Merge master.kernel.org:/home/rmk/linux-2.6-arm
[deliverable/linux.git] / mm / slab.c
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
87 */
88
89 #include <linux/slab.h>
90 #include <linux/mm.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/seq_file.h>
99 #include <linux/notifier.h>
100 #include <linux/kallsyms.h>
101 #include <linux/cpu.h>
102 #include <linux/sysctl.h>
103 #include <linux/module.h>
104 #include <linux/rcupdate.h>
105 #include <linux/string.h>
106 #include <linux/uaccess.h>
107 #include <linux/nodemask.h>
108 #include <linux/mempolicy.h>
109 #include <linux/mutex.h>
110 #include <linux/fault-inject.h>
111 #include <linux/rtmutex.h>
112 #include <linux/reciprocal_div.h>
113
114 #include <asm/cacheflush.h>
115 #include <asm/tlbflush.h>
116 #include <asm/page.h>
117
118 /*
119 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
120 * 0 for faster, smaller code (especially in the critical paths).
121 *
122 * STATS - 1 to collect stats for /proc/slabinfo.
123 * 0 for faster, smaller code (especially in the critical paths).
124 *
125 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
126 */
127
128 #ifdef CONFIG_DEBUG_SLAB
129 #define DEBUG 1
130 #define STATS 1
131 #define FORCED_DEBUG 1
132 #else
133 #define DEBUG 0
134 #define STATS 0
135 #define FORCED_DEBUG 0
136 #endif
137
138 /* Shouldn't this be in a header file somewhere? */
139 #define BYTES_PER_WORD sizeof(void *)
140 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
141
142 #ifndef ARCH_KMALLOC_MINALIGN
143 /*
144 * Enforce a minimum alignment for the kmalloc caches.
145 * Usually, the kmalloc caches are cache_line_size() aligned, except when
146 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
147 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
148 * alignment larger than the alignment of a 64-bit integer.
149 * ARCH_KMALLOC_MINALIGN allows that.
150 * Note that increasing this value may disable some debug features.
151 */
152 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
153 #endif
154
155 #ifndef ARCH_SLAB_MINALIGN
156 /*
157 * Enforce a minimum alignment for all caches.
158 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
159 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
160 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
161 * some debug features.
162 */
163 #define ARCH_SLAB_MINALIGN 0
164 #endif
165
166 #ifndef ARCH_KMALLOC_FLAGS
167 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
168 #endif
169
170 /* Legal flag mask for kmem_cache_create(). */
171 #if DEBUG
172 # define CREATE_MASK (SLAB_RED_ZONE | \
173 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
174 SLAB_CACHE_DMA | \
175 SLAB_STORE_USER | \
176 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
177 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
178 #else
179 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
180 SLAB_CACHE_DMA | \
181 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
182 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
183 #endif
184
185 /*
186 * kmem_bufctl_t:
187 *
188 * Bufctl's are used for linking objs within a slab
189 * linked offsets.
190 *
191 * This implementation relies on "struct page" for locating the cache &
192 * slab an object belongs to.
193 * This allows the bufctl structure to be small (one int), but limits
194 * the number of objects a slab (not a cache) can contain when off-slab
195 * bufctls are used. The limit is the size of the largest general cache
196 * that does not use off-slab slabs.
197 * For 32bit archs with 4 kB pages, is this 56.
198 * This is not serious, as it is only for large objects, when it is unwise
199 * to have too many per slab.
200 * Note: This limit can be raised by introducing a general cache whose size
201 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
202 */
203
204 typedef unsigned int kmem_bufctl_t;
205 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
206 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
207 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
208 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
209
210 /*
211 * struct slab
212 *
213 * Manages the objs in a slab. Placed either at the beginning of mem allocated
214 * for a slab, or allocated from an general cache.
215 * Slabs are chained into three list: fully used, partial, fully free slabs.
216 */
217 struct slab {
218 struct list_head list;
219 unsigned long colouroff;
220 void *s_mem; /* including colour offset */
221 unsigned int inuse; /* num of objs active in slab */
222 kmem_bufctl_t free;
223 unsigned short nodeid;
224 };
225
226 /*
227 * struct slab_rcu
228 *
229 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
230 * arrange for kmem_freepages to be called via RCU. This is useful if
231 * we need to approach a kernel structure obliquely, from its address
232 * obtained without the usual locking. We can lock the structure to
233 * stabilize it and check it's still at the given address, only if we
234 * can be sure that the memory has not been meanwhile reused for some
235 * other kind of object (which our subsystem's lock might corrupt).
236 *
237 * rcu_read_lock before reading the address, then rcu_read_unlock after
238 * taking the spinlock within the structure expected at that address.
239 *
240 * We assume struct slab_rcu can overlay struct slab when destroying.
241 */
242 struct slab_rcu {
243 struct rcu_head head;
244 struct kmem_cache *cachep;
245 void *addr;
246 };
247
248 /*
249 * struct array_cache
250 *
251 * Purpose:
252 * - LIFO ordering, to hand out cache-warm objects from _alloc
253 * - reduce the number of linked list operations
254 * - reduce spinlock operations
255 *
256 * The limit is stored in the per-cpu structure to reduce the data cache
257 * footprint.
258 *
259 */
260 struct array_cache {
261 unsigned int avail;
262 unsigned int limit;
263 unsigned int batchcount;
264 unsigned int touched;
265 spinlock_t lock;
266 void *entry[]; /*
267 * Must have this definition in here for the proper
268 * alignment of array_cache. Also simplifies accessing
269 * the entries.
270 */
271 };
272
273 /*
274 * bootstrap: The caches do not work without cpuarrays anymore, but the
275 * cpuarrays are allocated from the generic caches...
276 */
277 #define BOOT_CPUCACHE_ENTRIES 1
278 struct arraycache_init {
279 struct array_cache cache;
280 void *entries[BOOT_CPUCACHE_ENTRIES];
281 };
282
283 /*
284 * The slab lists for all objects.
285 */
286 struct kmem_list3 {
287 struct list_head slabs_partial; /* partial list first, better asm code */
288 struct list_head slabs_full;
289 struct list_head slabs_free;
290 unsigned long free_objects;
291 unsigned int free_limit;
292 unsigned int colour_next; /* Per-node cache coloring */
293 spinlock_t list_lock;
294 struct array_cache *shared; /* shared per node */
295 struct array_cache **alien; /* on other nodes */
296 unsigned long next_reap; /* updated without locking */
297 int free_touched; /* updated without locking */
298 };
299
300 /*
301 * Need this for bootstrapping a per node allocator.
302 */
303 #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
304 struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
305 #define CACHE_CACHE 0
306 #define SIZE_AC MAX_NUMNODES
307 #define SIZE_L3 (2 * MAX_NUMNODES)
308
309 static int drain_freelist(struct kmem_cache *cache,
310 struct kmem_list3 *l3, int tofree);
311 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
312 int node);
313 static int enable_cpucache(struct kmem_cache *cachep);
314 static void cache_reap(struct work_struct *unused);
315
316 /*
317 * This function must be completely optimized away if a constant is passed to
318 * it. Mostly the same as what is in linux/slab.h except it returns an index.
319 */
320 static __always_inline int index_of(const size_t size)
321 {
322 extern void __bad_size(void);
323
324 if (__builtin_constant_p(size)) {
325 int i = 0;
326
327 #define CACHE(x) \
328 if (size <=x) \
329 return i; \
330 else \
331 i++;
332 #include <linux/kmalloc_sizes.h>
333 #undef CACHE
334 __bad_size();
335 } else
336 __bad_size();
337 return 0;
338 }
339
340 static int slab_early_init = 1;
341
342 #define INDEX_AC index_of(sizeof(struct arraycache_init))
343 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
344
345 static void kmem_list3_init(struct kmem_list3 *parent)
346 {
347 INIT_LIST_HEAD(&parent->slabs_full);
348 INIT_LIST_HEAD(&parent->slabs_partial);
349 INIT_LIST_HEAD(&parent->slabs_free);
350 parent->shared = NULL;
351 parent->alien = NULL;
352 parent->colour_next = 0;
353 spin_lock_init(&parent->list_lock);
354 parent->free_objects = 0;
355 parent->free_touched = 0;
356 }
357
358 #define MAKE_LIST(cachep, listp, slab, nodeid) \
359 do { \
360 INIT_LIST_HEAD(listp); \
361 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
362 } while (0)
363
364 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
365 do { \
366 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
367 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
368 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
369 } while (0)
370
371 /*
372 * struct kmem_cache
373 *
374 * manages a cache.
375 */
376
377 struct kmem_cache {
378 /* 1) per-cpu data, touched during every alloc/free */
379 struct array_cache *array[NR_CPUS];
380 /* 2) Cache tunables. Protected by cache_chain_mutex */
381 unsigned int batchcount;
382 unsigned int limit;
383 unsigned int shared;
384
385 unsigned int buffer_size;
386 u32 reciprocal_buffer_size;
387 /* 3) touched by every alloc & free from the backend */
388
389 unsigned int flags; /* constant flags */
390 unsigned int num; /* # of objs per slab */
391
392 /* 4) cache_grow/shrink */
393 /* order of pgs per slab (2^n) */
394 unsigned int gfporder;
395
396 /* force GFP flags, e.g. GFP_DMA */
397 gfp_t gfpflags;
398
399 size_t colour; /* cache colouring range */
400 unsigned int colour_off; /* colour offset */
401 struct kmem_cache *slabp_cache;
402 unsigned int slab_size;
403 unsigned int dflags; /* dynamic flags */
404
405 /* constructor func */
406 void (*ctor)(struct kmem_cache *, void *);
407
408 /* 5) cache creation/removal */
409 const char *name;
410 struct list_head next;
411
412 /* 6) statistics */
413 #if STATS
414 unsigned long num_active;
415 unsigned long num_allocations;
416 unsigned long high_mark;
417 unsigned long grown;
418 unsigned long reaped;
419 unsigned long errors;
420 unsigned long max_freeable;
421 unsigned long node_allocs;
422 unsigned long node_frees;
423 unsigned long node_overflow;
424 atomic_t allochit;
425 atomic_t allocmiss;
426 atomic_t freehit;
427 atomic_t freemiss;
428 #endif
429 #if DEBUG
430 /*
431 * If debugging is enabled, then the allocator can add additional
432 * fields and/or padding to every object. buffer_size contains the total
433 * object size including these internal fields, the following two
434 * variables contain the offset to the user object and its size.
435 */
436 int obj_offset;
437 int obj_size;
438 #endif
439 /*
440 * We put nodelists[] at the end of kmem_cache, because we want to size
441 * this array to nr_node_ids slots instead of MAX_NUMNODES
442 * (see kmem_cache_init())
443 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
444 * is statically defined, so we reserve the max number of nodes.
445 */
446 struct kmem_list3 *nodelists[MAX_NUMNODES];
447 /*
448 * Do not add fields after nodelists[]
449 */
450 };
451
452 #define CFLGS_OFF_SLAB (0x80000000UL)
453 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
454
455 #define BATCHREFILL_LIMIT 16
456 /*
457 * Optimization question: fewer reaps means less probability for unnessary
458 * cpucache drain/refill cycles.
459 *
460 * OTOH the cpuarrays can contain lots of objects,
461 * which could lock up otherwise freeable slabs.
462 */
463 #define REAPTIMEOUT_CPUC (2*HZ)
464 #define REAPTIMEOUT_LIST3 (4*HZ)
465
466 #if STATS
467 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
468 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
469 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
470 #define STATS_INC_GROWN(x) ((x)->grown++)
471 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
472 #define STATS_SET_HIGH(x) \
473 do { \
474 if ((x)->num_active > (x)->high_mark) \
475 (x)->high_mark = (x)->num_active; \
476 } while (0)
477 #define STATS_INC_ERR(x) ((x)->errors++)
478 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
479 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
480 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
481 #define STATS_SET_FREEABLE(x, i) \
482 do { \
483 if ((x)->max_freeable < i) \
484 (x)->max_freeable = i; \
485 } while (0)
486 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
487 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
488 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
489 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
490 #else
491 #define STATS_INC_ACTIVE(x) do { } while (0)
492 #define STATS_DEC_ACTIVE(x) do { } while (0)
493 #define STATS_INC_ALLOCED(x) do { } while (0)
494 #define STATS_INC_GROWN(x) do { } while (0)
495 #define STATS_ADD_REAPED(x,y) do { } while (0)
496 #define STATS_SET_HIGH(x) do { } while (0)
497 #define STATS_INC_ERR(x) do { } while (0)
498 #define STATS_INC_NODEALLOCS(x) do { } while (0)
499 #define STATS_INC_NODEFREES(x) do { } while (0)
500 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
501 #define STATS_SET_FREEABLE(x, i) do { } while (0)
502 #define STATS_INC_ALLOCHIT(x) do { } while (0)
503 #define STATS_INC_ALLOCMISS(x) do { } while (0)
504 #define STATS_INC_FREEHIT(x) do { } while (0)
505 #define STATS_INC_FREEMISS(x) do { } while (0)
506 #endif
507
508 #if DEBUG
509
510 /*
511 * memory layout of objects:
512 * 0 : objp
513 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
514 * the end of an object is aligned with the end of the real
515 * allocation. Catches writes behind the end of the allocation.
516 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
517 * redzone word.
518 * cachep->obj_offset: The real object.
519 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
520 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
521 * [BYTES_PER_WORD long]
522 */
523 static int obj_offset(struct kmem_cache *cachep)
524 {
525 return cachep->obj_offset;
526 }
527
528 static int obj_size(struct kmem_cache *cachep)
529 {
530 return cachep->obj_size;
531 }
532
533 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
534 {
535 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
536 return (unsigned long long*) (objp + obj_offset(cachep) -
537 sizeof(unsigned long long));
538 }
539
540 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
541 {
542 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
543 if (cachep->flags & SLAB_STORE_USER)
544 return (unsigned long long *)(objp + cachep->buffer_size -
545 sizeof(unsigned long long) -
546 REDZONE_ALIGN);
547 return (unsigned long long *) (objp + cachep->buffer_size -
548 sizeof(unsigned long long));
549 }
550
551 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
552 {
553 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
554 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
555 }
556
557 #else
558
559 #define obj_offset(x) 0
560 #define obj_size(cachep) (cachep->buffer_size)
561 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
562 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
563 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
564
565 #endif
566
567 /*
568 * Do not go above this order unless 0 objects fit into the slab.
569 */
570 #define BREAK_GFP_ORDER_HI 1
571 #define BREAK_GFP_ORDER_LO 0
572 static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
573
574 /*
575 * Functions for storing/retrieving the cachep and or slab from the page
576 * allocator. These are used to find the slab an obj belongs to. With kfree(),
577 * these are used to find the cache which an obj belongs to.
578 */
579 static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
580 {
581 page->lru.next = (struct list_head *)cache;
582 }
583
584 static inline struct kmem_cache *page_get_cache(struct page *page)
585 {
586 page = compound_head(page);
587 BUG_ON(!PageSlab(page));
588 return (struct kmem_cache *)page->lru.next;
589 }
590
591 static inline void page_set_slab(struct page *page, struct slab *slab)
592 {
593 page->lru.prev = (struct list_head *)slab;
594 }
595
596 static inline struct slab *page_get_slab(struct page *page)
597 {
598 BUG_ON(!PageSlab(page));
599 return (struct slab *)page->lru.prev;
600 }
601
602 static inline struct kmem_cache *virt_to_cache(const void *obj)
603 {
604 struct page *page = virt_to_head_page(obj);
605 return page_get_cache(page);
606 }
607
608 static inline struct slab *virt_to_slab(const void *obj)
609 {
610 struct page *page = virt_to_head_page(obj);
611 return page_get_slab(page);
612 }
613
614 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
615 unsigned int idx)
616 {
617 return slab->s_mem + cache->buffer_size * idx;
618 }
619
620 /*
621 * We want to avoid an expensive divide : (offset / cache->buffer_size)
622 * Using the fact that buffer_size is a constant for a particular cache,
623 * we can replace (offset / cache->buffer_size) by
624 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
625 */
626 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
627 const struct slab *slab, void *obj)
628 {
629 u32 offset = (obj - slab->s_mem);
630 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
631 }
632
633 /*
634 * These are the default caches for kmalloc. Custom caches can have other sizes.
