;
2773
2774 /*
2775 * Be lazy and only check for valid flags here, keeping it out of the
2776 * critical path in kmem_cache_alloc().
2777 */
2778 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2779 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2780
2781 /* Take the node list lock to change the colour_next on this node */
2782 check_irq_off();
2783 n = cachep->node[nodeid];
2784 spin_lock(&n->list_lock);
2785
2786 /* Get colour for the slab, and cal the next value. */
2787 offset = n->colour_next;
2788 n->colour_next++;
2789 if (n->colour_next >= cachep->colour)
2790 n->colour_next = 0;
2791 spin_unlock(&n->list_lock);
2792
2793 offset *= cachep->colour_off;
2794
2795 if (local_flags & __GFP_WAIT)
2796 local_irq_enable();
2797
2798 /*
2799 * The test for missing atomic flag is performed here, rather than
2800 * the more obvious place, simply to reduce the critical path length
2801 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2802 * will eventually be caught here (where it matters).
2803 */
2804 kmem_flagcheck(cachep, flags);
2805
2806 /*
2807 * Get mem for the objs. Attempt to allocate a physical page from
2808 * 'nodeid'.
2809 */
2810 if (!objp)
2811 objp = kmem_getpages(cachep, local_flags, nodeid);
2812 if (!objp)
2813 goto failed;
2814
2815 /* Get slab management. */
2816 slabp = alloc_slabmgmt(cachep, objp, offset,
2817 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2818 if (!slabp)
2819 goto opps1;
2820
2821 slab_map_pages(cachep, slabp, objp);
2822
2823 cache_init_objs(cachep, slabp);
2824
2825 if (local_flags & __GFP_WAIT)
2826 local_irq_disable();
2827 check_irq_off();
2828 spin_lock(&n->list_lock);
2829
2830 /* Make slab active. */
2831 list_add_tail(&slabp->list, &(n->slabs_free));
2832 STATS_INC_GROWN(cachep);
2833 n->free_objects += cachep->num;
2834 spin_unlock(&n->list_lock);
2835 return 1;
2836 opps1:
2837 kmem_freepages(cachep, objp);
2838 failed:
2839 if (local_flags & __GFP_WAIT)
2840 local_irq_disable();
2841 return 0;
2842 }
2843
2844 #if DEBUG
2845
2846 /*
2847 * Perform extra freeing checks:
2848 * - detect bad pointers.
2849 * - POISON/RED_ZONE checking
2850 */
2851 static void kfree_debugcheck(const void *objp)
2852 {
2853 if (!virt_addr_valid(objp)) {
2854 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2855 (unsigned long)objp);
2856 BUG();
2857 }
2858 }
2859
2860 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2861 {
2862 unsigned long long redzone1, redzone2;
2863
2864 redzone1 = *dbg_redzone1(cache, obj);
2865 redzone2 = *dbg_redzone2(cache, obj);
2866
2867 /*
2868 * Redzone is ok.
2869 */
2870 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2871 return;
2872
2873 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2874 slab_error(cache, "double free detected");
2875 else
2876 slab_error(cache, "memory outside object was overwritten");
2877
2878 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2879 obj, redzone1, redzone2);
2880 }
2881
2882 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2883 unsigned long caller)
2884 {
2885 struct page *page;
2886 unsigned int objnr;
2887 struct slab *slabp;
2888
2889 BUG_ON(virt_to_cache(objp) != cachep);
2890
2891 objp -= obj_offset(cachep);
2892 kfree_debugcheck(objp);
2893 page = virt_to_head_page(objp);
2894
2895 slabp = page->slab_page;
2896
2897 if (cachep->flags & SLAB_RED_ZONE) {
2898 verify_redzone_free(cachep, objp);
2899 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2900 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2901 }
2902 if (cachep->flags & SLAB_STORE_USER)
2903 *dbg_userword(cachep, objp) = (void *)caller;
2904
2905 objnr = obj_to_index(cachep, slabp, objp);
2906
2907 BUG_ON(objnr >= cachep->num);
2908 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2909
2910 #ifdef CONFIG_DEBUG_SLAB_LEAK
2911 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2912 #endif
2913 if (cachep->flags & SLAB_POISON) {
2914 #ifdef CONFIG_DEBUG_PAGEALLOC
2915 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2916 store_stackinfo(cachep, objp, caller);
2917 kernel_map_pages(virt_to_page(objp),
2918 cachep->size / PAGE_SIZE, 0);
2919 } else {
2920 poison_obj(cachep, objp, POISON_FREE);
2921 }
2922 #else
2923 poison_obj(cachep, objp, POISON_FREE);
2924 #endif
2925 }
2926 return objp;
2927 }
2928
2929 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2930 {
2931 kmem_bufctl_t i;
2932 int entries = 0;
2933
2934 /* Check slab's freelist to see if this obj is there. */
2935 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2936 entries++;
2937 if (entries > cachep->num || i >= cachep->num)
2938 goto bad;
2939 }
2940 if (entries != cachep->num - slabp->inuse) {
2941 bad:
2942 printk(KERN_ERR "slab: Internal list corruption detected in "
2943 "cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n",
2944 cachep->name, cachep->num, slabp, slabp->inuse,
2945 print_tainted());
2946 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp,
2947 sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t),
2948 1);
2949 BUG();
2950 }
2951 }
2952 #else
2953 #define kfree_debugcheck(x) do { } while(0)
2954 #define cache_free_debugcheck(x,objp,z) (objp)
2955 #define check_slabp(x,y) do { } while(0)
2956 #endif
2957
2958 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
2959 bool force_refill)
2960 {
2961 int batchcount;
2962 struct kmem_cache_node *n;
2963 struct array_cache *ac;
2964 int node;
2965
2966 check_irq_off();
2967 node = numa_mem_id();
2968 if (unlikely(force_refill))
2969 goto force_grow;
2970 retry:
2971 ac = cpu_cache_get(cachep);
2972 batchcount = ac->batchcount;
2973 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2974 /*
2975 * If there was little recent activity on this cache, then
2976 * perform only a partial refill. Otherwise we could generate
2977 * refill bouncing.
