Merge branch 'dma_mb'
[deliverable/linux.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
10 */
11
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include "slab.h"
20 #include <linux/proc_fs.h>
21 #include <linux/notifier.h>
22 #include <linux/seq_file.h>
23 #include <linux/kmemcheck.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/memory.h>
31 #include <linux/math64.h>
32 #include <linux/fault-inject.h>
33 #include <linux/stacktrace.h>
34 #include <linux/prefetch.h>
35 #include <linux/memcontrol.h>
36
37 #include <trace/events/kmem.h>
38
39 #include "internal.h"
40
41 /*
42 * Lock order:
43 * 1. slab_mutex (Global Mutex)
44 * 2. node->list_lock
45 * 3. slab_lock(page) (Only on some arches and for debugging)
46 *
47 * slab_mutex
48 *
49 * The role of the slab_mutex is to protect the list of all the slabs
50 * and to synchronize major metadata changes to slab cache structures.
51 *
52 * The slab_lock is only used for debugging and on arches that do not
53 * have the ability to do a cmpxchg_double. It only protects the second
54 * double word in the page struct. Meaning
55 * A. page->freelist -> List of object free in a page
56 * B. page->counters -> Counters of objects
57 * C. page->frozen -> frozen state
58 *
59 * If a slab is frozen then it is exempt from list management. It is not
60 * on any list. The processor that froze the slab is the one who can
61 * perform list operations on the page. Other processors may put objects
62 * onto the freelist but the processor that froze the slab is the only
63 * one that can retrieve the objects from the page's freelist.
64 *
65 * The list_lock protects the partial and full list on each node and
66 * the partial slab counter. If taken then no new slabs may be added or
67 * removed from the lists nor make the number of partial slabs be modified.
68 * (Note that the total number of slabs is an atomic value that may be
69 * modified without taking the list lock).
70 *
71 * The list_lock is a centralized lock and thus we avoid taking it as
72 * much as possible. As long as SLUB does not have to handle partial
73 * slabs, operations can continue without any centralized lock. F.e.
74 * allocating a long series of objects that fill up slabs does not require
75 * the list lock.
76 * Interrupts are disabled during allocation and deallocation in order to
77 * make the slab allocator safe to use in the context of an irq. In addition
78 * interrupts are disabled to ensure that the processor does not change
79 * while handling per_cpu slabs, due to kernel preemption.
80 *
81 * SLUB assigns one slab for allocation to each processor.
82 * Allocations only occur from these slabs called cpu slabs.
83 *
84 * Slabs with free elements are kept on a partial list and during regular
85 * operations no list for full slabs is used. If an object in a full slab is
86 * freed then the slab will show up again on the partial lists.
87 * We track full slabs for debugging purposes though because otherwise we
88 * cannot scan all objects.
89 *
90 * Slabs are freed when they become empty. Teardown and setup is
91 * minimal so we rely on the page allocators per cpu caches for
92 * fast frees and allocs.
93 *
94 * Overloading of page flags that are otherwise used for LRU management.
95 *
96 * PageActive The slab is frozen and exempt from list processing.
97 * This means that the slab is dedicated to a purpose
98 * such as satisfying allocations for a specific
99 * processor. Objects may be freed in the slab while
100 * it is frozen but slab_free will then skip the usual
101 * list operations. It is up to the processor holding
102 * the slab to integrate the slab into the slab lists
103 * when the slab is no longer needed.
104 *
105 * One use of this flag is to mark slabs that are
106 * used for allocations. Then such a slab becomes a cpu
107 * slab. The cpu slab may be equipped with an additional
108 * freelist that allows lockless access to
109 * free objects in addition to the regular freelist
110 * that requires the slab lock.
111 *
112 * PageError Slab requires special handling due to debug
113 * options set. This moves slab handling out of
114 * the fast path and disables lockless freelists.
115 */
116
117 static inline int kmem_cache_debug(struct kmem_cache *s)
118 {
119 #ifdef CONFIG_SLUB_DEBUG
120 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
121 #else
122 return 0;
123 #endif
124 }
125
126 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
127 {
128 #ifdef CONFIG_SLUB_CPU_PARTIAL
129 return !kmem_cache_debug(s);
130 #else
131 return false;
132 #endif
133 }
134
135 /*
136 * Issues still to be resolved:
137 *
138 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
139 *
140 * - Variable sizing of the per node arrays
141 */
142
143 /* Enable to test recovery from slab corruption on boot */
144 #undef SLUB_RESILIENCY_TEST
145
146 /* Enable to log cmpxchg failures */
147 #undef SLUB_DEBUG_CMPXCHG
148
149 /*
150 * Mininum number of partial slabs. These will be left on the partial
151 * lists even if they are empty. kmem_cache_shrink may reclaim them.
152 */
153 #define MIN_PARTIAL 5
154
155 /*
156 * Maximum number of desirable partial slabs.
157 * The existence of more partial slabs makes kmem_cache_shrink
158 * sort the partial list by the number of objects in use.
159 */
160 #define MAX_PARTIAL 10
161
162 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
163 SLAB_POISON | SLAB_STORE_USER)
164
165 /*
166 * Debugging flags that require metadata to be stored in the slab. These get
167 * disabled when slub_debug=O is used and a cache's min order increases with
168 * metadata.
169 */
170 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
171
172 #define OO_SHIFT 16
173 #define OO_MASK ((1 << OO_SHIFT) - 1)
174 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
175
176 /* Internal SLUB flags */
177 #define __OBJECT_POISON 0x80000000UL /* Poison object */
178 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
179
180 #ifdef CONFIG_SMP
181 static struct notifier_block slab_notifier;
182 #endif
183
184 /*
185 * Tracking user of a slab.
186 */
187 #define TRACK_ADDRS_COUNT 16
188 struct track {
189 unsigned long addr; /* Called from address */
190 #ifdef CONFIG_STACKTRACE
191 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
192 #endif
193 int cpu; /* Was running on cpu */
194 int pid; /* Pid context */
195 unsigned long when; /* When did the operation occur */
196 };
197
198 enum track_item { TRACK_ALLOC, TRACK_FREE };
199
200 #ifdef CONFIG_SYSFS
201 static int sysfs_slab_add(struct kmem_cache *);
202 static int sysfs_slab_alias(struct kmem_cache *, const char *);
203 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
204 #else
205 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
206 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
207 { return 0; }
208 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
209 #endif
210
211 static inline void stat(const struct kmem_cache *s, enum stat_item si)
212 {
213 #ifdef CONFIG_SLUB_STATS
214 /*
215 * The rmw is racy on a preemptible kernel but this is acceptable, so
216 * avoid this_cpu_add()'s irq-disable overhead.
217 */
218 raw_cpu_inc(s->cpu_slab->stat[si]);
219 #endif
220 }
221
222 /********************************************************************
223 * Core slab cache functions
224 *******************************************************************/
225
226 /* Verify that a pointer has an address that is valid within a slab page */
227 static inline int check_valid_pointer(struct kmem_cache *s,
228 struct page *page, const void *object)
229 {
230 void *base;
231
232 if (!object)
233 return 1;
234
235 base = page_address(page);
236 if (object < base || object >= base + page->objects * s->size ||
237 (object - base) % s->size) {
238 return 0;
239 }
240
241 return 1;
242 }
243
244 static inline void *get_freepointer(struct kmem_cache *s, void *object)
245 {
246 return *(void **)(object + s->offset);
247 }
248
249 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
250 {
251 prefetch(object + s->offset);
252 }
253
254 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
255 {
256 void *p;
257
258 #ifdef CONFIG_DEBUG_PAGEALLOC
259 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
260 #else
261 p = get_freepointer(s, object);
262 #endif
263 return p;
264 }
265
266 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
267 {
268 *(void **)(object + s->offset) = fp;
269 }
270
271 /* Loop over all objects in a slab */
272 #define for_each_object(__p, __s, __addr, __objects) \
273 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
274 __p += (__s)->size)
275
276 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
277 for (__p = (__addr), __idx = 1; __idx <= __objects;\
278 __p += (__s)->size, __idx++)
279
280 /* Determine object index from a given position */
281 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
282 {
283 return (p - addr) / s->size;
284 }
285
286 static inline size_t slab_ksize(const struct kmem_cache *s)
287 {
288 #ifdef CONFIG_SLUB_DEBUG
289 /*
290 * Debugging requires use of the padding between object
291 * and whatever may come after it.
292 */
293 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
294 return s->object_size;
295
296 #endif
297 /*
298 * If we have the need to store the freelist pointer
299 * back there or track user information then we can
300 * only use the space before that information.
301 */
302 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
303 return s->inuse;
304 /*
305 * Else we can use all the padding etc for the allocation
306 */
307 return s->size;
308 }
309
310 static inline int order_objects(int order, unsigned long size, int reserved)
311 {
312 return ((PAGE_SIZE << order) - reserved) / size;
313 }
314
315 static inline struct kmem_cache_order_objects oo_make(int order,
316 unsigned long size, int reserved)
317 {
318 struct kmem_cache_order_objects x = {
319 (order << OO_SHIFT) + order_objects(order, size, reserved)
320 };
321
322 return x;
323 }
324
325 static inline int oo_order(struct kmem_cache_order_objects x)
326 {
327 return x.x >> OO_SHIFT;
328 }
329
330 static inline int oo_objects(struct kmem_cache_order_objects x)
331 {
332 return x.x & OO_MASK;
333 }
334
335 /*
336 * Per slab locking using the pagelock
337 */
338 static __always_inline void slab_lock(struct page *page)
339 {
340 bit_spin_lock(PG_locked, &page->flags);
341 }
342
343 static __always_inline void slab_unlock(struct page *page)
344 {
345 __bit_spin_unlock(PG_locked, &page->flags);
346 }
347
348 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
349 {
350 struct page tmp;
351 tmp.counters = counters_new;
352 /*
353 * page->counters can cover frozen/inuse/objects as well
354 * as page->_count. If we assign to ->counters directly
355 * we run the risk of losing updates to page->_count, so
356 * be careful and only assign to the fields we need.
357 */
358 page->frozen = tmp.frozen;
359 page->inuse = tmp.inuse;
360 page->objects = tmp.objects;
361 }
362
363 /* Interrupts must be disabled (for the fallback code to work right) */
364 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
365 void *freelist_old, unsigned long counters_old,
366 void *freelist_new, unsigned long counters_new,
367 const char *n)
368 {
369 VM_BUG_ON(!irqs_disabled());
370 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
371 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
372 if (s->flags & __CMPXCHG_DOUBLE) {
373 if (cmpxchg_double(&page->freelist, &page->counters,
374 freelist_old, counters_old,
375 freelist_new, counters_new))
376 return 1;
377 } else
378 #endif
379 {
380 slab_lock(page);
381 if (page->freelist == freelist_old &&
382 page->counters == counters_old) {
383 page->freelist = freelist_new;
384 set_page_slub_counters(page, counters_new);
385 slab_unlock(page);
386 return 1;
387 }
388 slab_unlock(page);
389 }
390
391 cpu_relax();
392 stat(s, CMPXCHG_DOUBLE_FAIL);
393
394 #ifdef SLUB_DEBUG_CMPXCHG
395 pr_info("%s %s: cmpxchg double redo ", n, s->name);
396 #endif
397
398 return 0;
399 }
400
401 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
402 void *freelist_old, unsigned long counters_old,
403 void *freelist_new, unsigned long counters_new,
404 const char *n)
405 {
406 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
407 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
408 if (s->flags & __CMPXCHG_DOUBLE) {
409 if (cmpxchg_double(&page->freelist, &page->counters,
410 freelist_old, counters_old,
411 freelist_new, counters_new))
412 return 1;
413 } else
414 #endif
415 {
416 unsigned long flags;
417
418 local_irq_save(flags);
419 slab_lock(page);
420 if (page->freelist == freelist_old &&
421 page->counters == counters_old) {
422 page->freelist = freelist_new;
423 set_page_slub_counters(page, counters_new);
424 slab_unlock(page);
425 local_irq_restore(flags);
426 return 1;
427 }
428 slab_unlock(page);
429 local_irq_restore(flags);
430 }
431
432 cpu_relax();
433 stat(s, CMPXCHG_DOUBLE_FAIL);
434
435 #ifdef SLUB_DEBUG_CMPXCHG
436 pr_info("%s %s: cmpxchg double redo ", n, s->name);
437 #endif
438
439 return 0;
440 }
441
442 #ifdef CONFIG_SLUB_DEBUG
443 /*
444 * Determine a map of object in use on a page.
445 *
446 * Node listlock must be held to guarantee that the page does
447 * not vanish from under us.
448 */
449 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
450 {
451 void *p;
452 void *addr = page_address(page);
453
454 for (p = page->freelist; p; p = get_freepointer(s, p))
455 set_bit(slab_index(p, s, addr), map);
456 }
457
458 /*
459 * Debug settings:
460 */
461 #ifdef CONFIG_SLUB_DEBUG_ON
462 static int slub_debug = DEBUG_DEFAULT_FLAGS;
463 #else
464 static int slub_debug;
465 #endif
466
467 static char *slub_debug_slabs;
468 static int disable_higher_order_debug;
469
470 /*
471 * Object debugging
472 */
473 static void print_section(char *text, u8 *addr, unsigned int length)
474 {
475 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
476 length, 1);
477 }
478
479 static struct track *get_track(struct kmem_cache *s, void *object,
480 enum track_item alloc)
481 {
482 struct track *p;
483
484 if (s->offset)
485 p = object + s->offset + sizeof(void *);
486 else
487 p = object + s->inuse;
488
489 return p + alloc;
490 }
491
492 static void set_track(struct kmem_cache *s, void *object,
493 enum track_item alloc, unsigned long addr)
494 {
495 struct track *p = get_track(s, object, alloc);
496
497 if (addr) {
498 #ifdef CONFIG_STACKTRACE
499 struct stack_trace trace;
500 int i;
501
502 trace.nr_entries = 0;
503 trace.max_entries = TRACK_ADDRS_COUNT;
504 trace.entries = p->addrs;
505 trace.skip = 3;
506 save_stack_trace(&trace);
507
508 /* See rant in lockdep.c */
509 if (trace.nr_entries != 0 &&
510 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
511 trace.nr_entries--;
512
513 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
514 p->addrs[i] = 0;
515 #endif
516 p->addr = addr;
517 p->cpu = smp_processor_id();
518 p->pid = current->pid;
519 p->when = jiffies;
520 } else
521 memset(p, 0, sizeof(struct track));
522 }
523
524 static void init_tracking(struct kmem_cache *s, void *object)
525 {
526 if (!(s->flags & SLAB_STORE_USER))
527 return;
528
529 set_track(s, object, TRACK_FREE, 0UL);
530 set_track(s, object, TRACK_ALLOC, 0UL);
531 }
532
533 static void print_track(const char *s, struct track *t)
534 {
535 if (!t->addr)
536 return;
537
538 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
539 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
540 #ifdef CONFIG_STACKTRACE
541 {
542 int i;
543 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
544 if (t->addrs[i])
545 pr_err("\t%pS\n", (void *)t->addrs[i]);
546 else
547 break;
548 }
549 #endif
550 }
551
552 static void print_tracking(struct kmem_cache *s, void *object)
553 {
554 if (!(s->flags & SLAB_STORE_USER))
555 return;
556
557 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
558 print_track("Freed", get_track(s, object, TRACK_FREE));
559 }
560
561 static void print_page_info(struct page *page)
562 {
563 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
564 page, page->objects, page->inuse, page->freelist, page->flags);
565
566 }
567
568 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
569 {
570 struct va_format vaf;
571 va_list args;
572
573 va_start(args, fmt);
574 vaf.fmt = fmt;
575 vaf.va = &args;
576 pr_err("=============================================================================\n");
577 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
578 pr_err("-----------------------------------------------------------------------------\n\n");
579
580 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
581 va_end(args);
582 }
583
584 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
585 {
586 struct va_format vaf;
587 va_list args;
588
589 va_start(args, fmt);
590 vaf.fmt = fmt;
591 vaf.va = &args;
592 pr_err("FIX %s: %pV\n", s->name, &vaf);
593 va_end(args);
594 }
595
596 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
597 {
598 unsigned int off; /* Offset of last byte */
599 u8 *addr = page_address(page);
600
601 print_tracking(s, p);
602
603 print_page_info(page);
604
605 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
606 p, p - addr, get_freepointer(s, p));
607
608 if (p > addr + 16)
609 print_section("Bytes b4 ", p - 16, 16);
610
611 print_section("Object ", p, min_t(unsigned long, s->object_size,
612 PAGE_SIZE));
613 if (s->flags & SLAB_RED_ZONE)
614 print_section("Redzone ", p + s->object_size,
615 s->inuse - s->object_size);
616
617 if (s->offset)
618 off = s->offset + sizeof(void *);
619 else
620 off = s->inuse;
621
622 if (s->flags & SLAB_STORE_USER)
623 off += 2 * sizeof(struct track);
624
625 if (off != s->size)
626 /* Beginning of the filler is the free pointer */
627 print_section("Padding ", p + off, s->size - off);
628
629 dump_stack();
630 }
631
632 static void object_err(struct kmem_cache *s, struct page *page,
633 u8 *object, char *reason)
634 {
635 slab_bug(s, "%s", reason);
636 print_trailer(s, page, object);
637 }
638
639 static void slab_err(struct kmem_cache *s, struct page *page,
640 const char *fmt, ...)
641 {
642 va_list args;
643 char buf[100];
644
645 va_start(args, fmt);
646 vsnprintf(buf, sizeof(buf), fmt, args);
647 va_end(args);
648 slab_bug(s, "%s", buf);
649 print_page_info(page);
650 dump_stack();
651 }
652
653 static void init_object(struct kmem_cache *s, void *object, u8 val)
654 {
655 u8 *p = object;
656
657 if (s->flags & __OBJECT_POISON) {
658 memset(p, POISON_FREE, s->object_size - 1);
659 p[s->object_size - 1] = POISON_END;
660 }
661
662 if (s->flags & SLAB_RED_ZONE)
663 memset(p + s->object_size, val, s->inuse - s->object_size);
664 }
665
666 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
667 void *from, void *to)
668 {
669 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
670 memset(from, data, to - from);
671 }
672
673 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
674 u8 *object, char *what,
675 u8 *start, unsigned int value, unsigned int bytes)
676 {
677 u8 *fault;
678 u8 *end;
679
680 fault = memchr_inv(start, value, bytes);
681 if (!fault)
682 return 1;
683
684 end = start + bytes;
685 while (end > fault && end[-1] == value)
686 end--;
687
688 slab_bug(s, "%s overwritten", what);
689 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
690 fault, end - 1, fault[0], value);
691 print_trailer(s, page, object);
692
693 restore_bytes(s, what, value, fault, end);
694 return 0;
695 }
696
697 /*
698 * Object layout:
699 *
700 * object address
701 * Bytes of the object to be managed.
702 * If the freepointer may overlay the object then the free
703 * pointer is the first word of the object.
