slob: Define page struct fields used in mm_types.h
[deliverable/linux.git] / mm / slob.c
1 /*
2 * SLOB Allocator: Simple List Of Blocks
3 *
4 * Matt Mackall <mpm@selenic.com> 12/30/03
5 *
6 * NUMA support by Paul Mundt, 2007.
7 *
8 * How SLOB works:
9 *
10 * The core of SLOB is a traditional K&R style heap allocator, with
11 * support for returning aligned objects. The granularity of this
12 * allocator is as little as 2 bytes, however typically most architectures
13 * will require 4 bytes on 32-bit and 8 bytes on 64-bit.
14 *
15 * The slob heap is a set of linked list of pages from alloc_pages(),
16 * and within each page, there is a singly-linked list of free blocks
17 * (slob_t). The heap is grown on demand. To reduce fragmentation,
18 * heap pages are segregated into three lists, with objects less than
19 * 256 bytes, objects less than 1024 bytes, and all other objects.
20 *
21 * Allocation from heap involves first searching for a page with
22 * sufficient free blocks (using a next-fit-like approach) followed by
23 * a first-fit scan of the page. Deallocation inserts objects back
24 * into the free list in address order, so this is effectively an
25 * address-ordered first fit.
26 *
27 * Above this is an implementation of kmalloc/kfree. Blocks returned
28 * from kmalloc are prepended with a 4-byte header with the kmalloc size.
29 * If kmalloc is asked for objects of PAGE_SIZE or larger, it calls
30 * alloc_pages() directly, allocating compound pages so the page order
31 * does not have to be separately tracked, and also stores the exact
32 * allocation size in page->private so that it can be used to accurately
33 * provide ksize(). These objects are detected in kfree() because slob_page()
34 * is false for them.
35 *
36 * SLAB is emulated on top of SLOB by simply calling constructors and
37 * destructors for every SLAB allocation. Objects are returned with the
38 * 4-byte alignment unless the SLAB_HWCACHE_ALIGN flag is set, in which
39 * case the low-level allocator will fragment blocks to create the proper
40 * alignment. Again, objects of page-size or greater are allocated by
41 * calling alloc_pages(). As SLAB objects know their size, no separate
42 * size bookkeeping is necessary and there is essentially no allocation
43 * space overhead, and compound pages aren't needed for multi-page
44 * allocations.
45 *
46 * NUMA support in SLOB is fairly simplistic, pushing most of the real
47 * logic down to the page allocator, and simply doing the node accounting
48 * on the upper levels. In the event that a node id is explicitly
49 * provided, alloc_pages_exact_node() with the specified node id is used
50 * instead. The common case (or when the node id isn't explicitly provided)
51 * will default to the current node, as per numa_node_id().
52 *
53 * Node aware pages are still inserted in to the global freelist, and
54 * these are scanned for by matching against the node id encoded in the
55 * page flags. As a result, block allocations that can be satisfied from
56 * the freelist will only be done so on pages residing on the same node,
57 * in order to prevent random node placement.
58 */
59
60 #include <linux/kernel.h>
61 #include <linux/slab.h>
62 #include <linux/mm.h>
63 #include <linux/swap.h> /* struct reclaim_state */
64 #include <linux/cache.h>
65 #include <linux/init.h>
66 #include <linux/export.h>
67 #include <linux/rcupdate.h>
68 #include <linux/list.h>
69 #include <linux/kmemleak.h>
70
71 #include <trace/events/kmem.h>
72
73 #include <linux/atomic.h>
74
75 /*
76 * slob_block has a field 'units', which indicates size of block if +ve,
77 * or offset of next block if -ve (in SLOB_UNITs).
78 *
79 * Free blocks of size 1 unit simply contain the offset of the next block.
80 * Those with larger size contain their size in the first SLOB_UNIT of
81 * memory, and the offset of the next free block in the second SLOB_UNIT.
82 */
83 #if PAGE_SIZE <= (32767 * 2)
84 typedef s16 slobidx_t;
85 #else
86 typedef s32 slobidx_t;
87 #endif
88
89 struct slob_block {
90 slobidx_t units;
91 };
92 typedef struct slob_block slob_t;
93
94 /*
95 * free_slob_page: call before a slob_page is returned to the page allocator.
96 */
97 static inline void free_slob_page(struct page *sp)
98 {
99 reset_page_mapcount(sp);
100 sp->mapping = NULL;
101 }
102
103 /*
104 * All partially free slob pages go on these lists.
