lib/percpu_ida.c: remove redundant includes
[deliverable/linux.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
10 */
11
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include "slab.h"
20 #include <linux/proc_fs.h>
21 #include <linux/notifier.h>
22 #include <linux/seq_file.h>
23 #include <linux/kmemcheck.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/memory.h>
31 #include <linux/math64.h>
32 #include <linux/fault-inject.h>
33 #include <linux/stacktrace.h>
34 #include <linux/prefetch.h>
35 #include <linux/memcontrol.h>
36
37 #include <trace/events/kmem.h>
38
39 #include "internal.h"
40
41 /*
42 * Lock order:
43 * 1. slab_mutex (Global Mutex)
44 * 2. node->list_lock
45 * 3. slab_lock(page) (Only on some arches and for debugging)
46 *
47 * slab_mutex
48 *
49 * The role of the slab_mutex is to protect the list of all the slabs
50 * and to synchronize major metadata changes to slab cache structures.
51 *
52 * The slab_lock is only used for debugging and on arches that do not
53 * have the ability to do a cmpxchg_double. It only protects the second
54 * double word in the page struct. Meaning
55 * A. page->freelist -> List of object free in a page
56 * B. page->counters -> Counters of objects
57 * C. page->frozen -> frozen state
58 *
59 * If a slab is frozen then it is exempt from list management. It is not
60 * on any list. The processor that froze the slab is the one who can
61 * perform list operations on the page. Other processors may put objects
62 * onto the freelist but the processor that froze the slab is the only
63 * one that can retrieve the objects from the page's freelist.
64 *
65 * The list_lock protects the partial and full list on each node and
66 * the partial slab counter. If taken then no new slabs may be added or
67 * removed from the lists nor make the number of partial slabs be modified.
68 * (Note that the total number of slabs is an atomic value that may be
69 * modified without taking the list lock).
70 *
71 * The list_lock is a centralized lock and thus we avoid taking it as
72 * much as possible. As long as SLUB does not have to handle partial
73 * slabs, operations can continue without any centralized lock. F.e.
74 * allocating a long series of objects that fill up slabs does not require
75 * the list lock.
76 * Interrupts are disabled during allocation and deallocation in order to
77 * make the slab allocator safe to use in the context of an irq. In addition
78 * interrupts are disabled to ensure that the processor does not change
79 * while handling per_cpu slabs, due to kernel preemption.
80 *
81 * SLUB assigns one slab for allocation to each processor.
82 * Allocations only occur from these slabs called cpu slabs.
83 *
84 * Slabs with free elements are kept on a partial list and during regular
85 * operations no list for full slabs is used. If an object in a full slab is
86 * freed then the slab will show up again on the partial lists.
87 * We track full slabs for debugging purposes though because otherwise we
88 * cannot scan all objects.
89 *
90 * Slabs are freed when they become empty. Teardown and setup is
91 * minimal so we rely on the page allocators per cpu caches for
92 * fast frees and allocs.
93 *
94 * Overloading of page flags that are otherwise used for LRU management.
95 *
96 * PageActive The slab is frozen and exempt from list processing.
97 * This means that the slab is dedicated to a purpose
98 * such as satisfying allocations for a specific
99 * processor. Objects may be freed in the slab while
100 * it is frozen but slab_free will then skip the usual
101 * list operations. It is up to the processor holding
102 * the slab to integrate the slab into the slab lists
103 * when the slab is no longer needed.
104 *
105 * One use of this flag is to mark slabs that are
106 * used for allocations. Then such a slab becomes a cpu
107 * slab. The cpu slab may be equipped with an additional
108 * freelist that allows lockless access to
109 * free objects in addition to the regular freelist
110 * that requires the slab lock.
111 *
112 * PageError Slab requires special handling due to debug
113 * options set. This moves slab handling out of
114 * the fast path and disables lockless freelists.
115 */
116
117 static inline int kmem_cache_debug(struct kmem_cache *s)
118 {
119 #ifdef CONFIG_SLUB_DEBUG
120 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
121 #else
122 return 0;
123 #endif
124 }
125
126 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
127 {
128 #ifdef CONFIG_SLUB_CPU_PARTIAL
129 return !kmem_cache_debug(s);
130 #else
131 return false;
132 #endif
133 }
134
135 /*
136 * Issues still to be resolved:
137 *
138 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
139 *
140 * - Variable sizing of the per node arrays
141 */
142
143 /* Enable to test recovery from slab corruption on boot */
144 #undef SLUB_RESILIENCY_TEST
145
146 /* Enable to log cmpxchg failures */
147 #undef SLUB_DEBUG_CMPXCHG
148
149 /*
150 * Mininum number of partial slabs. These will be left on the partial
151 * lists even if they are empty. kmem_cache_shrink may reclaim them.
152 */
153 #define MIN_PARTIAL 5
154
155 /*
156 * Maximum number of desirable partial slabs.
157 * The existence of more partial slabs makes kmem_cache_shrink
158 * sort the partial list by the number of objects in use.
159 */
160 #define MAX_PARTIAL 10
161
162 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
163 SLAB_POISON | SLAB_STORE_USER)
164
165 /*
166 * Debugging flags that require metadata to be stored in the slab. These get
167 * disabled when slub_debug=O is used and a cache's min order increases with
168 * metadata.
169 */
170 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
171
172 #define OO_SHIFT 16
173 #define OO_MASK ((1 << OO_SHIFT) - 1)
174 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
175
176 /* Internal SLUB flags */
177 #define __OBJECT_POISON 0x80000000UL /* Poison object */
178 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
179
180 #ifdef CONFIG_SMP
181 static struct notifier_block slab_notifier;
182 #endif
183
184 /*
185 * Tracking user of a slab.
186 */
187 #define TRACK_ADDRS_COUNT 16
188 struct track {
189 unsigned long addr; /* Called from address */
190 #ifdef CONFIG_STACKTRACE
191 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
192 #endif
193 int cpu; /* Was running on cpu */
194 int pid; /* Pid context */
195 unsigned long when; /* When did the operation occur */
196 };
197
198 enum track_item { TRACK_ALLOC, TRACK_FREE };
199
200 #ifdef CONFIG_SYSFS
201 static int sysfs_slab_add(struct kmem_cache *);
202 static int sysfs_slab_alias(struct kmem_cache *, const char *);
203 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
204 #else
205 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
206 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
207 { return 0; }
208 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
209 #endif
210
211 static inline void stat(const struct kmem_cache *s, enum stat_item si)
212 {
213 #ifdef CONFIG_SLUB_STATS
214 /*
215 * The rmw is racy on a preemptible kernel but this is acceptable, so
216 * avoid this_cpu_add()'s irq-disable overhead.
217 */
218 raw_cpu_inc(s->cpu_slab->stat[si]);
219 #endif
220 }
221
222 /********************************************************************
223 * Core slab cache functions
224 *******************************************************************/
225
226 /* Verify that a pointer has an address that is valid within a slab page */
227 static inline int check_valid_pointer(struct kmem_cache *s,
228 struct page *page, const void *object)
229 {
230 void *base;
231
232 if (!object)
233 return 1;
234
235 base = page_address(page);
236 if (object < base || object >= base + page->objects * s->size ||
237 (object - base) % s->size) {
238 return 0;
239 }
240
241 return 1;
242 }
243
244 static inline void *get_freepointer(struct kmem_cache *s, void *object)
245 {
246 return *(void **)(object + s->offset);
247 }
248
249 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
250 {
251 prefetch(object + s->offset);
252 }
253
254 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
255 {
256 void *p;
257
258 #ifdef CONFIG_DEBUG_PAGEALLOC
259 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
260 #else
261 p = get_freepointer(s, object);
262 #endif
263 return p;
264 }
265
266 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
267 {
268 *(void **)(object + s->offset) = fp;
269 }
270
271 /* Loop over all objects in a slab */
272 #define for_each_object(__p, __s, __addr, __objects) \
273 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
274 __p += (__s)->size)
275
276 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
277 for (__p = (__addr), __idx = 1; __idx <= __objects;\
278 __p += (__s)->size, __idx++)
279
280 /* Determine object index from a given position */
281 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
282 {
283 return (p - addr) / s->size;
284 }
285
286 static inline size_t slab_ksize(const struct kmem_cache *s)
287 {
288 #ifdef CONFIG_SLUB_DEBUG
289 /*
290 * Debugging requires use of the padding between object
291 * and whatever may come after it.
292 */
293 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
294 return s->object_size;
295
296 #endif
297 /*
298 * If we have the need to store the freelist pointer
299 * back there or track user information then we can
300 * only use the space before that information.
301 */
302 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
303 return s->inuse;
304 /*
305 * Else we can use all the padding etc for the allocation
306 */
307 return s->size;
308 }
309
310 static inline int order_objects(int order, unsigned long size, int reserved)
311 {
312 return ((PAGE_SIZE << order) - reserved) / size;
313 }
314
315 static inline struct kmem_cache_order_objects oo_make(int order,
316 unsigned long size, int reserved)
317 {
318 struct kmem_cache_order_objects x = {
319 (order << OO_SHIFT) + order_objects(order, size, reserved)
320 };
321
322 return x;
323 }
324
325 static inline int oo_order(struct kmem_cache_order_objects x)
326 {
327 return x.x >> OO_SHIFT;
328 }
329
330 static inline int oo_objects(struct kmem_cache_order_objects x)
331 {
332 return x.x & OO_MASK;
333 }
334
335 /*
336 * Per slab locking using the pagelock
337 */
338 static __always_inline void slab_lock(struct page *page)
339 {
340 bit_spin_lock(PG_locked, &page->flags);
341 }
342
343 static __always_inline void slab_unlock(struct page *page)
344 {
345 __bit_spin_unlock(PG_locked, &page->flags);
346 }
347
348 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
349 {
350 struct page tmp;
351 tmp.counters = counters_new;
352 /*
353 * page->counters can cover frozen/inuse/objects as well
354 * as page->_count. If we assign to ->counters directly
355 * we run the risk of losing updates to page->_count, so
356 * be careful and only assign to the fields we need.
357 */
358 page->frozen = tmp.frozen;
359 page->inuse = tmp.inuse;
360 page->objects = tmp.objects;
361 }
362
363 /* Interrupts must be disabled (for the fallback code to work right) */
364 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
365 void *freelist_old, unsigned long counters_old,
366 void *freelist_new, unsigned long counters_new,
367 const char *n)
368 {
369 VM_BUG_ON(!irqs_disabled());
370 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
371 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
372 if (s->flags & __CMPXCHG_DOUBLE) {
373 if (cmpxchg_double(&page->freelist, &page->counters,
374 freelist_old, counters_old,
375 freelist_new, counters_new))
376 return 1;
377 } else
378 #endif
379 {
380 slab_lock(page);
381 if (page->freelist == freelist_old &&
382 page->counters == counters_old) {
383 page->freelist = freelist_new;
384 set_page_slub_counters(page, counters_new);
385 slab_unlock(page);
386 return 1;
387 }
388 slab_unlock(page);
389 }
390
391 cpu_relax();
392 stat(s, CMPXCHG_DOUBLE_FAIL);
393
394 #ifdef SLUB_DEBUG_CMPXCHG
395 pr_info("%s %s: cmpxchg double redo ", n, s->name);
396 #endif
397
398 return 0;
399 }
400
401 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
402 void *freelist_old, unsigned long counters_old,
403 void *freelist_new, unsigned long counters_new,
404 const char *n)
405 {
406 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
407 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
408 if (s->flags & __CMPXCHG_DOUBLE) {
409 if (cmpxchg_double(&page->freelist, &page->counters,
410 freelist_old, counters_old,
411 freelist_new, counters_new))
412 return 1;
413 } else
414 #endif
415 {
416 unsigned long flags;
417
418 local_irq_save(flags);
419 slab_lock(page);
420 if (page->freelist == freelist_old &&
421 page->counters == counters_old) {
422 page->freelist = freelist_new;
423 set_page_slub_counters(page, counters_new);
424 slab_unlock(page);
425 local_irq_restore(flags);
426 return 1;
427 }
428 slab_unlock(page);
429 local_irq_restore(flags);
430 }
431
432 cpu_relax();
433 stat(s, CMPXCHG_DOUBLE_FAIL);
434
435 #ifdef SLUB_DEBUG_CMPXCHG
436 pr_info("%s %s: cmpxchg double redo ", n, s->name);
437 #endif
438
439 return 0;
440 }
441
442 #ifdef CONFIG_SLUB_DEBUG
443 /*
444 * Determine a map of object in use on a page.
445 *
446 * Node listlock must be held to guarantee that the page does
447 * not vanish from under us.
448 */
449 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
450 {
451 void *p;
452 void *addr = page_address(page);
453
454 for (p = page->freelist; p; p = get_freepointer(s, p))
455 set_bit(slab_index(p, s, addr), map);
456 }
457
458 /*
459 * Debug settings:
460 */
461 #ifdef CONFIG_SLUB_DEBUG_ON
462 static int slub_debug = DEBUG_DEFAULT_FLAGS;
463 #else
464 static int slub_debug;
465 #endif
466
467 static char *slub_debug_slabs;
468 static int disable_higher_order_debug;
469
470 /*
471 * Object debugging
472 */
473 static void print_section(char *text, u8 *addr, unsigned int length)
474 {
475 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
476 length, 1);
477 }
478
479 static struct track *get_track(struct kmem_cache *s, void *object,
480 enum track_item alloc)
481 {
482 struct track *p;
483
484 if (s->offset)
485 p = object + s->offset + sizeof(void *);
486 else
487 p = object + s->inuse;
488
489 return p + alloc;
490 }
491
492 static void set_track(struct kmem_cache *s, void *object,
493 enum track_item alloc, unsigned long addr)
494 {
495 struct track *p = get_track(s, object, alloc);
496
497 if (addr) {
498 #ifdef CONFIG_STACKTRACE
499 struct stack_trace trace;
500 int i;
501
502 trace.nr_entries = 0;
503 trace.max_entries = TRACK_ADDRS_COUNT;
504 trace.entries = p->addrs;
505 trace.skip = 3;
506 save_stack_trace(&trace);
507
508 /* See rant in lockdep.c */
509 if (trace.nr_entries != 0 &&
510 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
511 trace.nr_entries--;
512
513 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
514 p->addrs[i] = 0;
515 #endif
516 p->addr = addr;
517 p->cpu = smp_processor_id();
518 p->pid = current->pid;
519 p->when = jiffies;
520 } else
521 memset(p, 0, sizeof(struct track));
522 }
523
524 static void init_tracking(struct kmem_cache *s, void *object)
525 {
526 if (!(s->flags & SLAB_STORE_USER))
527 return;
528
529 set_track(s, object, TRACK_FREE, 0UL);
530 set_track(s, object, TRACK_ALLOC, 0UL);
531 }
532
533 static void print_track(const char *s, struct track *t)
534 {
535 if (!t->addr)
536 return;
537
538 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
539 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
540 #ifdef CONFIG_STACKTRACE
541 {
542 int i;
543 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
544 if (t->addrs[i])
545 pr_err("\t%pS\n", (void *)t->addrs[i]);
546 else
547 break;
548 }
549 #endif
550 }
551
552 static void print_tracking(struct kmem_cache *s, void *object)
553 {
554 if (!(s->flags & SLAB_STORE_USER))
555 return;
556
557 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
558 print_track("Freed", get_track(s, object, TRACK_FREE));
559 }
560
561 static void print_page_info(struct page *page)
562 {
563 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
564 page, page->objects, page->inuse, page->freelist, page->flags);
565
566 }
567
568 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
569 {
570 struct va_format vaf;
571 va_list args;
572
573 va_start(args, fmt);
574 vaf.fmt = fmt;
575 vaf.va = &args;
576 pr_err("=============================================================================\n");
577 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
578 pr_err("-----------------------------------------------------------------------------\n\n");
579
580 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
581 va_end(args);
582 }
583
584 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
585 {
586 struct va_format vaf;
587 va_list args;
588
589 va_start(args, fmt);
590 vaf.fmt = fmt;
591 vaf.va = &args;
592 pr_err("FIX %s: %pV\n", s->name, &vaf);
593 va_end(args);
594 }
595
596 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
597 {
598 unsigned int off; /* Offset of last byte */
599 u8 *addr = page_address(page);
600
601 print_tracking(s, p);
602
603 print_page_info(page);
604
605 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
606 p, p - addr, get_freepointer(s, p));
607
608 if (p > addr + 16)
609 print_section("Bytes b4 ", p - 16, 16);
610
611 print_section("Object ", p, min_t(unsigned long, s->object_size,
612 PAGE_SIZE));
613 if (s->flags & SLAB_RED_ZONE)
614 print_section("Redzone ", p + s->object_size,
615 s->inuse - s->object_size);
616
617 if (s->offset)
618 off = s->offset + sizeof(void *);
619 else
620 off = s->inuse;
621
622 if (s->flags & SLAB_STORE_USER)
623 off += 2 * sizeof(struct track);
624
625 if (off != s->size)
626 /* Beginning of the filler is the free pointer */
627 print_section("Padding ", p + off, s->size - off);
628
629 dump_stack();
630 }
631
632 static void object_err(struct kmem_cache *s, struct page *page,
633 u8 *object, char *reason)
634 {
635 slab_bug(s, "%s", reason);
636 print_trailer(s, page, object);
637 }
638
639 static void slab_err(struct kmem_cache *s, struct page *page,
640 const char *fmt, ...)
641 {
642 va_list args;
643 char buf[100];
644
645 va_start(args, fmt);
646 vsnprintf(buf, sizeof(buf), fmt, args);
647 va_end(args);
648 slab_bug(s, "%s", buf);
649 print_page_info(page);
650 dump_stack();
651 }
652
653 static void init_object(struct kmem_cache *s, void *object, u8 val)
654 {
655 u8 *p = object;
656
657 if (s->flags & __OBJECT_POISON) {
658 memset(p, POISON_FREE, s->object_size - 1);
659 p[s->object_size - 1] = POISON_END;
660 }
661
662 if (s->flags & SLAB_RED_ZONE)
663 memset(p + s->object_size, val, s->inuse - s->object_size);
664 }
665
666 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
667 void *from, void *to)
668 {
669 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
670 memset(from, data, to - from);
671 }
672
673 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
674 u8 *object, char *what,
675 u8 *start, unsigned int value, unsigned int bytes)
676 {
677 u8 *fault;
678 u8 *end;
679
680 fault = memchr_inv(start, value, bytes);
681 if (!fault)
682 return 1;
683
684 end = start + bytes;
685 while (end > fault && end[-1] == value)
686 end--;
687
688 slab_bug(s, "%s overwritten", what);
689 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
690 fault, end - 1, fault[0], value);
691 print_trailer(s, page, object);
692
693 restore_bytes(s, what, value, fault, end);
694 return 0;
695 }
696
697 /*
698 * Object layout:
699 *
700 * object address
701 * Bytes of the object to be managed.
702 * If the freepointer may overlay the object then the free
703 * pointer is the first word of the object.
704 *
705 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
706 * 0xa5 (POISON_END)
707 *
708 * object + s->object_size
709 * Padding to reach word boundary. This is also used for Redzoning.
