1050d7db57342d55450108c85c71dacb20cf1986
[deliverable/linux.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
10 */
11
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include "slab.h"
20 #include <linux/proc_fs.h>
21 #include <linux/notifier.h>
22 #include <linux/seq_file.h>
23 #include <linux/kmemcheck.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/memory.h>
31 #include <linux/math64.h>
32 #include <linux/fault-inject.h>
33 #include <linux/stacktrace.h>
34 #include <linux/prefetch.h>
35 #include <linux/memcontrol.h>
36
37 #include <trace/events/kmem.h>
38
39 #include "internal.h"
40
41 /*
42 * Lock order:
43 * 1. slab_mutex (Global Mutex)
44 * 2. node->list_lock
45 * 3. slab_lock(page) (Only on some arches and for debugging)
46 *
47 * slab_mutex
48 *
49 * The role of the slab_mutex is to protect the list of all the slabs
50 * and to synchronize major metadata changes to slab cache structures.
51 *
52 * The slab_lock is only used for debugging and on arches that do not
53 * have the ability to do a cmpxchg_double. It only protects the second
54 * double word in the page struct. Meaning
55 * A. page->freelist -> List of object free in a page
56 * B. page->counters -> Counters of objects
57 * C. page->frozen -> frozen state
58 *
59 * If a slab is frozen then it is exempt from list management. It is not
60 * on any list. The processor that froze the slab is the one who can
61 * perform list operations on the page. Other processors may put objects
62 * onto the freelist but the processor that froze the slab is the only
63 * one that can retrieve the objects from the page's freelist.
64 *
65 * The list_lock protects the partial and full list on each node and
66 * the partial slab counter. If taken then no new slabs may be added or
67 * removed from the lists nor make the number of partial slabs be modified.
68 * (Note that the total number of slabs is an atomic value that may be
69 * modified without taking the list lock).
70 *
71 * The list_lock is a centralized lock and thus we avoid taking it as
72 * much as possible. As long as SLUB does not have to handle partial
73 * slabs, operations can continue without any centralized lock. F.e.
74 * allocating a long series of objects that fill up slabs does not require
75 * the list lock.
76 * Interrupts are disabled during allocation and deallocation in order to
77 * make the slab allocator safe to use in the context of an irq. In addition
78 * interrupts are disabled to ensure that the processor does not change
79 * while handling per_cpu slabs, due to kernel preemption.
80 *
81 * SLUB assigns one slab for allocation to each processor.
82 * Allocations only occur from these slabs called cpu slabs.
83 *
84 * Slabs with free elements are kept on a partial list and during regular
85 * operations no list for full slabs is used. If an object in a full slab is
86 * freed then the slab will show up again on the partial lists.
87 * We track full slabs for debugging purposes though because otherwise we
88 * cannot scan all objects.
89 *
90 * Slabs are freed when they become empty. Teardown and setup is
91 * minimal so we rely on the page allocators per cpu caches for
92 * fast frees and allocs.
93 *
94 * Overloading of page flags that are otherwise used for LRU management.
95 *
96 * PageActive The slab is frozen and exempt from list processing.
97 * This means that the slab is dedicated to a purpose
98 * such as satisfying allocations for a specific
99 * processor. Objects may be freed in the slab while
100 * it is frozen but slab_free will then skip the usual
101 * list operations. It is up to the processor holding
102 * the slab to integrate the slab into the slab lists
103 * when the slab is no longer needed.
104 *
105 * One use of this flag is to mark slabs that are
106 * used for allocations. Then such a slab becomes a cpu
107 * slab. The cpu slab may be equipped with an additional
108 * freelist that allows lockless access to
109 * free objects in addition to the regular freelist
110 * that requires the slab lock.
111 *
112 * PageError Slab requires special handling due to debug
113 * options set. This moves slab handling out of
114 * the fast path and disables lockless freelists.
115 */
116
117 static inline int kmem_cache_debug(struct kmem_cache *s)
118 {
119 #ifdef CONFIG_SLUB_DEBUG
120 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
121 #else
122 return 0;
123 #endif
124 }
125
126 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
127 {
128 #ifdef CONFIG_SLUB_CPU_PARTIAL
129 return !kmem_cache_debug(s);
130 #else
131 return false;
132 #endif
133 }
134
135 /*
136 * Issues still to be resolved:
137 *
138 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
139 *
140 * - Variable sizing of the per node arrays
141 */
142
143 /* Enable to test recovery from slab corruption on boot */
144 #undef SLUB_RESILIENCY_TEST
145
146 /* Enable to log cmpxchg failures */
147 #undef SLUB_DEBUG_CMPXCHG
148
149 /*
150 * Mininum number of partial slabs. These will be left on the partial
151 * lists even if they are empty. kmem_cache_shrink may reclaim them.
152 */
153 #define MIN_PARTIAL 5
154
155 /*
156 * Maximum number of desirable partial slabs.
157 * The existence of more partial slabs makes kmem_cache_shrink
158 * sort the partial list by the number of objects in use.
159 */
160 #define MAX_PARTIAL 10
161
162 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
163 SLAB_POISON | SLAB_STORE_USER)
164
165 /*
166 * Debugging flags that require metadata to be stored in the slab. These get
167 * disabled when slub_debug=O is used and a cache's min order increases with
168 * metadata.
169 */
170 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
171
172 /*
173 * Set of flags that will prevent slab merging
174 */
175 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
176 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
177 SLAB_FAILSLAB)
178
179 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
180 SLAB_CACHE_DMA | SLAB_NOTRACK)
181
182 #define OO_SHIFT 16
183 #define OO_MASK ((1 << OO_SHIFT) - 1)
184 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
185
186 /* Internal SLUB flags */
187 #define __OBJECT_POISON 0x80000000UL /* Poison object */
188 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
189
190 #ifdef CONFIG_SMP
191 static struct notifier_block slab_notifier;
192 #endif
193
194 /*
195 * Tracking user of a slab.
196 */
197 #define TRACK_ADDRS_COUNT 16
198 struct track {
199 unsigned long addr; /* Called from address */
200 #ifdef CONFIG_STACKTRACE
201 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
202 #endif
203 int cpu; /* Was running on cpu */
204 int pid; /* Pid context */
205 unsigned long when; /* When did the operation occur */
206 };
207
208 enum track_item { TRACK_ALLOC, TRACK_FREE };
209
210 #ifdef CONFIG_SYSFS
211 static int sysfs_slab_add(struct kmem_cache *);
212 static int sysfs_slab_alias(struct kmem_cache *, const char *);
213 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
214 #else
215 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
216 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
217 { return 0; }
218 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
219 #endif
220
221 static inline void stat(const struct kmem_cache *s, enum stat_item si)
222 {
223 #ifdef CONFIG_SLUB_STATS
224 /*
225 * The rmw is racy on a preemptible kernel but this is acceptable, so
226 * avoid this_cpu_add()'s irq-disable overhead.
227 */
228 raw_cpu_inc(s->cpu_slab->stat[si]);
229 #endif
230 }
231
232 /********************************************************************
233 * Core slab cache functions
234 *******************************************************************/
235
236 /* Verify that a pointer has an address that is valid within a slab page */
237 static inline int check_valid_pointer(struct kmem_cache *s,
238 struct page *page, const void *object)
239 {
240 void *base;
241
242 if (!object)
243 return 1;
244
245 base = page_address(page);
246 if (object < base || object >= base + page->objects * s->size ||
247 (object - base) % s->size) {
248 return 0;
249 }
250
251 return 1;
252 }
253
254 static inline void *get_freepointer(struct kmem_cache *s, void *object)
255 {
256 return *(void **)(object + s->offset);
257 }
258
259 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
260 {
261 prefetch(object + s->offset);
262 }
263
264 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
265 {
266 void *p;
267
268 #ifdef CONFIG_DEBUG_PAGEALLOC
269 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
270 #else
271 p = get_freepointer(s, object);
272 #endif
273 return p;
274 }
275
276 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
277 {
278 *(void **)(object + s->offset) = fp;
279 }
280
281 /* Loop over all objects in a slab */
282 #define for_each_object(__p, __s, __addr, __objects) \
283 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
284 __p += (__s)->size)
285
286 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
287 for (__p = (__addr), __idx = 1; __idx <= __objects;\
288 __p += (__s)->size, __idx++)
289
290 /* Determine object index from a given position */
291 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
292 {
293 return (p - addr) / s->size;
294 }
295
296 static inline size_t slab_ksize(const struct kmem_cache *s)
297 {
298 #ifdef CONFIG_SLUB_DEBUG
299 /*
300 * Debugging requires use of the padding between object
301 * and whatever may come after it.
302 */
303 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
304 return s->object_size;
305
306 #endif
307 /*
308 * If we have the need to store the freelist pointer
309 * back there or track user information then we can
310 * only use the space before that information.
311 */
312 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
313 return s->inuse;
314 /*
315 * Else we can use all the padding etc for the allocation
316 */
317 return s->size;
318 }
319
320 static inline int order_objects(int order, unsigned long size, int reserved)
321 {
322 return ((PAGE_SIZE << order) - reserved) / size;
323 }
324
325 static inline struct kmem_cache_order_objects oo_make(int order,
326 unsigned long size, int reserved)
327 {
328 struct kmem_cache_order_objects x = {
329 (order << OO_SHIFT) + order_objects(order, size, reserved)
330 };
331
332 return x;
333 }
334
335 static inline int oo_order(struct kmem_cache_order_objects x)
336 {
337 return x.x >> OO_SHIFT;
338 }
339
340 static inline int oo_objects(struct kmem_cache_order_objects x)
341 {
342 return x.x & OO_MASK;
343 }
344
345 /*
346 * Per slab locking using the pagelock
347 */
348 static __always_inline void slab_lock(struct page *page)
349 {
350 bit_spin_lock(PG_locked, &page->flags);
351 }
352
353 static __always_inline void slab_unlock(struct page *page)
354 {
355 __bit_spin_unlock(PG_locked, &page->flags);
356 }
357
358 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
359 {
360 struct page tmp;
361 tmp.counters = counters_new;
362 /*
363 * page->counters can cover frozen/inuse/objects as well
364 * as page->_count. If we assign to ->counters directly
365 * we run the risk of losing updates to page->_count, so
366 * be careful and only assign to the fields we need.
367 */
368 page->frozen = tmp.frozen;
369 page->inuse = tmp.inuse;
370 page->objects = tmp.objects;
371 }
372
373 /* Interrupts must be disabled (for the fallback code to work right) */
374 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
375 void *freelist_old, unsigned long counters_old,
376 void *freelist_new, unsigned long counters_new,
377 const char *n)
378 {
379 VM_BUG_ON(!irqs_disabled());
380 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
381 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
382 if (s->flags & __CMPXCHG_DOUBLE) {
383 if (cmpxchg_double(&page->freelist, &page->counters,
384 freelist_old, counters_old,
385 freelist_new, counters_new))
386 return 1;
387 } else
388 #endif
389 {
390 slab_lock(page);
391 if (page->freelist == freelist_old &&
392 page->counters == counters_old) {
393 page->freelist = freelist_new;
394 set_page_slub_counters(page, counters_new);
395 slab_unlock(page);
396 return 1;
397 }
398 slab_unlock(page);
399 }
400
401 cpu_relax();
402 stat(s, CMPXCHG_DOUBLE_FAIL);
403
404 #ifdef SLUB_DEBUG_CMPXCHG
405 pr_info("%s %s: cmpxchg double redo ", n, s->name);
406 #endif
407
408 return 0;
409 }
410
411 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
412 void *freelist_old, unsigned long counters_old,
413 void *freelist_new, unsigned long counters_new,
414 const char *n)
415 {
416 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
417 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
418 if (s->flags & __CMPXCHG_DOUBLE) {
419 if (cmpxchg_double(&page->freelist, &page->counters,
420 freelist_old, counters_old,
421 freelist_new, counters_new))
422 return 1;
423 } else
424 #endif
425 {
426 unsigned long flags;
427
428 local_irq_save(flags);
429 slab_lock(page);
430 if (page->freelist == freelist_old &&
431 page->counters == counters_old) {
432 page->freelist = freelist_new;
433 set_page_slub_counters(page, counters_new);
434 slab_unlock(page);
435 local_irq_restore(flags);
436 return 1;
437 }
438 slab_unlock(page);
439 local_irq_restore(flags);
440 }
441
442 cpu_relax();
443 stat(s, CMPXCHG_DOUBLE_FAIL);
444
445 #ifdef SLUB_DEBUG_CMPXCHG
446 pr_info("%s %s: cmpxchg double redo ", n, s->name);
447 #endif
448
449 return 0;
450 }
451
452 #ifdef CONFIG_SLUB_DEBUG
453 /*
454 * Determine a map of object in use on a page.
455 *
456 * Node listlock must be held to guarantee that the page does
457 * not vanish from under us.
458 */
459 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
460 {
461 void *p;
462 void *addr = page_address(page);
463
464 for (p = page->freelist; p; p = get_freepointer(s, p))
465 set_bit(slab_index(p, s, addr), map);
466 }
467
468 /*
469 * Debug settings:
470 */
471 #ifdef CONFIG_SLUB_DEBUG_ON
472 static int slub_debug = DEBUG_DEFAULT_FLAGS;
473 #else
474 static int slub_debug;
475 #endif
476
477 static char *slub_debug_slabs;
478 static int disable_higher_order_debug;
479
480 /*
481 * Object debugging
482 */
483 static void print_section(char *text, u8 *addr, unsigned int length)
484 {
485 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
486 length, 1);
487 }
488
489 static struct track *get_track(struct kmem_cache *s, void *object,
490 enum track_item alloc)
491 {
492 struct track *p;
493
494 if (s->offset)
495 p = object + s->offset + sizeof(void *);
496 else
497 p = object + s->inuse;
498
499 return p + alloc;
500 }
501
502 static void set_track(struct kmem_cache *s, void *object,
503 enum track_item alloc, unsigned long addr)
504 {
505 struct track *p = get_track(s, object, alloc);
506
507 if (addr) {
508 #ifdef CONFIG_STACKTRACE
509 struct stack_trace trace;
510 int i;
511
512 trace.nr_entries = 0;
513 trace.max_entries = TRACK_ADDRS_COUNT;
514 trace.entries = p->addrs;
515 trace.skip = 3;
516 save_stack_trace(&trace);
517
518 /* See rant in lockdep.c */
519 if (trace.nr_entries != 0 &&
520 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
521 trace.nr_entries--;
522
523 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
524 p->addrs[i] = 0;
525 #endif
526 p->addr = addr;
527 p->cpu = smp_processor_id();
528 p->pid = current->pid;
529 p->when = jiffies;
530 } else
531 memset(p, 0, sizeof(struct track));
532 }
533
534 static void init_tracking(struct kmem_cache *s, void *object)
535 {
536 if (!(s->flags & SLAB_STORE_USER))
537 return;
538
539 set_track(s, object, TRACK_FREE, 0UL);
540 set_track(s, object, TRACK_ALLOC, 0UL);
541 }
542
543 static void print_track(const char *s, struct track *t)
544 {
545 if (!t->addr)
546 return;
547
548 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
549 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
550 #ifdef CONFIG_STACKTRACE
551 {
552 int i;
553 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
554 if (t->addrs[i])
555 pr_err("\t%pS\n", (void *)t->addrs[i]);
556 else
557 break;
558 }
559 #endif
560 }
561
562 static void print_tracking(struct kmem_cache *s, void *object)
563 {
564 if (!(s->flags & SLAB_STORE_USER))
565 return;
566
567 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
568 print_track("Freed", get_track(s, object, TRACK_FREE));
569 }
570
571 static void print_page_info(struct page *page)
572 {
573 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
574 page, page->objects, page->inuse, page->freelist, page->flags);
575
576 }
577
578 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
579 {
580 struct va_format vaf;
581 va_list args;
582
583 va_start(args, fmt);
584 vaf.fmt = fmt;
585 vaf.va = &args;
586 pr_err("=============================================================================\n");
587 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
588 pr_err("-----------------------------------------------------------------------------\n\n");
589
590 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
591 va_end(args);
592 }
593
594 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
595 {
596 struct va_format vaf;
597 va_list args;
598
599 va_start(args, fmt);
600 vaf.fmt = fmt;
601 vaf.va = &args;
602 pr_err("FIX %s: %pV\n", s->name, &vaf);
603 va_end(args);
604 }
605
606 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
607 {
608 unsigned int off; /* Offset of last byte */
609 u8 *addr = page_address(page);
610
611 print_tracking(s, p);
612
613 print_page_info(page);
614
615 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
616 p, p - addr, get_freepointer(s, p));
617
618 if (p > addr + 16)
619 print_section("Bytes b4 ", p - 16, 16);
620
621 print_section("Object ", p, min_t(unsigned long, s->object_size,
622 PAGE_SIZE));
623 if (s->flags & SLAB_RED_ZONE)
624 print_section("Redzone ", p + s->object_size,
625 s->inuse - s->object_size);
626
627 if (s->offset)
628 off = s->offset + sizeof(void *);
629 else
630 off = s->inuse;
631
632 if (s->flags & SLAB_STORE_USER)
633 off += 2 * sizeof(struct track);
634
635 if (off != s->size)
636 /* Beginning of the filler is the free pointer */
637 print_section("Padding ", p + off, s->size - off);
638
639 dump_stack();
640 }
641
642 static void object_err(struct kmem_cache *s, struct page *page,
643 u8 *object, char *reason)
644 {
645 slab_bug(s, "%s", reason);
646 print_trailer(s, page, object);
647 }
648
649 static void slab_err(struct kmem_cache *s, struct page *page,
650 const char *fmt, ...)
651 {
652 va_list args;
653 char buf[100];
654
655 va_start(args, fmt);
656 vsnprintf(buf, sizeof(buf), fmt, args);
657 va_end(args);
658 slab_bug(s, "%s", buf);
659 print_page_info(page);
660 dump_stack();
661 }
662
663 static void init_object(struct kmem_cache *s, void *object, u8 val)
664 {
665 u8 *p = object;
666
667 if (s->flags & __OBJECT_POISON) {
668 memset(p, POISON_FREE, s->object_size - 1);
669 p[s->object_size - 1] = POISON_END;
670 }
671
672 if (s->flags & SLAB_RED_ZONE)
673 memset(p + s->object_size, val, s->inuse - s->object_size);
674 }
675
676 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
677 void *from, void *to)
678 {
679 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
680 memset(from, data, to - from);
681 }
682
683 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
684 u8 *object, char *what,
685 u8 *start, unsigned int value, unsigned int bytes)
686 {
687 u8 *fault;
688 u8 *end;
689
690 fault = memchr_inv(start, value, bytes);
691 if (!fault)
692 return 1;
693
694 end = start + bytes;
695 while (end > fault && end[-1] == value)
696 end--;
697
698 slab_bug(s, "%s overwritten", what);
699 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
700 fault, end - 1, fault[0], value);
701 print_trailer(s, page, object);
702
703 restore_bytes(s, what, value, fault, end);
704 return 0;
705 }
706
707 /*
708 * Object layout:
709 *
710 * object address
711 * Bytes of the object to be managed.
712 * If the freepointer may overlay the object then the free
713 * pointer is the first word of the object.