2978 */
2979 batchcount = BATCHREFILL_LIMIT;
2980 }
2981 n = cachep->node[node];
2982
2983 BUG_ON(ac->avail > 0 || !n);
2984 spin_lock(&n->list_lock);
2985
2986 /* See if we can refill from the shared array */
2987 if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2988 n->shared->touched = 1;
2989 goto alloc_done;
2990 }
2991
2992 while (batchcount > 0) {
2993 struct list_head *entry;
2994 struct slab *slabp;
2995 /* Get slab alloc is to come from. */
2996 entry = n->slabs_partial.next;
2997 if (entry == &n->slabs_partial) {
2998 n->free_touched = 1;
2999 entry = n->slabs_free.next;
3000 if (entry == &n->slabs_free)
3001 goto must_grow;
3002 }
3003
3004 slabp = list_entry(entry, struct slab, list);
3005 check_slabp(cachep, slabp);
3006 check_spinlock_acquired(cachep);
3007
3008 /*
3009 * The slab was either on partial or free list so
3010 * there must be at least one object available for
3011 * allocation.
3012 */
3013 BUG_ON(slabp->inuse >= cachep->num);
3014
3015 while (slabp->inuse < cachep->num && batchcount--) {
3016 STATS_INC_ALLOCED(cachep);
3017 STATS_INC_ACTIVE(cachep);
3018 STATS_SET_HIGH(cachep);
3019
3020 ac_put_obj(cachep, ac, slab_get_obj(cachep, slabp,
3021 node));
3022 }
3023 check_slabp(cachep, slabp);
3024
3025 /* move slabp to correct slabp list: */
3026 list_del(&slabp->list);
3027 if (slabp->free == BUFCTL_END)
3028 list_add(&slabp->list, &n->slabs_full);
3029 else
3030 list_add(&slabp->list, &n->slabs_partial);
3031 }
3032
3033 must_grow:
3034 n->free_objects -= ac->avail;
3035 alloc_done:
3036 spin_unlock(&n->list_lock);
3037
3038 if (unlikely(!ac->avail)) {
3039 int x;
3040 force_grow:
3041 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3042
3043 /* cache_grow can reenable interrupts, then ac could change. */
3044 ac = cpu_cache_get(cachep);
3045 node = numa_mem_id();
3046
3047 /* no objects in sight? abort */
3048 if (!x && (ac->avail == 0 || force_refill))
3049 return NULL;
3050
3051 if (!ac->avail) /* objects refilled by interrupt? */
3052 goto retry;
3053 }
3054 ac->touched = 1;
3055
3056 return ac_get_obj(cachep, ac, flags, force_refill);
3057 }
3058
3059 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3060 gfp_t flags)
3061 {
3062 might_sleep_if(flags & __GFP_WAIT);
3063 #if DEBUG
3064 kmem_flagcheck(cachep, flags);
3065 #endif
3066 }
3067
3068 #if DEBUG
3069 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3070 gfp_t flags, void *objp, unsigned long caller)
3071 {
3072 if (!objp)
3073 return objp;
3074 if (cachep->flags & SLAB_POISON) {
3075 #ifdef CONFIG_DEBUG_PAGEALLOC
3076 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3077 kernel_map_pages(virt_to_page(objp),
3078 cachep->size / PAGE_SIZE, 1);
3079 else
3080 check_poison_obj(cachep, objp);
3081 #else
3082 check_poison_obj(cachep, objp);
3083 #endif
3084 poison_obj(cachep, objp, POISON_INUSE);
3085 }
3086 if (cachep->flags & SLAB_STORE_USER)
3087 *dbg_userword(cachep, objp) = (void *)caller;
3088
3089 if (cachep->flags & SLAB_RED_ZONE) {
3090 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3091 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3092 slab_error(cachep, "double free, or memory outside"
3093 " object was overwritten");
3094 printk(KERN_ERR
3095 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3096 objp, *dbg_redzone1(cachep, objp),
3097 *dbg_redzone2(cachep, objp));
3098 }
3099 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3100 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3101 }
3102 #ifdef CONFIG_DEBUG_SLAB_LEAK
3103 {
3104 struct slab *slabp;
3105 unsigned objnr;
3106
3107 slabp = virt_to_head_page(objp)->slab_page;
3108 objnr = (unsigned)(objp - slabp->s_mem) / cachep->size;
3109 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3110 }
3111 #endif
3112 objp += obj_offset(cachep);
3113 if (cachep->ctor && cachep->flags & SLAB_POISON)
3114 cachep->ctor(objp);
3115 if (ARCH_SLAB_MINALIGN &&
3116 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3117 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3118 objp, (int)ARCH_SLAB_MINALIGN);
3119 }
3120 return objp;
3121 }
3122 #else
3123 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3124 #endif
3125
3126 static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3127 {
3128 if (cachep == kmem_cache)
3129 return false;
3130
3131 return should_failslab(cachep->object_size, flags, cachep->flags);
3132 }
3133
3134 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3135 {
3136 void *objp;
3137 struct array_cache *ac;
3138 bool force_refill = false;
3139
3140 check_irq_off();
3141
3142 ac = cpu_cache_get(cachep);
3143 if (likely(ac->avail)) {
3144 ac->touched = 1;
3145 objp = ac_get_obj(cachep, ac, flags, false);
3146
3147 /*
3148 * Allow for the possibility all avail objects are not allowed
3149 * by the current flags
3150 */
3151 if (objp) {
3152 STATS_INC_ALLOCHIT(cachep);
3153 goto out;
3154 }
3155 force_refill = true;
3156 }
3157
3158 STATS_INC_ALLOCMISS(cachep);
3159 objp = cache_alloc_refill(cachep, flags, force_refill);
3160 /*
3161 * the 'ac' may be updated by cache_alloc_refill(),
3162 * and kmemleak_erase() requires its correct value.
3163 */
3164 ac = cpu_cache_get(cachep);
3165
3166 out:
3167 /*
3168 * To avoid a false negative, if an object that is in one of the
3169 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3170 * treat the array pointers as a reference to the object.
3171 */
3172 if (objp)
3173 kmemleak_erase(&ac->entry[ac->avail]);
3174 return objp;
3175 }
3176
3177 #ifdef CONFIG_NUMA
3178 /*
3179 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3180 *
3181 * If we are in_interrupt, then process context, including cpusets and
3182 * mempolicy, may not apply and should not be used for allocation policy.
3183 */
3184 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3185 {
3186 int nid_alloc, nid_here;
3187
3188 if (in_interrupt() || (flags & __GFP_THISNODE))
3189 return NULL;
3190 nid_alloc = nid_here = numa_mem_id();
3191 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3192 nid_alloc = cpuset_slab_spread_node();
3193 else if (current->mempolicy)
3194 nid_alloc = slab_node();
3195 if (nid_alloc != nid_here)
3196 return ____cache_alloc_node(cachep, flags, nid_alloc);
3197 return NULL;
3198 }
3199
3200 /*
3201 * Fallback function if there was no memory available and no objects on a
3202 * certain node and fall back is permitted. First we scan all the
3203 * available node for available objects. If that fails then we
3204 * perform an allocation without specifying a node. This allows the page
3205 * allocator to do its reclaim / fallback magic. We then insert the
3206 * slab into the proper nodelist and then allocate from it.