710 * Padding is extended by another word if Redzoning is enabled and
711 * object_size == inuse.
712 *
713 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
714 * 0xcc (RED_ACTIVE) for objects in use.
715 *
716 * object + s->inuse
717 * Meta data starts here.
718 *
719 * A. Free pointer (if we cannot overwrite object on free)
720 * B. Tracking data for SLAB_STORE_USER
721 * C. Padding to reach required alignment boundary or at mininum
722 * one word if debugging is on to be able to detect writes
723 * before the word boundary.
724 *
725 * Padding is done using 0x5a (POISON_INUSE)
726 *
727 * object + s->size
728 * Nothing is used beyond s->size.
729 *
730 * If slabcaches are merged then the object_size and inuse boundaries are mostly
731 * ignored. And therefore no slab options that rely on these boundaries
732 * may be used with merged slabcaches.
733 */
734
735 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
736 {
737 unsigned long off = s->inuse; /* The end of info */
738
739 if (s->offset)
740 /* Freepointer is placed after the object. */
741 off += sizeof(void *);
742
743 if (s->flags & SLAB_STORE_USER)
744 /* We also have user information there */
745 off += 2 * sizeof(struct track);
746
747 if (s->size == off)
748 return 1;
749
750 return check_bytes_and_report(s, page, p, "Object padding",
751 p + off, POISON_INUSE, s->size - off);
752 }
753
754 /* Check the pad bytes at the end of a slab page */
755 static int slab_pad_check(struct kmem_cache *s, struct page *page)
756 {
757 u8 *start;
758 u8 *fault;
759 u8 *end;
760 int length;
761 int remainder;
762
763 if (!(s->flags & SLAB_POISON))
764 return 1;
765
766 start = page_address(page);
767 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
768 end = start + length;
769 remainder = length % s->size;
770 if (!remainder)
771 return 1;
772
773 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
774 if (!fault)
775 return 1;
776 while (end > fault && end[-1] == POISON_INUSE)
777 end--;
778
779 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
780 print_section("Padding ", end - remainder, remainder);
781
782 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
783 return 0;
784 }
785
786 static int check_object(struct kmem_cache *s, struct page *page,
787 void *object, u8 val)
788 {
789 u8 *p = object;
790 u8 *endobject = object + s->object_size;
791
792 if (s->flags & SLAB_RED_ZONE) {
793 if (!check_bytes_and_report(s, page, object, "Redzone",
794 endobject, val, s->inuse - s->object_size))
795 return 0;
796 } else {
797 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
798 check_bytes_and_report(s, page, p, "Alignment padding",
799 endobject, POISON_INUSE,
800 s->inuse - s->object_size);
801 }
802 }
803
804 if (s->flags & SLAB_POISON) {
805 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
806 (!check_bytes_and_report(s, page, p, "Poison", p,
807 POISON_FREE, s->object_size - 1) ||
808 !check_bytes_and_report(s, page, p, "Poison",
809 p + s->object_size - 1, POISON_END, 1)))
810 return 0;
811 /*
812 * check_pad_bytes cleans up on its own.
813 */
814 check_pad_bytes(s, page, p);
815 }
816
817 if (!s->offset && val == SLUB_RED_ACTIVE)
818 /*
819 * Object and freepointer overlap. Cannot check
820 * freepointer while object is allocated.
821 */
822 return 1;
823
824 /* Check free pointer validity */
825 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
826 object_err(s, page, p, "Freepointer corrupt");
827 /*
828 * No choice but to zap it and thus lose the remainder
829 * of the free objects in this slab. May cause
830 * another error because the object count is now wrong.
831 */
832 set_freepointer(s, p, NULL);
833 return 0;
834 }
835 return 1;
836 }
837
838 static int check_slab(struct kmem_cache *s, struct page *page)
839 {
840 int maxobj;
841
842 VM_BUG_ON(!irqs_disabled());
843
844 if (!PageSlab(page)) {
845 slab_err(s, page, "Not a valid slab page");
846 return 0;
847 }
848
849 maxobj = order_objects(compound_order(page), s->size, s->reserved);
850 if (page->objects > maxobj) {
851 slab_err(s, page, "objects %u > max %u",
852 page->objects, maxobj);
853 return 0;
854 }
855 if (page->inuse > page->objects) {
856 slab_err(s, page, "inuse %u > max %u",
857 page->inuse, page->objects);
858 return 0;
859 }
860 /* Slab_pad_check fixes things up after itself */
861 slab_pad_check(s, page);
862 return 1;
863 }
864
865 /*
866 * Determine if a certain object on a page is on the freelist. Must hold the
867 * slab lock to guarantee that the chains are in a consistent state.
868 */
869 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
870 {
871 int nr = 0;
872 void *fp;
873 void *object = NULL;
874 int max_objects;
875
876 fp = page->freelist;
877 while (fp && nr <= page->objects) {
878 if (fp == search)
879 return 1;
880 if (!check_valid_pointer(s, page, fp)) {
881 if (object) {
882 object_err(s, page, object,
883 "Freechain corrupt");
884 set_freepointer(s, object, NULL);
885 } else {
886 slab_err(s, page, "Freepointer corrupt");
887 page->freelist = NULL;
888 page->inuse = page->objects;
889 slab_fix(s, "Freelist cleared");
890 return 0;
891 }
892 break;
893 }
894 object = fp;
895 fp = get_freepointer(s, object);
896 nr++;
897 }
898
899 max_objects = order_objects(compound_order(page), s->size, s->reserved);
900 if (max_objects > MAX_OBJS_PER_PAGE)
901 max_objects = MAX_OBJS_PER_PAGE;
902
903 if (page->objects != max_objects) {
904 slab_err(s, page, "Wrong number of objects. Found %d but "
905 "should be %d", page->objects, max_objects);
906 page->objects = max_objects;
907 slab_fix(s, "Number of objects adjusted.");
908 }
909 if (page->inuse != page->objects - nr) {
910 slab_err(s, page, "Wrong object count. Counter is %d but "
911 "counted were %d", page->inuse, page->objects - nr);
912 page->inuse = page->objects - nr;
913 slab_fix(s, "Object count adjusted.");
914 }
915 return search == NULL;
916 }
917
918 static void trace(struct kmem_cache *s, struct page *page, void *object,
919 int alloc)
920 {
921 if (s->flags & SLAB_TRACE) {
922 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
923 s->name,
924 alloc ? "alloc" : "free",
925 object, page->inuse,
926 page->freelist);
927
928 if (!alloc)
929 print_section("Object ", (void *)object,
930 s->object_size);
931
932 dump_stack();
933 }
934 }
935
936 /*
937 * Tracking of fully allocated slabs for debugging purposes.
938 */
939 static void add_full(struct kmem_cache *s,
940 struct kmem_cache_node *n, struct page *page)
941 {
942 if (!(s->flags & SLAB_STORE_USER))
943 return;
944
945 lockdep_assert_held(&n->list_lock);
946 list_add(&page->lru, &n->full);
947 }
948
949 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
950 {
951 if (!(s->flags & SLAB_STORE_USER))
952 return;
953
954 lockdep_assert_held(&n->list_lock);
955 list_del(&page->lru);
956 }
957
958 /* Tracking of the number of slabs for debugging purposes */
959 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
960 {
961 struct kmem_cache_node *n = get_node(s, node);
962
963 return atomic_long_read(&n->nr_slabs);
964 }
965
966 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
967 {
968 return atomic_long_read(&n->nr_slabs);
969 }
970
971 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
972 {
973 struct kmem_cache_node *n = get_node(s, node);
974
975 /*
976 * May be called early in order to allocate a slab for the
977 * kmem_cache_node structure. Solve the chicken-egg
978 * dilemma by deferring the increment of the count during
979 * bootstrap (see early_kmem_cache_node_alloc).
980 */
981 if (likely(n)) {
982 atomic_long_inc(&n->nr_slabs);
983 atomic_long_add(objects, &n->total_objects);
984 }
985 }
986 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
987 {
988 struct kmem_cache_node *n = get_node(s, node);
989
990 atomic_long_dec(&n->nr_slabs);
991 atomic_long_sub(objects, &n->total_objects);
992 }
993
994 /* Object debug checks for alloc/free paths */
995 static void setup_object_debug(struct kmem_cache *s, struct page *page,
996 void *object)
997 {
998 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
999 return;
1000
1001 init_object(s, object, SLUB_RED_INACTIVE);
1002 init_tracking(s, object);
1003 }
1004
1005 static noinline int alloc_debug_processing(struct kmem_cache *s,
1006 struct page *page,
1007 void *object, unsigned long addr)
1008 {
1009 if (!check_slab(s, page))
1010 goto bad;
1011
1012 if (!check_valid_pointer(s, page, object)) {
1013 object_err(s, page, object, "Freelist Pointer check fails");
1014 goto bad;
1015 }
1016
1017 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1018 goto bad;
1019
1020 /* Success perform special debug activities for allocs */
1021 if (s->flags & SLAB_STORE_USER)
1022 set_track(s, object, TRACK_ALLOC, addr);
1023 trace(s, page, object, 1);
1024 init_object(s, object, SLUB_RED_ACTIVE);
1025 return 1;
1026
1027 bad:
1028 if (PageSlab(page)) {
1029 /*
1030 * If this is a slab page then lets do the best we can
1031 * to avoid issues in the future. Marking all objects
1032 * as used avoids touching the remaining objects.
1033 */
1034 slab_fix(s, "Marking all objects used");
1035 page->inuse = page->objects;
1036 page->freelist = NULL;
1037 }
1038 return 0;
1039 }
1040
1041 static noinline struct kmem_cache_node *free_debug_processing(
1042 struct kmem_cache *s, struct page *page, void *object,
1043 unsigned long addr, unsigned long *flags)
1044 {
1045 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1046
1047 spin_lock_irqsave(&n->list_lock, *flags);
1048 slab_lock(page);
1049
1050 if (!check_slab(s, page))
1051 goto fail;
1052
1053 if (!check_valid_pointer(s, page, object)) {
1054 slab_err(s, page, "Invalid object pointer 0x%p", object);
1055 goto fail;
1056 }
1057
1058 if (on_freelist(s, page, object)) {
1059 object_err(s, page, object, "Object already free");
1060 goto fail;
1061 }
1062
1063 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1064 goto out;
1065
1066 if (unlikely(s != page->slab_cache)) {
1067 if (!PageSlab(page)) {
1068 slab_err(s, page, "Attempt to free object(0x%p) "
1069 "outside of slab", object);
1070 } else if (!page->slab_cache) {
1071 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1072 object);
1073 dump_stack();
1074 } else
1075 object_err(s, page, object,
1076 "page slab pointer corrupt.");
1077 goto fail;
1078 }
1079
1080 if (s->flags & SLAB_STORE_USER)
1081 set_track(s, object, TRACK_FREE, addr);
1082 trace(s, page, object, 0);
1083 init_object(s, object, SLUB_RED_INACTIVE);
1084 out:
1085 slab_unlock(page);
1086 /*
1087 * Keep node_lock to preserve integrity
1088 * until the object is actually freed
1089 */
1090 return n;
1091
1092 fail:
1093 slab_unlock(page);
1094 spin_unlock_irqrestore(&n->list_lock, *flags);
1095 slab_fix(s, "Object at 0x%p not freed", object);
1096 return NULL;
1097 }
1098
1099 static int __init setup_slub_debug(char *str)
1100 {
1101 slub_debug = DEBUG_DEFAULT_FLAGS;
1102 if (*str++ != '=' || !*str)
1103 /*
1104 * No options specified. Switch on full debugging.
1105 */
1106 goto out;
1107
1108 if (*str == ',')
1109 /*
1110 * No options but restriction on slabs. This means full
1111 * debugging for slabs matching a pattern.
1112 */
1113 goto check_slabs;
1114
1115 if (tolower(*str) == 'o') {
1116 /*
1117 * Avoid enabling debugging on caches if its minimum order
1118 * would increase as a result.
1119 */
1120 disable_higher_order_debug = 1;
1121 goto out;
1122 }
1123
1124 slub_debug = 0;
1125 if (*str == '-')
1126 /*
1127 * Switch off all debugging measures.
1128 */
1129 goto out;
1130
1131 /*
1132 * Determine which debug features should be switched on
1133 */
1134 for (; *str && *str != ','; str++) {
1135 switch (tolower(*str)) {
1136 case 'f':
1137 slub_debug |= SLAB_DEBUG_FREE;
1138 break;
1139 case 'z':
1140 slub_debug |= SLAB_RED_ZONE;
1141 break;
1142 case 'p':
1143 slub_debug |= SLAB_POISON;
1144 break;
1145 case 'u':
1146 slub_debug |= SLAB_STORE_USER;
1147 break;
1148 case 't':
1149 slub_debug |= SLAB_TRACE;
1150 break;
1151 case 'a':
1152 slub_debug |= SLAB_FAILSLAB;
1153 break;
1154 default:
1155 pr_err("slub_debug option '%c' unknown. skipped\n",
1156 *str);
1157 }
1158 }
1159
1160 check_slabs:
1161 if (*str == ',')
1162 slub_debug_slabs = str + 1;
1163 out:
1164 return 1;
1165 }
1166
1167 __setup("slub_debug", setup_slub_debug);
1168
1169 unsigned long kmem_cache_flags(unsigned long object_size,
1170 unsigned long flags, const char *name,
1171 void (*ctor)(void *))
1172 {
1173 /*
1174 * Enable debugging if selected on the kernel commandline.
1175 */
1176 if (slub_debug && (!slub_debug_slabs || (name &&
1177 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1178 flags |= slub_debug;
1179
1180 return flags;
1181 }
1182 #else
1183 static inline void setup_object_debug(struct kmem_cache *s,
1184 struct page *page, void *object) {}
1185
1186 static inline int alloc_debug_processing(struct kmem_cache *s,
1187 struct page *page, void *object, unsigned long addr) { return 0; }
1188
1189 static inline struct kmem_cache_node *free_debug_processing(
1190 struct kmem_cache *s, struct page *page, void *object,
1191 unsigned long addr, unsigned long *flags) { return NULL; }
1192
1193 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1194 { return 1; }
1195 static inline int check_object(struct kmem_cache *s, struct page *page,
1196 void *object, u8 val) { return 1; }
1197 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1198 struct page *page) {}
1199 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1200 struct page *page) {}
1201 unsigned long kmem_cache_flags(unsigned long object_size,
1202 unsigned long flags, const char *name,
1203 void (*ctor)(void *))
1204 {
1205 return flags;
1206 }
1207 #define slub_debug 0
1208
1209 #define disable_higher_order_debug 0
1210
1211 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1212 { return 0; }
1213 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1214 { return 0; }
1215 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1216 int objects) {}
1217 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1218 int objects) {}
1219
1220 #endif /* CONFIG_SLUB_DEBUG */
1221
1222 /*
1223 * Hooks for other subsystems that check memory allocations. In a typical
1224 * production configuration these hooks all should produce no code at all.
1225 */
1226 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1227 {
1228 kmemleak_alloc(ptr, size, 1, flags);
1229 }
1230
1231 static inline void kfree_hook(const void *x)
1232 {
1233 kmemleak_free(x);
1234 }
1235
1236 static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
1237 gfp_t flags)
1238 {
1239 flags &= gfp_allowed_mask;
1240 lockdep_trace_alloc(flags);
1241 might_sleep_if(flags & __GFP_WAIT);
1242
1243 if (should_failslab(s->object_size, flags, s->flags))
1244 return NULL;
1245
1246 return memcg_kmem_get_cache(s, flags);
1247 }
1248
1249 static inline void slab_post_alloc_hook(struct kmem_cache *s,
1250 gfp_t flags, void *object)
1251 {
1252 flags &= gfp_allowed_mask;
1253 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
1254 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
1255 memcg_kmem_put_cache(s);
1256 }
1257
1258 static inline void slab_free_hook(struct kmem_cache *s, void *x)
1259 {
1260 kmemleak_free_recursive(x, s->flags);
1261
1262 /*
1263 * Trouble is that we may no longer disable interrupts in the fast path
1264 * So in order to make the debug calls that expect irqs to be
1265 * disabled we need to disable interrupts temporarily.
1266 */
1267 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1268 {
1269 unsigned long flags;
1270
1271 local_irq_save(flags);
1272 kmemcheck_slab_free(s, x, s->object_size);
1273 debug_check_no_locks_freed(x, s->object_size);
1274 local_irq_restore(flags);
1275 }
1276 #endif
1277 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1278 debug_check_no_obj_freed(x, s->object_size);
1279 }
1280
1281 /*
1282 * Slab allocation and freeing
1283 */
1284 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1285 gfp_t flags, int node, struct kmem_cache_order_objects oo)
1286 {
1287 struct page *page;
1288 int order = oo_order(oo);
1289
1290 flags |= __GFP_NOTRACK;
1291
1292 if (memcg_charge_slab(s, flags, order))
1293 return NULL;
1294
1295 if (node == NUMA_NO_NODE)
1296 page = alloc_pages(flags, order);
1297 else
1298 page = alloc_pages_exact_node(node, flags, order);
1299
1300 if (!page)
1301 memcg_uncharge_slab(s, order);
1302
1303 return page;
1304 }
1305
1306 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1307 {
1308 struct page *page;
1309 struct kmem_cache_order_objects oo = s->oo;
1310 gfp_t alloc_gfp;
1311
1312 flags &= gfp_allowed_mask;
1313
1314 if (flags & __GFP_WAIT)
1315 local_irq_enable();
1316
1317 flags |= s->allocflags;
1318
1319 /*
1320 * Let the initial higher-order allocation fail under memory pressure
1321 * so we fall-back to the minimum order allocation.
1322 */
1323 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1324
1325 page = alloc_slab_page(s, alloc_gfp, node, oo);
1326 if (unlikely(!page)) {
1327 oo = s->min;
1328 alloc_gfp = flags;
1329 /*
1330 * Allocation may have failed due to fragmentation.
1331 * Try a lower order alloc if possible
1332 */
1333 page = alloc_slab_page(s, alloc_gfp, node, oo);
1334
1335 if (page)
1336 stat(s, ORDER_FALLBACK);
1337 }
1338
1339 if (kmemcheck_enabled && page
1340 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1341 int pages = 1 << oo_order(oo);
1342
1343 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
1344
1345 /*
1346 * Objects from caches that have a constructor don't get
1347 * cleared when they're allocated, so we need to do it here.