704 *
705 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
706 * 0xa5 (POISON_END)
707 *
708 * object + s->object_size
709 * Padding to reach word boundary. This is also used for Redzoning.
710 * Padding is extended by another word if Redzoning is enabled and
711 * object_size == inuse.
712 *
713 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
714 * 0xcc (RED_ACTIVE) for objects in use.
715 *
716 * object + s->inuse
717 * Meta data starts here.
718 *
719 * A. Free pointer (if we cannot overwrite object on free)
720 * B. Tracking data for SLAB_STORE_USER
721 * C. Padding to reach required alignment boundary or at mininum
722 * one word if debugging is on to be able to detect writes
723 * before the word boundary.
724 *
725 * Padding is done using 0x5a (POISON_INUSE)
726 *
727 * object + s->size
728 * Nothing is used beyond s->size.
729 *
730 * If slabcaches are merged then the object_size and inuse boundaries are mostly
731 * ignored. And therefore no slab options that rely on these boundaries
732 * may be used with merged slabcaches.
733 */
734
735 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
736 {
737 unsigned long off = s->inuse; /* The end of info */
738
739 if (s->offset)
740 /* Freepointer is placed after the object. */
741 off += sizeof(void *);
742
743 if (s->flags & SLAB_STORE_USER)
744 /* We also have user information there */
745 off += 2 * sizeof(struct track);
746
747 if (s->size == off)
748 return 1;
749
750 return check_bytes_and_report(s, page, p, "Object padding",
751 p + off, POISON_INUSE, s->size - off);
752 }
753
754 /* Check the pad bytes at the end of a slab page */
755 static int slab_pad_check(struct kmem_cache *s, struct page *page)
756 {
757 u8 *start;
758 u8 *fault;
759 u8 *end;
760 int length;
761 int remainder;
762
763 if (!(s->flags & SLAB_POISON))
764 return 1;
765
766 start = page_address(page);
767 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
768 end = start + length;
769 remainder = length % s->size;
770 if (!remainder)
771 return 1;
772
773 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
774 if (!fault)
775 return 1;
776 while (end > fault && end[-1] == POISON_INUSE)
777 end--;
778
779 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
780 print_section("Padding ", end - remainder, remainder);
781
782 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
783 return 0;
784 }
785
786 static int check_object(struct kmem_cache *s, struct page *page,
787 void *object, u8 val)
788 {
789 u8 *p = object;
790 u8 *endobject = object + s->object_size;
791
792 if (s->flags & SLAB_RED_ZONE) {
793 if (!check_bytes_and_report(s, page, object, "Redzone",
794 endobject, val, s->inuse - s->object_size))
795 return 0;
796 } else {
797 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
798 check_bytes_and_report(s, page, p, "Alignment padding",
799 endobject, POISON_INUSE,
800 s->inuse - s->object_size);
801 }
802 }
803
804 if (s->flags & SLAB_POISON) {
805 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
806 (!check_bytes_and_report(s, page, p, "Poison", p,
807 POISON_FREE, s->object_size - 1) ||
808 !check_bytes_and_report(s, page, p, "Poison",
809 p + s->object_size - 1, POISON_END, 1)))
810 return 0;
811 /*
812 * check_pad_bytes cleans up on its own.
813 */
814 check_pad_bytes(s, page, p);
815 }
816
817 if (!s->offset && val == SLUB_RED_ACTIVE)
818 /*
819 * Object and freepointer overlap. Cannot check
820 * freepointer while object is allocated.
821 */
822 return 1;
823
824 /* Check free pointer validity */
825 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
826 object_err(s, page, p, "Freepointer corrupt");
827 /*
828 * No choice but to zap it and thus lose the remainder
829 * of the free objects in this slab. May cause
830 * another error because the object count is now wrong.
831 */
832 set_freepointer(s, p, NULL);
833 return 0;
834 }
835 return 1;
836 }
837
838 static int check_slab(struct kmem_cache *s, struct page *page)
839 {
840 int maxobj;
841
842 VM_BUG_ON(!irqs_disabled());
843
844 if (!PageSlab(page)) {
845 slab_err(s, page, "Not a valid slab page");
846 return 0;
847 }
848
849 maxobj = order_objects(compound_order(page), s->size, s->reserved);
850 if (page->objects > maxobj) {
851 slab_err(s, page, "objects %u > max %u",
852 page->objects, maxobj);
853 return 0;
854 }
855 if (page->inuse > page->objects) {
856 slab_err(s, page, "inuse %u > max %u",
857 page->inuse, page->objects);
858 return 0;
859 }
860 /* Slab_pad_check fixes things up after itself */
861 slab_pad_check(s, page);
862 return 1;
863 }
864
865 /*
866 * Determine if a certain object on a page is on the freelist. Must hold the
867 * slab lock to guarantee that the chains are in a consistent state.
868 */
869 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
870 {
871 int nr = 0;
872 void *fp;
873 void *object = NULL;
874 int max_objects;
875
876 fp = page->freelist;
877 while (fp && nr <= page->objects) {
878 if (fp == search)
879 return 1;
880 if (!check_valid_pointer(s, page, fp)) {
881 if (object) {
882 object_err(s, page, object,
883 "Freechain corrupt");
884 set_freepointer(s, object, NULL);
885 } else {
886 slab_err(s, page, "Freepointer corrupt");
887 page->freelist = NULL;
888 page->inuse = page->objects;
889 slab_fix(s, "Freelist cleared");
890 return 0;
891 }
892 break;
893 }
894 object = fp;
895 fp = get_freepointer(s, object);
896 nr++;
897 }
898
899 max_objects = order_objects(compound_order(page), s->size, s->reserved);
900 if (max_objects > MAX_OBJS_PER_PAGE)
901 max_objects = MAX_OBJS_PER_PAGE;
902
903 if (page->objects != max_objects) {
904 slab_err(s, page, "Wrong number of objects. Found %d but "
905 "should be %d", page->objects, max_objects);
906 page->objects = max_objects;
907 slab_fix(s, "Number of objects adjusted.");
908 }
909 if (page->inuse != page->objects - nr) {
910 slab_err(s, page, "Wrong object count. Counter is %d but "
911 "counted were %d", page->inuse, page->objects - nr);
912 page->inuse = page->objects - nr;
913 slab_fix(s, "Object count adjusted.");
914 }
915 return search == NULL;
916 }
917
918 static void trace(struct kmem_cache *s, struct page *page, void *object,
919 int alloc)
920 {
921 if (s->flags & SLAB_TRACE) {
922 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
923 s->name,
924 alloc ? "alloc" : "free",
925 object, page->inuse,
926 page->freelist);
927
928 if (!alloc)
929 print_section("Object ", (void *)object,
930 s->object_size);
931
932 dump_stack();
933 }
934 }
935
936 /*
937 * Tracking of fully allocated slabs for debugging purposes.
938 */
939 static void add_full(struct kmem_cache *s,
940 struct kmem_cache_node *n, struct page *page)
941 {
942 if (!(s->flags & SLAB_STORE_USER))
943 return;
944
945 lockdep_assert_held(&n->list_lock);
946 list_add(&page->lru, &n->full);
947 }
948
949 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
950 {
951 if (!(s->flags & SLAB_STORE_USER))
952 return;
953
954 lockdep_assert_held(&n->list_lock);
955 list_del(&page->lru);
956 }
957
958 /* Tracking of the number of slabs for debugging purposes */
959 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
960 {
961 struct kmem_cache_node *n = get_node(s, node);
962
963 return atomic_long_read(&n->nr_slabs);
964 }
965
966 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
967 {
968 return atomic_long_read(&n->nr_slabs);
969 }
970
971 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
972 {
973 struct kmem_cache_node *n = get_node(s, node);
974
975 /*
976 * May be called early in order to allocate a slab for the
977 * kmem_cache_node structure. Solve the chicken-egg
978 * dilemma by deferring the increment of the count during
979 * bootstrap (see early_kmem_cache_node_alloc).
980 */
981 if (likely(n)) {
982 atomic_long_inc(&n->nr_slabs);
983 atomic_long_add(objects, &n->total_objects);
984 }
985 }
986 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
987 {
988 struct kmem_cache_node *n = get_node(s, node);
989
990 atomic_long_dec(&n->nr_slabs);
991 atomic_long_sub(objects, &n->total_objects);
992 }
993
994 /* Object debug checks for alloc/free paths */
995 static void setup_object_debug(struct kmem_cache *s, struct page *page,
996 void *object)
997 {
998 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
999 return;
1000
1001 init_object(s, object, SLUB_RED_INACTIVE);
1002 init_tracking(s, object);
1003 }
1004
1005 static noinline int alloc_debug_processing(struct kmem_cache *s,
1006 struct page *page,
1007 void *object, unsigned long addr)
1008 {
1009 if (!check_slab(s, page))
1010 goto bad;
1011
1012 if (!check_valid_pointer(s, page, object)) {
1013 object_err(s, page, object, "Freelist Pointer check fails");
1014 goto bad;
1015 }
1016
1017 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1018 goto bad;
1019
1020 /* Success perform special debug activities for allocs */
1021 if (s->flags & SLAB_STORE_USER)
1022 set_track(s, object, TRACK_ALLOC, addr);
1023 trace(s, page, object, 1);
1024 init_object(s, object, SLUB_RED_ACTIVE);
1025 return 1;
1026
1027 bad:
1028 if (PageSlab(page)) {
1029 /*
1030 * If this is a slab page then lets do the best we can
1031 * to avoid issues in the future. Marking all objects
1032 * as used avoids touching the remaining objects.
1033 */
1034 slab_fix(s, "Marking all objects used");
1035 page->inuse = page->objects;
1036 page->freelist = NULL;
1037 }
1038 return 0;
1039 }
1040
1041 static noinline struct kmem_cache_node *free_debug_processing(
1042 struct kmem_cache *s, struct page *page, void *object,
1043 unsigned long addr, unsigned long *flags)
1044 {
1045 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1046
1047 spin_lock_irqsave(&n->list_lock, *flags);
1048 slab_lock(page);
1049
1050 if (!check_slab(s, page))
1051 goto fail;
1052
1053 if (!check_valid_pointer(s, page, object)) {
1054 slab_err(s, page, "Invalid object pointer 0x%p", object);
1055 goto fail;
1056 }
1057
1058 if (on_freelist(s, page, object)) {
1059 object_err(s, page, object, "Object already free");
1060 goto fail;
1061 }
1062
1063 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1064 goto out;
1065
1066 if (unlikely(s != page->slab_cache)) {
1067 if (!PageSlab(page)) {
1068 slab_err(s, page, "Attempt to free object(0x%p) "
1069 "outside of slab", object);
1070 } else if (!page->slab_cache) {
1071 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1072 object);
1073 dump_stack();
1074 } else
1075 object_err(s, page, object,
1076 "page slab pointer corrupt.");
1077 goto fail;
1078 }
1079
1080 if (s->flags & SLAB_STORE_USER)
1081 set_track(s, object, TRACK_FREE, addr);
1082 trace(s, page, object, 0);
1083 init_object(s, object, SLUB_RED_INACTIVE);
1084 out:
1085 slab_unlock(page);
1086 /*
1087 * Keep node_lock to preserve integrity
1088 * until the object is actually freed
1089 */
1090 return n;
1091
1092 fail:
1093 slab_unlock(page);
1094 spin_unlock_irqrestore(&n->list_lock, *flags);
1095 slab_fix(s, "Object at 0x%p not freed", object);
1096 return NULL;
1097 }
1098
1099 static int __init setup_slub_debug(char *str)
1100 {
1101 slub_debug = DEBUG_DEFAULT_FLAGS;
1102 if (*str++ != '=' || !*str)
1103 /*
1104 * No options specified. Switch on full debugging.
1105 */
1106 goto out;
1107
1108 if (*str == ',')
1109 /*
1110 * No options but restriction on slabs. This means full
1111 * debugging for slabs matching a pattern.
1112 */
1113 goto check_slabs;
1114
1115 if (tolower(*str) == 'o') {
1116 /*
1117 * Avoid enabling debugging on caches if its minimum order
1118 * would increase as a result.
1119 */
1120 disable_higher_order_debug = 1;
1121 goto out;
1122 }
1123
1124 slub_debug = 0;
1125 if (*str == '-')
1126 /*
1127 * Switch off all debugging measures.
1128 */
1129 goto out;
1130
1131 /*
1132 * Determine which debug features should be switched on
1133 */
1134 for (; *str && *str != ','; str++) {
1135 switch (tolower(*str)) {
1136 case 'f':
1137 slub_debug |= SLAB_DEBUG_FREE;
1138 break;
1139 case 'z':
1140 slub_debug |= SLAB_RED_ZONE;
1141 break;
1142 case 'p':
1143 slub_debug |= SLAB_POISON;
1144 break;
1145 case 'u':
1146 slub_debug |= SLAB_STORE_USER;
1147 break;
1148 case 't':
1149 slub_debug |= SLAB_TRACE;
1150 break;
1151 case 'a':
1152 slub_debug |= SLAB_FAILSLAB;
1153 break;
1154 default:
1155 pr_err("slub_debug option '%c' unknown. skipped\n",
1156 *str);
1157 }
1158 }
1159
1160 check_slabs:
1161 if (*str == ',')
1162 slub_debug_slabs = str + 1;
1163 out:
1164 return 1;
1165 }
1166
1167 __setup("slub_debug", setup_slub_debug);
1168
1169 unsigned long kmem_cache_flags(unsigned long object_size,
1170 unsigned long flags, const char *name,
1171 void (*ctor)(void *))
1172 {
1173 /*
1174 * Enable debugging if selected on the kernel commandline.
1175 */
1176 if (slub_debug && (!slub_debug_slabs || (name &&
1177 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1178 flags |= slub_debug;
1179
1180 return flags;
1181 }
1182 #else
1183 static inline void setup_object_debug(struct kmem_cache *s,
1184 struct page *page, void *object) {}
1185
1186 static inline int alloc_debug_processing(struct kmem_cache *s,
1187 struct page *page, void *object, unsigned long addr) { return 0; }
1188
1189 static inline struct kmem_cache_node *free_debug_processing(
1190 struct kmem_cache *s, struct page *page, void *object,
1191 unsigned long addr, unsigned long *flags) { return NULL; }
1192
1193 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1194 { return 1; }
1195 static inline int check_object(struct kmem_cache *s, struct page *page,
1196 void *object, u8 val) { return 1; }
1197 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1198 struct page *page) {}
1199 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1200 struct page *page) {}
1201 unsigned long kmem_cache_flags(unsigned long object_size,
1202 unsigned long flags, const char *name,
1203 void (*ctor)(void *))
1204 {
1205 return flags;
1206 }
1207 #define slub_debug 0
1208
1209 #define disable_higher_order_debug 0
1210
1211 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1212 { return 0; }
1213 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1214 { return 0; }
1215 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1216 int objects) {}
1217 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1218 int objects) {}
1219
1220 #endif /* CONFIG_SLUB_DEBUG */
1221
1222 /*
1223 * Hooks for other subsystems that check memory allocations. In a typical
1224 * production configuration these hooks all should produce no code at all.
1225 */
1226 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1227 {
1228 kmemleak_alloc(ptr, size, 1, flags);
1229 }
1230
1231 static inline void kfree_hook(const void *x)
1232 {
1233 kmemleak_free(x);
1234 }
1235
1236 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1237 {
1238 flags &= gfp_allowed_mask;
1239 lockdep_trace_alloc(flags);
1240 might_sleep_if(flags & __GFP_WAIT);
1241
1242 return should_failslab(s->object_size, flags, s->flags);
1243 }
1244
1245 static inline void slab_post_alloc_hook(struct kmem_cache *s,
1246 gfp_t flags, void *object)
1247 {
1248 flags &= gfp_allowed_mask;
1249 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
1250 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
1251 }
1252
1253 static inline void slab_free_hook(struct kmem_cache *s, void *x)
1254 {
1255 kmemleak_free_recursive(x, s->flags);
1256
1257 /*
1258 * Trouble is that we may no longer disable interrupts in the fast path
1259 * So in order to make the debug calls that expect irqs to be
1260 * disabled we need to disable interrupts temporarily.
1261 */
1262 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1263 {
1264 unsigned long flags;
1265
1266 local_irq_save(flags);
1267 kmemcheck_slab_free(s, x, s->object_size);
1268 debug_check_no_locks_freed(x, s->object_size);
1269 local_irq_restore(flags);
1270 }
1271 #endif
1272 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1273 debug_check_no_obj_freed(x, s->object_size);
1274 }
1275
1276 /*
1277 * Slab allocation and freeing
1278 */
1279 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1280 gfp_t flags, int node, struct kmem_cache_order_objects oo)
1281 {
1282 struct page *page;
1283 int order = oo_order(oo);
1284
1285 flags |= __GFP_NOTRACK;
1286
1287 if (memcg_charge_slab(s, flags, order))
1288 return NULL;
1289
1290 if (node == NUMA_NO_NODE)
1291 page = alloc_pages(flags, order);
1292 else
1293 page = alloc_pages_exact_node(node, flags, order);
1294
1295 if (!page)
1296 memcg_uncharge_slab(s, order);
1297
1298 return page;
1299 }
1300
1301 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1302 {
1303 struct page *page;
1304 struct kmem_cache_order_objects oo = s->oo;
1305 gfp_t alloc_gfp;
1306
1307 flags &= gfp_allowed_mask;
1308
1309 if (flags & __GFP_WAIT)
1310 local_irq_enable();
1311
1312 flags |= s->allocflags;
1313
1314 /*
1315 * Let the initial higher-order allocation fail under memory pressure
1316 * so we fall-back to the minimum order allocation.
1317 */
1318 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1319
1320 page = alloc_slab_page(s, alloc_gfp, node, oo);
1321 if (unlikely(!page)) {
1322 oo = s->min;
1323 alloc_gfp = flags;
1324 /*
1325 * Allocation may have failed due to fragmentation.
1326 * Try a lower order alloc if possible
1327 */
1328 page = alloc_slab_page(s, alloc_gfp, node, oo);
1329
1330 if (page)
1331 stat(s, ORDER_FALLBACK);
1332 }
1333
1334 if (kmemcheck_enabled && page
1335 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1336 int pages = 1 << oo_order(oo);
1337
1338 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
1339
1340 /*
1341 * Objects from caches that have a constructor don't get
1342 * cleared when they're allocated, so we need to do it here.
