slab: infrastructure for bulk object allocation and freeing
[deliverable/linux.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
10 */
11
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include "slab.h"
20 #include <linux/proc_fs.h>
21 #include <linux/notifier.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/kmemcheck.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/debugobjects.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memory.h>
32 #include <linux/math64.h>
33 #include <linux/fault-inject.h>
34 #include <linux/stacktrace.h>
35 #include <linux/prefetch.h>
36 #include <linux/memcontrol.h>
37
38 #include <trace/events/kmem.h>
39
40 #include "internal.h"
41
42 /*
43 * Lock order:
44 * 1. slab_mutex (Global Mutex)
45 * 2. node->list_lock
46 * 3. slab_lock(page) (Only on some arches and for debugging)
47 *
48 * slab_mutex
49 *
50 * The role of the slab_mutex is to protect the list of all the slabs
51 * and to synchronize major metadata changes to slab cache structures.
52 *
53 * The slab_lock is only used for debugging and on arches that do not
54 * have the ability to do a cmpxchg_double. It only protects the second
55 * double word in the page struct. Meaning
56 * A. page->freelist -> List of object free in a page
57 * B. page->counters -> Counters of objects
58 * C. page->frozen -> frozen state
59 *
60 * If a slab is frozen then it is exempt from list management. It is not
61 * on any list. The processor that froze the slab is the one who can
62 * perform list operations on the page. Other processors may put objects
63 * onto the freelist but the processor that froze the slab is the only
64 * one that can retrieve the objects from the page's freelist.
65 *
66 * The list_lock protects the partial and full list on each node and
67 * the partial slab counter. If taken then no new slabs may be added or
68 * removed from the lists nor make the number of partial slabs be modified.
69 * (Note that the total number of slabs is an atomic value that may be
70 * modified without taking the list lock).
71 *
72 * The list_lock is a centralized lock and thus we avoid taking it as
73 * much as possible. As long as SLUB does not have to handle partial
74 * slabs, operations can continue without any centralized lock. F.e.
75 * allocating a long series of objects that fill up slabs does not require
76 * the list lock.
77 * Interrupts are disabled during allocation and deallocation in order to
78 * make the slab allocator safe to use in the context of an irq. In addition
79 * interrupts are disabled to ensure that the processor does not change
80 * while handling per_cpu slabs, due to kernel preemption.
81 *
82 * SLUB assigns one slab for allocation to each processor.
83 * Allocations only occur from these slabs called cpu slabs.
84 *
85 * Slabs with free elements are kept on a partial list and during regular
86 * operations no list for full slabs is used. If an object in a full slab is
87 * freed then the slab will show up again on the partial lists.
88 * We track full slabs for debugging purposes though because otherwise we
89 * cannot scan all objects.
90 *
91 * Slabs are freed when they become empty. Teardown and setup is
92 * minimal so we rely on the page allocators per cpu caches for
93 * fast frees and allocs.
94 *
95 * Overloading of page flags that are otherwise used for LRU management.
96 *
97 * PageActive The slab is frozen and exempt from list processing.
98 * This means that the slab is dedicated to a purpose
99 * such as satisfying allocations for a specific
100 * processor. Objects may be freed in the slab while
101 * it is frozen but slab_free will then skip the usual
102 * list operations. It is up to the processor holding
103 * the slab to integrate the slab into the slab lists
104 * when the slab is no longer needed.
105 *
106 * One use of this flag is to mark slabs that are
107 * used for allocations. Then such a slab becomes a cpu
108 * slab. The cpu slab may be equipped with an additional
109 * freelist that allows lockless access to
110 * free objects in addition to the regular freelist
111 * that requires the slab lock.
112 *
113 * PageError Slab requires special handling due to debug
114 * options set. This moves slab handling out of
115 * the fast path and disables lockless freelists.
116 */
117
118 static inline int kmem_cache_debug(struct kmem_cache *s)
119 {
120 #ifdef CONFIG_SLUB_DEBUG
121 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
122 #else
123 return 0;
124 #endif
125 }
126
127 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
128 {
129 #ifdef CONFIG_SLUB_CPU_PARTIAL
130 return !kmem_cache_debug(s);
131 #else
132 return false;
133 #endif
134 }
135
136 /*
137 * Issues still to be resolved:
138 *
139 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
140 *
141 * - Variable sizing of the per node arrays
142 */
143
144 /* Enable to test recovery from slab corruption on boot */
145 #undef SLUB_RESILIENCY_TEST
146
147 /* Enable to log cmpxchg failures */
148 #undef SLUB_DEBUG_CMPXCHG
149
150 /*
151 * Mininum number of partial slabs. These will be left on the partial
152 * lists even if they are empty. kmem_cache_shrink may reclaim them.
153 */
154 #define MIN_PARTIAL 5
155
156 /*
157 * Maximum number of desirable partial slabs.
158 * The existence of more partial slabs makes kmem_cache_shrink
159 * sort the partial list by the number of objects in use.
160 */
161 #define MAX_PARTIAL 10
162
163 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
164 SLAB_POISON | SLAB_STORE_USER)
165
166 /*
167 * Debugging flags that require metadata to be stored in the slab. These get
168 * disabled when slub_debug=O is used and a cache's min order increases with
169 * metadata.
170 */
171 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
172
173 #define OO_SHIFT 16
174 #define OO_MASK ((1 << OO_SHIFT) - 1)
175 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
176
177 /* Internal SLUB flags */
178 #define __OBJECT_POISON 0x80000000UL /* Poison object */
179 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
180
181 #ifdef CONFIG_SMP
182 static struct notifier_block slab_notifier;
183 #endif
184
185 /*
186 * Tracking user of a slab.
187 */
188 #define TRACK_ADDRS_COUNT 16
189 struct track {
190 unsigned long addr; /* Called from address */
191 #ifdef CONFIG_STACKTRACE
192 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
193 #endif
194 int cpu; /* Was running on cpu */
195 int pid; /* Pid context */
196 unsigned long when; /* When did the operation occur */
197 };
198
199 enum track_item { TRACK_ALLOC, TRACK_FREE };
200
201 #ifdef CONFIG_SYSFS
202 static int sysfs_slab_add(struct kmem_cache *);
203 static int sysfs_slab_alias(struct kmem_cache *, const char *);
204 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
205 #else
206 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
207 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
208 { return 0; }
209 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
210 #endif
211
212 static inline void stat(const struct kmem_cache *s, enum stat_item si)
213 {
214 #ifdef CONFIG_SLUB_STATS
215 /*
216 * The rmw is racy on a preemptible kernel but this is acceptable, so
217 * avoid this_cpu_add()'s irq-disable overhead.
218 */
219 raw_cpu_inc(s->cpu_slab->stat[si]);
220 #endif
221 }
222
223 /********************************************************************
224 * Core slab cache functions
225 *******************************************************************/
226
227 /* Verify that a pointer has an address that is valid within a slab page */
228 static inline int check_valid_pointer(struct kmem_cache *s,
229 struct page *page, const void *object)
230 {
231 void *base;
232
233 if (!object)
234 return 1;
235
236 base = page_address(page);
237 if (object < base || object >= base + page->objects * s->size ||
238 (object - base) % s->size) {
239 return 0;
240 }
241
242 return 1;
243 }
244
245 static inline void *get_freepointer(struct kmem_cache *s, void *object)
246 {
247 return *(void **)(object + s->offset);
248 }
249
250 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
251 {
252 prefetch(object + s->offset);
253 }
254
255 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
256 {
257 void *p;
258
259 #ifdef CONFIG_DEBUG_PAGEALLOC
260 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
261 #else
262 p = get_freepointer(s, object);
263 #endif
264 return p;
265 }
266
267 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
268 {
269 *(void **)(object + s->offset) = fp;
270 }
271
272 /* Loop over all objects in a slab */
273 #define for_each_object(__p, __s, __addr, __objects) \
274 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
275 __p += (__s)->size)
276
277 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
278 for (__p = (__addr), __idx = 1; __idx <= __objects;\
279 __p += (__s)->size, __idx++)
280
281 /* Determine object index from a given position */
282 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
283 {
284 return (p - addr) / s->size;
285 }
286
287 static inline size_t slab_ksize(const struct kmem_cache *s)
288 {
289 #ifdef CONFIG_SLUB_DEBUG
290 /*
291 * Debugging requires use of the padding between object
292 * and whatever may come after it.