714 *
715 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
716 * 0xa5 (POISON_END)
717 *
718 * object + s->object_size
719 * Padding to reach word boundary. This is also used for Redzoning.
720 * Padding is extended by another word if Redzoning is enabled and
721 * object_size == inuse.
722 *
723 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
724 * 0xcc (RED_ACTIVE) for objects in use.
725 *
726 * object + s->inuse
727 * Meta data starts here.
728 *
729 * A. Free pointer (if we cannot overwrite object on free)
730 * B. Tracking data for SLAB_STORE_USER
731 * C. Padding to reach required alignment boundary or at mininum
732 * one word if debugging is on to be able to detect writes
733 * before the word boundary.
734 *
735 * Padding is done using 0x5a (POISON_INUSE)
736 *
737 * object + s->size
738 * Nothing is used beyond s->size.
739 *
740 * If slabcaches are merged then the object_size and inuse boundaries are mostly
741 * ignored. And therefore no slab options that rely on these boundaries
742 * may be used with merged slabcaches.
743 */
744
745 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
746 {
747 unsigned long off = s->inuse; /* The end of info */
748
749 if (s->offset)
750 /* Freepointer is placed after the object. */
751 off += sizeof(void *);
752
753 if (s->flags & SLAB_STORE_USER)
754 /* We also have user information there */
755 off += 2 * sizeof(struct track);
756
757 if (s->size == off)
758 return 1;
759
760 return check_bytes_and_report(s, page, p, "Object padding",
761 p + off, POISON_INUSE, s->size - off);
762 }
763
764 /* Check the pad bytes at the end of a slab page */
765 static int slab_pad_check(struct kmem_cache *s, struct page *page)
766 {
767 u8 *start;
768 u8 *fault;
769 u8 *end;
770 int length;
771 int remainder;
772
773 if (!(s->flags & SLAB_POISON))
774 return 1;
775
776 start = page_address(page);
777 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
778 end = start + length;
779 remainder = length % s->size;
780 if (!remainder)
781 return 1;
782
783 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
784 if (!fault)
785 return 1;
786 while (end > fault && end[-1] == POISON_INUSE)
787 end--;
788
789 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
790 print_section("Padding ", end - remainder, remainder);
791
792 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
793 return 0;
794 }
795
796 static int check_object(struct kmem_cache *s, struct page *page,
797 void *object, u8 val)
798 {
799 u8 *p = object;
800 u8 *endobject = object + s->object_size;
801
802 if (s->flags & SLAB_RED_ZONE) {
803 if (!check_bytes_and_report(s, page, object, "Redzone",
804 endobject, val, s->inuse - s->object_size))
805 return 0;
806 } else {
807 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
808 check_bytes_and_report(s, page, p, "Alignment padding",
809 endobject, POISON_INUSE,
810 s->inuse - s->object_size);
811 }
812 }
813
814 if (s->flags & SLAB_POISON) {
815 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
816 (!check_bytes_and_report(s, page, p, "Poison", p,
817 POISON_FREE, s->object_size - 1) ||
818 !check_bytes_and_report(s, page, p, "Poison",
819 p + s->object_size - 1, POISON_END, 1)))
820 return 0;
821 /*
822 * check_pad_bytes cleans up on its own.
823 */
824 check_pad_bytes(s, page, p);
825 }
826
827 if (!s->offset && val == SLUB_RED_ACTIVE)
828 /*
829 * Object and freepointer overlap. Cannot check
830 * freepointer while object is allocated.
831 */
832 return 1;
833
834 /* Check free pointer validity */
835 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
836 object_err(s, page, p, "Freepointer corrupt");
837 /*
838 * No choice but to zap it and thus lose the remainder
839 * of the free objects in this slab. May cause
840 * another error because the object count is now wrong.
841 */
842 set_freepointer(s, p, NULL);
843 return 0;
844 }
845 return 1;
846 }
847
848 static int check_slab(struct kmem_cache *s, struct page *page)
849 {
850 int maxobj;
851
852 VM_BUG_ON(!irqs_disabled());
853
854 if (!PageSlab(page)) {
855 slab_err(s, page, "Not a valid slab page");
856 return 0;
857 }
858
859 maxobj = order_objects(compound_order(page), s->size, s->reserved);
860 if (page->objects > maxobj) {
861 slab_err(s, page, "objects %u > max %u",
862 s->name, page->objects, maxobj);
863 return 0;
864 }
865 if (page->inuse > page->objects) {
866 slab_err(s, page, "inuse %u > max %u",
867 s->name, page->inuse, page->objects);
868 return 0;
869 }
870 /* Slab_pad_check fixes things up after itself */
871 slab_pad_check(s, page);
872 return 1;
873 }
874
875 /*
876 * Determine if a certain object on a page is on the freelist. Must hold the
877 * slab lock to guarantee that the chains are in a consistent state.
878 */
879 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
880 {
881 int nr = 0;
882 void *fp;
883 void *object = NULL;
884 unsigned long max_objects;
885
886 fp = page->freelist;
887 while (fp && nr <= page->objects) {
888 if (fp == search)
889 return 1;
890 if (!check_valid_pointer(s, page, fp)) {
891 if (object) {
892 object_err(s, page, object,
893 "Freechain corrupt");
894 set_freepointer(s, object, NULL);
895 } else {
896 slab_err(s, page, "Freepointer corrupt");
897 page->freelist = NULL;
898 page->inuse = page->objects;
899 slab_fix(s, "Freelist cleared");
900 return 0;
901 }
902 break;
903 }
904 object = fp;
905 fp = get_freepointer(s, object);
906 nr++;
907 }
908
909 max_objects = order_objects(compound_order(page), s->size, s->reserved);
910 if (max_objects > MAX_OBJS_PER_PAGE)
911 max_objects = MAX_OBJS_PER_PAGE;
912
913 if (page->objects != max_objects) {
914 slab_err(s, page, "Wrong number of objects. Found %d but "
915 "should be %d", page->objects, max_objects);
916 page->objects = max_objects;
917 slab_fix(s, "Number of objects adjusted.");
918 }
919 if (page->inuse != page->objects - nr) {
920 slab_err(s, page, "Wrong object count. Counter is %d but "
921 "counted were %d", page->inuse, page->objects - nr);
922 page->inuse = page->objects - nr;
923 slab_fix(s, "Object count adjusted.");
924 }
925 return search == NULL;
926 }
927
928 static void trace(struct kmem_cache *s, struct page *page, void *object,
929 int alloc)
930 {
931 if (s->flags & SLAB_TRACE) {
932 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
933 s->name,
934 alloc ? "alloc" : "free",
935 object, page->inuse,
936 page->freelist);
937
938 if (!alloc)
939 print_section("Object ", (void *)object,
940 s->object_size);
941
942 dump_stack();
943 }
944 }
945
946 /*
947 * Tracking of fully allocated slabs for debugging purposes.
948 */
949 static void add_full(struct kmem_cache *s,
950 struct kmem_cache_node *n, struct page *page)
951 {
952 if (!(s->flags & SLAB_STORE_USER))
953 return;
954
955 lockdep_assert_held(&n->list_lock);
956 list_add(&page->lru, &n->full);
957 }
958
959 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
960 {
961 if (!(s->flags & SLAB_STORE_USER))
962 return;
963
964 lockdep_assert_held(&n->list_lock);
965 list_del(&page->lru);
966 }
967
968 /* Tracking of the number of slabs for debugging purposes */
969 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
970 {
971 struct kmem_cache_node *n = get_node(s, node);
972
973 return atomic_long_read(&n->nr_slabs);
974 }
975
976 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
977 {
978 return atomic_long_read(&n->nr_slabs);
979 }
980
981 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
982 {
983 struct kmem_cache_node *n = get_node(s, node);
984
985 /*
986 * May be called early in order to allocate a slab for the
987 * kmem_cache_node structure. Solve the chicken-egg
988 * dilemma by deferring the increment of the count during
989 * bootstrap (see early_kmem_cache_node_alloc).
990 */
991 if (likely(n)) {
992 atomic_long_inc(&n->nr_slabs);
993 atomic_long_add(objects, &n->total_objects);
994 }
995 }
996 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
997 {
998 struct kmem_cache_node *n = get_node(s, node);
999
1000 atomic_long_dec(&n->nr_slabs);
1001 atomic_long_sub(objects, &n->total_objects);
1002 }
1003
1004 /* Object debug checks for alloc/free paths */
1005 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1006 void *object)
1007 {
1008 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1009 return;
1010
1011 init_object(s, object, SLUB_RED_INACTIVE);
1012 init_tracking(s, object);
1013 }
1014
1015 static noinline int alloc_debug_processing(struct kmem_cache *s,
1016 struct page *page,
1017 void *object, unsigned long addr)
1018 {
1019 if (!check_slab(s, page))
1020 goto bad;
1021
1022 if (!check_valid_pointer(s, page, object)) {
1023 object_err(s, page, object, "Freelist Pointer check fails");
1024 goto bad;
1025 }
1026
1027 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1028 goto bad;
1029
1030 /* Success perform special debug activities for allocs */
1031 if (s->flags & SLAB_STORE_USER)
1032 set_track(s, object, TRACK_ALLOC, addr);
1033 trace(s, page, object, 1);
1034 init_object(s, object, SLUB_RED_ACTIVE);
1035 return 1;
1036
1037 bad:
1038 if (PageSlab(page)) {
1039 /*
1040 * If this is a slab page then lets do the best we can
1041 * to avoid issues in the future. Marking all objects
1042 * as used avoids touching the remaining objects.
1043 */
1044 slab_fix(s, "Marking all objects used");
1045 page->inuse = page->objects;
1046 page->freelist = NULL;
1047 }
1048 return 0;
1049 }
1050
1051 static noinline struct kmem_cache_node *free_debug_processing(
1052 struct kmem_cache *s, struct page *page, void *object,
1053 unsigned long addr, unsigned long *flags)
1054 {
1055 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1056
1057 spin_lock_irqsave(&n->list_lock, *flags);
1058 slab_lock(page);
1059
1060 if (!check_slab(s, page))
1061 goto fail;
1062
1063 if (!check_valid_pointer(s, page, object)) {
1064 slab_err(s, page, "Invalid object pointer 0x%p", object);
1065 goto fail;
1066 }
1067
1068 if (on_freelist(s, page, object)) {
1069 object_err(s, page, object, "Object already free");
1070 goto fail;
1071 }
1072
1073 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1074 goto out;
1075
1076 if (unlikely(s != page->slab_cache)) {
1077 if (!PageSlab(page)) {
1078 slab_err(s, page, "Attempt to free object(0x%p) "
1079 "outside of slab", object);
1080 } else if (!page->slab_cache) {
1081 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1082 object);
1083 dump_stack();
1084 } else
1085 object_err(s, page, object,
1086 "page slab pointer corrupt.");
1087 goto fail;
1088 }
1089
1090 if (s->flags & SLAB_STORE_USER)
1091 set_track(s, object, TRACK_FREE, addr);
1092 trace(s, page, object, 0);
1093 init_object(s, object, SLUB_RED_INACTIVE);
1094 out:
1095 slab_unlock(page);
1096 /*
1097 * Keep node_lock to preserve integrity
1098 * until the object is actually freed
1099 */
1100 return n;
1101
1102 fail:
1103 slab_unlock(page);
1104 spin_unlock_irqrestore(&n->list_lock, *flags);
1105 slab_fix(s, "Object at 0x%p not freed", object);
1106 return NULL;
1107 }
1108
1109 static int __init setup_slub_debug(char *str)
1110 {
1111 slub_debug = DEBUG_DEFAULT_FLAGS;
1112 if (*str++ != '=' || !*str)
1113 /*
1114 * No options specified. Switch on full debugging.
1115 */
1116 goto out;
1117
1118 if (*str == ',')
1119 /*
1120 * No options but restriction on slabs. This means full
1121 * debugging for slabs matching a pattern.
1122 */
1123 goto check_slabs;
1124
1125 if (tolower(*str) == 'o') {
1126 /*
1127 * Avoid enabling debugging on caches if its minimum order
1128 * would increase as a result.
1129 */
1130 disable_higher_order_debug = 1;
1131 goto out;
1132 }
1133
1134 slub_debug = 0;
1135 if (*str == '-')
1136 /*
1137 * Switch off all debugging measures.
1138 */
1139 goto out;
1140
1141 /*
1142 * Determine which debug features should be switched on
1143 */
1144 for (; *str && *str != ','; str++) {
1145 switch (tolower(*str)) {
1146 case 'f':
1147 slub_debug |= SLAB_DEBUG_FREE;
1148 break;
1149 case 'z':
1150 slub_debug |= SLAB_RED_ZONE;
1151 break;
1152 case 'p':
1153 slub_debug |= SLAB_POISON;
1154 break;
1155 case 'u':
1156 slub_debug |= SLAB_STORE_USER;
1157 break;
1158 case 't':
1159 slub_debug |= SLAB_TRACE;
1160 break;
1161 case 'a':
1162 slub_debug |= SLAB_FAILSLAB;
1163 break;
1164 default:
1165 pr_err("slub_debug option '%c' unknown. skipped\n",
1166 *str);
1167 }
1168 }
1169
1170 check_slabs:
1171 if (*str == ',')
1172 slub_debug_slabs = str + 1;
1173 out:
1174 return 1;
1175 }
1176
1177 __setup("slub_debug", setup_slub_debug);
1178
1179 static unsigned long kmem_cache_flags(unsigned long object_size,
1180 unsigned long flags, const char *name,
1181 void (*ctor)(void *))
1182 {
1183 /*
1184 * Enable debugging if selected on the kernel commandline.
1185 */
1186 if (slub_debug && (!slub_debug_slabs || (name &&
1187 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1188 flags |= slub_debug;
1189
1190 return flags;
1191 }
1192 #else
1193 static inline void setup_object_debug(struct kmem_cache *s,
1194 struct page *page, void *object) {}
1195
1196 static inline int alloc_debug_processing(struct kmem_cache *s,
1197 struct page *page, void *object, unsigned long addr) { return 0; }
1198
1199 static inline struct kmem_cache_node *free_debug_processing(
1200 struct kmem_cache *s, struct page *page, void *object,
1201 unsigned long addr, unsigned long *flags) { return NULL; }
1202
1203 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1204 { return 1; }
1205 static inline int check_object(struct kmem_cache *s, struct page *page,
1206 void *object, u8 val) { return 1; }
1207 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1208 struct page *page) {}
1209 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1210 struct page *page) {}
1211 static inline unsigned long kmem_cache_flags(unsigned long object_size,
1212 unsigned long flags, const char *name,
1213 void (*ctor)(void *))
1214 {
1215 return flags;
1216 }
1217 #define slub_debug 0
1218
1219 #define disable_higher_order_debug 0
1220
1221 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1222 { return 0; }
1223 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1224 { return 0; }
1225 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1226 int objects) {}
1227 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1228 int objects) {}
1229
1230 #endif /* CONFIG_SLUB_DEBUG */
1231
1232 /*
1233 * Hooks for other subsystems that check memory allocations. In a typical
1234 * production configuration these hooks all should produce no code at all.
1235 */
1236 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1237 {
1238 kmemleak_alloc(ptr, size, 1, flags);
1239 }
1240
1241 static inline void kfree_hook(const void *x)
1242 {
1243 kmemleak_free(x);
1244 }
1245
1246 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1247 {
1248 flags &= gfp_allowed_mask;
1249 lockdep_trace_alloc(flags);
1250 might_sleep_if(flags & __GFP_WAIT);
1251
1252 return should_failslab(s->object_size, flags, s->flags);
1253 }
1254
1255 static inline void slab_post_alloc_hook(struct kmem_cache *s,
1256 gfp_t flags, void *object)
1257 {
1258 flags &= gfp_allowed_mask;
1259 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
1260 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
1261 }
1262
1263 static inline void slab_free_hook(struct kmem_cache *s, void *x)
1264 {
1265 kmemleak_free_recursive(x, s->flags);
1266
1267 /*
1268 * Trouble is that we may no longer disable interrupts in the fast path
1269 * So in order to make the debug calls that expect irqs to be
1270 * disabled we need to disable interrupts temporarily.
1271 */
1272 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1273 {
1274 unsigned long flags;
1275
1276 local_irq_save(flags);
1277 kmemcheck_slab_free(s, x, s->object_size);
1278 debug_check_no_locks_freed(x, s->object_size);
1279 local_irq_restore(flags);
1280 }
1281 #endif
1282 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1283 debug_check_no_obj_freed(x, s->object_size);
1284 }
1285
1286 /*
1287 * Slab allocation and freeing
1288 */
1289 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1290 gfp_t flags, int node, struct kmem_cache_order_objects oo)
1291 {
1292 struct page *page;
1293 int order = oo_order(oo);
1294
1295 flags |= __GFP_NOTRACK;
1296
1297 if (memcg_charge_slab(s, flags, order))
1298 return NULL;
1299
1300 if (node == NUMA_NO_NODE)
1301 page = alloc_pages(flags, order);
1302 else
1303 page = alloc_pages_exact_node(node, flags, order);
1304
1305 if (!page)
1306 memcg_uncharge_slab(s, order);
1307
1308 return page;
1309 }
1310
1311 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1312 {
1313 struct page *page;
1314 struct kmem_cache_order_objects oo = s->oo;
1315 gfp_t alloc_gfp;
1316
1317 flags &= gfp_allowed_mask;
1318
1319 if (flags & __GFP_WAIT)
1320 local_irq_enable();
1321
1322 flags |= s->allocflags;
1323
1324 /*
1325 * Let the initial higher-order allocation fail under memory pressure
1326 * so we fall-back to the minimum order allocation.
1327 */
1328 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1329
1330 page = alloc_slab_page(s, alloc_gfp, node, oo);
1331 if (unlikely(!page)) {
1332 oo = s->min;
1333 alloc_gfp = flags;
1334 /*
1335 * Allocation may have failed due to fragmentation.
1336 * Try a lower order alloc if possible
1337 */
1338 page = alloc_slab_page(s, alloc_gfp, node, oo);
1339
1340 if (page)
1341 stat(s, ORDER_FALLBACK);
1342 }
1343
1344 if (kmemcheck_enabled && page
1345 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1346 int pages = 1 << oo_order(oo);
1347
1348 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
1349
1350 /*
1351 * Objects from caches that have a constructor don't get
1352 * cleared when they're allocated, so we need to do it here.