1343 */
1344 if (s->ctor)
1345 kmemcheck_mark_uninitialized_pages(page, pages);
1346 else
1347 kmemcheck_mark_unallocated_pages(page, pages);
1348 }
1349
1350 if (flags & __GFP_WAIT)
1351 local_irq_disable();
1352 if (!page)
1353 return NULL;
1354
1355 page->objects = oo_objects(oo);
1356 mod_zone_page_state(page_zone(page),
1357 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1358 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1359 1 << oo_order(oo));
1360
1361 return page;
1362 }
1363
1364 static void setup_object(struct kmem_cache *s, struct page *page,
1365 void *object)
1366 {
1367 setup_object_debug(s, page, object);
1368 if (unlikely(s->ctor))
1369 s->ctor(object);
1370 }
1371
1372 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1373 {
1374 struct page *page;
1375 void *start;
1376 void *p;
1377 int order;
1378 int idx;
1379
1380 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1381 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
1382 BUG();
1383 }
1384
1385 page = allocate_slab(s,
1386 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1387 if (!page)
1388 goto out;
1389
1390 order = compound_order(page);
1391 inc_slabs_node(s, page_to_nid(page), page->objects);
1392 page->slab_cache = s;
1393 __SetPageSlab(page);
1394 if (page->pfmemalloc)
1395 SetPageSlabPfmemalloc(page);
1396
1397 start = page_address(page);
1398
1399 if (unlikely(s->flags & SLAB_POISON))
1400 memset(start, POISON_INUSE, PAGE_SIZE << order);
1401
1402 for_each_object_idx(p, idx, s, start, page->objects) {
1403 setup_object(s, page, p);
1404 if (likely(idx < page->objects))
1405 set_freepointer(s, p, p + s->size);
1406 else
1407 set_freepointer(s, p, NULL);
1408 }
1409
1410 page->freelist = start;
1411 page->inuse = page->objects;
1412 page->frozen = 1;
1413 out:
1414 return page;
1415 }
1416
1417 static void __free_slab(struct kmem_cache *s, struct page *page)
1418 {
1419 int order = compound_order(page);
1420 int pages = 1 << order;
1421
1422 if (kmem_cache_debug(s)) {
1423 void *p;
1424
1425 slab_pad_check(s, page);
1426 for_each_object(p, s, page_address(page),
1427 page->objects)
1428 check_object(s, page, p, SLUB_RED_INACTIVE);
1429 }
1430
1431 kmemcheck_free_shadow(page, compound_order(page));
1432
1433 mod_zone_page_state(page_zone(page),
1434 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1435 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1436 -pages);
1437
1438 __ClearPageSlabPfmemalloc(page);
1439 __ClearPageSlab(page);
1440
1441 page_mapcount_reset(page);
1442 if (current->reclaim_state)
1443 current->reclaim_state->reclaimed_slab += pages;
1444 __free_pages(page, order);
1445 memcg_uncharge_slab(s, order);
1446 }
1447
1448 #define need_reserve_slab_rcu \
1449 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1450
1451 static void rcu_free_slab(struct rcu_head *h)
1452 {
1453 struct page *page;
1454
1455 if (need_reserve_slab_rcu)
1456 page = virt_to_head_page(h);
1457 else
1458 page = container_of((struct list_head *)h, struct page, lru);
1459
1460 __free_slab(page->slab_cache, page);
1461 }
1462
1463 static void free_slab(struct kmem_cache *s, struct page *page)
1464 {
1465 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1466 struct rcu_head *head;
1467
1468 if (need_reserve_slab_rcu) {
1469 int order = compound_order(page);
1470 int offset = (PAGE_SIZE << order) - s->reserved;
1471
1472 VM_BUG_ON(s->reserved != sizeof(*head));
1473 head = page_address(page) + offset;
1474 } else {
1475 /*
1476 * RCU free overloads the RCU head over the LRU
1477 */
1478 head = (void *)&page->lru;
1479 }
1480
1481 call_rcu(head, rcu_free_slab);
1482 } else
1483 __free_slab(s, page);
1484 }
1485
1486 static void discard_slab(struct kmem_cache *s, struct page *page)
1487 {
1488 dec_slabs_node(s, page_to_nid(page), page->objects);
1489 free_slab(s, page);
1490 }
1491
1492 /*
1493 * Management of partially allocated slabs.
1494 */
1495 static inline void
1496 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1497 {
1498 n->nr_partial++;
1499 if (tail == DEACTIVATE_TO_TAIL)
1500 list_add_tail(&page->lru, &n->partial);
1501 else
1502 list_add(&page->lru, &n->partial);
1503 }
1504
1505 static inline void add_partial(struct kmem_cache_node *n,
1506 struct page *page, int tail)
1507 {
1508 lockdep_assert_held(&n->list_lock);
1509 __add_partial(n, page, tail);
1510 }
1511
1512 static inline void
1513 __remove_partial(struct kmem_cache_node *n, struct page *page)
1514 {
1515 list_del(&page->lru);
1516 n->nr_partial--;
1517 }
1518
1519 static inline void remove_partial(struct kmem_cache_node *n,
1520 struct page *page)
1521 {
1522 lockdep_assert_held(&n->list_lock);
1523 __remove_partial(n, page);
1524 }
1525
1526 /*
1527 * Remove slab from the partial list, freeze it and
1528 * return the pointer to the freelist.
1529 *
1530 * Returns a list of objects or NULL if it fails.
1531 */
1532 static inline void *acquire_slab(struct kmem_cache *s,
1533 struct kmem_cache_node *n, struct page *page,
1534 int mode, int *objects)
1535 {
1536 void *freelist;
1537 unsigned long counters;
1538 struct page new;
1539
1540 lockdep_assert_held(&n->list_lock);
1541
1542 /*
1543 * Zap the freelist and set the frozen bit.
1544 * The old freelist is the list of objects for the
1545 * per cpu allocation list.
1546 */
1547 freelist = page->freelist;
1548 counters = page->counters;
1549 new.counters = counters;
1550 *objects = new.objects - new.inuse;
1551 if (mode) {
1552 new.inuse = page->objects;
1553 new.freelist = NULL;
1554 } else {
1555 new.freelist = freelist;
1556 }
1557
1558 VM_BUG_ON(new.frozen);
1559 new.frozen = 1;
1560
1561 if (!__cmpxchg_double_slab(s, page,
1562 freelist, counters,
1563 new.freelist, new.counters,
1564 "acquire_slab"))
1565 return NULL;
1566
1567 remove_partial(n, page);
1568 WARN_ON(!freelist);
1569 return freelist;
1570 }
1571
1572 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1573 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1574
1575 /*
1576 * Try to allocate a partial slab from a specific node.
1577 */
1578 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1579 struct kmem_cache_cpu *c, gfp_t flags)
1580 {
1581 struct page *page, *page2;
1582 void *object = NULL;
1583 int available = 0;
1584 int objects;
1585
1586 /*
1587 * Racy check. If we mistakenly see no partial slabs then we
1588 * just allocate an empty slab. If we mistakenly try to get a
1589 * partial slab and there is none available then get_partials()
1590 * will return NULL.
1591 */
1592 if (!n || !n->nr_partial)
1593 return NULL;
1594
1595 spin_lock(&n->list_lock);
1596 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1597 void *t;
1598
1599 if (!pfmemalloc_match(page, flags))
1600 continue;
1601
1602 t = acquire_slab(s, n, page, object == NULL, &objects);
1603 if (!t)
1604 break;
1605
1606 available += objects;
1607 if (!object) {
1608 c->page = page;
1609 stat(s, ALLOC_FROM_PARTIAL);
1610 object = t;
1611 } else {
1612 put_cpu_partial(s, page, 0);
1613 stat(s, CPU_PARTIAL_NODE);
1614 }
1615 if (!kmem_cache_has_cpu_partial(s)
1616 || available > s->cpu_partial / 2)
1617 break;
1618
1619 }
1620 spin_unlock(&n->list_lock);
1621 return object;
1622 }
1623
1624 /*
1625 * Get a page from somewhere. Search in increasing NUMA distances.
1626 */
1627 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1628 struct kmem_cache_cpu *c)
1629 {
1630 #ifdef CONFIG_NUMA
1631 struct zonelist *zonelist;
1632 struct zoneref *z;
1633 struct zone *zone;
1634 enum zone_type high_zoneidx = gfp_zone(flags);
1635 void *object;
1636 unsigned int cpuset_mems_cookie;
1637
1638 /*
1639 * The defrag ratio allows a configuration of the tradeoffs between
1640 * inter node defragmentation and node local allocations. A lower
1641 * defrag_ratio increases the tendency to do local allocations
1642 * instead of attempting to obtain partial slabs from other nodes.
1643 *
1644 * If the defrag_ratio is set to 0 then kmalloc() always
1645 * returns node local objects. If the ratio is higher then kmalloc()
1646 * may return off node objects because partial slabs are obtained
1647 * from other nodes and filled up.
1648 *
1649 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1650 * defrag_ratio = 1000) then every (well almost) allocation will
1651 * first attempt to defrag slab caches on other nodes. This means
1652 * scanning over all nodes to look for partial slabs which may be
1653 * expensive if we do it every time we are trying to find a slab
1654 * with available objects.
1655 */
1656 if (!s->remote_node_defrag_ratio ||
1657 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1658 return NULL;
1659
1660 do {
1661 cpuset_mems_cookie = read_mems_allowed_begin();
1662 zonelist = node_zonelist(mempolicy_slab_node(), flags);
1663 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1664 struct kmem_cache_node *n;
1665
1666 n = get_node(s, zone_to_nid(zone));
1667
1668 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1669 n->nr_partial > s->min_partial) {
1670 object = get_partial_node(s, n, c, flags);
1671 if (object) {
1672 /*
1673 * Don't check read_mems_allowed_retry()
1674 * here - if mems_allowed was updated in
1675 * parallel, that was a harmless race
1676 * between allocation and the cpuset
1677 * update
1678 */
1679 return object;
1680 }
1681 }
1682 }
1683 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1684 #endif
1685 return NULL;
1686 }
1687
1688 /*
1689 * Get a partial page, lock it and return it.
1690 */
1691 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1692 struct kmem_cache_cpu *c)
1693 {
1694 void *object;
1695 int searchnode = node;
1696
1697 if (node == NUMA_NO_NODE)
1698 searchnode = numa_mem_id();
1699 else if (!node_present_pages(node))
1700 searchnode = node_to_mem_node(node);
1701
1702 object = get_partial_node(s, get_node(s, searchnode), c, flags);
1703 if (object || node != NUMA_NO_NODE)
1704 return object;
1705
1706 return get_any_partial(s, flags, c);
1707 }
1708
1709 #ifdef CONFIG_PREEMPT
1710 /*
1711 * Calculate the next globally unique transaction for disambiguiation
1712 * during cmpxchg. The transactions start with the cpu number and are then
1713 * incremented by CONFIG_NR_CPUS.
1714 */
1715 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1716 #else
1717 /*
1718 * No preemption supported therefore also no need to check for
1719 * different cpus.
1720 */
1721 #define TID_STEP 1
1722 #endif
1723
1724 static inline unsigned long next_tid(unsigned long tid)
1725 {
1726 return tid + TID_STEP;
1727 }
1728
1729 static inline unsigned int tid_to_cpu(unsigned long tid)
1730 {
1731 return tid % TID_STEP;
1732 }
1733
1734 static inline unsigned long tid_to_event(unsigned long tid)
1735 {
1736 return tid / TID_STEP;
1737 }
1738
1739 static inline unsigned int init_tid(int cpu)
1740 {
1741 return cpu;
1742 }
1743
1744 static inline void note_cmpxchg_failure(const char *n,
1745 const struct kmem_cache *s, unsigned long tid)
1746 {
1747 #ifdef SLUB_DEBUG_CMPXCHG
1748 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1749
1750 pr_info("%s %s: cmpxchg redo ", n, s->name);
1751
1752 #ifdef CONFIG_PREEMPT
1753 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1754 pr_warn("due to cpu change %d -> %d\n",
1755 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1756 else
1757 #endif
1758 if (tid_to_event(tid) != tid_to_event(actual_tid))
1759 pr_warn("due to cpu running other code. Event %ld->%ld\n",
1760 tid_to_event(tid), tid_to_event(actual_tid));
1761 else
1762 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1763 actual_tid, tid, next_tid(tid));
1764 #endif
1765 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1766 }
1767
1768 static void init_kmem_cache_cpus(struct kmem_cache *s)
1769 {
1770 int cpu;
1771
1772 for_each_possible_cpu(cpu)
1773 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1774 }
1775
1776 /*
1777 * Remove the cpu slab
1778 */
1779 static void deactivate_slab(struct kmem_cache *s, struct page *page,
1780 void *freelist)
1781 {
1782 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1783 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1784 int lock = 0;
1785 enum slab_modes l = M_NONE, m = M_NONE;
1786 void *nextfree;
1787 int tail = DEACTIVATE_TO_HEAD;
1788 struct page new;
1789 struct page old;
1790
1791 if (page->freelist) {
1792 stat(s, DEACTIVATE_REMOTE_FREES);
1793 tail = DEACTIVATE_TO_TAIL;
1794 }
1795
1796 /*
1797 * Stage one: Free all available per cpu objects back
1798 * to the page freelist while it is still frozen. Leave the
1799 * last one.
1800 *
1801 * There is no need to take the list->lock because the page
1802 * is still frozen.
1803 */
1804 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1805 void *prior;
1806 unsigned long counters;
1807
1808 do {
1809 prior = page->freelist;
1810 counters = page->counters;
1811 set_freepointer(s, freelist, prior);
1812 new.counters = counters;
1813 new.inuse--;
1814 VM_BUG_ON(!new.frozen);
1815
1816 } while (!__cmpxchg_double_slab(s, page,
1817 prior, counters,
1818 freelist, new.counters,
1819 "drain percpu freelist"));
1820
1821 freelist = nextfree;
1822 }
1823
1824 /*
1825 * Stage two: Ensure that the page is unfrozen while the
1826 * list presence reflects the actual number of objects
1827 * during unfreeze.
1828 *
1829 * We setup the list membership and then perform a cmpxchg
1830 * with the count. If there is a mismatch then the page
1831 * is not unfrozen but the page is on the wrong list.
1832 *
1833 * Then we restart the process which may have to remove
1834 * the page from the list that we just put it on again
1835 * because the number of objects in the slab may have
1836 * changed.
1837 */
1838 redo:
1839
1840 old.freelist = page->freelist;
1841 old.counters = page->counters;
1842 VM_BUG_ON(!old.frozen);
1843
1844 /* Determine target state of the slab */
1845 new.counters = old.counters;
1846 if (freelist) {
1847 new.inuse--;
1848 set_freepointer(s, freelist, old.freelist);
1849 new.freelist = freelist;
1850 } else
1851 new.freelist = old.freelist;
1852
1853 new.frozen = 0;
1854
1855 if (!new.inuse && n->nr_partial >= s->min_partial)
1856 m = M_FREE;
1857 else if (new.freelist) {
1858 m = M_PARTIAL;
1859 if (!lock) {
1860 lock = 1;
1861 /*
1862 * Taking the spinlock removes the possiblity
1863 * that acquire_slab() will see a slab page that
1864 * is frozen
1865 */
1866 spin_lock(&n->list_lock);
1867 }
1868 } else {
1869 m = M_FULL;
1870 if (kmem_cache_debug(s) && !lock) {
1871 lock = 1;
1872 /*
1873 * This also ensures that the scanning of full
1874 * slabs from diagnostic functions will not see
1875 * any frozen slabs.
1876 */
1877 spin_lock(&n->list_lock);
1878 }
1879 }
1880
1881 if (l != m) {
1882
1883 if (l == M_PARTIAL)
1884
1885 remove_partial(n, page);
1886
1887 else if (l == M_FULL)
1888
1889 remove_full(s, n, page);
1890
1891 if (m == M_PARTIAL) {
1892
1893 add_partial(n, page, tail);
1894 stat(s, tail);
1895
1896 } else if (m == M_FULL) {
1897
1898 stat(s, DEACTIVATE_FULL);
1899 add_full(s, n, page);
1900
1901 }
1902 }
1903
1904 l = m;
1905 if (!__cmpxchg_double_slab(s, page,
1906 old.freelist, old.counters,
1907 new.freelist, new.counters,
1908 "unfreezing slab"))
1909 goto redo;
1910
1911 if (lock)
1912 spin_unlock(&n->list_lock);
1913
1914 if (m == M_FREE) {
1915 stat(s, DEACTIVATE_EMPTY);
1916 discard_slab(s, page);
1917 stat(s, FREE_SLAB);
1918 }
1919 }
1920
1921 /*
1922 * Unfreeze all the cpu partial slabs.
1923 *
1924 * This function must be called with interrupts disabled
1925 * for the cpu using c (or some other guarantee must be there
1926 * to guarantee no concurrent accesses).
1927 */
1928 static void unfreeze_partials(struct kmem_cache *s,
1929 struct kmem_cache_cpu *c)
1930 {
1931 #ifdef CONFIG_SLUB_CPU_PARTIAL
1932 struct kmem_cache_node *n = NULL, *n2 = NULL;
1933 struct page *page, *discard_page = NULL;
1934
1935 while ((page = c->partial)) {
1936 struct page new;
1937 struct page old;
1938
1939 c->partial = page->next;
1940
1941 n2 = get_node(s, page_to_nid(page));
1942 if (n != n2) {
1943 if (n)
1944 spin_unlock(&n->list_lock);
1945
1946 n = n2;
1947 spin_lock(&n->list_lock);
1948 }
1949
1950 do {
1951
1952 old.freelist = page->freelist;
1953 old.counters = page->counters;
1954 VM_BUG_ON(!old.frozen);
1955
1956 new.counters = old.counters;
1957 new.freelist = old.freelist;
1958
1959 new.frozen = 0;
1960
1961 } while (!__cmpxchg_double_slab(s, page,
1962 old.freelist, old.counters,
1963 new.freelist, new.counters,
1964 "unfreezing slab"));
1965
1966 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
1967 page->next = discard_page;
1968 discard_page = page;
1969 } else {
1970 add_partial(n, page, DEACTIVATE_TO_TAIL);
1971 stat(s, FREE_ADD_PARTIAL);
1972 }
1973 }
1974
1975 if (n)
1976 spin_unlock(&n->list_lock);
1977
1978 while (discard_page) {
1979 page = discard_page;
1980 discard_page = discard_page->next;
1981
1982 stat(s, DEACTIVATE_EMPTY);
1983 discard_slab(s, page);
1984 stat(s, FREE_SLAB);
1985 }
1986 #endif
1987 }
1988
1989 /*
1990 * Put a page that was just frozen (in __slab_free) into a partial page
1991 * slot if available. This is done without interrupts disabled and without
1992 * preemption disabled. The cmpxchg is racy and may put the partial page
1993 * onto a random cpus partial slot.
1994 *
1995 * If we did not find a slot then simply move all the partials to the
1996 * per node partial list.
1997 */
1998 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
1999 {
2000 #ifdef CONFIG_SLUB_CPU_PARTIAL
2001 struct page *oldpage;
2002 int pages;
2003 int pobjects;
2004
2005 do {
2006 pages = 0;
2007 pobjects = 0;
2008 oldpage = this_cpu_read(s->cpu_slab->partial);
2009
2010 if (oldpage) {
2011 pobjects = oldpage->pobjects;
2012 pages = oldpage->pages;
2013 if (drain && pobjects > s->cpu_partial) {
2014 unsigned long flags;
2015 /*
2016 * partial array is full. Move the existing
2017 * set to the per node partial list.