293 */
294 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
295 return s->object_size;
296
297 #endif
298 /*
299 * If we have the need to store the freelist pointer
300 * back there or track user information then we can
301 * only use the space before that information.
302 */
303 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
304 return s->inuse;
305 /*
306 * Else we can use all the padding etc for the allocation
307 */
308 return s->size;
309 }
310
311 static inline int order_objects(int order, unsigned long size, int reserved)
312 {
313 return ((PAGE_SIZE << order) - reserved) / size;
314 }
315
316 static inline struct kmem_cache_order_objects oo_make(int order,
317 unsigned long size, int reserved)
318 {
319 struct kmem_cache_order_objects x = {
320 (order << OO_SHIFT) + order_objects(order, size, reserved)
321 };
322
323 return x;
324 }
325
326 static inline int oo_order(struct kmem_cache_order_objects x)
327 {
328 return x.x >> OO_SHIFT;
329 }
330
331 static inline int oo_objects(struct kmem_cache_order_objects x)
332 {
333 return x.x & OO_MASK;
334 }
335
336 /*
337 * Per slab locking using the pagelock
338 */
339 static __always_inline void slab_lock(struct page *page)
340 {
341 bit_spin_lock(PG_locked, &page->flags);
342 }
343
344 static __always_inline void slab_unlock(struct page *page)
345 {
346 __bit_spin_unlock(PG_locked, &page->flags);
347 }
348
349 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
350 {
351 struct page tmp;
352 tmp.counters = counters_new;
353 /*
354 * page->counters can cover frozen/inuse/objects as well
355 * as page->_count. If we assign to ->counters directly
356 * we run the risk of losing updates to page->_count, so
357 * be careful and only assign to the fields we need.
358 */
359 page->frozen = tmp.frozen;
360 page->inuse = tmp.inuse;
361 page->objects = tmp.objects;
362 }
363
364 /* Interrupts must be disabled (for the fallback code to work right) */
365 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
366 void *freelist_old, unsigned long counters_old,
367 void *freelist_new, unsigned long counters_new,
368 const char *n)
369 {
370 VM_BUG_ON(!irqs_disabled());
371 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
372 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
373 if (s->flags & __CMPXCHG_DOUBLE) {
374 if (cmpxchg_double(&page->freelist, &page->counters,
375 freelist_old, counters_old,
376 freelist_new, counters_new))
377 return true;
378 } else
379 #endif
380 {
381 slab_lock(page);
382 if (page->freelist == freelist_old &&
383 page->counters == counters_old) {
384 page->freelist = freelist_new;
385 set_page_slub_counters(page, counters_new);
386 slab_unlock(page);
387 return true;
388 }
389 slab_unlock(page);
390 }
391
392 cpu_relax();
393 stat(s, CMPXCHG_DOUBLE_FAIL);
394
395 #ifdef SLUB_DEBUG_CMPXCHG
396 pr_info("%s %s: cmpxchg double redo ", n, s->name);
397 #endif
398
399 return false;
400 }
401
402 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
403 void *freelist_old, unsigned long counters_old,
404 void *freelist_new, unsigned long counters_new,
405 const char *n)
406 {
407 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
408 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
409 if (s->flags & __CMPXCHG_DOUBLE) {
410 if (cmpxchg_double(&page->freelist, &page->counters,
411 freelist_old, counters_old,
412 freelist_new, counters_new))
413 return true;
414 } else
415 #endif
416 {
417 unsigned long flags;
418
419 local_irq_save(flags);
420 slab_lock(page);
421 if (page->freelist == freelist_old &&
422 page->counters == counters_old) {
423 page->freelist = freelist_new;
424 set_page_slub_counters(page, counters_new);
425 slab_unlock(page);
426 local_irq_restore(flags);
427 return true;
428 }
429 slab_unlock(page);
430 local_irq_restore(flags);
431 }
432
433 cpu_relax();
434 stat(s, CMPXCHG_DOUBLE_FAIL);
435
436 #ifdef SLUB_DEBUG_CMPXCHG
437 pr_info("%s %s: cmpxchg double redo ", n, s->name);
438 #endif
439
440 return false;
441 }
442
443 #ifdef CONFIG_SLUB_DEBUG
444 /*
445 * Determine a map of object in use on a page.
446 *
447 * Node listlock must be held to guarantee that the page does
448 * not vanish from under us.
449 */
450 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
451 {
452 void *p;
453 void *addr = page_address(page);
454
455 for (p = page->freelist; p; p = get_freepointer(s, p))
456 set_bit(slab_index(p, s, addr), map);
457 }
458
459 /*
460 * Debug settings:
461 */
462 #ifdef CONFIG_SLUB_DEBUG_ON
463 static int slub_debug = DEBUG_DEFAULT_FLAGS;
464 #else
465 static int slub_debug;
466 #endif
467
468 static char *slub_debug_slabs;
469 static int disable_higher_order_debug;
470
471 /*
472 * slub is about to manipulate internal object metadata. This memory lies
473 * outside the range of the allocated object, so accessing it would normally
474 * be reported by kasan as a bounds error. metadata_access_enable() is used
475 * to tell kasan that these accesses are OK.
476 */
477 static inline void metadata_access_enable(void)
478 {
479 kasan_disable_current();
480 }
481
482 static inline void metadata_access_disable(void)
483 {
484 kasan_enable_current();
485 }
486
487 /*
488 * Object debugging
489 */
490 static void print_section(char *text, u8 *addr, unsigned int length)
491 {
492 metadata_access_enable();
493 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
494 length, 1);
495 metadata_access_disable();
496 }
497
498 static struct track *get_track(struct kmem_cache *s, void *object,
499 enum track_item alloc)
500 {
501 struct track *p;
502
503 if (s->offset)
504 p = object + s->offset + sizeof(void *);
505 else
506 p = object + s->inuse;
507
508 return p + alloc;
509 }
510
511 static void set_track(struct kmem_cache *s, void *object,
512 enum track_item alloc, unsigned long addr)
513 {
514 struct track *p = get_track(s, object, alloc);
515
516 if (addr) {
517 #ifdef CONFIG_STACKTRACE
518 struct stack_trace trace;
519 int i;
520
521 trace.nr_entries = 0;
522 trace.max_entries = TRACK_ADDRS_COUNT;
523 trace.entries = p->addrs;
524 trace.skip = 3;
525 metadata_access_enable();
526 save_stack_trace(&trace);
527 metadata_access_disable();
528
529 /* See rant in lockdep.c */
530 if (trace.nr_entries != 0 &&
531 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
532 trace.nr_entries--;
533
534 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
535 p->addrs[i] = 0;
536 #endif
537 p->addr = addr;
538 p->cpu = smp_processor_id();
539 p->pid = current->pid;
540 p->when = jiffies;
541 } else
542 memset(p, 0, sizeof(struct track));
543 }
544
545 static void init_tracking(struct kmem_cache *s, void *object)
546 {
547 if (!(s->flags & SLAB_STORE_USER))
548 return;
549
550 set_track(s, object, TRACK_FREE, 0UL);
551 set_track(s, object, TRACK_ALLOC, 0UL);
552 }
553
554 static void print_track(const char *s, struct track *t)
555 {
556 if (!t->addr)
557 return;
558
559 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
560 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
561 #ifdef CONFIG_STACKTRACE
562 {
563 int i;
564 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
565 if (t->addrs[i])
566 pr_err("\t%pS\n", (void *)t->addrs[i]);
567 else
568 break;
569 }
570 #endif
571 }
572
573 static void print_tracking(struct kmem_cache *s, void *object)
574 {
575 if (!(s->flags & SLAB_STORE_USER))
576 return;
577
578 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
579 print_track("Freed", get_track(s, object, TRACK_FREE));
580 }
581
582 static void print_page_info(struct page *page)
583 {
584 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
585 page, page->objects, page->inuse, page->freelist, page->flags);
586
587 }
588
589 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
590 {
591 struct va_format vaf;
592 va_list args;
593
594 va_start(args, fmt);
595 vaf.fmt = fmt;
596 vaf.va = &args;
597 pr_err("=============================================================================\n");
598 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
599 pr_err("-----------------------------------------------------------------------------\n\n");
600
601 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
602 va_end(args);
603 }
604
605 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
606 {
607 struct va_format vaf;
608 va_list args;
609
610 va_start(args, fmt);
611 vaf.fmt = fmt;
612 vaf.va = &args;
613 pr_err("FIX %s: %pV\n", s->name, &vaf);
614 va_end(args);
615 }
616
617 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
618 {
619 unsigned int off; /* Offset of last byte */
620 u8 *addr = page_address(page);
621
622 print_tracking(s, p);
623
624 print_page_info(page);
625
626 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
627 p, p - addr, get_freepointer(s, p));
628
629 if (p > addr + 16)
630 print_section("Bytes b4 ", p - 16, 16);
631
632 print_section("Object ", p, min_t(unsigned long, s->object_size,
633 PAGE_SIZE));
634 if (s->flags & SLAB_RED_ZONE)
635 print_section("Redzone ", p + s->object_size,
636 s->inuse - s->object_size);
637
638 if (s->offset)
639 off = s->offset + sizeof(void *);
640 else
641 off = s->inuse;
642
643 if (s->flags & SLAB_STORE_USER)
644 off += 2 * sizeof(struct track);
645
646 if (off != s->size)
647 /* Beginning of the filler is the free pointer */
648 print_section("Padding ", p + off, s->size - off);
649
650 dump_stack();
651 }
652
653 void object_err(struct kmem_cache *s, struct page *page,
654 u8 *object, char *reason)
655 {
656 slab_bug(s, "%s", reason);
657 print_trailer(s, page, object);
658 }
659
660 static void slab_err(struct kmem_cache *s, struct page *page,
661 const char *fmt, ...)