105 */
106 #define SLOB_BREAK1 256
107 #define SLOB_BREAK2 1024
108 static LIST_HEAD(free_slob_small);
109 static LIST_HEAD(free_slob_medium);
110 static LIST_HEAD(free_slob_large);
111
112 /*
113 * is_slob_page: True for all slob pages (false for bigblock pages)
114 */
115 static inline int is_slob_page(struct page *sp)
116 {
117 return PageSlab(sp);
118 }
119
120 static inline void set_slob_page(struct page *sp)
121 {
122 __SetPageSlab(sp);
123 }
124
125 static inline void clear_slob_page(struct page *sp)
126 {
127 __ClearPageSlab(sp);
128 }
129
130 static inline struct page *slob_page(const void *addr)
131 {
132 return virt_to_page(addr);
133 }
134
135 /*
136 * slob_page_free: true for pages on free_slob_pages list.
137 */
138 static inline int slob_page_free(struct page *sp)
139 {
140 return PageSlobFree(sp);
141 }
142
143 static void set_slob_page_free(struct page *sp, struct list_head *list)
144 {
145 list_add(&sp->list, list);
146 __SetPageSlobFree(sp);
147 }
148
149 static inline void clear_slob_page_free(struct page *sp)
150 {
151 list_del(&sp->list);
152 __ClearPageSlobFree(sp);
153 }
154
155 #define SLOB_UNIT sizeof(slob_t)
156 #define SLOB_UNITS(size) (((size) + SLOB_UNIT - 1)/SLOB_UNIT)
157 #define SLOB_ALIGN L1_CACHE_BYTES
158
159 /*
160 * struct slob_rcu is inserted at the tail of allocated slob blocks, which
161 * were created with a SLAB_DESTROY_BY_RCU slab. slob_rcu is used to free
162 * the block using call_rcu.
163 */
164 struct slob_rcu {
165 struct rcu_head head;
166 int size;
167 };
168
169 /*
170 * slob_lock protects all slob allocator structures.
171 */
172 static DEFINE_SPINLOCK(slob_lock);
173
174 /*
175 * Encode the given size and next info into a free slob block s.
176 */
177 static void set_slob(slob_t *s, slobidx_t size, slob_t *next)
178 {
179 slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
180 slobidx_t offset = next - base;
181
182 if (size > 1) {
183 s[0].units = size;
184 s[1].units = offset;
185 } else
186 s[0].units = -offset;
187 }
188
189 /*
190 * Return the size of a slob block.
191 */
192 static slobidx_t slob_units(slob_t *s)
193 {
194 if (s->units > 0)
195 return s->units;
196 return 1;
197 }
198
199 /*
200 * Return the next free slob block pointer after this one.
201 */
202 static slob_t *slob_next(slob_t *s)
203 {
204 slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
205 slobidx_t next;
206
207 if (s[0].units < 0)
208 next = -s[0].units;
209 else
210 next = s[1].units;
211 return base+next;
212 }
213
214 /*
215 * Returns true if s is the last free block in its page.
216 */
217 static int slob_last(slob_t *s)
218 {
219 return !((unsigned long)slob_next(s) & ~PAGE_MASK);
220 }
221
222 static void *slob_new_pages(gfp_t gfp, int order, int node)
223 {
224 void *page;
225
226 #ifdef CONFIG_NUMA
227 if (node != -1)
228 page = alloc_pages_exact_node(node, gfp, order);
229 else
230 #endif
231 page = alloc_pages(gfp, order);
232
233 if (!page)
234 return NULL;
235
236 return page_address(page);
237 }
238
239 static void slob_free_pages(void *b, int order)
240 {
241 if (current->reclaim_state)
242 current->reclaim_state->reclaimed_slab += 1 << order;
243 free_pages((unsigned long)b, order);
244 }
245
246 /*
247 * Allocate a slob block within a given slob_page sp.