1353 */
1354 if (s->ctor)
1355 kmemcheck_mark_uninitialized_pages(page, pages);
1356 else
1357 kmemcheck_mark_unallocated_pages(page, pages);
1358 }
1359
1360 if (flags & __GFP_WAIT)
1361 local_irq_disable();
1362 if (!page)
1363 return NULL;
1364
1365 page->objects = oo_objects(oo);
1366 mod_zone_page_state(page_zone(page),
1367 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1368 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1369 1 << oo_order(oo));
1370
1371 return page;
1372 }
1373
1374 static void setup_object(struct kmem_cache *s, struct page *page,
1375 void *object)
1376 {
1377 setup_object_debug(s, page, object);
1378 if (unlikely(s->ctor))
1379 s->ctor(object);
1380 }
1381
1382 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1383 {
1384 struct page *page;
1385 void *start;
1386 void *p;
1387 int order;
1388 int idx;
1389
1390 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1391
1392 page = allocate_slab(s,
1393 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1394 if (!page)
1395 goto out;
1396
1397 order = compound_order(page);
1398 inc_slabs_node(s, page_to_nid(page), page->objects);
1399 page->slab_cache = s;
1400 __SetPageSlab(page);
1401 if (page->pfmemalloc)
1402 SetPageSlabPfmemalloc(page);
1403
1404 start = page_address(page);
1405
1406 if (unlikely(s->flags & SLAB_POISON))
1407 memset(start, POISON_INUSE, PAGE_SIZE << order);
1408
1409 for_each_object_idx(p, idx, s, start, page->objects) {
1410 setup_object(s, page, p);
1411 if (likely(idx < page->objects))
1412 set_freepointer(s, p, p + s->size);
1413 else
1414 set_freepointer(s, p, NULL);
1415 }
1416
1417 page->freelist = start;
1418 page->inuse = page->objects;
1419 page->frozen = 1;
1420 out:
1421 return page;
1422 }
1423
1424 static void __free_slab(struct kmem_cache *s, struct page *page)
1425 {
1426 int order = compound_order(page);
1427 int pages = 1 << order;
1428
1429 if (kmem_cache_debug(s)) {
1430 void *p;
1431
1432 slab_pad_check(s, page);
1433 for_each_object(p, s, page_address(page),
1434 page->objects)
1435 check_object(s, page, p, SLUB_RED_INACTIVE);
1436 }
1437
1438 kmemcheck_free_shadow(page, compound_order(page));
1439
1440 mod_zone_page_state(page_zone(page),
1441 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1442 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1443 -pages);
1444
1445 __ClearPageSlabPfmemalloc(page);
1446 __ClearPageSlab(page);
1447
1448 page_mapcount_reset(page);
1449 if (current->reclaim_state)
1450 current->reclaim_state->reclaimed_slab += pages;
1451 __free_pages(page, order);
1452 memcg_uncharge_slab(s, order);
1453 }
1454
1455 #define need_reserve_slab_rcu \
1456 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1457
1458 static void rcu_free_slab(struct rcu_head *h)
1459 {
1460 struct page *page;
1461
1462 if (need_reserve_slab_rcu)
1463 page = virt_to_head_page(h);
1464 else
1465 page = container_of((struct list_head *)h, struct page, lru);
1466
1467 __free_slab(page->slab_cache, page);
1468 }
1469
1470 static void free_slab(struct kmem_cache *s, struct page *page)
1471 {
1472 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1473 struct rcu_head *head;
1474
1475 if (need_reserve_slab_rcu) {
1476 int order = compound_order(page);
1477 int offset = (PAGE_SIZE << order) - s->reserved;
1478
1479 VM_BUG_ON(s->reserved != sizeof(*head));
1480 head = page_address(page) + offset;
1481 } else {
1482 /*
1483 * RCU free overloads the RCU head over the LRU
1484 */
1485 head = (void *)&page->lru;
1486 }
1487
1488 call_rcu(head, rcu_free_slab);
1489 } else
1490 __free_slab(s, page);
1491 }
1492
1493 static void discard_slab(struct kmem_cache *s, struct page *page)
1494 {
1495 dec_slabs_node(s, page_to_nid(page), page->objects);
1496 free_slab(s, page);
1497 }
1498
1499 /*
1500 * Management of partially allocated slabs.
1501 */
1502 static inline void
1503 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1504 {
1505 n->nr_partial++;
1506 if (tail == DEACTIVATE_TO_TAIL)
1507 list_add_tail(&page->lru, &n->partial);
1508 else
1509 list_add(&page->lru, &n->partial);
1510 }
1511
1512 static inline void add_partial(struct kmem_cache_node *n,
1513 struct page *page, int tail)
1514 {
1515 lockdep_assert_held(&n->list_lock);
1516 __add_partial(n, page, tail);
1517 }
1518
1519 static inline void
1520 __remove_partial(struct kmem_cache_node *n, struct page *page)
1521 {
1522 list_del(&page->lru);
1523 n->nr_partial--;
1524 }
1525
1526 static inline void remove_partial(struct kmem_cache_node *n,
1527 struct page *page)
1528 {
1529 lockdep_assert_held(&n->list_lock);
1530 __remove_partial(n, page);
1531 }
1532
1533 /*
1534 * Remove slab from the partial list, freeze it and
1535 * return the pointer to the freelist.
1536 *
1537 * Returns a list of objects or NULL if it fails.
1538 */
1539 static inline void *acquire_slab(struct kmem_cache *s,
1540 struct kmem_cache_node *n, struct page *page,
1541 int mode, int *objects)
1542 {
1543 void *freelist;
1544 unsigned long counters;
1545 struct page new;
1546
1547 lockdep_assert_held(&n->list_lock);
1548
1549 /*
1550 * Zap the freelist and set the frozen bit.
1551 * The old freelist is the list of objects for the
1552 * per cpu allocation list.
1553 */
1554 freelist = page->freelist;
1555 counters = page->counters;
1556 new.counters = counters;
1557 *objects = new.objects - new.inuse;
1558 if (mode) {
1559 new.inuse = page->objects;
1560 new.freelist = NULL;
1561 } else {
1562 new.freelist = freelist;
1563 }
1564
1565 VM_BUG_ON(new.frozen);
1566 new.frozen = 1;
1567
1568 if (!__cmpxchg_double_slab(s, page,
1569 freelist, counters,
1570 new.freelist, new.counters,
1571 "acquire_slab"))
1572 return NULL;
1573
1574 remove_partial(n, page);
1575 WARN_ON(!freelist);
1576 return freelist;
1577 }
1578
1579 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1580 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1581
1582 /*
1583 * Try to allocate a partial slab from a specific node.
1584 */
1585 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1586 struct kmem_cache_cpu *c, gfp_t flags)
1587 {
1588 struct page *page, *page2;
1589 void *object = NULL;
1590 int available = 0;
1591 int objects;
1592
1593 /*
1594 * Racy check. If we mistakenly see no partial slabs then we
1595 * just allocate an empty slab. If we mistakenly try to get a
1596 * partial slab and there is none available then get_partials()
1597 * will return NULL.
1598 */
1599 if (!n || !n->nr_partial)
1600 return NULL;
1601
1602 spin_lock(&n->list_lock);
1603 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1604 void *t;
1605
1606 if (!pfmemalloc_match(page, flags))
1607 continue;
1608
1609 t = acquire_slab(s, n, page, object == NULL, &objects);
1610 if (!t)
1611 break;
1612
1613 available += objects;
1614 if (!object) {
1615 c->page = page;
1616 stat(s, ALLOC_FROM_PARTIAL);
1617 object = t;
1618 } else {
1619 put_cpu_partial(s, page, 0);
1620 stat(s, CPU_PARTIAL_NODE);
1621 }
1622 if (!kmem_cache_has_cpu_partial(s)
1623 || available > s->cpu_partial / 2)
1624 break;
1625
1626 }
1627 spin_unlock(&n->list_lock);
1628 return object;
1629 }
1630
1631 /*
1632 * Get a page from somewhere. Search in increasing NUMA distances.
1633 */
1634 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1635 struct kmem_cache_cpu *c)
1636 {
1637 #ifdef CONFIG_NUMA
1638 struct zonelist *zonelist;
1639 struct zoneref *z;
1640 struct zone *zone;
1641 enum zone_type high_zoneidx = gfp_zone(flags);
1642 void *object;
1643 unsigned int cpuset_mems_cookie;
1644
1645 /*
1646 * The defrag ratio allows a configuration of the tradeoffs between
1647 * inter node defragmentation and node local allocations. A lower
1648 * defrag_ratio increases the tendency to do local allocations
1649 * instead of attempting to obtain partial slabs from other nodes.
1650 *
1651 * If the defrag_ratio is set to 0 then kmalloc() always
1652 * returns node local objects. If the ratio is higher then kmalloc()
1653 * may return off node objects because partial slabs are obtained
1654 * from other nodes and filled up.
1655 *
1656 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1657 * defrag_ratio = 1000) then every (well almost) allocation will
1658 * first attempt to defrag slab caches on other nodes. This means
1659 * scanning over all nodes to look for partial slabs which may be
1660 * expensive if we do it every time we are trying to find a slab
1661 * with available objects.
1662 */
1663 if (!s->remote_node_defrag_ratio ||
1664 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1665 return NULL;
1666
1667 do {
1668 cpuset_mems_cookie = read_mems_allowed_begin();
1669 zonelist = node_zonelist(mempolicy_slab_node(), flags);
1670 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1671 struct kmem_cache_node *n;
1672
1673 n = get_node(s, zone_to_nid(zone));
1674
1675 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1676 n->nr_partial > s->min_partial) {
1677 object = get_partial_node(s, n, c, flags);
1678 if (object) {
1679 /*
1680 * Don't check read_mems_allowed_retry()
1681 * here - if mems_allowed was updated in
1682 * parallel, that was a harmless race
1683 * between allocation and the cpuset
1684 * update
1685 */
1686 return object;
1687 }
1688 }
1689 }
1690 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1691 #endif
1692 return NULL;
1693 }
1694
1695 /*
1696 * Get a partial page, lock it and return it.
1697 */
1698 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1699 struct kmem_cache_cpu *c)
1700 {
1701 void *object;
1702 int searchnode = node;
1703
1704 if (node == NUMA_NO_NODE)
1705 searchnode = numa_mem_id();
1706 else if (!node_present_pages(node))
1707 searchnode = node_to_mem_node(node);
1708
1709 object = get_partial_node(s, get_node(s, searchnode), c, flags);
1710 if (object || node != NUMA_NO_NODE)
1711 return object;
1712
1713 return get_any_partial(s, flags, c);
1714 }
1715
1716 #ifdef CONFIG_PREEMPT
1717 /*
1718 * Calculate the next globally unique transaction for disambiguiation
1719 * during cmpxchg. The transactions start with the cpu number and are then
1720 * incremented by CONFIG_NR_CPUS.
1721 */
1722 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1723 #else
1724 /*
1725 * No preemption supported therefore also no need to check for
1726 * different cpus.
1727 */
1728 #define TID_STEP 1
1729 #endif
1730
1731 static inline unsigned long next_tid(unsigned long tid)
1732 {
1733 return tid + TID_STEP;
1734 }
1735
1736 static inline unsigned int tid_to_cpu(unsigned long tid)
1737 {
1738 return tid % TID_STEP;
1739 }
1740
1741 static inline unsigned long tid_to_event(unsigned long tid)
1742 {
1743 return tid / TID_STEP;
1744 }
1745
1746 static inline unsigned int init_tid(int cpu)
1747 {
1748 return cpu;
1749 }
1750
1751 static inline void note_cmpxchg_failure(const char *n,
1752 const struct kmem_cache *s, unsigned long tid)
1753 {
1754 #ifdef SLUB_DEBUG_CMPXCHG
1755 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1756
1757 pr_info("%s %s: cmpxchg redo ", n, s->name);
1758
1759 #ifdef CONFIG_PREEMPT
1760 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1761 pr_warn("due to cpu change %d -> %d\n",
1762 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1763 else
1764 #endif
1765 if (tid_to_event(tid) != tid_to_event(actual_tid))
1766 pr_warn("due to cpu running other code. Event %ld->%ld\n",
1767 tid_to_event(tid), tid_to_event(actual_tid));
1768 else
1769 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1770 actual_tid, tid, next_tid(tid));
1771 #endif
1772 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1773 }
1774
1775 static void init_kmem_cache_cpus(struct kmem_cache *s)
1776 {
1777 int cpu;
1778
1779 for_each_possible_cpu(cpu)
1780 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1781 }
1782
1783 /*
1784 * Remove the cpu slab
1785 */
1786 static void deactivate_slab(struct kmem_cache *s, struct page *page,
1787 void *freelist)
1788 {
1789 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1790 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1791 int lock = 0;
1792 enum slab_modes l = M_NONE, m = M_NONE;
1793 void *nextfree;
1794 int tail = DEACTIVATE_TO_HEAD;
1795 struct page new;
1796 struct page old;
1797
1798 if (page->freelist) {
1799 stat(s, DEACTIVATE_REMOTE_FREES);
1800 tail = DEACTIVATE_TO_TAIL;
1801 }
1802
1803 /*
1804 * Stage one: Free all available per cpu objects back
1805 * to the page freelist while it is still frozen. Leave the
1806 * last one.
1807 *
1808 * There is no need to take the list->lock because the page
1809 * is still frozen.
1810 */
1811 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1812 void *prior;
1813 unsigned long counters;
1814
1815 do {
1816 prior = page->freelist;
1817 counters = page->counters;
1818 set_freepointer(s, freelist, prior);
1819 new.counters = counters;
1820 new.inuse--;
1821 VM_BUG_ON(!new.frozen);
1822
1823 } while (!__cmpxchg_double_slab(s, page,
1824 prior, counters,
1825 freelist, new.counters,
1826 "drain percpu freelist"));
1827
1828 freelist = nextfree;
1829 }
1830
1831 /*
1832 * Stage two: Ensure that the page is unfrozen while the
1833 * list presence reflects the actual number of objects
1834 * during unfreeze.
1835 *
1836 * We setup the list membership and then perform a cmpxchg
1837 * with the count. If there is a mismatch then the page
1838 * is not unfrozen but the page is on the wrong list.
1839 *
1840 * Then we restart the process which may have to remove
1841 * the page from the list that we just put it on again
1842 * because the number of objects in the slab may have
1843 * changed.
1844 */
1845 redo:
1846
1847 old.freelist = page->freelist;
1848 old.counters = page->counters;
1849 VM_BUG_ON(!old.frozen);
1850
1851 /* Determine target state of the slab */
1852 new.counters = old.counters;
1853 if (freelist) {
1854 new.inuse--;
1855 set_freepointer(s, freelist, old.freelist);
1856 new.freelist = freelist;
1857 } else
1858 new.freelist = old.freelist;
1859
1860 new.frozen = 0;
1861
1862 if (!new.inuse && n->nr_partial >= s->min_partial)
1863 m = M_FREE;
1864 else if (new.freelist) {
1865 m = M_PARTIAL;
1866 if (!lock) {
1867 lock = 1;
1868 /*
1869 * Taking the spinlock removes the possiblity
1870 * that acquire_slab() will see a slab page that
1871 * is frozen
1872 */
1873 spin_lock(&n->list_lock);
1874 }
1875 } else {
1876 m = M_FULL;
1877 if (kmem_cache_debug(s) && !lock) {
1878 lock = 1;
1879 /*
1880 * This also ensures that the scanning of full
1881 * slabs from diagnostic functions will not see
1882 * any frozen slabs.
1883 */
1884 spin_lock(&n->list_lock);
1885 }
1886 }
1887
1888 if (l != m) {
1889
1890 if (l == M_PARTIAL)
1891
1892 remove_partial(n, page);
1893
1894 else if (l == M_FULL)
1895
1896 remove_full(s, n, page);
1897
1898 if (m == M_PARTIAL) {
1899
1900 add_partial(n, page, tail);
1901 stat(s, tail);
1902
1903 } else if (m == M_FULL) {
1904
1905 stat(s, DEACTIVATE_FULL);
1906 add_full(s, n, page);
1907
1908 }
1909 }
1910
1911 l = m;
1912 if (!__cmpxchg_double_slab(s, page,
1913 old.freelist, old.counters,
1914 new.freelist, new.counters,
1915 "unfreezing slab"))
1916 goto redo;
1917
1918 if (lock)
1919 spin_unlock(&n->list_lock);
1920
1921 if (m == M_FREE) {
1922 stat(s, DEACTIVATE_EMPTY);
1923 discard_slab(s, page);
1924 stat(s, FREE_SLAB);
1925 }
1926 }
1927
1928 /*
1929 * Unfreeze all the cpu partial slabs.
1930 *
1931 * This function must be called with interrupts disabled
1932 * for the cpu using c (or some other guarantee must be there
1933 * to guarantee no concurrent accesses).
1934 */
1935 static void unfreeze_partials(struct kmem_cache *s,
1936 struct kmem_cache_cpu *c)
1937 {
1938 #ifdef CONFIG_SLUB_CPU_PARTIAL
1939 struct kmem_cache_node *n = NULL, *n2 = NULL;
1940 struct page *page, *discard_page = NULL;
1941
1942 while ((page = c->partial)) {
1943 struct page new;
1944 struct page old;
1945
1946 c->partial = page->next;
1947
1948 n2 = get_node(s, page_to_nid(page));
1949 if (n != n2) {
1950 if (n)
1951 spin_unlock(&n->list_lock);
1952
1953 n = n2;
1954 spin_lock(&n->list_lock);
1955 }
1956
1957 do {
1958
1959 old.freelist = page->freelist;
1960 old.counters = page->counters;
1961 VM_BUG_ON(!old.frozen);
1962
1963 new.counters = old.counters;
1964 new.freelist = old.freelist;
1965
1966 new.frozen = 0;
1967
1968 } while (!__cmpxchg_double_slab(s, page,
1969 old.freelist, old.counters,
1970 new.freelist, new.counters,
1971 "unfreezing slab"));
1972
1973 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
1974 page->next = discard_page;
1975 discard_page = page;
1976 } else {
1977 add_partial(n, page, DEACTIVATE_TO_TAIL);
1978 stat(s, FREE_ADD_PARTIAL);
1979 }
1980 }
1981
1982 if (n)
1983 spin_unlock(&n->list_lock);
1984
1985 while (discard_page) {
1986 page = discard_page;
1987 discard_page = discard_page->next;
1988
1989 stat(s, DEACTIVATE_EMPTY);
1990 discard_slab(s, page);
1991 stat(s, FREE_SLAB);
1992 }
1993 #endif
1994 }
1995
1996 /*
1997 * Put a page that was just frozen (in __slab_free) into a partial page
1998 * slot if available. This is done without interrupts disabled and without
1999 * preemption disabled. The cmpxchg is racy and may put the partial page
2000 * onto a random cpus partial slot.
2001 *
2002 * If we did not find a slot then simply move all the partials to the
2003 * per node partial list.
2004 */
2005 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2006 {
2007 #ifdef CONFIG_SLUB_CPU_PARTIAL
2008 struct page *oldpage;
2009 int pages;
2010 int pobjects;
2011
2012 do {
2013 pages = 0;
2014 pobjects = 0;
2015 oldpage = this_cpu_read(s->cpu_slab->partial);
2016
2017 if (oldpage) {
2018 pobjects = oldpage->pobjects;
2019 pages = oldpage->pages;
2020 if (drain && pobjects > s->cpu_partial) {
2021 unsigned long flags;
2022 /*
2023 * partial array is full. Move the existing
2024 * set to the per node partial list.
2025 */
2026 local_irq_save(flags);
2027 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2028 local_irq_restore(flags);
2029 oldpage = NULL;
2030 pobjects = 0;
2031 pages = 0;
2032 stat(s, CPU_PARTIAL_DRAIN);
2033 }
2034 }
2035
2036 pages++;
2037 pobjects += page->objects - page->inuse;
2038
2039 page->pages = pages;
2040 page->pobjects = pobjects;
2041 page->next = oldpage;
2042
2043 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2044 != oldpage);
2045 #endif
2046 }
2047
2048 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2049 {
2050 stat(s, CPUSLAB_FLUSH);
2051 deactivate_slab(s, c->page, c->freelist);
2052
2053 c->tid = next_tid(c->tid);
2054 c->page = NULL;
2055 c->freelist = NULL;
2056 }
2057
2058 /*
2059 * Flush cpu slab.
