Merge tag 'spi-v3.14-2' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie/spi
[deliverable/linux.git] / mm / slab_common.c
1 /*
2 * Slab allocator functions that are independent of the allocator strategy
3 *
4 * (C) 2012 Christoph Lameter <cl@linux.com>
5 */
6 #include <linux/slab.h>
7
8 #include <linux/mm.h>
9 #include <linux/poison.h>
10 #include <linux/interrupt.h>
11 #include <linux/memory.h>
12 #include <linux/compiler.h>
13 #include <linux/module.h>
14 #include <linux/cpu.h>
15 #include <linux/uaccess.h>
16 #include <linux/seq_file.h>
17 #include <linux/proc_fs.h>
18 #include <asm/cacheflush.h>
19 #include <asm/tlbflush.h>
20 #include <asm/page.h>
21 #include <linux/memcontrol.h>
22 #include <trace/events/kmem.h>
23
24 #include "slab.h"
25
26 enum slab_state slab_state;
27 LIST_HEAD(slab_caches);
28 DEFINE_MUTEX(slab_mutex);
29 struct kmem_cache *kmem_cache;
30
31 #ifdef CONFIG_DEBUG_VM
32 static int kmem_cache_sanity_check(struct mem_cgroup *memcg, const char *name,
33 size_t size)
34 {
35 struct kmem_cache *s = NULL;
36
37 if (!name || in_interrupt() || size < sizeof(void *) ||
38 size > KMALLOC_MAX_SIZE) {
39 pr_err("kmem_cache_create(%s) integrity check failed\n", name);
40 return -EINVAL;
41 }
42
43 list_for_each_entry(s, &slab_caches, list) {
44 char tmp;
45 int res;
46
47 /*
48 * This happens when the module gets unloaded and doesn't
49 * destroy its slab cache and no-one else reuses the vmalloc
50 * area of the module. Print a warning.
51 */
52 res = probe_kernel_address(s->name, tmp);
53 if (res) {
54 pr_err("Slab cache with size %d has lost its name\n",
55 s->object_size);
56 continue;
57 }
58
59 #if !defined(CONFIG_SLUB) || !defined(CONFIG_SLUB_DEBUG_ON)
60 /*
61 * For simplicity, we won't check this in the list of memcg
62 * caches. We have control over memcg naming, and if there
63 * aren't duplicates in the global list, there won't be any
64 * duplicates in the memcg lists as well.
65 */
66 if (!memcg && !strcmp(s->name, name)) {
67 pr_err("%s (%s): Cache name already exists.\n",
68 __func__, name);
69 dump_stack();
70 s = NULL;
71 return -EINVAL;
72 }
73 #endif
74 }
75
76 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
77 return 0;
78 }
79 #else
80 static inline int kmem_cache_sanity_check(struct mem_cgroup *memcg,
81 const char *name, size_t size)
82 {
83 return 0;
84 }
85 #endif
86
87 #ifdef CONFIG_MEMCG_KMEM
88 int memcg_update_all_caches(int num_memcgs)
89 {
90 struct kmem_cache *s;
91 int ret = 0;
92 mutex_lock(&slab_mutex);
93
94 list_for_each_entry(s, &slab_caches, list) {
95 if (!is_root_cache(s))
96 continue;
97
98 ret = memcg_update_cache_size(s, num_memcgs);
99 /*
100 * See comment in memcontrol.c, memcg_update_cache_size:
101 * Instead of freeing the memory, we'll just leave the caches
102 * up to this point in an updated state.
103 */
104 if (ret)
105 goto out;
106 }
107
108 memcg_update_array_size(num_memcgs);
109 out:
110 mutex_unlock(&slab_mutex);
111 return ret;
112 }
113 #endif
114
115 /*
116 * Figure out what the alignment of the objects will be given a set of
117 * flags, a user specified alignment and the size of the objects.
118 */
119 unsigned long calculate_alignment(unsigned long flags,
120 unsigned long align, unsigned long size)
121 {
122 /*
123 * If the user wants hardware cache aligned objects then follow that
124 * suggestion if the object is sufficiently large.