3207 */
3208 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3209 {
3210 struct zonelist *zonelist;
3211 gfp_t local_flags;
3212 struct zoneref *z;
3213 struct zone *zone;
3214 enum zone_type high_zoneidx = gfp_zone(flags);
3215 void *obj = NULL;
3216 int nid;
3217 unsigned int cpuset_mems_cookie;
3218
3219 if (flags & __GFP_THISNODE)
3220 return NULL;
3221
3222 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3223
3224 retry_cpuset:
3225 cpuset_mems_cookie = get_mems_allowed();
3226 zonelist = node_zonelist(slab_node(), flags);
3227
3228 retry:
3229 /*
3230 * Look through allowed nodes for objects available
3231 * from existing per node queues.
3232 */
3233 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3234 nid = zone_to_nid(zone);
3235
3236 if (cpuset_zone_allowed_hardwall(zone, flags) &&
3237 cache->node[nid] &&
3238 cache->node[nid]->free_objects) {
3239 obj = ____cache_alloc_node(cache,
3240 flags | GFP_THISNODE, nid);
3241 if (obj)
3242 break;
3243 }
3244 }
3245
3246 if (!obj) {
3247 /*
3248 * This allocation will be performed within the constraints
3249 * of the current cpuset / memory policy requirements.
3250 * We may trigger various forms of reclaim on the allowed
3251 * set and go into memory reserves if necessary.
3252 */
3253 if (local_flags & __GFP_WAIT)
3254 local_irq_enable();
3255 kmem_flagcheck(cache, flags);
3256 obj = kmem_getpages(cache, local_flags, numa_mem_id());
3257 if (local_flags & __GFP_WAIT)
3258 local_irq_disable();
3259 if (obj) {
3260 /*
3261 * Insert into the appropriate per node queues
3262 */
3263 nid = page_to_nid(virt_to_page(obj));
3264 if (cache_grow(cache, flags, nid, obj)) {
3265 obj = ____cache_alloc_node(cache,
3266 flags | GFP_THISNODE, nid);
3267 if (!obj)
3268 /*
3269 * Another processor may allocate the
3270 * objects in the slab since we are
3271 * not holding any locks.
3272 */
3273 goto retry;
3274 } else {
3275 /* cache_grow already freed obj */
3276 obj = NULL;
3277 }
3278 }
3279 }
3280
3281 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
3282 goto retry_cpuset;
3283 return obj;
3284 }
3285
3286 /*
3287 * A interface to enable slab creation on nodeid
3288 */
3289 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3290 int nodeid)
3291 {
3292 struct list_head *entry;
3293 struct slab *slabp;
3294 struct kmem_cache_node *n;
3295 void *obj;
3296 int x;
3297
3298 VM_BUG_ON(nodeid > num_online_nodes());
3299 n = cachep->node[nodeid];
3300 BUG_ON(!n);
3301
3302 retry:
3303 check_irq_off();
3304 spin_lock(&n->list_lock);
3305 entry = n->slabs_partial.next;
3306 if (entry == &n->slabs_partial) {
3307 n->free_touched = 1;
3308 entry = n->slabs_free.next;
3309 if (entry == &n->slabs_free)
3310 goto must_grow;
3311 }
3312
3313 slabp = list_entry(entry, struct slab, list);
3314 check_spinlock_acquired_node(cachep, nodeid);
3315 check_slabp(cachep, slabp);
3316
3317 STATS_INC_NODEALLOCS(cachep);
3318 STATS_INC_ACTIVE(cachep);
3319 STATS_SET_HIGH(cachep);
3320
3321 BUG_ON(slabp->inuse == cachep->num);
3322
3323 obj = slab_get_obj(cachep, slabp, nodeid);
3324 check_slabp(cachep, slabp);
3325 n->free_objects--;
3326 /* move slabp to correct slabp list: */
3327 list_del(&slabp->list);
3328
3329 if (slabp->free == BUFCTL_END)
3330 list_add(&slabp->list, &n->slabs_full);
3331 else
3332 list_add(&slabp->list, &n->slabs_partial);
3333
3334 spin_unlock(&n->list_lock);
3335 goto done;
3336
3337 must_grow:
3338 spin_unlock(&n->list_lock);
3339 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3340 if (x)
3341 goto retry;
3342
3343 return fallback_alloc(cachep, flags);
3344
3345 done:
3346 return obj;
3347 }
3348
3349 static __always_inline void *
3350 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3351 unsigned long caller)
3352 {
3353 unsigned long save_flags;
3354 void *ptr;
3355 int slab_node = numa_mem_id();
3356
3357 flags &= gfp_allowed_mask;
3358
3359 lockdep_trace_alloc(flags);
3360
3361 if (slab_should_failslab(cachep, flags))
3362 return NULL;
3363
3364 cachep = memcg_kmem_get_cache(cachep, flags);
3365
3366 cache_alloc_debugcheck_before(cachep, flags);
3367 local_irq_save(save_flags);
3368
3369 if (nodeid == NUMA_NO_NODE)
3370 nodeid = slab_node;
3371
3372 if (unlikely(!cachep->node[nodeid])) {
3373 /* Node not bootstrapped yet */
3374 ptr = fallback_alloc(cachep, flags);
3375 goto out;
3376 }
3377
3378 if (nodeid == slab_node) {
3379 /*
3380 * Use the locally cached objects if possible.
3381 * However ____cache_alloc does not allow fallback
3382 * to other nodes. It may fail while we still have
3383 * objects on other nodes available.
3384 */
3385 ptr = ____cache_alloc(cachep, flags);
3386 if (ptr)
3387 goto out;
3388 }
3389 /* ___cache_alloc_node can fall back to other nodes */
3390 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3391 out:
3392 local_irq_restore(save_flags);
3393 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3394 kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3395 flags);
3396
3397 if (likely(ptr))
3398 kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
3399
3400 if (unlikely((flags & __GFP_ZERO) && ptr))
3401 memset(ptr, 0, cachep->object_size);
3402
3403 return ptr;
3404 }
3405
3406 static __always_inline void *
3407 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3408 {
3409 void *objp;
3410
3411 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3412 objp = alternate_node_alloc(cache, flags);
3413 if (objp)
3414 goto out;
3415 }
3416 objp = ____cache_alloc(cache, flags);
3417
3418 /*
3419 * We may just have run out of memory on the local node.