248 */
249 static void *slob_page_alloc(struct page *sp, size_t size, int align)
250 {
251 slob_t *prev, *cur, *aligned = NULL;
252 int delta = 0, units = SLOB_UNITS(size);
253
254 for (prev = NULL, cur = sp->freelist; ; prev = cur, cur = slob_next(cur)) {
255 slobidx_t avail = slob_units(cur);
256
257 if (align) {
258 aligned = (slob_t *)ALIGN((unsigned long)cur, align);
259 delta = aligned - cur;
260 }
261 if (avail >= units + delta) { /* room enough? */
262 slob_t *next;
263
264 if (delta) { /* need to fragment head to align? */
265 next = slob_next(cur);
266 set_slob(aligned, avail - delta, next);
267 set_slob(cur, delta, aligned);
268 prev = cur;
269 cur = aligned;
270 avail = slob_units(cur);
271 }
272
273 next = slob_next(cur);
274 if (avail == units) { /* exact fit? unlink. */
275 if (prev)
276 set_slob(prev, slob_units(prev), next);
277 else
278 sp->freelist = next;
279 } else { /* fragment */
280 if (prev)
281 set_slob(prev, slob_units(prev), cur + units);
282 else
283 sp->freelist = cur + units;
284 set_slob(cur + units, avail - units, next);
285 }
286
287 sp->units -= units;
288 if (!sp->units)
289 clear_slob_page_free(sp);
290 return cur;
291 }
292 if (slob_last(cur))
293 return NULL;
294 }
295 }
296
297 /*
298 * slob_alloc: entry point into the slob allocator.
299 */
300 static void *slob_alloc(size_t size, gfp_t gfp, int align, int node)
301 {
302 struct page *sp;
303 struct list_head *prev;
304 struct list_head *slob_list;
305 slob_t *b = NULL;
306 unsigned long flags;
307
308 if (size < SLOB_BREAK1)
309 slob_list = &free_slob_small;
310 else if (size < SLOB_BREAK2)
311 slob_list = &free_slob_medium;
312 else
313 slob_list = &free_slob_large;
314
315 spin_lock_irqsave(&slob_lock, flags);
316 /* Iterate through each partially free page, try to find room */
317 list_for_each_entry(sp, slob_list, list) {
318 #ifdef CONFIG_NUMA
319 /*
320 * If there's a node specification, search for a partial
321 * page with a matching node id in the freelist.
322 */
323 if (node != -1 && page_to_nid(sp) != node)
324 continue;
325 #endif
326 /* Enough room on this page? */
327 if (sp->units < SLOB_UNITS(size))
328 continue;
329
330 /* Attempt to alloc */
331 prev = sp->list.prev;
332 b = slob_page_alloc(sp, size, align);
333 if (!b)
334 continue;
335
336 /* Improve fragment distribution and reduce our average
337 * search time by starting our next search here. (see
338 * Knuth vol 1, sec 2.5, pg 449) */
339 if (prev != slob_list->prev &&
340 slob_list->next != prev->next)
341 list_move_tail(slob_list, prev->next);
342 break;
343 }
344 spin_unlock_irqrestore(&slob_lock, flags);
345
346 /* Not enough space: must allocate a new page */
347 if (!b) {
348 b = slob_new_pages(gfp & ~__GFP_ZERO, 0, node);
349 if (!b)
350 return NULL;
351 sp = slob_page(b);
352 set_slob_page(sp);
353
354 spin_lock_irqsave(&slob_lock, flags);
355 sp->units = SLOB_UNITS(PAGE_SIZE);
356 sp->freelist = b;
357 INIT_LIST_HEAD(&sp->list);
358 set_slob(b, SLOB_UNITS(PAGE_SIZE), b + SLOB_UNITS(PAGE_SIZE));
359 set_slob_page_free(sp, slob_list);
360 b = slob_page_alloc(sp, size, align);
361 BUG_ON(!b);
362 spin_unlock_irqrestore(&slob_lock, flags);
363 }
364 if (unlikely((gfp & __GFP_ZERO) && b))
365 memset(b, 0, size);
366 return b;
367 }
368
369 /*
370 * slob_free: entry point into the slob allocator.
371 */
372 static void slob_free(void *block, int size)
373 {
374 struct page *sp;
375 slob_t *prev, *next, *b = (slob_t *)block;
376 slobidx_t units;
377 unsigned long flags;
378 struct list_head *slob_list;
379
380 if (unlikely(ZERO_OR_NULL_PTR(block)))
381 return;
382 BUG_ON(!size);
383
384 sp = slob_page(block);
385 units = SLOB_UNITS(size);
386
387 spin_lock_irqsave(&slob_lock, flags);
388
389 if (sp->units + units == SLOB_UNITS(PAGE_SIZE)) {
390 /* Go directly to page allocator. Do not pass slob allocator */
391 if (slob_page_free(sp))
392 clear_slob_page_free(sp);
393 spin_unlock_irqrestore(&slob_lock, flags);
394 clear_slob_page(sp);
395 free_slob_page(sp);
396 slob_free_pages(b, 0);
397 return;
398 }
399
400 if (!slob_page_free(sp)) {
401 /* This slob page is about to become partially free. Easy! */
402 sp->units = units;
403 sp->freelist = b;
404 set_slob(b, units,
405 (void *)((unsigned long)(b +
406 SLOB_UNITS(PAGE_SIZE)) & PAGE_MASK));
407 if (size < SLOB_BREAK1)
408 slob_list = &free_slob_small;
409 else if (size < SLOB_BREAK2)
410 slob_list = &free_slob_medium;
411 else
412 slob_list = &free_slob_large;
413 set_slob_page_free(sp, slob_list);
414 goto out;
415 }
416
417 /*
418 * Otherwise the page is already partially free, so find reinsertion
419 * point.