635 */
636 struct cache_sizes malloc_sizes[] = {
637 #define CACHE(x) { .cs_size = (x) },
638 #include <linux/kmalloc_sizes.h>
639 CACHE(ULONG_MAX)
640 #undef CACHE
641 };
642 EXPORT_SYMBOL(malloc_sizes);
643
644 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
645 struct cache_names {
646 char *name;
647 char *name_dma;
648 };
649
650 static struct cache_names __initdata cache_names[] = {
651 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
652 #include <linux/kmalloc_sizes.h>
653 {NULL,}
654 #undef CACHE
655 };
656
657 static struct arraycache_init initarray_cache __initdata =
658 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
659 static struct arraycache_init initarray_generic =
660 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
661
662 /* internal cache of cache description objs */
663 static struct kmem_cache cache_cache = {
664 .batchcount = 1,
665 .limit = BOOT_CPUCACHE_ENTRIES,
666 .shared = 1,
667 .buffer_size = sizeof(struct kmem_cache),
668 .name = "kmem_cache",
669 };
670
671 #define BAD_ALIEN_MAGIC 0x01020304ul
672
673 #ifdef CONFIG_LOCKDEP
674
675 /*
676 * Slab sometimes uses the kmalloc slabs to store the slab headers
677 * for other slabs "off slab".
678 * The locking for this is tricky in that it nests within the locks
679 * of all other slabs in a few places; to deal with this special
680 * locking we put on-slab caches into a separate lock-class.
681 *
682 * We set lock class for alien array caches which are up during init.
683 * The lock annotation will be lost if all cpus of a node goes down and
684 * then comes back up during hotplug
685 */
686 static struct lock_class_key on_slab_l3_key;
687 static struct lock_class_key on_slab_alc_key;
688
689 static inline void init_lock_keys(void)
690
691 {
692 int q;
693 struct cache_sizes *s = malloc_sizes;
694
695 while (s->cs_size != ULONG_MAX) {
696 for_each_node(q) {
697 struct array_cache **alc;
698 int r;
699 struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
700 if (!l3 || OFF_SLAB(s->cs_cachep))
701 continue;
702 lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
703 alc = l3->alien;
704 /*
705 * FIXME: This check for BAD_ALIEN_MAGIC
706 * should go away when common slab code is taught to
707 * work even without alien caches.
708 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
709 * for alloc_alien_cache,
710 */
711 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
712 continue;
713 for_each_node(r) {
714 if (alc[r])
715 lockdep_set_class(&alc[r]->lock,
716 &on_slab_alc_key);
717 }
718 }
719 s++;
720 }
721 }
722 #else
723 static inline void init_lock_keys(void)
724 {
725 }
726 #endif
727
728 /*
729 * Guard access to the cache-chain.
730 */
731 static DEFINE_MUTEX(cache_chain_mutex);
732 static struct list_head cache_chain;
733
734 /*
735 * chicken and egg problem: delay the per-cpu array allocation
736 * until the general caches are up.
737 */
738 static enum {
739 NONE,
740 PARTIAL_AC,
741 PARTIAL_L3,
742 FULL
743 } g_cpucache_up;
744
745 /*
746 * used by boot code to determine if it can use slab based allocator
747 */
748 int slab_is_available(void)
749 {
750 return g_cpucache_up == FULL;
751 }
752
753 static DEFINE_PER_CPU(struct delayed_work, reap_work);
754
755 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
756 {
757 return cachep->array[smp_processor_id()];
758 }
759
760 static inline struct kmem_cache *__find_general_cachep(size_t size,
761 gfp_t gfpflags)
762 {
763 struct cache_sizes *csizep = malloc_sizes;
764
765 #if DEBUG
766 /* This happens if someone tries to call
767 * kmem_cache_create(), or __kmalloc(), before
768 * the generic caches are initialized.
769 */
770 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
771 #endif
772 if (!size)
773 return ZERO_SIZE_PTR;
774
775 while (size > csizep->cs_size)
776 csizep++;
777
778 /*
779 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
780 * has cs_{dma,}cachep==NULL. Thus no special case
781 * for large kmalloc calls required.
782 */
783 #ifdef CONFIG_ZONE_DMA
784 if (unlikely(gfpflags & GFP_DMA))
785 return csizep->cs_dmacachep;
786 #endif
787 return csizep->cs_cachep;
788 }
789
790 static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
791 {
792 return __find_general_cachep(size, gfpflags);
793 }
794
795 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
796 {
797 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
798 }
799
800 /*
801 * Calculate the number of objects and left-over bytes for a given buffer size.
802 */
803 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
804 size_t align, int flags, size_t *left_over,
805 unsigned int *num)
806 {
807 int nr_objs;
808 size_t mgmt_size;
809 size_t slab_size = PAGE_SIZE << gfporder;
810
811 /*
812 * The slab management structure can be either off the slab or
813 * on it. For the latter case, the memory allocated for a
814 * slab is used for:
815 *
816 * - The struct slab
817 * - One kmem_bufctl_t for each object
818 * - Padding to respect alignment of @align
819 * - @buffer_size bytes for each object
820 *
821 * If the slab management structure is off the slab, then the
822 * alignment will already be calculated into the size. Because
823 * the slabs are all pages aligned, the objects will be at the
824 * correct alignment when allocated.
825 */
826 if (flags & CFLGS_OFF_SLAB) {
827 mgmt_size = 0;
828 nr_objs = slab_size / buffer_size;
829
830 if (nr_objs > SLAB_LIMIT)
831 nr_objs = SLAB_LIMIT;
832 } else {
833 /*
834 * Ignore padding for the initial guess. The padding
835 * is at most @align-1 bytes, and @buffer_size is at
836 * least @align. In the worst case, this result will
837 * be one greater than the number of objects that fit
838 * into the memory allocation when taking the padding
839 * into account.
840 */
841 nr_objs = (slab_size - sizeof(struct slab)) /
842 (buffer_size + sizeof(kmem_bufctl_t));
843
844 /*
845 * This calculated number will be either the right
846 * amount, or one greater than what we want.
847 */
848 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
849 > slab_size)
850 nr_objs--;
851
852 if (nr_objs > SLAB_LIMIT)
853 nr_objs = SLAB_LIMIT;
854
855 mgmt_size = slab_mgmt_size(nr_objs, align);
856 }
857 *num = nr_objs;
858 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
859 }
860
861 #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
862
863 static void __slab_error(const char *function, struct kmem_cache *cachep,
864 char *msg)
865 {
866 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
867 function, cachep->name, msg);
868 dump_stack();
869 }
870
871 /*
872 * By default on NUMA we use alien caches to stage the freeing of
873 * objects allocated from other nodes. This causes massive memory
874 * inefficiencies when using fake NUMA setup to split memory into a
875 * large number of small nodes, so it can be disabled on the command
876 * line
877 */
878
879 static int use_alien_caches __read_mostly = 1;
880 static int numa_platform __read_mostly = 1;
881 static int __init noaliencache_setup(char *s)
882 {
883 use_alien_caches = 0;
884 return 1;
885 }
886 __setup("noaliencache", noaliencache_setup);
887
888 #ifdef CONFIG_NUMA
889 /*
890 * Special reaping functions for NUMA systems called from cache_reap().
891 * These take care of doing round robin flushing of alien caches (containing
892 * objects freed on different nodes from which they were allocated) and the
893 * flushing of remote pcps by calling drain_node_pages.
894 */
895 static DEFINE_PER_CPU(unsigned long, reap_node);
896
897 static void init_reap_node(int cpu)
898 {
899 int node;
900
901 node = next_node(cpu_to_node(cpu), node_online_map);
902 if (node == MAX_NUMNODES)
903 node = first_node(node_online_map);
904
905 per_cpu(reap_node, cpu) = node;
906 }
907
908 static void next_reap_node(void)
909 {
910 int node = __get_cpu_var(reap_node);
911
912 node = next_node(node, node_online_map);
913 if (unlikely(node >= MAX_NUMNODES))
914 node = first_node(node_online_map);
915 __get_cpu_var(reap_node) = node;
916 }
917
918 #else
919 #define init_reap_node(cpu) do { } while (0)
920 #define next_reap_node(void) do { } while (0)
921 #endif
922
923 /*
924 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
925 * via the workqueue/eventd.
926 * Add the CPU number into the expiration time to minimize the possibility of
927 * the CPUs getting into lockstep and contending for the global cache chain
928 * lock.
929 */
930 static void __cpuinit start_cpu_timer(int cpu)
931 {
932 struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
933
934 /*
935 * When this gets called from do_initcalls via cpucache_init(),
936 * init_workqueues() has already run, so keventd will be setup
937 * at that time.
938 */
939 if (keventd_up() && reap_work->work.func == NULL) {
940 init_reap_node(cpu);
941 INIT_DELAYED_WORK(reap_work, cache_reap);
942 schedule_delayed_work_on(cpu, reap_work,
943 __round_jiffies_relative(HZ, cpu));
944 }
945 }
946
947 static struct array_cache *alloc_arraycache(int node, int entries,
948 int batchcount)
949 {
950 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
951 struct array_cache *nc = NULL;
952
953 nc = kmalloc_node(memsize, GFP_KERNEL, node);
954 if (nc) {
955 nc->avail = 0;
956 nc->limit = entries;
957 nc->batchcount = batchcount;
958 nc->touched = 0;
959 spin_lock_init(&nc->lock);
960 }
961 return nc;
962 }
963
964 /*
965 * Transfer objects in one arraycache to another.
966 * Locking must be handled by the caller.
967 *
968 * Return the number of entries transferred.
969 */
970 static int transfer_objects(struct array_cache *to,
971 struct array_cache *from, unsigned int max)
972 {
973 /* Figure out how many entries to transfer */
974 int nr = min(min(from->avail, max), to->limit - to->avail);
975
976 if (!nr)
977 return 0;
978
979 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
980 sizeof(void *) *nr);
981
982 from->avail -= nr;
983 to->avail += nr;
984 to->touched = 1;
985 return nr;
986 }
987
988 #ifndef CONFIG_NUMA
989
990 #define drain_alien_cache(cachep, alien) do { } while (0)
991 #define reap_alien(cachep, l3) do { } while (0)
992
993 static inline struct array_cache **alloc_alien_cache(int node, int limit)
994 {
995 return (struct array_cache **)BAD_ALIEN_MAGIC;
996 }
997
998 static inline void free_alien_cache(struct array_cache **ac_ptr)
999 {
1000 }
1001
1002 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1003 {
1004 return 0;
1005 }
1006
1007 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1008 gfp_t flags)
1009 {
1010 return NULL;
1011 }
1012
1013 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1014 gfp_t flags, int nodeid)
1015 {
1016 return NULL;
1017 }
1018
1019 #else /* CONFIG_NUMA */
1020
1021 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1022 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1023
1024 static struct array_cache **alloc_alien_cache(int node, int limit)
1025 {
1026 struct array_cache **ac_ptr;
1027 int memsize = sizeof(void *) * nr_node_ids;
1028 int i;
1029
1030 if (limit > 1)
1031 limit = 12;
1032 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
1033 if (ac_ptr) {
1034 for_each_node(i) {
1035 if (i == node || !node_online(i)) {
1036 ac_ptr[i] = NULL;
1037 continue;
1038 }
1039 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
1040 if (!ac_ptr[i]) {
1041 for (i--; i >= 0; i--)
1042 kfree(ac_ptr[i]);
1043 kfree(ac_ptr);
1044 return NULL;
1045 }
1046 }
1047 }
1048 return ac_ptr;
1049 }
1050
1051 static void free_alien_cache(struct array_cache **ac_ptr)
1052 {
1053 int i;
1054
1055 if (!ac_ptr)
1056 return;
1057 for_each_node(i)
1058 kfree(ac_ptr[i]);
1059 kfree(ac_ptr);
1060 }
1061
1062 static void __drain_alien_cache(struct kmem_cache *cachep,
1063 struct array_cache *ac, int node)
1064 {
1065 struct kmem_list3 *rl3 = cachep->nodelists[node];
1066
1067 if (ac->avail) {
1068 spin_lock(&rl3->list_lock);
1069 /*
1070 * Stuff objects into the remote nodes shared array first.
1071 * That way we could avoid the overhead of putting the objects
1072 * into the free lists and getting them back later.
1073 */
1074 if (rl3->shared)
1075 transfer_objects(rl3->shared, ac, ac->limit);
1076
1077 free_block(cachep, ac->entry, ac->avail, node);
1078 ac->avail = 0;
1079 spin_unlock(&rl3->list_lock);
1080 }
1081 }
1082
1083 /*
1084 * Called from cache_reap() to regularly drain alien caches round robin.
1085 */
1086 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1087 {
1088 int node = __get_cpu_var(reap_node);
1089
1090 if (l3->alien) {
1091 struct array_cache *ac = l3->alien[node];
1092
1093 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1094 __drain_alien_cache(cachep, ac, node);
1095 spin_unlock_irq(&ac->lock);
1096 }
1097 }
1098 }
1099
1100 static void drain_alien_cache(struct kmem_cache *cachep,
1101 struct array_cache **alien)
1102 {
1103 int i = 0;
1104 struct array_cache *ac;
1105 unsigned long flags;
1106
1107 for_each_online_node(i) {
1108 ac = alien[i];
1109 if (ac) {
1110 spin_lock_irqsave(&ac->lock, flags);
1111 __drain_alien_cache(cachep, ac, i);
1112 spin_unlock_irqrestore(&ac->lock, flags);
1113 }
1114 }
1115 }
1116
1117 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1118 {
1119 struct slab *slabp = virt_to_slab(objp);
1120 int nodeid = slabp->nodeid;
1121 struct kmem_list3 *l3;
1122 struct array_cache *alien = NULL;
1123 int node;
1124
1125 node = numa_node_id();
1126
1127 /*
1128 * Make sure we are not freeing a object from another node to the array
1129 * cache on this cpu.
1130 */
1131 if (likely(slabp->nodeid == node))
1132 return 0;
1133
1134 l3 = cachep->nodelists[node];
1135 STATS_INC_NODEFREES(cachep);
1136 if (l3->alien && l3->alien[nodeid]) {
1137 alien = l3->alien[nodeid];
1138 spin_lock(&alien->lock);
1139 if (unlikely(alien->avail == alien->limit)) {
1140 STATS_INC_ACOVERFLOW(cachep);
1141 __drain_alien_cache(cachep, alien, nodeid);
1142 }
1143 alien->entry[alien->avail++] = objp;
1144 spin_unlock(&alien->lock);
1145 } else {
1146 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1147 free_block(cachep, &objp, 1, nodeid);
1148 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1149 }
1150 return 1;
1151 }
1152 #endif
1153
1154 static void __cpuinit cpuup_canceled(long cpu)
1155 {
1156 struct kmem_cache *cachep;
1157 struct kmem_list3 *l3 = NULL;
1158 int node = cpu_to_node(cpu);
1159 node_to_cpumask_ptr(mask, node);
1160
1161 list_for_each_entry(cachep, &cache_chain, next) {
1162 struct array_cache *nc;
1163 struct array_cache *shared;
1164 struct array_cache **alien;
1165
1166 /* cpu is dead; no one can alloc from it. */
1167 nc = cachep->array[cpu];
1168 cachep->array[cpu] = NULL;
1169 l3 = cachep->nodelists[node];
1170
1171 if (!l3)
1172 goto free_array_cache;
1173
1174 spin_lock_irq(&l3->list_lock);
1175
1176 /* Free limit for this kmem_list3 */
1177 l3->free_limit -= cachep->batchcount;
1178 if (nc)
1179 free_block(cachep, nc->entry, nc->avail, node);
1180
1181 if (!cpus_empty(*mask)) {
1182 spin_unlock_irq(&l3->list_lock);
1183 goto free_array_cache;
1184 }
1185
1186 shared = l3->shared;
1187 if (shared) {
1188 free_block(cachep, shared->entry,
1189 shared->avail, node);
1190 l3->shared = NULL;
1191 }
1192
1193 alien = l3->alien;
1194 l3->alien = NULL;
1195
1196 spin_unlock_irq(&l3->list_lock);
1197
1198 kfree(shared);
1199 if (alien) {
1200 drain_alien_cache(cachep, alien);
1201 free_alien_cache(alien);
1202 }
1203 free_array_cache:
1204 kfree(nc);
1205 }
1206 /*
1207 * In the previous loop, all the objects were freed to
1208 * the respective cache's slabs, now we can go ahead and
1209 * shrink each nodelist to its limit.
1210 */
1211 list_for_each_entry(cachep, &cache_chain, next) {
1212 l3 = cachep->nodelists[node];
1213 if (!l3)
1214 continue;
1215 drain_freelist(cachep, l3, l3->free_objects);
1216 }
1217 }
1218
1219 static int __cpuinit cpuup_prepare(long cpu)
1220 {
1221 struct kmem_cache *cachep;
1222 struct kmem_list3 *l3 = NULL;
1223 int node = cpu_to_node(cpu);
1224 const int memsize = sizeof(struct kmem_list3);
1225
1226 /*
1227 * We need to do this right in the beginning since
1228 * alloc_arraycache's are going to use this list.