125 *
126 * The hardware cache alignment cannot override the specified
127 * alignment though. If that is greater then use it.
128 */
129 if (flags & SLAB_HWCACHE_ALIGN) {
130 unsigned long ralign = cache_line_size();
131 while (size <= ralign / 2)
132 ralign /= 2;
133 align = max(align, ralign);
134 }
135
136 if (align < ARCH_SLAB_MINALIGN)
137 align = ARCH_SLAB_MINALIGN;
138
139 return ALIGN(align, sizeof(void *));
140 }
141
142
143 /*
144 * kmem_cache_create - Create a cache.
145 * @name: A string which is used in /proc/slabinfo to identify this cache.
146 * @size: The size of objects to be created in this cache.
147 * @align: The required alignment for the objects.
148 * @flags: SLAB flags
149 * @ctor: A constructor for the objects.
150 *
151 * Returns a ptr to the cache on success, NULL on failure.
152 * Cannot be called within a interrupt, but can be interrupted.
153 * The @ctor is run when new pages are allocated by the cache.
154 *
155 * The flags are
156 *
157 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
158 * to catch references to uninitialised memory.
159 *
160 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
161 * for buffer overruns.
162 *
163 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
164 * cacheline. This can be beneficial if you're counting cycles as closely
165 * as davem.
166 */
167
168 struct kmem_cache *
169 kmem_cache_create_memcg(struct mem_cgroup *memcg, const char *name, size_t size,
170 size_t align, unsigned long flags, void (*ctor)(void *),
171 struct kmem_cache *parent_cache)
172 {
173 struct kmem_cache *s = NULL;
174 int err;
175
176 get_online_cpus();
177 mutex_lock(&slab_mutex);
178
179 err = kmem_cache_sanity_check(memcg, name, size);
180 if (err)
181 goto out_unlock;
182
183 if (memcg) {
184 /*
185 * Since per-memcg caches are created asynchronously on first
186 * allocation (see memcg_kmem_get_cache()), several threads can
187 * try to create the same cache, but only one of them may
188 * succeed. Therefore if we get here and see the cache has
189 * already been created, we silently return NULL.
190 */
191 if (cache_from_memcg_idx(parent_cache, memcg_cache_id(memcg)))
192 goto out_unlock;
193 }
194
195 /*
196 * Some allocators will constraint the set of valid flags to a subset
197 * of all flags. We expect them to define CACHE_CREATE_MASK in this
198 * case, and we'll just provide them with a sanitized version of the
199 * passed flags.
200 */
201 flags &= CACHE_CREATE_MASK;
202
203 s = __kmem_cache_alias(memcg, name, size, align, flags, ctor);
204 if (s)
205 goto out_unlock;
206
207 err = -ENOMEM;
208 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
209 if (!s)
210 goto out_unlock;
211
212 s->object_size = s->size = size;
213 s->align = calculate_alignment(flags, align, size);
214 s->ctor = ctor;
215
216 s->name = kstrdup(name, GFP_KERNEL);
217 if (!s->name)
218 goto out_free_cache;
219
220 err = memcg_alloc_cache_params(memcg, s, parent_cache);
221 if (err)
222 goto out_free_cache;
223
224 err = __kmem_cache_create(s, flags);
225 if (err)
226 goto out_free_cache;
227
228 s->refcount = 1;
229 list_add(&s->list, &slab_caches);
230 memcg_register_cache(s);
231
232 out_unlock:
233 mutex_unlock(&slab_mutex);
234 put_online_cpus();
235
236 /*
237 * There is no point in flooding logs with warnings or especially
238 * crashing the system if we fail to create a cache for a memcg. In
239 * this case we will be accounting the memcg allocation to the root
240 * cgroup until we succeed to create its own cache, but it isn't that
241 * critical.