662 {
663 va_list args;
664 char buf[100];
665
666 va_start(args, fmt);
667 vsnprintf(buf, sizeof(buf), fmt, args);
668 va_end(args);
669 slab_bug(s, "%s", buf);
670 print_page_info(page);
671 dump_stack();
672 }
673
674 static void init_object(struct kmem_cache *s, void *object, u8 val)
675 {
676 u8 *p = object;
677
678 if (s->flags & __OBJECT_POISON) {
679 memset(p, POISON_FREE, s->object_size - 1);
680 p[s->object_size - 1] = POISON_END;
681 }
682
683 if (s->flags & SLAB_RED_ZONE)
684 memset(p + s->object_size, val, s->inuse - s->object_size);
685 }
686
687 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
688 void *from, void *to)
689 {
690 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
691 memset(from, data, to - from);
692 }
693
694 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
695 u8 *object, char *what,
696 u8 *start, unsigned int value, unsigned int bytes)
697 {
698 u8 *fault;
699 u8 *end;
700
701 metadata_access_enable();
702 fault = memchr_inv(start, value, bytes);
703 metadata_access_disable();
704 if (!fault)
705 return 1;
706
707 end = start + bytes;
708 while (end > fault && end[-1] == value)
709 end--;
710
711 slab_bug(s, "%s overwritten", what);
712 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
713 fault, end - 1, fault[0], value);
714 print_trailer(s, page, object);
715
716 restore_bytes(s, what, value, fault, end);
717 return 0;
718 }
719
720 /*
721 * Object layout:
722 *
723 * object address
724 * Bytes of the object to be managed.
725 * If the freepointer may overlay the object then the free
726 * pointer is the first word of the object.
727 *
728 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
729 * 0xa5 (POISON_END)
730 *
731 * object + s->object_size
732 * Padding to reach word boundary. This is also used for Redzoning.
733 * Padding is extended by another word if Redzoning is enabled and
734 * object_size == inuse.
735 *
736 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
737 * 0xcc (RED_ACTIVE) for objects in use.
738 *
739 * object + s->inuse
740 * Meta data starts here.
741 *
742 * A. Free pointer (if we cannot overwrite object on free)
743 * B. Tracking data for SLAB_STORE_USER
744 * C. Padding to reach required alignment boundary or at mininum
745 * one word if debugging is on to be able to detect writes
746 * before the word boundary.
747 *
748 * Padding is done using 0x5a (POISON_INUSE)
749 *
750 * object + s->size
751 * Nothing is used beyond s->size.
752 *
753 * If slabcaches are merged then the object_size and inuse boundaries are mostly
754 * ignored. And therefore no slab options that rely on these boundaries
755 * may be used with merged slabcaches.
756 */
757
758 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
759 {
760 unsigned long off = s->inuse; /* The end of info */
761
762 if (s->offset)
763 /* Freepointer is placed after the object. */
764 off += sizeof(void *);
765
766 if (s->flags & SLAB_STORE_USER)
767 /* We also have user information there */
768 off += 2 * sizeof(struct track);
769
770 if (s->size == off)
771 return 1;
772
773 return check_bytes_and_report(s, page, p, "Object padding",
774 p + off, POISON_INUSE, s->size - off);
775 }
776
777 /* Check the pad bytes at the end of a slab page */
778 static int slab_pad_check(struct kmem_cache *s, struct page *page)
779 {
780 u8 *start;
781 u8 *fault;
782 u8 *end;
783 int length;
784 int remainder;
785
786 if (!(s->flags & SLAB_POISON))
787 return 1;
788
789 start = page_address(page);
790 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
791 end = start + length;
792 remainder = length % s->size;
793 if (!remainder)
794 return 1;
795
796 metadata_access_enable();
797 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
798 metadata_access_disable();
799 if (!fault)
800 return 1;
801 while (end > fault && end[-1] == POISON_INUSE)
802 end--;
803
804 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
805 print_section("Padding ", end - remainder, remainder);
806
807 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
808 return 0;
809 }
810
811 static int check_object(struct kmem_cache *s, struct page *page,
812 void *object, u8 val)
813 {
814 u8 *p = object;
815 u8 *endobject = object + s->object_size;
816
817 if (s->flags & SLAB_RED_ZONE) {
818 if (!check_bytes_and_report(s, page, object, "Redzone",
819 endobject, val, s->inuse - s->object_size))
820 return 0;
821 } else {
822 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
823 check_bytes_and_report(s, page, p, "Alignment padding",
824 endobject, POISON_INUSE,
825 s->inuse - s->object_size);
826 }
827 }
828
829 if (s->flags & SLAB_POISON) {
830 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
831 (!check_bytes_and_report(s, page, p, "Poison", p,
832 POISON_FREE, s->object_size - 1) ||
833 !check_bytes_and_report(s, page, p, "Poison",
834 p + s->object_size - 1, POISON_END, 1)))
835 return 0;
836 /*
837 * check_pad_bytes cleans up on its own.
838 */
839 check_pad_bytes(s, page, p);
840 }
841
842 if (!s->offset && val == SLUB_RED_ACTIVE)
843 /*
844 * Object and freepointer overlap. Cannot check
845 * freepointer while object is allocated.
846 */
847 return 1;
848
849 /* Check free pointer validity */
850 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
851 object_err(s, page, p, "Freepointer corrupt");
852 /*
853 * No choice but to zap it and thus lose the remainder
854 * of the free objects in this slab. May cause
855 * another error because the object count is now wrong.
856 */
857 set_freepointer(s, p, NULL);
858 return 0;
859 }
860 return 1;
861 }
862
863 static int check_slab(struct kmem_cache *s, struct page *page)
864 {
865 int maxobj;
866
867 VM_BUG_ON(!irqs_disabled());
868
869 if (!PageSlab(page)) {
870 slab_err(s, page, "Not a valid slab page");
871 return 0;
872 }
873
874 maxobj = order_objects(compound_order(page), s->size, s->reserved);
875 if (page->objects > maxobj) {
876 slab_err(s, page, "objects %u > max %u",
877 page->objects, maxobj);
878 return 0;
879 }
880 if (page->inuse > page->objects) {
881 slab_err(s, page, "inuse %u > max %u",
882 page->inuse, page->objects);
883 return 0;
884 }
885 /* Slab_pad_check fixes things up after itself */
886 slab_pad_check(s, page);
887 return 1;
888 }
889
890 /*
891 * Determine if a certain object on a page is on the freelist. Must hold the
892 * slab lock to guarantee that the chains are in a consistent state.