2060 *
2061 * Called from IPI handler with interrupts disabled.
2062 */
2063 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2064 {
2065 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2066
2067 if (likely(c)) {
2068 if (c->page)
2069 flush_slab(s, c);
2070
2071 unfreeze_partials(s, c);
2072 }
2073 }
2074
2075 static void flush_cpu_slab(void *d)
2076 {
2077 struct kmem_cache *s = d;
2078
2079 __flush_cpu_slab(s, smp_processor_id());
2080 }
2081
2082 static bool has_cpu_slab(int cpu, void *info)
2083 {
2084 struct kmem_cache *s = info;
2085 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2086
2087 return c->page || c->partial;
2088 }
2089
2090 static void flush_all(struct kmem_cache *s)
2091 {
2092 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2093 }
2094
2095 /*
2096 * Check if the objects in a per cpu structure fit numa
2097 * locality expectations.
2098 */
2099 static inline int node_match(struct page *page, int node)
2100 {
2101 #ifdef CONFIG_NUMA
2102 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2103 return 0;
2104 #endif
2105 return 1;
2106 }
2107
2108 #ifdef CONFIG_SLUB_DEBUG
2109 static int count_free(struct page *page)
2110 {
2111 return page->objects - page->inuse;
2112 }
2113
2114 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2115 {
2116 return atomic_long_read(&n->total_objects);
2117 }
2118 #endif /* CONFIG_SLUB_DEBUG */
2119
2120 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2121 static unsigned long count_partial(struct kmem_cache_node *n,
2122 int (*get_count)(struct page *))
2123 {
2124 unsigned long flags;
2125 unsigned long x = 0;
2126 struct page *page;
2127
2128 spin_lock_irqsave(&n->list_lock, flags);
2129 list_for_each_entry(page, &n->partial, lru)
2130 x += get_count(page);
2131 spin_unlock_irqrestore(&n->list_lock, flags);
2132 return x;
2133 }
2134 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2135
2136 static noinline void
2137 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2138 {
2139 #ifdef CONFIG_SLUB_DEBUG
2140 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2141 DEFAULT_RATELIMIT_BURST);
2142 int node;
2143 struct kmem_cache_node *n;
2144
2145 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2146 return;
2147
2148 pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2149 nid, gfpflags);
2150 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2151 s->name, s->object_size, s->size, oo_order(s->oo),
2152 oo_order(s->min));
2153
2154 if (oo_order(s->min) > get_order(s->object_size))
2155 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2156 s->name);
2157
2158 for_each_kmem_cache_node(s, node, n) {
2159 unsigned long nr_slabs;
2160 unsigned long nr_objs;
2161 unsigned long nr_free;
2162
2163 nr_free = count_partial(n, count_free);
2164 nr_slabs = node_nr_slabs(n);
2165 nr_objs = node_nr_objs(n);
2166
2167 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2168 node, nr_slabs, nr_objs, nr_free);
2169 }
2170 #endif
2171 }
2172
2173 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2174 int node, struct kmem_cache_cpu **pc)
2175 {
2176 void *freelist;
2177 struct kmem_cache_cpu *c = *pc;
2178 struct page *page;
2179
2180 freelist = get_partial(s, flags, node, c);
2181
2182 if (freelist)
2183 return freelist;
2184
2185 page = new_slab(s, flags, node);
2186 if (page) {
2187 c = raw_cpu_ptr(s->cpu_slab);
2188 if (c->page)
2189 flush_slab(s, c);
2190
2191 /*
2192 * No other reference to the page yet so we can
2193 * muck around with it freely without cmpxchg
2194 */
2195 freelist = page->freelist;
2196 page->freelist = NULL;
2197
2198 stat(s, ALLOC_SLAB);
2199 c->page = page;
2200 *pc = c;
2201 } else
2202 freelist = NULL;
2203
2204 return freelist;
2205 }
2206
2207 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2208 {
2209 if (unlikely(PageSlabPfmemalloc(page)))
2210 return gfp_pfmemalloc_allowed(gfpflags);
2211
2212 return true;
2213 }
2214
2215 /*
2216 * Check the page->freelist of a page and either transfer the freelist to the
2217 * per cpu freelist or deactivate the page.
2218 *
2219 * The page is still frozen if the return value is not NULL.
2220 *
2221 * If this function returns NULL then the page has been unfrozen.
2222 *
2223 * This function must be called with interrupt disabled.
2224 */
2225 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2226 {
2227 struct page new;
2228 unsigned long counters;
2229 void *freelist;
2230
2231 do {
2232 freelist = page->freelist;
2233 counters = page->counters;
2234
2235 new.counters = counters;
2236 VM_BUG_ON(!new.frozen);
2237
2238 new.inuse = page->objects;
2239 new.frozen = freelist != NULL;
2240
2241 } while (!__cmpxchg_double_slab(s, page,
2242 freelist, counters,
2243 NULL, new.counters,
2244 "get_freelist"));
2245
2246 return freelist;
2247 }
2248
2249 /*
2250 * Slow path. The lockless freelist is empty or we need to perform
2251 * debugging duties.
2252 *
2253 * Processing is still very fast if new objects have been freed to the
2254 * regular freelist. In that case we simply take over the regular freelist
2255 * as the lockless freelist and zap the regular freelist.
2256 *
2257 * If that is not working then we fall back to the partial lists. We take the
2258 * first element of the freelist as the object to allocate now and move the
2259 * rest of the freelist to the lockless freelist.
2260 *
2261 * And if we were unable to get a new slab from the partial slab lists then
2262 * we need to allocate a new slab. This is the slowest path since it involves
2263 * a call to the page allocator and the setup of a new slab.
2264 */
2265 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2266 unsigned long addr, struct kmem_cache_cpu *c)
2267 {
2268 void *freelist;
2269 struct page *page;
2270 unsigned long flags;
2271
2272 local_irq_save(flags);
2273 #ifdef CONFIG_PREEMPT
2274 /*
2275 * We may have been preempted and rescheduled on a different
2276 * cpu before disabling interrupts. Need to reload cpu area
2277 * pointer.
2278 */
2279 c = this_cpu_ptr(s->cpu_slab);
2280 #endif
2281
2282 page = c->page;
2283 if (!page)
2284 goto new_slab;
2285 redo:
2286
2287 if (unlikely(!node_match(page, node))) {
2288 int searchnode = node;
2289
2290 if (node != NUMA_NO_NODE && !node_present_pages(node))
2291 searchnode = node_to_mem_node(node);
2292
2293 if (unlikely(!node_match(page, searchnode))) {
2294 stat(s, ALLOC_NODE_MISMATCH);
2295 deactivate_slab(s, page, c->freelist);
2296 c->page = NULL;
2297 c->freelist = NULL;
2298 goto new_slab;
2299 }
2300 }
2301
2302 /*
2303 * By rights, we should be searching for a slab page that was
2304 * PFMEMALLOC but right now, we are losing the pfmemalloc
2305 * information when the page leaves the per-cpu allocator
2306 */
2307 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2308 deactivate_slab(s, page, c->freelist);
2309 c->page = NULL;
2310 c->freelist = NULL;
2311 goto new_slab;
2312 }
2313
2314 /* must check again c->freelist in case of cpu migration or IRQ */
2315 freelist = c->freelist;
2316 if (freelist)
2317 goto load_freelist;
2318
2319 freelist = get_freelist(s, page);
2320
2321 if (!freelist) {
2322 c->page = NULL;
2323 stat(s, DEACTIVATE_BYPASS);
2324 goto new_slab;
2325 }
2326
2327 stat(s, ALLOC_REFILL);
2328
2329 load_freelist:
2330 /*
2331 * freelist is pointing to the list of objects to be used.
2332 * page is pointing to the page from which the objects are obtained.
2333 * That page must be frozen for per cpu allocations to work.
2334 */
2335 VM_BUG_ON(!c->page->frozen);
2336 c->freelist = get_freepointer(s, freelist);
2337 c->tid = next_tid(c->tid);
2338 local_irq_restore(flags);
2339 return freelist;
2340
2341 new_slab:
2342
2343 if (c->partial) {
2344 page = c->page = c->partial;
2345 c->partial = page->next;
2346 stat(s, CPU_PARTIAL_ALLOC);
2347 c->freelist = NULL;
2348 goto redo;
2349 }
2350
2351 freelist = new_slab_objects(s, gfpflags, node, &c);
2352
2353 if (unlikely(!freelist)) {
2354 slab_out_of_memory(s, gfpflags, node);
2355 local_irq_restore(flags);
2356 return NULL;
2357 }
2358
2359 page = c->page;
2360 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2361 goto load_freelist;
2362
2363 /* Only entered in the debug case */
2364 if (kmem_cache_debug(s) &&
2365 !alloc_debug_processing(s, page, freelist, addr))
2366 goto new_slab; /* Slab failed checks. Next slab needed */
2367
2368 deactivate_slab(s, page, get_freepointer(s, freelist));
2369 c->page = NULL;
2370 c->freelist = NULL;
2371 local_irq_restore(flags);
2372 return freelist;
2373 }
2374
2375 /*
2376 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2377 * have the fastpath folded into their functions. So no function call
2378 * overhead for requests that can be satisfied on the fastpath.
2379 *
2380 * The fastpath works by first checking if the lockless freelist can be used.
2381 * If not then __slab_alloc is called for slow processing.
2382 *
2383 * Otherwise we can simply pick the next object from the lockless free list.
2384 */
2385 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2386 gfp_t gfpflags, int node, unsigned long addr)
2387 {
2388 void **object;
2389 struct kmem_cache_cpu *c;
2390 struct page *page;
2391 unsigned long tid;
2392
2393 if (slab_pre_alloc_hook(s, gfpflags))
2394 return NULL;
2395
2396 s = memcg_kmem_get_cache(s, gfpflags);
2397 redo:
2398 /*
2399 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2400 * enabled. We may switch back and forth between cpus while
2401 * reading from one cpu area. That does not matter as long
2402 * as we end up on the original cpu again when doing the cmpxchg.
2403 *
2404 * Preemption is disabled for the retrieval of the tid because that
2405 * must occur from the current processor. We cannot allow rescheduling
2406 * on a different processor between the determination of the pointer
2407 * and the retrieval of the tid.
2408 */
2409 preempt_disable();
2410 c = this_cpu_ptr(s->cpu_slab);
2411
2412 /*
2413 * The transaction ids are globally unique per cpu and per operation on
2414 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2415 * occurs on the right processor and that there was no operation on the
2416 * linked list in between.
2417 */
2418 tid = c->tid;
2419 preempt_enable();
2420
2421 object = c->freelist;
2422 page = c->page;
2423 if (unlikely(!object || !node_match(page, node))) {
2424 object = __slab_alloc(s, gfpflags, node, addr, c);
2425 stat(s, ALLOC_SLOWPATH);
2426 } else {
2427 void *next_object = get_freepointer_safe(s, object);
2428
2429 /*
2430 * The cmpxchg will only match if there was no additional
2431 * operation and if we are on the right processor.
2432 *
2433 * The cmpxchg does the following atomically (without lock
2434 * semantics!)
2435 * 1. Relocate first pointer to the current per cpu area.
2436 * 2. Verify that tid and freelist have not been changed
2437 * 3. If they were not changed replace tid and freelist
2438 *
2439 * Since this is without lock semantics the protection is only
2440 * against code executing on this cpu *not* from access by
2441 * other cpus.
2442 */
2443 if (unlikely(!this_cpu_cmpxchg_double(
2444 s->cpu_slab->freelist, s->cpu_slab->tid,
2445 object, tid,
2446 next_object, next_tid(tid)))) {
2447
2448 note_cmpxchg_failure("slab_alloc", s, tid);
2449 goto redo;
2450 }
2451 prefetch_freepointer(s, next_object);
2452 stat(s, ALLOC_FASTPATH);
2453 }
2454
2455 if (unlikely(gfpflags & __GFP_ZERO) && object)
2456 memset(object, 0, s->object_size);
2457
2458 slab_post_alloc_hook(s, gfpflags, object);
2459
2460 return object;
2461 }
2462
2463 static __always_inline void *slab_alloc(struct kmem_cache *s,
2464 gfp_t gfpflags, unsigned long addr)
2465 {
2466 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2467 }
2468
2469 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2470 {
2471 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2472
2473 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2474 s->size, gfpflags);
2475
2476 return ret;
2477 }
2478 EXPORT_SYMBOL(kmem_cache_alloc);
2479
2480 #ifdef CONFIG_TRACING
2481 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2482 {
2483 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2484 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2485 return ret;
2486 }
2487 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2488 #endif
2489
2490 #ifdef CONFIG_NUMA
2491 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2492 {
2493 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2494
2495 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2496 s->object_size, s->size, gfpflags, node);
2497
2498 return ret;
2499 }
2500 EXPORT_SYMBOL(kmem_cache_alloc_node);
2501
2502 #ifdef CONFIG_TRACING
2503 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2504 gfp_t gfpflags,
2505 int node, size_t size)
2506 {
2507 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2508
2509 trace_kmalloc_node(_RET_IP_, ret,
2510 size, s->size, gfpflags, node);
2511 return ret;
2512 }
2513 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2514 #endif
2515 #endif
2516
2517 /*
2518 * Slow patch handling. This may still be called frequently since objects
2519 * have a longer lifetime than the cpu slabs in most processing loads.
2520 *
2521 * So we still attempt to reduce cache line usage. Just take the slab
2522 * lock and free the item. If there is no additional partial page
2523 * handling required then we can return immediately.
2524 */
2525 static void __slab_free(struct kmem_cache *s, struct page *page,
2526 void *x, unsigned long addr)
2527 {
2528 void *prior;
2529 void **object = (void *)x;
2530 int was_frozen;
2531 struct page new;
2532 unsigned long counters;
2533 struct kmem_cache_node *n = NULL;
2534 unsigned long uninitialized_var(flags);
2535
2536 stat(s, FREE_SLOWPATH);
2537
2538 if (kmem_cache_debug(s) &&
2539 !(n = free_debug_processing(s, page, x, addr, &flags)))
2540 return;
2541
2542 do {
2543 if (unlikely(n)) {
2544 spin_unlock_irqrestore(&n->list_lock, flags);
2545 n = NULL;
2546 }
2547 prior = page->freelist;
2548 counters = page->counters;
2549 set_freepointer(s, object, prior);
2550 new.counters = counters;
2551 was_frozen = new.frozen;
2552 new.inuse--;
2553 if ((!new.inuse || !prior) && !was_frozen) {
2554
2555 if (kmem_cache_has_cpu_partial(s) && !prior) {
2556
2557 /*
2558 * Slab was on no list before and will be
2559 * partially empty
2560 * We can defer the list move and instead
2561 * freeze it.
2562 */
2563 new.frozen = 1;
2564
2565 } else { /* Needs to be taken off a list */
2566
2567 n = get_node(s, page_to_nid(page));
2568 /*
2569 * Speculatively acquire the list_lock.
2570 * If the cmpxchg does not succeed then we may
2571 * drop the list_lock without any processing.
2572 *
2573 * Otherwise the list_lock will synchronize with
2574 * other processors updating the list of slabs.
2575 */
2576 spin_lock_irqsave(&n->list_lock, flags);
2577
2578 }
2579 }
2580
2581 } while (!cmpxchg_double_slab(s, page,
2582 prior, counters,
2583 object, new.counters,
2584 "__slab_free"));
2585
2586 if (likely(!n)) {
2587
2588 /*
2589 * If we just froze the page then put it onto the
2590 * per cpu partial list.
2591 */
2592 if (new.frozen && !was_frozen) {
2593 put_cpu_partial(s, page, 1);
2594 stat(s, CPU_PARTIAL_FREE);
2595 }
2596 /*
2597 * The list lock was not taken therefore no list
2598 * activity can be necessary.
2599 */
2600 if (was_frozen)
2601 stat(s, FREE_FROZEN);
2602 return;
2603 }
2604
2605 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2606 goto slab_empty;
2607
2608 /*
2609 * Objects left in the slab. If it was not on the partial list before
2610 * then add it.
2611 */
2612 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2613 if (kmem_cache_debug(s))
2614 remove_full(s, n, page);
2615 add_partial(n, page, DEACTIVATE_TO_TAIL);
2616 stat(s, FREE_ADD_PARTIAL);
2617 }
2618 spin_unlock_irqrestore(&n->list_lock, flags);
2619 return;
2620
2621 slab_empty:
2622 if (prior) {
2623 /*
2624 * Slab on the partial list.
2625 */
2626 remove_partial(n, page);
2627 stat(s, FREE_REMOVE_PARTIAL);
2628 } else {
2629 /* Slab must be on the full list */
2630 remove_full(s, n, page);
2631 }
2632
2633 spin_unlock_irqrestore(&n->list_lock, flags);
2634 stat(s, FREE_SLAB);
2635 discard_slab(s, page);
2636 }
2637
2638 /*
2639 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2640 * can perform fastpath freeing without additional function calls.
2641 *
2642 * The fastpath is only possible if we are freeing to the current cpu slab
2643 * of this processor. This typically the case if we have just allocated
2644 * the item before.
2645 *
2646 * If fastpath is not possible then fall back to __slab_free where we deal
2647 * with all sorts of special processing.
2648 */
2649 static __always_inline void slab_free(struct kmem_cache *s,
2650 struct page *page, void *x, unsigned long addr)
2651 {
2652 void **object = (void *)x;
2653 struct kmem_cache_cpu *c;
2654 unsigned long tid;
2655
2656 slab_free_hook(s, x);
2657
2658 redo:
2659 /*
2660 * Determine the currently cpus per cpu slab.
2661 * The cpu may change afterward. However that does not matter since
2662 * data is retrieved via this pointer. If we are on the same cpu
2663 * during the cmpxchg then the free will succedd.
2664 */
2665 preempt_disable();
2666 c = this_cpu_ptr(s->cpu_slab);
2667
2668 tid = c->tid;
2669 preempt_enable();
2670
2671 if (likely(page == c->page)) {
2672 set_freepointer(s, object, c->freelist);
2673
2674 if (unlikely(!this_cpu_cmpxchg_double(
2675 s->cpu_slab->freelist, s->cpu_slab->tid,
2676 c->freelist, tid,
2677 object, next_tid(tid)))) {
2678
2679 note_cmpxchg_failure("slab_free", s, tid);
2680 goto redo;
2681 }
2682 stat(s, FREE_FASTPATH);
2683 } else
2684 __slab_free(s, page, x, addr);
2685
2686 }
2687
2688 void kmem_cache_free(struct kmem_cache *s, void *x)
2689 {
2690 s = cache_from_obj(s, x);
2691 if (!s)
2692 return;
2693 slab_free(s, virt_to_head_page(x), x, _RET_IP_);
2694 trace_kmem_cache_free(_RET_IP_, x);
2695 }
2696 EXPORT_SYMBOL(kmem_cache_free);
2697
2698 /*
2699 * Object placement in a slab is made very easy because we always start at
2700 * offset 0. If we tune the size of the object to the alignment then we can
2701 * get the required alignment by putting one properly sized object after
2702 * another.