242 */
243 if (err && !memcg) {
244 if (flags & SLAB_PANIC)
245 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
246 name, err);
247 else {
248 printk(KERN_WARNING "kmem_cache_create(%s) failed with error %d",
249 name, err);
250 dump_stack();
251 }
252 return NULL;
253 }
254 return s;
255
256 out_free_cache:
257 memcg_free_cache_params(s);
258 kfree(s->name);
259 kmem_cache_free(kmem_cache, s);
260 goto out_unlock;
261 }
262
263 struct kmem_cache *
264 kmem_cache_create(const char *name, size_t size, size_t align,
265 unsigned long flags, void (*ctor)(void *))
266 {
267 return kmem_cache_create_memcg(NULL, name, size, align, flags, ctor, NULL);
268 }
269 EXPORT_SYMBOL(kmem_cache_create);
270
271 void kmem_cache_destroy(struct kmem_cache *s)
272 {
273 /* Destroy all the children caches if we aren't a memcg cache */
274 kmem_cache_destroy_memcg_children(s);
275
276 get_online_cpus();
277 mutex_lock(&slab_mutex);
278 s->refcount--;
279 if (!s->refcount) {
280 list_del(&s->list);
281
282 if (!__kmem_cache_shutdown(s)) {
283 memcg_unregister_cache(s);
284 mutex_unlock(&slab_mutex);
285 if (s->flags & SLAB_DESTROY_BY_RCU)
286 rcu_barrier();
287
288 memcg_free_cache_params(s);
289 kfree(s->name);
290 kmem_cache_free(kmem_cache, s);
291 } else {
292 list_add(&s->list, &slab_caches);
293 mutex_unlock(&slab_mutex);
294 printk(KERN_ERR "kmem_cache_destroy %s: Slab cache still has objects\n",
295 s->name);
296 dump_stack();
297 }
298 } else {
299 mutex_unlock(&slab_mutex);
300 }
301 put_online_cpus();
302 }
303 EXPORT_SYMBOL(kmem_cache_destroy);
304
305 int slab_is_available(void)
306 {
307 return slab_state >= UP;
308 }
309
310 #ifndef CONFIG_SLOB
311 /* Create a cache during boot when no slab services are available yet */
312 void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
313 unsigned long flags)
314 {
315 int err;
316
317 s->name = name;
318 s->size = s->object_size = size;
319 s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
320 err = __kmem_cache_create(s, flags);
321
322 if (err)
323 panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
324 name, size, err);
325
326 s->refcount = -1; /* Exempt from merging for now */
327 }
328
329 struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
330 unsigned long flags)
331 {
332 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
333
334 if (!s)
335 panic("Out of memory when creating slab %s\n", name);
336
337 create_boot_cache(s, name, size, flags);
338 list_add(&s->list, &slab_caches);
339 s->refcount = 1;
340 return s;
341 }
342
343 struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
344 EXPORT_SYMBOL(kmalloc_caches);
345
346 #ifdef CONFIG_ZONE_DMA
347 struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
348 EXPORT_SYMBOL(kmalloc_dma_caches);
349 #endif
350
351 /*
352 * Conversion table for small slabs sizes / 8 to the index in the
353 * kmalloc array. This is necessary for slabs < 192 since we have non power
354 * of two cache sizes there. The size of larger slabs can be determined using
355 * fls.
356 */
357 static s8 size_index[24] = {
358 3, /* 8 */
359 4, /* 16 */
360 5, /* 24 */
361 5, /* 32 */
362 6, /* 40 */
363 6, /* 48 */
364 6, /* 56 */
365 6, /* 64 */
366 1, /* 72 */
367 1, /* 80 */
368 1, /* 88 */
369 1, /* 96 */
370 7, /* 104 */
371 7, /* 112 */
372 7, /* 120 */
373 7, /* 128 */
374 2, /* 136 */
375 2, /* 144 */
376 2, /* 152 */
377 2, /* 160 */
378 2, /* 168 */
379 2, /* 176 */
380 2, /* 184 */
381 2 /* 192 */
382 };
383
384 static inline int size_index_elem(size_t bytes)
385 {
386 return (bytes - 1) / 8;
387 }
388
389 /*
390 * Find the kmem_cache structure that serves a given size of
391 * allocation
392 */
393 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
394 {
395 int index;
396
397 if (unlikely(size > KMALLOC_MAX_SIZE)) {
398 WARN_ON_ONCE(!(flags & __GFP_NOWARN));
399 return NULL;
400 }
401
402 if (size <= 192) {
403 if (!size)
404 return ZERO_SIZE_PTR;
405
406 index = size_index[size_index_elem(size)];
407 } else
408 index = fls(size - 1);
409
410 #ifdef CONFIG_ZONE_DMA
411 if (unlikely((flags & GFP_DMA)))
412 return kmalloc_dma_caches[index];
413
414 #endif
415 return kmalloc_caches[index];
416 }
417
418 /*
419 * Create the kmalloc array. Some of the regular kmalloc arrays
420 * may already have been created because they were needed to
421 * enable allocations for slab creation.