420 */
421 sp->units += units;
422
423 if (b < (slob_t *)sp->freelist) {
424 if (b + units == sp->freelist) {
425 units += slob_units(sp->freelist);
426 sp->freelist = slob_next(sp->freelist);
427 }
428 set_slob(b, units, sp->freelist);
429 sp->freelist = b;
430 } else {
431 prev = sp->freelist;
432 next = slob_next(prev);
433 while (b > next) {
434 prev = next;
435 next = slob_next(prev);
436 }
437
438 if (!slob_last(prev) && b + units == next) {
439 units += slob_units(next);
440 set_slob(b, units, slob_next(next));
441 } else
442 set_slob(b, units, next);
443
444 if (prev + slob_units(prev) == b) {
445 units = slob_units(b) + slob_units(prev);
446 set_slob(prev, units, slob_next(b));
447 } else
448 set_slob(prev, slob_units(prev), b);
449 }
450 out:
451 spin_unlock_irqrestore(&slob_lock, flags);
452 }
453
454 /*
455 * End of slob allocator proper. Begin kmem_cache_alloc and kmalloc frontend.
456 */
457
458 void *__kmalloc_node(size_t size, gfp_t gfp, int node)
459 {
460 unsigned int *m;
461 int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
462 void *ret;
463
464 gfp &= gfp_allowed_mask;
465
466 lockdep_trace_alloc(gfp);
467
468 if (size < PAGE_SIZE - align) {
469 if (!size)
470 return ZERO_SIZE_PTR;
471
472 m = slob_alloc(size + align, gfp, align, node);
473
474 if (!m)
475 return NULL;
476 *m = size;
477 ret = (void *)m + align;
478
479 trace_kmalloc_node(_RET_IP_, ret,
480 size, size + align, gfp, node);
481 } else {
482 unsigned int order = get_order(size);
483
484 if (likely(order))
485 gfp |= __GFP_COMP;
486 ret = slob_new_pages(gfp, order, node);
487 if (ret) {
488 struct page *page;
489 page = virt_to_page(ret);
490 page->private = size;
491 }
492
493 trace_kmalloc_node(_RET_IP_, ret,
494 size, PAGE_SIZE << order, gfp, node);
495 }
496
497 kmemleak_alloc(ret, size, 1, gfp);
498 return ret;
499 }
500 EXPORT_SYMBOL(__kmalloc_node);
501
502 void kfree(const void *block)
503 {
504 struct page *sp;
505
506 trace_kfree(_RET_IP_, block);
507
508 if (unlikely(ZERO_OR_NULL_PTR(block)))
509 return;
510 kmemleak_free(block);
511
512 sp = slob_page(block);
513 if (is_slob_page(sp)) {
514 int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
515 unsigned int *m = (unsigned int *)(block - align);
516 slob_free(m, *m + align);
517 } else
518 put_page(sp);
519 }
520 EXPORT_SYMBOL(kfree);
521
522 /* can't use ksize for kmem_cache_alloc memory, only kmalloc */
523 size_t ksize(const void *block)
524 {
525 struct page *sp;
526
527 BUG_ON(!block);
528 if (unlikely(block == ZERO_SIZE_PTR))
529 return 0;
530
531 sp = slob_page(block);
532 if (is_slob_page(sp)) {
533 int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
534 unsigned int *m = (unsigned int *)(block - align);
535 return SLOB_UNITS(*m) * SLOB_UNIT;
536 } else
537 return sp->private;
538 }
539 EXPORT_SYMBOL(ksize);
540
541 struct kmem_cache {
542 unsigned int size, align;
543 unsigned long flags;
544 const char *name;
545 void (*ctor)(void *);
546 };
547
548 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
549 size_t align, unsigned long flags, void (*ctor)(void *))
550 {
551 struct kmem_cache *c;
552
553 c = slob_alloc(sizeof(struct kmem_cache),