2703 *
2704 * Notice that the allocation order determines the sizes of the per cpu
2705 * caches. Each processor has always one slab available for allocations.
2706 * Increasing the allocation order reduces the number of times that slabs
2707 * must be moved on and off the partial lists and is therefore a factor in
2708 * locking overhead.
2709 */
2710
2711 /*
2712 * Mininum / Maximum order of slab pages. This influences locking overhead
2713 * and slab fragmentation. A higher order reduces the number of partial slabs
2714 * and increases the number of allocations possible without having to
2715 * take the list_lock.
2716 */
2717 static int slub_min_order;
2718 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2719 static int slub_min_objects;
2720
2721 /*
2722 * Merge control. If this is set then no merging of slab caches will occur.
2723 * (Could be removed. This was introduced to pacify the merge skeptics.)
2724 */
2725 static int slub_nomerge;
2726
2727 /*
2728 * Calculate the order of allocation given an slab object size.
2729 *
2730 * The order of allocation has significant impact on performance and other
2731 * system components. Generally order 0 allocations should be preferred since
2732 * order 0 does not cause fragmentation in the page allocator. Larger objects
2733 * be problematic to put into order 0 slabs because there may be too much
2734 * unused space left. We go to a higher order if more than 1/16th of the slab
2735 * would be wasted.
2736 *
2737 * In order to reach satisfactory performance we must ensure that a minimum
2738 * number of objects is in one slab. Otherwise we may generate too much
2739 * activity on the partial lists which requires taking the list_lock. This is
2740 * less a concern for large slabs though which are rarely used.
2741 *
2742 * slub_max_order specifies the order where we begin to stop considering the
2743 * number of objects in a slab as critical. If we reach slub_max_order then
2744 * we try to keep the page order as low as possible. So we accept more waste
2745 * of space in favor of a small page order.
2746 *
2747 * Higher order allocations also allow the placement of more objects in a
2748 * slab and thereby reduce object handling overhead. If the user has
2749 * requested a higher mininum order then we start with that one instead of
2750 * the smallest order which will fit the object.
2751 */
2752 static inline int slab_order(int size, int min_objects,
2753 int max_order, int fract_leftover, int reserved)
2754 {
2755 int order;
2756 int rem;
2757 int min_order = slub_min_order;
2758
2759 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2760 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2761
2762 for (order = max(min_order,
2763 fls(min_objects * size - 1) - PAGE_SHIFT);
2764 order <= max_order; order++) {
2765
2766 unsigned long slab_size = PAGE_SIZE << order;
2767
2768 if (slab_size < min_objects * size + reserved)
2769 continue;
2770
2771 rem = (slab_size - reserved) % size;
2772
2773 if (rem <= slab_size / fract_leftover)
2774 break;
2775
2776 }
2777
2778 return order;
2779 }
2780
2781 static inline int calculate_order(int size, int reserved)
2782 {
2783 int order;
2784 int min_objects;
2785 int fraction;
2786 int max_objects;
2787
2788 /*
2789 * Attempt to find best configuration for a slab. This
2790 * works by first attempting to generate a layout with
2791 * the best configuration and backing off gradually.
2792 *
2793 * First we reduce the acceptable waste in a slab. Then
2794 * we reduce the minimum objects required in a slab.
2795 */
2796 min_objects = slub_min_objects;
2797 if (!min_objects)
2798 min_objects = 4 * (fls(nr_cpu_ids) + 1);
2799 max_objects = order_objects(slub_max_order, size, reserved);
2800 min_objects = min(min_objects, max_objects);
2801
2802 while (min_objects > 1) {
2803 fraction = 16;
2804 while (fraction >= 4) {
2805 order = slab_order(size, min_objects,
2806 slub_max_order, fraction, reserved);
2807 if (order <= slub_max_order)
2808 return order;
2809 fraction /= 2;
2810 }
2811 min_objects--;
2812 }
2813
2814 /*
2815 * We were unable to place multiple objects in a slab. Now
2816 * lets see if we can place a single object there.
2817 */
2818 order = slab_order(size, 1, slub_max_order, 1, reserved);
2819 if (order <= slub_max_order)
2820 return order;
2821
2822 /*
2823 * Doh this slab cannot be placed using slub_max_order.
2824 */
2825 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2826 if (order < MAX_ORDER)
2827 return order;
2828 return -ENOSYS;
2829 }
2830
2831 static void
2832 init_kmem_cache_node(struct kmem_cache_node *n)
2833 {
2834 n->nr_partial = 0;
2835 spin_lock_init(&n->list_lock);
2836 INIT_LIST_HEAD(&n->partial);
2837 #ifdef CONFIG_SLUB_DEBUG
2838 atomic_long_set(&n->nr_slabs, 0);
2839 atomic_long_set(&n->total_objects, 0);
2840 INIT_LIST_HEAD(&n->full);
2841 #endif
2842 }
2843
2844 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2845 {
2846 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2847 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
2848
2849 /*
2850 * Must align to double word boundary for the double cmpxchg
2851 * instructions to work; see __pcpu_double_call_return_bool().
2852 */
2853 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2854 2 * sizeof(void *));
2855
2856 if (!s->cpu_slab)
2857 return 0;
2858
2859 init_kmem_cache_cpus(s);
2860
2861 return 1;
2862 }
2863
2864 static struct kmem_cache *kmem_cache_node;
2865
2866 /*
2867 * No kmalloc_node yet so do it by hand. We know that this is the first
2868 * slab on the node for this slabcache. There are no concurrent accesses
2869 * possible.
2870 *
2871 * Note that this function only works on the kmem_cache_node
2872 * when allocating for the kmem_cache_node. This is used for bootstrapping
2873 * memory on a fresh node that has no slab structures yet.
2874 */
2875 static void early_kmem_cache_node_alloc(int node)
2876 {
2877 struct page *page;
2878 struct kmem_cache_node *n;
2879
2880 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2881
2882 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2883
2884 BUG_ON(!page);
2885 if (page_to_nid(page) != node) {
2886 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
2887 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
2888 }
2889
2890 n = page->freelist;
2891 BUG_ON(!n);
2892 page->freelist = get_freepointer(kmem_cache_node, n);
2893 page->inuse = 1;
2894 page->frozen = 0;
2895 kmem_cache_node->node[node] = n;
2896 #ifdef CONFIG_SLUB_DEBUG
2897 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2898 init_tracking(kmem_cache_node, n);
2899 #endif
2900 init_kmem_cache_node(n);
2901 inc_slabs_node(kmem_cache_node, node, page->objects);
2902
2903 /*
2904 * No locks need to be taken here as it has just been
2905 * initialized and there is no concurrent access.
2906 */
2907 __add_partial(n, page, DEACTIVATE_TO_HEAD);
2908 }
2909
2910 static void free_kmem_cache_nodes(struct kmem_cache *s)
2911 {
2912 int node;
2913 struct kmem_cache_node *n;
2914
2915 for_each_kmem_cache_node(s, node, n) {
2916 kmem_cache_free(kmem_cache_node, n);
2917 s->node[node] = NULL;
2918 }
2919 }
2920
2921 static int init_kmem_cache_nodes(struct kmem_cache *s)
2922 {
2923 int node;
2924
2925 for_each_node_state(node, N_NORMAL_MEMORY) {
2926 struct kmem_cache_node *n;
2927
2928 if (slab_state == DOWN) {
2929 early_kmem_cache_node_alloc(node);
2930 continue;
2931 }
2932 n = kmem_cache_alloc_node(kmem_cache_node,
2933 GFP_KERNEL, node);
2934
2935 if (!n) {
2936 free_kmem_cache_nodes(s);
2937 return 0;
2938 }
2939
2940 s->node[node] = n;
2941 init_kmem_cache_node(n);
2942 }
2943 return 1;
2944 }
2945
2946 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2947 {
2948 if (min < MIN_PARTIAL)
2949 min = MIN_PARTIAL;
2950 else if (min > MAX_PARTIAL)
2951 min = MAX_PARTIAL;
2952 s->min_partial = min;
2953 }
2954
2955 /*
2956 * calculate_sizes() determines the order and the distribution of data within
2957 * a slab object.
2958 */
2959 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2960 {
2961 unsigned long flags = s->flags;
2962 unsigned long size = s->object_size;
2963 int order;
2964
2965 /*
2966 * Round up object size to the next word boundary. We can only
2967 * place the free pointer at word boundaries and this determines
2968 * the possible location of the free pointer.
2969 */
2970 size = ALIGN(size, sizeof(void *));
2971
2972 #ifdef CONFIG_SLUB_DEBUG
2973 /*
2974 * Determine if we can poison the object itself. If the user of
2975 * the slab may touch the object after free or before allocation
2976 * then we should never poison the object itself.
2977 */
2978 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2979 !s->ctor)
2980 s->flags |= __OBJECT_POISON;
2981 else
2982 s->flags &= ~__OBJECT_POISON;
2983
2984
2985 /*
2986 * If we are Redzoning then check if there is some space between the
2987 * end of the object and the free pointer. If not then add an
2988 * additional word to have some bytes to store Redzone information.
2989 */
2990 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
2991 size += sizeof(void *);
2992 #endif
2993
2994 /*
2995 * With that we have determined the number of bytes in actual use
2996 * by the object. This is the potential offset to the free pointer.
2997 */
2998 s->inuse = size;
2999
3000 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
3001 s->ctor)) {
3002 /*
3003 * Relocate free pointer after the object if it is not
3004 * permitted to overwrite the first word of the object on
3005 * kmem_cache_free.
3006 *
3007 * This is the case if we do RCU, have a constructor or
3008 * destructor or are poisoning the objects.
3009 */
3010 s->offset = size;
3011 size += sizeof(void *);
3012 }
3013
3014 #ifdef CONFIG_SLUB_DEBUG
3015 if (flags & SLAB_STORE_USER)
3016 /*
3017 * Need to store information about allocs and frees after
3018 * the object.
3019 */
3020 size += 2 * sizeof(struct track);
3021
3022 if (flags & SLAB_RED_ZONE)
3023 /*
3024 * Add some empty padding so that we can catch
3025 * overwrites from earlier objects rather than let
3026 * tracking information or the free pointer be
3027 * corrupted if a user writes before the start
3028 * of the object.
3029 */
3030 size += sizeof(void *);
3031 #endif
3032
3033 /*
3034 * SLUB stores one object immediately after another beginning from
3035 * offset 0. In order to align the objects we have to simply size
3036 * each object to conform to the alignment.
3037 */
3038 size = ALIGN(size, s->align);
3039 s->size = size;
3040 if (forced_order >= 0)
3041 order = forced_order;
3042 else
3043 order = calculate_order(size, s->reserved);
3044
3045 if (order < 0)
3046 return 0;
3047
3048 s->allocflags = 0;
3049 if (order)
3050 s->allocflags |= __GFP_COMP;
3051
3052 if (s->flags & SLAB_CACHE_DMA)
3053 s->allocflags |= GFP_DMA;
3054
3055 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3056 s->allocflags |= __GFP_RECLAIMABLE;
3057
3058 /*
3059 * Determine the number of objects per slab
3060 */
3061 s->oo = oo_make(order, size, s->reserved);
3062 s->min = oo_make(get_order(size), size, s->reserved);
3063 if (oo_objects(s->oo) > oo_objects(s->max))
3064 s->max = s->oo;
3065
3066 return !!oo_objects(s->oo);
3067 }
3068
3069 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3070 {
3071 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3072 s->reserved = 0;
3073
3074 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3075 s->reserved = sizeof(struct rcu_head);
3076
3077 if (!calculate_sizes(s, -1))
3078 goto error;
3079 if (disable_higher_order_debug) {
3080 /*
3081 * Disable debugging flags that store metadata if the min slab
3082 * order increased.
3083 */
3084 if (get_order(s->size) > get_order(s->object_size)) {
3085 s->flags &= ~DEBUG_METADATA_FLAGS;
3086 s->offset = 0;
3087 if (!calculate_sizes(s, -1))
3088 goto error;
3089 }
3090 }
3091
3092 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3093 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3094 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3095 /* Enable fast mode */
3096 s->flags |= __CMPXCHG_DOUBLE;
3097 #endif
3098
3099 /*
3100 * The larger the object size is, the more pages we want on the partial
3101 * list to avoid pounding the page allocator excessively.
3102 */
3103 set_min_partial(s, ilog2(s->size) / 2);
3104
3105 /*
3106 * cpu_partial determined the maximum number of objects kept in the
3107 * per cpu partial lists of a processor.
3108 *
3109 * Per cpu partial lists mainly contain slabs that just have one
3110 * object freed. If they are used for allocation then they can be
3111 * filled up again with minimal effort. The slab will never hit the
3112 * per node partial lists and therefore no locking will be required.
3113 *
3114 * This setting also determines
3115 *
3116 * A) The number of objects from per cpu partial slabs dumped to the
3117 * per node list when we reach the limit.
3118 * B) The number of objects in cpu partial slabs to extract from the
3119 * per node list when we run out of per cpu objects. We only fetch
3120 * 50% to keep some capacity around for frees.
3121 */
3122 if (!kmem_cache_has_cpu_partial(s))
3123 s->cpu_partial = 0;
3124 else if (s->size >= PAGE_SIZE)
3125 s->cpu_partial = 2;
3126 else if (s->size >= 1024)
3127 s->cpu_partial = 6;
3128 else if (s->size >= 256)
3129 s->cpu_partial = 13;
3130 else
3131 s->cpu_partial = 30;
3132
3133 #ifdef CONFIG_NUMA
3134 s->remote_node_defrag_ratio = 1000;
3135 #endif
3136 if (!init_kmem_cache_nodes(s))
3137 goto error;
3138
3139 if (alloc_kmem_cache_cpus(s))
3140 return 0;
3141
3142 free_kmem_cache_nodes(s);
3143 error:
3144 if (flags & SLAB_PANIC)
3145 panic("Cannot create slab %s size=%lu realsize=%u "
3146 "order=%u offset=%u flags=%lx\n",
3147 s->name, (unsigned long)s->size, s->size,
3148 oo_order(s->oo), s->offset, flags);
3149 return -EINVAL;
3150 }
3151
3152 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3153 const char *text)
3154 {
3155 #ifdef CONFIG_SLUB_DEBUG
3156 void *addr = page_address(page);
3157 void *p;
3158 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3159 sizeof(long), GFP_ATOMIC);
3160 if (!map)
3161 return;
3162 slab_err(s, page, text, s->name);
3163 slab_lock(page);
3164
3165 get_map(s, page, map);
3166 for_each_object(p, s, addr, page->objects) {
3167
3168 if (!test_bit(slab_index(p, s, addr), map)) {
3169 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3170 print_tracking(s, p);
3171 }
3172 }
3173 slab_unlock(page);
3174 kfree(map);
3175 #endif
3176 }
3177
3178 /*
3179 * Attempt to free all partial slabs on a node.
3180 * This is called from kmem_cache_close(). We must be the last thread
3181 * using the cache and therefore we do not need to lock anymore.
3182 */
3183 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3184 {
3185 struct page *page, *h;
3186
3187 list_for_each_entry_safe(page, h, &n->partial, lru) {
3188 if (!page->inuse) {
3189 __remove_partial(n, page);
3190 discard_slab(s, page);
3191 } else {
3192 list_slab_objects(s, page,
3193 "Objects remaining in %s on kmem_cache_close()");
3194 }
3195 }
3196 }
3197
3198 /*
3199 * Release all resources used by a slab cache.
3200 */
3201 static inline int kmem_cache_close(struct kmem_cache *s)
3202 {
3203 int node;
3204 struct kmem_cache_node *n;
3205
3206 flush_all(s);
3207 /* Attempt to free all objects */
3208 for_each_kmem_cache_node(s, node, n) {
3209 free_partial(s, n);
3210 if (n->nr_partial || slabs_node(s, node))
3211 return 1;
3212 }
3213 free_percpu(s->cpu_slab);
3214 free_kmem_cache_nodes(s);
3215 return 0;
3216 }
3217
3218 int __kmem_cache_shutdown(struct kmem_cache *s)
3219 {
3220 return kmem_cache_close(s);
3221 }
3222
3223 /********************************************************************
3224 * Kmalloc subsystem
3225 *******************************************************************/
3226
3227 static int __init setup_slub_min_order(char *str)
3228 {
3229 get_option(&str, &slub_min_order);
3230
3231 return 1;
3232 }
3233
3234 __setup("slub_min_order=", setup_slub_min_order);
3235
3236 static int __init setup_slub_max_order(char *str)
3237 {
3238 get_option(&str, &slub_max_order);
3239 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3240
3241 return 1;
3242 }
3243
3244 __setup("slub_max_order=", setup_slub_max_order);
3245
3246 static int __init setup_slub_min_objects(char *str)
3247 {
3248 get_option(&str, &slub_min_objects);
3249
3250 return 1;
3251 }
3252
3253 __setup("slub_min_objects=", setup_slub_min_objects);
3254
3255 static int __init setup_slub_nomerge(char *str)
3256 {
3257 slub_nomerge = 1;
3258 return 1;
3259 }
3260
3261 __setup("slub_nomerge", setup_slub_nomerge);
3262
3263 void *__kmalloc(size_t size, gfp_t flags)
3264 {
3265 struct kmem_cache *s;
3266 void *ret;
3267
3268 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3269 return kmalloc_large(size, flags);
3270
3271 s = kmalloc_slab(size, flags);
3272
3273 if (unlikely(ZERO_OR_NULL_PTR(s)))
3274 return s;
3275
3276 ret = slab_alloc(s, flags, _RET_IP_);
3277
3278 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3279
3280 return ret;
3281 }
3282 EXPORT_SYMBOL(__kmalloc);
3283
3284 #ifdef CONFIG_NUMA
3285 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3286 {
3287 struct page *page;
3288 void *ptr = NULL;
3289
3290 flags |= __GFP_COMP | __GFP_NOTRACK;
3291 page = alloc_kmem_pages_node(node, flags, get_order(size));
3292 if (page)
3293 ptr = page_address(page);
3294
3295 kmalloc_large_node_hook(ptr, size, flags);
3296 return ptr;
3297 }
3298
3299 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3300 {
3301 struct kmem_cache *s;
3302 void *ret;
3303
3304 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3305 ret = kmalloc_large_node(size, flags, node);
3306
3307 trace_kmalloc_node(_RET_IP_, ret,
3308 size, PAGE_SIZE << get_order(size),
3309 flags, node);
3310
3311 return ret;
3312 }
3313
3314 s = kmalloc_slab(size, flags);
3315
3316 if (unlikely(ZERO_OR_NULL_PTR(s)))
3317 return s;
3318
3319 ret = slab_alloc_node(s, flags, node, _RET_IP_);
3320
3321 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3322
3323 return ret;
3324 }
3325 EXPORT_SYMBOL(__kmalloc_node);
3326 #endif
3327
3328 size_t ksize(const void *object)
3329 {
3330 struct page *page;
3331
3332 if (unlikely(object == ZERO_SIZE_PTR))
3333 return 0;
3334
3335 page = virt_to_head_page(object);
3336
3337 if (unlikely(!PageSlab(page))) {
3338 WARN_ON(!PageCompound(page));
3339 return PAGE_SIZE << compound_order(page);
3340 }
3341
3342 return slab_ksize(page->slab_cache);
3343 }
3344 EXPORT_SYMBOL(ksize);
3345
3346 void kfree(const void *x)
3347 {
3348 struct page *page;
3349 void *object = (void *)x;
3350
3351 trace_kfree(_RET_IP_, x);
3352
3353 if (unlikely(ZERO_OR_NULL_PTR(x)))
3354 return;
3355
3356 page = virt_to_head_page(x);
3357 if (unlikely(!PageSlab(page))) {
3358 BUG_ON(!PageCompound(page));
3359 kfree_hook(x);
3360 __free_kmem_pages(page, compound_order(page));
3361 return;
3362 }
3363 slab_free(page->slab_cache, page, object, _RET_IP_);
3364 }
3365 EXPORT_SYMBOL(kfree);
3366
3367 /*
3368 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3369 * the remaining slabs by the number of items in use. The slabs with the
3370 * most items in use come first. New allocations will then fill those up
3371 * and thus they can be removed from the partial lists.