1348 */
1349 if (s->ctor)
1350 kmemcheck_mark_uninitialized_pages(page, pages);
1351 else
1352 kmemcheck_mark_unallocated_pages(page, pages);
1353 }
1354
1355 if (flags & __GFP_WAIT)
1356 local_irq_disable();
1357 if (!page)
1358 return NULL;
1359
1360 page->objects = oo_objects(oo);
1361 mod_zone_page_state(page_zone(page),
1362 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1363 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1364 1 << oo_order(oo));
1365
1366 return page;
1367 }
1368
1369 static void setup_object(struct kmem_cache *s, struct page *page,
1370 void *object)
1371 {
1372 setup_object_debug(s, page, object);
1373 if (unlikely(s->ctor))
1374 s->ctor(object);
1375 }
1376
1377 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1378 {
1379 struct page *page;
1380 void *start;
1381 void *p;
1382 int order;
1383 int idx;
1384
1385 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1386 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
1387 BUG();
1388 }
1389
1390 page = allocate_slab(s,
1391 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1392 if (!page)
1393 goto out;
1394
1395 order = compound_order(page);
1396 inc_slabs_node(s, page_to_nid(page), page->objects);
1397 page->slab_cache = s;
1398 __SetPageSlab(page);
1399 if (page->pfmemalloc)
1400 SetPageSlabPfmemalloc(page);
1401
1402 start = page_address(page);
1403
1404 if (unlikely(s->flags & SLAB_POISON))
1405 memset(start, POISON_INUSE, PAGE_SIZE << order);
1406
1407 for_each_object_idx(p, idx, s, start, page->objects) {
1408 setup_object(s, page, p);
1409 if (likely(idx < page->objects))
1410 set_freepointer(s, p, p + s->size);
1411 else
1412 set_freepointer(s, p, NULL);
1413 }
1414
1415 page->freelist = start;
1416 page->inuse = page->objects;
1417 page->frozen = 1;
1418 out:
1419 return page;
1420 }
1421
1422 static void __free_slab(struct kmem_cache *s, struct page *page)
1423 {
1424 int order = compound_order(page);
1425 int pages = 1 << order;
1426
1427 if (kmem_cache_debug(s)) {
1428 void *p;
1429
1430 slab_pad_check(s, page);
1431 for_each_object(p, s, page_address(page),
1432 page->objects)
1433 check_object(s, page, p, SLUB_RED_INACTIVE);
1434 }
1435
1436 kmemcheck_free_shadow(page, compound_order(page));
1437
1438 mod_zone_page_state(page_zone(page),
1439 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1440 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1441 -pages);
1442
1443 __ClearPageSlabPfmemalloc(page);
1444 __ClearPageSlab(page);
1445
1446 page_mapcount_reset(page);
1447 if (current->reclaim_state)
1448 current->reclaim_state->reclaimed_slab += pages;
1449 __free_pages(page, order);
1450 memcg_uncharge_slab(s, order);
1451 }
1452
1453 #define need_reserve_slab_rcu \
1454 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1455
1456 static void rcu_free_slab(struct rcu_head *h)
1457 {
1458 struct page *page;
1459
1460 if (need_reserve_slab_rcu)
1461 page = virt_to_head_page(h);
1462 else
1463 page = container_of((struct list_head *)h, struct page, lru);
1464
1465 __free_slab(page->slab_cache, page);
1466 }
1467
1468 static void free_slab(struct kmem_cache *s, struct page *page)
1469 {
1470 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1471 struct rcu_head *head;
1472
1473 if (need_reserve_slab_rcu) {
1474 int order = compound_order(page);
1475 int offset = (PAGE_SIZE << order) - s->reserved;
1476
1477 VM_BUG_ON(s->reserved != sizeof(*head));
1478 head = page_address(page) + offset;
1479 } else {
1480 /*
1481 * RCU free overloads the RCU head over the LRU
1482 */
1483 head = (void *)&page->lru;
1484 }
1485
1486 call_rcu(head, rcu_free_slab);
1487 } else
1488 __free_slab(s, page);
1489 }
1490
1491 static void discard_slab(struct kmem_cache *s, struct page *page)
1492 {
1493 dec_slabs_node(s, page_to_nid(page), page->objects);
1494 free_slab(s, page);
1495 }
1496
1497 /*
1498 * Management of partially allocated slabs.
1499 */
1500 static inline void
1501 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1502 {
1503 n->nr_partial++;
1504 if (tail == DEACTIVATE_TO_TAIL)
1505 list_add_tail(&page->lru, &n->partial);
1506 else
1507 list_add(&page->lru, &n->partial);
1508 }
1509
1510 static inline void add_partial(struct kmem_cache_node *n,
1511 struct page *page, int tail)
1512 {
1513 lockdep_assert_held(&n->list_lock);
1514 __add_partial(n, page, tail);
1515 }
1516
1517 static inline void
1518 __remove_partial(struct kmem_cache_node *n, struct page *page)
1519 {
1520 list_del(&page->lru);
1521 n->nr_partial--;
1522 }
1523
1524 static inline void remove_partial(struct kmem_cache_node *n,
1525 struct page *page)
1526 {
1527 lockdep_assert_held(&n->list_lock);
1528 __remove_partial(n, page);
1529 }
1530
1531 /*
1532 * Remove slab from the partial list, freeze it and
1533 * return the pointer to the freelist.
1534 *
1535 * Returns a list of objects or NULL if it fails.
1536 */
1537 static inline void *acquire_slab(struct kmem_cache *s,
1538 struct kmem_cache_node *n, struct page *page,
1539 int mode, int *objects)
1540 {
1541 void *freelist;
1542 unsigned long counters;
1543 struct page new;
1544
1545 lockdep_assert_held(&n->list_lock);
1546
1547 /*
1548 * Zap the freelist and set the frozen bit.
1549 * The old freelist is the list of objects for the
1550 * per cpu allocation list.
1551 */
1552 freelist = page->freelist;
1553 counters = page->counters;
1554 new.counters = counters;
1555 *objects = new.objects - new.inuse;
1556 if (mode) {
1557 new.inuse = page->objects;
1558 new.freelist = NULL;
1559 } else {
1560 new.freelist = freelist;
1561 }
1562
1563 VM_BUG_ON(new.frozen);
1564 new.frozen = 1;
1565
1566 if (!__cmpxchg_double_slab(s, page,
1567 freelist, counters,
1568 new.freelist, new.counters,
1569 "acquire_slab"))
1570 return NULL;
1571
1572 remove_partial(n, page);
1573 WARN_ON(!freelist);
1574 return freelist;
1575 }
1576
1577 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1578 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1579
1580 /*
1581 * Try to allocate a partial slab from a specific node.
1582 */
1583 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1584 struct kmem_cache_cpu *c, gfp_t flags)
1585 {
1586 struct page *page, *page2;
1587 void *object = NULL;
1588 int available = 0;
1589 int objects;
1590
1591 /*
1592 * Racy check. If we mistakenly see no partial slabs then we
1593 * just allocate an empty slab. If we mistakenly try to get a
1594 * partial slab and there is none available then get_partials()
1595 * will return NULL.
1596 */
1597 if (!n || !n->nr_partial)
1598 return NULL;
1599
1600 spin_lock(&n->list_lock);
1601 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1602 void *t;
1603
1604 if (!pfmemalloc_match(page, flags))
1605 continue;
1606
1607 t = acquire_slab(s, n, page, object == NULL, &objects);
1608 if (!t)
1609 break;
1610
1611 available += objects;
1612 if (!object) {
1613 c->page = page;
1614 stat(s, ALLOC_FROM_PARTIAL);
1615 object = t;
1616 } else {
1617 put_cpu_partial(s, page, 0);
1618 stat(s, CPU_PARTIAL_NODE);
1619 }
1620 if (!kmem_cache_has_cpu_partial(s)
1621 || available > s->cpu_partial / 2)
1622 break;
1623
1624 }
1625 spin_unlock(&n->list_lock);
1626 return object;
1627 }
1628
1629 /*
1630 * Get a page from somewhere. Search in increasing NUMA distances.
1631 */
1632 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1633 struct kmem_cache_cpu *c)
1634 {
1635 #ifdef CONFIG_NUMA
1636 struct zonelist *zonelist;
1637 struct zoneref *z;
1638 struct zone *zone;
1639 enum zone_type high_zoneidx = gfp_zone(flags);
1640 void *object;
1641 unsigned int cpuset_mems_cookie;
1642
1643 /*
1644 * The defrag ratio allows a configuration of the tradeoffs between
1645 * inter node defragmentation and node local allocations. A lower
1646 * defrag_ratio increases the tendency to do local allocations
1647 * instead of attempting to obtain partial slabs from other nodes.
1648 *
1649 * If the defrag_ratio is set to 0 then kmalloc() always
1650 * returns node local objects. If the ratio is higher then kmalloc()
1651 * may return off node objects because partial slabs are obtained
1652 * from other nodes and filled up.
1653 *
1654 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1655 * defrag_ratio = 1000) then every (well almost) allocation will
1656 * first attempt to defrag slab caches on other nodes. This means
1657 * scanning over all nodes to look for partial slabs which may be
1658 * expensive if we do it every time we are trying to find a slab
1659 * with available objects.
1660 */
1661 if (!s->remote_node_defrag_ratio ||
1662 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1663 return NULL;
1664
1665 do {
1666 cpuset_mems_cookie = read_mems_allowed_begin();
1667 zonelist = node_zonelist(mempolicy_slab_node(), flags);
1668 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1669 struct kmem_cache_node *n;
1670
1671 n = get_node(s, zone_to_nid(zone));
1672
1673 if (n && cpuset_zone_allowed(zone, flags) &&
1674 n->nr_partial > s->min_partial) {
1675 object = get_partial_node(s, n, c, flags);
1676 if (object) {
1677 /*
1678 * Don't check read_mems_allowed_retry()
1679 * here - if mems_allowed was updated in
1680 * parallel, that was a harmless race
1681 * between allocation and the cpuset
1682 * update
1683 */
1684 return object;
1685 }
1686 }
1687 }
1688 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1689 #endif
1690 return NULL;
1691 }
1692
1693 /*
1694 * Get a partial page, lock it and return it.
1695 */
1696 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1697 struct kmem_cache_cpu *c)
1698 {
1699 void *object;
1700 int searchnode = node;
1701
1702 if (node == NUMA_NO_NODE)
1703 searchnode = numa_mem_id();
1704 else if (!node_present_pages(node))
1705 searchnode = node_to_mem_node(node);
1706
1707 object = get_partial_node(s, get_node(s, searchnode), c, flags);
1708 if (object || node != NUMA_NO_NODE)
1709 return object;
1710
1711 return get_any_partial(s, flags, c);
1712 }
1713
1714 #ifdef CONFIG_PREEMPT
1715 /*
1716 * Calculate the next globally unique transaction for disambiguiation
1717 * during cmpxchg. The transactions start with the cpu number and are then
1718 * incremented by CONFIG_NR_CPUS.
1719 */
1720 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1721 #else
1722 /*
1723 * No preemption supported therefore also no need to check for
1724 * different cpus.
1725 */
1726 #define TID_STEP 1
1727 #endif
1728
1729 static inline unsigned long next_tid(unsigned long tid)
1730 {
1731 return tid + TID_STEP;
1732 }
1733
1734 static inline unsigned int tid_to_cpu(unsigned long tid)
1735 {
1736 return tid % TID_STEP;
1737 }
1738
1739 static inline unsigned long tid_to_event(unsigned long tid)
1740 {
1741 return tid / TID_STEP;
1742 }
1743
1744 static inline unsigned int init_tid(int cpu)
1745 {
1746 return cpu;
1747 }
1748
1749 static inline void note_cmpxchg_failure(const char *n,
1750 const struct kmem_cache *s, unsigned long tid)
1751 {
1752 #ifdef SLUB_DEBUG_CMPXCHG
1753 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1754
1755 pr_info("%s %s: cmpxchg redo ", n, s->name);
1756
1757 #ifdef CONFIG_PREEMPT
1758 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1759 pr_warn("due to cpu change %d -> %d\n",
1760 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1761 else
1762 #endif
1763 if (tid_to_event(tid) != tid_to_event(actual_tid))
1764 pr_warn("due to cpu running other code. Event %ld->%ld\n",
1765 tid_to_event(tid), tid_to_event(actual_tid));
1766 else
1767 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1768 actual_tid, tid, next_tid(tid));
1769 #endif
1770 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1771 }
1772
1773 static void init_kmem_cache_cpus(struct kmem_cache *s)
1774 {
1775 int cpu;
1776
1777 for_each_possible_cpu(cpu)
1778 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1779 }
1780
1781 /*
1782 * Remove the cpu slab
1783 */
1784 static void deactivate_slab(struct kmem_cache *s, struct page *page,
1785 void *freelist)
1786 {
1787 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1788 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1789 int lock = 0;
1790 enum slab_modes l = M_NONE, m = M_NONE;
1791 void *nextfree;
1792 int tail = DEACTIVATE_TO_HEAD;
1793 struct page new;
1794 struct page old;
1795
1796 if (page->freelist) {
1797 stat(s, DEACTIVATE_REMOTE_FREES);
1798 tail = DEACTIVATE_TO_TAIL;
1799 }
1800
1801 /*
1802 * Stage one: Free all available per cpu objects back
1803 * to the page freelist while it is still frozen. Leave the
1804 * last one.
1805 *
1806 * There is no need to take the list->lock because the page
1807 * is still frozen.
1808 */
1809 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1810 void *prior;
1811 unsigned long counters;
1812
1813 do {
1814 prior = page->freelist;
1815 counters = page->counters;
1816 set_freepointer(s, freelist, prior);
1817 new.counters = counters;
1818 new.inuse--;
1819 VM_BUG_ON(!new.frozen);
1820
1821 } while (!__cmpxchg_double_slab(s, page,
1822 prior, counters,
1823 freelist, new.counters,
1824 "drain percpu freelist"));
1825
1826 freelist = nextfree;
1827 }
1828
1829 /*
1830 * Stage two: Ensure that the page is unfrozen while the
1831 * list presence reflects the actual number of objects
1832 * during unfreeze.
1833 *
1834 * We setup the list membership and then perform a cmpxchg
1835 * with the count. If there is a mismatch then the page
1836 * is not unfrozen but the page is on the wrong list.
1837 *
1838 * Then we restart the process which may have to remove
1839 * the page from the list that we just put it on again
1840 * because the number of objects in the slab may have
1841 * changed.
1842 */
1843 redo:
1844
1845 old.freelist = page->freelist;
1846 old.counters = page->counters;
1847 VM_BUG_ON(!old.frozen);
1848
1849 /* Determine target state of the slab */
1850 new.counters = old.counters;
1851 if (freelist) {
1852 new.inuse--;
1853 set_freepointer(s, freelist, old.freelist);
1854 new.freelist = freelist;
1855 } else
1856 new.freelist = old.freelist;
1857
1858 new.frozen = 0;
1859
1860 if (!new.inuse && n->nr_partial >= s->min_partial)
1861 m = M_FREE;
1862 else if (new.freelist) {
1863 m = M_PARTIAL;
1864 if (!lock) {
1865 lock = 1;
1866 /*
1867 * Taking the spinlock removes the possiblity
1868 * that acquire_slab() will see a slab page that
1869 * is frozen
1870 */
1871 spin_lock(&n->list_lock);
1872 }
1873 } else {
1874 m = M_FULL;
1875 if (kmem_cache_debug(s) && !lock) {
1876 lock = 1;
1877 /*
1878 * This also ensures that the scanning of full
1879 * slabs from diagnostic functions will not see
1880 * any frozen slabs.
1881 */
1882 spin_lock(&n->list_lock);
1883 }
1884 }
1885
1886 if (l != m) {
1887
1888 if (l == M_PARTIAL)
1889
1890 remove_partial(n, page);
1891
1892 else if (l == M_FULL)
1893
1894 remove_full(s, n, page);
1895
1896 if (m == M_PARTIAL) {
1897
1898 add_partial(n, page, tail);
1899 stat(s, tail);
1900
1901 } else if (m == M_FULL) {
1902
1903 stat(s, DEACTIVATE_FULL);
1904 add_full(s, n, page);
1905
1906 }
1907 }
1908
1909 l = m;
1910 if (!__cmpxchg_double_slab(s, page,
1911 old.freelist, old.counters,
1912 new.freelist, new.counters,
1913 "unfreezing slab"))
1914 goto redo;
1915
1916 if (lock)
1917 spin_unlock(&n->list_lock);
1918
1919 if (m == M_FREE) {
1920 stat(s, DEACTIVATE_EMPTY);
1921 discard_slab(s, page);
1922 stat(s, FREE_SLAB);
1923 }
1924 }
1925
1926 /*
1927 * Unfreeze all the cpu partial slabs.
1928 *
1929 * This function must be called with interrupts disabled
1930 * for the cpu using c (or some other guarantee must be there
1931 * to guarantee no concurrent accesses).
1932 */
1933 static void unfreeze_partials(struct kmem_cache *s,
1934 struct kmem_cache_cpu *c)
1935 {
1936 #ifdef CONFIG_SLUB_CPU_PARTIAL
1937 struct kmem_cache_node *n = NULL, *n2 = NULL;
1938 struct page *page, *discard_page = NULL;
1939
1940 while ((page = c->partial)) {
1941 struct page new;
1942 struct page old;
1943
1944 c->partial = page->next;
1945
1946 n2 = get_node(s, page_to_nid(page));
1947 if (n != n2) {
1948 if (n)
1949 spin_unlock(&n->list_lock);
1950
1951 n = n2;
1952 spin_lock(&n->list_lock);
1953 }
1954
1955 do {
1956
1957 old.freelist = page->freelist;
1958 old.counters = page->counters;
1959 VM_BUG_ON(!old.frozen);
1960
1961 new.counters = old.counters;
1962 new.freelist = old.freelist;
1963
1964 new.frozen = 0;
1965
1966 } while (!__cmpxchg_double_slab(s, page,
1967 old.freelist, old.counters,
1968 new.freelist, new.counters,
1969 "unfreezing slab"));
1970
1971 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
1972 page->next = discard_page;
1973 discard_page = page;
1974 } else {
1975 add_partial(n, page, DEACTIVATE_TO_TAIL);
1976 stat(s, FREE_ADD_PARTIAL);
1977 }
1978 }
1979
1980 if (n)
1981 spin_unlock(&n->list_lock);
1982
1983 while (discard_page) {
1984 page = discard_page;
1985 discard_page = discard_page->next;
1986
1987 stat(s, DEACTIVATE_EMPTY);
1988 discard_slab(s, page);
1989 stat(s, FREE_SLAB);
1990 }
1991 #endif
1992 }
1993
1994 /*
1995 * Put a page that was just frozen (in __slab_free) into a partial page
1996 * slot if available. This is done without interrupts disabled and without
1997 * preemption disabled. The cmpxchg is racy and may put the partial page
1998 * onto a random cpus partial slot.
1999 *
2000 * If we did not find a slot then simply move all the partials to the
2001 * per node partial list.
2002 */
2003 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2004 {
2005 #ifdef CONFIG_SLUB_CPU_PARTIAL
2006 struct page *oldpage;
2007 int pages;
2008 int pobjects;
2009
2010 preempt_disable();
2011 do {
2012 pages = 0;
2013 pobjects = 0;
2014 oldpage = this_cpu_read(s->cpu_slab->partial);
2015
2016 if (oldpage) {
2017 pobjects = oldpage->pobjects;
2018 pages = oldpage->pages;
2019 if (drain && pobjects > s->cpu_partial) {
2020 unsigned long flags;
2021 /*
2022 * partial array is full. Move the existing
2023 * set to the per node partial list.