1229 * kmalloc_node allows us to add the slab to the right
1230 * kmem_list3 and not this cpu's kmem_list3
1231 */
1232
1233 list_for_each_entry(cachep, &cache_chain, next) {
1234 /*
1235 * Set up the size64 kmemlist for cpu before we can
1236 * begin anything. Make sure some other cpu on this
1237 * node has not already allocated this
1238 */
1239 if (!cachep->nodelists[node]) {
1240 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1241 if (!l3)
1242 goto bad;
1243 kmem_list3_init(l3);
1244 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1245 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1246
1247 /*
1248 * The l3s don't come and go as CPUs come and
1249 * go. cache_chain_mutex is sufficient
1250 * protection here.
1251 */
1252 cachep->nodelists[node] = l3;
1253 }
1254
1255 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1256 cachep->nodelists[node]->free_limit =
1257 (1 + nr_cpus_node(node)) *
1258 cachep->batchcount + cachep->num;
1259 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1260 }
1261
1262 /*
1263 * Now we can go ahead with allocating the shared arrays and
1264 * array caches
1265 */
1266 list_for_each_entry(cachep, &cache_chain, next) {
1267 struct array_cache *nc;
1268 struct array_cache *shared = NULL;
1269 struct array_cache **alien = NULL;
1270
1271 nc = alloc_arraycache(node, cachep->limit,
1272 cachep->batchcount);
1273 if (!nc)
1274 goto bad;
1275 if (cachep->shared) {
1276 shared = alloc_arraycache(node,
1277 cachep->shared * cachep->batchcount,
1278 0xbaadf00d);
1279 if (!shared) {
1280 kfree(nc);
1281 goto bad;
1282 }
1283 }
1284 if (use_alien_caches) {
1285 alien = alloc_alien_cache(node, cachep->limit);
1286 if (!alien) {
1287 kfree(shared);
1288 kfree(nc);
1289 goto bad;
1290 }
1291 }
1292 cachep->array[cpu] = nc;
1293 l3 = cachep->nodelists[node];
1294 BUG_ON(!l3);
1295
1296 spin_lock_irq(&l3->list_lock);
1297 if (!l3->shared) {
1298 /*
1299 * We are serialised from CPU_DEAD or
1300 * CPU_UP_CANCELLED by the cpucontrol lock
1301 */
1302 l3->shared = shared;
1303 shared = NULL;
1304 }
1305 #ifdef CONFIG_NUMA
1306 if (!l3->alien) {
1307 l3->alien = alien;
1308 alien = NULL;
1309 }
1310 #endif
1311 spin_unlock_irq(&l3->list_lock);
1312 kfree(shared);
1313 free_alien_cache(alien);
1314 }
1315 return 0;
1316 bad:
1317 cpuup_canceled(cpu);
1318 return -ENOMEM;
1319 }
1320
1321 static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1322 unsigned long action, void *hcpu)
1323 {
1324 long cpu = (long)hcpu;
1325 int err = 0;
1326
1327 switch (action) {
1328 case CPU_UP_PREPARE:
1329 case CPU_UP_PREPARE_FROZEN:
1330 mutex_lock(&cache_chain_mutex);
1331 err = cpuup_prepare(cpu);
1332 mutex_unlock(&cache_chain_mutex);
1333 break;
1334 case CPU_ONLINE:
1335 case CPU_ONLINE_FROZEN:
1336 start_cpu_timer(cpu);
1337 break;
1338 #ifdef CONFIG_HOTPLUG_CPU
1339 case CPU_DOWN_PREPARE:
1340 case CPU_DOWN_PREPARE_FROZEN:
1341 /*
1342 * Shutdown cache reaper. Note that the cache_chain_mutex is
1343 * held so that if cache_reap() is invoked it cannot do
1344 * anything expensive but will only modify reap_work
1345 * and reschedule the timer.
1346 */
1347 cancel_rearming_delayed_work(&per_cpu(reap_work, cpu));
1348 /* Now the cache_reaper is guaranteed to be not running. */
1349 per_cpu(reap_work, cpu).work.func = NULL;
1350 break;
1351 case CPU_DOWN_FAILED:
1352 case CPU_DOWN_FAILED_FROZEN:
1353 start_cpu_timer(cpu);
1354 break;
1355 case CPU_DEAD:
1356 case CPU_DEAD_FROZEN:
1357 /*
1358 * Even if all the cpus of a node are down, we don't free the
1359 * kmem_list3 of any cache. This to avoid a race between
1360 * cpu_down, and a kmalloc allocation from another cpu for
1361 * memory from the node of the cpu going down. The list3
1362 * structure is usually allocated from kmem_cache_create() and
1363 * gets destroyed at kmem_cache_destroy().
1364 */
1365 /* fall through */
1366 #endif
1367 case CPU_UP_CANCELED:
1368 case CPU_UP_CANCELED_FROZEN:
1369 mutex_lock(&cache_chain_mutex);
1370 cpuup_canceled(cpu);
1371 mutex_unlock(&cache_chain_mutex);
1372 break;
1373 }
1374 return err ? NOTIFY_BAD : NOTIFY_OK;
1375 }
1376
1377 static struct notifier_block __cpuinitdata cpucache_notifier = {
1378 &cpuup_callback, NULL, 0
1379 };
1380
1381 /*
1382 * swap the static kmem_list3 with kmalloced memory
1383 */
1384 static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1385 int nodeid)
1386 {
1387 struct kmem_list3 *ptr;
1388
1389 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1390 BUG_ON(!ptr);
1391
1392 local_irq_disable();
1393 memcpy(ptr, list, sizeof(struct kmem_list3));
1394 /*
1395 * Do not assume that spinlocks can be initialized via memcpy:
1396 */
1397 spin_lock_init(&ptr->list_lock);
1398
1399 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1400 cachep->nodelists[nodeid] = ptr;
1401 local_irq_enable();
1402 }
1403
1404 /*
1405 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1406 * size of kmem_list3.
1407 */
1408 static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1409 {
1410 int node;
1411
1412 for_each_online_node(node) {
1413 cachep->nodelists[node] = &initkmem_list3[index + node];
1414 cachep->nodelists[node]->next_reap = jiffies +
1415 REAPTIMEOUT_LIST3 +
1416 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1417 }
1418 }
1419
1420 /*
1421 * Initialisation. Called after the page allocator have been initialised and
1422 * before smp_init().
1423 */
1424 void __init kmem_cache_init(void)
1425 {
1426 size_t left_over;
1427 struct cache_sizes *sizes;
1428 struct cache_names *names;
1429 int i;
1430 int order;
1431 int node;
1432
1433 if (num_possible_nodes() == 1) {
1434 use_alien_caches = 0;
1435 numa_platform = 0;
1436 }
1437
1438 for (i = 0; i < NUM_INIT_LISTS; i++) {
1439 kmem_list3_init(&initkmem_list3[i]);
1440 if (i < MAX_NUMNODES)
1441 cache_cache.nodelists[i] = NULL;
1442 }
1443 set_up_list3s(&cache_cache, CACHE_CACHE);
1444
1445 /*
1446 * Fragmentation resistance on low memory - only use bigger
1447 * page orders on machines with more than 32MB of memory.
1448 */
1449 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1450 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1451
1452 /* Bootstrap is tricky, because several objects are allocated
1453 * from caches that do not exist yet:
1454 * 1) initialize the cache_cache cache: it contains the struct
1455 * kmem_cache structures of all caches, except cache_cache itself:
1456 * cache_cache is statically allocated.
1457 * Initially an __init data area is used for the head array and the
1458 * kmem_list3 structures, it's replaced with a kmalloc allocated
1459 * array at the end of the bootstrap.
1460 * 2) Create the first kmalloc cache.
1461 * The struct kmem_cache for the new cache is allocated normally.
1462 * An __init data area is used for the head array.
1463 * 3) Create the remaining kmalloc caches, with minimally sized
1464 * head arrays.
1465 * 4) Replace the __init data head arrays for cache_cache and the first
1466 * kmalloc cache with kmalloc allocated arrays.
1467 * 5) Replace the __init data for kmem_list3 for cache_cache and
1468 * the other cache's with kmalloc allocated memory.
1469 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1470 */
1471
1472 node = numa_node_id();
1473
1474 /* 1) create the cache_cache */
1475 INIT_LIST_HEAD(&cache_chain);
1476 list_add(&cache_cache.next, &cache_chain);
1477 cache_cache.colour_off = cache_line_size();
1478 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1479 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
1480
1481 /*
1482 * struct kmem_cache size depends on nr_node_ids, which
1483 * can be less than MAX_NUMNODES.
1484 */
1485 cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
1486 nr_node_ids * sizeof(struct kmem_list3 *);
1487 #if DEBUG
1488 cache_cache.obj_size = cache_cache.buffer_size;
1489 #endif
1490 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1491 cache_line_size());
1492 cache_cache.reciprocal_buffer_size =
1493 reciprocal_value(cache_cache.buffer_size);
1494
1495 for (order = 0; order < MAX_ORDER; order++) {
1496 cache_estimate(order, cache_cache.buffer_size,
1497 cache_line_size(), 0, &left_over, &cache_cache.num);
1498 if (cache_cache.num)
1499 break;
1500 }
1501 BUG_ON(!cache_cache.num);
1502 cache_cache.gfporder = order;
1503 cache_cache.colour = left_over / cache_cache.colour_off;
1504 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1505 sizeof(struct slab), cache_line_size());
1506
1507 /* 2+3) create the kmalloc caches */
1508 sizes = malloc_sizes;
1509 names = cache_names;
1510
1511 /*
1512 * Initialize the caches that provide memory for the array cache and the
1513 * kmem_list3 structures first. Without this, further allocations will
1514 * bug.
1515 */
1516
1517 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1518 sizes[INDEX_AC].cs_size,
1519 ARCH_KMALLOC_MINALIGN,
1520 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1521 NULL);
1522
1523 if (INDEX_AC != INDEX_L3) {
1524 sizes[INDEX_L3].cs_cachep =
1525 kmem_cache_create(names[INDEX_L3].name,
1526 sizes[INDEX_L3].cs_size,
1527 ARCH_KMALLOC_MINALIGN,
1528 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1529 NULL);
1530 }
1531
1532 slab_early_init = 0;
1533
1534 while (sizes->cs_size != ULONG_MAX) {
1535 /*
1536 * For performance, all the general caches are L1 aligned.
1537 * This should be particularly beneficial on SMP boxes, as it
1538 * eliminates "false sharing".
1539 * Note for systems short on memory removing the alignment will
1540 * allow tighter packing of the smaller caches.
1541 */
1542 if (!sizes->cs_cachep) {
1543 sizes->cs_cachep = kmem_cache_create(names->name,
1544 sizes->cs_size,
1545 ARCH_KMALLOC_MINALIGN,
1546 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1547 NULL);
1548 }
1549 #ifdef CONFIG_ZONE_DMA
1550 sizes->cs_dmacachep = kmem_cache_create(
1551 names->name_dma,
1552 sizes->cs_size,
1553 ARCH_KMALLOC_MINALIGN,
1554 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1555 SLAB_PANIC,
1556 NULL);
1557 #endif
1558 sizes++;
1559 names++;
1560 }
1561 /* 4) Replace the bootstrap head arrays */
1562 {
1563 struct array_cache *ptr;
1564
1565 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1566
1567 local_irq_disable();
1568 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1569 memcpy(ptr, cpu_cache_get(&cache_cache),
1570 sizeof(struct arraycache_init));
1571 /*
1572 * Do not assume that spinlocks can be initialized via memcpy:
1573 */
1574 spin_lock_init(&ptr->lock);
1575
1576 cache_cache.array[smp_processor_id()] = ptr;
1577 local_irq_enable();
1578
1579 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1580
1581 local_irq_disable();
1582 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1583 != &initarray_generic.cache);
1584 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1585 sizeof(struct arraycache_init));
1586 /*
1587 * Do not assume that spinlocks can be initialized via memcpy:
1588 */
1589 spin_lock_init(&ptr->lock);
1590
1591 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1592 ptr;
1593 local_irq_enable();
1594 }
1595 /* 5) Replace the bootstrap kmem_list3's */
1596 {
1597 int nid;
1598
1599 for_each_online_node(nid) {
1600 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
1601
1602 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1603 &initkmem_list3[SIZE_AC + nid], nid);
1604
1605 if (INDEX_AC != INDEX_L3) {
1606 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1607 &initkmem_list3[SIZE_L3 + nid], nid);
1608 }
1609 }
1610 }
1611
1612 /* 6) resize the head arrays to their final sizes */
1613 {
1614 struct kmem_cache *cachep;
1615 mutex_lock(&cache_chain_mutex);
1616 list_for_each_entry(cachep, &cache_chain, next)
1617 if (enable_cpucache(cachep))
1618 BUG();
1619 mutex_unlock(&cache_chain_mutex);
1620 }
1621
1622 /* Annotate slab for lockdep -- annotate the malloc caches */
1623 init_lock_keys();
1624
1625
1626 /* Done! */
1627 g_cpucache_up = FULL;
1628
1629 /*
1630 * Register a cpu startup notifier callback that initializes
1631 * cpu_cache_get for all new cpus
1632 */
1633 register_cpu_notifier(&cpucache_notifier);
1634
1635 /*
1636 * The reap timers are started later, with a module init call: That part
1637 * of the kernel is not yet operational.
1638 */
1639 }
1640
1641 static int __init cpucache_init(void)
1642 {
1643 int cpu;
1644
1645 /*
1646 * Register the timers that return unneeded pages to the page allocator
1647 */
1648 for_each_online_cpu(cpu)
1649 start_cpu_timer(cpu);
1650 return 0;
1651 }
1652 __initcall(cpucache_init);
1653
1654 /*
1655 * Interface to system's page allocator. No need to hold the cache-lock.
1656 *
1657 * If we requested dmaable memory, we will get it. Even if we
1658 * did not request dmaable memory, we might get it, but that
1659 * would be relatively rare and ignorable.
1660 */
1661 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1662 {
1663 struct page *page;
1664 int nr_pages;
1665 int i;
1666
1667 #ifndef CONFIG_MMU
1668 /*
1669 * Nommu uses slab's for process anonymous memory allocations, and thus
1670 * requires __GFP_COMP to properly refcount higher order allocations
1671 */
1672 flags |= __GFP_COMP;
1673 #endif
1674
1675 flags |= cachep->gfpflags;
1676 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1677 flags |= __GFP_RECLAIMABLE;
1678
1679 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1680 if (!page)
1681 return NULL;
1682
1683 nr_pages = (1 << cachep->gfporder);
1684 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1685 add_zone_page_state(page_zone(page),
1686 NR_SLAB_RECLAIMABLE, nr_pages);
1687 else
1688 add_zone_page_state(page_zone(page),
1689 NR_SLAB_UNRECLAIMABLE, nr_pages);
1690 for (i = 0; i < nr_pages; i++)
1691 __SetPageSlab(page + i);
1692 return page_address(page);
1693 }
1694
1695 /*
1696 * Interface to system's page release.