3372 *
3373 * The slabs with the least items are placed last. This results in them
3374 * being allocated from last increasing the chance that the last objects
3375 * are freed in them.
3376 */
3377 int __kmem_cache_shrink(struct kmem_cache *s)
3378 {
3379 int node;
3380 int i;
3381 struct kmem_cache_node *n;
3382 struct page *page;
3383 struct page *t;
3384 int objects = oo_objects(s->max);
3385 struct list_head *slabs_by_inuse =
3386 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3387 unsigned long flags;
3388
3389 if (!slabs_by_inuse)
3390 return -ENOMEM;
3391
3392 flush_all(s);
3393 for_each_kmem_cache_node(s, node, n) {
3394 if (!n->nr_partial)
3395 continue;
3396
3397 for (i = 0; i < objects; i++)
3398 INIT_LIST_HEAD(slabs_by_inuse + i);
3399
3400 spin_lock_irqsave(&n->list_lock, flags);
3401
3402 /*
3403 * Build lists indexed by the items in use in each slab.
3404 *
3405 * Note that concurrent frees may occur while we hold the
3406 * list_lock. page->inuse here is the upper limit.
3407 */
3408 list_for_each_entry_safe(page, t, &n->partial, lru) {
3409 list_move(&page->lru, slabs_by_inuse + page->inuse);
3410 if (!page->inuse)
3411 n->nr_partial--;
3412 }
3413
3414 /*
3415 * Rebuild the partial list with the slabs filled up most
3416 * first and the least used slabs at the end.
3417 */
3418 for (i = objects - 1; i > 0; i--)
3419 list_splice(slabs_by_inuse + i, n->partial.prev);
3420
3421 spin_unlock_irqrestore(&n->list_lock, flags);
3422
3423 /* Release empty slabs */
3424 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3425 discard_slab(s, page);
3426 }
3427
3428 kfree(slabs_by_inuse);
3429 return 0;
3430 }
3431
3432 static int slab_mem_going_offline_callback(void *arg)
3433 {
3434 struct kmem_cache *s;
3435
3436 mutex_lock(&slab_mutex);
3437 list_for_each_entry(s, &slab_caches, list)
3438 __kmem_cache_shrink(s);
3439 mutex_unlock(&slab_mutex);
3440
3441 return 0;
3442 }
3443
3444 static void slab_mem_offline_callback(void *arg)
3445 {
3446 struct kmem_cache_node *n;
3447 struct kmem_cache *s;
3448 struct memory_notify *marg = arg;
3449 int offline_node;
3450
3451 offline_node = marg->status_change_nid_normal;
3452
3453 /*
3454 * If the node still has available memory. we need kmem_cache_node
3455 * for it yet.
3456 */
3457 if (offline_node < 0)
3458 return;
3459
3460 mutex_lock(&slab_mutex);
3461 list_for_each_entry(s, &slab_caches, list) {
3462 n = get_node(s, offline_node);
3463 if (n) {
3464 /*
3465 * if n->nr_slabs > 0, slabs still exist on the node
3466 * that is going down. We were unable to free them,
3467 * and offline_pages() function shouldn't call this
3468 * callback. So, we must fail.
3469 */
3470 BUG_ON(slabs_node(s, offline_node));
3471
3472 s->node[offline_node] = NULL;
3473 kmem_cache_free(kmem_cache_node, n);
3474 }
3475 }
3476 mutex_unlock(&slab_mutex);
3477 }
3478
3479 static int slab_mem_going_online_callback(void *arg)
3480 {
3481 struct kmem_cache_node *n;
3482 struct kmem_cache *s;
3483 struct memory_notify *marg = arg;
3484 int nid = marg->status_change_nid_normal;
3485 int ret = 0;
3486
3487 /*
3488 * If the node's memory is already available, then kmem_cache_node is
3489 * already created. Nothing to do.
3490 */
3491 if (nid < 0)
3492 return 0;
3493
3494 /*
3495 * We are bringing a node online. No memory is available yet. We must
3496 * allocate a kmem_cache_node structure in order to bring the node
3497 * online.
3498 */
3499 mutex_lock(&slab_mutex);
3500 list_for_each_entry(s, &slab_caches, list) {
3501 /*
3502 * XXX: kmem_cache_alloc_node will fallback to other nodes
3503 * since memory is not yet available from the node that
3504 * is brought up.
3505 */
3506 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3507 if (!n) {
3508 ret = -ENOMEM;
3509 goto out;
3510 }
3511 init_kmem_cache_node(n);
3512 s->node[nid] = n;
3513 }
3514 out:
3515 mutex_unlock(&slab_mutex);
3516 return ret;
3517 }
3518
3519 static int slab_memory_callback(struct notifier_block *self,
3520 unsigned long action, void *arg)
3521 {
3522 int ret = 0;
3523
3524 switch (action) {
3525 case MEM_GOING_ONLINE:
3526 ret = slab_mem_going_online_callback(arg);
3527 break;
3528 case MEM_GOING_OFFLINE:
3529 ret = slab_mem_going_offline_callback(arg);
3530 break;
3531 case MEM_OFFLINE:
3532 case MEM_CANCEL_ONLINE:
3533 slab_mem_offline_callback(arg);
3534 break;
3535 case MEM_ONLINE:
3536 case MEM_CANCEL_OFFLINE:
3537 break;
3538 }
3539 if (ret)
3540 ret = notifier_from_errno(ret);
3541 else
3542 ret = NOTIFY_OK;
3543 return ret;
3544 }
3545
3546 static struct notifier_block slab_memory_callback_nb = {
3547 .notifier_call = slab_memory_callback,
3548 .priority = SLAB_CALLBACK_PRI,
3549 };
3550
3551 /********************************************************************
3552 * Basic setup of slabs
3553 *******************************************************************/
3554
3555 /*
3556 * Used for early kmem_cache structures that were allocated using
3557 * the page allocator. Allocate them properly then fix up the pointers
3558 * that may be pointing to the wrong kmem_cache structure.
3559 */
3560
3561 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3562 {
3563 int node;
3564 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3565 struct kmem_cache_node *n;
3566
3567 memcpy(s, static_cache, kmem_cache->object_size);
3568
3569 /*
3570 * This runs very early, and only the boot processor is supposed to be
3571 * up. Even if it weren't true, IRQs are not up so we couldn't fire
3572 * IPIs around.
3573 */
3574 __flush_cpu_slab(s, smp_processor_id());
3575 for_each_kmem_cache_node(s, node, n) {
3576 struct page *p;
3577
3578 list_for_each_entry(p, &n->partial, lru)
3579 p->slab_cache = s;
3580
3581 #ifdef CONFIG_SLUB_DEBUG
3582 list_for_each_entry(p, &n->full, lru)
3583 p->slab_cache = s;
3584 #endif
3585 }
3586 list_add(&s->list, &slab_caches);
3587 return s;
3588 }
3589
3590 void __init kmem_cache_init(void)
3591 {
3592 static __initdata struct kmem_cache boot_kmem_cache,
3593 boot_kmem_cache_node;
3594
3595 if (debug_guardpage_minorder())
3596 slub_max_order = 0;
3597
3598 kmem_cache_node = &boot_kmem_cache_node;
3599 kmem_cache = &boot_kmem_cache;
3600
3601 create_boot_cache(kmem_cache_node, "kmem_cache_node",
3602 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3603
3604 register_hotmemory_notifier(&slab_memory_callback_nb);
3605
3606 /* Able to allocate the per node structures */
3607 slab_state = PARTIAL;
3608
3609 create_boot_cache(kmem_cache, "kmem_cache",
3610 offsetof(struct kmem_cache, node) +
3611 nr_node_ids * sizeof(struct kmem_cache_node *),
3612 SLAB_HWCACHE_ALIGN);
3613
3614 kmem_cache = bootstrap(&boot_kmem_cache);
3615
3616 /*
3617 * Allocate kmem_cache_node properly from the kmem_cache slab.
3618 * kmem_cache_node is separately allocated so no need to
3619 * update any list pointers.
3620 */
3621 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3622
3623 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3624 create_kmalloc_caches(0);
3625
3626 #ifdef CONFIG_SMP
3627 register_cpu_notifier(&slab_notifier);
3628 #endif
3629
3630 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
3631 cache_line_size(),
3632 slub_min_order, slub_max_order, slub_min_objects,
3633 nr_cpu_ids, nr_node_ids);
3634 }
3635
3636 void __init kmem_cache_init_late(void)
3637 {
3638 }
3639
3640 /*
3641 * Find a mergeable slab cache
3642 */
3643 static int slab_unmergeable(struct kmem_cache *s)
3644 {
3645 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3646 return 1;
3647
3648 if (!is_root_cache(s))
3649 return 1;
3650
3651 if (s->ctor)
3652 return 1;
3653
3654 /*
3655 * We may have set a slab to be unmergeable during bootstrap.
3656 */
3657 if (s->refcount < 0)
3658 return 1;
3659
3660 return 0;
3661 }
3662
3663 static struct kmem_cache *find_mergeable(size_t size, size_t align,
3664 unsigned long flags, const char *name, void (*ctor)(void *))
3665 {
3666 struct kmem_cache *s;
3667
3668 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3669 return NULL;
3670
3671 if (ctor)
3672 return NULL;
3673
3674 size = ALIGN(size, sizeof(void *));
3675 align = calculate_alignment(flags, align, size);
3676 size = ALIGN(size, align);
3677 flags = kmem_cache_flags(size, flags, name, NULL);
3678
3679 list_for_each_entry(s, &slab_caches, list) {
3680 if (slab_unmergeable(s))
3681 continue;
3682
3683 if (size > s->size)
3684 continue;
3685
3686 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3687 continue;
3688 /*
3689 * Check if alignment is compatible.
3690 * Courtesy of Adrian Drzewiecki
3691 */
3692 if ((s->size & ~(align - 1)) != s->size)
3693 continue;
3694
3695 if (s->size - size >= sizeof(void *))
3696 continue;
3697
3698 return s;
3699 }
3700 return NULL;
3701 }
3702
3703 struct kmem_cache *
3704 __kmem_cache_alias(const char *name, size_t size, size_t align,
3705 unsigned long flags, void (*ctor)(void *))
3706 {
3707 struct kmem_cache *s;
3708
3709 s = find_mergeable(size, align, flags, name, ctor);
3710 if (s) {
3711 int i;
3712 struct kmem_cache *c;
3713
3714 s->refcount++;
3715
3716 /*
3717 * Adjust the object sizes so that we clear
3718 * the complete object on kzalloc.
3719 */
3720 s->object_size = max(s->object_size, (int)size);
3721 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3722
3723 for_each_memcg_cache_index(i) {
3724 c = cache_from_memcg_idx(s, i);
3725 if (!c)
3726 continue;
3727 c->object_size = s->object_size;
3728 c->inuse = max_t(int, c->inuse,
3729 ALIGN(size, sizeof(void *)));
3730 }
3731
3732 if (sysfs_slab_alias(s, name)) {
3733 s->refcount--;
3734 s = NULL;
3735 }
3736 }
3737
3738 return s;
3739 }
3740
3741 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3742 {
3743 int err;
3744
3745 err = kmem_cache_open(s, flags);
3746 if (err)
3747 return err;
3748
3749 /* Mutex is not taken during early boot */
3750 if (slab_state <= UP)
3751 return 0;
3752
3753 memcg_propagate_slab_attrs(s);
3754 err = sysfs_slab_add(s);
3755 if (err)
3756 kmem_cache_close(s);
3757
3758 return err;
3759 }
3760
3761 #ifdef CONFIG_SMP
3762 /*
3763 * Use the cpu notifier to insure that the cpu slabs are flushed when
3764 * necessary.
3765 */
3766 static int slab_cpuup_callback(struct notifier_block *nfb,
3767 unsigned long action, void *hcpu)
3768 {
3769 long cpu = (long)hcpu;
3770 struct kmem_cache *s;
3771 unsigned long flags;
3772
3773 switch (action) {
3774 case CPU_UP_CANCELED:
3775 case CPU_UP_CANCELED_FROZEN:
3776 case CPU_DEAD:
3777 case CPU_DEAD_FROZEN:
3778 mutex_lock(&slab_mutex);
3779 list_for_each_entry(s, &slab_caches, list) {
3780 local_irq_save(flags);
3781 __flush_cpu_slab(s, cpu);
3782 local_irq_restore(flags);
3783 }
3784 mutex_unlock(&slab_mutex);
3785 break;
3786 default:
3787 break;
3788 }
3789 return NOTIFY_OK;
3790 }
3791
3792 static struct notifier_block slab_notifier = {
3793 .notifier_call = slab_cpuup_callback
3794 };
3795
3796 #endif
3797
3798 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3799 {
3800 struct kmem_cache *s;
3801 void *ret;
3802
3803 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3804 return kmalloc_large(size, gfpflags);
3805
3806 s = kmalloc_slab(size, gfpflags);
3807
3808 if (unlikely(ZERO_OR_NULL_PTR(s)))
3809 return s;
3810
3811 ret = slab_alloc(s, gfpflags, caller);
3812
3813 /* Honor the call site pointer we received. */
3814 trace_kmalloc(caller, ret, size, s->size, gfpflags);
3815
3816 return ret;
3817 }
3818
3819 #ifdef CONFIG_NUMA
3820 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3821 int node, unsigned long caller)
3822 {
3823 struct kmem_cache *s;
3824 void *ret;
3825
3826 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3827 ret = kmalloc_large_node(size, gfpflags, node);
3828
3829 trace_kmalloc_node(caller, ret,
3830 size, PAGE_SIZE << get_order(size),
3831 gfpflags, node);
3832
3833 return ret;
3834 }
3835
3836 s = kmalloc_slab(size, gfpflags);
3837
3838 if (unlikely(ZERO_OR_NULL_PTR(s)))
3839 return s;
3840
3841 ret = slab_alloc_node(s, gfpflags, node, caller);
3842
3843 /* Honor the call site pointer we received. */
3844 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3845
3846 return ret;
3847 }
3848 #endif
3849
3850 #ifdef CONFIG_SYSFS
3851 static int count_inuse(struct page *page)
3852 {
3853 return page->inuse;
3854 }
3855
3856 static int count_total(struct page *page)
3857 {
3858 return page->objects;
3859 }
3860 #endif
3861
3862 #ifdef CONFIG_SLUB_DEBUG
3863 static int validate_slab(struct kmem_cache *s, struct page *page,
3864 unsigned long *map)
3865 {
3866 void *p;
3867 void *addr = page_address(page);
3868
3869 if (!check_slab(s, page) ||
3870 !on_freelist(s, page, NULL))
3871 return 0;
3872
3873 /* Now we know that a valid freelist exists */
3874 bitmap_zero(map, page->objects);
3875
3876 get_map(s, page, map);
3877 for_each_object(p, s, addr, page->objects) {
3878 if (test_bit(slab_index(p, s, addr), map))
3879 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3880 return 0;
3881 }
3882
3883 for_each_object(p, s, addr, page->objects)
3884 if (!test_bit(slab_index(p, s, addr), map))
3885 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3886 return 0;
3887 return 1;
3888 }
3889
3890 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3891 unsigned long *map)
3892 {
3893 slab_lock(page);
3894 validate_slab(s, page, map);
3895 slab_unlock(page);
3896 }
3897
3898 static int validate_slab_node(struct kmem_cache *s,
3899 struct kmem_cache_node *n, unsigned long *map)
3900 {
3901 unsigned long count = 0;
3902 struct page *page;
3903 unsigned long flags;
3904
3905 spin_lock_irqsave(&n->list_lock, flags);
3906
3907 list_for_each_entry(page, &n->partial, lru) {
3908 validate_slab_slab(s, page, map);
3909 count++;
3910 }
3911 if (count != n->nr_partial)
3912 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
3913 s->name, count, n->nr_partial);
3914
3915 if (!(s->flags & SLAB_STORE_USER))
3916 goto out;
3917
3918 list_for_each_entry(page, &n->full, lru) {
3919 validate_slab_slab(s, page, map);
3920 count++;
3921 }
3922 if (count != atomic_long_read(&n->nr_slabs))
3923 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
3924 s->name, count, atomic_long_read(&n->nr_slabs));
3925
3926 out:
3927 spin_unlock_irqrestore(&n->list_lock, flags);
3928 return count;
3929 }
3930
3931 static long validate_slab_cache(struct kmem_cache *s)
3932 {
3933 int node;
3934 unsigned long count = 0;
3935 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3936 sizeof(unsigned long), GFP_KERNEL);
3937 struct kmem_cache_node *n;
3938
3939 if (!map)
3940 return -ENOMEM;
3941
3942 flush_all(s);
3943 for_each_kmem_cache_node(s, node, n)
3944 count += validate_slab_node(s, n, map);
3945 kfree(map);
3946 return count;
3947 }
3948 /*
3949 * Generate lists of code addresses where slabcache objects are allocated
3950 * and freed.
3951 */
3952
3953 struct location {
3954 unsigned long count;
3955 unsigned long addr;
3956 long long sum_time;
3957 long min_time;
3958 long max_time;
3959 long min_pid;
3960 long max_pid;
3961 DECLARE_BITMAP(cpus, NR_CPUS);
3962 nodemask_t nodes;
3963 };
3964
3965 struct loc_track {
3966 unsigned long max;
3967 unsigned long count;
3968 struct location *loc;
3969 };
3970
3971 static void free_loc_track(struct loc_track *t)
3972 {
3973 if (t->max)
3974 free_pages((unsigned long)t->loc,
3975 get_order(sizeof(struct location) * t->max));
3976 }
3977
3978 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3979 {
3980 struct location *l;
3981 int order;
3982
3983 order = get_order(sizeof(struct location) * max);
3984
3985 l = (void *)__get_free_pages(flags, order);
3986 if (!l)
3987 return 0;
3988
3989 if (t->count) {
3990 memcpy(l, t->loc, sizeof(struct location) * t->count);
3991 free_loc_track(t);
3992 }
3993 t->max = max;
3994 t->loc = l;
3995 return 1;
3996 }
3997
3998 static int add_location(struct loc_track *t, struct kmem_cache *s,
3999 const struct track *track)
4000 {
4001 long start, end, pos;
4002 struct location *l;
4003 unsigned long caddr;
4004 unsigned long age = jiffies - track->when;
4005
4006 start = -1;
4007 end = t->count;
4008
4009 for ( ; ; ) {
4010 pos = start + (end - start + 1) / 2;
4011
4012 /*
4013 * There is nothing at "end". If we end up there
4014 * we need to add something to before end.