3420 * ____cache_alloc_node() knows how to locate memory on other nodes
3421 */
3422 if (!objp)
3423 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3424
3425 out:
3426 return objp;
3427 }
3428 #else
3429
3430 static __always_inline void *
3431 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3432 {
3433 return ____cache_alloc(cachep, flags);
3434 }
3435
3436 #endif /* CONFIG_NUMA */
3437
3438 static __always_inline void *
3439 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3440 {
3441 unsigned long save_flags;
3442 void *objp;
3443
3444 flags &= gfp_allowed_mask;
3445
3446 lockdep_trace_alloc(flags);
3447
3448 if (slab_should_failslab(cachep, flags))
3449 return NULL;
3450
3451 cachep = memcg_kmem_get_cache(cachep, flags);
3452
3453 cache_alloc_debugcheck_before(cachep, flags);
3454 local_irq_save(save_flags);
3455 objp = __do_cache_alloc(cachep, flags);
3456 local_irq_restore(save_flags);
3457 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3458 kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3459 flags);
3460 prefetchw(objp);
3461
3462 if (likely(objp))
3463 kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
3464
3465 if (unlikely((flags & __GFP_ZERO) && objp))
3466 memset(objp, 0, cachep->object_size);
3467
3468 return objp;
3469 }
3470
3471 /*
3472 * Caller needs to acquire correct kmem_list's list_lock
3473 */
3474 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3475 int node)
3476 {
3477 int i;
3478 struct kmem_cache_node *n;
3479
3480 for (i = 0; i < nr_objects; i++) {
3481 void *objp;
3482 struct slab *slabp;
3483
3484 clear_obj_pfmemalloc(&objpp[i]);
3485 objp = objpp[i];
3486
3487 slabp = virt_to_slab(objp);
3488 n = cachep->node[node];
3489 list_del(&slabp->list);
3490 check_spinlock_acquired_node(cachep, node);
3491 check_slabp(cachep, slabp);
3492 slab_put_obj(cachep, slabp, objp, node);
3493 STATS_DEC_ACTIVE(cachep);
3494 n->free_objects++;
3495 check_slabp(cachep, slabp);
3496
3497 /* fixup slab chains */
3498 if (slabp->inuse == 0) {
3499 if (n->free_objects > n->free_limit) {
3500 n->free_objects -= cachep->num;
3501 /* No need to drop any previously held
3502 * lock here, even if we have a off-slab slab
3503 * descriptor it is guaranteed to come from
3504 * a different cache, refer to comments before
3505 * alloc_slabmgmt.
3506 */
3507 slab_destroy(cachep, slabp);
3508 } else {
3509 list_add(&slabp->list, &n->slabs_free);
3510 }
3511 } else {
3512 /* Unconditionally move a slab to the end of the
3513 * partial list on free - maximum time for the
3514 * other objects to be freed, too.
3515 */
3516 list_add_tail(&slabp->list, &n->slabs_partial);
3517 }
3518 }
3519 }
3520
3521 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3522 {
3523 int batchcount;
3524 struct kmem_cache_node *n;
3525 int node = numa_mem_id();
3526
3527 batchcount = ac->batchcount;
3528 #if DEBUG
3529 BUG_ON(!batchcount || batchcount > ac->avail);
3530 #endif
3531 check_irq_off();
3532 n = cachep->node[node];
3533 spin_lock(&n->list_lock);
3534 if (n->shared) {
3535 struct array_cache *shared_array = n->shared;
3536 int max = shared_array->limit - shared_array->avail;
3537 if (max) {
3538 if (batchcount > max)
3539 batchcount = max;
3540 memcpy(&(shared_array->entry[shared_array->avail]),
3541 ac->entry, sizeof(void *) * batchcount);
3542 shared_array->avail += batchcount;
3543 goto free_done;
3544 }
3545 }
3546
3547 free_block(cachep, ac->entry, batchcount, node);
3548 free_done:
3549 #if STATS
3550 {
3551 int i = 0;
3552 struct list_head *p;
3553
3554 p = n->slabs_free.next;
3555 while (p != &(n->slabs_free)) {
3556 struct slab *slabp;
3557
3558 slabp = list_entry(p, struct slab, list);
3559 BUG_ON(slabp->inuse);
3560
3561 i++;
3562 p = p->next;
3563 }
3564 STATS_SET_FREEABLE(cachep, i);
3565 }
3566 #endif
3567 spin_unlock(&n->list_lock);
3568 ac->avail -= batchcount;
3569 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3570 }
3571
3572 /*
3573 * Release an obj back to its cache. If the obj has a constructed state, it must
3574 * be in this state _before_ it is released. Called with disabled ints.
3575 */
3576 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3577 unsigned long caller)
3578 {
3579 struct array_cache *ac = cpu_cache_get(cachep);
3580
3581 check_irq_off();
3582 kmemleak_free_recursive(objp, cachep->flags);
3583 objp = cache_free_debugcheck(cachep, objp, caller);
3584
3585 kmemcheck_slab_free(cachep, objp, cachep->object_size);
3586
3587 /*
3588 * Skip calling cache_free_alien() when the platform is not numa.
3589 * This will avoid cache misses that happen while accessing slabp (which
3590 * is per page memory reference) to get nodeid. Instead use a global
3591 * variable to skip the call, which is mostly likely to be present in
3592 * the cache.
3593 */
3594 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3595 return;
3596
3597 if (likely(ac->avail < ac->limit)) {
3598 STATS_INC_FREEHIT(cachep);
3599 } else {
3600 STATS_INC_FREEMISS(cachep);
3601 cache_flusharray(cachep, ac);
3602 }
3603
3604 ac_put_obj(cachep, ac, objp);
3605 }
3606
3607 /**
3608 * kmem_cache_alloc - Allocate an object
3609 * @cachep: The cache to allocate from.
3610 * @flags: See kmalloc().
3611 *
3612 * Allocate an object from this cache. The flags are only relevant
3613 * if the cache has no available objects.
3614 */
3615 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3616 {
3617 void *ret = slab_alloc(cachep, flags, _RET_IP_);
3618
3619 trace_kmem_cache_alloc(_RET_IP_, ret,
3620 cachep->object_size, cachep->size, flags);
3621
3622 return ret;
3623 }
3624 EXPORT_SYMBOL(kmem_cache_alloc);
3625
3626 #ifdef CONFIG_TRACING
3627 void *
3628 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3629 {
3630 void *ret;
3631
3632 ret = slab_alloc(cachep, flags, _RET_IP_);
3633
3634 trace_kmalloc(_RET_IP_, ret,
3635 size, cachep->size, flags);
3636 return ret;
3637 }
3638 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3639 #endif
3640
3641 #ifdef CONFIG_NUMA
3642 /**
3643 * kmem_cache_alloc_node - Allocate an object on the specified node
3644 * @cachep: The cache to allocate from.