1697 */
1698 static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1699 {
1700 unsigned long i = (1 << cachep->gfporder);
1701 struct page *page = virt_to_page(addr);
1702 const unsigned long nr_freed = i;
1703
1704 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1705 sub_zone_page_state(page_zone(page),
1706 NR_SLAB_RECLAIMABLE, nr_freed);
1707 else
1708 sub_zone_page_state(page_zone(page),
1709 NR_SLAB_UNRECLAIMABLE, nr_freed);
1710 while (i--) {
1711 BUG_ON(!PageSlab(page));
1712 __ClearPageSlab(page);
1713 page++;
1714 }
1715 if (current->reclaim_state)
1716 current->reclaim_state->reclaimed_slab += nr_freed;
1717 free_pages((unsigned long)addr, cachep->gfporder);
1718 }
1719
1720 static void kmem_rcu_free(struct rcu_head *head)
1721 {
1722 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1723 struct kmem_cache *cachep = slab_rcu->cachep;
1724
1725 kmem_freepages(cachep, slab_rcu->addr);
1726 if (OFF_SLAB(cachep))
1727 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1728 }
1729
1730 #if DEBUG
1731
1732 #ifdef CONFIG_DEBUG_PAGEALLOC
1733 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1734 unsigned long caller)
1735 {
1736 int size = obj_size(cachep);
1737
1738 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1739
1740 if (size < 5 * sizeof(unsigned long))
1741 return;
1742
1743 *addr++ = 0x12345678;
1744 *addr++ = caller;
1745 *addr++ = smp_processor_id();
1746 size -= 3 * sizeof(unsigned long);
1747 {
1748 unsigned long *sptr = &caller;
1749 unsigned long svalue;
1750
1751 while (!kstack_end(sptr)) {
1752 svalue = *sptr++;
1753 if (kernel_text_address(svalue)) {
1754 *addr++ = svalue;
1755 size -= sizeof(unsigned long);
1756 if (size <= sizeof(unsigned long))
1757 break;
1758 }
1759 }
1760
1761 }
1762 *addr++ = 0x87654321;
1763 }
1764 #endif
1765
1766 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1767 {
1768 int size = obj_size(cachep);
1769 addr = &((char *)addr)[obj_offset(cachep)];
1770
1771 memset(addr, val, size);
1772 *(unsigned char *)(addr + size - 1) = POISON_END;
1773 }
1774
1775 static void dump_line(char *data, int offset, int limit)
1776 {
1777 int i;
1778 unsigned char error = 0;
1779 int bad_count = 0;
1780
1781 printk(KERN_ERR "%03x:", offset);
1782 for (i = 0; i < limit; i++) {
1783 if (data[offset + i] != POISON_FREE) {
1784 error = data[offset + i];
1785 bad_count++;
1786 }
1787 printk(" %02x", (unsigned char)data[offset + i]);
1788 }
1789 printk("\n");
1790
1791 if (bad_count == 1) {
1792 error ^= POISON_FREE;
1793 if (!(error & (error - 1))) {
1794 printk(KERN_ERR "Single bit error detected. Probably "
1795 "bad RAM.\n");
1796 #ifdef CONFIG_X86
1797 printk(KERN_ERR "Run memtest86+ or a similar memory "
1798 "test tool.\n");
1799 #else
1800 printk(KERN_ERR "Run a memory test tool.\n");
1801 #endif
1802 }
1803 }
1804 }
1805 #endif
1806
1807 #if DEBUG
1808
1809 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1810 {
1811 int i, size;
1812 char *realobj;
1813
1814 if (cachep->flags & SLAB_RED_ZONE) {
1815 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1816 *dbg_redzone1(cachep, objp),
1817 *dbg_redzone2(cachep, objp));
1818 }
1819
1820 if (cachep->flags & SLAB_STORE_USER) {
1821 printk(KERN_ERR "Last user: [<%p>]",
1822 *dbg_userword(cachep, objp));
1823 print_symbol("(%s)",
1824 (unsigned long)*dbg_userword(cachep, objp));
1825 printk("\n");
1826 }
1827 realobj = (char *)objp + obj_offset(cachep);
1828 size = obj_size(cachep);
1829 for (i = 0; i < size && lines; i += 16, lines--) {
1830 int limit;
1831 limit = 16;
1832 if (i + limit > size)
1833 limit = size - i;
1834 dump_line(realobj, i, limit);
1835 }
1836 }
1837
1838 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1839 {
1840 char *realobj;
1841 int size, i;
1842 int lines = 0;
1843
1844 realobj = (char *)objp + obj_offset(cachep);
1845 size = obj_size(cachep);
1846
1847 for (i = 0; i < size; i++) {
1848 char exp = POISON_FREE;
1849 if (i == size - 1)
1850 exp = POISON_END;
1851 if (realobj[i] != exp) {
1852 int limit;
1853 /* Mismatch ! */
1854 /* Print header */
1855 if (lines == 0) {
1856 printk(KERN_ERR
1857 "Slab corruption: %s start=%p, len=%d\n",
1858 cachep->name, realobj, size);
1859 print_objinfo(cachep, objp, 0);
1860 }
1861 /* Hexdump the affected line */
1862 i = (i / 16) * 16;
1863 limit = 16;
1864 if (i + limit > size)
1865 limit = size - i;
1866 dump_line(realobj, i, limit);
1867 i += 16;
1868 lines++;
1869 /* Limit to 5 lines */
1870 if (lines > 5)
1871 break;
1872 }
1873 }
1874 if (lines != 0) {
1875 /* Print some data about the neighboring objects, if they
1876 * exist:
1877 */
1878 struct slab *slabp = virt_to_slab(objp);
1879 unsigned int objnr;
1880
1881 objnr = obj_to_index(cachep, slabp, objp);
1882 if (objnr) {
1883 objp = index_to_obj(cachep, slabp, objnr - 1);
1884 realobj = (char *)objp + obj_offset(cachep);
1885 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1886 realobj, size);
1887 print_objinfo(cachep, objp, 2);
1888 }
1889 if (objnr + 1 < cachep->num) {
1890 objp = index_to_obj(cachep, slabp, objnr + 1);
1891 realobj = (char *)objp + obj_offset(cachep);
1892 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1893 realobj, size);
1894 print_objinfo(cachep, objp, 2);
1895 }
1896 }
1897 }
1898 #endif
1899
1900 #if DEBUG
1901 /**
1902 * slab_destroy_objs - destroy a slab and its objects
1903 * @cachep: cache pointer being destroyed
1904 * @slabp: slab pointer being destroyed
1905 *
1906 * Call the registered destructor for each object in a slab that is being
1907 * destroyed.
1908 */
1909 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1910 {
1911 int i;
1912 for (i = 0; i < cachep->num; i++) {
1913 void *objp = index_to_obj(cachep, slabp, i);
1914
1915 if (cachep->flags & SLAB_POISON) {
1916 #ifdef CONFIG_DEBUG_PAGEALLOC
1917 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1918 OFF_SLAB(cachep))
1919 kernel_map_pages(virt_to_page(objp),
1920 cachep->buffer_size / PAGE_SIZE, 1);
1921 else
1922 check_poison_obj(cachep, objp);
1923 #else
1924 check_poison_obj(cachep, objp);
1925 #endif
1926 }
1927 if (cachep->flags & SLAB_RED_ZONE) {
1928 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1929 slab_error(cachep, "start of a freed object "
1930 "was overwritten");
1931 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1932 slab_error(cachep, "end of a freed object "
1933 "was overwritten");
1934 }
1935 }
1936 }
1937 #else
1938 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1939 {
1940 }
1941 #endif
1942
1943 /**
1944 * slab_destroy - destroy and release all objects in a slab
1945 * @cachep: cache pointer being destroyed
1946 * @slabp: slab pointer being destroyed
1947 *
1948 * Destroy all the objs in a slab, and release the mem back to the system.
1949 * Before calling the slab must have been unlinked from the cache. The
1950 * cache-lock is not held/needed.
1951 */
1952 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1953 {
1954 void *addr = slabp->s_mem - slabp->colouroff;
1955
1956 slab_destroy_objs(cachep, slabp);
1957 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1958 struct slab_rcu *slab_rcu;
1959
1960 slab_rcu = (struct slab_rcu *)slabp;
1961 slab_rcu->cachep = cachep;
1962 slab_rcu->addr = addr;
1963 call_rcu(&slab_rcu->head, kmem_rcu_free);
1964 } else {
1965 kmem_freepages(cachep, addr);
1966 if (OFF_SLAB(cachep))
1967 kmem_cache_free(cachep->slabp_cache, slabp);
1968 }
1969 }
1970
1971 static void __kmem_cache_destroy(struct kmem_cache *cachep)
1972 {
1973 int i;
1974 struct kmem_list3 *l3;
1975
1976 for_each_online_cpu(i)
1977 kfree(cachep->array[i]);
1978
1979 /* NUMA: free the list3 structures */
1980 for_each_online_node(i) {
1981 l3 = cachep->nodelists[i];
1982 if (l3) {
1983 kfree(l3->shared);
1984 free_alien_cache(l3->alien);
1985 kfree(l3);
1986 }
1987 }
1988 kmem_cache_free(&cache_cache, cachep);
1989 }
1990
1991
1992 /**
1993 * calculate_slab_order - calculate size (page order) of slabs
1994 * @cachep: pointer to the cache that is being created
1995 * @size: size of objects to be created in this cache.
1996 * @align: required alignment for the objects.
1997 * @flags: slab allocation flags
1998 *
1999 * Also calculates the number of objects per slab.
2000 *
2001 * This could be made much more intelligent. For now, try to avoid using
2002 * high order pages for slabs. When the gfp() functions are more friendly
2003 * towards high-order requests, this should be changed.
2004 */
2005 static size_t calculate_slab_order(struct kmem_cache *cachep,
2006 size_t size, size_t align, unsigned long flags)
2007 {
2008 unsigned long offslab_limit;
2009 size_t left_over = 0;
2010 int gfporder;
2011
2012 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2013 unsigned int num;
2014 size_t remainder;
2015
2016 cache_estimate(gfporder, size, align, flags, &remainder, &num);
2017 if (!num)
2018 continue;
2019
2020 if (flags & CFLGS_OFF_SLAB) {
2021 /*
2022 * Max number of objs-per-slab for caches which
2023 * use off-slab slabs. Needed to avoid a possible
2024 * looping condition in cache_grow().
2025 */
2026 offslab_limit = size - sizeof(struct slab);
2027 offslab_limit /= sizeof(kmem_bufctl_t);
2028
2029 if (num > offslab_limit)
2030 break;
2031 }
2032
2033 /* Found something acceptable - save it away */
2034 cachep->num = num;
2035 cachep->gfporder = gfporder;
2036 left_over = remainder;
2037
2038 /*
2039 * A VFS-reclaimable slab tends to have most allocations
2040 * as GFP_NOFS and we really don't want to have to be allocating
2041 * higher-order pages when we are unable to shrink dcache.
2042 */
2043 if (flags & SLAB_RECLAIM_ACCOUNT)
2044 break;
2045
2046 /*
2047 * Large number of objects is good, but very large slabs are
2048 * currently bad for the gfp()s.
2049 */
2050 if (gfporder >= slab_break_gfp_order)
2051 break;
2052
2053 /*
2054 * Acceptable internal fragmentation?
2055 */
2056 if (left_over * 8 <= (PAGE_SIZE << gfporder))
2057 break;
2058 }
2059 return left_over;
2060 }
2061
2062 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep)
2063 {
2064 if (g_cpucache_up == FULL)
2065 return enable_cpucache(cachep);
2066
2067 if (g_cpucache_up == NONE) {
2068 /*
2069 * Note: the first kmem_cache_create must create the cache
2070 * that's used by kmalloc(24), otherwise the creation of
2071 * further caches will BUG().
2072 */
2073 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2074
2075 /*
2076 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2077 * the first cache, then we need to set up all its list3s,
2078 * otherwise the creation of further caches will BUG().
2079 */
2080 set_up_list3s(cachep, SIZE_AC);
2081 if (INDEX_AC == INDEX_L3)
2082 g_cpucache_up = PARTIAL_L3;
2083 else
2084 g_cpucache_up = PARTIAL_AC;
2085 } else {
2086 cachep->array[smp_processor_id()] =
2087 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
2088
2089 if (g_cpucache_up == PARTIAL_AC) {
2090 set_up_list3s(cachep, SIZE_L3);
2091 g_cpucache_up = PARTIAL_L3;
2092 } else {
2093 int node;
2094 for_each_online_node(node) {
2095 cachep->nodelists[node] =
2096 kmalloc_node(sizeof(struct kmem_list3),
2097 GFP_KERNEL, node);
2098 BUG_ON(!cachep->nodelists[node]);
2099 kmem_list3_init(cachep->nodelists[node]);
2100 }
2101 }
2102 }
2103 cachep->nodelists[numa_node_id()]->next_reap =
2104 jiffies + REAPTIMEOUT_LIST3 +
2105 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2106
2107 cpu_cache_get(cachep)->avail = 0;
2108 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2109 cpu_cache_get(cachep)->batchcount = 1;
2110 cpu_cache_get(cachep)->touched = 0;
2111 cachep->batchcount = 1;
2112 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2113 return 0;
2114 }
2115
2116 /**
2117 * kmem_cache_create - Create a cache.
2118 * @name: A string which is used in /proc/slabinfo to identify this cache.
2119 * @size: The size of objects to be created in this cache.
2120 * @align: The required alignment for the objects.
2121 * @flags: SLAB flags
2122 * @ctor: A constructor for the objects.
2123 *
2124 * Returns a ptr to the cache on success, NULL on failure.
2125 * Cannot be called within a int, but can be interrupted.
2126 * The @ctor is run when new pages are allocated by the cache.
2127 *
2128 * @name must be valid until the cache is destroyed. This implies that
2129 * the module calling this has to destroy the cache before getting unloaded.
2130 *
2131 * The flags are
2132 *
2133 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2134 * to catch references to uninitialised memory.
2135 *
2136 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2137 * for buffer overruns.
2138 *
2139 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2140 * cacheline. This can be beneficial if you're counting cycles as closely
2141 * as davem.
2142 */
2143 struct kmem_cache *
2144 kmem_cache_create (const char *name, size_t size, size_t align,
2145 unsigned long flags,
2146 void (*ctor)(struct kmem_cache *, void *))
2147 {
2148 size_t left_over, slab_size, ralign;
2149 struct kmem_cache *cachep = NULL, *pc;
2150
2151 /*
2152 * Sanity checks... these are all serious usage bugs.
2153 */
2154 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2155 size > KMALLOC_MAX_SIZE) {
2156 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
2157 name);
2158 BUG();
2159 }
2160
2161 /*
2162 * We use cache_chain_mutex to ensure a consistent view of
2163 * cpu_online_map as well. Please see cpuup_callback
2164 */
2165 get_online_cpus();
2166 mutex_lock(&cache_chain_mutex);
2167
2168 list_for_each_entry(pc, &cache_chain, next) {
2169 char tmp;
2170 int res;
2171
2172 /*
2173 * This happens when the module gets unloaded and doesn't
2174 * destroy its slab cache and no-one else reuses the vmalloc
2175 * area of the module. Print a warning.
2176 */
2177 res = probe_kernel_address(pc->name, tmp);
2178 if (res) {
2179 printk(KERN_ERR
2180 "SLAB: cache with size %d has lost its name\n",
2181 pc->buffer_size);
2182 continue;
2183 }
2184
2185 if (!strcmp(pc->name, name)) {
2186 printk(KERN_ERR
2187 "kmem_cache_create: duplicate cache %s\n", name);
2188 dump_stack();
2189 goto oops;
2190 }
2191 }
2192
2193 #if DEBUG
2194 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
2195 #if FORCED_DEBUG
2196 /*
2197 * Enable redzoning and last user accounting, except for caches with
2198 * large objects, if the increased size would increase the object size
2199 * above the next power of two: caches with object sizes just above a
2200 * power of two have a significant amount of internal fragmentation.
2201 */
2202 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2203 2 * sizeof(unsigned long long)))
2204 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2205 if (!(flags & SLAB_DESTROY_BY_RCU))
2206 flags |= SLAB_POISON;
2207 #endif
2208 if (flags & SLAB_DESTROY_BY_RCU)
2209 BUG_ON(flags & SLAB_POISON);
2210 #endif
2211 /*
2212 * Always checks flags, a caller might be expecting debug support which
2213 * isn't available.
2214 */
2215 BUG_ON(flags & ~CREATE_MASK);
2216
2217 /*
2218 * Check that size is in terms of words. This is needed to avoid
2219 * unaligned accesses for some archs when redzoning is used, and makes
2220 * sure any on-slab bufctl's are also correctly aligned.
2221 */
2222 if (size & (BYTES_PER_WORD - 1)) {
2223 size += (BYTES_PER_WORD - 1);
2224 size &= ~(BYTES_PER_WORD - 1);
2225 }
2226
2227 /* calculate the final buffer alignment: */
2228
2229 /* 1) arch recommendation: can be overridden for debug */
2230 if (flags & SLAB_HWCACHE_ALIGN) {
2231 /*
2232 * Default alignment: as specified by the arch code. Except if
2233 * an object is really small, then squeeze multiple objects into
2234 * one cacheline.
2235 */
2236 ralign = cache_line_size();
2237 while (size <= ralign / 2)
2238 ralign /= 2;
2239 } else {
2240 ralign = BYTES_PER_WORD;
2241 }
2242
2243 /*
2244 * Redzoning and user store require word alignment or possibly larger.
2245 * Note this will be overridden by architecture or caller mandated
2246 * alignment if either is greater than BYTES_PER_WORD.
2247 */
2248 if (flags & SLAB_STORE_USER)
2249 ralign = BYTES_PER_WORD;
2250
2251 if (flags & SLAB_RED_ZONE) {
2252 ralign = REDZONE_ALIGN;
2253 /* If redzoning, ensure that the second redzone is suitably
2254 * aligned, by adjusting the object size accordingly. */
2255 size += REDZONE_ALIGN - 1;
2256 size &= ~(REDZONE_ALIGN - 1);
2257 }
2258
2259 /* 2) arch mandated alignment */
2260 if (ralign < ARCH_SLAB_MINALIGN) {
2261 ralign = ARCH_SLAB_MINALIGN;
2262 }
2263 /* 3) caller mandated alignment */
2264 if (ralign < align) {
2265 ralign = align;
2266 }
2267 /* disable debug if necessary */
2268 if (ralign > __alignof__(unsigned long long))
2269 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2270 /*
2271 * 4) Store it.
2272 */
2273 align = ralign;
2274
2275 /* Get cache's description obj. */
2276 cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
2277 if (!cachep)
2278 goto oops;
2279
2280 #if DEBUG
2281 cachep->obj_size = size;
2282
2283 /*
2284 * Both debugging options require word-alignment which is calculated
2285 * into align above.