2018 */
2019 local_irq_save(flags);
2020 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2021 local_irq_restore(flags);
2022 oldpage = NULL;
2023 pobjects = 0;
2024 pages = 0;
2025 stat(s, CPU_PARTIAL_DRAIN);
2026 }
2027 }
2028
2029 pages++;
2030 pobjects += page->objects - page->inuse;
2031
2032 page->pages = pages;
2033 page->pobjects = pobjects;
2034 page->next = oldpage;
2035
2036 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2037 != oldpage);
2038 #endif
2039 }
2040
2041 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2042 {
2043 stat(s, CPUSLAB_FLUSH);
2044 deactivate_slab(s, c->page, c->freelist);
2045
2046 c->tid = next_tid(c->tid);
2047 c->page = NULL;
2048 c->freelist = NULL;
2049 }
2050
2051 /*
2052 * Flush cpu slab.
2053 *
2054 * Called from IPI handler with interrupts disabled.
2055 */
2056 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2057 {
2058 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2059
2060 if (likely(c)) {
2061 if (c->page)
2062 flush_slab(s, c);
2063
2064 unfreeze_partials(s, c);
2065 }
2066 }
2067
2068 static void flush_cpu_slab(void *d)
2069 {
2070 struct kmem_cache *s = d;
2071
2072 __flush_cpu_slab(s, smp_processor_id());
2073 }
2074
2075 static bool has_cpu_slab(int cpu, void *info)
2076 {
2077 struct kmem_cache *s = info;
2078 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2079
2080 return c->page || c->partial;
2081 }
2082
2083 static void flush_all(struct kmem_cache *s)
2084 {
2085 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2086 }
2087
2088 /*
2089 * Check if the objects in a per cpu structure fit numa
2090 * locality expectations.
2091 */
2092 static inline int node_match(struct page *page, int node)
2093 {
2094 #ifdef CONFIG_NUMA
2095 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2096 return 0;
2097 #endif
2098 return 1;
2099 }
2100
2101 #ifdef CONFIG_SLUB_DEBUG
2102 static int count_free(struct page *page)
2103 {
2104 return page->objects - page->inuse;
2105 }
2106
2107 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2108 {
2109 return atomic_long_read(&n->total_objects);
2110 }
2111 #endif /* CONFIG_SLUB_DEBUG */
2112
2113 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2114 static unsigned long count_partial(struct kmem_cache_node *n,
2115 int (*get_count)(struct page *))
2116 {
2117 unsigned long flags;
2118 unsigned long x = 0;
2119 struct page *page;
2120
2121 spin_lock_irqsave(&n->list_lock, flags);
2122 list_for_each_entry(page, &n->partial, lru)
2123 x += get_count(page);
2124 spin_unlock_irqrestore(&n->list_lock, flags);
2125 return x;
2126 }
2127 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2128
2129 static noinline void
2130 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2131 {
2132 #ifdef CONFIG_SLUB_DEBUG
2133 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2134 DEFAULT_RATELIMIT_BURST);
2135 int node;
2136 struct kmem_cache_node *n;
2137
2138 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2139 return;
2140
2141 pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2142 nid, gfpflags);
2143 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2144 s->name, s->object_size, s->size, oo_order(s->oo),
2145 oo_order(s->min));
2146
2147 if (oo_order(s->min) > get_order(s->object_size))
2148 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2149 s->name);
2150
2151 for_each_kmem_cache_node(s, node, n) {
2152 unsigned long nr_slabs;
2153 unsigned long nr_objs;
2154 unsigned long nr_free;
2155
2156 nr_free = count_partial(n, count_free);
2157 nr_slabs = node_nr_slabs(n);
2158 nr_objs = node_nr_objs(n);
2159
2160 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2161 node, nr_slabs, nr_objs, nr_free);
2162 }
2163 #endif
2164 }
2165
2166 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2167 int node, struct kmem_cache_cpu **pc)
2168 {
2169 void *freelist;
2170 struct kmem_cache_cpu *c = *pc;
2171 struct page *page;
2172
2173 freelist = get_partial(s, flags, node, c);
2174
2175 if (freelist)
2176 return freelist;
2177
2178 page = new_slab(s, flags, node);
2179 if (page) {
2180 c = raw_cpu_ptr(s->cpu_slab);
2181 if (c->page)
2182 flush_slab(s, c);
2183
2184 /*
2185 * No other reference to the page yet so we can
2186 * muck around with it freely without cmpxchg
2187 */
2188 freelist = page->freelist;
2189 page->freelist = NULL;
2190
2191 stat(s, ALLOC_SLAB);
2192 c->page = page;
2193 *pc = c;
2194 } else
2195 freelist = NULL;
2196
2197 return freelist;
2198 }
2199
2200 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2201 {
2202 if (unlikely(PageSlabPfmemalloc(page)))
2203 return gfp_pfmemalloc_allowed(gfpflags);
2204
2205 return true;
2206 }
2207
2208 /*
2209 * Check the page->freelist of a page and either transfer the freelist to the
2210 * per cpu freelist or deactivate the page.
2211 *
2212 * The page is still frozen if the return value is not NULL.
2213 *
2214 * If this function returns NULL then the page has been unfrozen.
2215 *
2216 * This function must be called with interrupt disabled.
2217 */
2218 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2219 {
2220 struct page new;
2221 unsigned long counters;
2222 void *freelist;
2223
2224 do {
2225 freelist = page->freelist;
2226 counters = page->counters;
2227
2228 new.counters = counters;
2229 VM_BUG_ON(!new.frozen);
2230
2231 new.inuse = page->objects;
2232 new.frozen = freelist != NULL;
2233
2234 } while (!__cmpxchg_double_slab(s, page,
2235 freelist, counters,
2236 NULL, new.counters,
2237 "get_freelist"));
2238
2239 return freelist;
2240 }
2241
2242 /*
2243 * Slow path. The lockless freelist is empty or we need to perform
2244 * debugging duties.
2245 *
2246 * Processing is still very fast if new objects have been freed to the
2247 * regular freelist. In that case we simply take over the regular freelist
2248 * as the lockless freelist and zap the regular freelist.
2249 *
2250 * If that is not working then we fall back to the partial lists. We take the
2251 * first element of the freelist as the object to allocate now and move the
2252 * rest of the freelist to the lockless freelist.
2253 *
2254 * And if we were unable to get a new slab from the partial slab lists then
2255 * we need to allocate a new slab. This is the slowest path since it involves
2256 * a call to the page allocator and the setup of a new slab.
2257 */
2258 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2259 unsigned long addr, struct kmem_cache_cpu *c)
2260 {
2261 void *freelist;
2262 struct page *page;
2263 unsigned long flags;
2264
2265 local_irq_save(flags);
2266 #ifdef CONFIG_PREEMPT
2267 /*
2268 * We may have been preempted and rescheduled on a different
2269 * cpu before disabling interrupts. Need to reload cpu area
2270 * pointer.
2271 */
2272 c = this_cpu_ptr(s->cpu_slab);
2273 #endif
2274
2275 page = c->page;
2276 if (!page)
2277 goto new_slab;
2278 redo:
2279
2280 if (unlikely(!node_match(page, node))) {
2281 int searchnode = node;
2282
2283 if (node != NUMA_NO_NODE && !node_present_pages(node))
2284 searchnode = node_to_mem_node(node);
2285
2286 if (unlikely(!node_match(page, searchnode))) {
2287 stat(s, ALLOC_NODE_MISMATCH);
2288 deactivate_slab(s, page, c->freelist);
2289 c->page = NULL;
2290 c->freelist = NULL;
2291 goto new_slab;
2292 }
2293 }
2294
2295 /*
2296 * By rights, we should be searching for a slab page that was
2297 * PFMEMALLOC but right now, we are losing the pfmemalloc
2298 * information when the page leaves the per-cpu allocator
2299 */
2300 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2301 deactivate_slab(s, page, c->freelist);
2302 c->page = NULL;
2303 c->freelist = NULL;
2304 goto new_slab;
2305 }
2306
2307 /* must check again c->freelist in case of cpu migration or IRQ */
2308 freelist = c->freelist;
2309 if (freelist)
2310 goto load_freelist;
2311
2312 freelist = get_freelist(s, page);
2313
2314 if (!freelist) {
2315 c->page = NULL;
2316 stat(s, DEACTIVATE_BYPASS);
2317 goto new_slab;
2318 }
2319
2320 stat(s, ALLOC_REFILL);
2321
2322 load_freelist:
2323 /*
2324 * freelist is pointing to the list of objects to be used.
2325 * page is pointing to the page from which the objects are obtained.
2326 * That page must be frozen for per cpu allocations to work.
2327 */
2328 VM_BUG_ON(!c->page->frozen);
2329 c->freelist = get_freepointer(s, freelist);
2330 c->tid = next_tid(c->tid);
2331 local_irq_restore(flags);
2332 return freelist;
2333
2334 new_slab:
2335
2336 if (c->partial) {
2337 page = c->page = c->partial;
2338 c->partial = page->next;
2339 stat(s, CPU_PARTIAL_ALLOC);
2340 c->freelist = NULL;
2341 goto redo;
2342 }
2343
2344 freelist = new_slab_objects(s, gfpflags, node, &c);
2345
2346 if (unlikely(!freelist)) {
2347 slab_out_of_memory(s, gfpflags, node);
2348 local_irq_restore(flags);
2349 return NULL;
2350 }
2351
2352 page = c->page;
2353 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2354 goto load_freelist;
2355
2356 /* Only entered in the debug case */
2357 if (kmem_cache_debug(s) &&
2358 !alloc_debug_processing(s, page, freelist, addr))
2359 goto new_slab; /* Slab failed checks. Next slab needed */
2360
2361 deactivate_slab(s, page, get_freepointer(s, freelist));
2362 c->page = NULL;
2363 c->freelist = NULL;
2364 local_irq_restore(flags);
2365 return freelist;
2366 }
2367
2368 /*
2369 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2370 * have the fastpath folded into their functions. So no function call
2371 * overhead for requests that can be satisfied on the fastpath.
2372 *
2373 * The fastpath works by first checking if the lockless freelist can be used.
2374 * If not then __slab_alloc is called for slow processing.
2375 *
2376 * Otherwise we can simply pick the next object from the lockless free list.
2377 */
2378 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2379 gfp_t gfpflags, int node, unsigned long addr)
2380 {
2381 void **object;
2382 struct kmem_cache_cpu *c;
2383 struct page *page;
2384 unsigned long tid;
2385
2386 if (slab_pre_alloc_hook(s, gfpflags))
2387 return NULL;
2388
2389 s = memcg_kmem_get_cache(s, gfpflags);
2390 redo:
2391 /*
2392 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2393 * enabled. We may switch back and forth between cpus while
2394 * reading from one cpu area. That does not matter as long
2395 * as we end up on the original cpu again when doing the cmpxchg.
2396 *
2397 * Preemption is disabled for the retrieval of the tid because that
2398 * must occur from the current processor. We cannot allow rescheduling
2399 * on a different processor between the determination of the pointer
2400 * and the retrieval of the tid.
2401 */
2402 preempt_disable();
2403 c = this_cpu_ptr(s->cpu_slab);
2404
2405 /*
2406 * The transaction ids are globally unique per cpu and per operation on
2407 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2408 * occurs on the right processor and that there was no operation on the
2409 * linked list in between.
2410 */
2411 tid = c->tid;
2412 preempt_enable();
2413
2414 object = c->freelist;
2415 page = c->page;
2416 if (unlikely(!object || !node_match(page, node))) {
2417 object = __slab_alloc(s, gfpflags, node, addr, c);
2418 stat(s, ALLOC_SLOWPATH);
2419 } else {
2420 void *next_object = get_freepointer_safe(s, object);
2421
2422 /*
2423 * The cmpxchg will only match if there was no additional
2424 * operation and if we are on the right processor.
2425 *
2426 * The cmpxchg does the following atomically (without lock
2427 * semantics!)
2428 * 1. Relocate first pointer to the current per cpu area.
2429 * 2. Verify that tid and freelist have not been changed
2430 * 3. If they were not changed replace tid and freelist
2431 *
2432 * Since this is without lock semantics the protection is only
2433 * against code executing on this cpu *not* from access by
2434 * other cpus.
2435 */
2436 if (unlikely(!this_cpu_cmpxchg_double(
2437 s->cpu_slab->freelist, s->cpu_slab->tid,
2438 object, tid,
2439 next_object, next_tid(tid)))) {
2440
2441 note_cmpxchg_failure("slab_alloc", s, tid);
2442 goto redo;
2443 }
2444 prefetch_freepointer(s, next_object);
2445 stat(s, ALLOC_FASTPATH);
2446 }
2447
2448 if (unlikely(gfpflags & __GFP_ZERO) && object)
2449 memset(object, 0, s->object_size);
2450
2451 slab_post_alloc_hook(s, gfpflags, object);
2452
2453 return object;
2454 }
2455
2456 static __always_inline void *slab_alloc(struct kmem_cache *s,
2457 gfp_t gfpflags, unsigned long addr)
2458 {
2459 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2460 }
2461
2462 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2463 {
2464 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2465
2466 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2467 s->size, gfpflags);
2468
2469 return ret;
2470 }
2471 EXPORT_SYMBOL(kmem_cache_alloc);
2472
2473 #ifdef CONFIG_TRACING
2474 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2475 {
2476 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2477 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2478 return ret;
2479 }
2480 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2481 #endif
2482
2483 #ifdef CONFIG_NUMA
2484 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2485 {
2486 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2487
2488 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2489 s->object_size, s->size, gfpflags, node);
2490
2491 return ret;
2492 }
2493 EXPORT_SYMBOL(kmem_cache_alloc_node);
2494
2495 #ifdef CONFIG_TRACING
2496 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2497 gfp_t gfpflags,
2498 int node, size_t size)
2499 {
2500 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2501
2502 trace_kmalloc_node(_RET_IP_, ret,
2503 size, s->size, gfpflags, node);
2504 return ret;
2505 }
2506 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2507 #endif
2508 #endif
2509
2510 /*
2511 * Slow patch handling. This may still be called frequently since objects
2512 * have a longer lifetime than the cpu slabs in most processing loads.
2513 *
2514 * So we still attempt to reduce cache line usage. Just take the slab
2515 * lock and free the item. If there is no additional partial page
2516 * handling required then we can return immediately.
2517 */
2518 static void __slab_free(struct kmem_cache *s, struct page *page,
2519 void *x, unsigned long addr)
2520 {
2521 void *prior;
2522 void **object = (void *)x;
2523 int was_frozen;
2524 struct page new;
2525 unsigned long counters;
2526 struct kmem_cache_node *n = NULL;
2527 unsigned long uninitialized_var(flags);
2528
2529 stat(s, FREE_SLOWPATH);
2530
2531 if (kmem_cache_debug(s) &&
2532 !(n = free_debug_processing(s, page, x, addr, &flags)))
2533 return;
2534
2535 do {
2536 if (unlikely(n)) {
2537 spin_unlock_irqrestore(&n->list_lock, flags);
2538 n = NULL;
2539 }
2540 prior = page->freelist;
2541 counters = page->counters;
2542 set_freepointer(s, object, prior);
2543 new.counters = counters;
2544 was_frozen = new.frozen;
2545 new.inuse--;
2546 if ((!new.inuse || !prior) && !was_frozen) {
2547
2548 if (kmem_cache_has_cpu_partial(s) && !prior) {
2549
2550 /*
2551 * Slab was on no list before and will be
2552 * partially empty
2553 * We can defer the list move and instead
2554 * freeze it.
2555 */
2556 new.frozen = 1;
2557
2558 } else { /* Needs to be taken off a list */
2559
2560 n = get_node(s, page_to_nid(page));
2561 /*
2562 * Speculatively acquire the list_lock.
2563 * If the cmpxchg does not succeed then we may
2564 * drop the list_lock without any processing.
2565 *
2566 * Otherwise the list_lock will synchronize with
2567 * other processors updating the list of slabs.
2568 */
2569 spin_lock_irqsave(&n->list_lock, flags);
2570
2571 }
2572 }
2573
2574 } while (!cmpxchg_double_slab(s, page,
2575 prior, counters,
2576 object, new.counters,
2577 "__slab_free"));
2578
2579 if (likely(!n)) {
2580
2581 /*
2582 * If we just froze the page then put it onto the
2583 * per cpu partial list.
2584 */
2585 if (new.frozen && !was_frozen) {
2586 put_cpu_partial(s, page, 1);
2587 stat(s, CPU_PARTIAL_FREE);
2588 }
2589 /*
2590 * The list lock was not taken therefore no list
2591 * activity can be necessary.
2592 */
2593 if (was_frozen)
2594 stat(s, FREE_FROZEN);
2595 return;
2596 }
2597
2598 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2599 goto slab_empty;
2600
2601 /*
2602 * Objects left in the slab. If it was not on the partial list before
2603 * then add it.
2604 */
2605 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2606 if (kmem_cache_debug(s))
2607 remove_full(s, n, page);
2608 add_partial(n, page, DEACTIVATE_TO_TAIL);
2609 stat(s, FREE_ADD_PARTIAL);
2610 }
2611 spin_unlock_irqrestore(&n->list_lock, flags);
2612 return;
2613
2614 slab_empty:
2615 if (prior) {
2616 /*
2617 * Slab on the partial list.
2618 */
2619 remove_partial(n, page);
2620 stat(s, FREE_REMOVE_PARTIAL);
2621 } else {
2622 /* Slab must be on the full list */
2623 remove_full(s, n, page);
2624 }
2625
2626 spin_unlock_irqrestore(&n->list_lock, flags);
2627 stat(s, FREE_SLAB);
2628 discard_slab(s, page);
2629 }
2630
2631 /*
2632 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2633 * can perform fastpath freeing without additional function calls.
2634 *
2635 * The fastpath is only possible if we are freeing to the current cpu slab
2636 * of this processor. This typically the case if we have just allocated
2637 * the item before.
2638 *
2639 * If fastpath is not possible then fall back to __slab_free where we deal
2640 * with all sorts of special processing.
2641 */
2642 static __always_inline void slab_free(struct kmem_cache *s,
2643 struct page *page, void *x, unsigned long addr)
2644 {
2645 void **object = (void *)x;
2646 struct kmem_cache_cpu *c;
2647 unsigned long tid;
2648
2649 slab_free_hook(s, x);
2650
2651 redo:
2652 /*
2653 * Determine the currently cpus per cpu slab.
2654 * The cpu may change afterward. However that does not matter since
2655 * data is retrieved via this pointer. If we are on the same cpu
2656 * during the cmpxchg then the free will succedd.