3645 * @flags: See kmalloc().
3646 * @nodeid: node number of the target node.
3647 *
3648 * Identical to kmem_cache_alloc but it will allocate memory on the given
3649 * node, which can improve the performance for cpu bound structures.
3650 *
3651 * Fallback to other node is possible if __GFP_THISNODE is not set.
3652 */
3653 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3654 {
3655 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3656
3657 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3658 cachep->object_size, cachep->size,
3659 flags, nodeid);
3660
3661 return ret;
3662 }
3663 EXPORT_SYMBOL(kmem_cache_alloc_node);
3664
3665 #ifdef CONFIG_TRACING
3666 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3667 gfp_t flags,
3668 int nodeid,
3669 size_t size)
3670 {
3671 void *ret;
3672
3673 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3674
3675 trace_kmalloc_node(_RET_IP_, ret,
3676 size, cachep->size,
3677 flags, nodeid);
3678 return ret;
3679 }
3680 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3681 #endif
3682
3683 static __always_inline void *
3684 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3685 {
3686 struct kmem_cache *cachep;
3687
3688 cachep = kmalloc_slab(size, flags);
3689 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3690 return cachep;
3691 return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3692 }
3693
3694 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3695 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3696 {
3697 return __do_kmalloc_node(size, flags, node, _RET_IP_);
3698 }
3699 EXPORT_SYMBOL(__kmalloc_node);
3700
3701 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3702 int node, unsigned long caller)
3703 {
3704 return __do_kmalloc_node(size, flags, node, caller);
3705 }
3706 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3707 #else
3708 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3709 {
3710 return __do_kmalloc_node(size, flags, node, 0);
3711 }
3712 EXPORT_SYMBOL(__kmalloc_node);
3713 #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3714 #endif /* CONFIG_NUMA */
3715
3716 /**
3717 * __do_kmalloc - allocate memory
3718 * @size: how many bytes of memory are required.
3719 * @flags: the type of memory to allocate (see kmalloc).
3720 * @caller: function caller for debug tracking of the caller
3721 */
3722 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3723 unsigned long caller)
3724 {
3725 struct kmem_cache *cachep;
3726 void *ret;
3727
3728 /* If you want to save a few bytes .text space: replace
3729 * __ with kmem_.
3730 * Then kmalloc uses the uninlined functions instead of the inline
3731 * functions.
3732 */
3733 cachep = kmalloc_slab(size, flags);
3734 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3735 return cachep;
3736 ret = slab_alloc(cachep, flags, caller);
3737
3738 trace_kmalloc(caller, ret,
3739 size, cachep->size, flags);
3740
3741 return ret;
3742 }
3743
3744
3745 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3746 void *__kmalloc(size_t size, gfp_t flags)
3747 {
3748 return __do_kmalloc(size, flags, _RET_IP_);
3749 }
3750 EXPORT_SYMBOL(__kmalloc);
3751
3752 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3753 {
3754 return __do_kmalloc(size, flags, caller);
3755 }
3756 EXPORT_SYMBOL(__kmalloc_track_caller);
3757
3758 #else
3759 void *__kmalloc(size_t size, gfp_t flags)
3760 {
3761 return __do_kmalloc(size, flags, 0);
3762 }
3763 EXPORT_SYMBOL(__kmalloc);
3764 #endif
3765
3766 /**
3767 * kmem_cache_free - Deallocate an object
3768 * @cachep: The cache the allocation was from.
3769 * @objp: The previously allocated object.
3770 *
3771 * Free an object which was previously allocated from this
3772 * cache.
3773 */
3774 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3775 {
3776 unsigned long flags;
3777 cachep = cache_from_obj(cachep, objp);
3778 if (!cachep)
3779 return;
3780
3781 local_irq_save(flags);
3782 debug_check_no_locks_freed(objp, cachep->object_size);
3783 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3784 debug_check_no_obj_freed(objp, cachep->object_size);
3785 __cache_free(cachep, objp, _RET_IP_);
3786 local_irq_restore(flags);
3787
3788 trace_kmem_cache_free(_RET_IP_, objp);
3789 }
3790 EXPORT_SYMBOL(kmem_cache_free);
3791
3792 /**
3793 * kfree - free previously allocated memory
3794 * @objp: pointer returned by kmalloc.
3795 *
3796 * If @objp is NULL, no operation is performed.
3797 *
3798 * Don't free memory not originally allocated by kmalloc()
3799 * or you will run into trouble.
3800 */
3801 void kfree(const void *objp)
3802 {
3803 struct kmem_cache *c;
3804 unsigned long flags;
3805
3806 trace_kfree(_RET_IP_, objp);
3807
3808 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3809 return;
3810 local_irq_save(flags);
3811 kfree_debugcheck(objp);
3812 c = virt_to_cache(objp);
3813 debug_check_no_locks_freed(objp, c->object_size);
3814
3815 debug_check_no_obj_freed(objp, c->object_size);
3816 __cache_free(c, (void *)objp, _RET_IP_);
3817 local_irq_restore(flags);
3818 }
3819 EXPORT_SYMBOL(kfree);
3820
3821 /*
3822 * This initializes kmem_cache_node or resizes various caches for all nodes.