2286 */
2287 if (flags & SLAB_RED_ZONE) {
2288 /* add space for red zone words */
2289 cachep->obj_offset += sizeof(unsigned long long);
2290 size += 2 * sizeof(unsigned long long);
2291 }
2292 if (flags & SLAB_STORE_USER) {
2293 /* user store requires one word storage behind the end of
2294 * the real object. But if the second red zone needs to be
2295 * aligned to 64 bits, we must allow that much space.
2296 */
2297 if (flags & SLAB_RED_ZONE)
2298 size += REDZONE_ALIGN;
2299 else
2300 size += BYTES_PER_WORD;
2301 }
2302 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2303 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2304 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2305 cachep->obj_offset += PAGE_SIZE - size;
2306 size = PAGE_SIZE;
2307 }
2308 #endif
2309 #endif
2310
2311 /*
2312 * Determine if the slab management is 'on' or 'off' slab.
2313 * (bootstrapping cannot cope with offslab caches so don't do
2314 * it too early on.)
2315 */
2316 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
2317 /*
2318 * Size is large, assume best to place the slab management obj
2319 * off-slab (should allow better packing of objs).
2320 */
2321 flags |= CFLGS_OFF_SLAB;
2322
2323 size = ALIGN(size, align);
2324
2325 left_over = calculate_slab_order(cachep, size, align, flags);
2326
2327 if (!cachep->num) {
2328 printk(KERN_ERR
2329 "kmem_cache_create: couldn't create cache %s.\n", name);
2330 kmem_cache_free(&cache_cache, cachep);
2331 cachep = NULL;
2332 goto oops;
2333 }
2334 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2335 + sizeof(struct slab), align);
2336
2337 /*
2338 * If the slab has been placed off-slab, and we have enough space then
2339 * move it on-slab. This is at the expense of any extra colouring.
2340 */
2341 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2342 flags &= ~CFLGS_OFF_SLAB;
2343 left_over -= slab_size;
2344 }
2345
2346 if (flags & CFLGS_OFF_SLAB) {
2347 /* really off slab. No need for manual alignment */
2348 slab_size =
2349 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2350 }
2351
2352 cachep->colour_off = cache_line_size();
2353 /* Offset must be a multiple of the alignment. */
2354 if (cachep->colour_off < align)
2355 cachep->colour_off = align;
2356 cachep->colour = left_over / cachep->colour_off;
2357 cachep->slab_size = slab_size;
2358 cachep->flags = flags;
2359 cachep->gfpflags = 0;
2360 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2361 cachep->gfpflags |= GFP_DMA;
2362 cachep->buffer_size = size;
2363 cachep->reciprocal_buffer_size = reciprocal_value(size);
2364
2365 if (flags & CFLGS_OFF_SLAB) {
2366 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2367 /*
2368 * This is a possibility for one of the malloc_sizes caches.
2369 * But since we go off slab only for object size greater than
2370 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2371 * this should not happen at all.
2372 * But leave a BUG_ON for some lucky dude.
2373 */
2374 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2375 }
2376 cachep->ctor = ctor;
2377 cachep->name = name;
2378
2379 if (setup_cpu_cache(cachep)) {
2380 __kmem_cache_destroy(cachep);
2381 cachep = NULL;
2382 goto oops;
2383 }
2384
2385 /* cache setup completed, link it into the list */
2386 list_add(&cachep->next, &cache_chain);
2387 oops:
2388 if (!cachep && (flags & SLAB_PANIC))
2389 panic("kmem_cache_create(): failed to create slab `%s'\n",
2390 name);
2391 mutex_unlock(&cache_chain_mutex);
2392 put_online_cpus();
2393 return cachep;
2394 }
2395 EXPORT_SYMBOL(kmem_cache_create);
2396
2397 #if DEBUG
2398 static void check_irq_off(void)
2399 {
2400 BUG_ON(!irqs_disabled());
2401 }
2402
2403 static void check_irq_on(void)
2404 {
2405 BUG_ON(irqs_disabled());
2406 }
2407
2408 static void check_spinlock_acquired(struct kmem_cache *cachep)
2409 {
2410 #ifdef CONFIG_SMP
2411 check_irq_off();
2412 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
2413 #endif
2414 }
2415
2416 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2417 {
2418 #ifdef CONFIG_SMP
2419 check_irq_off();
2420 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2421 #endif
2422 }
2423
2424 #else
2425 #define check_irq_off() do { } while(0)
2426 #define check_irq_on() do { } while(0)
2427 #define check_spinlock_acquired(x) do { } while(0)
2428 #define check_spinlock_acquired_node(x, y) do { } while(0)
2429 #endif
2430
2431 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2432 struct array_cache *ac,
2433 int force, int node);
2434
2435 static void do_drain(void *arg)
2436 {
2437 struct kmem_cache *cachep = arg;
2438 struct array_cache *ac;
2439 int node = numa_node_id();
2440
2441 check_irq_off();
2442 ac = cpu_cache_get(cachep);
2443 spin_lock(&cachep->nodelists[node]->list_lock);
2444 free_block(cachep, ac->entry, ac->avail, node);
2445 spin_unlock(&cachep->nodelists[node]->list_lock);
2446 ac->avail = 0;
2447 }
2448
2449 static void drain_cpu_caches(struct kmem_cache *cachep)
2450 {
2451 struct kmem_list3 *l3;
2452 int node;
2453
2454 on_each_cpu(do_drain, cachep, 1, 1);
2455 check_irq_on();
2456 for_each_online_node(node) {
2457 l3 = cachep->nodelists[node];
2458 if (l3 && l3->alien)
2459 drain_alien_cache(cachep, l3->alien);
2460 }
2461
2462 for_each_online_node(node) {
2463 l3 = cachep->nodelists[node];
2464 if (l3)
2465 drain_array(cachep, l3, l3->shared, 1, node);
2466 }
2467 }
2468
2469 /*
2470 * Remove slabs from the list of free slabs.
2471 * Specify the number of slabs to drain in tofree.
2472 *
2473 * Returns the actual number of slabs released.
2474 */
2475 static int drain_freelist(struct kmem_cache *cache,
2476 struct kmem_list3 *l3, int tofree)
2477 {
2478 struct list_head *p;
2479 int nr_freed;
2480 struct slab *slabp;
2481
2482 nr_freed = 0;
2483 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
2484
2485 spin_lock_irq(&l3->list_lock);
2486 p = l3->slabs_free.prev;
2487 if (p == &l3->slabs_free) {
2488 spin_unlock_irq(&l3->list_lock);
2489 goto out;
2490 }
2491
2492 slabp = list_entry(p, struct slab, list);
2493 #if DEBUG
2494 BUG_ON(slabp->inuse);
2495 #endif
2496 list_del(&slabp->list);
2497 /*
2498 * Safe to drop the lock. The slab is no longer linked
2499 * to the cache.
2500 */
2501 l3->free_objects -= cache->num;
2502 spin_unlock_irq(&l3->list_lock);
2503 slab_destroy(cache, slabp);
2504 nr_freed++;
2505 }
2506 out:
2507 return nr_freed;
2508 }
2509
2510 /* Called with cache_chain_mutex held to protect against cpu hotplug */
2511 static int __cache_shrink(struct kmem_cache *cachep)
2512 {
2513 int ret = 0, i = 0;
2514 struct kmem_list3 *l3;
2515
2516 drain_cpu_caches(cachep);
2517
2518 check_irq_on();
2519 for_each_online_node(i) {
2520 l3 = cachep->nodelists[i];
2521 if (!l3)
2522 continue;
2523
2524 drain_freelist(cachep, l3, l3->free_objects);
2525
2526 ret += !list_empty(&l3->slabs_full) ||
2527 !list_empty(&l3->slabs_partial);
2528 }
2529 return (ret ? 1 : 0);
2530 }
2531
2532 /**
2533 * kmem_cache_shrink - Shrink a cache.
2534 * @cachep: The cache to shrink.
2535 *
2536 * Releases as many slabs as possible for a cache.
2537 * To help debugging, a zero exit status indicates all slabs were released.
2538 */
2539 int kmem_cache_shrink(struct kmem_cache *cachep)
2540 {
2541 int ret;
2542 BUG_ON(!cachep || in_interrupt());
2543
2544 get_online_cpus();
2545 mutex_lock(&cache_chain_mutex);
2546 ret = __cache_shrink(cachep);
2547 mutex_unlock(&cache_chain_mutex);
2548 put_online_cpus();
2549 return ret;
2550 }
2551 EXPORT_SYMBOL(kmem_cache_shrink);
2552
2553 /**
2554 * kmem_cache_destroy - delete a cache
2555 * @cachep: the cache to destroy
2556 *
2557 * Remove a &struct kmem_cache object from the slab cache.
2558 *
2559 * It is expected this function will be called by a module when it is
2560 * unloaded. This will remove the cache completely, and avoid a duplicate
2561 * cache being allocated each time a module is loaded and unloaded, if the
2562 * module doesn't have persistent in-kernel storage across loads and unloads.
2563 *
2564 * The cache must be empty before calling this function.
2565 *
2566 * The caller must guarantee that noone will allocate memory from the cache
2567 * during the kmem_cache_destroy().
2568 */
2569 void kmem_cache_destroy(struct kmem_cache *cachep)
2570 {
2571 BUG_ON(!cachep || in_interrupt());
2572
2573 /* Find the cache in the chain of caches. */
2574 get_online_cpus();
2575 mutex_lock(&cache_chain_mutex);
2576 /*
2577 * the chain is never empty, cache_cache is never destroyed
2578 */
2579 list_del(&cachep->next);
2580 if (__cache_shrink(cachep)) {
2581 slab_error(cachep, "Can't free all objects");
2582 list_add(&cachep->next, &cache_chain);
2583 mutex_unlock(&cache_chain_mutex);
2584 put_online_cpus();
2585 return;
2586 }
2587
2588 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2589 synchronize_rcu();
2590
2591 __kmem_cache_destroy(cachep);
2592 mutex_unlock(&cache_chain_mutex);
2593 put_online_cpus();
2594 }
2595 EXPORT_SYMBOL(kmem_cache_destroy);
2596
2597 /*
2598 * Get the memory for a slab management obj.
2599 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2600 * always come from malloc_sizes caches. The slab descriptor cannot
2601 * come from the same cache which is getting created because,
2602 * when we are searching for an appropriate cache for these
2603 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2604 * If we are creating a malloc_sizes cache here it would not be visible to
2605 * kmem_find_general_cachep till the initialization is complete.
2606 * Hence we cannot have slabp_cache same as the original cache.
2607 */
2608 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2609 int colour_off, gfp_t local_flags,
2610 int nodeid)
2611 {
2612 struct slab *slabp;
2613
2614 if (OFF_SLAB(cachep)) {
2615 /* Slab management obj is off-slab. */
2616 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2617 local_flags & ~GFP_THISNODE, nodeid);
2618 if (!slabp)
2619 return NULL;
2620 } else {
2621 slabp = objp + colour_off;
2622 colour_off += cachep->slab_size;
2623 }
2624 slabp->inuse = 0;
2625 slabp->colouroff = colour_off;
2626 slabp->s_mem = objp + colour_off;
2627 slabp->nodeid = nodeid;
2628 slabp->free = 0;
2629 return slabp;
2630 }
2631
2632 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2633 {
2634 return (kmem_bufctl_t *) (slabp + 1);
2635 }
2636
2637 static void cache_init_objs(struct kmem_cache *cachep,
2638 struct slab *slabp)
2639 {
2640 int i;
2641
2642 for (i = 0; i < cachep->num; i++) {
2643 void *objp = index_to_obj(cachep, slabp, i);
2644 #if DEBUG
2645 /* need to poison the objs? */
2646 if (cachep->flags & SLAB_POISON)
2647 poison_obj(cachep, objp, POISON_FREE);
2648 if (cachep->flags & SLAB_STORE_USER)
2649 *dbg_userword(cachep, objp) = NULL;
2650
2651 if (cachep->flags & SLAB_RED_ZONE) {
2652 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2653 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2654 }
2655 /*
2656 * Constructors are not allowed to allocate memory from the same
2657 * cache which they are a constructor for. Otherwise, deadlock.
2658 * They must also be threaded.
2659 */
2660 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2661 cachep->ctor(cachep, objp + obj_offset(cachep));
2662
2663 if (cachep->flags & SLAB_RED_ZONE) {
2664 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2665 slab_error(cachep, "constructor overwrote the"
2666 " end of an object");
2667 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2668 slab_error(cachep, "constructor overwrote the"
2669 " start of an object");
2670 }
2671 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2672 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2673 kernel_map_pages(virt_to_page(objp),
2674 cachep->buffer_size / PAGE_SIZE, 0);
2675 #else
2676 if (cachep->ctor)
2677 cachep->ctor(cachep, objp);
2678 #endif
2679 slab_bufctl(slabp)[i] = i + 1;
2680 }
2681 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2682 }
2683
2684 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2685 {
2686 if (CONFIG_ZONE_DMA_FLAG) {
2687 if (flags & GFP_DMA)
2688 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2689 else
2690 BUG_ON(cachep->gfpflags & GFP_DMA);
2691 }
2692 }
2693
2694 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2695 int nodeid)
2696 {
2697 void *objp = index_to_obj(cachep, slabp, slabp->free);
2698 kmem_bufctl_t next;
2699
2700 slabp->inuse++;
2701 next = slab_bufctl(slabp)[slabp->free];
2702 #if DEBUG
2703 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2704 WARN_ON(slabp->nodeid != nodeid);
2705 #endif
2706 slabp->free = next;
2707
2708 return objp;
2709 }
2710
2711 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2712 void *objp, int nodeid)
2713 {
2714 unsigned int objnr = obj_to_index(cachep, slabp, objp);
2715
2716 #if DEBUG
2717 /* Verify that the slab belongs to the intended node */
2718 WARN_ON(slabp->nodeid != nodeid);
2719
2720 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2721 printk(KERN_ERR "slab: double free detected in cache "
2722 "'%s', objp %p\n", cachep->name, objp);
2723 BUG();
2724 }
2725 #endif
2726 slab_bufctl(slabp)[objnr] = slabp->free;
2727 slabp->free = objnr;
2728 slabp->inuse--;
2729 }
2730
2731 /*
2732 * Map pages beginning at addr to the given cache and slab. This is required
2733 * for the slab allocator to be able to lookup the cache and slab of a
2734 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2735 */
2736 static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2737 void *addr)
2738 {
2739 int nr_pages;
2740 struct page *page;
2741
2742 page = virt_to_page(addr);
2743
2744 nr_pages = 1;
2745 if (likely(!PageCompound(page)))
2746 nr_pages <<= cache->gfporder;
2747
2748 do {
2749 page_set_cache(page, cache);
2750 page_set_slab(page, slab);
2751 page++;
2752 } while (--nr_pages);
2753 }
2754
2755 /*
2756 * Grow (by 1) the number of slabs within a cache. This is called by
2757 * kmem_cache_alloc() when there are no active objs left in a cache.
2758 */
2759 static int cache_grow(struct kmem_cache *cachep,
2760 gfp_t flags, int nodeid, void *objp)
2761 {
2762 struct slab *slabp;
2763 size_t offset;
2764 gfp_t local_flags;
2765 struct kmem_list3 *l3;
2766
2767 /*
2768 * Be lazy and only check for valid flags here, keeping it out of the
2769 * critical path in kmem_cache_alloc().
2770 */
2771 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2772 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2773
2774 /* Take the l3 list lock to change the colour_next on this node */
2775 check_irq_off();
2776 l3 = cachep->nodelists[nodeid];
2777 spin_lock(&l3->list_lock);
2778
2779 /* Get colour for the slab, and cal the next value. */
2780 offset = l3->colour_next;
2781 l3->colour_next++;
2782 if (l3->colour_next >= cachep->colour)
2783 l3->colour_next = 0;
2784 spin_unlock(&l3->list_lock);
2785
2786 offset *= cachep->colour_off;
2787
2788 if (local_flags & __GFP_WAIT)
2789 local_irq_enable();
2790
2791 /*
2792 * The test for missing atomic flag is performed here, rather than
2793 * the more obvious place, simply to reduce the critical path length
2794 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2795 * will eventually be caught here (where it matters).
2796 */
2797 kmem_flagcheck(cachep, flags);
2798
2799 /*
2800 * Get mem for the objs. Attempt to allocate a physical page from
2801 * 'nodeid'.