2024 */
2025 local_irq_save(flags);
2026 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2027 local_irq_restore(flags);
2028 oldpage = NULL;
2029 pobjects = 0;
2030 pages = 0;
2031 stat(s, CPU_PARTIAL_DRAIN);
2032 }
2033 }
2034
2035 pages++;
2036 pobjects += page->objects - page->inuse;
2037
2038 page->pages = pages;
2039 page->pobjects = pobjects;
2040 page->next = oldpage;
2041
2042 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2043 != oldpage);
2044 if (unlikely(!s->cpu_partial)) {
2045 unsigned long flags;
2046
2047 local_irq_save(flags);
2048 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2049 local_irq_restore(flags);
2050 }
2051 preempt_enable();
2052 #endif
2053 }
2054
2055 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2056 {
2057 stat(s, CPUSLAB_FLUSH);
2058 deactivate_slab(s, c->page, c->freelist);
2059
2060 c->tid = next_tid(c->tid);
2061 c->page = NULL;
2062 c->freelist = NULL;
2063 }
2064
2065 /*
2066 * Flush cpu slab.
2067 *
2068 * Called from IPI handler with interrupts disabled.
2069 */
2070 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2071 {
2072 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2073
2074 if (likely(c)) {
2075 if (c->page)
2076 flush_slab(s, c);
2077
2078 unfreeze_partials(s, c);
2079 }
2080 }
2081
2082 static void flush_cpu_slab(void *d)
2083 {
2084 struct kmem_cache *s = d;
2085
2086 __flush_cpu_slab(s, smp_processor_id());
2087 }
2088
2089 static bool has_cpu_slab(int cpu, void *info)
2090 {
2091 struct kmem_cache *s = info;
2092 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2093
2094 return c->page || c->partial;
2095 }
2096
2097 static void flush_all(struct kmem_cache *s)
2098 {
2099 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2100 }
2101
2102 /*
2103 * Check if the objects in a per cpu structure fit numa
2104 * locality expectations.
2105 */
2106 static inline int node_match(struct page *page, int node)
2107 {
2108 #ifdef CONFIG_NUMA
2109 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2110 return 0;
2111 #endif
2112 return 1;
2113 }
2114
2115 #ifdef CONFIG_SLUB_DEBUG
2116 static int count_free(struct page *page)
2117 {
2118 return page->objects - page->inuse;
2119 }
2120
2121 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2122 {
2123 return atomic_long_read(&n->total_objects);
2124 }
2125 #endif /* CONFIG_SLUB_DEBUG */
2126
2127 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2128 static unsigned long count_partial(struct kmem_cache_node *n,
2129 int (*get_count)(struct page *))
2130 {
2131 unsigned long flags;
2132 unsigned long x = 0;
2133 struct page *page;
2134
2135 spin_lock_irqsave(&n->list_lock, flags);
2136 list_for_each_entry(page, &n->partial, lru)
2137 x += get_count(page);
2138 spin_unlock_irqrestore(&n->list_lock, flags);
2139 return x;
2140 }
2141 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2142
2143 static noinline void
2144 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2145 {
2146 #ifdef CONFIG_SLUB_DEBUG
2147 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2148 DEFAULT_RATELIMIT_BURST);
2149 int node;
2150 struct kmem_cache_node *n;
2151
2152 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2153 return;
2154
2155 pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2156 nid, gfpflags);
2157 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2158 s->name, s->object_size, s->size, oo_order(s->oo),
2159 oo_order(s->min));
2160
2161 if (oo_order(s->min) > get_order(s->object_size))
2162 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2163 s->name);
2164
2165 for_each_kmem_cache_node(s, node, n) {
2166 unsigned long nr_slabs;
2167 unsigned long nr_objs;
2168 unsigned long nr_free;
2169
2170 nr_free = count_partial(n, count_free);
2171 nr_slabs = node_nr_slabs(n);
2172 nr_objs = node_nr_objs(n);
2173
2174 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2175 node, nr_slabs, nr_objs, nr_free);
2176 }
2177 #endif
2178 }
2179
2180 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2181 int node, struct kmem_cache_cpu **pc)
2182 {
2183 void *freelist;
2184 struct kmem_cache_cpu *c = *pc;
2185 struct page *page;
2186
2187 freelist = get_partial(s, flags, node, c);
2188
2189 if (freelist)
2190 return freelist;
2191
2192 page = new_slab(s, flags, node);
2193 if (page) {
2194 c = raw_cpu_ptr(s->cpu_slab);
2195 if (c->page)
2196 flush_slab(s, c);
2197
2198 /*
2199 * No other reference to the page yet so we can
2200 * muck around with it freely without cmpxchg
2201 */
2202 freelist = page->freelist;
2203 page->freelist = NULL;
2204
2205 stat(s, ALLOC_SLAB);
2206 c->page = page;
2207 *pc = c;
2208 } else
2209 freelist = NULL;
2210
2211 return freelist;
2212 }
2213
2214 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2215 {
2216 if (unlikely(PageSlabPfmemalloc(page)))
2217 return gfp_pfmemalloc_allowed(gfpflags);
2218
2219 return true;
2220 }
2221
2222 /*
2223 * Check the page->freelist of a page and either transfer the freelist to the
2224 * per cpu freelist or deactivate the page.
2225 *
2226 * The page is still frozen if the return value is not NULL.
2227 *
2228 * If this function returns NULL then the page has been unfrozen.
2229 *
2230 * This function must be called with interrupt disabled.
2231 */
2232 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2233 {
2234 struct page new;
2235 unsigned long counters;
2236 void *freelist;
2237
2238 do {
2239 freelist = page->freelist;
2240 counters = page->counters;
2241
2242 new.counters = counters;
2243 VM_BUG_ON(!new.frozen);
2244
2245 new.inuse = page->objects;
2246 new.frozen = freelist != NULL;
2247
2248 } while (!__cmpxchg_double_slab(s, page,
2249 freelist, counters,
2250 NULL, new.counters,
2251 "get_freelist"));
2252
2253 return freelist;
2254 }
2255
2256 /*
2257 * Slow path. The lockless freelist is empty or we need to perform
2258 * debugging duties.
2259 *
2260 * Processing is still very fast if new objects have been freed to the
2261 * regular freelist. In that case we simply take over the regular freelist
2262 * as the lockless freelist and zap the regular freelist.
2263 *
2264 * If that is not working then we fall back to the partial lists. We take the
2265 * first element of the freelist as the object to allocate now and move the
2266 * rest of the freelist to the lockless freelist.
2267 *
2268 * And if we were unable to get a new slab from the partial slab lists then
2269 * we need to allocate a new slab. This is the slowest path since it involves
2270 * a call to the page allocator and the setup of a new slab.
2271 */
2272 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2273 unsigned long addr, struct kmem_cache_cpu *c)
2274 {
2275 void *freelist;
2276 struct page *page;
2277 unsigned long flags;
2278
2279 local_irq_save(flags);
2280 #ifdef CONFIG_PREEMPT
2281 /*
2282 * We may have been preempted and rescheduled on a different
2283 * cpu before disabling interrupts. Need to reload cpu area
2284 * pointer.
2285 */
2286 c = this_cpu_ptr(s->cpu_slab);
2287 #endif
2288
2289 page = c->page;
2290 if (!page)
2291 goto new_slab;
2292 redo:
2293
2294 if (unlikely(!node_match(page, node))) {
2295 int searchnode = node;
2296
2297 if (node != NUMA_NO_NODE && !node_present_pages(node))
2298 searchnode = node_to_mem_node(node);
2299
2300 if (unlikely(!node_match(page, searchnode))) {
2301 stat(s, ALLOC_NODE_MISMATCH);
2302 deactivate_slab(s, page, c->freelist);
2303 c->page = NULL;
2304 c->freelist = NULL;
2305 goto new_slab;
2306 }
2307 }
2308
2309 /*
2310 * By rights, we should be searching for a slab page that was
2311 * PFMEMALLOC but right now, we are losing the pfmemalloc
2312 * information when the page leaves the per-cpu allocator
2313 */
2314 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2315 deactivate_slab(s, page, c->freelist);
2316 c->page = NULL;
2317 c->freelist = NULL;
2318 goto new_slab;
2319 }
2320
2321 /* must check again c->freelist in case of cpu migration or IRQ */
2322 freelist = c->freelist;
2323 if (freelist)
2324 goto load_freelist;
2325
2326 freelist = get_freelist(s, page);
2327
2328 if (!freelist) {
2329 c->page = NULL;
2330 stat(s, DEACTIVATE_BYPASS);
2331 goto new_slab;
2332 }
2333
2334 stat(s, ALLOC_REFILL);
2335
2336 load_freelist:
2337 /*
2338 * freelist is pointing to the list of objects to be used.
2339 * page is pointing to the page from which the objects are obtained.
2340 * That page must be frozen for per cpu allocations to work.
2341 */
2342 VM_BUG_ON(!c->page->frozen);
2343 c->freelist = get_freepointer(s, freelist);
2344 c->tid = next_tid(c->tid);
2345 local_irq_restore(flags);
2346 return freelist;
2347
2348 new_slab:
2349
2350 if (c->partial) {
2351 page = c->page = c->partial;
2352 c->partial = page->next;
2353 stat(s, CPU_PARTIAL_ALLOC);
2354 c->freelist = NULL;
2355 goto redo;
2356 }
2357
2358 freelist = new_slab_objects(s, gfpflags, node, &c);
2359
2360 if (unlikely(!freelist)) {
2361 slab_out_of_memory(s, gfpflags, node);
2362 local_irq_restore(flags);
2363 return NULL;
2364 }
2365
2366 page = c->page;
2367 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2368 goto load_freelist;
2369
2370 /* Only entered in the debug case */
2371 if (kmem_cache_debug(s) &&
2372 !alloc_debug_processing(s, page, freelist, addr))
2373 goto new_slab; /* Slab failed checks. Next slab needed */
2374
2375 deactivate_slab(s, page, get_freepointer(s, freelist));
2376 c->page = NULL;
2377 c->freelist = NULL;
2378 local_irq_restore(flags);
2379 return freelist;
2380 }
2381
2382 /*
2383 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2384 * have the fastpath folded into their functions. So no function call
2385 * overhead for requests that can be satisfied on the fastpath.
2386 *
2387 * The fastpath works by first checking if the lockless freelist can be used.
2388 * If not then __slab_alloc is called for slow processing.
2389 *
2390 * Otherwise we can simply pick the next object from the lockless free list.
2391 */
2392 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2393 gfp_t gfpflags, int node, unsigned long addr)
2394 {
2395 void **object;
2396 struct kmem_cache_cpu *c;
2397 struct page *page;
2398 unsigned long tid;
2399
2400 s = slab_pre_alloc_hook(s, gfpflags);
2401 if (!s)
2402 return NULL;
2403 redo:
2404 /*
2405 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2406 * enabled. We may switch back and forth between cpus while
2407 * reading from one cpu area. That does not matter as long
2408 * as we end up on the original cpu again when doing the cmpxchg.
2409 *
2410 * We should guarantee that tid and kmem_cache are retrieved on
2411 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2412 * to check if it is matched or not.
2413 */
2414 do {
2415 tid = this_cpu_read(s->cpu_slab->tid);
2416 c = raw_cpu_ptr(s->cpu_slab);
2417 } while (IS_ENABLED(CONFIG_PREEMPT) && unlikely(tid != c->tid));
2418
2419 /*
2420 * Irqless object alloc/free algorithm used here depends on sequence
2421 * of fetching cpu_slab's data. tid should be fetched before anything
2422 * on c to guarantee that object and page associated with previous tid
2423 * won't be used with current tid. If we fetch tid first, object and
2424 * page could be one associated with next tid and our alloc/free
2425 * request will be failed. In this case, we will retry. So, no problem.
2426 */
2427 barrier();
2428
2429 /*
2430 * The transaction ids are globally unique per cpu and per operation on
2431 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2432 * occurs on the right processor and that there was no operation on the
2433 * linked list in between.
2434 */
2435
2436 object = c->freelist;
2437 page = c->page;
2438 if (unlikely(!object || !node_match(page, node))) {
2439 object = __slab_alloc(s, gfpflags, node, addr, c);
2440 stat(s, ALLOC_SLOWPATH);
2441 } else {
2442 void *next_object = get_freepointer_safe(s, object);
2443
2444 /*
2445 * The cmpxchg will only match if there was no additional
2446 * operation and if we are on the right processor.
2447 *
2448 * The cmpxchg does the following atomically (without lock
2449 * semantics!)
2450 * 1. Relocate first pointer to the current per cpu area.
2451 * 2. Verify that tid and freelist have not been changed
2452 * 3. If they were not changed replace tid and freelist
2453 *
2454 * Since this is without lock semantics the protection is only
2455 * against code executing on this cpu *not* from access by
2456 * other cpus.
2457 */
2458 if (unlikely(!this_cpu_cmpxchg_double(
2459 s->cpu_slab->freelist, s->cpu_slab->tid,
2460 object, tid,
2461 next_object, next_tid(tid)))) {
2462
2463 note_cmpxchg_failure("slab_alloc", s, tid);
2464 goto redo;
2465 }
2466 prefetch_freepointer(s, next_object);
2467 stat(s, ALLOC_FASTPATH);
2468 }
2469
2470 if (unlikely(gfpflags & __GFP_ZERO) && object)
2471 memset(object, 0, s->object_size);
2472
2473 slab_post_alloc_hook(s, gfpflags, object);
2474
2475 return object;
2476 }
2477
2478 static __always_inline void *slab_alloc(struct kmem_cache *s,
2479 gfp_t gfpflags, unsigned long addr)
2480 {
2481 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2482 }
2483
2484 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2485 {
2486 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2487
2488 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2489 s->size, gfpflags);
2490
2491 return ret;
2492 }
2493 EXPORT_SYMBOL(kmem_cache_alloc);
2494
2495 #ifdef CONFIG_TRACING
2496 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2497 {
2498 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2499 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2500 return ret;
2501 }
2502 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2503 #endif
2504
2505 #ifdef CONFIG_NUMA
2506 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2507 {
2508 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2509
2510 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2511 s->object_size, s->size, gfpflags, node);
2512
2513 return ret;
2514 }
2515 EXPORT_SYMBOL(kmem_cache_alloc_node);
2516
2517 #ifdef CONFIG_TRACING
2518 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2519 gfp_t gfpflags,
2520 int node, size_t size)
2521 {
2522 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2523
2524 trace_kmalloc_node(_RET_IP_, ret,
2525 size, s->size, gfpflags, node);
2526 return ret;
2527 }
2528 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2529 #endif
2530 #endif
2531
2532 /*
2533 * Slow path handling. This may still be called frequently since objects
2534 * have a longer lifetime than the cpu slabs in most processing loads.
2535 *
2536 * So we still attempt to reduce cache line usage. Just take the slab
2537 * lock and free the item. If there is no additional partial page
2538 * handling required then we can return immediately.
2539 */
2540 static void __slab_free(struct kmem_cache *s, struct page *page,
2541 void *x, unsigned long addr)
2542 {
2543 void *prior;
2544 void **object = (void *)x;
2545 int was_frozen;
2546 struct page new;
2547 unsigned long counters;
2548 struct kmem_cache_node *n = NULL;
2549 unsigned long uninitialized_var(flags);
2550
2551 stat(s, FREE_SLOWPATH);
2552
2553 if (kmem_cache_debug(s) &&
2554 !(n = free_debug_processing(s, page, x, addr, &flags)))
2555 return;
2556
2557 do {
2558 if (unlikely(n)) {
2559 spin_unlock_irqrestore(&n->list_lock, flags);
2560 n = NULL;
2561 }
2562 prior = page->freelist;
2563 counters = page->counters;
2564 set_freepointer(s, object, prior);
2565 new.counters = counters;
2566 was_frozen = new.frozen;
2567 new.inuse--;
2568 if ((!new.inuse || !prior) && !was_frozen) {
2569
2570 if (kmem_cache_has_cpu_partial(s) && !prior) {
2571
2572 /*
2573 * Slab was on no list before and will be
2574 * partially empty
2575 * We can defer the list move and instead
2576 * freeze it.
2577 */
2578 new.frozen = 1;
2579
2580 } else { /* Needs to be taken off a list */
2581
2582 n = get_node(s, page_to_nid(page));
2583 /*
2584 * Speculatively acquire the list_lock.
2585 * If the cmpxchg does not succeed then we may
2586 * drop the list_lock without any processing.
2587 *
2588 * Otherwise the list_lock will synchronize with
2589 * other processors updating the list of slabs.
2590 */
2591 spin_lock_irqsave(&n->list_lock, flags);
2592
2593 }
2594 }
2595
2596 } while (!cmpxchg_double_slab(s, page,
2597 prior, counters,
2598 object, new.counters,
2599 "__slab_free"));
2600
2601 if (likely(!n)) {
2602
2603 /*
2604 * If we just froze the page then put it onto the
2605 * per cpu partial list.
2606 */
2607 if (new.frozen && !was_frozen) {
2608 put_cpu_partial(s, page, 1);
2609 stat(s, CPU_PARTIAL_FREE);
2610 }
2611 /*
2612 * The list lock was not taken therefore no list
2613 * activity can be necessary.
2614 */
2615 if (was_frozen)
2616 stat(s, FREE_FROZEN);
2617 return;
2618 }
2619
2620 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2621 goto slab_empty;
2622
2623 /*
2624 * Objects left in the slab. If it was not on the partial list before
2625 * then add it.
2626 */
2627 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2628 if (kmem_cache_debug(s))
2629 remove_full(s, n, page);
2630 add_partial(n, page, DEACTIVATE_TO_TAIL);
2631 stat(s, FREE_ADD_PARTIAL);
2632 }
2633 spin_unlock_irqrestore(&n->list_lock, flags);
2634 return;
2635
2636 slab_empty:
2637 if (prior) {
2638 /*
2639 * Slab on the partial list.
2640 */
2641 remove_partial(n, page);
2642 stat(s, FREE_REMOVE_PARTIAL);
2643 } else {
2644 /* Slab must be on the full list */
2645 remove_full(s, n, page);
2646 }
2647
2648 spin_unlock_irqrestore(&n->list_lock, flags);
2649 stat(s, FREE_SLAB);
2650 discard_slab(s, page);
2651 }
2652
2653 /*
2654 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2655 * can perform fastpath freeing without additional function calls.
2656 *
2657 * The fastpath is only possible if we are freeing to the current cpu slab
2658 * of this processor. This typically the case if we have just allocated
2659 * the item before.
2660 *
2661 * If fastpath is not possible then fall back to __slab_free where we deal
2662 * with all sorts of special processing.
2663 */
2664 static __always_inline void slab_free(struct kmem_cache *s,
2665 struct page *page, void *x, unsigned long addr)
2666 {
2667 void **object = (void *)x;
2668 struct kmem_cache_cpu *c;
2669 unsigned long tid;
2670
2671 slab_free_hook(s, x);
2672
2673 redo:
2674 /*
2675 * Determine the currently cpus per cpu slab.
2676 * The cpu may change afterward. However that does not matter since
2677 * data is retrieved via this pointer. If we are on the same cpu
2678 * during the cmpxchg then the free will succedd.