893 */
894 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
895 {
896 int nr = 0;
897 void *fp;
898 void *object = NULL;
899 int max_objects;
900
901 fp = page->freelist;
902 while (fp && nr <= page->objects) {
903 if (fp == search)
904 return 1;
905 if (!check_valid_pointer(s, page, fp)) {
906 if (object) {
907 object_err(s, page, object,
908 "Freechain corrupt");
909 set_freepointer(s, object, NULL);
910 } else {
911 slab_err(s, page, "Freepointer corrupt");
912 page->freelist = NULL;
913 page->inuse = page->objects;
914 slab_fix(s, "Freelist cleared");
915 return 0;
916 }
917 break;
918 }
919 object = fp;
920 fp = get_freepointer(s, object);
921 nr++;
922 }
923
924 max_objects = order_objects(compound_order(page), s->size, s->reserved);
925 if (max_objects > MAX_OBJS_PER_PAGE)
926 max_objects = MAX_OBJS_PER_PAGE;
927
928 if (page->objects != max_objects) {
929 slab_err(s, page, "Wrong number of objects. Found %d but "
930 "should be %d", page->objects, max_objects);
931 page->objects = max_objects;
932 slab_fix(s, "Number of objects adjusted.");
933 }
934 if (page->inuse != page->objects - nr) {
935 slab_err(s, page, "Wrong object count. Counter is %d but "
936 "counted were %d", page->inuse, page->objects - nr);
937 page->inuse = page->objects - nr;
938 slab_fix(s, "Object count adjusted.");
939 }
940 return search == NULL;
941 }
942
943 static void trace(struct kmem_cache *s, struct page *page, void *object,
944 int alloc)
945 {
946 if (s->flags & SLAB_TRACE) {
947 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
948 s->name,
949 alloc ? "alloc" : "free",
950 object, page->inuse,
951 page->freelist);
952
953 if (!alloc)
954 print_section("Object ", (void *)object,
955 s->object_size);
956
957 dump_stack();
958 }
959 }
960
961 /*
962 * Tracking of fully allocated slabs for debugging purposes.
963 */
964 static void add_full(struct kmem_cache *s,
965 struct kmem_cache_node *n, struct page *page)
966 {
967 if (!(s->flags & SLAB_STORE_USER))
968 return;
969
970 lockdep_assert_held(&n->list_lock);
971 list_add(&page->lru, &n->full);
972 }
973
974 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
975 {
976 if (!(s->flags & SLAB_STORE_USER))
977 return;
978
979 lockdep_assert_held(&n->list_lock);
980 list_del(&page->lru);
981 }
982
983 /* Tracking of the number of slabs for debugging purposes */
984 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
985 {
986 struct kmem_cache_node *n = get_node(s, node);
987
988 return atomic_long_read(&n->nr_slabs);
989 }
990
991 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
992 {
993 return atomic_long_read(&n->nr_slabs);
994 }
995
996 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
997 {
998 struct kmem_cache_node *n = get_node(s, node);
999
1000 /*
1001 * May be called early in order to allocate a slab for the
1002 * kmem_cache_node structure. Solve the chicken-egg
1003 * dilemma by deferring the increment of the count during
1004 * bootstrap (see early_kmem_cache_node_alloc).
1005 */
1006 if (likely(n)) {
1007 atomic_long_inc(&n->nr_slabs);
1008 atomic_long_add(objects, &n->total_objects);
1009 }
1010 }
1011 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1012 {
1013 struct kmem_cache_node *n = get_node(s, node);
1014
1015 atomic_long_dec(&n->nr_slabs);
1016 atomic_long_sub(objects, &n->total_objects);
1017 }
1018
1019 /* Object debug checks for alloc/free paths */
1020 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1021 void *object)
1022 {
1023 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1024 return;
1025
1026 init_object(s, object, SLUB_RED_INACTIVE);
1027 init_tracking(s, object);
1028 }
1029
1030 static noinline int alloc_debug_processing(struct kmem_cache *s,
1031 struct page *page,
1032 void *object, unsigned long addr)
1033 {
1034 if (!check_slab(s, page))
1035 goto bad;
1036
1037 if (!check_valid_pointer(s, page, object)) {
1038 object_err(s, page, object, "Freelist Pointer check fails");
1039 goto bad;
1040 }
1041
1042 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1043 goto bad;
1044
1045 /* Success perform special debug activities for allocs */
1046 if (s->flags & SLAB_STORE_USER)
1047 set_track(s, object, TRACK_ALLOC, addr);
1048 trace(s, page, object, 1);
1049 init_object(s, object, SLUB_RED_ACTIVE);
1050 return 1;
1051
1052 bad:
1053 if (PageSlab(page)) {
1054 /*
1055 * If this is a slab page then lets do the best we can
1056 * to avoid issues in the future. Marking all objects
1057 * as used avoids touching the remaining objects.
1058 */
1059 slab_fix(s, "Marking all objects used");
1060 page->inuse = page->objects;
1061 page->freelist = NULL;
1062 }
1063 return 0;
1064 }
1065
1066 static noinline struct kmem_cache_node *free_debug_processing(
1067 struct kmem_cache *s, struct page *page, void *object,
1068 unsigned long addr, unsigned long *flags)
1069 {
1070 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1071
1072 spin_lock_irqsave(&n->list_lock, *flags);
1073 slab_lock(page);
1074
1075 if (!check_slab(s, page))
1076 goto fail;
1077
1078 if (!check_valid_pointer(s, page, object)) {
1079 slab_err(s, page, "Invalid object pointer 0x%p", object);
1080 goto fail;
1081 }
1082
1083 if (on_freelist(s, page, object)) {
1084 object_err(s, page, object, "Object already free");
1085 goto fail;
1086 }
1087
1088 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1089 goto out;
1090
1091 if (unlikely(s != page->slab_cache)) {
1092 if (!PageSlab(page)) {
1093 slab_err(s, page, "Attempt to free object(0x%p) "
1094 "outside of slab", object);
1095 } else if (!page->slab_cache) {
1096 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1097 object);
1098 dump_stack();
1099 } else
1100 object_err(s, page, object,
1101 "page slab pointer corrupt.");
1102 goto fail;
1103 }
1104
1105 if (s->flags & SLAB_STORE_USER)
1106 set_track(s, object, TRACK_FREE, addr);
1107 trace(s, page, object, 0);
1108 init_object(s, object, SLUB_RED_INACTIVE);
1109 out:
1110 slab_unlock(page);
1111 /*
1112 * Keep node_lock to preserve integrity
1113 * until the object is actually freed
1114 */
1115 return n;
1116
1117 fail:
1118 slab_unlock(page);
1119 spin_unlock_irqrestore(&n->list_lock, *flags);
1120 slab_fix(s, "Object at 0x%p not freed", object);
1121 return NULL;
1122 }
1123
1124 static int __init setup_slub_debug(char *str)
1125 {
1126 slub_debug = DEBUG_DEFAULT_FLAGS;
1127 if (*str++ != '=' || !*str)
1128 /*
1129 * No options specified. Switch on full debugging.
1130 */
1131 goto out;
1132
1133 if (*str == ',')
1134 /*
1135 * No options but restriction on slabs. This means full
1136 * debugging for slabs matching a pattern.
1137 */
1138 goto check_slabs;
1139
1140 slub_debug = 0;
1141 if (*str == '-')
1142 /*
1143 * Switch off all debugging measures.