422 */
423 void __init create_kmalloc_caches(unsigned long flags)
424 {
425 int i;
426
427 /*
428 * Patch up the size_index table if we have strange large alignment
429 * requirements for the kmalloc array. This is only the case for
430 * MIPS it seems. The standard arches will not generate any code here.
431 *
432 * Largest permitted alignment is 256 bytes due to the way we
433 * handle the index determination for the smaller caches.
434 *
435 * Make sure that nothing crazy happens if someone starts tinkering
436 * around with ARCH_KMALLOC_MINALIGN
437 */
438 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
439 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
440
441 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
442 int elem = size_index_elem(i);
443
444 if (elem >= ARRAY_SIZE(size_index))
445 break;
446 size_index[elem] = KMALLOC_SHIFT_LOW;
447 }
448
449 if (KMALLOC_MIN_SIZE >= 64) {
450 /*
451 * The 96 byte size cache is not used if the alignment
452 * is 64 byte.
453 */
454 for (i = 64 + 8; i <= 96; i += 8)
455 size_index[size_index_elem(i)] = 7;
456
457 }
458
459 if (KMALLOC_MIN_SIZE >= 128) {
460 /*
461 * The 192 byte sized cache is not used if the alignment
462 * is 128 byte. Redirect kmalloc to use the 256 byte cache
463 * instead.
464 */
465 for (i = 128 + 8; i <= 192; i += 8)
466 size_index[size_index_elem(i)] = 8;
467 }
468 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
469 if (!kmalloc_caches[i]) {
470 kmalloc_caches[i] = create_kmalloc_cache(NULL,
471 1 << i, flags);
472 }
473
474 /*
475 * Caches that are not of the two-to-the-power-of size.
476 * These have to be created immediately after the
477 * earlier power of two caches
478 */
479 if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
480 kmalloc_caches[1] = create_kmalloc_cache(NULL, 96, flags);
481
482 if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
483 kmalloc_caches[2] = create_kmalloc_cache(NULL, 192, flags);
484 }
485
486 /* Kmalloc array is now usable */
487 slab_state = UP;
488
489 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
490 struct kmem_cache *s = kmalloc_caches[i];
491 char *n;
492
493 if (s) {
494 n = kasprintf(GFP_NOWAIT, "kmalloc-%d", kmalloc_size(i));
495
496 BUG_ON(!n);
497 s->name = n;
498 }
499 }
500
501 #ifdef CONFIG_ZONE_DMA
502 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
503 struct kmem_cache *s = kmalloc_caches[i];
504
505 if (s) {
506 int size = kmalloc_size(i);
507 char *n = kasprintf(GFP_NOWAIT,
508 "dma-kmalloc-%d", size);
509
510 BUG_ON(!n);
511 kmalloc_dma_caches[i] = create_kmalloc_cache(n,
512 size, SLAB_CACHE_DMA | flags);
513 }
514 }
515 #endif
516 }
517 #endif /* !CONFIG_SLOB */
518
519 #ifdef CONFIG_TRACING
520 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
521 {
522 void *ret = kmalloc_order(size, flags, order);
523 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
524 return ret;
525 }
526 EXPORT_SYMBOL(kmalloc_order_trace);
527 #endif
528
529 #ifdef CONFIG_SLABINFO
530
531 #ifdef CONFIG_SLAB
532 #define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
533 #else
534 #define SLABINFO_RIGHTS S_IRUSR
535 #endif
536
537 void print_slabinfo_header(struct seq_file *m)
538 {
539 /*
540 * Output format version, so at least we can change it
541 * without _too_ many complaints.