2679 */
2680 do {
2681 tid = this_cpu_read(s->cpu_slab->tid);
2682 c = raw_cpu_ptr(s->cpu_slab);
2683 } while (IS_ENABLED(CONFIG_PREEMPT) && unlikely(tid != c->tid));
2684
2685 /* Same with comment on barrier() in slab_alloc_node() */
2686 barrier();
2687
2688 if (likely(page == c->page)) {
2689 set_freepointer(s, object, c->freelist);
2690
2691 if (unlikely(!this_cpu_cmpxchg_double(
2692 s->cpu_slab->freelist, s->cpu_slab->tid,
2693 c->freelist, tid,
2694 object, next_tid(tid)))) {
2695
2696 note_cmpxchg_failure("slab_free", s, tid);
2697 goto redo;
2698 }
2699 stat(s, FREE_FASTPATH);
2700 } else
2701 __slab_free(s, page, x, addr);
2702
2703 }
2704
2705 void kmem_cache_free(struct kmem_cache *s, void *x)
2706 {
2707 s = cache_from_obj(s, x);
2708 if (!s)
2709 return;
2710 slab_free(s, virt_to_head_page(x), x, _RET_IP_);
2711 trace_kmem_cache_free(_RET_IP_, x);
2712 }
2713 EXPORT_SYMBOL(kmem_cache_free);
2714
2715 /*
2716 * Object placement in a slab is made very easy because we always start at
2717 * offset 0. If we tune the size of the object to the alignment then we can
2718 * get the required alignment by putting one properly sized object after
2719 * another.
2720 *
2721 * Notice that the allocation order determines the sizes of the per cpu
2722 * caches. Each processor has always one slab available for allocations.
2723 * Increasing the allocation order reduces the number of times that slabs
2724 * must be moved on and off the partial lists and is therefore a factor in
2725 * locking overhead.
2726 */
2727
2728 /*
2729 * Mininum / Maximum order of slab pages. This influences locking overhead
2730 * and slab fragmentation. A higher order reduces the number of partial slabs
2731 * and increases the number of allocations possible without having to
2732 * take the list_lock.
2733 */
2734 static int slub_min_order;
2735 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2736 static int slub_min_objects;
2737
2738 /*
2739 * Calculate the order of allocation given an slab object size.
2740 *
2741 * The order of allocation has significant impact on performance and other
2742 * system components. Generally order 0 allocations should be preferred since
2743 * order 0 does not cause fragmentation in the page allocator. Larger objects
2744 * be problematic to put into order 0 slabs because there may be too much
2745 * unused space left. We go to a higher order if more than 1/16th of the slab
2746 * would be wasted.
2747 *
2748 * In order to reach satisfactory performance we must ensure that a minimum
2749 * number of objects is in one slab. Otherwise we may generate too much
2750 * activity on the partial lists which requires taking the list_lock. This is
2751 * less a concern for large slabs though which are rarely used.
2752 *
2753 * slub_max_order specifies the order where we begin to stop considering the
2754 * number of objects in a slab as critical. If we reach slub_max_order then
2755 * we try to keep the page order as low as possible. So we accept more waste
2756 * of space in favor of a small page order.
2757 *
2758 * Higher order allocations also allow the placement of more objects in a
2759 * slab and thereby reduce object handling overhead. If the user has
2760 * requested a higher mininum order then we start with that one instead of
2761 * the smallest order which will fit the object.
2762 */
2763 static inline int slab_order(int size, int min_objects,
2764 int max_order, int fract_leftover, int reserved)
2765 {
2766 int order;
2767 int rem;
2768 int min_order = slub_min_order;
2769
2770 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2771 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2772
2773 for (order = max(min_order,
2774 fls(min_objects * size - 1) - PAGE_SHIFT);
2775 order <= max_order; order++) {
2776
2777 unsigned long slab_size = PAGE_SIZE << order;
2778
2779 if (slab_size < min_objects * size + reserved)
2780 continue;
2781
2782 rem = (slab_size - reserved) % size;
2783
2784 if (rem <= slab_size / fract_leftover)
2785 break;
2786
2787 }
2788
2789 return order;
2790 }
2791
2792 static inline int calculate_order(int size, int reserved)
2793 {
2794 int order;
2795 int min_objects;
2796 int fraction;
2797 int max_objects;
2798
2799 /*
2800 * Attempt to find best configuration for a slab. This
2801 * works by first attempting to generate a layout with
2802 * the best configuration and backing off gradually.
2803 *
2804 * First we reduce the acceptable waste in a slab. Then
2805 * we reduce the minimum objects required in a slab.
2806 */
2807 min_objects = slub_min_objects;
2808 if (!min_objects)
2809 min_objects = 4 * (fls(nr_cpu_ids) + 1);
2810 max_objects = order_objects(slub_max_order, size, reserved);
2811 min_objects = min(min_objects, max_objects);
2812
2813 while (min_objects > 1) {
2814 fraction = 16;
2815 while (fraction >= 4) {
2816 order = slab_order(size, min_objects,
2817 slub_max_order, fraction, reserved);
2818 if (order <= slub_max_order)
2819 return order;
2820 fraction /= 2;
2821 }
2822 min_objects--;
2823 }
2824
2825 /*
2826 * We were unable to place multiple objects in a slab. Now
2827 * lets see if we can place a single object there.
2828 */
2829 order = slab_order(size, 1, slub_max_order, 1, reserved);
2830 if (order <= slub_max_order)
2831 return order;
2832
2833 /*
2834 * Doh this slab cannot be placed using slub_max_order.
2835 */
2836 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2837 if (order < MAX_ORDER)
2838 return order;
2839 return -ENOSYS;
2840 }
2841
2842 static void
2843 init_kmem_cache_node(struct kmem_cache_node *n)
2844 {
2845 n->nr_partial = 0;
2846 spin_lock_init(&n->list_lock);
2847 INIT_LIST_HEAD(&n->partial);
2848 #ifdef CONFIG_SLUB_DEBUG
2849 atomic_long_set(&n->nr_slabs, 0);
2850 atomic_long_set(&n->total_objects, 0);
2851 INIT_LIST_HEAD(&n->full);
2852 #endif
2853 }
2854
2855 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2856 {
2857 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2858 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
2859
2860 /*
2861 * Must align to double word boundary for the double cmpxchg
2862 * instructions to work; see __pcpu_double_call_return_bool().
2863 */
2864 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2865 2 * sizeof(void *));
2866
2867 if (!s->cpu_slab)
2868 return 0;
2869
2870 init_kmem_cache_cpus(s);
2871
2872 return 1;
2873 }
2874
2875 static struct kmem_cache *kmem_cache_node;
2876
2877 /*
2878 * No kmalloc_node yet so do it by hand. We know that this is the first
2879 * slab on the node for this slabcache. There are no concurrent accesses
2880 * possible.
2881 *
2882 * Note that this function only works on the kmem_cache_node
2883 * when allocating for the kmem_cache_node. This is used for bootstrapping
2884 * memory on a fresh node that has no slab structures yet.
2885 */
2886 static void early_kmem_cache_node_alloc(int node)
2887 {
2888 struct page *page;
2889 struct kmem_cache_node *n;
2890
2891 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2892
2893 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2894
2895 BUG_ON(!page);
2896 if (page_to_nid(page) != node) {
2897 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
2898 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
2899 }
2900
2901 n = page->freelist;
2902 BUG_ON(!n);
2903 page->freelist = get_freepointer(kmem_cache_node, n);
2904 page->inuse = 1;
2905 page->frozen = 0;
2906 kmem_cache_node->node[node] = n;
2907 #ifdef CONFIG_SLUB_DEBUG
2908 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2909 init_tracking(kmem_cache_node, n);
2910 #endif
2911 init_kmem_cache_node(n);
2912 inc_slabs_node(kmem_cache_node, node, page->objects);
2913
2914 /*
2915 * No locks need to be taken here as it has just been
2916 * initialized and there is no concurrent access.
2917 */
2918 __add_partial(n, page, DEACTIVATE_TO_HEAD);
2919 }
2920
2921 static void free_kmem_cache_nodes(struct kmem_cache *s)
2922 {
2923 int node;
2924 struct kmem_cache_node *n;
2925
2926 for_each_kmem_cache_node(s, node, n) {
2927 kmem_cache_free(kmem_cache_node, n);
2928 s->node[node] = NULL;
2929 }
2930 }
2931
2932 static int init_kmem_cache_nodes(struct kmem_cache *s)
2933 {
2934 int node;
2935
2936 for_each_node_state(node, N_NORMAL_MEMORY) {
2937 struct kmem_cache_node *n;
2938
2939 if (slab_state == DOWN) {
2940 early_kmem_cache_node_alloc(node);
2941 continue;
2942 }
2943 n = kmem_cache_alloc_node(kmem_cache_node,
2944 GFP_KERNEL, node);
2945
2946 if (!n) {
2947 free_kmem_cache_nodes(s);
2948 return 0;
2949 }
2950
2951 s->node[node] = n;
2952 init_kmem_cache_node(n);
2953 }
2954 return 1;
2955 }
2956
2957 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2958 {
2959 if (min < MIN_PARTIAL)
2960 min = MIN_PARTIAL;
2961 else if (min > MAX_PARTIAL)
2962 min = MAX_PARTIAL;
2963 s->min_partial = min;
2964 }
2965
2966 /*
2967 * calculate_sizes() determines the order and the distribution of data within
2968 * a slab object.
2969 */
2970 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2971 {
2972 unsigned long flags = s->flags;
2973 unsigned long size = s->object_size;
2974 int order;
2975
2976 /*
2977 * Round up object size to the next word boundary. We can only
2978 * place the free pointer at word boundaries and this determines
2979 * the possible location of the free pointer.
2980 */
2981 size = ALIGN(size, sizeof(void *));
2982
2983 #ifdef CONFIG_SLUB_DEBUG
2984 /*
2985 * Determine if we can poison the object itself. If the user of
2986 * the slab may touch the object after free or before allocation
2987 * then we should never poison the object itself.
2988 */
2989 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2990 !s->ctor)
2991 s->flags |= __OBJECT_POISON;
2992 else
2993 s->flags &= ~__OBJECT_POISON;
2994
2995
2996 /*
2997 * If we are Redzoning then check if there is some space between the
2998 * end of the object and the free pointer. If not then add an
2999 * additional word to have some bytes to store Redzone information.
3000 */
3001 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3002 size += sizeof(void *);
3003 #endif
3004
3005 /*
3006 * With that we have determined the number of bytes in actual use
3007 * by the object. This is the potential offset to the free pointer.
3008 */
3009 s->inuse = size;
3010
3011 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
3012 s->ctor)) {
3013 /*
3014 * Relocate free pointer after the object if it is not
3015 * permitted to overwrite the first word of the object on
3016 * kmem_cache_free.
3017 *
3018 * This is the case if we do RCU, have a constructor or
3019 * destructor or are poisoning the objects.
3020 */
3021 s->offset = size;
3022 size += sizeof(void *);
3023 }
3024
3025 #ifdef CONFIG_SLUB_DEBUG
3026 if (flags & SLAB_STORE_USER)
3027 /*
3028 * Need to store information about allocs and frees after
3029 * the object.
3030 */
3031 size += 2 * sizeof(struct track);
3032
3033 if (flags & SLAB_RED_ZONE)
3034 /*
3035 * Add some empty padding so that we can catch
3036 * overwrites from earlier objects rather than let
3037 * tracking information or the free pointer be
3038 * corrupted if a user writes before the start
3039 * of the object.
3040 */
3041 size += sizeof(void *);
3042 #endif
3043
3044 /*
3045 * SLUB stores one object immediately after another beginning from
3046 * offset 0. In order to align the objects we have to simply size
3047 * each object to conform to the alignment.
3048 */
3049 size = ALIGN(size, s->align);
3050 s->size = size;
3051 if (forced_order >= 0)
3052 order = forced_order;
3053 else
3054 order = calculate_order(size, s->reserved);
3055
3056 if (order < 0)
3057 return 0;
3058
3059 s->allocflags = 0;
3060 if (order)
3061 s->allocflags |= __GFP_COMP;
3062
3063 if (s->flags & SLAB_CACHE_DMA)
3064 s->allocflags |= GFP_DMA;
3065
3066 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3067 s->allocflags |= __GFP_RECLAIMABLE;
3068
3069 /*
3070 * Determine the number of objects per slab
3071 */
3072 s->oo = oo_make(order, size, s->reserved);
3073 s->min = oo_make(get_order(size), size, s->reserved);
3074 if (oo_objects(s->oo) > oo_objects(s->max))
3075 s->max = s->oo;
3076
3077 return !!oo_objects(s->oo);
3078 }
3079
3080 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3081 {
3082 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3083 s->reserved = 0;
3084
3085 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3086 s->reserved = sizeof(struct rcu_head);
3087
3088 if (!calculate_sizes(s, -1))
3089 goto error;
3090 if (disable_higher_order_debug) {
3091 /*
3092 * Disable debugging flags that store metadata if the min slab
3093 * order increased.
3094 */
3095 if (get_order(s->size) > get_order(s->object_size)) {
3096 s->flags &= ~DEBUG_METADATA_FLAGS;
3097 s->offset = 0;
3098 if (!calculate_sizes(s, -1))
3099 goto error;
3100 }
3101 }
3102
3103 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3104 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3105 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3106 /* Enable fast mode */
3107 s->flags |= __CMPXCHG_DOUBLE;
3108 #endif
3109
3110 /*
3111 * The larger the object size is, the more pages we want on the partial
3112 * list to avoid pounding the page allocator excessively.
3113 */
3114 set_min_partial(s, ilog2(s->size) / 2);
3115
3116 /*
3117 * cpu_partial determined the maximum number of objects kept in the
3118 * per cpu partial lists of a processor.
3119 *
3120 * Per cpu partial lists mainly contain slabs that just have one
3121 * object freed. If they are used for allocation then they can be
3122 * filled up again with minimal effort. The slab will never hit the
3123 * per node partial lists and therefore no locking will be required.
3124 *
3125 * This setting also determines
3126 *
3127 * A) The number of objects from per cpu partial slabs dumped to the
3128 * per node list when we reach the limit.
3129 * B) The number of objects in cpu partial slabs to extract from the
3130 * per node list when we run out of per cpu objects. We only fetch
3131 * 50% to keep some capacity around for frees.
3132 */
3133 if (!kmem_cache_has_cpu_partial(s))
3134 s->cpu_partial = 0;
3135 else if (s->size >= PAGE_SIZE)
3136 s->cpu_partial = 2;
3137 else if (s->size >= 1024)
3138 s->cpu_partial = 6;
3139 else if (s->size >= 256)
3140 s->cpu_partial = 13;
3141 else
3142 s->cpu_partial = 30;
3143
3144 #ifdef CONFIG_NUMA
3145 s->remote_node_defrag_ratio = 1000;
3146 #endif
3147 if (!init_kmem_cache_nodes(s))
3148 goto error;
3149
3150 if (alloc_kmem_cache_cpus(s))
3151 return 0;
3152
3153 free_kmem_cache_nodes(s);
3154 error:
3155 if (flags & SLAB_PANIC)
3156 panic("Cannot create slab %s size=%lu realsize=%u "
3157 "order=%u offset=%u flags=%lx\n",
3158 s->name, (unsigned long)s->size, s->size,
3159 oo_order(s->oo), s->offset, flags);
3160 return -EINVAL;
3161 }
3162
3163 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3164 const char *text)
3165 {
3166 #ifdef CONFIG_SLUB_DEBUG
3167 void *addr = page_address(page);
3168 void *p;
3169 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3170 sizeof(long), GFP_ATOMIC);
3171 if (!map)
3172 return;
3173 slab_err(s, page, text, s->name);
3174 slab_lock(page);
3175
3176 get_map(s, page, map);
3177 for_each_object(p, s, addr, page->objects) {
3178
3179 if (!test_bit(slab_index(p, s, addr), map)) {
3180 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3181 print_tracking(s, p);
3182 }
3183 }
3184 slab_unlock(page);
3185 kfree(map);
3186 #endif
3187 }
3188
3189 /*
3190 * Attempt to free all partial slabs on a node.
3191 * This is called from kmem_cache_close(). We must be the last thread
3192 * using the cache and therefore we do not need to lock anymore.
3193 */
3194 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3195 {
3196 struct page *page, *h;
3197
3198 list_for_each_entry_safe(page, h, &n->partial, lru) {
3199 if (!page->inuse) {
3200 __remove_partial(n, page);
3201 discard_slab(s, page);
3202 } else {
3203 list_slab_objects(s, page,
3204 "Objects remaining in %s on kmem_cache_close()");
3205 }
3206 }
3207 }
3208
3209 /*
3210 * Release all resources used by a slab cache.
3211 */
3212 static inline int kmem_cache_close(struct kmem_cache *s)
3213 {
3214 int node;
3215 struct kmem_cache_node *n;
3216
3217 flush_all(s);
3218 /* Attempt to free all objects */
3219 for_each_kmem_cache_node(s, node, n) {
3220 free_partial(s, n);
3221 if (n->nr_partial || slabs_node(s, node))
3222 return 1;
3223 }
3224 free_percpu(s->cpu_slab);
3225 free_kmem_cache_nodes(s);
3226 return 0;
3227 }
3228
3229 int __kmem_cache_shutdown(struct kmem_cache *s)
3230 {
3231 return kmem_cache_close(s);
3232 }
3233
3234 /********************************************************************
3235 * Kmalloc subsystem
3236 *******************************************************************/
3237
3238 static int __init setup_slub_min_order(char *str)
3239 {
3240 get_option(&str, &slub_min_order);
3241
3242 return 1;
3243 }
3244
3245 __setup("slub_min_order=", setup_slub_min_order);
3246
3247 static int __init setup_slub_max_order(char *str)
3248 {
3249 get_option(&str, &slub_max_order);
3250 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3251
3252 return 1;
3253 }
3254
3255 __setup("slub_max_order=", setup_slub_max_order);
3256
3257 static int __init setup_slub_min_objects(char *str)
3258 {
3259 get_option(&str, &slub_min_objects);
3260
3261 return 1;
3262 }
3263
3264 __setup("slub_min_objects=", setup_slub_min_objects);
3265
3266 void *__kmalloc(size_t size, gfp_t flags)
3267 {
3268 struct kmem_cache *s;
3269 void *ret;
3270
3271 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3272 return kmalloc_large(size, flags);
3273
3274 s = kmalloc_slab(size, flags);
3275
3276 if (unlikely(ZERO_OR_NULL_PTR(s)))
3277 return s;
3278
3279 ret = slab_alloc(s, flags, _RET_IP_);
3280
3281 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3282
3283 return ret;
3284 }
3285 EXPORT_SYMBOL(__kmalloc);
3286
3287 #ifdef CONFIG_NUMA
3288 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3289 {
3290 struct page *page;
3291 void *ptr = NULL;
3292
3293 flags |= __GFP_COMP | __GFP_NOTRACK;
3294 page = alloc_kmem_pages_node(node, flags, get_order(size));
3295 if (page)
3296 ptr = page_address(page);
3297
3298 kmalloc_large_node_hook(ptr, size, flags);
3299 return ptr;
3300 }
3301
3302 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3303 {
3304 struct kmem_cache *s;
3305 void *ret;
3306
3307 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3308 ret = kmalloc_large_node(size, flags, node);
3309
3310 trace_kmalloc_node(_RET_IP_, ret,
3311 size, PAGE_SIZE << get_order(size),
3312 flags, node);
3313
3314 return ret;
3315 }
3316
3317 s = kmalloc_slab(size, flags);
3318
3319 if (unlikely(ZERO_OR_NULL_PTR(s)))
3320 return s;
3321
3322 ret = slab_alloc_node(s, flags, node, _RET_IP_);
3323
3324 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3325
3326 return ret;
3327 }
3328 EXPORT_SYMBOL(__kmalloc_node);
3329 #endif
3330
3331 size_t ksize(const void *object)
3332 {
3333 struct page *page;
3334
3335 if (unlikely(object == ZERO_SIZE_PTR))
3336 return 0;
3337
3338 page = virt_to_head_page(object);
3339
3340 if (unlikely(!PageSlab(page))) {
3341 WARN_ON(!PageCompound(page));
3342 return PAGE_SIZE << compound_order(page);
3343 }
3344
3345 return slab_ksize(page->slab_cache);
3346 }
3347 EXPORT_SYMBOL(ksize);
3348
3349 void kfree(const void *x)
3350 {
3351 struct page *page;
3352 void *object = (void *)x;
3353
3354 trace_kfree(_RET_IP_, x);
3355
3356 if (unlikely(ZERO_OR_NULL_PTR(x)))
3357 return;
3358
3359 page = virt_to_head_page(x);
3360 if (unlikely(!PageSlab(page))) {
3361 BUG_ON(!PageCompound(page));
3362 kfree_hook(x);
3363 __free_kmem_pages(page, compound_order(page));
3364 return;
3365 }
3366 slab_free(page->slab_cache, page, object, _RET_IP_);
3367 }
3368 EXPORT_SYMBOL(kfree);
3369
3370 #define SHRINK_PROMOTE_MAX 32
3371
3372 /*
3373 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3374 * up most to the head of the partial lists. New allocations will then
3375 * fill those up and thus they can be removed from the partial lists.