2802 */
2803 if (!objp)
2804 objp = kmem_getpages(cachep, local_flags, nodeid);
2805 if (!objp)
2806 goto failed;
2807
2808 /* Get slab management. */
2809 slabp = alloc_slabmgmt(cachep, objp, offset,
2810 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2811 if (!slabp)
2812 goto opps1;
2813
2814 slab_map_pages(cachep, slabp, objp);
2815
2816 cache_init_objs(cachep, slabp);
2817
2818 if (local_flags & __GFP_WAIT)
2819 local_irq_disable();
2820 check_irq_off();
2821 spin_lock(&l3->list_lock);
2822
2823 /* Make slab active. */
2824 list_add_tail(&slabp->list, &(l3->slabs_free));
2825 STATS_INC_GROWN(cachep);
2826 l3->free_objects += cachep->num;
2827 spin_unlock(&l3->list_lock);
2828 return 1;
2829 opps1:
2830 kmem_freepages(cachep, objp);
2831 failed:
2832 if (local_flags & __GFP_WAIT)
2833 local_irq_disable();
2834 return 0;
2835 }
2836
2837 #if DEBUG
2838
2839 /*
2840 * Perform extra freeing checks:
2841 * - detect bad pointers.
2842 * - POISON/RED_ZONE checking
2843 */
2844 static void kfree_debugcheck(const void *objp)
2845 {
2846 if (!virt_addr_valid(objp)) {
2847 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2848 (unsigned long)objp);
2849 BUG();
2850 }
2851 }
2852
2853 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2854 {
2855 unsigned long long redzone1, redzone2;
2856
2857 redzone1 = *dbg_redzone1(cache, obj);
2858 redzone2 = *dbg_redzone2(cache, obj);
2859
2860 /*
2861 * Redzone is ok.
2862 */
2863 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2864 return;
2865
2866 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2867 slab_error(cache, "double free detected");
2868 else
2869 slab_error(cache, "memory outside object was overwritten");
2870
2871 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2872 obj, redzone1, redzone2);
2873 }
2874
2875 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2876 void *caller)
2877 {
2878 struct page *page;
2879 unsigned int objnr;
2880 struct slab *slabp;
2881
2882 BUG_ON(virt_to_cache(objp) != cachep);
2883
2884 objp -= obj_offset(cachep);
2885 kfree_debugcheck(objp);
2886 page = virt_to_head_page(objp);
2887
2888 slabp = page_get_slab(page);
2889
2890 if (cachep->flags & SLAB_RED_ZONE) {
2891 verify_redzone_free(cachep, objp);
2892 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2893 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2894 }
2895 if (cachep->flags & SLAB_STORE_USER)
2896 *dbg_userword(cachep, objp) = caller;
2897
2898 objnr = obj_to_index(cachep, slabp, objp);
2899
2900 BUG_ON(objnr >= cachep->num);
2901 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2902
2903 #ifdef CONFIG_DEBUG_SLAB_LEAK
2904 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2905 #endif
2906 if (cachep->flags & SLAB_POISON) {
2907 #ifdef CONFIG_DEBUG_PAGEALLOC
2908 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2909 store_stackinfo(cachep, objp, (unsigned long)caller);
2910 kernel_map_pages(virt_to_page(objp),
2911 cachep->buffer_size / PAGE_SIZE, 0);
2912 } else {
2913 poison_obj(cachep, objp, POISON_FREE);
2914 }
2915 #else
2916 poison_obj(cachep, objp, POISON_FREE);
2917 #endif
2918 }
2919 return objp;
2920 }
2921
2922 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2923 {
2924 kmem_bufctl_t i;
2925 int entries = 0;
2926
2927 /* Check slab's freelist to see if this obj is there. */
2928 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2929 entries++;
2930 if (entries > cachep->num || i >= cachep->num)
2931 goto bad;
2932 }
2933 if (entries != cachep->num - slabp->inuse) {
2934 bad:
2935 printk(KERN_ERR "slab: Internal list corruption detected in "
2936 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2937 cachep->name, cachep->num, slabp, slabp->inuse);
2938 for (i = 0;
2939 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
2940 i++) {
2941 if (i % 16 == 0)
2942 printk("\n%03x:", i);
2943 printk(" %02x", ((unsigned char *)slabp)[i]);
2944 }
2945 printk("\n");
2946 BUG();
2947 }
2948 }
2949 #else
2950 #define kfree_debugcheck(x) do { } while(0)
2951 #define cache_free_debugcheck(x,objp,z) (objp)
2952 #define check_slabp(x,y) do { } while(0)
2953 #endif
2954
2955 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2956 {
2957 int batchcount;
2958 struct kmem_list3 *l3;
2959 struct array_cache *ac;
2960 int node;
2961
2962 retry:
2963 check_irq_off();
2964 node = numa_node_id();
2965 ac = cpu_cache_get(cachep);
2966 batchcount = ac->batchcount;
2967 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2968 /*
2969 * If there was little recent activity on this cache, then
2970 * perform only a partial refill. Otherwise we could generate
2971 * refill bouncing.
2972 */
2973 batchcount = BATCHREFILL_LIMIT;
2974 }
2975 l3 = cachep->nodelists[node];
2976
2977 BUG_ON(ac->avail > 0 || !l3);
2978 spin_lock(&l3->list_lock);
2979
2980 /* See if we can refill from the shared array */
2981 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2982 goto alloc_done;
2983
2984 while (batchcount > 0) {
2985 struct list_head *entry;
2986 struct slab *slabp;
2987 /* Get slab alloc is to come from. */
2988 entry = l3->slabs_partial.next;
2989 if (entry == &l3->slabs_partial) {
2990 l3->free_touched = 1;
2991 entry = l3->slabs_free.next;
2992 if (entry == &l3->slabs_free)
2993 goto must_grow;
2994 }
2995
2996 slabp = list_entry(entry, struct slab, list);
2997 check_slabp(cachep, slabp);
2998 check_spinlock_acquired(cachep);
2999
3000 /*
3001 * The slab was either on partial or free list so
3002 * there must be at least one object available for
3003 * allocation.
3004 */
3005 BUG_ON(slabp->inuse < 0 || slabp->inuse >= cachep->num);
3006
3007 while (slabp->inuse < cachep->num && batchcount--) {
3008 STATS_INC_ALLOCED(cachep);
3009 STATS_INC_ACTIVE(cachep);
3010 STATS_SET_HIGH(cachep);
3011
3012 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
3013 node);
3014 }
3015 check_slabp(cachep, slabp);
3016
3017 /* move slabp to correct slabp list: */
3018 list_del(&slabp->list);
3019 if (slabp->free == BUFCTL_END)
3020 list_add(&slabp->list, &l3->slabs_full);
3021 else
3022 list_add(&slabp->list, &l3->slabs_partial);
3023 }
3024
3025 must_grow:
3026 l3->free_objects -= ac->avail;
3027 alloc_done:
3028 spin_unlock(&l3->list_lock);
3029
3030 if (unlikely(!ac->avail)) {
3031 int x;
3032 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3033
3034 /* cache_grow can reenable interrupts, then ac could change. */
3035 ac = cpu_cache_get(cachep);
3036 if (!x && ac->avail == 0) /* no objects in sight? abort */
3037 return NULL;
3038
3039 if (!ac->avail) /* objects refilled by interrupt? */
3040 goto retry;
3041 }
3042 ac->touched = 1;
3043 return ac->entry[--ac->avail];
3044 }
3045
3046 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3047 gfp_t flags)
3048 {
3049 might_sleep_if(flags & __GFP_WAIT);
3050 #if DEBUG
3051 kmem_flagcheck(cachep, flags);
3052 #endif
3053 }
3054
3055 #if DEBUG
3056 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3057 gfp_t flags, void *objp, void *caller)
3058 {
3059 if (!objp)
3060 return objp;
3061 if (cachep->flags & SLAB_POISON) {
3062 #ifdef CONFIG_DEBUG_PAGEALLOC
3063 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3064 kernel_map_pages(virt_to_page(objp),
3065 cachep->buffer_size / PAGE_SIZE, 1);
3066 else
3067 check_poison_obj(cachep, objp);
3068 #else
3069 check_poison_obj(cachep, objp);
3070 #endif
3071 poison_obj(cachep, objp, POISON_INUSE);
3072 }
3073 if (cachep->flags & SLAB_STORE_USER)
3074 *dbg_userword(cachep, objp) = caller;
3075
3076 if (cachep->flags & SLAB_RED_ZONE) {
3077 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3078 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3079 slab_error(cachep, "double free, or memory outside"
3080 " object was overwritten");
3081 printk(KERN_ERR
3082 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3083 objp, *dbg_redzone1(cachep, objp),
3084 *dbg_redzone2(cachep, objp));
3085 }
3086 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3087 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3088 }
3089 #ifdef CONFIG_DEBUG_SLAB_LEAK
3090 {
3091 struct slab *slabp;
3092 unsigned objnr;
3093
3094 slabp = page_get_slab(virt_to_head_page(objp));
3095 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3096 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3097 }
3098 #endif
3099 objp += obj_offset(cachep);
3100 if (cachep->ctor && cachep->flags & SLAB_POISON)
3101 cachep->ctor(cachep, objp);
3102 #if ARCH_SLAB_MINALIGN
3103 if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3104 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3105 objp, ARCH_SLAB_MINALIGN);
3106 }
3107 #endif
3108 return objp;
3109 }
3110 #else
3111 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3112 #endif
3113
3114 #ifdef CONFIG_FAILSLAB
3115
3116 static struct failslab_attr {
3117
3118 struct fault_attr attr;
3119
3120 u32 ignore_gfp_wait;
3121 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3122 struct dentry *ignore_gfp_wait_file;
3123 #endif
3124
3125 } failslab = {
3126 .attr = FAULT_ATTR_INITIALIZER,
3127 .ignore_gfp_wait = 1,
3128 };
3129
3130 static int __init setup_failslab(char *str)
3131 {
3132 return setup_fault_attr(&failslab.attr, str);
3133 }
3134 __setup("failslab=", setup_failslab);
3135
3136 static int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3137 {
3138 if (cachep == &cache_cache)
3139 return 0;
3140 if (flags & __GFP_NOFAIL)
3141 return 0;
3142 if (failslab.ignore_gfp_wait && (flags & __GFP_WAIT))
3143 return 0;
3144
3145 return should_fail(&failslab.attr, obj_size(cachep));
3146 }
3147
3148 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3149
3150 static int __init failslab_debugfs(void)
3151 {
3152 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
3153 struct dentry *dir;
3154 int err;
3155
3156 err = init_fault_attr_dentries(&failslab.attr, "failslab");
3157 if (err)
3158 return err;
3159 dir = failslab.attr.dentries.dir;
3160
3161 failslab.ignore_gfp_wait_file =
3162 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3163 &failslab.ignore_gfp_wait);
3164
3165 if (!failslab.ignore_gfp_wait_file) {
3166 err = -ENOMEM;
3167 debugfs_remove(failslab.ignore_gfp_wait_file);
3168 cleanup_fault_attr_dentries(&failslab.attr);
3169 }
3170
3171 return err;
3172 }
3173
3174 late_initcall(failslab_debugfs);
3175
3176 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3177
3178 #else /* CONFIG_FAILSLAB */
3179
3180 static inline int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3181 {
3182 return 0;
3183 }
3184
3185 #endif /* CONFIG_FAILSLAB */
3186
3187 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3188 {
3189 void *objp;
3190 struct array_cache *ac;
3191
3192 check_irq_off();
3193
3194 ac = cpu_cache_get(cachep);
3195 if (likely(ac->avail)) {
3196 STATS_INC_ALLOCHIT(cachep);
3197 ac->touched = 1;
3198 objp = ac->entry[--ac->avail];
3199 } else {
3200 STATS_INC_ALLOCMISS(cachep);
3201 objp = cache_alloc_refill(cachep, flags);
3202 }
3203 return objp;
3204 }
3205
3206 #ifdef CONFIG_NUMA
3207 /*
3208 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3209 *
3210 * If we are in_interrupt, then process context, including cpusets and
3211 * mempolicy, may not apply and should not be used for allocation policy.
3212 */
3213 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3214 {
3215 int nid_alloc, nid_here;
3216
3217 if (in_interrupt() || (flags & __GFP_THISNODE))
3218 return NULL;
3219 nid_alloc = nid_here = numa_node_id();
3220 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3221 nid_alloc = cpuset_mem_spread_node();
3222 else if (current->mempolicy)
3223 nid_alloc = slab_node(current->mempolicy);
3224 if (nid_alloc != nid_here)
3225 return ____cache_alloc_node(cachep, flags, nid_alloc);
3226 return NULL;
3227 }
3228
3229 /*
3230 * Fallback function if there was no memory available and no objects on a
3231 * certain node and fall back is permitted. First we scan all the
3232 * available nodelists for available objects. If that fails then we
3233 * perform an allocation without specifying a node. This allows the page
3234 * allocator to do its reclaim / fallback magic. We then insert the
3235 * slab into the proper nodelist and then allocate from it.
3236 */
3237 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3238 {
3239 struct zonelist *zonelist;
3240 gfp_t local_flags;
3241 struct zoneref *z;
3242 struct zone *zone;
3243 enum zone_type high_zoneidx = gfp_zone(flags);
3244 void *obj = NULL;
3245 int nid;
3246
3247 if (flags & __GFP_THISNODE)
3248 return NULL;
3249
3250 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
3251 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3252
3253 retry:
3254 /*
3255 * Look through allowed nodes for objects available
3256 * from existing per node queues.
3257 */
3258 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3259 nid = zone_to_nid(zone);
3260
3261 if (cpuset_zone_allowed_hardwall(zone, flags) &&
3262 cache->nodelists[nid] &&
3263 cache->nodelists[nid]->free_objects)
3264 obj = ____cache_alloc_node(cache,
3265 flags | GFP_THISNODE, nid);
3266 }
3267
3268 if (!obj) {
3269 /*
3270 * This allocation will be performed within the constraints
3271 * of the current cpuset / memory policy requirements.
3272 * We may trigger various forms of reclaim on the allowed
3273 * set and go into memory reserves if necessary.
3274 */
3275 if (local_flags & __GFP_WAIT)
3276 local_irq_enable();
3277 kmem_flagcheck(cache, flags);
3278 obj = kmem_getpages(cache, local_flags, -1);
3279 if (local_flags & __GFP_WAIT)
3280 local_irq_disable();
3281 if (obj) {
3282 /*
3283 * Insert into the appropriate per node queues
3284 */
3285 nid = page_to_nid(virt_to_page(obj));
3286 if (cache_grow(cache, flags, nid, obj)) {
3287 obj = ____cache_alloc_node(cache,
3288 flags | GFP_THISNODE, nid);
3289 if (!obj)
3290 /*
3291 * Another processor may allocate the
3292 * objects in the slab since we are
3293 * not holding any locks.
3294 */
3295 goto retry;
3296 } else {
3297 /* cache_grow already freed obj */
3298 obj = NULL;
3299 }
3300 }
3301 }
3302 return obj;
3303 }
3304
3305 /*
3306 * A interface to enable slab creation on nodeid
3307 */
3308 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3309 int nodeid)
3310 {
3311 struct list_head *entry;
3312 struct slab *slabp;
3313 struct kmem_list3 *l3;
3314 void *obj;
3315 int x;
3316
3317 l3 = cachep->nodelists[nodeid];
3318 BUG_ON(!l3);
3319
3320 retry:
3321 check_irq_off();
3322 spin_lock(&l3->list_lock);
3323 entry = l3->slabs_partial.next;
3324 if (entry == &l3->slabs_partial) {
3325 l3->free_touched = 1;
3326 entry = l3->slabs_free.next;
3327 if (entry == &l3->slabs_free)
3328 goto must_grow;
3329 }
3330
3331 slabp = list_entry(entry, struct slab, list);
3332 check_spinlock_acquired_node(cachep, nodeid);
3333 check_slabp(cachep, slabp);
3334
3335 STATS_INC_NODEALLOCS(cachep);
3336 STATS_INC_ACTIVE(cachep);
3337 STATS_SET_HIGH(cachep);
3338
3339 BUG_ON(slabp->inuse == cachep->num);
3340
3341 obj = slab_get_obj(cachep, slabp, nodeid);
3342 check_slabp(cachep, slabp);
3343 l3->free_objects--;
3344 /* move slabp to correct slabp list: */
3345 list_del(&slabp->list);
3346
3347 if (slabp->free == BUFCTL_END)
3348 list_add(&slabp->list, &l3->slabs_full);
3349 else
3350 list_add(&slabp->list, &l3->slabs_partial);
3351
3352 spin_unlock(&l3->list_lock);
3353 goto done;
3354
3355 must_grow:
3356 spin_unlock(&l3->list_lock);
3357 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3358 if (x)
3359 goto retry;
3360
3361 return fallback_alloc(cachep, flags);
3362
3363 done:
3364 return obj;
3365 }
3366
3367 /**
3368 * kmem_cache_alloc_node - Allocate an object on the specified node
3369 * @cachep: The cache to allocate from.
3370 * @flags: See kmalloc().
3371 * @nodeid: node number of the target node.