1144 */
1145 goto out;
1146
1147 /*
1148 * Determine which debug features should be switched on
1149 */
1150 for (; *str && *str != ','; str++) {
1151 switch (tolower(*str)) {
1152 case 'f':
1153 slub_debug |= SLAB_DEBUG_FREE;
1154 break;
1155 case 'z':
1156 slub_debug |= SLAB_RED_ZONE;
1157 break;
1158 case 'p':
1159 slub_debug |= SLAB_POISON;
1160 break;
1161 case 'u':
1162 slub_debug |= SLAB_STORE_USER;
1163 break;
1164 case 't':
1165 slub_debug |= SLAB_TRACE;
1166 break;
1167 case 'a':
1168 slub_debug |= SLAB_FAILSLAB;
1169 break;
1170 case 'o':
1171 /*
1172 * Avoid enabling debugging on caches if its minimum
1173 * order would increase as a result.
1174 */
1175 disable_higher_order_debug = 1;
1176 break;
1177 default:
1178 pr_err("slub_debug option '%c' unknown. skipped\n",
1179 *str);
1180 }
1181 }
1182
1183 check_slabs:
1184 if (*str == ',')
1185 slub_debug_slabs = str + 1;
1186 out:
1187 return 1;
1188 }
1189
1190 __setup("slub_debug", setup_slub_debug);
1191
1192 unsigned long kmem_cache_flags(unsigned long object_size,
1193 unsigned long flags, const char *name,
1194 void (*ctor)(void *))
1195 {
1196 /*
1197 * Enable debugging if selected on the kernel commandline.
1198 */
1199 if (slub_debug && (!slub_debug_slabs || (name &&
1200 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1201 flags |= slub_debug;
1202
1203 return flags;
1204 }
1205 #else
1206 static inline void setup_object_debug(struct kmem_cache *s,
1207 struct page *page, void *object) {}
1208
1209 static inline int alloc_debug_processing(struct kmem_cache *s,
1210 struct page *page, void *object, unsigned long addr) { return 0; }
1211
1212 static inline struct kmem_cache_node *free_debug_processing(
1213 struct kmem_cache *s, struct page *page, void *object,
1214 unsigned long addr, unsigned long *flags) { return NULL; }
1215
1216 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1217 { return 1; }
1218 static inline int check_object(struct kmem_cache *s, struct page *page,
1219 void *object, u8 val) { return 1; }
1220 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1221 struct page *page) {}
1222 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1223 struct page *page) {}
1224 unsigned long kmem_cache_flags(unsigned long object_size,
1225 unsigned long flags, const char *name,
1226 void (*ctor)(void *))
1227 {
1228 return flags;
1229 }
1230 #define slub_debug 0
1231
1232 #define disable_higher_order_debug 0
1233
1234 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1235 { return 0; }
1236 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1237 { return 0; }
1238 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1239 int objects) {}
1240 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1241 int objects) {}
1242
1243 #endif /* CONFIG_SLUB_DEBUG */
1244
1245 /*
1246 * Hooks for other subsystems that check memory allocations. In a typical
1247 * production configuration these hooks all should produce no code at all.
1248 */
1249 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1250 {
1251 kmemleak_alloc(ptr, size, 1, flags);
1252 kasan_kmalloc_large(ptr, size);
1253 }
1254
1255 static inline void kfree_hook(const void *x)
1256 {
1257 kmemleak_free(x);
1258 kasan_kfree_large(x);
1259 }
1260
1261 static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
1262 gfp_t flags)
1263 {
1264 flags &= gfp_allowed_mask;
1265 lockdep_trace_alloc(flags);
1266 might_sleep_if(flags & __GFP_WAIT);
1267
1268 if (should_failslab(s->object_size, flags, s->flags))
1269 return NULL;
1270
1271 return memcg_kmem_get_cache(s, flags);
1272 }
1273
1274 static inline void slab_post_alloc_hook(struct kmem_cache *s,
1275 gfp_t flags, void *object)
1276 {
1277 flags &= gfp_allowed_mask;
1278 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
1279 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
1280 memcg_kmem_put_cache(s);
1281 kasan_slab_alloc(s, object);
1282 }
1283
1284 static inline void slab_free_hook(struct kmem_cache *s, void *x)
1285 {
1286 kmemleak_free_recursive(x, s->flags);
1287
1288 /*
1289 * Trouble is that we may no longer disable interrupts in the fast path
1290 * So in order to make the debug calls that expect irqs to be
1291 * disabled we need to disable interrupts temporarily.
1292 */
1293 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1294 {
1295 unsigned long flags;
1296
1297 local_irq_save(flags);
1298 kmemcheck_slab_free(s, x, s->object_size);
1299 debug_check_no_locks_freed(x, s->object_size);
1300 local_irq_restore(flags);
1301 }
1302 #endif
1303 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1304 debug_check_no_obj_freed(x, s->object_size);
1305
1306 kasan_slab_free(s, x);
1307 }
1308
1309 /*
1310 * Slab allocation and freeing
1311 */
1312 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1313 gfp_t flags, int node, struct kmem_cache_order_objects oo)
1314 {
1315 struct page *page;
1316 int order = oo_order(oo);
1317
1318 flags |= __GFP_NOTRACK;
1319
1320 if (memcg_charge_slab(s, flags, order))
1321 return NULL;
1322
1323 if (node == NUMA_NO_NODE)
1324 page = alloc_pages(flags, order);
1325 else
1326 page = alloc_pages_exact_node(node, flags, order);
1327
1328 if (!page)
1329 memcg_uncharge_slab(s, order);
1330
1331 return page;
1332 }
1333
1334 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1335 {
1336 struct page *page;
1337 struct kmem_cache_order_objects oo = s->oo;
1338 gfp_t alloc_gfp;
1339
1340 flags &= gfp_allowed_mask;
1341
1342 if (flags & __GFP_WAIT)
1343 local_irq_enable();
1344
1345 flags |= s->allocflags;
1346
1347 /*
1348 * Let the initial higher-order allocation fail under memory pressure
1349 * so we fall-back to the minimum order allocation.
1350 */
1351 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1352
1353 page = alloc_slab_page(s, alloc_gfp, node, oo);
1354 if (unlikely(!page)) {
1355 oo = s->min;
1356 alloc_gfp = flags;
1357 /*
1358 * Allocation may have failed due to fragmentation.
1359 * Try a lower order alloc if possible
1360 */
1361 page = alloc_slab_page(s, alloc_gfp, node, oo);
1362
1363 if (page)
1364 stat(s, ORDER_FALLBACK);
1365 }
1366
1367 if (kmemcheck_enabled && page
1368 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1369 int pages = 1 << oo_order(oo);
1370
1371 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
1372
1373 /*
1374 * Objects from caches that have a constructor don't get
1375 * cleared when they're allocated, so we need to do it here.