3376 *
3377 * The slabs with the least items are placed last. This results in them
3378 * being allocated from last increasing the chance that the last objects
3379 * are freed in them.
3380 */
3381 int __kmem_cache_shrink(struct kmem_cache *s, bool deactivate)
3382 {
3383 int node;
3384 int i;
3385 struct kmem_cache_node *n;
3386 struct page *page;
3387 struct page *t;
3388 struct list_head discard;
3389 struct list_head promote[SHRINK_PROMOTE_MAX];
3390 unsigned long flags;
3391 int ret = 0;
3392
3393 if (deactivate) {
3394 /*
3395 * Disable empty slabs caching. Used to avoid pinning offline
3396 * memory cgroups by kmem pages that can be freed.
3397 */
3398 s->cpu_partial = 0;
3399 s->min_partial = 0;
3400
3401 /*
3402 * s->cpu_partial is checked locklessly (see put_cpu_partial),
3403 * so we have to make sure the change is visible.
3404 */
3405 kick_all_cpus_sync();
3406 }
3407
3408 flush_all(s);
3409 for_each_kmem_cache_node(s, node, n) {
3410 INIT_LIST_HEAD(&discard);
3411 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3412 INIT_LIST_HEAD(promote + i);
3413
3414 spin_lock_irqsave(&n->list_lock, flags);
3415
3416 /*
3417 * Build lists of slabs to discard or promote.
3418 *
3419 * Note that concurrent frees may occur while we hold the
3420 * list_lock. page->inuse here is the upper limit.
3421 */
3422 list_for_each_entry_safe(page, t, &n->partial, lru) {
3423 int free = page->objects - page->inuse;
3424
3425 /* Do not reread page->inuse */
3426 barrier();
3427
3428 /* We do not keep full slabs on the list */
3429 BUG_ON(free <= 0);
3430
3431 if (free == page->objects) {
3432 list_move(&page->lru, &discard);
3433 n->nr_partial--;
3434 } else if (free <= SHRINK_PROMOTE_MAX)
3435 list_move(&page->lru, promote + free - 1);
3436 }
3437
3438 /*
3439 * Promote the slabs filled up most to the head of the
3440 * partial list.
3441 */
3442 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3443 list_splice(promote + i, &n->partial);
3444
3445 spin_unlock_irqrestore(&n->list_lock, flags);
3446
3447 /* Release empty slabs */
3448 list_for_each_entry_safe(page, t, &discard, lru)
3449 discard_slab(s, page);
3450
3451 if (slabs_node(s, node))
3452 ret = 1;
3453 }
3454
3455 return ret;
3456 }
3457
3458 static int slab_mem_going_offline_callback(void *arg)
3459 {
3460 struct kmem_cache *s;
3461
3462 mutex_lock(&slab_mutex);
3463 list_for_each_entry(s, &slab_caches, list)
3464 __kmem_cache_shrink(s, false);
3465 mutex_unlock(&slab_mutex);
3466
3467 return 0;
3468 }
3469
3470 static void slab_mem_offline_callback(void *arg)
3471 {
3472 struct kmem_cache_node *n;
3473 struct kmem_cache *s;
3474 struct memory_notify *marg = arg;
3475 int offline_node;
3476
3477 offline_node = marg->status_change_nid_normal;
3478
3479 /*
3480 * If the node still has available memory. we need kmem_cache_node
3481 * for it yet.
3482 */
3483 if (offline_node < 0)
3484 return;
3485
3486 mutex_lock(&slab_mutex);
3487 list_for_each_entry(s, &slab_caches, list) {
3488 n = get_node(s, offline_node);
3489 if (n) {
3490 /*
3491 * if n->nr_slabs > 0, slabs still exist on the node
3492 * that is going down. We were unable to free them,
3493 * and offline_pages() function shouldn't call this
3494 * callback. So, we must fail.
3495 */
3496 BUG_ON(slabs_node(s, offline_node));
3497
3498 s->node[offline_node] = NULL;
3499 kmem_cache_free(kmem_cache_node, n);
3500 }
3501 }
3502 mutex_unlock(&slab_mutex);
3503 }
3504
3505 static int slab_mem_going_online_callback(void *arg)
3506 {
3507 struct kmem_cache_node *n;
3508 struct kmem_cache *s;
3509 struct memory_notify *marg = arg;
3510 int nid = marg->status_change_nid_normal;
3511 int ret = 0;
3512
3513 /*
3514 * If the node's memory is already available, then kmem_cache_node is
3515 * already created. Nothing to do.
3516 */
3517 if (nid < 0)
3518 return 0;
3519
3520 /*
3521 * We are bringing a node online. No memory is available yet. We must
3522 * allocate a kmem_cache_node structure in order to bring the node
3523 * online.
3524 */
3525 mutex_lock(&slab_mutex);
3526 list_for_each_entry(s, &slab_caches, list) {
3527 /*
3528 * XXX: kmem_cache_alloc_node will fallback to other nodes
3529 * since memory is not yet available from the node that
3530 * is brought up.
3531 */
3532 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3533 if (!n) {
3534 ret = -ENOMEM;
3535 goto out;
3536 }
3537 init_kmem_cache_node(n);
3538 s->node[nid] = n;
3539 }
3540 out:
3541 mutex_unlock(&slab_mutex);
3542 return ret;
3543 }
3544
3545 static int slab_memory_callback(struct notifier_block *self,
3546 unsigned long action, void *arg)
3547 {
3548 int ret = 0;
3549
3550 switch (action) {
3551 case MEM_GOING_ONLINE:
3552 ret = slab_mem_going_online_callback(arg);
3553 break;
3554 case MEM_GOING_OFFLINE:
3555 ret = slab_mem_going_offline_callback(arg);
3556 break;
3557 case MEM_OFFLINE:
3558 case MEM_CANCEL_ONLINE:
3559 slab_mem_offline_callback(arg);
3560 break;
3561 case MEM_ONLINE:
3562 case MEM_CANCEL_OFFLINE:
3563 break;
3564 }
3565 if (ret)
3566 ret = notifier_from_errno(ret);
3567 else
3568 ret = NOTIFY_OK;
3569 return ret;
3570 }
3571
3572 static struct notifier_block slab_memory_callback_nb = {
3573 .notifier_call = slab_memory_callback,
3574 .priority = SLAB_CALLBACK_PRI,
3575 };
3576
3577 /********************************************************************
3578 * Basic setup of slabs
3579 *******************************************************************/
3580
3581 /*
3582 * Used for early kmem_cache structures that were allocated using
3583 * the page allocator. Allocate them properly then fix up the pointers
3584 * that may be pointing to the wrong kmem_cache structure.
3585 */
3586
3587 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3588 {
3589 int node;
3590 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3591 struct kmem_cache_node *n;
3592
3593 memcpy(s, static_cache, kmem_cache->object_size);
3594
3595 /*
3596 * This runs very early, and only the boot processor is supposed to be
3597 * up. Even if it weren't true, IRQs are not up so we couldn't fire
3598 * IPIs around.
3599 */
3600 __flush_cpu_slab(s, smp_processor_id());
3601 for_each_kmem_cache_node(s, node, n) {
3602 struct page *p;
3603
3604 list_for_each_entry(p, &n->partial, lru)
3605 p->slab_cache = s;
3606
3607 #ifdef CONFIG_SLUB_DEBUG
3608 list_for_each_entry(p, &n->full, lru)
3609 p->slab_cache = s;
3610 #endif
3611 }
3612 slab_init_memcg_params(s);
3613 list_add(&s->list, &slab_caches);
3614 return s;
3615 }
3616
3617 void __init kmem_cache_init(void)
3618 {
3619 static __initdata struct kmem_cache boot_kmem_cache,
3620 boot_kmem_cache_node;
3621
3622 if (debug_guardpage_minorder())
3623 slub_max_order = 0;
3624
3625 kmem_cache_node = &boot_kmem_cache_node;
3626 kmem_cache = &boot_kmem_cache;
3627
3628 create_boot_cache(kmem_cache_node, "kmem_cache_node",
3629 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3630
3631 register_hotmemory_notifier(&slab_memory_callback_nb);
3632
3633 /* Able to allocate the per node structures */
3634 slab_state = PARTIAL;
3635
3636 create_boot_cache(kmem_cache, "kmem_cache",
3637 offsetof(struct kmem_cache, node) +
3638 nr_node_ids * sizeof(struct kmem_cache_node *),
3639 SLAB_HWCACHE_ALIGN);
3640
3641 kmem_cache = bootstrap(&boot_kmem_cache);
3642
3643 /*
3644 * Allocate kmem_cache_node properly from the kmem_cache slab.
3645 * kmem_cache_node is separately allocated so no need to
3646 * update any list pointers.
3647 */
3648 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3649
3650 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3651 create_kmalloc_caches(0);
3652
3653 #ifdef CONFIG_SMP
3654 register_cpu_notifier(&slab_notifier);
3655 #endif
3656
3657 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
3658 cache_line_size(),
3659 slub_min_order, slub_max_order, slub_min_objects,
3660 nr_cpu_ids, nr_node_ids);
3661 }
3662
3663 void __init kmem_cache_init_late(void)
3664 {
3665 }
3666
3667 struct kmem_cache *
3668 __kmem_cache_alias(const char *name, size_t size, size_t align,
3669 unsigned long flags, void (*ctor)(void *))
3670 {
3671 struct kmem_cache *s, *c;
3672
3673 s = find_mergeable(size, align, flags, name, ctor);
3674 if (s) {
3675 s->refcount++;
3676
3677 /*
3678 * Adjust the object sizes so that we clear
3679 * the complete object on kzalloc.
3680 */
3681 s->object_size = max(s->object_size, (int)size);
3682 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3683
3684 for_each_memcg_cache(c, s) {
3685 c->object_size = s->object_size;
3686 c->inuse = max_t(int, c->inuse,
3687 ALIGN(size, sizeof(void *)));
3688 }
3689
3690 if (sysfs_slab_alias(s, name)) {
3691 s->refcount--;
3692 s = NULL;
3693 }
3694 }
3695
3696 return s;
3697 }
3698
3699 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3700 {
3701 int err;
3702
3703 err = kmem_cache_open(s, flags);
3704 if (err)
3705 return err;
3706
3707 /* Mutex is not taken during early boot */
3708 if (slab_state <= UP)
3709 return 0;
3710
3711 memcg_propagate_slab_attrs(s);
3712 err = sysfs_slab_add(s);
3713 if (err)
3714 kmem_cache_close(s);
3715
3716 return err;
3717 }
3718
3719 #ifdef CONFIG_SMP
3720 /*
3721 * Use the cpu notifier to insure that the cpu slabs are flushed when
3722 * necessary.
3723 */
3724 static int slab_cpuup_callback(struct notifier_block *nfb,
3725 unsigned long action, void *hcpu)
3726 {
3727 long cpu = (long)hcpu;
3728 struct kmem_cache *s;
3729 unsigned long flags;
3730
3731 switch (action) {
3732 case CPU_UP_CANCELED:
3733 case CPU_UP_CANCELED_FROZEN:
3734 case CPU_DEAD:
3735 case CPU_DEAD_FROZEN:
3736 mutex_lock(&slab_mutex);
3737 list_for_each_entry(s, &slab_caches, list) {
3738 local_irq_save(flags);
3739 __flush_cpu_slab(s, cpu);
3740 local_irq_restore(flags);
3741 }
3742 mutex_unlock(&slab_mutex);
3743 break;
3744 default:
3745 break;
3746 }
3747 return NOTIFY_OK;
3748 }
3749
3750 static struct notifier_block slab_notifier = {
3751 .notifier_call = slab_cpuup_callback
3752 };
3753
3754 #endif
3755
3756 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3757 {
3758 struct kmem_cache *s;
3759 void *ret;
3760
3761 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3762 return kmalloc_large(size, gfpflags);
3763
3764 s = kmalloc_slab(size, gfpflags);
3765
3766 if (unlikely(ZERO_OR_NULL_PTR(s)))
3767 return s;
3768
3769 ret = slab_alloc(s, gfpflags, caller);
3770
3771 /* Honor the call site pointer we received. */
3772 trace_kmalloc(caller, ret, size, s->size, gfpflags);
3773
3774 return ret;
3775 }
3776
3777 #ifdef CONFIG_NUMA
3778 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3779 int node, unsigned long caller)
3780 {
3781 struct kmem_cache *s;
3782 void *ret;
3783
3784 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3785 ret = kmalloc_large_node(size, gfpflags, node);
3786
3787 trace_kmalloc_node(caller, ret,
3788 size, PAGE_SIZE << get_order(size),
3789 gfpflags, node);
3790
3791 return ret;
3792 }
3793
3794 s = kmalloc_slab(size, gfpflags);
3795
3796 if (unlikely(ZERO_OR_NULL_PTR(s)))
3797 return s;
3798
3799 ret = slab_alloc_node(s, gfpflags, node, caller);
3800
3801 /* Honor the call site pointer we received. */
3802 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3803
3804 return ret;
3805 }
3806 #endif
3807
3808 #ifdef CONFIG_SYSFS
3809 static int count_inuse(struct page *page)
3810 {
3811 return page->inuse;
3812 }
3813
3814 static int count_total(struct page *page)
3815 {
3816 return page->objects;
3817 }
3818 #endif
3819
3820 #ifdef CONFIG_SLUB_DEBUG
3821 static int validate_slab(struct kmem_cache *s, struct page *page,
3822 unsigned long *map)
3823 {
3824 void *p;
3825 void *addr = page_address(page);
3826
3827 if (!check_slab(s, page) ||
3828 !on_freelist(s, page, NULL))
3829 return 0;
3830
3831 /* Now we know that a valid freelist exists */
3832 bitmap_zero(map, page->objects);
3833
3834 get_map(s, page, map);
3835 for_each_object(p, s, addr, page->objects) {
3836 if (test_bit(slab_index(p, s, addr), map))
3837 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3838 return 0;
3839 }
3840
3841 for_each_object(p, s, addr, page->objects)
3842 if (!test_bit(slab_index(p, s, addr), map))
3843 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3844 return 0;
3845 return 1;
3846 }
3847
3848 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3849 unsigned long *map)
3850 {
3851 slab_lock(page);
3852 validate_slab(s, page, map);
3853 slab_unlock(page);
3854 }
3855
3856 static int validate_slab_node(struct kmem_cache *s,
3857 struct kmem_cache_node *n, unsigned long *map)
3858 {
3859 unsigned long count = 0;
3860 struct page *page;
3861 unsigned long flags;
3862
3863 spin_lock_irqsave(&n->list_lock, flags);
3864
3865 list_for_each_entry(page, &n->partial, lru) {
3866 validate_slab_slab(s, page, map);
3867 count++;
3868 }
3869 if (count != n->nr_partial)
3870 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
3871 s->name, count, n->nr_partial);
3872
3873 if (!(s->flags & SLAB_STORE_USER))
3874 goto out;
3875
3876 list_for_each_entry(page, &n->full, lru) {
3877 validate_slab_slab(s, page, map);
3878 count++;
3879 }
3880 if (count != atomic_long_read(&n->nr_slabs))
3881 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
3882 s->name, count, atomic_long_read(&n->nr_slabs));
3883
3884 out:
3885 spin_unlock_irqrestore(&n->list_lock, flags);
3886 return count;
3887 }
3888
3889 static long validate_slab_cache(struct kmem_cache *s)
3890 {
3891 int node;
3892 unsigned long count = 0;
3893 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3894 sizeof(unsigned long), GFP_KERNEL);
3895 struct kmem_cache_node *n;
3896
3897 if (!map)
3898 return -ENOMEM;
3899
3900 flush_all(s);
3901 for_each_kmem_cache_node(s, node, n)
3902 count += validate_slab_node(s, n, map);
3903 kfree(map);
3904 return count;
3905 }
3906 /*
3907 * Generate lists of code addresses where slabcache objects are allocated
3908 * and freed.
3909 */
3910
3911 struct location {
3912 unsigned long count;
3913 unsigned long addr;
3914 long long sum_time;
3915 long min_time;
3916 long max_time;
3917 long min_pid;
3918 long max_pid;
3919 DECLARE_BITMAP(cpus, NR_CPUS);
3920 nodemask_t nodes;
3921 };
3922
3923 struct loc_track {
3924 unsigned long max;
3925 unsigned long count;
3926 struct location *loc;
3927 };
3928
3929 static void free_loc_track(struct loc_track *t)
3930 {
3931 if (t->max)
3932 free_pages((unsigned long)t->loc,
3933 get_order(sizeof(struct location) * t->max));
3934 }
3935
3936 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3937 {
3938 struct location *l;
3939 int order;
3940
3941 order = get_order(sizeof(struct location) * max);
3942
3943 l = (void *)__get_free_pages(flags, order);
3944 if (!l)
3945 return 0;
3946
3947 if (t->count) {
3948 memcpy(l, t->loc, sizeof(struct location) * t->count);
3949 free_loc_track(t);
3950 }
3951 t->max = max;
3952 t->loc = l;
3953 return 1;
3954 }
3955
3956 static int add_location(struct loc_track *t, struct kmem_cache *s,
3957 const struct track *track)
3958 {
3959 long start, end, pos;
3960 struct location *l;
3961 unsigned long caddr;
3962 unsigned long age = jiffies - track->when;
3963
3964 start = -1;
3965 end = t->count;
3966
3967 for ( ; ; ) {
3968 pos = start + (end - start + 1) / 2;
3969
3970 /*
3971 * There is nothing at "end". If we end up there
3972 * we need to add something to before end.