2657 */
2658 preempt_disable();
2659 c = this_cpu_ptr(s->cpu_slab);
2660
2661 tid = c->tid;
2662 preempt_enable();
2663
2664 if (likely(page == c->page)) {
2665 set_freepointer(s, object, c->freelist);
2666
2667 if (unlikely(!this_cpu_cmpxchg_double(
2668 s->cpu_slab->freelist, s->cpu_slab->tid,
2669 c->freelist, tid,
2670 object, next_tid(tid)))) {
2671
2672 note_cmpxchg_failure("slab_free", s, tid);
2673 goto redo;
2674 }
2675 stat(s, FREE_FASTPATH);
2676 } else
2677 __slab_free(s, page, x, addr);
2678
2679 }
2680
2681 void kmem_cache_free(struct kmem_cache *s, void *x)
2682 {
2683 s = cache_from_obj(s, x);
2684 if (!s)
2685 return;
2686 slab_free(s, virt_to_head_page(x), x, _RET_IP_);
2687 trace_kmem_cache_free(_RET_IP_, x);
2688 }
2689 EXPORT_SYMBOL(kmem_cache_free);
2690
2691 /*
2692 * Object placement in a slab is made very easy because we always start at
2693 * offset 0. If we tune the size of the object to the alignment then we can
2694 * get the required alignment by putting one properly sized object after
2695 * another.
2696 *
2697 * Notice that the allocation order determines the sizes of the per cpu
2698 * caches. Each processor has always one slab available for allocations.
2699 * Increasing the allocation order reduces the number of times that slabs
2700 * must be moved on and off the partial lists and is therefore a factor in
2701 * locking overhead.
2702 */
2703
2704 /*
2705 * Mininum / Maximum order of slab pages. This influences locking overhead
2706 * and slab fragmentation. A higher order reduces the number of partial slabs
2707 * and increases the number of allocations possible without having to
2708 * take the list_lock.
2709 */
2710 static int slub_min_order;
2711 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2712 static int slub_min_objects;
2713
2714 /*
2715 * Calculate the order of allocation given an slab object size.
2716 *
2717 * The order of allocation has significant impact on performance and other
2718 * system components. Generally order 0 allocations should be preferred since
2719 * order 0 does not cause fragmentation in the page allocator. Larger objects
2720 * be problematic to put into order 0 slabs because there may be too much
2721 * unused space left. We go to a higher order if more than 1/16th of the slab
2722 * would be wasted.
2723 *
2724 * In order to reach satisfactory performance we must ensure that a minimum
2725 * number of objects is in one slab. Otherwise we may generate too much
2726 * activity on the partial lists which requires taking the list_lock. This is
2727 * less a concern for large slabs though which are rarely used.
2728 *
2729 * slub_max_order specifies the order where we begin to stop considering the
2730 * number of objects in a slab as critical. If we reach slub_max_order then
2731 * we try to keep the page order as low as possible. So we accept more waste
2732 * of space in favor of a small page order.
2733 *
2734 * Higher order allocations also allow the placement of more objects in a
2735 * slab and thereby reduce object handling overhead. If the user has
2736 * requested a higher mininum order then we start with that one instead of
2737 * the smallest order which will fit the object.
2738 */
2739 static inline int slab_order(int size, int min_objects,
2740 int max_order, int fract_leftover, int reserved)
2741 {
2742 int order;
2743 int rem;
2744 int min_order = slub_min_order;
2745
2746 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2747 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2748
2749 for (order = max(min_order,
2750 fls(min_objects * size - 1) - PAGE_SHIFT);
2751 order <= max_order; order++) {
2752
2753 unsigned long slab_size = PAGE_SIZE << order;
2754
2755 if (slab_size < min_objects * size + reserved)
2756 continue;
2757
2758 rem = (slab_size - reserved) % size;
2759
2760 if (rem <= slab_size / fract_leftover)
2761 break;
2762
2763 }
2764
2765 return order;
2766 }
2767
2768 static inline int calculate_order(int size, int reserved)
2769 {
2770 int order;
2771 int min_objects;
2772 int fraction;
2773 int max_objects;
2774
2775 /*
2776 * Attempt to find best configuration for a slab. This
2777 * works by first attempting to generate a layout with
2778 * the best configuration and backing off gradually.
2779 *
2780 * First we reduce the acceptable waste in a slab. Then
2781 * we reduce the minimum objects required in a slab.
2782 */
2783 min_objects = slub_min_objects;
2784 if (!min_objects)
2785 min_objects = 4 * (fls(nr_cpu_ids) + 1);
2786 max_objects = order_objects(slub_max_order, size, reserved);
2787 min_objects = min(min_objects, max_objects);
2788
2789 while (min_objects > 1) {
2790 fraction = 16;
2791 while (fraction >= 4) {
2792 order = slab_order(size, min_objects,
2793 slub_max_order, fraction, reserved);
2794 if (order <= slub_max_order)
2795 return order;
2796 fraction /= 2;
2797 }
2798 min_objects--;
2799 }
2800
2801 /*
2802 * We were unable to place multiple objects in a slab. Now
2803 * lets see if we can place a single object there.
2804 */
2805 order = slab_order(size, 1, slub_max_order, 1, reserved);
2806 if (order <= slub_max_order)
2807 return order;
2808
2809 /*
2810 * Doh this slab cannot be placed using slub_max_order.
2811 */
2812 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2813 if (order < MAX_ORDER)
2814 return order;
2815 return -ENOSYS;
2816 }
2817
2818 static void
2819 init_kmem_cache_node(struct kmem_cache_node *n)
2820 {
2821 n->nr_partial = 0;
2822 spin_lock_init(&n->list_lock);
2823 INIT_LIST_HEAD(&n->partial);
2824 #ifdef CONFIG_SLUB_DEBUG
2825 atomic_long_set(&n->nr_slabs, 0);
2826 atomic_long_set(&n->total_objects, 0);
2827 INIT_LIST_HEAD(&n->full);
2828 #endif
2829 }
2830
2831 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2832 {
2833 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2834 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
2835
2836 /*
2837 * Must align to double word boundary for the double cmpxchg
2838 * instructions to work; see __pcpu_double_call_return_bool().
2839 */
2840 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2841 2 * sizeof(void *));
2842
2843 if (!s->cpu_slab)
2844 return 0;
2845
2846 init_kmem_cache_cpus(s);
2847
2848 return 1;
2849 }
2850
2851 static struct kmem_cache *kmem_cache_node;
2852
2853 /*
2854 * No kmalloc_node yet so do it by hand. We know that this is the first
2855 * slab on the node for this slabcache. There are no concurrent accesses
2856 * possible.
2857 *
2858 * Note that this function only works on the kmem_cache_node
2859 * when allocating for the kmem_cache_node. This is used for bootstrapping
2860 * memory on a fresh node that has no slab structures yet.
2861 */
2862 static void early_kmem_cache_node_alloc(int node)
2863 {
2864 struct page *page;
2865 struct kmem_cache_node *n;
2866
2867 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2868
2869 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2870
2871 BUG_ON(!page);
2872 if (page_to_nid(page) != node) {
2873 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
2874 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
2875 }
2876
2877 n = page->freelist;
2878 BUG_ON(!n);
2879 page->freelist = get_freepointer(kmem_cache_node, n);
2880 page->inuse = 1;
2881 page->frozen = 0;
2882 kmem_cache_node->node[node] = n;
2883 #ifdef CONFIG_SLUB_DEBUG
2884 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2885 init_tracking(kmem_cache_node, n);
2886 #endif
2887 init_kmem_cache_node(n);
2888 inc_slabs_node(kmem_cache_node, node, page->objects);
2889
2890 /*
2891 * No locks need to be taken here as it has just been
2892 * initialized and there is no concurrent access.
2893 */
2894 __add_partial(n, page, DEACTIVATE_TO_HEAD);
2895 }
2896
2897 static void free_kmem_cache_nodes(struct kmem_cache *s)
2898 {
2899 int node;
2900 struct kmem_cache_node *n;
2901
2902 for_each_kmem_cache_node(s, node, n) {
2903 kmem_cache_free(kmem_cache_node, n);
2904 s->node[node] = NULL;
2905 }
2906 }
2907
2908 static int init_kmem_cache_nodes(struct kmem_cache *s)
2909 {
2910 int node;
2911
2912 for_each_node_state(node, N_NORMAL_MEMORY) {
2913 struct kmem_cache_node *n;
2914
2915 if (slab_state == DOWN) {
2916 early_kmem_cache_node_alloc(node);
2917 continue;
2918 }
2919 n = kmem_cache_alloc_node(kmem_cache_node,
2920 GFP_KERNEL, node);
2921
2922 if (!n) {
2923 free_kmem_cache_nodes(s);
2924 return 0;
2925 }
2926
2927 s->node[node] = n;
2928 init_kmem_cache_node(n);
2929 }
2930 return 1;
2931 }
2932
2933 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2934 {
2935 if (min < MIN_PARTIAL)
2936 min = MIN_PARTIAL;
2937 else if (min > MAX_PARTIAL)
2938 min = MAX_PARTIAL;
2939 s->min_partial = min;
2940 }
2941
2942 /*
2943 * calculate_sizes() determines the order and the distribution of data within
2944 * a slab object.
2945 */
2946 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2947 {
2948 unsigned long flags = s->flags;
2949 unsigned long size = s->object_size;
2950 int order;
2951
2952 /*
2953 * Round up object size to the next word boundary. We can only
2954 * place the free pointer at word boundaries and this determines
2955 * the possible location of the free pointer.
2956 */
2957 size = ALIGN(size, sizeof(void *));
2958
2959 #ifdef CONFIG_SLUB_DEBUG
2960 /*
2961 * Determine if we can poison the object itself. If the user of
2962 * the slab may touch the object after free or before allocation
2963 * then we should never poison the object itself.
2964 */
2965 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2966 !s->ctor)
2967 s->flags |= __OBJECT_POISON;
2968 else
2969 s->flags &= ~__OBJECT_POISON;
2970
2971
2972 /*
2973 * If we are Redzoning then check if there is some space between the
2974 * end of the object and the free pointer. If not then add an
2975 * additional word to have some bytes to store Redzone information.
2976 */
2977 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
2978 size += sizeof(void *);
2979 #endif
2980
2981 /*
2982 * With that we have determined the number of bytes in actual use
2983 * by the object. This is the potential offset to the free pointer.
2984 */
2985 s->inuse = size;
2986
2987 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2988 s->ctor)) {
2989 /*
2990 * Relocate free pointer after the object if it is not
2991 * permitted to overwrite the first word of the object on
2992 * kmem_cache_free.
2993 *
2994 * This is the case if we do RCU, have a constructor or
2995 * destructor or are poisoning the objects.
2996 */
2997 s->offset = size;
2998 size += sizeof(void *);
2999 }
3000
3001 #ifdef CONFIG_SLUB_DEBUG
3002 if (flags & SLAB_STORE_USER)
3003 /*
3004 * Need to store information about allocs and frees after
3005 * the object.
3006 */
3007 size += 2 * sizeof(struct track);
3008
3009 if (flags & SLAB_RED_ZONE)
3010 /*
3011 * Add some empty padding so that we can catch
3012 * overwrites from earlier objects rather than let
3013 * tracking information or the free pointer be
3014 * corrupted if a user writes before the start
3015 * of the object.
3016 */
3017 size += sizeof(void *);
3018 #endif
3019
3020 /*
3021 * SLUB stores one object immediately after another beginning from
3022 * offset 0. In order to align the objects we have to simply size
3023 * each object to conform to the alignment.
3024 */
3025 size = ALIGN(size, s->align);
3026 s->size = size;
3027 if (forced_order >= 0)
3028 order = forced_order;
3029 else
3030 order = calculate_order(size, s->reserved);
3031
3032 if (order < 0)
3033 return 0;
3034
3035 s->allocflags = 0;
3036 if (order)
3037 s->allocflags |= __GFP_COMP;
3038
3039 if (s->flags & SLAB_CACHE_DMA)
3040 s->allocflags |= GFP_DMA;
3041
3042 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3043 s->allocflags |= __GFP_RECLAIMABLE;
3044
3045 /*
3046 * Determine the number of objects per slab
3047 */
3048 s->oo = oo_make(order, size, s->reserved);
3049 s->min = oo_make(get_order(size), size, s->reserved);
3050 if (oo_objects(s->oo) > oo_objects(s->max))
3051 s->max = s->oo;
3052
3053 return !!oo_objects(s->oo);
3054 }
3055
3056 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3057 {
3058 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3059 s->reserved = 0;
3060
3061 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3062 s->reserved = sizeof(struct rcu_head);
3063
3064 if (!calculate_sizes(s, -1))
3065 goto error;
3066 if (disable_higher_order_debug) {
3067 /*
3068 * Disable debugging flags that store metadata if the min slab
3069 * order increased.
3070 */
3071 if (get_order(s->size) > get_order(s->object_size)) {
3072 s->flags &= ~DEBUG_METADATA_FLAGS;
3073 s->offset = 0;
3074 if (!calculate_sizes(s, -1))
3075 goto error;
3076 }
3077 }
3078
3079 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3080 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3081 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3082 /* Enable fast mode */
3083 s->flags |= __CMPXCHG_DOUBLE;
3084 #endif
3085
3086 /*
3087 * The larger the object size is, the more pages we want on the partial
3088 * list to avoid pounding the page allocator excessively.
3089 */
3090 set_min_partial(s, ilog2(s->size) / 2);
3091
3092 /*
3093 * cpu_partial determined the maximum number of objects kept in the
3094 * per cpu partial lists of a processor.
3095 *
3096 * Per cpu partial lists mainly contain slabs that just have one
3097 * object freed. If they are used for allocation then they can be
3098 * filled up again with minimal effort. The slab will never hit the
3099 * per node partial lists and therefore no locking will be required.
3100 *
3101 * This setting also determines
3102 *
3103 * A) The number of objects from per cpu partial slabs dumped to the
3104 * per node list when we reach the limit.
3105 * B) The number of objects in cpu partial slabs to extract from the
3106 * per node list when we run out of per cpu objects. We only fetch
3107 * 50% to keep some capacity around for frees.
3108 */
3109 if (!kmem_cache_has_cpu_partial(s))
3110 s->cpu_partial = 0;
3111 else if (s->size >= PAGE_SIZE)
3112 s->cpu_partial = 2;
3113 else if (s->size >= 1024)
3114 s->cpu_partial = 6;
3115 else if (s->size >= 256)
3116 s->cpu_partial = 13;
3117 else
3118 s->cpu_partial = 30;
3119
3120 #ifdef CONFIG_NUMA
3121 s->remote_node_defrag_ratio = 1000;
3122 #endif
3123 if (!init_kmem_cache_nodes(s))
3124 goto error;
3125
3126 if (alloc_kmem_cache_cpus(s))
3127 return 0;
3128
3129 free_kmem_cache_nodes(s);
3130 error:
3131 if (flags & SLAB_PANIC)
3132 panic("Cannot create slab %s size=%lu realsize=%u "
3133 "order=%u offset=%u flags=%lx\n",
3134 s->name, (unsigned long)s->size, s->size,
3135 oo_order(s->oo), s->offset, flags);
3136 return -EINVAL;
3137 }
3138
3139 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3140 const char *text)
3141 {
3142 #ifdef CONFIG_SLUB_DEBUG
3143 void *addr = page_address(page);
3144 void *p;
3145 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3146 sizeof(long), GFP_ATOMIC);
3147 if (!map)
3148 return;
3149 slab_err(s, page, text, s->name);
3150 slab_lock(page);
3151
3152 get_map(s, page, map);
3153 for_each_object(p, s, addr, page->objects) {
3154
3155 if (!test_bit(slab_index(p, s, addr), map)) {
3156 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3157 print_tracking(s, p);
3158 }
3159 }
3160 slab_unlock(page);
3161 kfree(map);
3162 #endif
3163 }
3164
3165 /*
3166 * Attempt to free all partial slabs on a node.
3167 * This is called from kmem_cache_close(). We must be the last thread
3168 * using the cache and therefore we do not need to lock anymore.
3169 */
3170 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3171 {
3172 struct page *page, *h;
3173
3174 list_for_each_entry_safe(page, h, &n->partial, lru) {
3175 if (!page->inuse) {
3176 __remove_partial(n, page);
3177 discard_slab(s, page);
3178 } else {
3179 list_slab_objects(s, page,
3180 "Objects remaining in %s on kmem_cache_close()");
3181 }
3182 }
3183 }
3184
3185 /*
3186 * Release all resources used by a slab cache.
3187 */
3188 static inline int kmem_cache_close(struct kmem_cache *s)
3189 {
3190 int node;
3191 struct kmem_cache_node *n;
3192
3193 flush_all(s);
3194 /* Attempt to free all objects */
3195 for_each_kmem_cache_node(s, node, n) {
3196 free_partial(s, n);
3197 if (n->nr_partial || slabs_node(s, node))
3198 return 1;
3199 }
3200 free_percpu(s->cpu_slab);
3201 free_kmem_cache_nodes(s);
3202 return 0;
3203 }
3204
3205 int __kmem_cache_shutdown(struct kmem_cache *s)
3206 {
3207 return kmem_cache_close(s);
3208 }
3209
3210 /********************************************************************
3211 * Kmalloc subsystem
3212 *******************************************************************/
3213
3214 static int __init setup_slub_min_order(char *str)
3215 {
3216 get_option(&str, &slub_min_order);
3217
3218 return 1;
3219 }
3220
3221 __setup("slub_min_order=", setup_slub_min_order);
3222
3223 static int __init setup_slub_max_order(char *str)
3224 {
3225 get_option(&str, &slub_max_order);
3226 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3227
3228 return 1;
3229 }
3230
3231 __setup("slub_max_order=", setup_slub_max_order);
3232
3233 static int __init setup_slub_min_objects(char *str)
3234 {
3235 get_option(&str, &slub_min_objects);
3236
3237 return 1;
3238 }
3239
3240 __setup("slub_min_objects=", setup_slub_min_objects);
3241
3242 void *__kmalloc(size_t size, gfp_t flags)
3243 {
3244 struct kmem_cache *s;
3245 void *ret;
3246
3247 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3248 return kmalloc_large(size, flags);
3249
3250 s = kmalloc_slab(size, flags);
3251
3252 if (unlikely(ZERO_OR_NULL_PTR(s)))
3253 return s;
3254
3255 ret = slab_alloc(s, flags, _RET_IP_);
3256
3257 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3258
3259 return ret;
3260 }
3261 EXPORT_SYMBOL(__kmalloc);
3262
3263 #ifdef CONFIG_NUMA
3264 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3265 {
3266 struct page *page;
3267 void *ptr = NULL;
3268
3269 flags |= __GFP_COMP | __GFP_NOTRACK;
3270 page = alloc_kmem_pages_node(node, flags, get_order(size));
3271 if (page)
3272 ptr = page_address(page);
3273
3274 kmalloc_large_node_hook(ptr, size, flags);
3275 return ptr;
3276 }
3277
3278 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3279 {
3280 struct kmem_cache *s;
3281 void *ret;
3282
3283 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3284 ret = kmalloc_large_node(size, flags, node);
3285
3286 trace_kmalloc_node(_RET_IP_, ret,
3287 size, PAGE_SIZE << get_order(size),
3288 flags, node);
3289
3290 return ret;
3291 }
3292
3293 s = kmalloc_slab(size, flags);
3294
3295 if (unlikely(ZERO_OR_NULL_PTR(s)))
3296 return s;
3297
3298 ret = slab_alloc_node(s, flags, node, _RET_IP_);
3299
3300 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3301
3302 return ret;
3303 }
3304 EXPORT_SYMBOL(__kmalloc_node);
3305 #endif
3306
3307 size_t ksize(const void *object)
3308 {
3309 struct page *page;
3310
3311 if (unlikely(object == ZERO_SIZE_PTR))
3312 return 0;
3313
3314 page = virt_to_head_page(object);
3315
3316 if (unlikely(!PageSlab(page))) {
3317 WARN_ON(!PageCompound(page));
3318 return PAGE_SIZE << compound_order(page);
3319 }
3320
3321 return slab_ksize(page->slab_cache);
3322 }
3323 EXPORT_SYMBOL(ksize);
3324
3325 void kfree(const void *x)
3326 {
3327 struct page *page;
3328 void *object = (void *)x;
3329
3330 trace_kfree(_RET_IP_, x);
3331
3332 if (unlikely(ZERO_OR_NULL_PTR(x)))
3333 return;
3334
3335 page = virt_to_head_page(x);
3336 if (unlikely(!PageSlab(page))) {
3337 BUG_ON(!PageCompound(page));
3338 kfree_hook(x);
3339 __free_kmem_pages(page, compound_order(page));
3340 return;
3341 }
3342 slab_free(page->slab_cache, page, object, _RET_IP_);
3343 }
3344 EXPORT_SYMBOL(kfree);
3345
3346 /*
3347 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3348 * the remaining slabs by the number of items in use. The slabs with the
3349 * most items in use come first. New allocations will then fill those up
3350 * and thus they can be removed from the partial lists.