4015 */
4016 if (pos == end)
4017 break;
4018
4019 caddr = t->loc[pos].addr;
4020 if (track->addr == caddr) {
4021
4022 l = &t->loc[pos];
4023 l->count++;
4024 if (track->when) {
4025 l->sum_time += age;
4026 if (age < l->min_time)
4027 l->min_time = age;
4028 if (age > l->max_time)
4029 l->max_time = age;
4030
4031 if (track->pid < l->min_pid)
4032 l->min_pid = track->pid;
4033 if (track->pid > l->max_pid)
4034 l->max_pid = track->pid;
4035
4036 cpumask_set_cpu(track->cpu,
4037 to_cpumask(l->cpus));
4038 }
4039 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4040 return 1;
4041 }
4042
4043 if (track->addr < caddr)
4044 end = pos;
4045 else
4046 start = pos;
4047 }
4048
4049 /*
4050 * Not found. Insert new tracking element.
4051 */
4052 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4053 return 0;
4054
4055 l = t->loc + pos;
4056 if (pos < t->count)
4057 memmove(l + 1, l,
4058 (t->count - pos) * sizeof(struct location));
4059 t->count++;
4060 l->count = 1;
4061 l->addr = track->addr;
4062 l->sum_time = age;
4063 l->min_time = age;
4064 l->max_time = age;
4065 l->min_pid = track->pid;
4066 l->max_pid = track->pid;
4067 cpumask_clear(to_cpumask(l->cpus));
4068 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4069 nodes_clear(l->nodes);
4070 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4071 return 1;
4072 }
4073
4074 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4075 struct page *page, enum track_item alloc,
4076 unsigned long *map)
4077 {
4078 void *addr = page_address(page);
4079 void *p;
4080
4081 bitmap_zero(map, page->objects);
4082 get_map(s, page, map);
4083
4084 for_each_object(p, s, addr, page->objects)
4085 if (!test_bit(slab_index(p, s, addr), map))
4086 add_location(t, s, get_track(s, p, alloc));
4087 }
4088
4089 static int list_locations(struct kmem_cache *s, char *buf,
4090 enum track_item alloc)
4091 {
4092 int len = 0;
4093 unsigned long i;
4094 struct loc_track t = { 0, 0, NULL };
4095 int node;
4096 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4097 sizeof(unsigned long), GFP_KERNEL);
4098 struct kmem_cache_node *n;
4099
4100 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4101 GFP_TEMPORARY)) {
4102 kfree(map);
4103 return sprintf(buf, "Out of memory\n");
4104 }
4105 /* Push back cpu slabs */
4106 flush_all(s);
4107
4108 for_each_kmem_cache_node(s, node, n) {
4109 unsigned long flags;
4110 struct page *page;
4111
4112 if (!atomic_long_read(&n->nr_slabs))
4113 continue;
4114
4115 spin_lock_irqsave(&n->list_lock, flags);
4116 list_for_each_entry(page, &n->partial, lru)
4117 process_slab(&t, s, page, alloc, map);
4118 list_for_each_entry(page, &n->full, lru)
4119 process_slab(&t, s, page, alloc, map);
4120 spin_unlock_irqrestore(&n->list_lock, flags);
4121 }
4122
4123 for (i = 0; i < t.count; i++) {
4124 struct location *l = &t.loc[i];
4125
4126 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4127 break;
4128 len += sprintf(buf + len, "%7ld ", l->count);
4129
4130 if (l->addr)
4131 len += sprintf(buf + len, "%pS", (void *)l->addr);
4132 else
4133 len += sprintf(buf + len, "<not-available>");
4134
4135 if (l->sum_time != l->min_time) {
4136 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4137 l->min_time,
4138 (long)div_u64(l->sum_time, l->count),
4139 l->max_time);
4140 } else
4141 len += sprintf(buf + len, " age=%ld",
4142 l->min_time);
4143
4144 if (l->min_pid != l->max_pid)
4145 len += sprintf(buf + len, " pid=%ld-%ld",
4146 l->min_pid, l->max_pid);
4147 else
4148 len += sprintf(buf + len, " pid=%ld",
4149 l->min_pid);
4150
4151 if (num_online_cpus() > 1 &&
4152 !cpumask_empty(to_cpumask(l->cpus)) &&
4153 len < PAGE_SIZE - 60) {
4154 len += sprintf(buf + len, " cpus=");
4155 len += cpulist_scnprintf(buf + len,
4156 PAGE_SIZE - len - 50,
4157 to_cpumask(l->cpus));
4158 }
4159
4160 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4161 len < PAGE_SIZE - 60) {
4162 len += sprintf(buf + len, " nodes=");
4163 len += nodelist_scnprintf(buf + len,
4164 PAGE_SIZE - len - 50,
4165 l->nodes);
4166 }
4167
4168 len += sprintf(buf + len, "\n");
4169 }
4170
4171 free_loc_track(&t);
4172 kfree(map);
4173 if (!t.count)
4174 len += sprintf(buf, "No data\n");
4175 return len;
4176 }
4177 #endif
4178
4179 #ifdef SLUB_RESILIENCY_TEST
4180 static void __init resiliency_test(void)
4181 {
4182 u8 *p;
4183
4184 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4185
4186 pr_err("SLUB resiliency testing\n");
4187 pr_err("-----------------------\n");
4188 pr_err("A. Corruption after allocation\n");
4189
4190 p = kzalloc(16, GFP_KERNEL);
4191 p[16] = 0x12;
4192 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4193 p + 16);
4194
4195 validate_slab_cache(kmalloc_caches[4]);
4196
4197 /* Hmmm... The next two are dangerous */
4198 p = kzalloc(32, GFP_KERNEL);
4199 p[32 + sizeof(void *)] = 0x34;
4200 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4201 p);
4202 pr_err("If allocated object is overwritten then not detectable\n\n");
4203
4204 validate_slab_cache(kmalloc_caches[5]);
4205 p = kzalloc(64, GFP_KERNEL);
4206 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4207 *p = 0x56;
4208 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4209 p);
4210 pr_err("If allocated object is overwritten then not detectable\n\n");
4211 validate_slab_cache(kmalloc_caches[6]);
4212
4213 pr_err("\nB. Corruption after free\n");
4214 p = kzalloc(128, GFP_KERNEL);
4215 kfree(p);
4216 *p = 0x78;
4217 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4218 validate_slab_cache(kmalloc_caches[7]);
4219
4220 p = kzalloc(256, GFP_KERNEL);
4221 kfree(p);
4222 p[50] = 0x9a;
4223 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4224 validate_slab_cache(kmalloc_caches[8]);
4225
4226 p = kzalloc(512, GFP_KERNEL);
4227 kfree(p);
4228 p[512] = 0xab;
4229 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4230 validate_slab_cache(kmalloc_caches[9]);
4231 }
4232 #else
4233 #ifdef CONFIG_SYSFS
4234 static void resiliency_test(void) {};
4235 #endif
4236 #endif
4237
4238 #ifdef CONFIG_SYSFS
4239 enum slab_stat_type {
4240 SL_ALL, /* All slabs */
4241 SL_PARTIAL, /* Only partially allocated slabs */
4242 SL_CPU, /* Only slabs used for cpu caches */
4243 SL_OBJECTS, /* Determine allocated objects not slabs */
4244 SL_TOTAL /* Determine object capacity not slabs */
4245 };
4246
4247 #define SO_ALL (1 << SL_ALL)
4248 #define SO_PARTIAL (1 << SL_PARTIAL)
4249 #define SO_CPU (1 << SL_CPU)
4250 #define SO_OBJECTS (1 << SL_OBJECTS)
4251 #define SO_TOTAL (1 << SL_TOTAL)
4252
4253 static ssize_t show_slab_objects(struct kmem_cache *s,
4254 char *buf, unsigned long flags)
4255 {
4256 unsigned long total = 0;
4257 int node;
4258 int x;
4259 unsigned long *nodes;
4260
4261 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4262 if (!nodes)
4263 return -ENOMEM;
4264
4265 if (flags & SO_CPU) {
4266 int cpu;
4267
4268 for_each_possible_cpu(cpu) {
4269 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4270 cpu);
4271 int node;
4272 struct page *page;
4273
4274 page = ACCESS_ONCE(c->page);
4275 if (!page)
4276 continue;
4277
4278 node = page_to_nid(page);
4279 if (flags & SO_TOTAL)
4280 x = page->objects;
4281 else if (flags & SO_OBJECTS)
4282 x = page->inuse;
4283 else
4284 x = 1;
4285
4286 total += x;
4287 nodes[node] += x;
4288
4289 page = ACCESS_ONCE(c->partial);
4290 if (page) {
4291 node = page_to_nid(page);
4292 if (flags & SO_TOTAL)
4293 WARN_ON_ONCE(1);
4294 else if (flags & SO_OBJECTS)
4295 WARN_ON_ONCE(1);
4296 else
4297 x = page->pages;
4298 total += x;
4299 nodes[node] += x;
4300 }
4301 }
4302 }
4303
4304 get_online_mems();
4305 #ifdef CONFIG_SLUB_DEBUG
4306 if (flags & SO_ALL) {
4307 struct kmem_cache_node *n;
4308
4309 for_each_kmem_cache_node(s, node, n) {
4310
4311 if (flags & SO_TOTAL)
4312 x = atomic_long_read(&n->total_objects);
4313 else if (flags & SO_OBJECTS)
4314 x = atomic_long_read(&n->total_objects) -
4315 count_partial(n, count_free);
4316 else
4317 x = atomic_long_read(&n->nr_slabs);
4318 total += x;
4319 nodes[node] += x;
4320 }
4321
4322 } else
4323 #endif
4324 if (flags & SO_PARTIAL) {
4325 struct kmem_cache_node *n;
4326
4327 for_each_kmem_cache_node(s, node, n) {
4328 if (flags & SO_TOTAL)
4329 x = count_partial(n, count_total);
4330 else if (flags & SO_OBJECTS)
4331 x = count_partial(n, count_inuse);
4332 else
4333 x = n->nr_partial;
4334 total += x;
4335 nodes[node] += x;
4336 }
4337 }
4338 x = sprintf(buf, "%lu", total);
4339 #ifdef CONFIG_NUMA
4340 for (node = 0; node < nr_node_ids; node++)
4341 if (nodes[node])
4342 x += sprintf(buf + x, " N%d=%lu",
4343 node, nodes[node]);
4344 #endif
4345 put_online_mems();
4346 kfree(nodes);
4347 return x + sprintf(buf + x, "\n");
4348 }
4349
4350 #ifdef CONFIG_SLUB_DEBUG
4351 static int any_slab_objects(struct kmem_cache *s)
4352 {
4353 int node;
4354 struct kmem_cache_node *n;
4355
4356 for_each_kmem_cache_node(s, node, n)
4357 if (atomic_long_read(&n->total_objects))
4358 return 1;
4359
4360 return 0;
4361 }
4362 #endif
4363
4364 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4365 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4366
4367 struct slab_attribute {
4368 struct attribute attr;
4369 ssize_t (*show)(struct kmem_cache *s, char *buf);
4370 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4371 };
4372
4373 #define SLAB_ATTR_RO(_name) \
4374 static struct slab_attribute _name##_attr = \
4375 __ATTR(_name, 0400, _name##_show, NULL)
4376
4377 #define SLAB_ATTR(_name) \
4378 static struct slab_attribute _name##_attr = \
4379 __ATTR(_name, 0600, _name##_show, _name##_store)
4380
4381 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4382 {
4383 return sprintf(buf, "%d\n", s->size);
4384 }
4385 SLAB_ATTR_RO(slab_size);
4386
4387 static ssize_t align_show(struct kmem_cache *s, char *buf)
4388 {
4389 return sprintf(buf, "%d\n", s->align);
4390 }
4391 SLAB_ATTR_RO(align);
4392
4393 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4394 {
4395 return sprintf(buf, "%d\n", s->object_size);
4396 }
4397 SLAB_ATTR_RO(object_size);
4398
4399 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4400 {
4401 return sprintf(buf, "%d\n", oo_objects(s->oo));
4402 }
4403 SLAB_ATTR_RO(objs_per_slab);
4404
4405 static ssize_t order_store(struct kmem_cache *s,
4406 const char *buf, size_t length)
4407 {
4408 unsigned long order;
4409 int err;
4410
4411 err = kstrtoul(buf, 10, &order);
4412 if (err)
4413 return err;
4414
4415 if (order > slub_max_order || order < slub_min_order)
4416 return -EINVAL;
4417
4418 calculate_sizes(s, order);
4419 return length;
4420 }
4421
4422 static ssize_t order_show(struct kmem_cache *s, char *buf)
4423 {
4424 return sprintf(buf, "%d\n", oo_order(s->oo));
4425 }
4426 SLAB_ATTR(order);
4427
4428 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4429 {
4430 return sprintf(buf, "%lu\n", s->min_partial);
4431 }
4432
4433 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4434 size_t length)
4435 {
4436 unsigned long min;
4437 int err;
4438
4439 err = kstrtoul(buf, 10, &min);
4440 if (err)
4441 return err;
4442
4443 set_min_partial(s, min);
4444 return length;
4445 }
4446 SLAB_ATTR(min_partial);
4447
4448 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4449 {
4450 return sprintf(buf, "%u\n", s->cpu_partial);
4451 }
4452
4453 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4454 size_t length)
4455 {
4456 unsigned long objects;
4457 int err;
4458
4459 err = kstrtoul(buf, 10, &objects);
4460 if (err)
4461 return err;
4462 if (objects && !kmem_cache_has_cpu_partial(s))
4463 return -EINVAL;
4464
4465 s->cpu_partial = objects;
4466 flush_all(s);
4467 return length;
4468 }
4469 SLAB_ATTR(cpu_partial);
4470
4471 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4472 {
4473 if (!s->ctor)
4474 return 0;
4475 return sprintf(buf, "%pS\n", s->ctor);
4476 }
4477 SLAB_ATTR_RO(ctor);
4478
4479 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4480 {
4481 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
4482 }
4483 SLAB_ATTR_RO(aliases);
4484
4485 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4486 {
4487 return show_slab_objects(s, buf, SO_PARTIAL);
4488 }
4489 SLAB_ATTR_RO(partial);
4490
4491 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4492 {
4493 return show_slab_objects(s, buf, SO_CPU);
4494 }
4495 SLAB_ATTR_RO(cpu_slabs);
4496
4497 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4498 {
4499 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4500 }
4501 SLAB_ATTR_RO(objects);
4502
4503 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4504 {
4505 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4506 }
4507 SLAB_ATTR_RO(objects_partial);
4508
4509 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4510 {
4511 int objects = 0;
4512 int pages = 0;
4513 int cpu;
4514 int len;
4515
4516 for_each_online_cpu(cpu) {
4517 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4518
4519 if (page) {
4520 pages += page->pages;
4521 objects += page->pobjects;
4522 }
4523 }
4524
4525 len = sprintf(buf, "%d(%d)", objects, pages);
4526
4527 #ifdef CONFIG_SMP
4528 for_each_online_cpu(cpu) {
4529 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4530
4531 if (page && len < PAGE_SIZE - 20)
4532 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4533 page->pobjects, page->pages);
4534 }
4535 #endif
4536 return len + sprintf(buf + len, "\n");
4537 }
4538 SLAB_ATTR_RO(slabs_cpu_partial);
4539
4540 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4541 {
4542 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4543 }
4544
4545 static ssize_t reclaim_account_store(struct kmem_cache *s,
4546 const char *buf, size_t length)
4547 {
4548 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4549 if (buf[0] == '1')
4550 s->flags |= SLAB_RECLAIM_ACCOUNT;
4551 return length;
4552 }
4553 SLAB_ATTR(reclaim_account);
4554
4555 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4556 {
4557 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4558 }
4559 SLAB_ATTR_RO(hwcache_align);
4560
4561 #ifdef CONFIG_ZONE_DMA
4562 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4563 {
4564 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4565 }
4566 SLAB_ATTR_RO(cache_dma);
4567 #endif
4568
4569 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4570 {
4571 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4572 }
4573 SLAB_ATTR_RO(destroy_by_rcu);
4574
4575 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4576 {
4577 return sprintf(buf, "%d\n", s->reserved);
4578 }
4579 SLAB_ATTR_RO(reserved);
4580
4581 #ifdef CONFIG_SLUB_DEBUG
4582 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4583 {
4584 return show_slab_objects(s, buf, SO_ALL);
4585 }
4586 SLAB_ATTR_RO(slabs);
4587
4588 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4589 {
4590 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4591 }
4592 SLAB_ATTR_RO(total_objects);
4593
4594 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4595 {
4596 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4597 }
4598
4599 static ssize_t sanity_checks_store(struct kmem_cache *s,
4600 const char *buf, size_t length)
4601 {
4602 s->flags &= ~SLAB_DEBUG_FREE;
4603 if (buf[0] == '1') {
4604 s->flags &= ~__CMPXCHG_DOUBLE;
4605 s->flags |= SLAB_DEBUG_FREE;
4606 }
4607 return length;
4608 }
4609 SLAB_ATTR(sanity_checks);
4610
4611 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4612 {
4613 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4614 }
4615
4616 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4617 size_t length)
4618 {
4619 /*
4620 * Tracing a merged cache is going to give confusing results
4621 * as well as cause other issues like converting a mergeable
4622 * cache into an umergeable one.