3973 */
3974 if (pos == end)
3975 break;
3976
3977 caddr = t->loc[pos].addr;
3978 if (track->addr == caddr) {
3979
3980 l = &t->loc[pos];
3981 l->count++;
3982 if (track->when) {
3983 l->sum_time += age;
3984 if (age < l->min_time)
3985 l->min_time = age;
3986 if (age > l->max_time)
3987 l->max_time = age;
3988
3989 if (track->pid < l->min_pid)
3990 l->min_pid = track->pid;
3991 if (track->pid > l->max_pid)
3992 l->max_pid = track->pid;
3993
3994 cpumask_set_cpu(track->cpu,
3995 to_cpumask(l->cpus));
3996 }
3997 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3998 return 1;
3999 }
4000
4001 if (track->addr < caddr)
4002 end = pos;
4003 else
4004 start = pos;
4005 }
4006
4007 /*
4008 * Not found. Insert new tracking element.
4009 */
4010 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4011 return 0;
4012
4013 l = t->loc + pos;
4014 if (pos < t->count)
4015 memmove(l + 1, l,
4016 (t->count - pos) * sizeof(struct location));
4017 t->count++;
4018 l->count = 1;
4019 l->addr = track->addr;
4020 l->sum_time = age;
4021 l->min_time = age;
4022 l->max_time = age;
4023 l->min_pid = track->pid;
4024 l->max_pid = track->pid;
4025 cpumask_clear(to_cpumask(l->cpus));
4026 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4027 nodes_clear(l->nodes);
4028 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4029 return 1;
4030 }
4031
4032 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4033 struct page *page, enum track_item alloc,
4034 unsigned long *map)
4035 {
4036 void *addr = page_address(page);
4037 void *p;
4038
4039 bitmap_zero(map, page->objects);
4040 get_map(s, page, map);
4041
4042 for_each_object(p, s, addr, page->objects)
4043 if (!test_bit(slab_index(p, s, addr), map))
4044 add_location(t, s, get_track(s, p, alloc));
4045 }
4046
4047 static int list_locations(struct kmem_cache *s, char *buf,
4048 enum track_item alloc)
4049 {
4050 int len = 0;
4051 unsigned long i;
4052 struct loc_track t = { 0, 0, NULL };
4053 int node;
4054 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4055 sizeof(unsigned long), GFP_KERNEL);
4056 struct kmem_cache_node *n;
4057
4058 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4059 GFP_TEMPORARY)) {
4060 kfree(map);
4061 return sprintf(buf, "Out of memory\n");
4062 }
4063 /* Push back cpu slabs */
4064 flush_all(s);
4065
4066 for_each_kmem_cache_node(s, node, n) {
4067 unsigned long flags;
4068 struct page *page;
4069
4070 if (!atomic_long_read(&n->nr_slabs))
4071 continue;
4072
4073 spin_lock_irqsave(&n->list_lock, flags);
4074 list_for_each_entry(page, &n->partial, lru)
4075 process_slab(&t, s, page, alloc, map);
4076 list_for_each_entry(page, &n->full, lru)
4077 process_slab(&t, s, page, alloc, map);
4078 spin_unlock_irqrestore(&n->list_lock, flags);
4079 }
4080
4081 for (i = 0; i < t.count; i++) {
4082 struct location *l = &t.loc[i];
4083
4084 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4085 break;
4086 len += sprintf(buf + len, "%7ld ", l->count);
4087
4088 if (l->addr)
4089 len += sprintf(buf + len, "%pS", (void *)l->addr);
4090 else
4091 len += sprintf(buf + len, "<not-available>");
4092
4093 if (l->sum_time != l->min_time) {
4094 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4095 l->min_time,
4096 (long)div_u64(l->sum_time, l->count),
4097 l->max_time);
4098 } else
4099 len += sprintf(buf + len, " age=%ld",
4100 l->min_time);
4101
4102 if (l->min_pid != l->max_pid)
4103 len += sprintf(buf + len, " pid=%ld-%ld",
4104 l->min_pid, l->max_pid);
4105 else
4106 len += sprintf(buf + len, " pid=%ld",
4107 l->min_pid);
4108
4109 if (num_online_cpus() > 1 &&
4110 !cpumask_empty(to_cpumask(l->cpus)) &&
4111 len < PAGE_SIZE - 60) {
4112 len += sprintf(buf + len, " cpus=");
4113 len += cpulist_scnprintf(buf + len,
4114 PAGE_SIZE - len - 50,
4115 to_cpumask(l->cpus));
4116 }
4117
4118 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4119 len < PAGE_SIZE - 60) {
4120 len += sprintf(buf + len, " nodes=");
4121 len += nodelist_scnprintf(buf + len,
4122 PAGE_SIZE - len - 50,
4123 l->nodes);
4124 }
4125
4126 len += sprintf(buf + len, "\n");
4127 }
4128
4129 free_loc_track(&t);
4130 kfree(map);
4131 if (!t.count)
4132 len += sprintf(buf, "No data\n");
4133 return len;
4134 }
4135 #endif
4136
4137 #ifdef SLUB_RESILIENCY_TEST
4138 static void __init resiliency_test(void)
4139 {
4140 u8 *p;
4141
4142 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4143
4144 pr_err("SLUB resiliency testing\n");
4145 pr_err("-----------------------\n");
4146 pr_err("A. Corruption after allocation\n");
4147
4148 p = kzalloc(16, GFP_KERNEL);
4149 p[16] = 0x12;
4150 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4151 p + 16);
4152
4153 validate_slab_cache(kmalloc_caches[4]);
4154
4155 /* Hmmm... The next two are dangerous */
4156 p = kzalloc(32, GFP_KERNEL);
4157 p[32 + sizeof(void *)] = 0x34;
4158 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4159 p);
4160 pr_err("If allocated object is overwritten then not detectable\n\n");
4161
4162 validate_slab_cache(kmalloc_caches[5]);
4163 p = kzalloc(64, GFP_KERNEL);
4164 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4165 *p = 0x56;
4166 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4167 p);
4168 pr_err("If allocated object is overwritten then not detectable\n\n");
4169 validate_slab_cache(kmalloc_caches[6]);
4170
4171 pr_err("\nB. Corruption after free\n");
4172 p = kzalloc(128, GFP_KERNEL);
4173 kfree(p);
4174 *p = 0x78;
4175 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4176 validate_slab_cache(kmalloc_caches[7]);
4177
4178 p = kzalloc(256, GFP_KERNEL);
4179 kfree(p);
4180 p[50] = 0x9a;
4181 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4182 validate_slab_cache(kmalloc_caches[8]);
4183
4184 p = kzalloc(512, GFP_KERNEL);
4185 kfree(p);
4186 p[512] = 0xab;
4187 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4188 validate_slab_cache(kmalloc_caches[9]);
4189 }
4190 #else
4191 #ifdef CONFIG_SYSFS
4192 static void resiliency_test(void) {};
4193 #endif
4194 #endif
4195
4196 #ifdef CONFIG_SYSFS
4197 enum slab_stat_type {
4198 SL_ALL, /* All slabs */
4199 SL_PARTIAL, /* Only partially allocated slabs */
4200 SL_CPU, /* Only slabs used for cpu caches */
4201 SL_OBJECTS, /* Determine allocated objects not slabs */
4202 SL_TOTAL /* Determine object capacity not slabs */
4203 };
4204
4205 #define SO_ALL (1 << SL_ALL)
4206 #define SO_PARTIAL (1 << SL_PARTIAL)
4207 #define SO_CPU (1 << SL_CPU)
4208 #define SO_OBJECTS (1 << SL_OBJECTS)
4209 #define SO_TOTAL (1 << SL_TOTAL)
4210
4211 static ssize_t show_slab_objects(struct kmem_cache *s,
4212 char *buf, unsigned long flags)
4213 {
4214 unsigned long total = 0;
4215 int node;
4216 int x;
4217 unsigned long *nodes;
4218
4219 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4220 if (!nodes)
4221 return -ENOMEM;
4222
4223 if (flags & SO_CPU) {
4224 int cpu;
4225
4226 for_each_possible_cpu(cpu) {
4227 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4228 cpu);
4229 int node;
4230 struct page *page;
4231
4232 page = ACCESS_ONCE(c->page);
4233 if (!page)
4234 continue;
4235
4236 node = page_to_nid(page);
4237 if (flags & SO_TOTAL)
4238 x = page->objects;
4239 else if (flags & SO_OBJECTS)
4240 x = page->inuse;
4241 else
4242 x = 1;
4243
4244 total += x;
4245 nodes[node] += x;
4246
4247 page = ACCESS_ONCE(c->partial);
4248 if (page) {
4249 node = page_to_nid(page);
4250 if (flags & SO_TOTAL)
4251 WARN_ON_ONCE(1);
4252 else if (flags & SO_OBJECTS)
4253 WARN_ON_ONCE(1);
4254 else
4255 x = page->pages;
4256 total += x;
4257 nodes[node] += x;
4258 }
4259 }
4260 }
4261
4262 get_online_mems();
4263 #ifdef CONFIG_SLUB_DEBUG
4264 if (flags & SO_ALL) {
4265 struct kmem_cache_node *n;
4266
4267 for_each_kmem_cache_node(s, node, n) {
4268
4269 if (flags & SO_TOTAL)
4270 x = atomic_long_read(&n->total_objects);
4271 else if (flags & SO_OBJECTS)
4272 x = atomic_long_read(&n->total_objects) -
4273 count_partial(n, count_free);
4274 else
4275 x = atomic_long_read(&n->nr_slabs);
4276 total += x;
4277 nodes[node] += x;
4278 }
4279
4280 } else
4281 #endif
4282 if (flags & SO_PARTIAL) {
4283 struct kmem_cache_node *n;
4284
4285 for_each_kmem_cache_node(s, node, n) {
4286 if (flags & SO_TOTAL)
4287 x = count_partial(n, count_total);
4288 else if (flags & SO_OBJECTS)
4289 x = count_partial(n, count_inuse);
4290 else
4291 x = n->nr_partial;
4292 total += x;
4293 nodes[node] += x;
4294 }
4295 }
4296 x = sprintf(buf, "%lu", total);
4297 #ifdef CONFIG_NUMA
4298 for (node = 0; node < nr_node_ids; node++)
4299 if (nodes[node])
4300 x += sprintf(buf + x, " N%d=%lu",
4301 node, nodes[node]);
4302 #endif
4303 put_online_mems();
4304 kfree(nodes);
4305 return x + sprintf(buf + x, "\n");
4306 }
4307
4308 #ifdef CONFIG_SLUB_DEBUG
4309 static int any_slab_objects(struct kmem_cache *s)
4310 {
4311 int node;
4312 struct kmem_cache_node *n;
4313
4314 for_each_kmem_cache_node(s, node, n)
4315 if (atomic_long_read(&n->total_objects))
4316 return 1;
4317
4318 return 0;
4319 }
4320 #endif
4321
4322 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4323 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4324
4325 struct slab_attribute {
4326 struct attribute attr;
4327 ssize_t (*show)(struct kmem_cache *s, char *buf);
4328 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4329 };
4330
4331 #define SLAB_ATTR_RO(_name) \
4332 static struct slab_attribute _name##_attr = \
4333 __ATTR(_name, 0400, _name##_show, NULL)
4334
4335 #define SLAB_ATTR(_name) \
4336 static struct slab_attribute _name##_attr = \
4337 __ATTR(_name, 0600, _name##_show, _name##_store)
4338
4339 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4340 {
4341 return sprintf(buf, "%d\n", s->size);
4342 }
4343 SLAB_ATTR_RO(slab_size);
4344
4345 static ssize_t align_show(struct kmem_cache *s, char *buf)
4346 {
4347 return sprintf(buf, "%d\n", s->align);
4348 }
4349 SLAB_ATTR_RO(align);
4350
4351 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4352 {
4353 return sprintf(buf, "%d\n", s->object_size);
4354 }
4355 SLAB_ATTR_RO(object_size);
4356
4357 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4358 {
4359 return sprintf(buf, "%d\n", oo_objects(s->oo));
4360 }
4361 SLAB_ATTR_RO(objs_per_slab);
4362
4363 static ssize_t order_store(struct kmem_cache *s,
4364 const char *buf, size_t length)
4365 {
4366 unsigned long order;
4367 int err;
4368
4369 err = kstrtoul(buf, 10, &order);
4370 if (err)
4371 return err;
4372
4373 if (order > slub_max_order || order < slub_min_order)
4374 return -EINVAL;
4375
4376 calculate_sizes(s, order);
4377 return length;
4378 }
4379
4380 static ssize_t order_show(struct kmem_cache *s, char *buf)
4381 {
4382 return sprintf(buf, "%d\n", oo_order(s->oo));
4383 }
4384 SLAB_ATTR(order);
4385
4386 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4387 {
4388 return sprintf(buf, "%lu\n", s->min_partial);
4389 }
4390
4391 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4392 size_t length)
4393 {
4394 unsigned long min;
4395 int err;
4396
4397 err = kstrtoul(buf, 10, &min);
4398 if (err)
4399 return err;
4400
4401 set_min_partial(s, min);
4402 return length;
4403 }
4404 SLAB_ATTR(min_partial);
4405
4406 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4407 {
4408 return sprintf(buf, "%u\n", s->cpu_partial);
4409 }
4410
4411 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4412 size_t length)
4413 {
4414 unsigned long objects;
4415 int err;
4416
4417 err = kstrtoul(buf, 10, &objects);
4418 if (err)
4419 return err;
4420 if (objects && !kmem_cache_has_cpu_partial(s))
4421 return -EINVAL;
4422
4423 s->cpu_partial = objects;
4424 flush_all(s);
4425 return length;
4426 }
4427 SLAB_ATTR(cpu_partial);
4428
4429 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4430 {
4431 if (!s->ctor)
4432 return 0;
4433 return sprintf(buf, "%pS\n", s->ctor);
4434 }
4435 SLAB_ATTR_RO(ctor);
4436
4437 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4438 {
4439 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
4440 }
4441 SLAB_ATTR_RO(aliases);
4442
4443 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4444 {
4445 return show_slab_objects(s, buf, SO_PARTIAL);
4446 }
4447 SLAB_ATTR_RO(partial);
4448
4449 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4450 {
4451 return show_slab_objects(s, buf, SO_CPU);
4452 }
4453 SLAB_ATTR_RO(cpu_slabs);
4454
4455 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4456 {
4457 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4458 }
4459 SLAB_ATTR_RO(objects);
4460
4461 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4462 {
4463 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4464 }
4465 SLAB_ATTR_RO(objects_partial);
4466
4467 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4468 {
4469 int objects = 0;
4470 int pages = 0;
4471 int cpu;
4472 int len;
4473
4474 for_each_online_cpu(cpu) {
4475 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4476
4477 if (page) {
4478 pages += page->pages;
4479 objects += page->pobjects;
4480 }
4481 }
4482
4483 len = sprintf(buf, "%d(%d)", objects, pages);
4484
4485 #ifdef CONFIG_SMP
4486 for_each_online_cpu(cpu) {
4487 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4488
4489 if (page && len < PAGE_SIZE - 20)
4490 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4491 page->pobjects, page->pages);
4492 }
4493 #endif
4494 return len + sprintf(buf + len, "\n");
4495 }
4496 SLAB_ATTR_RO(slabs_cpu_partial);
4497
4498 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4499 {
4500 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4501 }
4502
4503 static ssize_t reclaim_account_store(struct kmem_cache *s,
4504 const char *buf, size_t length)
4505 {
4506 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4507 if (buf[0] == '1')
4508 s->flags |= SLAB_RECLAIM_ACCOUNT;
4509 return length;
4510 }
4511 SLAB_ATTR(reclaim_account);
4512
4513 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4514 {
4515 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4516 }
4517 SLAB_ATTR_RO(hwcache_align);
4518
4519 #ifdef CONFIG_ZONE_DMA
4520 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4521 {
4522 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4523 }
4524 SLAB_ATTR_RO(cache_dma);
4525 #endif
4526
4527 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4528 {
4529 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4530 }
4531 SLAB_ATTR_RO(destroy_by_rcu);
4532
4533 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4534 {
4535 return sprintf(buf, "%d\n", s->reserved);
4536 }
4537 SLAB_ATTR_RO(reserved);
4538
4539 #ifdef CONFIG_SLUB_DEBUG
4540 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4541 {
4542 return show_slab_objects(s, buf, SO_ALL);
4543 }
4544 SLAB_ATTR_RO(slabs);
4545
4546 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4547 {
4548 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4549 }
4550 SLAB_ATTR_RO(total_objects);
4551
4552 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4553 {
4554 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4555 }
4556
4557 static ssize_t sanity_checks_store(struct kmem_cache *s,
4558 const char *buf, size_t length)
4559 {
4560 s->flags &= ~SLAB_DEBUG_FREE;
4561 if (buf[0] == '1') {
4562 s->flags &= ~__CMPXCHG_DOUBLE;
4563 s->flags |= SLAB_DEBUG_FREE;
4564 }
4565 return length;
4566 }
4567 SLAB_ATTR(sanity_checks);
4568
4569 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4570 {
4571 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4572 }
4573
4574 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4575 size_t length)
4576 {
4577 /*
4578 * Tracing a merged cache is going to give confusing results
4579 * as well as cause other issues like converting a mergeable
4580 * cache into an umergeable one.