3351 *
3352 * The slabs with the least items are placed last. This results in them
3353 * being allocated from last increasing the chance that the last objects
3354 * are freed in them.
3355 */
3356 int __kmem_cache_shrink(struct kmem_cache *s)
3357 {
3358 int node;
3359 int i;
3360 struct kmem_cache_node *n;
3361 struct page *page;
3362 struct page *t;
3363 int objects = oo_objects(s->max);
3364 struct list_head *slabs_by_inuse =
3365 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3366 unsigned long flags;
3367
3368 if (!slabs_by_inuse)
3369 return -ENOMEM;
3370
3371 flush_all(s);
3372 for_each_kmem_cache_node(s, node, n) {
3373 if (!n->nr_partial)
3374 continue;
3375
3376 for (i = 0; i < objects; i++)
3377 INIT_LIST_HEAD(slabs_by_inuse + i);
3378
3379 spin_lock_irqsave(&n->list_lock, flags);
3380
3381 /*
3382 * Build lists indexed by the items in use in each slab.
3383 *
3384 * Note that concurrent frees may occur while we hold the
3385 * list_lock. page->inuse here is the upper limit.
3386 */
3387 list_for_each_entry_safe(page, t, &n->partial, lru) {
3388 list_move(&page->lru, slabs_by_inuse + page->inuse);
3389 if (!page->inuse)
3390 n->nr_partial--;
3391 }
3392
3393 /*
3394 * Rebuild the partial list with the slabs filled up most
3395 * first and the least used slabs at the end.
3396 */
3397 for (i = objects - 1; i > 0; i--)
3398 list_splice(slabs_by_inuse + i, n->partial.prev);
3399
3400 spin_unlock_irqrestore(&n->list_lock, flags);
3401
3402 /* Release empty slabs */
3403 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3404 discard_slab(s, page);
3405 }
3406
3407 kfree(slabs_by_inuse);
3408 return 0;
3409 }
3410
3411 static int slab_mem_going_offline_callback(void *arg)
3412 {
3413 struct kmem_cache *s;
3414
3415 mutex_lock(&slab_mutex);
3416 list_for_each_entry(s, &slab_caches, list)
3417 __kmem_cache_shrink(s);
3418 mutex_unlock(&slab_mutex);
3419
3420 return 0;
3421 }
3422
3423 static void slab_mem_offline_callback(void *arg)
3424 {
3425 struct kmem_cache_node *n;
3426 struct kmem_cache *s;
3427 struct memory_notify *marg = arg;
3428 int offline_node;
3429
3430 offline_node = marg->status_change_nid_normal;
3431
3432 /*
3433 * If the node still has available memory. we need kmem_cache_node
3434 * for it yet.
3435 */
3436 if (offline_node < 0)
3437 return;
3438
3439 mutex_lock(&slab_mutex);
3440 list_for_each_entry(s, &slab_caches, list) {
3441 n = get_node(s, offline_node);
3442 if (n) {
3443 /*
3444 * if n->nr_slabs > 0, slabs still exist on the node
3445 * that is going down. We were unable to free them,
3446 * and offline_pages() function shouldn't call this
3447 * callback. So, we must fail.
3448 */
3449 BUG_ON(slabs_node(s, offline_node));
3450
3451 s->node[offline_node] = NULL;
3452 kmem_cache_free(kmem_cache_node, n);
3453 }
3454 }
3455 mutex_unlock(&slab_mutex);
3456 }
3457
3458 static int slab_mem_going_online_callback(void *arg)
3459 {
3460 struct kmem_cache_node *n;
3461 struct kmem_cache *s;
3462 struct memory_notify *marg = arg;
3463 int nid = marg->status_change_nid_normal;
3464 int ret = 0;
3465
3466 /*
3467 * If the node's memory is already available, then kmem_cache_node is
3468 * already created. Nothing to do.
3469 */
3470 if (nid < 0)
3471 return 0;
3472
3473 /*
3474 * We are bringing a node online. No memory is available yet. We must
3475 * allocate a kmem_cache_node structure in order to bring the node
3476 * online.
3477 */
3478 mutex_lock(&slab_mutex);
3479 list_for_each_entry(s, &slab_caches, list) {
3480 /*
3481 * XXX: kmem_cache_alloc_node will fallback to other nodes
3482 * since memory is not yet available from the node that
3483 * is brought up.
3484 */
3485 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3486 if (!n) {
3487 ret = -ENOMEM;
3488 goto out;
3489 }
3490 init_kmem_cache_node(n);
3491 s->node[nid] = n;
3492 }
3493 out:
3494 mutex_unlock(&slab_mutex);
3495 return ret;
3496 }
3497
3498 static int slab_memory_callback(struct notifier_block *self,
3499 unsigned long action, void *arg)
3500 {
3501 int ret = 0;
3502
3503 switch (action) {
3504 case MEM_GOING_ONLINE:
3505 ret = slab_mem_going_online_callback(arg);
3506 break;
3507 case MEM_GOING_OFFLINE:
3508 ret = slab_mem_going_offline_callback(arg);
3509 break;
3510 case MEM_OFFLINE:
3511 case MEM_CANCEL_ONLINE:
3512 slab_mem_offline_callback(arg);
3513 break;
3514 case MEM_ONLINE:
3515 case MEM_CANCEL_OFFLINE:
3516 break;
3517 }
3518 if (ret)
3519 ret = notifier_from_errno(ret);
3520 else
3521 ret = NOTIFY_OK;
3522 return ret;
3523 }
3524
3525 static struct notifier_block slab_memory_callback_nb = {
3526 .notifier_call = slab_memory_callback,
3527 .priority = SLAB_CALLBACK_PRI,
3528 };
3529
3530 /********************************************************************
3531 * Basic setup of slabs
3532 *******************************************************************/
3533
3534 /*
3535 * Used for early kmem_cache structures that were allocated using
3536 * the page allocator. Allocate them properly then fix up the pointers
3537 * that may be pointing to the wrong kmem_cache structure.
3538 */
3539
3540 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3541 {
3542 int node;
3543 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3544 struct kmem_cache_node *n;
3545
3546 memcpy(s, static_cache, kmem_cache->object_size);
3547
3548 /*
3549 * This runs very early, and only the boot processor is supposed to be
3550 * up. Even if it weren't true, IRQs are not up so we couldn't fire
3551 * IPIs around.
3552 */
3553 __flush_cpu_slab(s, smp_processor_id());
3554 for_each_kmem_cache_node(s, node, n) {
3555 struct page *p;
3556
3557 list_for_each_entry(p, &n->partial, lru)
3558 p->slab_cache = s;
3559
3560 #ifdef CONFIG_SLUB_DEBUG
3561 list_for_each_entry(p, &n->full, lru)
3562 p->slab_cache = s;
3563 #endif
3564 }
3565 list_add(&s->list, &slab_caches);
3566 return s;
3567 }
3568
3569 void __init kmem_cache_init(void)
3570 {
3571 static __initdata struct kmem_cache boot_kmem_cache,
3572 boot_kmem_cache_node;
3573
3574 if (debug_guardpage_minorder())
3575 slub_max_order = 0;
3576
3577 kmem_cache_node = &boot_kmem_cache_node;
3578 kmem_cache = &boot_kmem_cache;
3579
3580 create_boot_cache(kmem_cache_node, "kmem_cache_node",
3581 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3582
3583 register_hotmemory_notifier(&slab_memory_callback_nb);
3584
3585 /* Able to allocate the per node structures */
3586 slab_state = PARTIAL;
3587
3588 create_boot_cache(kmem_cache, "kmem_cache",
3589 offsetof(struct kmem_cache, node) +
3590 nr_node_ids * sizeof(struct kmem_cache_node *),
3591 SLAB_HWCACHE_ALIGN);
3592
3593 kmem_cache = bootstrap(&boot_kmem_cache);
3594
3595 /*
3596 * Allocate kmem_cache_node properly from the kmem_cache slab.
3597 * kmem_cache_node is separately allocated so no need to
3598 * update any list pointers.
3599 */
3600 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3601
3602 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3603 create_kmalloc_caches(0);
3604
3605 #ifdef CONFIG_SMP
3606 register_cpu_notifier(&slab_notifier);
3607 #endif
3608
3609 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
3610 cache_line_size(),
3611 slub_min_order, slub_max_order, slub_min_objects,
3612 nr_cpu_ids, nr_node_ids);
3613 }
3614
3615 void __init kmem_cache_init_late(void)
3616 {
3617 }
3618
3619 struct kmem_cache *
3620 __kmem_cache_alias(const char *name, size_t size, size_t align,
3621 unsigned long flags, void (*ctor)(void *))
3622 {
3623 struct kmem_cache *s;
3624
3625 s = find_mergeable(size, align, flags, name, ctor);
3626 if (s) {
3627 int i;
3628 struct kmem_cache *c;
3629
3630 s->refcount++;
3631
3632 /*
3633 * Adjust the object sizes so that we clear
3634 * the complete object on kzalloc.
3635 */
3636 s->object_size = max(s->object_size, (int)size);
3637 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3638
3639 for_each_memcg_cache_index(i) {
3640 c = cache_from_memcg_idx(s, i);
3641 if (!c)
3642 continue;
3643 c->object_size = s->object_size;
3644 c->inuse = max_t(int, c->inuse,
3645 ALIGN(size, sizeof(void *)));
3646 }
3647
3648 if (sysfs_slab_alias(s, name)) {
3649 s->refcount--;
3650 s = NULL;
3651 }
3652 }
3653
3654 return s;
3655 }
3656
3657 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3658 {
3659 int err;
3660
3661 err = kmem_cache_open(s, flags);
3662 if (err)
3663 return err;
3664
3665 /* Mutex is not taken during early boot */
3666 if (slab_state <= UP)
3667 return 0;
3668
3669 memcg_propagate_slab_attrs(s);
3670 err = sysfs_slab_add(s);
3671 if (err)
3672 kmem_cache_close(s);
3673
3674 return err;
3675 }
3676
3677 #ifdef CONFIG_SMP
3678 /*
3679 * Use the cpu notifier to insure that the cpu slabs are flushed when
3680 * necessary.
3681 */
3682 static int slab_cpuup_callback(struct notifier_block *nfb,
3683 unsigned long action, void *hcpu)
3684 {
3685 long cpu = (long)hcpu;
3686 struct kmem_cache *s;
3687 unsigned long flags;
3688
3689 switch (action) {
3690 case CPU_UP_CANCELED:
3691 case CPU_UP_CANCELED_FROZEN:
3692 case CPU_DEAD:
3693 case CPU_DEAD_FROZEN:
3694 mutex_lock(&slab_mutex);
3695 list_for_each_entry(s, &slab_caches, list) {
3696 local_irq_save(flags);
3697 __flush_cpu_slab(s, cpu);
3698 local_irq_restore(flags);
3699 }
3700 mutex_unlock(&slab_mutex);
3701 break;
3702 default:
3703 break;
3704 }
3705 return NOTIFY_OK;
3706 }
3707
3708 static struct notifier_block slab_notifier = {
3709 .notifier_call = slab_cpuup_callback
3710 };
3711
3712 #endif
3713
3714 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3715 {
3716 struct kmem_cache *s;
3717 void *ret;
3718
3719 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3720 return kmalloc_large(size, gfpflags);
3721
3722 s = kmalloc_slab(size, gfpflags);
3723
3724 if (unlikely(ZERO_OR_NULL_PTR(s)))
3725 return s;
3726
3727 ret = slab_alloc(s, gfpflags, caller);
3728
3729 /* Honor the call site pointer we received. */
3730 trace_kmalloc(caller, ret, size, s->size, gfpflags);
3731
3732 return ret;
3733 }
3734
3735 #ifdef CONFIG_NUMA
3736 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3737 int node, unsigned long caller)
3738 {
3739 struct kmem_cache *s;
3740 void *ret;
3741
3742 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3743 ret = kmalloc_large_node(size, gfpflags, node);
3744
3745 trace_kmalloc_node(caller, ret,
3746 size, PAGE_SIZE << get_order(size),
3747 gfpflags, node);
3748
3749 return ret;
3750 }
3751
3752 s = kmalloc_slab(size, gfpflags);
3753
3754 if (unlikely(ZERO_OR_NULL_PTR(s)))
3755 return s;
3756
3757 ret = slab_alloc_node(s, gfpflags, node, caller);
3758
3759 /* Honor the call site pointer we received. */
3760 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3761
3762 return ret;
3763 }
3764 #endif
3765
3766 #ifdef CONFIG_SYSFS
3767 static int count_inuse(struct page *page)
3768 {
3769 return page->inuse;
3770 }
3771
3772 static int count_total(struct page *page)
3773 {
3774 return page->objects;
3775 }
3776 #endif
3777
3778 #ifdef CONFIG_SLUB_DEBUG
3779 static int validate_slab(struct kmem_cache *s, struct page *page,
3780 unsigned long *map)
3781 {
3782 void *p;
3783 void *addr = page_address(page);
3784
3785 if (!check_slab(s, page) ||
3786 !on_freelist(s, page, NULL))
3787 return 0;
3788
3789 /* Now we know that a valid freelist exists */
3790 bitmap_zero(map, page->objects);
3791
3792 get_map(s, page, map);
3793 for_each_object(p, s, addr, page->objects) {
3794 if (test_bit(slab_index(p, s, addr), map))
3795 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3796 return 0;
3797 }
3798
3799 for_each_object(p, s, addr, page->objects)
3800 if (!test_bit(slab_index(p, s, addr), map))
3801 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3802 return 0;
3803 return 1;
3804 }
3805
3806 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3807 unsigned long *map)
3808 {
3809 slab_lock(page);
3810 validate_slab(s, page, map);
3811 slab_unlock(page);
3812 }
3813
3814 static int validate_slab_node(struct kmem_cache *s,
3815 struct kmem_cache_node *n, unsigned long *map)
3816 {
3817 unsigned long count = 0;
3818 struct page *page;
3819 unsigned long flags;
3820
3821 spin_lock_irqsave(&n->list_lock, flags);
3822
3823 list_for_each_entry(page, &n->partial, lru) {
3824 validate_slab_slab(s, page, map);
3825 count++;
3826 }
3827 if (count != n->nr_partial)
3828 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
3829 s->name, count, n->nr_partial);
3830
3831 if (!(s->flags & SLAB_STORE_USER))
3832 goto out;
3833
3834 list_for_each_entry(page, &n->full, lru) {
3835 validate_slab_slab(s, page, map);
3836 count++;
3837 }
3838 if (count != atomic_long_read(&n->nr_slabs))
3839 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
3840 s->name, count, atomic_long_read(&n->nr_slabs));
3841
3842 out:
3843 spin_unlock_irqrestore(&n->list_lock, flags);
3844 return count;
3845 }
3846
3847 static long validate_slab_cache(struct kmem_cache *s)
3848 {
3849 int node;
3850 unsigned long count = 0;
3851 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3852 sizeof(unsigned long), GFP_KERNEL);
3853 struct kmem_cache_node *n;
3854
3855 if (!map)
3856 return -ENOMEM;
3857
3858 flush_all(s);
3859 for_each_kmem_cache_node(s, node, n)
3860 count += validate_slab_node(s, n, map);
3861 kfree(map);
3862 return count;
3863 }
3864 /*
3865 * Generate lists of code addresses where slabcache objects are allocated
3866 * and freed.
3867 */
3868
3869 struct location {
3870 unsigned long count;
3871 unsigned long addr;
3872 long long sum_time;
3873 long min_time;
3874 long max_time;
3875 long min_pid;
3876 long max_pid;
3877 DECLARE_BITMAP(cpus, NR_CPUS);
3878 nodemask_t nodes;
3879 };
3880
3881 struct loc_track {
3882 unsigned long max;
3883 unsigned long count;
3884 struct location *loc;
3885 };
3886
3887 static void free_loc_track(struct loc_track *t)
3888 {
3889 if (t->max)
3890 free_pages((unsigned long)t->loc,
3891 get_order(sizeof(struct location) * t->max));
3892 }
3893
3894 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3895 {
3896 struct location *l;
3897 int order;
3898
3899 order = get_order(sizeof(struct location) * max);
3900
3901 l = (void *)__get_free_pages(flags, order);
3902 if (!l)
3903 return 0;
3904
3905 if (t->count) {
3906 memcpy(l, t->loc, sizeof(struct location) * t->count);
3907 free_loc_track(t);
3908 }
3909 t->max = max;
3910 t->loc = l;
3911 return 1;
3912 }
3913
3914 static int add_location(struct loc_track *t, struct kmem_cache *s,
3915 const struct track *track)
3916 {
3917 long start, end, pos;
3918 struct location *l;
3919 unsigned long caddr;
3920 unsigned long age = jiffies - track->when;
3921
3922 start = -1;
3923 end = t->count;
3924
3925 for ( ; ; ) {
3926 pos = start + (end - start + 1) / 2;
3927
3928 /*
3929 * There is nothing at "end". If we end up there
3930 * we need to add something to before end.