4623 */
4624 if (s->refcount > 1)
4625 return -EINVAL;
4626
4627 s->flags &= ~SLAB_TRACE;
4628 if (buf[0] == '1') {
4629 s->flags &= ~__CMPXCHG_DOUBLE;
4630 s->flags |= SLAB_TRACE;
4631 }
4632 return length;
4633 }
4634 SLAB_ATTR(trace);
4635
4636 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4637 {
4638 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4639 }
4640
4641 static ssize_t red_zone_store(struct kmem_cache *s,
4642 const char *buf, size_t length)
4643 {
4644 if (any_slab_objects(s))
4645 return -EBUSY;
4646
4647 s->flags &= ~SLAB_RED_ZONE;
4648 if (buf[0] == '1') {
4649 s->flags &= ~__CMPXCHG_DOUBLE;
4650 s->flags |= SLAB_RED_ZONE;
4651 }
4652 calculate_sizes(s, -1);
4653 return length;
4654 }
4655 SLAB_ATTR(red_zone);
4656
4657 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4658 {
4659 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4660 }
4661
4662 static ssize_t poison_store(struct kmem_cache *s,
4663 const char *buf, size_t length)
4664 {
4665 if (any_slab_objects(s))
4666 return -EBUSY;
4667
4668 s->flags &= ~SLAB_POISON;
4669 if (buf[0] == '1') {
4670 s->flags &= ~__CMPXCHG_DOUBLE;
4671 s->flags |= SLAB_POISON;
4672 }
4673 calculate_sizes(s, -1);
4674 return length;
4675 }
4676 SLAB_ATTR(poison);
4677
4678 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4679 {
4680 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4681 }
4682
4683 static ssize_t store_user_store(struct kmem_cache *s,
4684 const char *buf, size_t length)
4685 {
4686 if (any_slab_objects(s))
4687 return -EBUSY;
4688
4689 s->flags &= ~SLAB_STORE_USER;
4690 if (buf[0] == '1') {
4691 s->flags &= ~__CMPXCHG_DOUBLE;
4692 s->flags |= SLAB_STORE_USER;
4693 }
4694 calculate_sizes(s, -1);
4695 return length;
4696 }
4697 SLAB_ATTR(store_user);
4698
4699 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4700 {
4701 return 0;
4702 }
4703
4704 static ssize_t validate_store(struct kmem_cache *s,
4705 const char *buf, size_t length)
4706 {
4707 int ret = -EINVAL;
4708
4709 if (buf[0] == '1') {
4710 ret = validate_slab_cache(s);
4711 if (ret >= 0)
4712 ret = length;
4713 }
4714 return ret;
4715 }
4716 SLAB_ATTR(validate);
4717
4718 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4719 {
4720 if (!(s->flags & SLAB_STORE_USER))
4721 return -ENOSYS;
4722 return list_locations(s, buf, TRACK_ALLOC);
4723 }
4724 SLAB_ATTR_RO(alloc_calls);
4725
4726 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4727 {
4728 if (!(s->flags & SLAB_STORE_USER))
4729 return -ENOSYS;
4730 return list_locations(s, buf, TRACK_FREE);
4731 }
4732 SLAB_ATTR_RO(free_calls);
4733 #endif /* CONFIG_SLUB_DEBUG */
4734
4735 #ifdef CONFIG_FAILSLAB
4736 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4737 {
4738 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4739 }
4740
4741 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4742 size_t length)
4743 {
4744 if (s->refcount > 1)
4745 return -EINVAL;
4746
4747 s->flags &= ~SLAB_FAILSLAB;
4748 if (buf[0] == '1')
4749 s->flags |= SLAB_FAILSLAB;
4750 return length;
4751 }
4752 SLAB_ATTR(failslab);
4753 #endif
4754
4755 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4756 {
4757 return 0;
4758 }
4759
4760 static ssize_t shrink_store(struct kmem_cache *s,
4761 const char *buf, size_t length)
4762 {
4763 if (buf[0] == '1') {
4764 int rc = kmem_cache_shrink(s);
4765
4766 if (rc)
4767 return rc;
4768 } else
4769 return -EINVAL;
4770 return length;
4771 }
4772 SLAB_ATTR(shrink);
4773
4774 #ifdef CONFIG_NUMA
4775 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4776 {
4777 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4778 }
4779
4780 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4781 const char *buf, size_t length)
4782 {
4783 unsigned long ratio;
4784 int err;
4785
4786 err = kstrtoul(buf, 10, &ratio);
4787 if (err)
4788 return err;
4789
4790 if (ratio <= 100)
4791 s->remote_node_defrag_ratio = ratio * 10;
4792
4793 return length;
4794 }
4795 SLAB_ATTR(remote_node_defrag_ratio);
4796 #endif
4797
4798 #ifdef CONFIG_SLUB_STATS
4799 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4800 {
4801 unsigned long sum = 0;
4802 int cpu;
4803 int len;
4804 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4805
4806 if (!data)
4807 return -ENOMEM;
4808
4809 for_each_online_cpu(cpu) {
4810 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4811
4812 data[cpu] = x;
4813 sum += x;
4814 }
4815
4816 len = sprintf(buf, "%lu", sum);
4817
4818 #ifdef CONFIG_SMP
4819 for_each_online_cpu(cpu) {
4820 if (data[cpu] && len < PAGE_SIZE - 20)
4821 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4822 }
4823 #endif
4824 kfree(data);
4825 return len + sprintf(buf + len, "\n");
4826 }
4827
4828 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4829 {
4830 int cpu;
4831
4832 for_each_online_cpu(cpu)
4833 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4834 }
4835
4836 #define STAT_ATTR(si, text) \
4837 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4838 { \
4839 return show_stat(s, buf, si); \
4840 } \
4841 static ssize_t text##_store(struct kmem_cache *s, \
4842 const char *buf, size_t length) \
4843 { \
4844 if (buf[0] != '0') \
4845 return -EINVAL; \
4846 clear_stat(s, si); \
4847 return length; \
4848 } \
4849 SLAB_ATTR(text); \
4850
4851 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4852 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4853 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4854 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4855 STAT_ATTR(FREE_FROZEN, free_frozen);
4856 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4857 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4858 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4859 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4860 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4861 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4862 STAT_ATTR(FREE_SLAB, free_slab);
4863 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4864 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4865 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4866 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4867 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4868 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4869 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4870 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4871 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4872 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4873 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4874 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
4875 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
4876 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
4877 #endif
4878
4879 static struct attribute *slab_attrs[] = {
4880 &slab_size_attr.attr,
4881 &object_size_attr.attr,
4882 &objs_per_slab_attr.attr,
4883 &order_attr.attr,
4884 &min_partial_attr.attr,
4885 &cpu_partial_attr.attr,
4886 &objects_attr.attr,
4887 &objects_partial_attr.attr,
4888 &partial_attr.attr,
4889 &cpu_slabs_attr.attr,
4890 &ctor_attr.attr,
4891 &aliases_attr.attr,
4892 &align_attr.attr,
4893 &hwcache_align_attr.attr,
4894 &reclaim_account_attr.attr,
4895 &destroy_by_rcu_attr.attr,
4896 &shrink_attr.attr,
4897 &reserved_attr.attr,
4898 &slabs_cpu_partial_attr.attr,
4899 #ifdef CONFIG_SLUB_DEBUG
4900 &total_objects_attr.attr,
4901 &slabs_attr.attr,
4902 &sanity_checks_attr.attr,
4903 &trace_attr.attr,
4904 &red_zone_attr.attr,
4905 &poison_attr.attr,
4906 &store_user_attr.attr,
4907 &validate_attr.attr,
4908 &alloc_calls_attr.attr,
4909 &free_calls_attr.attr,
4910 #endif
4911 #ifdef CONFIG_ZONE_DMA
4912 &cache_dma_attr.attr,
4913 #endif
4914 #ifdef CONFIG_NUMA
4915 &remote_node_defrag_ratio_attr.attr,
4916 #endif
4917 #ifdef CONFIG_SLUB_STATS
4918 &alloc_fastpath_attr.attr,
4919 &alloc_slowpath_attr.attr,
4920 &free_fastpath_attr.attr,
4921 &free_slowpath_attr.attr,
4922 &free_frozen_attr.attr,
4923 &free_add_partial_attr.attr,
4924 &free_remove_partial_attr.attr,
4925 &alloc_from_partial_attr.attr,
4926 &alloc_slab_attr.attr,
4927 &alloc_refill_attr.attr,
4928 &alloc_node_mismatch_attr.attr,
4929 &free_slab_attr.attr,
4930 &cpuslab_flush_attr.attr,
4931 &deactivate_full_attr.attr,
4932 &deactivate_empty_attr.attr,
4933 &deactivate_to_head_attr.attr,
4934 &deactivate_to_tail_attr.attr,
4935 &deactivate_remote_frees_attr.attr,
4936 &deactivate_bypass_attr.attr,
4937 &order_fallback_attr.attr,
4938 &cmpxchg_double_fail_attr.attr,
4939 &cmpxchg_double_cpu_fail_attr.attr,
4940 &cpu_partial_alloc_attr.attr,
4941 &cpu_partial_free_attr.attr,
4942 &cpu_partial_node_attr.attr,
4943 &cpu_partial_drain_attr.attr,
4944 #endif
4945 #ifdef CONFIG_FAILSLAB
4946 &failslab_attr.attr,
4947 #endif
4948
4949 NULL
4950 };
4951
4952 static struct attribute_group slab_attr_group = {
4953 .attrs = slab_attrs,
4954 };
4955
4956 static ssize_t slab_attr_show(struct kobject *kobj,
4957 struct attribute *attr,
4958 char *buf)
4959 {
4960 struct slab_attribute *attribute;
4961 struct kmem_cache *s;
4962 int err;
4963
4964 attribute = to_slab_attr(attr);
4965 s = to_slab(kobj);
4966
4967 if (!attribute->show)
4968 return -EIO;
4969
4970 err = attribute->show(s, buf);
4971
4972 return err;
4973 }
4974
4975 static ssize_t slab_attr_store(struct kobject *kobj,
4976 struct attribute *attr,
4977 const char *buf, size_t len)
4978 {
4979 struct slab_attribute *attribute;
4980 struct kmem_cache *s;
4981 int err;
4982
4983 attribute = to_slab_attr(attr);
4984 s = to_slab(kobj);
4985
4986 if (!attribute->store)
4987 return -EIO;
4988
4989 err = attribute->store(s, buf, len);
4990 #ifdef CONFIG_MEMCG_KMEM
4991 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
4992 int i;
4993
4994 mutex_lock(&slab_mutex);
4995 if (s->max_attr_size < len)
4996 s->max_attr_size = len;
4997
4998 /*
4999 * This is a best effort propagation, so this function's return
5000 * value will be determined by the parent cache only. This is
5001 * basically because not all attributes will have a well
5002 * defined semantics for rollbacks - most of the actions will
5003 * have permanent effects.
5004 *
5005 * Returning the error value of any of the children that fail
5006 * is not 100 % defined, in the sense that users seeing the
5007 * error code won't be able to know anything about the state of
5008 * the cache.
5009 *
5010 * Only returning the error code for the parent cache at least
5011 * has well defined semantics. The cache being written to
5012 * directly either failed or succeeded, in which case we loop
5013 * through the descendants with best-effort propagation.
5014 */
5015 for_each_memcg_cache_index(i) {
5016 struct kmem_cache *c = cache_from_memcg_idx(s, i);
5017 if (c)
5018 attribute->store(c, buf, len);
5019 }
5020 mutex_unlock(&slab_mutex);
5021 }
5022 #endif
5023 return err;
5024 }
5025
5026 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5027 {
5028 #ifdef CONFIG_MEMCG_KMEM
5029 int i;
5030 char *buffer = NULL;
5031 struct kmem_cache *root_cache;
5032
5033 if (is_root_cache(s))
5034 return;
5035
5036 root_cache = s->memcg_params->root_cache;
5037
5038 /*
5039 * This mean this cache had no attribute written. Therefore, no point
5040 * in copying default values around
5041 */
5042 if (!root_cache->max_attr_size)
5043 return;
5044
5045 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5046 char mbuf[64];
5047 char *buf;
5048 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5049
5050 if (!attr || !attr->store || !attr->show)
5051 continue;
5052
5053 /*
5054 * It is really bad that we have to allocate here, so we will
5055 * do it only as a fallback. If we actually allocate, though,
5056 * we can just use the allocated buffer until the end.
5057 *
5058 * Most of the slub attributes will tend to be very small in
5059 * size, but sysfs allows buffers up to a page, so they can
5060 * theoretically happen.
5061 */
5062 if (buffer)
5063 buf = buffer;
5064 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5065 buf = mbuf;
5066 else {
5067 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5068 if (WARN_ON(!buffer))
5069 continue;
5070 buf = buffer;
5071 }
5072
5073 attr->show(root_cache, buf);
5074 attr->store(s, buf, strlen(buf));
5075 }
5076
5077 if (buffer)
5078 free_page((unsigned long)buffer);
5079 #endif
5080 }
5081
5082 static void kmem_cache_release(struct kobject *k)
5083 {
5084 slab_kmem_cache_release(to_slab(k));
5085 }
5086
5087 static const struct sysfs_ops slab_sysfs_ops = {
5088 .show = slab_attr_show,
5089 .store = slab_attr_store,
5090 };
5091
5092 static struct kobj_type slab_ktype = {
5093 .sysfs_ops = &slab_sysfs_ops,
5094 .release = kmem_cache_release,
5095 };
5096
5097 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5098 {
5099 struct kobj_type *ktype = get_ktype(kobj);
5100
5101 if (ktype == &slab_ktype)
5102 return 1;
5103 return 0;
5104 }
5105
5106 static const struct kset_uevent_ops slab_uevent_ops = {
5107 .filter = uevent_filter,
5108 };
5109
5110 static struct kset *slab_kset;
5111
5112 static inline struct kset *cache_kset(struct kmem_cache *s)
5113 {
5114 #ifdef CONFIG_MEMCG_KMEM
5115 if (!is_root_cache(s))
5116 return s->memcg_params->root_cache->memcg_kset;
5117 #endif
5118 return slab_kset;
5119 }
5120
5121 #define ID_STR_LENGTH 64
5122
5123 /* Create a unique string id for a slab cache:
5124 *
5125 * Format :[flags-]size
5126 */
5127 static char *create_unique_id(struct kmem_cache *s)
5128 {
5129 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5130 char *p = name;
5131
5132 BUG_ON(!name);
5133
5134 *p++ = ':';
5135 /*
5136 * First flags affecting slabcache operations. We will only
5137 * get here for aliasable slabs so we do not need to support
5138 * too many flags. The flags here must cover all flags that
5139 * are matched during merging to guarantee that the id is
5140 * unique.
5141 */
5142 if (s->flags & SLAB_CACHE_DMA)
5143 *p++ = 'd';
5144 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5145 *p++ = 'a';
5146 if (s->flags & SLAB_DEBUG_FREE)
5147 *p++ = 'F';
5148 if (!(s->flags & SLAB_NOTRACK))
5149 *p++ = 't';
5150 if (p != name + 1)
5151 *p++ = '-';
5152 p += sprintf(p, "%07d", s->size);
5153
5154 BUG_ON(p > name + ID_STR_LENGTH - 1);
5155 return name;
5156 }
5157
5158 static int sysfs_slab_add(struct kmem_cache *s)
5159 {
5160 int err;
5161 const char *name;
5162 int unmergeable = slab_unmergeable(s);
5163
5164 if (unmergeable) {
5165 /*
5166 * Slabcache can never be merged so we can use the name proper.
5167 * This is typically the case for debug situations. In that
5168 * case we can catch duplicate names easily.
5169 */
5170 sysfs_remove_link(&slab_kset->kobj, s->name);
5171 name = s->name;
5172 } else {
5173 /*
5174 * Create a unique name for the slab as a target
5175 * for the symlinks.
5176 */
5177 name = create_unique_id(s);
5178 }
5179
5180 s->kobj.kset = cache_kset(s);
5181 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5182 if (err)
5183 goto out_put_kobj;
5184
5185 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5186 if (err)
5187 goto out_del_kobj;
5188
5189 #ifdef CONFIG_MEMCG_KMEM
5190 if (is_root_cache(s)) {
5191 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5192 if (!s->memcg_kset) {
5193 err = -ENOMEM;
5194 goto out_del_kobj;
5195 }
5196 }
5197 #endif
5198
5199 kobject_uevent(&s->kobj, KOBJ_ADD);
5200 if (!unmergeable) {
5201 /* Setup first alias */
5202 sysfs_slab_alias(s, s->name);
5203 }
5204 out:
5205 if (!unmergeable)
5206 kfree(name);
5207 return err;
5208 out_del_kobj:
5209 kobject_del(&s->kobj);
5210 out_put_kobj:
5211 kobject_put(&s->kobj);
5212 goto out;
5213 }
5214
5215 void sysfs_slab_remove(struct kmem_cache *s)
5216 {
5217 if (slab_state < FULL)
5218 /*
5219 * Sysfs has not been setup yet so no need to remove the
5220 * cache from sysfs.
5221 */
5222 return;
5223
5224 #ifdef CONFIG_MEMCG_KMEM
5225 kset_unregister(s->memcg_kset);
5226 #endif
5227 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5228 kobject_del(&s->kobj);
5229 kobject_put(&s->kobj);
5230 }
5231
5232 /*
5233 * Need to buffer aliases during bootup until sysfs becomes
5234 * available lest we lose that information.
5235 */
5236 struct saved_alias {
5237 struct kmem_cache *s;
5238 const char *name;
5239 struct saved_alias *next;
5240 };
5241
5242 static struct saved_alias *alias_list;
5243
5244 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5245 {
5246 struct saved_alias *al;
5247
5248 if (slab_state == FULL) {
5249 /*
5250 * If we have a leftover link then remove it.
5251 */
5252 sysfs_remove_link(&slab_kset->kobj, name);
5253 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5254 }
5255
5256 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5257 if (!al)
5258 return -ENOMEM;
5259
5260 al->s = s;
5261 al->name = name;
5262 al->next = alias_list;
5263 alias_list = al;
5264 return 0;
5265 }
5266
5267 static int __init slab_sysfs_init(void)
5268 {
5269 struct kmem_cache *s;
5270 int err;
5271
5272 mutex_lock(&slab_mutex);
5273
5274 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5275 if (!slab_kset) {
5276 mutex_unlock(&slab_mutex);
5277 pr_err("Cannot register slab subsystem.\n");
5278 return -ENOSYS;
5279 }
5280
5281 slab_state = FULL;
5282
5283 list_for_each_entry(s, &slab_caches, list) {
5284 err = sysfs_slab_add(s);
5285 if (err)
5286 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5287 s->name);
5288 }
5289
5290 while (alias_list) {
5291 struct saved_alias *al = alias_list;
5292
5293 alias_list = alias_list->next;
5294 err = sysfs_slab_alias(al->s, al->name);
5295 if (err)
5296 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5297 al->name);
5298 kfree(al);
5299 }
5300
5301 mutex_unlock(&slab_mutex);
5302 resiliency_test();
5303 return 0;
5304 }
5305
5306 __initcall(slab_sysfs_init);
5307 #endif /* CONFIG_SYSFS */
5308
5309 /*
5310 * The /proc/slabinfo ABI
5311 */
5312 #ifdef CONFIG_SLABINFO
5313 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5314 {
5315 unsigned long nr_slabs = 0;
5316 unsigned long nr_objs = 0;
5317 unsigned long nr_free = 0;
5318 int node;
5319 struct kmem_cache_node *n;
5320
5321 for_each_kmem_cache_node(s, node, n) {
5322 nr_slabs += node_nr_slabs(n);
5323 nr_objs += node_nr_objs(n);
5324 nr_free += count_partial(n, count_free);
5325 }
5326
5327 sinfo->active_objs = nr_objs - nr_free;
5328 sinfo->num_objs = nr_objs;
5329 sinfo->active_slabs = nr_slabs;
5330 sinfo->num_slabs = nr_slabs;
5331 sinfo->objects_per_slab = oo_objects(s->oo);
5332 sinfo->cache_order = oo_order(s->oo);
5333 }
5334
5335 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5336 {
5337 }
5338
5339 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5340 size_t count, loff_t *ppos)
5341 {
5342 return -EIO;
5343 }
5344 #endif /* CONFIG_SLABINFO */
This page took 0.13116 seconds and 4 git commands to generate.