3372 * @caller: return address of caller, used for debug information
3373 *
3374 * Identical to kmem_cache_alloc but it will allocate memory on the given
3375 * node, which can improve the performance for cpu bound structures.
3376 *
3377 * Fallback to other node is possible if __GFP_THISNODE is not set.
3378 */
3379 static __always_inline void *
3380 __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3381 void *caller)
3382 {
3383 unsigned long save_flags;
3384 void *ptr;
3385
3386 if (should_failslab(cachep, flags))
3387 return NULL;
3388
3389 cache_alloc_debugcheck_before(cachep, flags);
3390 local_irq_save(save_flags);
3391
3392 if (unlikely(nodeid == -1))
3393 nodeid = numa_node_id();
3394
3395 if (unlikely(!cachep->nodelists[nodeid])) {
3396 /* Node not bootstrapped yet */
3397 ptr = fallback_alloc(cachep, flags);
3398 goto out;
3399 }
3400
3401 if (nodeid == numa_node_id()) {
3402 /*
3403 * Use the locally cached objects if possible.
3404 * However ____cache_alloc does not allow fallback
3405 * to other nodes. It may fail while we still have
3406 * objects on other nodes available.
3407 */
3408 ptr = ____cache_alloc(cachep, flags);
3409 if (ptr)
3410 goto out;
3411 }
3412 /* ___cache_alloc_node can fall back to other nodes */
3413 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3414 out:
3415 local_irq_restore(save_flags);
3416 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3417
3418 if (unlikely((flags & __GFP_ZERO) && ptr))
3419 memset(ptr, 0, obj_size(cachep));
3420
3421 return ptr;
3422 }
3423
3424 static __always_inline void *
3425 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3426 {
3427 void *objp;
3428
3429 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3430 objp = alternate_node_alloc(cache, flags);
3431 if (objp)
3432 goto out;
3433 }
3434 objp = ____cache_alloc(cache, flags);
3435
3436 /*
3437 * We may just have run out of memory on the local node.
3438 * ____cache_alloc_node() knows how to locate memory on other nodes
3439 */
3440 if (!objp)
3441 objp = ____cache_alloc_node(cache, flags, numa_node_id());
3442
3443 out:
3444 return objp;
3445 }
3446 #else
3447
3448 static __always_inline void *
3449 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3450 {
3451 return ____cache_alloc(cachep, flags);
3452 }
3453
3454 #endif /* CONFIG_NUMA */
3455
3456 static __always_inline void *
3457 __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3458 {
3459 unsigned long save_flags;
3460 void *objp;
3461
3462 if (should_failslab(cachep, flags))
3463 return NULL;
3464
3465 cache_alloc_debugcheck_before(cachep, flags);
3466 local_irq_save(save_flags);
3467 objp = __do_cache_alloc(cachep, flags);
3468 local_irq_restore(save_flags);
3469 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3470 prefetchw(objp);
3471
3472 if (unlikely((flags & __GFP_ZERO) && objp))
3473 memset(objp, 0, obj_size(cachep));
3474
3475 return objp;
3476 }
3477
3478 /*
3479 * Caller needs to acquire correct kmem_list's list_lock
3480 */
3481 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3482 int node)
3483 {
3484 int i;
3485 struct kmem_list3 *l3;
3486
3487 for (i = 0; i < nr_objects; i++) {
3488 void *objp = objpp[i];
3489 struct slab *slabp;
3490
3491 slabp = virt_to_slab(objp);
3492 l3 = cachep->nodelists[node];
3493 list_del(&slabp->list);
3494 check_spinlock_acquired_node(cachep, node);
3495 check_slabp(cachep, slabp);
3496 slab_put_obj(cachep, slabp, objp, node);
3497 STATS_DEC_ACTIVE(cachep);
3498 l3->free_objects++;
3499 check_slabp(cachep, slabp);
3500
3501 /* fixup slab chains */
3502 if (slabp->inuse == 0) {
3503 if (l3->free_objects > l3->free_limit) {
3504 l3->free_objects -= cachep->num;
3505 /* No need to drop any previously held
3506 * lock here, even if we have a off-slab slab
3507 * descriptor it is guaranteed to come from
3508 * a different cache, refer to comments before
3509 * alloc_slabmgmt.
3510 */
3511 slab_destroy(cachep, slabp);
3512 } else {
3513 list_add(&slabp->list, &l3->slabs_free);
3514 }
3515 } else {
3516 /* Unconditionally move a slab to the end of the
3517 * partial list on free - maximum time for the
3518 * other objects to be freed, too.
3519 */
3520 list_add_tail(&slabp->list, &l3->slabs_partial);
3521 }
3522 }
3523 }
3524
3525 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3526 {
3527 int batchcount;
3528 struct kmem_list3 *l3;
3529 int node = numa_node_id();
3530
3531 batchcount = ac->batchcount;
3532 #if DEBUG
3533 BUG_ON(!batchcount || batchcount > ac->avail);
3534 #endif
3535 check_irq_off();
3536 l3 = cachep->nodelists[node];
3537 spin_lock(&l3->list_lock);
3538 if (l3->shared) {
3539 struct array_cache *shared_array = l3->shared;
3540 int max = shared_array->limit - shared_array->avail;
3541 if (max) {
3542 if (batchcount > max)
3543 batchcount = max;
3544 memcpy(&(shared_array->entry[shared_array->avail]),
3545 ac->entry, sizeof(void *) * batchcount);
3546 shared_array->avail += batchcount;
3547 goto free_done;
3548 }
3549 }
3550
3551 free_block(cachep, ac->entry, batchcount, node);
3552 free_done:
3553 #if STATS
3554 {
3555 int i = 0;
3556 struct list_head *p;
3557
3558 p = l3->slabs_free.next;
3559 while (p != &(l3->slabs_free)) {
3560 struct slab *slabp;
3561
3562 slabp = list_entry(p, struct slab, list);
3563 BUG_ON(slabp->inuse);
3564
3565 i++;
3566 p = p->next;
3567 }
3568 STATS_SET_FREEABLE(cachep, i);
3569 }
3570 #endif
3571 spin_unlock(&l3->list_lock);
3572 ac->avail -= batchcount;
3573 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3574 }
3575
3576 /*
3577 * Release an obj back to its cache. If the obj has a constructed state, it must
3578 * be in this state _before_ it is released. Called with disabled ints.
3579 */
3580 static inline void __cache_free(struct kmem_cache *cachep, void *objp)
3581 {
3582 struct array_cache *ac = cpu_cache_get(cachep);
3583
3584 check_irq_off();
3585 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3586
3587 /*
3588 * Skip calling cache_free_alien() when the platform is not numa.
3589 * This will avoid cache misses that happen while accessing slabp (which
3590 * is per page memory reference) to get nodeid. Instead use a global
3591 * variable to skip the call, which is mostly likely to be present in
3592 * the cache.
3593 */
3594 if (numa_platform && cache_free_alien(cachep, objp))
3595 return;
3596
3597 if (likely(ac->avail < ac->limit)) {
3598 STATS_INC_FREEHIT(cachep);
3599 ac->entry[ac->avail++] = objp;
3600 return;
3601 } else {
3602 STATS_INC_FREEMISS(cachep);
3603 cache_flusharray(cachep, ac);
3604 ac->entry[ac->avail++] = objp;
3605 }
3606 }
3607
3608 /**
3609 * kmem_cache_alloc - Allocate an object
3610 * @cachep: The cache to allocate from.
3611 * @flags: See kmalloc().
3612 *
3613 * Allocate an object from this cache. The flags are only relevant
3614 * if the cache has no available objects.
3615 */
3616 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3617 {
3618 return __cache_alloc(cachep, flags, __builtin_return_address(0));
3619 }
3620 EXPORT_SYMBOL(kmem_cache_alloc);
3621
3622 /**
3623 * kmem_ptr_validate - check if an untrusted pointer might be a slab entry.
3624 * @cachep: the cache we're checking against
3625 * @ptr: pointer to validate
3626 *
3627 * This verifies that the untrusted pointer looks sane;
3628 * it is _not_ a guarantee that the pointer is actually
3629 * part of the slab cache in question, but it at least
3630 * validates that the pointer can be dereferenced and
3631 * looks half-way sane.
3632 *
3633 * Currently only used for dentry validation.
3634 */
3635 int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
3636 {
3637 unsigned long addr = (unsigned long)ptr;
3638 unsigned long min_addr = PAGE_OFFSET;
3639 unsigned long align_mask = BYTES_PER_WORD - 1;
3640 unsigned long size = cachep->buffer_size;
3641 struct page *page;
3642
3643 if (unlikely(addr < min_addr))
3644 goto out;
3645 if (unlikely(addr > (unsigned long)high_memory - size))
3646 goto out;
3647 if (unlikely(addr & align_mask))
3648 goto out;
3649 if (unlikely(!kern_addr_valid(addr)))
3650 goto out;
3651 if (unlikely(!kern_addr_valid(addr + size - 1)))
3652 goto out;
3653 page = virt_to_page(ptr);
3654 if (unlikely(!PageSlab(page)))
3655 goto out;
3656 if (unlikely(page_get_cache(page) != cachep))
3657 goto out;
3658 return 1;
3659 out:
3660 return 0;
3661 }
3662
3663 #ifdef CONFIG_NUMA
3664 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3665 {
3666 return __cache_alloc_node(cachep, flags, nodeid,
3667 __builtin_return_address(0));
3668 }
3669 EXPORT_SYMBOL(kmem_cache_alloc_node);
3670
3671 static __always_inline void *
3672 __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3673 {
3674 struct kmem_cache *cachep;
3675
3676 cachep = kmem_find_general_cachep(size, flags);
3677 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3678 return cachep;
3679 return kmem_cache_alloc_node(cachep, flags, node);
3680 }
3681
3682 #ifdef CONFIG_DEBUG_SLAB
3683 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3684 {
3685 return __do_kmalloc_node(size, flags, node,
3686 __builtin_return_address(0));
3687 }
3688 EXPORT_SYMBOL(__kmalloc_node);
3689
3690 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3691 int node, void *caller)
3692 {
3693 return __do_kmalloc_node(size, flags, node, caller);
3694 }
3695 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3696 #else
3697 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3698 {
3699 return __do_kmalloc_node(size, flags, node, NULL);
3700 }
3701 EXPORT_SYMBOL(__kmalloc_node);
3702 #endif /* CONFIG_DEBUG_SLAB */
3703 #endif /* CONFIG_NUMA */
3704
3705 /**
3706 * __do_kmalloc - allocate memory
3707 * @size: how many bytes of memory are required.
3708 * @flags: the type of memory to allocate (see kmalloc).
3709 * @caller: function caller for debug tracking of the caller
3710 */
3711 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3712 void *caller)
3713 {
3714 struct kmem_cache *cachep;
3715
3716 /* If you want to save a few bytes .text space: replace
3717 * __ with kmem_.
3718 * Then kmalloc uses the uninlined functions instead of the inline
3719 * functions.
3720 */
3721 cachep = __find_general_cachep(size, flags);
3722 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3723 return cachep;
3724 return __cache_alloc(cachep, flags, caller);
3725 }
3726
3727
3728 #ifdef CONFIG_DEBUG_SLAB
3729 void *__kmalloc(size_t size, gfp_t flags)
3730 {
3731 return __do_kmalloc(size, flags, __builtin_return_address(0));
3732 }
3733 EXPORT_SYMBOL(__kmalloc);
3734
3735 void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3736 {
3737 return __do_kmalloc(size, flags, caller);
3738 }
3739 EXPORT_SYMBOL(__kmalloc_track_caller);
3740
3741 #else
3742 void *__kmalloc(size_t size, gfp_t flags)
3743 {
3744 return __do_kmalloc(size, flags, NULL);
3745 }
3746 EXPORT_SYMBOL(__kmalloc);
3747 #endif
3748
3749 /**
3750 * kmem_cache_free - Deallocate an object
3751 * @cachep: The cache the allocation was from.
3752 * @objp: The previously allocated object.
3753 *
3754 * Free an object which was previously allocated from this
3755 * cache.
3756 */
3757 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3758 {
3759 unsigned long flags;
3760
3761 local_irq_save(flags);
3762 debug_check_no_locks_freed(objp, obj_size(cachep));
3763 __cache_free(cachep, objp);
3764 local_irq_restore(flags);
3765 }
3766 EXPORT_SYMBOL(kmem_cache_free);
3767
3768 /**
3769 * kfree - free previously allocated memory
3770 * @objp: pointer returned by kmalloc.
3771 *
3772 * If @objp is NULL, no operation is performed.
3773 *
3774 * Don't free memory not originally allocated by kmalloc()
3775 * or you will run into trouble.
3776 */
3777 void kfree(const void *objp)
3778 {
3779 struct kmem_cache *c;
3780 unsigned long flags;
3781
3782 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3783 return;
3784 local_irq_save(flags);
3785 kfree_debugcheck(objp);
3786 c = virt_to_cache(objp);
3787 debug_check_no_locks_freed(objp, obj_size(c));
3788 __cache_free(c, (void *)objp);
3789 local_irq_restore(flags);
3790 }
3791 EXPORT_SYMBOL(kfree);
3792
3793 unsigned int kmem_cache_size(struct kmem_cache *cachep)
3794 {
3795 return obj_size(cachep);
3796 }
3797 EXPORT_SYMBOL(kmem_cache_size);
3798
3799 const char *kmem_cache_name(struct kmem_cache *cachep)
3800 {
3801 return cachep->name;
3802 }
3803 EXPORT_SYMBOL_GPL(kmem_cache_name);
3804
3805 /*
3806 * This initializes kmem_list3 or resizes various caches for all nodes.
3807 */
3808 static int alloc_kmemlist(struct kmem_cache *cachep)
3809 {
3810 int node;
3811 struct kmem_list3 *l3;
3812 struct array_cache *new_shared;
3813 struct array_cache **new_alien = NULL;
3814
3815 for_each_online_node(node) {
3816
3817 if (use_alien_caches) {
3818 new_alien = alloc_alien_cache(node, cachep->limit);
3819 if (!new_alien)
3820 goto fail;
3821 }
3822
3823 new_shared = NULL;
3824 if (cachep->shared) {
3825 new_shared = alloc_arraycache(node,
3826 cachep->shared*cachep->batchcount,
3827 0xbaadf00d);
3828 if (!new_shared) {
3829 free_alien_cache(new_alien);
3830 goto fail;
3831 }
3832 }
3833
3834 l3 = cachep->nodelists[node];
3835 if (l3) {
3836 struct array_cache *shared = l3->shared;
3837
3838 spin_lock_irq(&l3->list_lock);
3839
3840 if (shared)
3841 free_block(cachep, shared->entry,
3842 shared->avail, node);
3843
3844 l3->shared = new_shared;
3845 if (!l3->alien) {
3846 l3->alien = new_alien;
3847 new_alien = NULL;
3848 }
3849 l3->free_limit = (1 + nr_cpus_node(node)) *
3850 cachep->batchcount + cachep->num;
3851 spin_unlock_irq(&l3->list_lock);
3852 kfree(shared);
3853 free_alien_cache(new_alien);
3854 continue;
3855 }
3856 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3857 if (!l3) {
3858 free_alien_cache(new_alien);
3859 kfree(new_shared);
3860 goto fail;
3861 }
3862
3863 kmem_list3_init(l3);
3864 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3865 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3866 l3->shared = new_shared;
3867 l3->alien = new_alien;
3868 l3->free_limit = (1 + nr_cpus_node(node)) *
3869 cachep->batchcount + cachep->num;
3870 cachep->nodelists[node] = l3;
3871 }
3872 return 0;
3873
3874 fail:
3875 if (!cachep->next.next) {
3876 /* Cache is not active yet. Roll back what we did */
3877 node--;
3878 while (node >= 0) {
3879 if (cachep->nodelists[node]) {
3880 l3 = cachep->nodelists[node];
3881
3882 kfree(l3->shared);
3883 free_alien_cache(l3->alien);
3884 kfree(l3);
3885 cachep->nodelists[node] = NULL;
3886 }
3887 node--;
3888 }
3889 }
3890 return -ENOMEM;
3891 }
3892
3893 struct ccupdate_struct {
3894 struct kmem_cache *cachep;
3895 struct array_cache *new[NR_CPUS];
3896 };
3897
3898 static void do_ccupdate_local(void *info)
3899 {
3900 struct ccupdate_struct *new = info;
3901 struct array_cache *old;
3902
3903 check_irq_off();
3904 old = cpu_cache_get(new->cachep);
3905
3906 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3907 new->new[smp_processor_id()] = old;
3908 }
3909
3910 /* Always called with the cache_chain_mutex held */
3911 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3912 int batchcount, int shared)
3913 {
3914 struct ccupdate_struct *new;
3915 int i;
3916
3917 new = kzalloc(sizeof(*new), GFP_KERNEL);
3918 if (!new)
3919 return -ENOMEM;
3920
3921 for_each_online_cpu(i) {
3922 new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
3923 batchcount);
3924 if (!new->new[i]) {
3925 for (i--; i >= 0; i--)
3926 kfree(new->new[i]);
3927 kfree(new);
3928 return -ENOMEM;
3929 }
3930 }
3931 new->cachep = cachep;
3932
3933 on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
3934
3935 check_irq_on();
3936 cachep->batchcount = batchcount;
3937 cachep->limit = limit;
3938 cachep->shared = shared;
3939
3940 for_each_online_cpu(i) {
3941 struct array_cache *ccold = new->new[i];
3942 if (!ccold)
3943 continue;
3944 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3945 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3946 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3947 kfree(ccold);
3948 }
3949 kfree(new);
3950 return alloc_kmemlist(cachep);
3951 }
3952
3953 /* Called with cache_chain_mutex held always */
3954 static int enable_cpucache(struct kmem_cache *cachep)
3955 {
3956 int err;
3957 int limit, shared;
3958
3959 /*
3960 * The head array serves three purposes:
3961 * - create a LIFO ordering, i.e. return objects that are cache-warm
3962 * - reduce the number of spinlock operations.