3931 */
3932 if (pos == end)
3933 break;
3934
3935 caddr = t->loc[pos].addr;
3936 if (track->addr == caddr) {
3937
3938 l = &t->loc[pos];
3939 l->count++;
3940 if (track->when) {
3941 l->sum_time += age;
3942 if (age < l->min_time)
3943 l->min_time = age;
3944 if (age > l->max_time)
3945 l->max_time = age;
3946
3947 if (track->pid < l->min_pid)
3948 l->min_pid = track->pid;
3949 if (track->pid > l->max_pid)
3950 l->max_pid = track->pid;
3951
3952 cpumask_set_cpu(track->cpu,
3953 to_cpumask(l->cpus));
3954 }
3955 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3956 return 1;
3957 }
3958
3959 if (track->addr < caddr)
3960 end = pos;
3961 else
3962 start = pos;
3963 }
3964
3965 /*
3966 * Not found. Insert new tracking element.
3967 */
3968 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3969 return 0;
3970
3971 l = t->loc + pos;
3972 if (pos < t->count)
3973 memmove(l + 1, l,
3974 (t->count - pos) * sizeof(struct location));
3975 t->count++;
3976 l->count = 1;
3977 l->addr = track->addr;
3978 l->sum_time = age;
3979 l->min_time = age;
3980 l->max_time = age;
3981 l->min_pid = track->pid;
3982 l->max_pid = track->pid;
3983 cpumask_clear(to_cpumask(l->cpus));
3984 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
3985 nodes_clear(l->nodes);
3986 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3987 return 1;
3988 }
3989
3990 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3991 struct page *page, enum track_item alloc,
3992 unsigned long *map)
3993 {
3994 void *addr = page_address(page);
3995 void *p;
3996
3997 bitmap_zero(map, page->objects);
3998 get_map(s, page, map);
3999
4000 for_each_object(p, s, addr, page->objects)
4001 if (!test_bit(slab_index(p, s, addr), map))
4002 add_location(t, s, get_track(s, p, alloc));
4003 }
4004
4005 static int list_locations(struct kmem_cache *s, char *buf,
4006 enum track_item alloc)
4007 {
4008 int len = 0;
4009 unsigned long i;
4010 struct loc_track t = { 0, 0, NULL };
4011 int node;
4012 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4013 sizeof(unsigned long), GFP_KERNEL);
4014 struct kmem_cache_node *n;
4015
4016 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4017 GFP_TEMPORARY)) {
4018 kfree(map);
4019 return sprintf(buf, "Out of memory\n");
4020 }
4021 /* Push back cpu slabs */
4022 flush_all(s);
4023
4024 for_each_kmem_cache_node(s, node, n) {
4025 unsigned long flags;
4026 struct page *page;
4027
4028 if (!atomic_long_read(&n->nr_slabs))
4029 continue;
4030
4031 spin_lock_irqsave(&n->list_lock, flags);
4032 list_for_each_entry(page, &n->partial, lru)
4033 process_slab(&t, s, page, alloc, map);
4034 list_for_each_entry(page, &n->full, lru)
4035 process_slab(&t, s, page, alloc, map);
4036 spin_unlock_irqrestore(&n->list_lock, flags);
4037 }
4038
4039 for (i = 0; i < t.count; i++) {
4040 struct location *l = &t.loc[i];
4041
4042 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4043 break;
4044 len += sprintf(buf + len, "%7ld ", l->count);
4045
4046 if (l->addr)
4047 len += sprintf(buf + len, "%pS", (void *)l->addr);
4048 else
4049 len += sprintf(buf + len, "<not-available>");
4050
4051 if (l->sum_time != l->min_time) {
4052 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4053 l->min_time,
4054 (long)div_u64(l->sum_time, l->count),
4055 l->max_time);
4056 } else
4057 len += sprintf(buf + len, " age=%ld",
4058 l->min_time);
4059
4060 if (l->min_pid != l->max_pid)
4061 len += sprintf(buf + len, " pid=%ld-%ld",
4062 l->min_pid, l->max_pid);
4063 else
4064 len += sprintf(buf + len, " pid=%ld",
4065 l->min_pid);
4066
4067 if (num_online_cpus() > 1 &&
4068 !cpumask_empty(to_cpumask(l->cpus)) &&
4069 len < PAGE_SIZE - 60) {
4070 len += sprintf(buf + len, " cpus=");
4071 len += cpulist_scnprintf(buf + len,
4072 PAGE_SIZE - len - 50,
4073 to_cpumask(l->cpus));
4074 }
4075
4076 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4077 len < PAGE_SIZE - 60) {
4078 len += sprintf(buf + len, " nodes=");
4079 len += nodelist_scnprintf(buf + len,
4080 PAGE_SIZE - len - 50,
4081 l->nodes);
4082 }
4083
4084 len += sprintf(buf + len, "\n");
4085 }
4086
4087 free_loc_track(&t);
4088 kfree(map);
4089 if (!t.count)
4090 len += sprintf(buf, "No data\n");
4091 return len;
4092 }
4093 #endif
4094
4095 #ifdef SLUB_RESILIENCY_TEST
4096 static void __init resiliency_test(void)
4097 {
4098 u8 *p;
4099
4100 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4101
4102 pr_err("SLUB resiliency testing\n");
4103 pr_err("-----------------------\n");
4104 pr_err("A. Corruption after allocation\n");
4105
4106 p = kzalloc(16, GFP_KERNEL);
4107 p[16] = 0x12;
4108 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4109 p + 16);
4110
4111 validate_slab_cache(kmalloc_caches[4]);
4112
4113 /* Hmmm... The next two are dangerous */
4114 p = kzalloc(32, GFP_KERNEL);
4115 p[32 + sizeof(void *)] = 0x34;
4116 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4117 p);
4118 pr_err("If allocated object is overwritten then not detectable\n\n");
4119
4120 validate_slab_cache(kmalloc_caches[5]);
4121 p = kzalloc(64, GFP_KERNEL);
4122 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4123 *p = 0x56;
4124 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4125 p);
4126 pr_err("If allocated object is overwritten then not detectable\n\n");
4127 validate_slab_cache(kmalloc_caches[6]);
4128
4129 pr_err("\nB. Corruption after free\n");
4130 p = kzalloc(128, GFP_KERNEL);
4131 kfree(p);
4132 *p = 0x78;
4133 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4134 validate_slab_cache(kmalloc_caches[7]);
4135
4136 p = kzalloc(256, GFP_KERNEL);
4137 kfree(p);
4138 p[50] = 0x9a;
4139 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4140 validate_slab_cache(kmalloc_caches[8]);
4141
4142 p = kzalloc(512, GFP_KERNEL);
4143 kfree(p);
4144 p[512] = 0xab;
4145 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4146 validate_slab_cache(kmalloc_caches[9]);
4147 }
4148 #else
4149 #ifdef CONFIG_SYSFS
4150 static void resiliency_test(void) {};
4151 #endif
4152 #endif
4153
4154 #ifdef CONFIG_SYSFS
4155 enum slab_stat_type {
4156 SL_ALL, /* All slabs */
4157 SL_PARTIAL, /* Only partially allocated slabs */
4158 SL_CPU, /* Only slabs used for cpu caches */
4159 SL_OBJECTS, /* Determine allocated objects not slabs */
4160 SL_TOTAL /* Determine object capacity not slabs */
4161 };
4162
4163 #define SO_ALL (1 << SL_ALL)
4164 #define SO_PARTIAL (1 << SL_PARTIAL)
4165 #define SO_CPU (1 << SL_CPU)
4166 #define SO_OBJECTS (1 << SL_OBJECTS)
4167 #define SO_TOTAL (1 << SL_TOTAL)
4168
4169 static ssize_t show_slab_objects(struct kmem_cache *s,
4170 char *buf, unsigned long flags)
4171 {
4172 unsigned long total = 0;
4173 int node;
4174 int x;
4175 unsigned long *nodes;
4176
4177 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4178 if (!nodes)
4179 return -ENOMEM;
4180
4181 if (flags & SO_CPU) {
4182 int cpu;
4183
4184 for_each_possible_cpu(cpu) {
4185 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4186 cpu);
4187 int node;
4188 struct page *page;
4189
4190 page = ACCESS_ONCE(c->page);
4191 if (!page)
4192 continue;
4193
4194 node = page_to_nid(page);
4195 if (flags & SO_TOTAL)
4196 x = page->objects;
4197 else if (flags & SO_OBJECTS)
4198 x = page->inuse;
4199 else
4200 x = 1;
4201
4202 total += x;
4203 nodes[node] += x;
4204
4205 page = ACCESS_ONCE(c->partial);
4206 if (page) {
4207 node = page_to_nid(page);
4208 if (flags & SO_TOTAL)
4209 WARN_ON_ONCE(1);
4210 else if (flags & SO_OBJECTS)
4211 WARN_ON_ONCE(1);
4212 else
4213 x = page->pages;
4214 total += x;
4215 nodes[node] += x;
4216 }
4217 }
4218 }
4219
4220 get_online_mems();
4221 #ifdef CONFIG_SLUB_DEBUG
4222 if (flags & SO_ALL) {
4223 struct kmem_cache_node *n;
4224
4225 for_each_kmem_cache_node(s, node, n) {
4226
4227 if (flags & SO_TOTAL)
4228 x = atomic_long_read(&n->total_objects);
4229 else if (flags & SO_OBJECTS)
4230 x = atomic_long_read(&n->total_objects) -
4231 count_partial(n, count_free);
4232 else
4233 x = atomic_long_read(&n->nr_slabs);
4234 total += x;
4235 nodes[node] += x;
4236 }
4237
4238 } else
4239 #endif
4240 if (flags & SO_PARTIAL) {
4241 struct kmem_cache_node *n;
4242
4243 for_each_kmem_cache_node(s, node, n) {
4244 if (flags & SO_TOTAL)
4245 x = count_partial(n, count_total);
4246 else if (flags & SO_OBJECTS)
4247 x = count_partial(n, count_inuse);
4248 else
4249 x = n->nr_partial;
4250 total += x;
4251 nodes[node] += x;
4252 }
4253 }
4254 x = sprintf(buf, "%lu", total);
4255 #ifdef CONFIG_NUMA
4256 for (node = 0; node < nr_node_ids; node++)
4257 if (nodes[node])
4258 x += sprintf(buf + x, " N%d=%lu",
4259 node, nodes[node]);
4260 #endif
4261 put_online_mems();
4262 kfree(nodes);
4263 return x + sprintf(buf + x, "\n");
4264 }
4265
4266 #ifdef CONFIG_SLUB_DEBUG
4267 static int any_slab_objects(struct kmem_cache *s)
4268 {
4269 int node;
4270 struct kmem_cache_node *n;
4271
4272 for_each_kmem_cache_node(s, node, n)
4273 if (atomic_long_read(&n->total_objects))
4274 return 1;
4275
4276 return 0;
4277 }
4278 #endif
4279
4280 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4281 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4282
4283 struct slab_attribute {
4284 struct attribute attr;
4285 ssize_t (*show)(struct kmem_cache *s, char *buf);
4286 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4287 };
4288
4289 #define SLAB_ATTR_RO(_name) \
4290 static struct slab_attribute _name##_attr = \
4291 __ATTR(_name, 0400, _name##_show, NULL)
4292
4293 #define SLAB_ATTR(_name) \
4294 static struct slab_attribute _name##_attr = \
4295 __ATTR(_name, 0600, _name##_show, _name##_store)
4296
4297 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4298 {
4299 return sprintf(buf, "%d\n", s->size);
4300 }
4301 SLAB_ATTR_RO(slab_size);
4302
4303 static ssize_t align_show(struct kmem_cache *s, char *buf)
4304 {
4305 return sprintf(buf, "%d\n", s->align);
4306 }
4307 SLAB_ATTR_RO(align);
4308
4309 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4310 {
4311 return sprintf(buf, "%d\n", s->object_size);
4312 }
4313 SLAB_ATTR_RO(object_size);
4314
4315 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4316 {
4317 return sprintf(buf, "%d\n", oo_objects(s->oo));
4318 }
4319 SLAB_ATTR_RO(objs_per_slab);
4320
4321 static ssize_t order_store(struct kmem_cache *s,
4322 const char *buf, size_t length)
4323 {
4324 unsigned long order;
4325 int err;
4326
4327 err = kstrtoul(buf, 10, &order);
4328 if (err)
4329 return err;
4330
4331 if (order > slub_max_order || order < slub_min_order)
4332 return -EINVAL;
4333
4334 calculate_sizes(s, order);
4335 return length;
4336 }
4337
4338 static ssize_t order_show(struct kmem_cache *s, char *buf)
4339 {
4340 return sprintf(buf, "%d\n", oo_order(s->oo));
4341 }
4342 SLAB_ATTR(order);
4343
4344 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4345 {
4346 return sprintf(buf, "%lu\n", s->min_partial);
4347 }
4348
4349 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4350 size_t length)
4351 {
4352 unsigned long min;
4353 int err;
4354
4355 err = kstrtoul(buf, 10, &min);
4356 if (err)
4357 return err;
4358
4359 set_min_partial(s, min);
4360 return length;
4361 }
4362 SLAB_ATTR(min_partial);
4363
4364 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4365 {
4366 return sprintf(buf, "%u\n", s->cpu_partial);
4367 }
4368
4369 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4370 size_t length)
4371 {
4372 unsigned long objects;
4373 int err;
4374
4375 err = kstrtoul(buf, 10, &objects);
4376 if (err)
4377 return err;
4378 if (objects && !kmem_cache_has_cpu_partial(s))
4379 return -EINVAL;
4380
4381 s->cpu_partial = objects;
4382 flush_all(s);
4383 return length;
4384 }
4385 SLAB_ATTR(cpu_partial);
4386
4387 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4388 {
4389 if (!s->ctor)
4390 return 0;
4391 return sprintf(buf, "%pS\n", s->ctor);
4392 }
4393 SLAB_ATTR_RO(ctor);
4394
4395 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4396 {
4397 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
4398 }
4399 SLAB_ATTR_RO(aliases);
4400
4401 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4402 {
4403 return show_slab_objects(s, buf, SO_PARTIAL);
4404 }
4405 SLAB_ATTR_RO(partial);
4406
4407 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4408 {
4409 return show_slab_objects(s, buf, SO_CPU);
4410 }
4411 SLAB_ATTR_RO(cpu_slabs);
4412
4413 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4414 {
4415 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4416 }
4417 SLAB_ATTR_RO(objects);
4418
4419 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4420 {
4421 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4422 }
4423 SLAB_ATTR_RO(objects_partial);
4424
4425 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4426 {
4427 int objects = 0;
4428 int pages = 0;
4429 int cpu;
4430 int len;
4431
4432 for_each_online_cpu(cpu) {
4433 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4434
4435 if (page) {
4436 pages += page->pages;
4437 objects += page->pobjects;
4438 }
4439 }
4440
4441 len = sprintf(buf, "%d(%d)", objects, pages);
4442
4443 #ifdef CONFIG_SMP
4444 for_each_online_cpu(cpu) {
4445 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4446
4447 if (page && len < PAGE_SIZE - 20)
4448 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4449 page->pobjects, page->pages);
4450 }
4451 #endif
4452 return len + sprintf(buf + len, "\n");
4453 }
4454 SLAB_ATTR_RO(slabs_cpu_partial);
4455
4456 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4457 {
4458 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4459 }
4460
4461 static ssize_t reclaim_account_store(struct kmem_cache *s,
4462 const char *buf, size_t length)
4463 {
4464 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4465 if (buf[0] == '1')
4466 s->flags |= SLAB_RECLAIM_ACCOUNT;
4467 return length;
4468 }
4469 SLAB_ATTR(reclaim_account);
4470
4471 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4472 {
4473 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4474 }
4475 SLAB_ATTR_RO(hwcache_align);
4476
4477 #ifdef CONFIG_ZONE_DMA
4478 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4479 {
4480 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4481 }
4482 SLAB_ATTR_RO(cache_dma);
4483 #endif
4484
4485 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4486 {
4487 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4488 }
4489 SLAB_ATTR_RO(destroy_by_rcu);
4490
4491 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4492 {
4493 return sprintf(buf, "%d\n", s->reserved);
4494 }
4495 SLAB_ATTR_RO(reserved);
4496
4497 #ifdef CONFIG_SLUB_DEBUG
4498 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4499 {
4500 return show_slab_objects(s, buf, SO_ALL);
4501 }
4502 SLAB_ATTR_RO(slabs);
4503
4504 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4505 {
4506 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4507 }
4508 SLAB_ATTR_RO(total_objects);
4509
4510 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4511 {
4512 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4513 }
4514
4515 static ssize_t sanity_checks_store(struct kmem_cache *s,
4516 const char *buf, size_t length)
4517 {
4518 s->flags &= ~SLAB_DEBUG_FREE;
4519 if (buf[0] == '1') {
4520 s->flags &= ~__CMPXCHG_DOUBLE;
4521 s->flags |= SLAB_DEBUG_FREE;
4522 }
4523 return length;
4524 }
4525 SLAB_ATTR(sanity_checks);
4526
4527 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4528 {
4529 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4530 }
4531
4532 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4533 size_t length)
4534 {
4535 /*
4536 * Tracing a merged cache is going to give confusing results
4537 * as well as cause other issues like converting a mergeable
4538 * cache into an umergeable one.