554 GFP_KERNEL, ARCH_KMALLOC_MINALIGN, -1);
555
556 if (c) {
557 c->name = name;
558 c->size = size;
559 if (flags & SLAB_DESTROY_BY_RCU) {
560 /* leave room for rcu footer at the end of object */
561 c->size += sizeof(struct slob_rcu);
562 }
563 c->flags = flags;
564 c->ctor = ctor;
565 /* ignore alignment unless it's forced */
566 c->align = (flags & SLAB_HWCACHE_ALIGN) ? SLOB_ALIGN : 0;
567 if (c->align < ARCH_SLAB_MINALIGN)
568 c->align = ARCH_SLAB_MINALIGN;
569 if (c->align < align)
570 c->align = align;
571 } else if (flags & SLAB_PANIC)
572 panic("Cannot create slab cache %s\n", name);
573
574 kmemleak_alloc(c, sizeof(struct kmem_cache), 1, GFP_KERNEL);
575 return c;
576 }
577 EXPORT_SYMBOL(kmem_cache_create);
578
579 void kmem_cache_destroy(struct kmem_cache *c)
580 {
581 kmemleak_free(c);
582 if (c->flags & SLAB_DESTROY_BY_RCU)
583 rcu_barrier();
584 slob_free(c, sizeof(struct kmem_cache));
585 }
586 EXPORT_SYMBOL(kmem_cache_destroy);
587
588 void *kmem_cache_alloc_node(struct kmem_cache *c, gfp_t flags, int node)
589 {
590 void *b;
591
592 flags &= gfp_allowed_mask;
593
594 lockdep_trace_alloc(flags);
595
596 if (c->size < PAGE_SIZE) {
597 b = slob_alloc(c->size, flags, c->align, node);
598 trace_kmem_cache_alloc_node(_RET_IP_, b, c->size,
599 SLOB_UNITS(c->size) * SLOB_UNIT,
600 flags, node);
601 } else {
602 b = slob_new_pages(flags, get_order(c->size), node);
603 trace_kmem_cache_alloc_node(_RET_IP_, b, c->size,
604 PAGE_SIZE << get_order(c->size),
605 flags, node);
606 }
607
608 if (c->ctor)
609 c->ctor(b);
610
611 kmemleak_alloc_recursive(b, c->size, 1, c->flags, flags);
612 return b;
613 }
614 EXPORT_SYMBOL(kmem_cache_alloc_node);
615
616 static void __kmem_cache_free(void *b, int size)
617 {
618 if (size < PAGE_SIZE)
619 slob_free(b, size);
620 else
621 slob_free_pages(b, get_order(size));
622 }
623
624 static void kmem_rcu_free(struct rcu_head *head)
625 {
626 struct slob_rcu *slob_rcu = (struct slob_rcu *)head;
627 void *b = (void *)slob_rcu - (slob_rcu->size - sizeof(struct slob_rcu));
628
629 __kmem_cache_free(b, slob_rcu->size);
630 }
631
632 void kmem_cache_free(struct kmem_cache *c, void *b)
633 {
634 kmemleak_free_recursive(b, c->flags);
635 if (unlikely(c->flags & SLAB_DESTROY_BY_RCU)) {
636 struct slob_rcu *slob_rcu;
637 slob_rcu = b + (c->size - sizeof(struct slob_rcu));
638 slob_rcu->size = c->size;
639 call_rcu(&slob_rcu->head, kmem_rcu_free);
640 } else {
641 __kmem_cache_free(b, c->size);
642 }
643
644 trace_kmem_cache_free(_RET_IP_, b);
645 }
646 EXPORT_SYMBOL(kmem_cache_free);
647
648 unsigned int kmem_cache_size(struct kmem_cache *c)
649 {
650 return c->size;
651 }
652 EXPORT_SYMBOL(kmem_cache_size);
653
654 int kmem_cache_shrink(struct kmem_cache *d)
655 {
656 return 0;
657 }
658 EXPORT_SYMBOL(kmem_cache_shrink);
659
660 static unsigned int slob_ready __read_mostly;
661
662 int slab_is_available(void)
663 {
664 return slob_ready;
665 }
666
667 void __init kmem_cache_init(void)
668 {
669 slob_ready = 1;
670 }
671
672 void __init kmem_cache_init_late(void)
673 {
674 /* Nothing to do */
675 }
This page took 0.064037 seconds and 6 git commands to generate.