3963 * - reduce the number of linked list operations on the slab and
3964 * bufctl chains: array operations are cheaper.
3965 * The numbers are guessed, we should auto-tune as described by
3966 * Bonwick.
3967 */
3968 if (cachep->buffer_size > 131072)
3969 limit = 1;
3970 else if (cachep->buffer_size > PAGE_SIZE)
3971 limit = 8;
3972 else if (cachep->buffer_size > 1024)
3973 limit = 24;
3974 else if (cachep->buffer_size > 256)
3975 limit = 54;
3976 else
3977 limit = 120;
3978
3979 /*
3980 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3981 * allocation behaviour: Most allocs on one cpu, most free operations
3982 * on another cpu. For these cases, an efficient object passing between
3983 * cpus is necessary. This is provided by a shared array. The array
3984 * replaces Bonwick's magazine layer.
3985 * On uniprocessor, it's functionally equivalent (but less efficient)
3986 * to a larger limit. Thus disabled by default.
3987 */
3988 shared = 0;
3989 if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
3990 shared = 8;
3991
3992 #if DEBUG
3993 /*
3994 * With debugging enabled, large batchcount lead to excessively long
3995 * periods with disabled local interrupts. Limit the batchcount
3996 */
3997 if (limit > 32)
3998 limit = 32;
3999 #endif
4000 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
4001 if (err)
4002 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
4003 cachep->name, -err);
4004 return err;
4005 }
4006
4007 /*
4008 * Drain an array if it contains any elements taking the l3 lock only if
4009 * necessary. Note that the l3 listlock also protects the array_cache
4010 * if drain_array() is used on the shared array.
4011 */
4012 void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4013 struct array_cache *ac, int force, int node)
4014 {
4015 int tofree;
4016
4017 if (!ac || !ac->avail)
4018 return;
4019 if (ac->touched && !force) {
4020 ac->touched = 0;
4021 } else {
4022 spin_lock_irq(&l3->list_lock);
4023 if (ac->avail) {
4024 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4025 if (tofree > ac->avail)
4026 tofree = (ac->avail + 1) / 2;
4027 free_block(cachep, ac->entry, tofree, node);
4028 ac->avail -= tofree;
4029 memmove(ac->entry, &(ac->entry[tofree]),
4030 sizeof(void *) * ac->avail);
4031 }
4032 spin_unlock_irq(&l3->list_lock);
4033 }
4034 }
4035
4036 /**
4037 * cache_reap - Reclaim memory from caches.
4038 * @w: work descriptor
4039 *
4040 * Called from workqueue/eventd every few seconds.
4041 * Purpose:
4042 * - clear the per-cpu caches for this CPU.
4043 * - return freeable pages to the main free memory pool.
4044 *
4045 * If we cannot acquire the cache chain mutex then just give up - we'll try
4046 * again on the next iteration.
4047 */
4048 static void cache_reap(struct work_struct *w)
4049 {
4050 struct kmem_cache *searchp;
4051 struct kmem_list3 *l3;
4052 int node = numa_node_id();
4053 struct delayed_work *work =
4054 container_of(w, struct delayed_work, work);
4055
4056 if (!mutex_trylock(&cache_chain_mutex))
4057 /* Give up. Setup the next iteration. */
4058 goto out;
4059
4060 list_for_each_entry(searchp, &cache_chain, next) {
4061 check_irq_on();
4062
4063 /*
4064 * We only take the l3 lock if absolutely necessary and we
4065 * have established with reasonable certainty that
4066 * we can do some work if the lock was obtained.
4067 */
4068 l3 = searchp->nodelists[node];
4069
4070 reap_alien(searchp, l3);
4071
4072 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
4073
4074 /*
4075 * These are racy checks but it does not matter
4076 * if we skip one check or scan twice.
4077 */
4078 if (time_after(l3->next_reap, jiffies))
4079 goto next;
4080
4081 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
4082
4083 drain_array(searchp, l3, l3->shared, 0, node);
4084
4085 if (l3->free_touched)
4086 l3->free_touched = 0;
4087 else {
4088 int freed;
4089
4090 freed = drain_freelist(searchp, l3, (l3->free_limit +
4091 5 * searchp->num - 1) / (5 * searchp->num));
4092 STATS_ADD_REAPED(searchp, freed);
4093 }
4094 next:
4095 cond_resched();
4096 }
4097 check_irq_on();
4098 mutex_unlock(&cache_chain_mutex);
4099 next_reap_node();
4100 out:
4101 /* Set up the next iteration */
4102 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
4103 }
4104
4105 #ifdef CONFIG_SLABINFO
4106
4107 static void print_slabinfo_header(struct seq_file *m)
4108 {
4109 /*
4110 * Output format version, so at least we can change it
4111 * without _too_ many complaints.
4112 */
4113 #if STATS
4114 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
4115 #else
4116 seq_puts(m, "slabinfo - version: 2.1\n");
4117 #endif
4118 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4119 "<objperslab> <pagesperslab>");
4120 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4121 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4122 #if STATS
4123 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4124 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4125 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4126 #endif
4127 seq_putc(m, '\n');
4128 }
4129
4130 static void *s_start(struct seq_file *m, loff_t *pos)
4131 {
4132 loff_t n = *pos;
4133
4134 mutex_lock(&cache_chain_mutex);
4135 if (!n)
4136 print_slabinfo_header(m);
4137
4138 return seq_list_start(&cache_chain, *pos);
4139 }
4140
4141 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4142 {
4143 return seq_list_next(p, &cache_chain, pos);
4144 }
4145
4146 static void s_stop(struct seq_file *m, void *p)
4147 {
4148 mutex_unlock(&cache_chain_mutex);
4149 }
4150
4151 static int s_show(struct seq_file *m, void *p)
4152 {
4153 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4154 struct slab *slabp;
4155 unsigned long active_objs;
4156 unsigned long num_objs;
4157 unsigned long active_slabs = 0;
4158 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4159 const char *name;
4160 char *error = NULL;
4161 int node;
4162 struct kmem_list3 *l3;
4163
4164 active_objs = 0;
4165 num_slabs = 0;
4166 for_each_online_node(node) {
4167 l3 = cachep->nodelists[node];
4168 if (!l3)
4169 continue;
4170
4171 check_irq_on();
4172 spin_lock_irq(&l3->list_lock);
4173
4174 list_for_each_entry(slabp, &l3->slabs_full, list) {
4175 if (slabp->inuse != cachep->num && !error)
4176 error = "slabs_full accounting error";
4177 active_objs += cachep->num;
4178 active_slabs++;
4179 }
4180 list_for_each_entry(slabp, &l3->slabs_partial, list) {
4181 if (slabp->inuse == cachep->num && !error)
4182 error = "slabs_partial inuse accounting error";
4183 if (!slabp->inuse && !error)
4184 error = "slabs_partial/inuse accounting error";
4185 active_objs += slabp->inuse;
4186 active_slabs++;
4187 }
4188 list_for_each_entry(slabp, &l3->slabs_free, list) {
4189 if (slabp->inuse && !error)
4190 error = "slabs_free/inuse accounting error";
4191 num_slabs++;
4192 }
4193 free_objects += l3->free_objects;
4194 if (l3->shared)
4195 shared_avail += l3->shared->avail;
4196
4197 spin_unlock_irq(&l3->list_lock);
4198 }
4199 num_slabs += active_slabs;
4200 num_objs = num_slabs * cachep->num;
4201 if (num_objs - active_objs != free_objects && !error)
4202 error = "free_objects accounting error";
4203
4204 name = cachep->name;
4205 if (error)
4206 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4207
4208 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4209 name, active_objs, num_objs, cachep->buffer_size,
4210 cachep->num, (1 << cachep->gfporder));
4211 seq_printf(m, " : tunables %4u %4u %4u",
4212 cachep->limit, cachep->batchcount, cachep->shared);
4213 seq_printf(m, " : slabdata %6lu %6lu %6lu",
4214 active_slabs, num_slabs, shared_avail);
4215 #if STATS
4216 { /* list3 stats */
4217 unsigned long high = cachep->high_mark;
4218 unsigned long allocs = cachep->num_allocations;
4219 unsigned long grown = cachep->grown;
4220 unsigned long reaped = cachep->reaped;
4221 unsigned long errors = cachep->errors;
4222 unsigned long max_freeable = cachep->max_freeable;
4223 unsigned long node_allocs = cachep->node_allocs;
4224 unsigned long node_frees = cachep->node_frees;
4225 unsigned long overflows = cachep->node_overflow;
4226
4227 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
4228 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
4229 reaped, errors, max_freeable, node_allocs,
4230 node_frees, overflows);
4231 }
4232 /* cpu stats */
4233 {
4234 unsigned long allochit = atomic_read(&cachep->allochit);
4235 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4236 unsigned long freehit = atomic_read(&cachep->freehit);
4237 unsigned long freemiss = atomic_read(&cachep->freemiss);
4238
4239 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4240 allochit, allocmiss, freehit, freemiss);
4241 }
4242 #endif
4243 seq_putc(m, '\n');
4244 return 0;
4245 }
4246
4247 /*
4248 * slabinfo_op - iterator that generates /proc/slabinfo
4249 *
4250 * Output layout:
4251 * cache-name
4252 * num-active-objs
4253 * total-objs
4254 * object size
4255 * num-active-slabs
4256 * total-slabs
4257 * num-pages-per-slab
4258 * + further values on SMP and with statistics enabled
4259 */
4260
4261 const struct seq_operations slabinfo_op = {
4262 .start = s_start,
4263 .next = s_next,
4264 .stop = s_stop,
4265 .show = s_show,
4266 };
4267
4268 #define MAX_SLABINFO_WRITE 128
4269 /**
4270 * slabinfo_write - Tuning for the slab allocator
4271 * @file: unused
4272 * @buffer: user buffer
4273 * @count: data length
4274 * @ppos: unused
4275 */
4276 ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4277 size_t count, loff_t *ppos)
4278 {
4279 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4280 int limit, batchcount, shared, res;
4281 struct kmem_cache *cachep;
4282
4283 if (count > MAX_SLABINFO_WRITE)
4284 return -EINVAL;
4285 if (copy_from_user(&kbuf, buffer, count))
4286 return -EFAULT;
4287 kbuf[MAX_SLABINFO_WRITE] = '\0';
4288
4289 tmp = strchr(kbuf, ' ');
4290 if (!tmp)
4291 return -EINVAL;
4292 *tmp = '\0';
4293 tmp++;
4294 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4295 return -EINVAL;
4296
4297 /* Find the cache in the chain of caches. */
4298 mutex_lock(&cache_chain_mutex);
4299 res = -EINVAL;
4300 list_for_each_entry(cachep, &cache_chain, next) {
4301 if (!strcmp(cachep->name, kbuf)) {
4302 if (limit < 1 || batchcount < 1 ||
4303 batchcount > limit || shared < 0) {
4304 res = 0;
4305 } else {
4306 res = do_tune_cpucache(cachep, limit,
4307 batchcount, shared);
4308 }
4309 break;
4310 }
4311 }
4312 mutex_unlock(&cache_chain_mutex);
4313 if (res >= 0)
4314 res = count;
4315 return res;
4316 }
4317
4318 #ifdef CONFIG_DEBUG_SLAB_LEAK
4319
4320 static void *leaks_start(struct seq_file *m, loff_t *pos)
4321 {
4322 mutex_lock(&cache_chain_mutex);
4323 return seq_list_start(&cache_chain, *pos);
4324 }
4325
4326 static inline int add_caller(unsigned long *n, unsigned long v)
4327 {
4328 unsigned long *p;
4329 int l;
4330 if (!v)
4331 return 1;
4332 l = n[1];
4333 p = n + 2;
4334 while (l) {
4335 int i = l/2;
4336 unsigned long *q = p + 2 * i;
4337 if (*q == v) {
4338 q[1]++;
4339 return 1;
4340 }
4341 if (*q > v) {
4342 l = i;
4343 } else {
4344 p = q + 2;
4345 l -= i + 1;
4346 }
4347 }
4348 if (++n[1] == n[0])
4349 return 0;
4350 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4351 p[0] = v;
4352 p[1] = 1;
4353 return 1;
4354 }
4355
4356 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4357 {
4358 void *p;
4359 int i;
4360 if (n[0] == n[1])
4361 return;
4362 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4363 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4364 continue;
4365 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4366 return;
4367 }
4368 }
4369
4370 static void show_symbol(struct seq_file *m, unsigned long address)
4371 {
4372 #ifdef CONFIG_KALLSYMS
4373 unsigned long offset, size;
4374 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4375
4376 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4377 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4378 if (modname[0])
4379 seq_printf(m, " [%s]", modname);
4380 return;
4381 }
4382 #endif
4383 seq_printf(m, "%p", (void *)address);
4384 }
4385
4386 static int leaks_show(struct seq_file *m, void *p)
4387 {
4388 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4389 struct slab *slabp;
4390 struct kmem_list3 *l3;
4391 const char *name;
4392 unsigned long *n = m->private;
4393 int node;
4394 int i;
4395
4396 if (!(cachep->flags & SLAB_STORE_USER))
4397 return 0;
4398 if (!(cachep->flags & SLAB_RED_ZONE))
4399 return 0;
4400
4401 /* OK, we can do it */
4402
4403 n[1] = 0;
4404
4405 for_each_online_node(node) {
4406 l3 = cachep->nodelists[node];
4407 if (!l3)
4408 continue;
4409
4410 check_irq_on();
4411 spin_lock_irq(&l3->list_lock);
4412
4413 list_for_each_entry(slabp, &l3->slabs_full, list)
4414 handle_slab(n, cachep, slabp);
4415 list_for_each_entry(slabp, &l3->slabs_partial, list)
4416 handle_slab(n, cachep, slabp);
4417 spin_unlock_irq(&l3->list_lock);
4418 }
4419 name = cachep->name;
4420 if (n[0] == n[1]) {
4421 /* Increase the buffer size */
4422 mutex_unlock(&cache_chain_mutex);
4423 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4424 if (!m->private) {
4425 /* Too bad, we are really out */
4426 m->private = n;
4427 mutex_lock(&cache_chain_mutex);
4428 return -ENOMEM;
4429 }
4430 *(unsigned long *)m->private = n[0] * 2;
4431 kfree(n);
4432 mutex_lock(&cache_chain_mutex);
4433 /* Now make sure this entry will be retried */
4434 m->count = m->size;
4435 return 0;
4436 }
4437 for (i = 0; i < n[1]; i++) {
4438 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4439 show_symbol(m, n[2*i+2]);
4440 seq_putc(m, '\n');
4441 }
4442
4443 return 0;
4444 }
4445
4446 const struct seq_operations slabstats_op = {
4447 .start = leaks_start,
4448 .next = s_next,
4449 .stop = s_stop,
4450 .show = leaks_show,
4451 };
4452 #endif
4453 #endif
4454
4455 /**
4456 * ksize - get the actual amount of memory allocated for a given object
4457 * @objp: Pointer to the object
4458 *
4459 * kmalloc may internally round up allocations and return more memory
4460 * than requested. ksize() can be used to determine the actual amount of
4461 * memory allocated. The caller may use this additional memory, even though
4462 * a smaller amount of memory was initially specified with the kmalloc call.
4463 * The caller must guarantee that objp points to a valid object previously
4464 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4465 * must not be freed during the duration of the call.
4466 */
4467 size_t ksize(const void *objp)
4468 {
4469 BUG_ON(!objp);
4470 if (unlikely(objp == ZERO_SIZE_PTR))
4471 return 0;
4472
4473 return obj_size(virt_to_cache(objp));
4474 }
4475 EXPORT_SYMBOL(ksize);
This page took 0.202881 seconds and 6 git commands to generate.