3823 */
3824 static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
3825 {
3826 int node;
3827 struct kmem_cache_node *n;
3828 struct array_cache *new_shared;
3829 struct array_cache **new_alien = NULL;
3830
3831 for_each_online_node(node) {
3832
3833 if (use_alien_caches) {
3834 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3835 if (!new_alien)
3836 goto fail;
3837 }
3838
3839 new_shared = NULL;
3840 if (cachep->shared) {
3841 new_shared = alloc_arraycache(node,
3842 cachep->shared*cachep->batchcount,
3843 0xbaadf00d, gfp);
3844 if (!new_shared) {
3845 free_alien_cache(new_alien);
3846 goto fail;
3847 }
3848 }
3849
3850 n = cachep->node[node];
3851 if (n) {
3852 struct array_cache *shared = n->shared;
3853
3854 spin_lock_irq(&n->list_lock);
3855
3856 if (shared)
3857 free_block(cachep, shared->entry,
3858 shared->avail, node);
3859
3860 n->shared = new_shared;
3861 if (!n->alien) {
3862 n->alien = new_alien;
3863 new_alien = NULL;
3864 }
3865 n->free_limit = (1 + nr_cpus_node(node)) *
3866 cachep->batchcount + cachep->num;
3867 spin_unlock_irq(&n->list_lock);
3868 kfree(shared);
3869 free_alien_cache(new_alien);
3870 continue;
3871 }
3872 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3873 if (!n) {
3874 free_alien_cache(new_alien);
3875 kfree(new_shared);
3876 goto fail;
3877 }
3878
3879 kmem_cache_node_init(n);
3880 n->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3881 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3882 n->shared = new_shared;
3883 n->alien = new_alien;
3884 n->free_limit = (1 + nr_cpus_node(node)) *
3885 cachep->batchcount + cachep->num;
3886 cachep->node[node] = n;
3887 }
3888 return 0;
3889
3890 fail:
3891 if (!cachep->list.next) {
3892 /* Cache is not active yet. Roll back what we did */
3893 node--;
3894 while (node >= 0) {
3895 if (cachep->node[node]) {
3896 n = cachep->node[node];
3897
3898 kfree(n->shared);
3899 free_alien_cache(n->alien);
3900 kfree(n);
3901 cachep->node[node] = NULL;
3902 }
3903 node--;
3904 }
3905 }
3906 return -ENOMEM;
3907 }
3908
3909 struct ccupdate_struct {
3910 struct kmem_cache *cachep;
3911 struct array_cache *new[0];
3912 };
3913
3914 static void do_ccupdate_local(void *info)
3915 {
3916 struct ccupdate_struct *new = info;
3917 struct array_cache *old;
3918
3919 check_irq_off();
3920 old = cpu_cache_get(new->cachep);
3921
3922 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3923 new->new[smp_processor_id()] = old;
3924 }
3925
3926 /* Always called with the slab_mutex held */
3927 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3928 int batchcount, int shared, gfp_t gfp)
3929 {
3930 struct ccupdate_struct *new;
3931 int i;
3932
3933 new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
3934 gfp);
3935 if (!new)
3936 return -ENOMEM;
3937
3938 for_each_online_cpu(i) {
3939 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
3940 batchcount, gfp);
3941 if (!new->new[i]) {
3942 for (i--; i >= 0; i--)
3943 kfree(new->new[i]);
3944 kfree(new);
3945 return -ENOMEM;
3946 }
3947 }
3948 new->cachep = cachep;
3949
3950 on_each_cpu(do_ccupdate_local, (void *)new, 1);
3951
3952 check_irq_on();
3953 cachep->batchcount = batchcount;
3954 cachep->limit = limit;
3955 cachep->shared = shared;
3956
3957 for_each_online_cpu(i) {
3958 struct array_cache *ccold = new->new[i];
3959 if (!ccold)
3960 continue;
3961 spin_lock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
3962 free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
3963 spin_unlock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
3964 kfree(ccold);
3965 }
3966 kfree(new);
3967 return alloc_kmemlist(cachep, gfp);
3968 }
3969
3970 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3971 int batchcount, int shared, gfp_t gfp)
3972 {
3973 int ret;
3974 struct kmem_cache *c = NULL;
3975 int i = 0;
3976
3977 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3978
3979 if (slab_state < FULL)
3980 return ret;
3981
3982 if ((ret < 0) || !is_root_cache(cachep))
3983 return ret;
3984
3985 VM_BUG_ON(!mutex_is_locked(&slab_mutex));
3986 for_each_memcg_cache_index(i) {
3987 c = cache_from_memcg(cachep, i);
3988 if (c)
3989 /* return value determined by the parent cache only */
3990 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3991 }
3992
3993 return ret;
3994 }
3995
3996 /* Called with slab_mutex held always */
3997 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3998 {
3999 int err;
4000 int limit = 0;
4001 int shared = 0;
4002 int batchcount = 0;
4003
4004 if (!is_root_cache(cachep)) {
4005 struct kmem_cache *root = memcg_root_cache(cachep);
4006 limit = root->limit;
4007 shared = root->shared;
4008 batchcount = root->batchcount;
4009 }
4010
4011 if (limit && shared && batchcount)
4012 goto skip_setup;
4013 /*
4014 * The head array serves three purposes:
4015 * - create a LIFO ordering, i.e. return objects that are cache-warm
4016 * - reduce the number of spinlock operations.
4017 * - reduce the number of linked list operations on the slab and
4018 * bufctl chains: array operations are cheaper.
4019 * The numbers are guessed, we should auto-tune as described by
4020 * Bonwick.
4021 */
4022 if (cachep->size > 131072)
4023 limit = 1;
4024 else if (cachep->size > PAGE_SIZE)
4025 limit = 8;
4026 else if (cachep->size > 1024)
4027 limit = 24;
4028 else if (cachep->size > 256)
4029 limit = 54;
4030 else
4031 limit = 120;
4032
4033 /*
4034 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
4035 * allocation behaviour: Most allocs on one cpu, most free operations
4036 * on another cpu. For these cases, an efficient object passing between
4037 * cpus is necessary. This is provided by a shared array. The array
4038 * replaces Bonwick's magazine layer.
4039 * On uniprocessor, it's functionally equivalent (but less efficient)
4040 * to a larger limit. Thus disabled by default.
4041 */
4042 shared = 0;
4043 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
4044 shared = 8;
4045
4046 #if DEBUG
4047 /*
4048 * With debugging enabled, large batchcount lead to excessively long
4049 * periods with disabled local interrupts. Limit the batchcount
4050 */
4051 if (limit > 32)
4052 limit = 32;
4053 #endif
4054 batchcount = (limit + 1) / 2;
4055 skip_setup:
4056 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
4057 if (err)
4058 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
4059 cachep->name, -err);
4060 return err;
4061 }
4062
4063 /*
4064 * Drain an array if it contains any elements taking the node lock only if
4065 * necessary. Note that the node listlock also protects the array_cache
4066 * if drain_array() is used on the shared array.
4067 */
4068 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
4069 struct array_cache *ac, int force, int node)
4070 {
4071 int tofree;
4072
4073 if (!ac || !ac->avail)
4074 return;
4075 if (ac->touched && !force) {
4076 ac->touched = 0;
4077 } else {
4078 spin_lock_irq(&n->list_lock);
4079 if (ac->avail) {
4080 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4081 if (tofree > ac->avail)
4082 tofree = (ac->avail + 1) / 2;
4083 free_block(cachep, ac->entry, tofree, node);
4084 ac->avail -= tofree;
4085 memmove(ac->entry, &(ac->entry[tofree]),
4086 sizeof(void *) * ac->avail);
4087 }
4088 spin_unlock_irq(&n->list_lock);
4089 }
4090 }
4091
4092 /**
4093 * cache_reap - Reclaim memory from caches.