542 */
543 #ifdef CONFIG_DEBUG_SLAB
544 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
545 #else
546 seq_puts(m, "slabinfo - version: 2.1\n");
547 #endif
548 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
549 "<objperslab> <pagesperslab>");
550 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
551 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
552 #ifdef CONFIG_DEBUG_SLAB
553 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
554 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
555 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
556 #endif
557 seq_putc(m, '\n');
558 }
559
560 static void *s_start(struct seq_file *m, loff_t *pos)
561 {
562 loff_t n = *pos;
563
564 mutex_lock(&slab_mutex);
565 if (!n)
566 print_slabinfo_header(m);
567
568 return seq_list_start(&slab_caches, *pos);
569 }
570
571 void *slab_next(struct seq_file *m, void *p, loff_t *pos)
572 {
573 return seq_list_next(p, &slab_caches, pos);
574 }
575
576 void slab_stop(struct seq_file *m, void *p)
577 {
578 mutex_unlock(&slab_mutex);
579 }
580
581 static void
582 memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
583 {
584 struct kmem_cache *c;
585 struct slabinfo sinfo;
586 int i;
587
588 if (!is_root_cache(s))
589 return;
590
591 for_each_memcg_cache_index(i) {
592 c = cache_from_memcg_idx(s, i);
593 if (!c)
594 continue;
595
596 memset(&sinfo, 0, sizeof(sinfo));
597 get_slabinfo(c, &sinfo);
598
599 info->active_slabs += sinfo.active_slabs;
600 info->num_slabs += sinfo.num_slabs;
601 info->shared_avail += sinfo.shared_avail;
602 info->active_objs += sinfo.active_objs;
603 info->num_objs += sinfo.num_objs;
604 }
605 }
606
607 int cache_show(struct kmem_cache *s, struct seq_file *m)
608 {
609 struct slabinfo sinfo;
610
611 memset(&sinfo, 0, sizeof(sinfo));
612 get_slabinfo(s, &sinfo);
613
614 memcg_accumulate_slabinfo(s, &sinfo);
615
616 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
617 cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
618 sinfo.objects_per_slab, (1 << sinfo.cache_order));
619
620 seq_printf(m, " : tunables %4u %4u %4u",
621 sinfo.limit, sinfo.batchcount, sinfo.shared);
622 seq_printf(m, " : slabdata %6lu %6lu %6lu",
623 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
624 slabinfo_show_stats(m, s);
625 seq_putc(m, '\n');
626 return 0;
627 }
628
629 static int s_show(struct seq_file *m, void *p)
630 {
631 struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
632
633 if (!is_root_cache(s))
634 return 0;
635 return cache_show(s, m);
636 }
637
638 /*
639 * slabinfo_op - iterator that generates /proc/slabinfo
640 *
641 * Output layout:
642 * cache-name
643 * num-active-objs
644 * total-objs
645 * object size
646 * num-active-slabs
647 * total-slabs
648 * num-pages-per-slab
649 * + further values on SMP and with statistics enabled
650 */
651 static const struct seq_operations slabinfo_op = {
652 .start = s_start,
653 .next = slab_next,
654 .stop = slab_stop,
655 .show = s_show,
656 };
657
658 static int slabinfo_open(struct inode *inode, struct file *file)
659 {
660 return seq_open(file, &slabinfo_op);
661 }
662
663 static const struct file_operations proc_slabinfo_operations = {
664 .open = slabinfo_open,
665 .read = seq_read,
666 .write = slabinfo_write,
667 .llseek = seq_lseek,
668 .release = seq_release,
669 };
670
671 static int __init slab_proc_init(void)
672 {
673 proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
674 &proc_slabinfo_operations);
675 return 0;
676 }
677 module_init(slab_proc_init);
678 #endif /* CONFIG_SLABINFO */
This page took 0.043614 seconds and 5 git commands to generate.