4539 */
4540 if (s->refcount > 1)
4541 return -EINVAL;
4542
4543 s->flags &= ~SLAB_TRACE;
4544 if (buf[0] == '1') {
4545 s->flags &= ~__CMPXCHG_DOUBLE;
4546 s->flags |= SLAB_TRACE;
4547 }
4548 return length;
4549 }
4550 SLAB_ATTR(trace);
4551
4552 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4553 {
4554 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4555 }
4556
4557 static ssize_t red_zone_store(struct kmem_cache *s,
4558 const char *buf, size_t length)
4559 {
4560 if (any_slab_objects(s))
4561 return -EBUSY;
4562
4563 s->flags &= ~SLAB_RED_ZONE;
4564 if (buf[0] == '1') {
4565 s->flags &= ~__CMPXCHG_DOUBLE;
4566 s->flags |= SLAB_RED_ZONE;
4567 }
4568 calculate_sizes(s, -1);
4569 return length;
4570 }
4571 SLAB_ATTR(red_zone);
4572
4573 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4574 {
4575 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4576 }
4577
4578 static ssize_t poison_store(struct kmem_cache *s,
4579 const char *buf, size_t length)
4580 {
4581 if (any_slab_objects(s))
4582 return -EBUSY;
4583
4584 s->flags &= ~SLAB_POISON;
4585 if (buf[0] == '1') {
4586 s->flags &= ~__CMPXCHG_DOUBLE;
4587 s->flags |= SLAB_POISON;
4588 }
4589 calculate_sizes(s, -1);
4590 return length;
4591 }
4592 SLAB_ATTR(poison);
4593
4594 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4595 {
4596 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4597 }
4598
4599 static ssize_t store_user_store(struct kmem_cache *s,
4600 const char *buf, size_t length)
4601 {
4602 if (any_slab_objects(s))
4603 return -EBUSY;
4604
4605 s->flags &= ~SLAB_STORE_USER;
4606 if (buf[0] == '1') {
4607 s->flags &= ~__CMPXCHG_DOUBLE;
4608 s->flags |= SLAB_STORE_USER;
4609 }
4610 calculate_sizes(s, -1);
4611 return length;
4612 }
4613 SLAB_ATTR(store_user);
4614
4615 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4616 {
4617 return 0;
4618 }
4619
4620 static ssize_t validate_store(struct kmem_cache *s,
4621 const char *buf, size_t length)
4622 {
4623 int ret = -EINVAL;
4624
4625 if (buf[0] == '1') {
4626 ret = validate_slab_cache(s);
4627 if (ret >= 0)
4628 ret = length;
4629 }
4630 return ret;
4631 }
4632 SLAB_ATTR(validate);
4633
4634 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4635 {
4636 if (!(s->flags & SLAB_STORE_USER))
4637 return -ENOSYS;
4638 return list_locations(s, buf, TRACK_ALLOC);
4639 }
4640 SLAB_ATTR_RO(alloc_calls);
4641
4642 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4643 {
4644 if (!(s->flags & SLAB_STORE_USER))
4645 return -ENOSYS;
4646 return list_locations(s, buf, TRACK_FREE);
4647 }
4648 SLAB_ATTR_RO(free_calls);
4649 #endif /* CONFIG_SLUB_DEBUG */
4650
4651 #ifdef CONFIG_FAILSLAB
4652 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4653 {
4654 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4655 }
4656
4657 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4658 size_t length)
4659 {
4660 if (s->refcount > 1)
4661 return -EINVAL;
4662
4663 s->flags &= ~SLAB_FAILSLAB;
4664 if (buf[0] == '1')
4665 s->flags |= SLAB_FAILSLAB;
4666 return length;
4667 }
4668 SLAB_ATTR(failslab);
4669 #endif
4670
4671 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4672 {
4673 return 0;
4674 }
4675
4676 static ssize_t shrink_store(struct kmem_cache *s,
4677 const char *buf, size_t length)
4678 {
4679 if (buf[0] == '1') {
4680 int rc = kmem_cache_shrink(s);
4681
4682 if (rc)
4683 return rc;
4684 } else
4685 return -EINVAL;
4686 return length;
4687 }
4688 SLAB_ATTR(shrink);
4689
4690 #ifdef CONFIG_NUMA
4691 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4692 {
4693 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4694 }
4695
4696 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4697 const char *buf, size_t length)
4698 {
4699 unsigned long ratio;
4700 int err;
4701
4702 err = kstrtoul(buf, 10, &ratio);
4703 if (err)
4704 return err;
4705
4706 if (ratio <= 100)
4707 s->remote_node_defrag_ratio = ratio * 10;
4708
4709 return length;
4710 }
4711 SLAB_ATTR(remote_node_defrag_ratio);
4712 #endif
4713
4714 #ifdef CONFIG_SLUB_STATS
4715 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4716 {
4717 unsigned long sum = 0;
4718 int cpu;
4719 int len;
4720 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4721
4722 if (!data)
4723 return -ENOMEM;
4724
4725 for_each_online_cpu(cpu) {
4726 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4727
4728 data[cpu] = x;
4729 sum += x;
4730 }
4731
4732 len = sprintf(buf, "%lu", sum);
4733
4734 #ifdef CONFIG_SMP
4735 for_each_online_cpu(cpu) {
4736 if (data[cpu] && len < PAGE_SIZE - 20)
4737 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4738 }
4739 #endif
4740 kfree(data);
4741 return len + sprintf(buf + len, "\n");
4742 }
4743
4744 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4745 {
4746 int cpu;
4747
4748 for_each_online_cpu(cpu)
4749 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4750 }
4751
4752 #define STAT_ATTR(si, text) \
4753 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4754 { \
4755 return show_stat(s, buf, si); \
4756 } \
4757 static ssize_t text##_store(struct kmem_cache *s, \
4758 const char *buf, size_t length) \
4759 { \
4760 if (buf[0] != '0') \
4761 return -EINVAL; \
4762 clear_stat(s, si); \
4763 return length; \
4764 } \
4765 SLAB_ATTR(text); \
4766
4767 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4768 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4769 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4770 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4771 STAT_ATTR(FREE_FROZEN, free_frozen);
4772 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4773 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4774 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4775 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4776 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4777 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4778 STAT_ATTR(FREE_SLAB, free_slab);
4779 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4780 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4781 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4782 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4783 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4784 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4785 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4786 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4787 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4788 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4789 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4790 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
4791 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
4792 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
4793 #endif
4794
4795 static struct attribute *slab_attrs[] = {
4796 &slab_size_attr.attr,
4797 &object_size_attr.attr,
4798 &objs_per_slab_attr.attr,
4799 &order_attr.attr,
4800 &min_partial_attr.attr,
4801 &cpu_partial_attr.attr,
4802 &objects_attr.attr,
4803 &objects_partial_attr.attr,
4804 &partial_attr.attr,
4805 &cpu_slabs_attr.attr,
4806 &ctor_attr.attr,
4807 &aliases_attr.attr,
4808 &align_attr.attr,
4809 &hwcache_align_attr.attr,
4810 &reclaim_account_attr.attr,
4811 &destroy_by_rcu_attr.attr,
4812 &shrink_attr.attr,
4813 &reserved_attr.attr,
4814 &slabs_cpu_partial_attr.attr,
4815 #ifdef CONFIG_SLUB_DEBUG
4816 &total_objects_attr.attr,
4817 &slabs_attr.attr,
4818 &sanity_checks_attr.attr,
4819 &trace_attr.attr,
4820 &red_zone_attr.attr,
4821 &poison_attr.attr,
4822 &store_user_attr.attr,
4823 &validate_attr.attr,
4824 &alloc_calls_attr.attr,
4825 &free_calls_attr.attr,
4826 #endif
4827 #ifdef CONFIG_ZONE_DMA
4828 &cache_dma_attr.attr,
4829 #endif
4830 #ifdef CONFIG_NUMA
4831 &remote_node_defrag_ratio_attr.attr,
4832 #endif
4833 #ifdef CONFIG_SLUB_STATS
4834 &alloc_fastpath_attr.attr,
4835 &alloc_slowpath_attr.attr,
4836 &free_fastpath_attr.attr,
4837 &free_slowpath_attr.attr,
4838 &free_frozen_attr.attr,
4839 &free_add_partial_attr.attr,
4840 &free_remove_partial_attr.attr,
4841 &alloc_from_partial_attr.attr,
4842 &alloc_slab_attr.attr,
4843 &alloc_refill_attr.attr,
4844 &alloc_node_mismatch_attr.attr,
4845 &free_slab_attr.attr,
4846 &cpuslab_flush_attr.attr,
4847 &deactivate_full_attr.attr,
4848 &deactivate_empty_attr.attr,
4849 &deactivate_to_head_attr.attr,
4850 &deactivate_to_tail_attr.attr,
4851 &deactivate_remote_frees_attr.attr,
4852 &deactivate_bypass_attr.attr,
4853 &order_fallback_attr.attr,
4854 &cmpxchg_double_fail_attr.attr,
4855 &cmpxchg_double_cpu_fail_attr.attr,
4856 &cpu_partial_alloc_attr.attr,
4857 &cpu_partial_free_attr.attr,
4858 &cpu_partial_node_attr.attr,
4859 &cpu_partial_drain_attr.attr,
4860 #endif
4861 #ifdef CONFIG_FAILSLAB
4862 &failslab_attr.attr,
4863 #endif
4864
4865 NULL
4866 };
4867
4868 static struct attribute_group slab_attr_group = {
4869 .attrs = slab_attrs,
4870 };
4871
4872 static ssize_t slab_attr_show(struct kobject *kobj,
4873 struct attribute *attr,
4874 char *buf)
4875 {
4876 struct slab_attribute *attribute;
4877 struct kmem_cache *s;
4878 int err;
4879
4880 attribute = to_slab_attr(attr);
4881 s = to_slab(kobj);
4882
4883 if (!attribute->show)
4884 return -EIO;
4885
4886 err = attribute->show(s, buf);
4887
4888 return err;
4889 }
4890
4891 static ssize_t slab_attr_store(struct kobject *kobj,
4892 struct attribute *attr,
4893 const char *buf, size_t len)
4894 {
4895 struct slab_attribute *attribute;
4896 struct kmem_cache *s;
4897 int err;
4898
4899 attribute = to_slab_attr(attr);
4900 s = to_slab(kobj);
4901
4902 if (!attribute->store)
4903 return -EIO;
4904
4905 err = attribute->store(s, buf, len);
4906 #ifdef CONFIG_MEMCG_KMEM
4907 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
4908 int i;
4909
4910 mutex_lock(&slab_mutex);
4911 if (s->max_attr_size < len)
4912 s->max_attr_size = len;
4913
4914 /*
4915 * This is a best effort propagation, so this function's return
4916 * value will be determined by the parent cache only. This is
4917 * basically because not all attributes will have a well
4918 * defined semantics for rollbacks - most of the actions will
4919 * have permanent effects.
4920 *
4921 * Returning the error value of any of the children that fail
4922 * is not 100 % defined, in the sense that users seeing the
4923 * error code won't be able to know anything about the state of
4924 * the cache.
4925 *
4926 * Only returning the error code for the parent cache at least
4927 * has well defined semantics. The cache being written to
4928 * directly either failed or succeeded, in which case we loop
4929 * through the descendants with best-effort propagation.
4930 */
4931 for_each_memcg_cache_index(i) {
4932 struct kmem_cache *c = cache_from_memcg_idx(s, i);
4933 if (c)
4934 attribute->store(c, buf, len);
4935 }
4936 mutex_unlock(&slab_mutex);
4937 }
4938 #endif
4939 return err;
4940 }
4941
4942 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
4943 {
4944 #ifdef CONFIG_MEMCG_KMEM
4945 int i;
4946 char *buffer = NULL;
4947 struct kmem_cache *root_cache;
4948
4949 if (is_root_cache(s))
4950 return;
4951
4952 root_cache = s->memcg_params->root_cache;
4953
4954 /*
4955 * This mean this cache had no attribute written. Therefore, no point
4956 * in copying default values around
4957 */
4958 if (!root_cache->max_attr_size)
4959 return;
4960
4961 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
4962 char mbuf[64];
4963 char *buf;
4964 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
4965
4966 if (!attr || !attr->store || !attr->show)
4967 continue;
4968
4969 /*
4970 * It is really bad that we have to allocate here, so we will
4971 * do it only as a fallback. If we actually allocate, though,
4972 * we can just use the allocated buffer until the end.
4973 *
4974 * Most of the slub attributes will tend to be very small in
4975 * size, but sysfs allows buffers up to a page, so they can
4976 * theoretically happen.
4977 */
4978 if (buffer)
4979 buf = buffer;
4980 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
4981 buf = mbuf;
4982 else {
4983 buffer = (char *) get_zeroed_page(GFP_KERNEL);
4984 if (WARN_ON(!buffer))
4985 continue;
4986 buf = buffer;
4987 }
4988
4989 attr->show(root_cache, buf);
4990 attr->store(s, buf, strlen(buf));
4991 }
4992
4993 if (buffer)
4994 free_page((unsigned long)buffer);
4995 #endif
4996 }
4997
4998 static void kmem_cache_release(struct kobject *k)
4999 {
5000 slab_kmem_cache_release(to_slab(k));
5001 }
5002
5003 static const struct sysfs_ops slab_sysfs_ops = {
5004 .show = slab_attr_show,
5005 .store = slab_attr_store,
5006 };
5007
5008 static struct kobj_type slab_ktype = {
5009 .sysfs_ops = &slab_sysfs_ops,
5010 .release = kmem_cache_release,
5011 };
5012
5013 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5014 {
5015 struct kobj_type *ktype = get_ktype(kobj);
5016
5017 if (ktype == &slab_ktype)
5018 return 1;
5019 return 0;
5020 }
5021
5022 static const struct kset_uevent_ops slab_uevent_ops = {
5023 .filter = uevent_filter,
5024 };
5025
5026 static struct kset *slab_kset;
5027
5028 static inline struct kset *cache_kset(struct kmem_cache *s)
5029 {
5030 #ifdef CONFIG_MEMCG_KMEM
5031 if (!is_root_cache(s))
5032 return s->memcg_params->root_cache->memcg_kset;
5033 #endif
5034 return slab_kset;
5035 }
5036
5037 #define ID_STR_LENGTH 64
5038
5039 /* Create a unique string id for a slab cache:
5040 *
5041 * Format :[flags-]size
5042 */
5043 static char *create_unique_id(struct kmem_cache *s)
5044 {
5045 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5046 char *p = name;
5047
5048 BUG_ON(!name);
5049
5050 *p++ = ':';
5051 /*
5052 * First flags affecting slabcache operations. We will only
5053 * get here for aliasable slabs so we do not need to support
5054 * too many flags. The flags here must cover all flags that
5055 * are matched during merging to guarantee that the id is
5056 * unique.
5057 */
5058 if (s->flags & SLAB_CACHE_DMA)
5059 *p++ = 'd';
5060 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5061 *p++ = 'a';
5062 if (s->flags & SLAB_DEBUG_FREE)
5063 *p++ = 'F';
5064 if (!(s->flags & SLAB_NOTRACK))
5065 *p++ = 't';
5066 if (p != name + 1)
5067 *p++ = '-';
5068 p += sprintf(p, "%07d", s->size);
5069
5070 BUG_ON(p > name + ID_STR_LENGTH - 1);
5071 return name;
5072 }
5073
5074 static int sysfs_slab_add(struct kmem_cache *s)
5075 {
5076 int err;
5077 const char *name;
5078 int unmergeable = slab_unmergeable(s);
5079
5080 if (unmergeable) {
5081 /*
5082 * Slabcache can never be merged so we can use the name proper.
5083 * This is typically the case for debug situations. In that
5084 * case we can catch duplicate names easily.
5085 */
5086 sysfs_remove_link(&slab_kset->kobj, s->name);
5087 name = s->name;
5088 } else {
5089 /*
5090 * Create a unique name for the slab as a target
5091 * for the symlinks.
5092 */
5093 name = create_unique_id(s);
5094 }
5095
5096 s->kobj.kset = cache_kset(s);
5097 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5098 if (err)
5099 goto out_put_kobj;
5100
5101 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5102 if (err)
5103 goto out_del_kobj;
5104
5105 #ifdef CONFIG_MEMCG_KMEM
5106 if (is_root_cache(s)) {
5107 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5108 if (!s->memcg_kset) {
5109 err = -ENOMEM;
5110 goto out_del_kobj;
5111 }
5112 }
5113 #endif
5114
5115 kobject_uevent(&s->kobj, KOBJ_ADD);
5116 if (!unmergeable) {
5117 /* Setup first alias */
5118 sysfs_slab_alias(s, s->name);
5119 }
5120 out:
5121 if (!unmergeable)
5122 kfree(name);
5123 return err;
5124 out_del_kobj:
5125 kobject_del(&s->kobj);
5126 out_put_kobj:
5127 kobject_put(&s->kobj);
5128 goto out;
5129 }
5130
5131 void sysfs_slab_remove(struct kmem_cache *s)
5132 {
5133 if (slab_state < FULL)
5134 /*
5135 * Sysfs has not been setup yet so no need to remove the
5136 * cache from sysfs.
5137 */
5138 return;
5139
5140 #ifdef CONFIG_MEMCG_KMEM
5141 kset_unregister(s->memcg_kset);
5142 #endif
5143 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5144 kobject_del(&s->kobj);
5145 kobject_put(&s->kobj);
5146 }
5147
5148 /*
5149 * Need to buffer aliases during bootup until sysfs becomes
5150 * available lest we lose that information.
5151 */
5152 struct saved_alias {
5153 struct kmem_cache *s;
5154 const char *name;
5155 struct saved_alias *next;
5156 };
5157
5158 static struct saved_alias *alias_list;
5159
5160 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5161 {
5162 struct saved_alias *al;
5163
5164 if (slab_state == FULL) {
5165 /*
5166 * If we have a leftover link then remove it.
5167 */
5168 sysfs_remove_link(&slab_kset->kobj, name);
5169 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5170 }
5171
5172 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5173 if (!al)
5174 return -ENOMEM;
5175
5176 al->s = s;
5177 al->name = name;
5178 al->next = alias_list;
5179 alias_list = al;
5180 return 0;
5181 }
5182
5183 static int __init slab_sysfs_init(void)
5184 {
5185 struct kmem_cache *s;
5186 int err;
5187
5188 mutex_lock(&slab_mutex);
5189
5190 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5191 if (!slab_kset) {
5192 mutex_unlock(&slab_mutex);
5193 pr_err("Cannot register slab subsystem.\n");
5194 return -ENOSYS;
5195 }
5196
5197 slab_state = FULL;
5198
5199 list_for_each_entry(s, &slab_caches, list) {
5200 err = sysfs_slab_add(s);
5201 if (err)
5202 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5203 s->name);
5204 }
5205
5206 while (alias_list) {
5207 struct saved_alias *al = alias_list;
5208
5209 alias_list = alias_list->next;
5210 err = sysfs_slab_alias(al->s, al->name);
5211 if (err)
5212 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5213 al->name);
5214 kfree(al);
5215 }
5216
5217 mutex_unlock(&slab_mutex);
5218 resiliency_test();
5219 return 0;
5220 }
5221
5222 __initcall(slab_sysfs_init);
5223 #endif /* CONFIG_SYSFS */
5224
5225 /*
5226 * The /proc/slabinfo ABI
5227 */
5228 #ifdef CONFIG_SLABINFO
5229 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5230 {
5231 unsigned long nr_slabs = 0;
5232 unsigned long nr_objs = 0;
5233 unsigned long nr_free = 0;
5234 int node;
5235 struct kmem_cache_node *n;
5236
5237 for_each_kmem_cache_node(s, node, n) {
5238 nr_slabs += node_nr_slabs(n);
5239 nr_objs += node_nr_objs(n);
5240 nr_free += count_partial(n, count_free);
5241 }
5242
5243 sinfo->active_objs = nr_objs - nr_free;
5244 sinfo->num_objs = nr_objs;
5245 sinfo->active_slabs = nr_slabs;
5246 sinfo->num_slabs = nr_slabs;
5247 sinfo->objects_per_slab = oo_objects(s->oo);
5248 sinfo->cache_order = oo_order(s->oo);
5249 }
5250
5251 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5252 {
5253 }
5254
5255 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5256 size_t count, loff_t *ppos)
5257 {
5258 return -EIO;
5259 }
5260 #endif /* CONFIG_SLABINFO */
This page took 0.138107 seconds and 5 git commands to generate.