4094 * @w: work descriptor
4095 *
4096 * Called from workqueue/eventd every few seconds.
4097 * Purpose:
4098 * - clear the per-cpu caches for this CPU.
4099 * - return freeable pages to the main free memory pool.
4100 *
4101 * If we cannot acquire the cache chain mutex then just give up - we'll try
4102 * again on the next iteration.
4103 */
4104 static void cache_reap(struct work_struct *w)
4105 {
4106 struct kmem_cache *searchp;
4107 struct kmem_cache_node *n;
4108 int node = numa_mem_id();
4109 struct delayed_work *work = to_delayed_work(w);
4110
4111 if (!mutex_trylock(&slab_mutex))
4112 /* Give up. Setup the next iteration. */
4113 goto out;
4114
4115 list_for_each_entry(searchp, &slab_caches, list) {
4116 check_irq_on();
4117
4118 /*
4119 * We only take the node lock if absolutely necessary and we
4120 * have established with reasonable certainty that
4121 * we can do some work if the lock was obtained.
4122 */
4123 n = searchp->node[node];
4124
4125 reap_alien(searchp, n);
4126
4127 drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
4128
4129 /*
4130 * These are racy checks but it does not matter
4131 * if we skip one check or scan twice.
4132 */
4133 if (time_after(n->next_reap, jiffies))
4134 goto next;
4135
4136 n->next_reap = jiffies + REAPTIMEOUT_LIST3;
4137
4138 drain_array(searchp, n, n->shared, 0, node);
4139
4140 if (n->free_touched)
4141 n->free_touched = 0;
4142 else {
4143 int freed;
4144
4145 freed = drain_freelist(searchp, n, (n->free_limit +
4146 5 * searchp->num - 1) / (5 * searchp->num));
4147 STATS_ADD_REAPED(searchp, freed);
4148 }
4149 next:
4150 cond_resched();
4151 }
4152 check_irq_on();
4153 mutex_unlock(&slab_mutex);
4154 next_reap_node();
4155 out:
4156 /* Set up the next iteration */
4157 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
4158 }
4159
4160 #ifdef CONFIG_SLABINFO
4161 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4162 {
4163 struct slab *slabp;
4164 unsigned long active_objs;
4165 unsigned long num_objs;
4166 unsigned long active_slabs = 0;
4167 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4168 const char *name;
4169 char *error = NULL;
4170 int node;
4171 struct kmem_cache_node *n;
4172
4173 active_objs = 0;
4174 num_slabs = 0;
4175 for_each_online_node(node) {
4176 n = cachep->node[node];
4177 if (!n)
4178 continue;
4179
4180 check_irq_on();
4181 spin_lock_irq(&n->list_lock);
4182
4183 list_for_each_entry(slabp, &n->slabs_full, list) {
4184 if (slabp->inuse != cachep->num && !error)
4185 error = "slabs_full accounting error";
4186 active_objs += cachep->num;
4187 active_slabs++;
4188 }
4189 list_for_each_entry(slabp, &n->slabs_partial, list) {
4190 if (slabp->inuse == cachep->num && !error)
4191 error = "slabs_partial inuse accounting error";
4192 if (!slabp->inuse && !error)
4193 error = "slabs_partial/inuse accounting error";
4194 active_objs += slabp->inuse;
4195 active_slabs++;
4196 }
4197 list_for_each_entry(slabp, &n->slabs_free, list) {
4198 if (slabp->inuse && !error)
4199 error = "slabs_free/inuse accounting error";
4200 num_slabs++;
4201 }
4202 free_objects += n->free_objects;
4203 if (n->shared)
4204 shared_avail += n->shared->avail;
4205
4206 spin_unlock_irq(&n->list_lock);
4207 }
4208 num_slabs += active_slabs;
4209 num_objs = num_slabs * cachep->num;
4210 if (num_objs - active_objs != free_objects && !error)
4211 error = "free_objects accounting error";
4212
4213 name = cachep->name;
4214 if (error)
4215 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4216
4217 sinfo->active_objs = active_objs;
4218 sinfo->num_objs = num_objs;
4219 sinfo->active_slabs = active_slabs;
4220 sinfo->num_slabs = num_slabs;
4221 sinfo->shared_avail = shared_avail;
4222 sinfo->limit = cachep->limit;
4223 sinfo->batchcount = cachep->batchcount;
4224 sinfo->shared = cachep->shared;
4225 sinfo->objects_per_slab = cachep->num;
4226 sinfo->cache_order = cachep->gfporder;
4227 }
4228
4229 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4230 {
4231 #if STATS
4232 { /* node stats */
4233 unsigned long high = cachep->high_mark;
4234 unsigned long allocs = cachep->num_allocations;
4235 unsigned long grown = cachep->grown;
4236 unsigned long reaped = cachep->reaped;
4237 unsigned long errors = cachep->errors;
4238 unsigned long max_freeable = cachep->max_freeable;
4239 unsigned long node_allocs = cachep->node_allocs;
4240 unsigned long node_frees = cachep->node_frees;
4241 unsigned long overflows = cachep->node_overflow;
4242
4243 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4244 "%4lu %4lu %4lu %4lu %4lu",
4245 allocs, high, grown,
4246 reaped, errors, max_freeable, node_allocs,
4247 node_frees, overflows);
4248 }
4249 /* cpu stats */
4250 {
4251 unsigned long allochit = atomic_read(&cachep->allochit);
4252 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4253 unsigned long freehit = atomic_read(&cachep->freehit);
4254 unsigned long freemiss = atomic_read(&cachep->freemiss);
4255
4256 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4257 allochit, allocmiss, freehit, freemiss);
4258 }
4259 #endif
4260 }
4261
4262 #define MAX_SLABINFO_WRITE 128
4263 /**
4264 * slabinfo_write - Tuning for the slab allocator
4265 * @file: unused
4266 * @buffer: user buffer
4267 * @count: data length
4268 * @ppos: unused
4269 */
4270 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4271 size_t count, loff_t *ppos)
4272 {
4273 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4274 int limit, batchcount, shared, res;
4275 struct kmem_cache *cachep;
4276
4277 if (count > MAX_SLABINFO_WRITE)
4278 return -EINVAL;
4279 if (copy_from_user(&kbuf, buffer, count))
4280 return -EFAULT;
4281 kbuf[MAX_SLABINFO_WRITE] = '\0';
4282
4283 tmp = strchr(kbuf, ' ');