1376 */
1377 if (s->ctor)
1378 kmemcheck_mark_uninitialized_pages(page, pages);
1379 else
1380 kmemcheck_mark_unallocated_pages(page, pages);
1381 }
1382
1383 if (flags & __GFP_WAIT)
1384 local_irq_disable();
1385 if (!page)
1386 return NULL;
1387
1388 page->objects = oo_objects(oo);
1389 mod_zone_page_state(page_zone(page),
1390 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1391 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1392 1 << oo_order(oo));
1393
1394 return page;
1395 }
1396
1397 static void setup_object(struct kmem_cache *s, struct page *page,
1398 void *object)
1399 {
1400 setup_object_debug(s, page, object);
1401 if (unlikely(s->ctor)) {
1402 kasan_unpoison_object_data(s, object);
1403 s->ctor(object);
1404 kasan_poison_object_data(s, object);
1405 }
1406 }
1407
1408 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1409 {
1410 struct page *page;
1411 void *start;
1412 void *p;
1413 int order;
1414 int idx;
1415
1416 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1417 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
1418 BUG();
1419 }
1420
1421 page = allocate_slab(s,
1422 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1423 if (!page)
1424 goto out;
1425
1426 order = compound_order(page);
1427 inc_slabs_node(s, page_to_nid(page), page->objects);
1428 page->slab_cache = s;
1429 __SetPageSlab(page);
1430 if (page_is_pfmemalloc(page))
1431 SetPageSlabPfmemalloc(page);
1432
1433 start = page_address(page);
1434
1435 if (unlikely(s->flags & SLAB_POISON))
1436 memset(start, POISON_INUSE, PAGE_SIZE << order);
1437
1438 kasan_poison_slab(page);
1439
1440 for_each_object_idx(p, idx, s, start, page->objects) {
1441 setup_object(s, page, p);
1442 if (likely(idx < page->objects))
1443 set_freepointer(s, p, p + s->size);
1444 else
1445 set_freepointer(s, p, NULL);
1446 }
1447
1448 page->freelist = start;
1449 page->inuse = page->objects;
1450 page->frozen = 1;
1451 out:
1452 return page;
1453 }
1454
1455 static void __free_slab(struct kmem_cache *s, struct page *page)
1456 {
1457 int order = compound_order(page);
1458 int pages = 1 << order;
1459
1460 if (kmem_cache_debug(s)) {
1461 void *p;
1462
1463 slab_pad_check(s, page);
1464 for_each_object(p, s, page_address(page),
1465 page->objects)
1466 check_object(s, page, p, SLUB_RED_INACTIVE);
1467 }
1468
1469 kmemcheck_free_shadow(page, compound_order(page));
1470
1471 mod_zone_page_state(page_zone(page),
1472 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1473 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1474 -pages);
1475
1476 __ClearPageSlabPfmemalloc(page);
1477 __ClearPageSlab(page);
1478
1479 page_mapcount_reset(page);
1480 if (current->reclaim_state)
1481 current->reclaim_state->reclaimed_slab += pages;
1482 __free_pages(page, order);
1483 memcg_uncharge_slab(s, order);
1484 }
1485
1486 #define need_reserve_slab_rcu \
1487 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1488
1489 static void rcu_free_slab(struct rcu_head *h)
1490 {
1491 struct page *page;
1492
1493 if (need_reserve_slab_rcu)
1494 page = virt_to_head_page(h);
1495 else
1496 page = container_of((struct list_head *)h, struct page, lru);
1497
1498 __free_slab(page->slab_cache, page);
1499 }
1500
1501 static void free_slab(struct kmem_cache *s, struct page *page)
1502 {
1503 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1504 struct rcu_head *head;
1505
1506 if (need_reserve_slab_rcu) {
1507 int order = compound_order(page);
1508 int offset = (PAGE_SIZE << order) - s->reserved;
1509
1510 VM_BUG_ON(s->reserved != sizeof(*head));
1511 head = page_address(page) + offset;
1512 } else {
1513 /*
1514 * RCU free overloads the RCU head over the LRU
1515 */
1516 head = (void *)&page->lru;
1517 }
1518
1519 call_rcu(head, rcu_free_slab);
1520 } else
1521 __free_slab(s, page);
1522 }
1523
1524 static void discard_slab(struct kmem_cache *s, struct page *page)
1525 {
1526 dec_slabs_node(s, page_to_nid(page), page->objects);
1527 free_slab(s, page);
1528 }
1529
1530 /*
1531 * Management of partially allocated slabs.
1532 */
1533 static inline void
1534 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1535 {
1536 n->nr_partial++;
1537 if (tail == DEACTIVATE_TO_TAIL)
1538 list_add_tail(&page->lru, &n->partial);
1539 else
1540 list_add(&page->lru, &n->partial);
1541 }
1542
1543 static inline void add_partial(struct kmem_cache_node *n,
1544 struct page *page, int tail)
1545 {
1546 lockdep_assert_held(&n->list_lock);
1547 __add_partial(n, page, tail);
1548 }
1549
1550 static inline void
1551 __remove_partial(struct kmem_cache_node *n, struct page *page)
1552 {
1553 list_del(&page->lru);
1554 n->nr_partial--;
1555 }
1556
1557 static inline void remove_partial(struct kmem_cache_node *n,
1558 struct page *page)
1559 {
1560 lockdep_assert_held(&n->list_lock);
1561 __remove_partial(n, page);
1562 }
1563
1564 /*
1565 * Remove slab from the partial list, freeze it and
1566 * return the pointer to the freelist.
1567 *
1568 * Returns a list of objects or NULL if it fails.
1569 */
1570 static inline void *acquire_slab(struct kmem_cache *s,
1571 struct kmem_cache_node *n, struct page *page,
1572 int mode, int *objects)
1573 {
1574 void *freelist;
1575 unsigned long counters;
1576 struct page new;
1577
1578 lockdep_assert_held(&n->list_lock);
1579
1580 /*
1581 * Zap the freelist and set the frozen bit.
1582 * The old freelist is the list of objects for the
1583 * per cpu allocation list.
1584 */
1585 freelist = page->freelist;
1586 counters = page->counters;
1587 new.counters = counters;
1588 *objects = new.objects - new.inuse;
1589 if (mode) {
1590 new.inuse = page->objects;
1591 new.freelist = NULL;
1592 } else {
1593 new.freelist = freelist;
1594 }
1595
1596 VM_BUG_ON(new.frozen);
1597 new.frozen = 1;
1598
1599 if (!__cmpxchg_double_slab(s, page,
1600 freelist, counters,
1601 new.freelist, new.counters,
1602 "acquire_slab"))
1603 return NULL;
1604
1605 remove_partial(n, page);
1606 WARN_ON(!freelist);
1607 return freelist;
1608 }
1609
1610 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1611 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1612
1613 /*
1614 * Try to allocate a partial slab from a specific node.
1615 */
1616 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1617 struct kmem_cache_cpu *c, gfp_t flags)
1618 {
1619 struct page *page, *page2;
1620 void *object = NULL;
1621 int available = 0;
1622 int objects;
1623
1624 /*
1625 * Racy check. If we mistakenly see no partial slabs then we
1626 * just allocate an empty slab. If we mistakenly try to get a
1627 * partial slab and there is none available then get_partials()
1628 * will return NULL.
1629 */
1630 if (!n || !n->nr_partial)
1631 return NULL;
1632
1633 spin_lock(&n->list_lock);
1634 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1635 void *t;
1636
1637 if (!pfmemalloc_match(page, flags))
1638 continue;
1639
1640 t = acquire_slab(s, n, page, object == NULL, &objects);
1641 if (!t)
1642 break;
1643
1644 available += objects;
1645 if (!object) {
1646 c->page = page;
1647 stat(s, ALLOC_FROM_PARTIAL);
1648 object = t;
1649 } else {
1650 put_cpu_partial(s, page, 0);
1651 stat(s, CPU_PARTIAL_NODE);
1652 }
1653 if (!kmem_cache_has_cpu_partial(s)
1654 || available > s->cpu_partial / 2)
1655 break;
1656
1657 }
1658 spin_unlock(&n->list_lock);
1659 return object;
1660 }
1661
1662 /*
1663 * Get a page from somewhere. Search in increasing NUMA distances.
1664 */
1665 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1666 struct kmem_cache_cpu *c)
1667 {
1668 #ifdef CONFIG_NUMA
1669 struct zonelist *zonelist;
1670 struct zoneref *z;
1671 struct zone *zone;
1672 enum zone_type high_zoneidx = gfp_zone(flags);
1673 void *object;
1674 unsigned int cpuset_mems_cookie;
1675
1676 /*
1677 * The defrag ratio allows a configuration of the tradeoffs between
1678 * inter node defragmentation and node local allocations. A lower
1679 * defrag_ratio increases the tendency to do local allocations
1680 * instead of attempting to obtain partial slabs from other nodes.
1681 *
1682 * If the defrag_ratio is set to 0 then kmalloc() always
1683 * returns node local objects. If the ratio is higher then kmalloc()
1684 * may return off node objects because partial slabs are obtained
1685 * from other nodes and filled up.
1686 *
1687 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1688 * defrag_ratio = 1000) then every (well almost) allocation will
1689 * first attempt to defrag slab caches on other nodes. This means
1690 * scanning over all nodes to look for partial slabs which may be
1691 * expensive if we do it every time we are trying to find a slab
1692 * with available objects.