4581 */
4582 if (s->refcount > 1)
4583 return -EINVAL;
4584
4585 s->flags &= ~SLAB_TRACE;
4586 if (buf[0] == '1') {
4587 s->flags &= ~__CMPXCHG_DOUBLE;
4588 s->flags |= SLAB_TRACE;
4589 }
4590 return length;
4591 }
4592 SLAB_ATTR(trace);
4593
4594 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4595 {
4596 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4597 }
4598
4599 static ssize_t red_zone_store(struct kmem_cache *s,
4600 const char *buf, size_t length)
4601 {
4602 if (any_slab_objects(s))
4603 return -EBUSY;
4604
4605 s->flags &= ~SLAB_RED_ZONE;
4606 if (buf[0] == '1') {
4607 s->flags &= ~__CMPXCHG_DOUBLE;
4608 s->flags |= SLAB_RED_ZONE;
4609 }
4610 calculate_sizes(s, -1);
4611 return length;
4612 }
4613 SLAB_ATTR(red_zone);
4614
4615 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4616 {
4617 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4618 }
4619
4620 static ssize_t poison_store(struct kmem_cache *s,
4621 const char *buf, size_t length)
4622 {
4623 if (any_slab_objects(s))
4624 return -EBUSY;
4625
4626 s->flags &= ~SLAB_POISON;
4627 if (buf[0] == '1') {
4628 s->flags &= ~__CMPXCHG_DOUBLE;
4629 s->flags |= SLAB_POISON;
4630 }
4631 calculate_sizes(s, -1);
4632 return length;
4633 }
4634 SLAB_ATTR(poison);
4635
4636 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4637 {
4638 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4639 }
4640
4641 static ssize_t store_user_store(struct kmem_cache *s,
4642 const char *buf, size_t length)
4643 {
4644 if (any_slab_objects(s))
4645 return -EBUSY;
4646
4647 s->flags &= ~SLAB_STORE_USER;
4648 if (buf[0] == '1') {
4649 s->flags &= ~__CMPXCHG_DOUBLE;
4650 s->flags |= SLAB_STORE_USER;
4651 }
4652 calculate_sizes(s, -1);
4653 return length;
4654 }
4655 SLAB_ATTR(store_user);
4656
4657 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4658 {
4659 return 0;
4660 }
4661
4662 static ssize_t validate_store(struct kmem_cache *s,
4663 const char *buf, size_t length)
4664 {
4665 int ret = -EINVAL;
4666
4667 if (buf[0] == '1') {
4668 ret = validate_slab_cache(s);
4669 if (ret >= 0)
4670 ret = length;
4671 }
4672 return ret;
4673 }
4674 SLAB_ATTR(validate);
4675
4676 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4677 {
4678 if (!(s->flags & SLAB_STORE_USER))
4679 return -ENOSYS;
4680 return list_locations(s, buf, TRACK_ALLOC);
4681 }
4682 SLAB_ATTR_RO(alloc_calls);
4683
4684 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4685 {
4686 if (!(s->flags & SLAB_STORE_USER))
4687 return -ENOSYS;
4688 return list_locations(s, buf, TRACK_FREE);
4689 }
4690 SLAB_ATTR_RO(free_calls);
4691 #endif /* CONFIG_SLUB_DEBUG */
4692
4693 #ifdef CONFIG_FAILSLAB
4694 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4695 {
4696 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4697 }
4698
4699 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4700 size_t length)
4701 {
4702 if (s->refcount > 1)
4703 return -EINVAL;
4704
4705 s->flags &= ~SLAB_FAILSLAB;
4706 if (buf[0] == '1')
4707 s->flags |= SLAB_FAILSLAB;
4708 return length;
4709 }
4710 SLAB_ATTR(failslab);
4711 #endif
4712
4713 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4714 {
4715 return 0;
4716 }
4717
4718 static ssize_t shrink_store(struct kmem_cache *s,
4719 const char *buf, size_t length)
4720 {
4721 if (buf[0] == '1')
4722 kmem_cache_shrink(s);
4723 else
4724 return -EINVAL;
4725 return length;
4726 }
4727 SLAB_ATTR(shrink);
4728
4729 #ifdef CONFIG_NUMA
4730 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4731 {
4732 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4733 }
4734
4735 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4736 const char *buf, size_t length)
4737 {
4738 unsigned long ratio;
4739 int err;
4740
4741 err = kstrtoul(buf, 10, &ratio);
4742 if (err)
4743 return err;
4744
4745 if (ratio <= 100)
4746 s->remote_node_defrag_ratio = ratio * 10;
4747
4748 return length;
4749 }
4750 SLAB_ATTR(remote_node_defrag_ratio);
4751 #endif
4752
4753 #ifdef CONFIG_SLUB_STATS
4754 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4755 {
4756 unsigned long sum = 0;
4757 int cpu;
4758 int len;
4759 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4760
4761 if (!data)
4762 return -ENOMEM;
4763
4764 for_each_online_cpu(cpu) {
4765 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4766
4767 data[cpu] = x;
4768 sum += x;
4769 }
4770
4771 len = sprintf(buf, "%lu", sum);
4772
4773 #ifdef CONFIG_SMP
4774 for_each_online_cpu(cpu) {
4775 if (data[cpu] && len < PAGE_SIZE - 20)
4776 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4777 }
4778 #endif
4779 kfree(data);
4780 return len + sprintf(buf + len, "\n");
4781 }
4782
4783 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4784 {
4785 int cpu;
4786
4787 for_each_online_cpu(cpu)
4788 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4789 }
4790
4791 #define STAT_ATTR(si, text) \
4792 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4793 { \
4794 return show_stat(s, buf, si); \
4795 } \
4796 static ssize_t text##_store(struct kmem_cache *s, \
4797 const char *buf, size_t length) \
4798 { \
4799 if (buf[0] != '0') \
4800 return -EINVAL; \
4801 clear_stat(s, si); \
4802 return length; \
4803 } \
4804 SLAB_ATTR(text); \
4805
4806 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4807 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4808 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4809 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4810 STAT_ATTR(FREE_FROZEN, free_frozen);
4811 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4812 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4813 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4814 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4815 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4816 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4817 STAT_ATTR(FREE_SLAB, free_slab);
4818 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4819 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4820 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4821 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4822 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4823 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4824 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4825 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4826 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4827 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4828 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4829 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
4830 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
4831 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
4832 #endif
4833
4834 static struct attribute *slab_attrs[] = {
4835 &slab_size_attr.attr,
4836 &object_size_attr.attr,
4837 &objs_per_slab_attr.attr,
4838 &order_attr.attr,
4839 &min_partial_attr.attr,
4840 &cpu_partial_attr.attr,
4841 &objects_attr.attr,
4842 &objects_partial_attr.attr,
4843 &partial_attr.attr,
4844 &cpu_slabs_attr.attr,
4845 &ctor_attr.attr,
4846 &aliases_attr.attr,
4847 &align_attr.attr,
4848 &hwcache_align_attr.attr,
4849 &reclaim_account_attr.attr,
4850 &destroy_by_rcu_attr.attr,
4851 &shrink_attr.attr,
4852 &reserved_attr.attr,
4853 &slabs_cpu_partial_attr.attr,
4854 #ifdef CONFIG_SLUB_DEBUG
4855 &total_objects_attr.attr,
4856 &slabs_attr.attr,
4857 &sanity_checks_attr.attr,
4858 &trace_attr.attr,
4859 &red_zone_attr.attr,
4860 &poison_attr.attr,
4861 &store_user_attr.attr,
4862 &validate_attr.attr,
4863 &alloc_calls_attr.attr,
4864 &free_calls_attr.attr,
4865 #endif
4866 #ifdef CONFIG_ZONE_DMA
4867 &cache_dma_attr.attr,
4868 #endif
4869 #ifdef CONFIG_NUMA
4870 &remote_node_defrag_ratio_attr.attr,
4871 #endif
4872 #ifdef CONFIG_SLUB_STATS
4873 &alloc_fastpath_attr.attr,
4874 &alloc_slowpath_attr.attr,
4875 &free_fastpath_attr.attr,
4876 &free_slowpath_attr.attr,
4877 &free_frozen_attr.attr,
4878 &free_add_partial_attr.attr,
4879 &free_remove_partial_attr.attr,
4880 &alloc_from_partial_attr.attr,
4881 &alloc_slab_attr.attr,
4882 &alloc_refill_attr.attr,
4883 &alloc_node_mismatch_attr.attr,
4884 &free_slab_attr.attr,
4885 &cpuslab_flush_attr.attr,
4886 &deactivate_full_attr.attr,
4887 &deactivate_empty_attr.attr,
4888 &deactivate_to_head_attr.attr,
4889 &deactivate_to_tail_attr.attr,
4890 &deactivate_remote_frees_attr.attr,
4891 &deactivate_bypass_attr.attr,
4892 &order_fallback_attr.attr,
4893 &cmpxchg_double_fail_attr.attr,
4894 &cmpxchg_double_cpu_fail_attr.attr,
4895 &cpu_partial_alloc_attr.attr,
4896 &cpu_partial_free_attr.attr,
4897 &cpu_partial_node_attr.attr,
4898 &cpu_partial_drain_attr.attr,
4899 #endif
4900 #ifdef CONFIG_FAILSLAB
4901 &failslab_attr.attr,
4902 #endif
4903
4904 NULL
4905 };
4906
4907 static struct attribute_group slab_attr_group = {
4908 .attrs = slab_attrs,
4909 };
4910
4911 static ssize_t slab_attr_show(struct kobject *kobj,
4912 struct attribute *attr,
4913 char *buf)
4914 {
4915 struct slab_attribute *attribute;
4916 struct kmem_cache *s;
4917 int err;
4918
4919 attribute = to_slab_attr(attr);
4920 s = to_slab(kobj);
4921
4922 if (!attribute->show)
4923 return -EIO;
4924
4925 err = attribute->show(s, buf);
4926
4927 return err;
4928 }
4929
4930 static ssize_t slab_attr_store(struct kobject *kobj,
4931 struct attribute *attr,
4932 const char *buf, size_t len)
4933 {
4934 struct slab_attribute *attribute;
4935 struct kmem_cache *s;
4936 int err;
4937
4938 attribute = to_slab_attr(attr);
4939 s = to_slab(kobj);
4940
4941 if (!attribute->store)
4942 return -EIO;
4943
4944 err = attribute->store(s, buf, len);
4945 #ifdef CONFIG_MEMCG_KMEM
4946 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
4947 struct kmem_cache *c;
4948
4949 mutex_lock(&slab_mutex);
4950 if (s->max_attr_size < len)
4951 s->max_attr_size = len;
4952
4953 /*
4954 * This is a best effort propagation, so this function's return
4955 * value will be determined by the parent cache only. This is
4956 * basically because not all attributes will have a well
4957 * defined semantics for rollbacks - most of the actions will
4958 * have permanent effects.
4959 *
4960 * Returning the error value of any of the children that fail
4961 * is not 100 % defined, in the sense that users seeing the
4962 * error code won't be able to know anything about the state of
4963 * the cache.
4964 *
4965 * Only returning the error code for the parent cache at least
4966 * has well defined semantics. The cache being written to
4967 * directly either failed or succeeded, in which case we loop
4968 * through the descendants with best-effort propagation.
4969 */
4970 for_each_memcg_cache(c, s)
4971 attribute->store(c, buf, len);
4972 mutex_unlock(&slab_mutex);
4973 }
4974 #endif
4975 return err;
4976 }
4977
4978 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
4979 {
4980 #ifdef CONFIG_MEMCG_KMEM
4981 int i;
4982 char *buffer = NULL;
4983 struct kmem_cache *root_cache;
4984
4985 if (is_root_cache(s))
4986 return;
4987
4988 root_cache = s->memcg_params.root_cache;
4989
4990 /*
4991 * This mean this cache had no attribute written. Therefore, no point
4992 * in copying default values around
4993 */
4994 if (!root_cache->max_attr_size)
4995 return;
4996
4997 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
4998 char mbuf[64];
4999 char *buf;
5000 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5001
5002 if (!attr || !attr->store || !attr->show)
5003 continue;
5004
5005 /*
5006 * It is really bad that we have to allocate here, so we will
5007 * do it only as a fallback. If we actually allocate, though,
5008 * we can just use the allocated buffer until the end.
5009 *
5010 * Most of the slub attributes will tend to be very small in
5011 * size, but sysfs allows buffers up to a page, so they can
5012 * theoretically happen.
5013 */
5014 if (buffer)
5015 buf = buffer;
5016 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5017 buf = mbuf;
5018 else {
5019 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5020 if (WARN_ON(!buffer))
5021 continue;
5022 buf = buffer;
5023 }
5024
5025 attr->show(root_cache, buf);
5026 attr->store(s, buf, strlen(buf));
5027 }
5028
5029 if (buffer)
5030 free_page((unsigned long)buffer);
5031 #endif
5032 }
5033
5034 static void kmem_cache_release(struct kobject *k)
5035 {
5036 slab_kmem_cache_release(to_slab(k));
5037 }
5038
5039 static const struct sysfs_ops slab_sysfs_ops = {
5040 .show = slab_attr_show,
5041 .store = slab_attr_store,
5042 };
5043
5044 static struct kobj_type slab_ktype = {
5045 .sysfs_ops = &slab_sysfs_ops,
5046 .release = kmem_cache_release,
5047 };
5048
5049 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5050 {
5051 struct kobj_type *ktype = get_ktype(kobj);
5052
5053 if (ktype == &slab_ktype)
5054 return 1;
5055 return 0;
5056 }
5057
5058 static const struct kset_uevent_ops slab_uevent_ops = {
5059 .filter = uevent_filter,
5060 };
5061
5062 static struct kset *slab_kset;
5063
5064 static inline struct kset *cache_kset(struct kmem_cache *s)
5065 {
5066 #ifdef CONFIG_MEMCG_KMEM
5067 if (!is_root_cache(s))
5068 return s->memcg_params.root_cache->memcg_kset;
5069 #endif
5070 return slab_kset;
5071 }
5072
5073 #define ID_STR_LENGTH 64
5074
5075 /* Create a unique string id for a slab cache:
5076 *
5077 * Format :[flags-]size
5078 */
5079 static char *create_unique_id(struct kmem_cache *s)
5080 {
5081 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5082 char *p = name;
5083
5084 BUG_ON(!name);
5085
5086 *p++ = ':';
5087 /*
5088 * First flags affecting slabcache operations. We will only
5089 * get here for aliasable slabs so we do not need to support
5090 * too many flags. The flags here must cover all flags that
5091 * are matched during merging to guarantee that the id is
5092 * unique.
5093 */
5094 if (s->flags & SLAB_CACHE_DMA)
5095 *p++ = 'd';
5096 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5097 *p++ = 'a';
5098 if (s->flags & SLAB_DEBUG_FREE)
5099 *p++ = 'F';
5100 if (!(s->flags & SLAB_NOTRACK))
5101 *p++ = 't';
5102 if (p != name + 1)
5103 *p++ = '-';
5104 p += sprintf(p, "%07d", s->size);
5105
5106 BUG_ON(p > name + ID_STR_LENGTH - 1);
5107 return name;
5108 }
5109
5110 static int sysfs_slab_add(struct kmem_cache *s)
5111 {
5112 int err;
5113 const char *name;
5114 int unmergeable = slab_unmergeable(s);
5115
5116 if (unmergeable) {
5117 /*
5118 * Slabcache can never be merged so we can use the name proper.
5119 * This is typically the case for debug situations. In that
5120 * case we can catch duplicate names easily.
5121 */
5122 sysfs_remove_link(&slab_kset->kobj, s->name);
5123 name = s->name;
5124 } else {
5125 /*
5126 * Create a unique name for the slab as a target
5127 * for the symlinks.
5128 */
5129 name = create_unique_id(s);
5130 }
5131
5132 s->kobj.kset = cache_kset(s);
5133 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5134 if (err)
5135 goto out_put_kobj;
5136
5137 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5138 if (err)
5139 goto out_del_kobj;
5140
5141 #ifdef CONFIG_MEMCG_KMEM
5142 if (is_root_cache(s)) {
5143 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5144 if (!s->memcg_kset) {
5145 err = -ENOMEM;
5146 goto out_del_kobj;
5147 }
5148 }
5149 #endif
5150
5151 kobject_uevent(&s->kobj, KOBJ_ADD);
5152 if (!unmergeable) {
5153 /* Setup first alias */
5154 sysfs_slab_alias(s, s->name);
5155 }
5156 out:
5157 if (!unmergeable)
5158 kfree(name);
5159 return err;
5160 out_del_kobj:
5161 kobject_del(&s->kobj);
5162 out_put_kobj:
5163 kobject_put(&s->kobj);
5164 goto out;
5165 }
5166
5167 void sysfs_slab_remove(struct kmem_cache *s)
5168 {
5169 if (slab_state < FULL)
5170 /*
5171 * Sysfs has not been setup yet so no need to remove the
5172 * cache from sysfs.
5173 */
5174 return;
5175
5176 #ifdef CONFIG_MEMCG_KMEM
5177 kset_unregister(s->memcg_kset);
5178 #endif
5179 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5180 kobject_del(&s->kobj);
5181 kobject_put(&s->kobj);
5182 }
5183
5184 /*
5185 * Need to buffer aliases during bootup until sysfs becomes
5186 * available lest we lose that information.
5187 */
5188 struct saved_alias {
5189 struct kmem_cache *s;
5190 const char *name;
5191 struct saved_alias *next;
5192 };
5193
5194 static struct saved_alias *alias_list;
5195
5196 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5197 {
5198 struct saved_alias *al;
5199
5200 if (slab_state == FULL) {
5201 /*
5202 * If we have a leftover link then remove it.
5203 */
5204 sysfs_remove_link(&slab_kset->kobj, name);
5205 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5206 }
5207
5208 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5209 if (!al)
5210 return -ENOMEM;
5211
5212 al->s = s;
5213 al->name = name;
5214 al->next = alias_list;
5215 alias_list = al;
5216 return 0;
5217 }
5218
5219 static int __init slab_sysfs_init(void)
5220 {
5221 struct kmem_cache *s;
5222 int err;
5223
5224 mutex_lock(&slab_mutex);
5225
5226 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5227 if (!slab_kset) {
5228 mutex_unlock(&slab_mutex);
5229 pr_err("Cannot register slab subsystem.\n");
5230 return -ENOSYS;
5231 }
5232
5233 slab_state = FULL;
5234
5235 list_for_each_entry(s, &slab_caches, list) {
5236 err = sysfs_slab_add(s);
5237 if (err)
5238 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5239 s->name);
5240 }
5241
5242 while (alias_list) {
5243 struct saved_alias *al = alias_list;
5244
5245 alias_list = alias_list->next;
5246 err = sysfs_slab_alias(al->s, al->name);
5247 if (err)
5248 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5249 al->name);
5250 kfree(al);
5251 }
5252
5253 mutex_unlock(&slab_mutex);
5254 resiliency_test();
5255 return 0;
5256 }
5257
5258 __initcall(slab_sysfs_init);
5259 #endif /* CONFIG_SYSFS */
5260
5261 /*
5262 * The /proc/slabinfo ABI
5263 */
5264 #ifdef CONFIG_SLABINFO
5265 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5266 {
5267 unsigned long nr_slabs = 0;
5268 unsigned long nr_objs = 0;
5269 unsigned long nr_free = 0;
5270 int node;
5271 struct kmem_cache_node *n;
5272
5273 for_each_kmem_cache_node(s, node, n) {
5274 nr_slabs += node_nr_slabs(n);
5275 nr_objs += node_nr_objs(n);
5276 nr_free += count_partial(n, count_free);
5277 }
5278
5279 sinfo->active_objs = nr_objs - nr_free;
5280 sinfo->num_objs = nr_objs;
5281 sinfo->active_slabs = nr_slabs;
5282 sinfo->num_slabs = nr_slabs;
5283 sinfo->objects_per_slab = oo_objects(s->oo);
5284 sinfo->cache_order = oo_order(s->oo);
5285 }
5286
5287 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5288 {
5289 }
5290
5291 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5292 size_t count, loff_t *ppos)
5293 {
5294 return -EIO;
5295 }
5296 #endif /* CONFIG_SLABINFO */
This page took 0.167018 seconds and 5 git commands to generate.