4284 if (!tmp)
4285 return -EINVAL;
4286 *tmp = '\0';
4287 tmp++;
4288 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4289 return -EINVAL;
4290
4291 /* Find the cache in the chain of caches. */
4292 mutex_lock(&slab_mutex);
4293 res = -EINVAL;
4294 list_for_each_entry(cachep, &slab_caches, list) {
4295 if (!strcmp(cachep->name, kbuf)) {
4296 if (limit < 1 || batchcount < 1 ||
4297 batchcount > limit || shared < 0) {
4298 res = 0;
4299 } else {
4300 res = do_tune_cpucache(cachep, limit,
4301 batchcount, shared,
4302 GFP_KERNEL);
4303 }
4304 break;
4305 }
4306 }
4307 mutex_unlock(&slab_mutex);
4308 if (res >= 0)
4309 res = count;
4310 return res;
4311 }
4312
4313 #ifdef CONFIG_DEBUG_SLAB_LEAK
4314
4315 static void *leaks_start(struct seq_file *m, loff_t *pos)
4316 {
4317 mutex_lock(&slab_mutex);
4318 return seq_list_start(&slab_caches, *pos);
4319 }
4320
4321 static inline int add_caller(unsigned long *n, unsigned long v)
4322 {
4323 unsigned long *p;
4324 int l;
4325 if (!v)
4326 return 1;
4327 l = n[1];
4328 p = n + 2;
4329 while (l) {
4330 int i = l/2;
4331 unsigned long *q = p + 2 * i;
4332 if (*q == v) {
4333 q[1]++;
4334 return 1;
4335 }
4336 if (*q > v) {
4337 l = i;
4338 } else {
4339 p = q + 2;
4340 l -= i + 1;
4341 }
4342 }
4343 if (++n[1] == n[0])
4344 return 0;
4345 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4346 p[0] = v;
4347 p[1] = 1;
4348 return 1;
4349 }
4350
4351 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4352 {
4353 void *p;
4354 int i;
4355 if (n[0] == n[1])
4356 return;
4357 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->size) {
4358 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4359 continue;
4360 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4361 return;
4362 }
4363 }
4364
4365 static void show_symbol(struct seq_file *m, unsigned long address)
4366 {
4367 #ifdef CONFIG_KALLSYMS
4368 unsigned long offset, size;
4369 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4370
4371 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4372 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4373 if (modname[0])
4374 seq_printf(m, " [%s]", modname);
4375 return;
4376 }
4377 #endif
4378 seq_printf(m, "%p", (void *)address);
4379 }
4380
4381 static int leaks_show(struct seq_file *m, void *p)
4382 {
4383 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4384 struct slab *slabp;
4385 struct kmem_cache_node *n;
4386 const char *name;
4387 unsigned long *x = m->private;
4388 int node;
4389 int i;
4390
4391 if (!(cachep->flags & SLAB_STORE_USER))
4392 return 0;
4393 if (!(cachep->flags & SLAB_RED_ZONE))
4394 return 0;
4395
4396 /* OK, we can do it */
4397
4398 x[1] = 0;
4399
4400 for_each_online_node(node) {
4401 n = cachep->node[node];
4402 if (!n)
4403 continue;
4404
4405 check_irq_on();
4406 spin_lock_irq(&n->list_lock);
4407
4408 list_for_each_entry(slabp, &n->slabs_full, list)
4409 handle_slab(x, cachep, slabp);
4410 list_for_each_entry(slabp, &n->slabs_partial, list)
4411 handle_slab(x, cachep, slabp);
4412 spin_unlock_irq(&n->list_lock);
4413 }
4414 name = cachep->name;
4415 if (x[0] == x[1]) {
4416 /* Increase the buffer size */
4417 mutex_unlock(&slab_mutex);
4418 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4419 if (!m->private) {
4420 /* Too bad, we are really out */
4421 m->private = x;
4422 mutex_lock(&slab_mutex);
4423 return -ENOMEM;
4424 }
4425 *(unsigned long *)m->private = x[0] * 2;
4426 kfree(x);
4427 mutex_lock(&slab_mutex);
4428 /* Now make sure this entry will be retried */
4429 m->count = m->size;
4430 return 0;
4431 }
4432 for (i = 0; i < x[1]; i++) {
4433 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4434 show_symbol(m, x[2*i+2]);
4435 seq_putc(m, '\n');
4436 }
4437
4438 return 0;
4439 }
4440
4441 static const struct seq_operations slabstats_op = {
4442 .start = leaks_start,
4443 .next = slab_next,
4444 .stop = slab_stop,
4445 .show = leaks_show,
4446 };
4447
4448 static int slabstats_open(struct inode *inode, struct file *file)
4449 {
4450 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4451 int ret = -ENOMEM;
4452 if (n) {
4453 ret = seq_open(file, &slabstats_op);
4454 if (!ret) {
4455 struct seq_file *m = file->private_data;
4456 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4457 m->private = n;
4458 n = NULL;
4459 }
4460 kfree(n);
4461 }
4462 return ret;
4463 }
4464
4465 static const struct file_operations proc_slabstats_operations = {
4466 .open = slabstats_open,
4467 .read = seq_read,
4468 .llseek = seq_lseek,
4469 .release = seq_release_private,
4470 };
4471 #endif
4472
4473 static int __init slab_proc_init(void)
4474 {
4475 #ifdef CONFIG_DEBUG_SLAB_LEAK
4476 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4477 #endif
4478 return 0;
4479 }
4480 module_init(slab_proc_init);
4481 #endif
4482
4483 /**
4484 * ksize - get the actual amount of memory allocated for a given object
4485 * @objp: Pointer to the object
4486 *
4487 * kmalloc may internally round up allocations and return more memory
4488 * than requested. ksize() can be used to determine the actual amount of
4489 * memory allocated. The caller may use this additional memory, even though
4490 * a smaller amount of memory was initially specified with the kmalloc call.
4491 * The caller must guarantee that objp points to a valid object previously
4492 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4493 * must not be freed during the duration of the call.
4494 */
4495 size_t ksize(const void *objp)
4496 {
4497 BUG_ON(!objp);
4498 if (unlikely(objp == ZERO_SIZE_PTR))
4499 return 0;
4500
4501 return virt_to_cache(objp)->object_size;
4502 }
4503 EXPORT_SYMBOL(ksize);
This page took 0.151924 seconds and 6 git commands to generate.