1693 */
1694 if (!s->remote_node_defrag_ratio ||
1695 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1696 return NULL;
1697
1698 do {
1699 cpuset_mems_cookie = read_mems_allowed_begin();
1700 zonelist = node_zonelist(mempolicy_slab_node(), flags);
1701 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1702 struct kmem_cache_node *n;
1703
1704 n = get_node(s, zone_to_nid(zone));
1705
1706 if (n && cpuset_zone_allowed(zone, flags) &&
1707 n->nr_partial > s->min_partial) {
1708 object = get_partial_node(s, n, c, flags);
1709 if (object) {
1710 /*
1711 * Don't check read_mems_allowed_retry()
1712 * here - if mems_allowed was updated in
1713 * parallel, that was a harmless race
1714 * between allocation and the cpuset
1715 * update
1716 */
1717 return object;
1718 }
1719 }
1720 }
1721 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1722 #endif
1723 return NULL;
1724 }
1725
1726 /*
1727 * Get a partial page, lock it and return it.
1728 */
1729 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1730 struct kmem_cache_cpu *c)
1731 {
1732 void *object;
1733 int searchnode = node;
1734
1735 if (node == NUMA_NO_NODE)
1736 searchnode = numa_mem_id();
1737 else if (!node_present_pages(node))
1738 searchnode = node_to_mem_node(node);
1739
1740 object = get_partial_node(s, get_node(s, searchnode), c, flags);
1741 if (object || node != NUMA_NO_NODE)
1742 return object;
1743
1744 return get_any_partial(s, flags, c);
1745 }
1746
1747 #ifdef CONFIG_PREEMPT
1748 /*
1749 * Calculate the next globally unique transaction for disambiguiation
1750 * during cmpxchg. The transactions start with the cpu number and are then
1751 * incremented by CONFIG_NR_CPUS.
1752 */
1753 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1754 #else
1755 /*
1756 * No preemption supported therefore also no need to check for
1757 * different cpus.
1758 */
1759 #define TID_STEP 1
1760 #endif
1761
1762 static inline unsigned long next_tid(unsigned long tid)
1763 {
1764 return tid + TID_STEP;
1765 }
1766
1767 static inline unsigned int tid_to_cpu(unsigned long tid)
1768 {
1769 return tid % TID_STEP;
1770 }
1771
1772 static inline unsigned long tid_to_event(unsigned long tid)
1773 {
1774 return tid / TID_STEP;
1775 }
1776
1777 static inline unsigned int init_tid(int cpu)
1778 {
1779 return cpu;
1780 }
1781
1782 static inline void note_cmpxchg_failure(const char *n,
1783 const struct kmem_cache *s, unsigned long tid)
1784 {
1785 #ifdef SLUB_DEBUG_CMPXCHG
1786 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1787
1788 pr_info("%s %s: cmpxchg redo ", n, s->name);
1789
1790 #ifdef CONFIG_PREEMPT
1791 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1792 pr_warn("due to cpu change %d -> %d\n",
1793 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1794 else
1795 #endif
1796 if (tid_to_event(tid) != tid_to_event(actual_tid))
1797 pr_warn("due to cpu running other code. Event %ld->%ld\n",
1798 tid_to_event(tid), tid_to_event(actual_tid));
1799 else
1800 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1801 actual_tid, tid, next_tid(tid));
1802 #endif
1803 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1804 }
1805
1806 static void init_kmem_cache_cpus(struct kmem_cache *s)
1807 {
1808 int cpu;
1809
1810 for_each_possible_cpu(cpu)
1811 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1812 }
1813
1814 /*
1815 * Remove the cpu slab
1816 */
1817 static void deactivate_slab(struct kmem_cache *s, struct page *page,
1818 void *freelist)
1819 {
1820 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1821 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1822 int lock = 0;
1823 enum slab_modes l = M_NONE, m = M_NONE;
1824 void *nextfree;
1825 int tail = DEACTIVATE_TO_HEAD;
1826 struct page new;
1827 struct page old;
1828
1829 if (page->freelist) {
1830 stat(s, DEACTIVATE_REMOTE_FREES);
1831 tail = DEACTIVATE_TO_TAIL;
1832 }
1833
1834 /*
1835 * Stage one: Free all available per cpu objects back
1836 * to the page freelist while it is still frozen. Leave the
1837 * last one.
1838 *
1839 * There is no need to take the list->lock because the page
1840 * is still frozen.
1841 */
1842 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1843 void *prior;
1844 unsigned long counters;
1845
1846 do {
1847 prior = page->freelist;
1848 counters = page->counters;
1849 set_freepointer(s, freelist, prior);
1850 new.counters = counters;
1851 new.inuse--;
1852 VM_BUG_ON(!new.frozen);
1853
1854 } while (!__cmpxchg_double_slab(s, page,
1855 prior, counters,
1856 freelist, new.counters,
1857 "drain percpu freelist"));
1858
1859 freelist = nextfree;
1860 }
1861
1862 /*
1863 * Stage two: Ensure that the page is unfrozen while the
1864 * list presence reflects the actual number of objects
1865 * during unfreeze.
1866 *
1867 * We setup the list membership and then perform a cmpxchg
1868 * with the count. If there is a mismatch then the page
1869 * is not unfrozen but the page is on the wrong list.
1870 *
1871 * Then we restart the process which may have to remove
1872 * the page from the list that we just put it on again
1873 * because the number of objects in the slab may have
1874 * changed.
1875 */
1876 redo:
1877
1878 old.freelist = page->freelist;
1879 old.counters = page->counters;
1880 VM_BUG_ON(!old.frozen);
1881
1882 /* Determine target state of the slab */
1883 new.counters = old.counters;
1884 if (freelist) {
1885 new.inuse--;
1886 set_freepointer(s, freelist, old.freelist);
1887 new.freelist = freelist;
1888 } else
1889 new.freelist = old.freelist;
1890
1891 new.frozen = 0;
1892
1893 if (!new.inuse && n->nr_partial >= s->min_partial)
1894 m = M_FREE;
1895 else if (new.freelist) {
1896 m = M_PARTIAL;
1897 if (!lock) {
1898 lock = 1;
1899 /*
1900 * Taking the spinlock removes the possiblity
1901 * that acquire_slab() will see a slab page that
1902 * is frozen
1903 */
1904 spin_lock(&n->list_lock);
1905 }
1906 } else {
1907 m = M_FULL;
1908 if (kmem_cache_debug(s) && !lock) {
1909 lock = 1;
1910 /*
1911 * This also ensures that the scanning of full
1912 * slabs from diagnostic functions will not see
1913 * any frozen slabs.
1914 */
1915 spin_lock(&n->list_lock);
1916 }
1917 }
1918
1919 if (l != m) {
1920
1921 if (l == M_PARTIAL)
1922
1923 remove_partial(n, page);
1924
1925 else if (l == M_FULL)
1926
1927 remove_full(s, n, page);
1928
1929 if (m == M_PARTIAL) {
1930
1931 add_partial(n, page, tail);
1932 stat(s, tail);
1933
1934 } else if (m == M_FULL) {
1935
1936 stat(s, DEACTIVATE_FULL);
1937 add_full(s, n, page);
1938
1939 }
1940 }
1941
1942 l = m;
1943 if (!__cmpxchg_double_slab(s, page,
1944 old.freelist, old.counters,
1945 new.freelist, new.counters,
1946 "unfreezing slab"))
1947 goto redo;
1948
1949 if (lock)
1950 spin_unlock(&n->list_lock);
1951
1952 if (m == M_FREE) {
1953 stat(s, DEACTIVATE_EMPTY);
1954 discard_slab(s, page);
1955 stat(s, FREE_SLAB);
1956 }
1957 }
1958
1959 /*
1960 * Unfreeze all the cpu partial slabs.
1961 *
1962 * This function must be called with interrupts disabled
1963 * for the cpu using c (or some other guarantee must be there
1964 * to guarantee no concurrent accesses).
1965 */
1966 static void unfreeze_partials(struct kmem_cache *s,
1967 struct kmem_cache_cpu *c)
1968 {
1969 #ifdef CONFIG_SLUB_CPU_PARTIAL
1970 struct kmem_cache_node *n = NULL, *n2 = NULL;
1971 struct page *page, *discard_page = NULL;
1972
1973 while ((page = c->partial)) {
1974 struct page new;
1975 struct page old;
1976
1977 c->partial = page->next;
1978
1979 n2 = get_node(s, page_to_nid(page));
1980 if (n != n2) {
1981 if (n)
1982 spin_unlock(&n->list_lock);
1983
1984 n = n2;
1985 spin_lock(&n->list_lock);
1986 }
1987
1988 do {
1989
1990 old.freelist = page->freelist;
1991 old.counters = page->counters;
1992 VM_BUG_ON(!old.frozen);
1993
1994 new.counters = old.counters;
1995 new.freelist = old.freelist;
1996
1997 new.frozen = 0;
1998
1999 } while (!__cmpxchg_double_slab(s, page,
2000 old.freelist, old.counters,
2001 new.freelist, new.counters,
2002 "unfreezing slab"));
2003
2004 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2005 page->next = discard_page;
2006 discard_page = page;
2007 } else {
2008 add_partial(n, page, DEACTIVATE_TO_TAIL);
2009 stat(s, FREE_ADD_PARTIAL);
2010 }
2011 }
2012
2013 if (n)
2014 spin_unlock(&n->list_lock);
2015
2016 while (discard_page) {
2017 page = discard_page;
2018 discard_page = discard_page->next;
2019
2020 stat(s, DEACTIVATE_EMPTY);
2021 discard_slab(s, page);
2022 stat(s, FREE_SLAB);
2023 }
2024 #endif
2025 }
2026
2027 /*
2028 * Put a page that was just frozen (in __slab_free) into a partial page
2029 * slot if available. This is done without interrupts disabled and without
2030 * preemption disabled. The cmpxchg is racy and may put the partial page
2031 * onto a random cpus partial slot.
2032 *
2033 * If we did not find a slot then simply move all the partials to the
2034 * per node partial list.
2035 */
2036 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2037 {
2038 #ifdef CONFIG_SLUB_CPU_PARTIAL
2039 struct page *oldpage;
2040 int pages;
2041 int pobjects;
2042
2043 preempt_disable();
2044 do {
2045 pages = 0;
2046 pobjects = 0;
2047 oldpage = this_cpu_read(s->cpu_slab->partial);
2048
2049 if (oldpage) {
2050 pobjects = oldpage->pobjects;
2051 pages = oldpage->pages;
2052 if (drain && pobjects > s->cpu_partial) {
2053 unsigned long flags;
2054 /*
2055 * partial array is full. Move the existing
2056 * set to the per node partial list.
2057 */
2058 local_irq_save(flags);
2059 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2060 local_irq_restore(flags);
2061 oldpage = NULL;
2062 pobjects = 0;
2063 pages = 0;
2064 stat(s, CPU_PARTIAL_DRAIN);
2065 }
2066 }
2067
2068 pages++;
2069 pobjects += page->objects - page->inuse;
2070
2071 page->pages = pages;
2072 page->pobjects = pobjects;
2073 page->next = oldpage;
2074
2075 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2076 != oldpage);
2077 if (unlikely(!s->cpu_partial)) {
2078 unsigned long flags;
2079
2080 local_irq_save(flags);
2081 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2082 local_irq_restore(flags);
2083 }
2084 preempt_enable();
2085 #endif
2086 }
2087
2088 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2089 {
2090 stat(s, CPUSLAB_FLUSH);
2091 deactivate_slab(s, c->page, c->freelist);
2092
2093 c->tid = next_tid(c->tid);
2094 c->page = NULL;
2095 c->freelist = NULL;
2096 }
2097
2098 /*
2099 * Flush cpu slab.
2100 *
2101 * Called from IPI handler with interrupts disabled.
2102 */
2103 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2104 {
2105 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2106
2107 if (likely(c)) {
2108 if (c->page)
2109 flush_slab(s, c);
2110
2111 unfreeze_partials(s, c);
2112 }
2113 }
2114
2115 static void flush_cpu_slab(void *d)
2116 {
2117 struct kmem_cache *s = d;
2118
2119 __flush_cpu_slab(s, smp_processor_id());
2120 }
2121
2122 static bool has_cpu_slab(int cpu, void *info)
2123 {
2124 struct kmem_cache *s = info;
2125 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2126
2127 return c->page || c->partial;
2128 }
2129
2130 static void flush_all(struct kmem_cache *s)
2131 {
2132 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2133 }
2134
2135 /*
2136 * Check if the objects in a per cpu structure fit numa
2137 * locality expectations.
2138 */
2139 static inline int node_match(struct page *page, int node)
2140 {
2141 #ifdef CONFIG_NUMA
2142 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2143 return 0;
2144 #endif
2145 return 1;
2146 }
2147
2148 #ifdef CONFIG_SLUB_DEBUG
2149 static int count_free(struct page *page)
2150 {
2151 return page->objects - page->inuse;
2152 }
2153
2154 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2155 {
2156 return atomic_long_read(&n->total_objects);
2157 }
2158 #endif /* CONFIG_SLUB_DEBUG */
2159
2160 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2161 static unsigned long count_partial(struct kmem_cache_node *n,
2162 int (*get_count)(struct page *))
2163 {
2164 unsigned long flags;
2165 unsigned long x = 0;
2166 struct page *page;
2167
2168 spin_lock_irqsave(&n->list_lock, flags);
2169 list_for_each_entry(page, &n->partial, lru)
2170 x += get_count(page);
2171 spin_unlock_irqrestore(&n->list_lock, flags);
2172 return x;
2173 }
2174 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2175
2176 static noinline void
2177 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2178 {
2179 #ifdef CONFIG_SLUB_DEBUG
2180 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2181 DEFAULT_RATELIMIT_BURST);
2182 int node;
2183 struct kmem_cache_node *n;
2184
2185 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2186 return;
2187
2188 pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2189 nid, gfpflags);
2190 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2191 s->name, s->object_size, s->size, oo_order(s->oo),
2192 oo_order(s->min));
2193
2194 if (oo_order(s->min) > get_order(s->object_size))
2195 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2196 s->name);
2197
2198 for_each_kmem_cache_node(s, node, n) {
2199 unsigned long nr_slabs;
2200 unsigned long nr_objs;
2201 unsigned long nr_free;
2202
2203 nr_free = count_partial(n, count_free);
2204 nr_slabs = node_nr_slabs(n);
2205 nr_objs = node_nr_objs(n);
2206
2207 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2208 node, nr_slabs, nr_objs, nr_free);
2209 }
2210 #endif
2211 }
2212
2213 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2214 int node, struct kmem_cache_cpu **pc)
2215 {
2216 void *freelist;
2217 struct kmem_cache_cpu *c = *pc;
2218 struct page *page;
2219
2220 freelist = get_partial(s, flags, node, c);
2221
2222 if (freelist)
2223 return freelist;
2224
2225 page = new_slab(s, flags, node);
2226 if (page) {
2227 c = raw_cpu_ptr(s->cpu_slab);
2228 if (c->page)
2229 flush_slab(s, c);
2230
2231 /*
2232 * No other reference to the page yet so we can
2233 * muck around with it freely without cmpxchg
2234 */
2235 freelist = page->freelist;
2236 page->freelist = NULL;
2237
2238 stat(s, ALLOC_SLAB);
2239 c->page = page;
2240 *pc = c;
2241 } else
2242 freelist = NULL;
2243
2244 return freelist;
2245 }
2246
2247 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2248 {
2249 if (unlikely(PageSlabPfmemalloc(page)))
2250 return gfp_pfmemalloc_allowed(gfpflags);
2251
2252 return true;
2253 }
2254
2255 /*
2256 * Check the page->freelist of a page and either transfer the freelist to the
2257 * per cpu freelist or deactivate the page.
2258 *
2259 * The page is still frozen if the return value is not NULL.
2260 *
2261 * If this function returns NULL then the page has been unfrozen.
2262 *
2263 * This function must be called with interrupt disabled.
2264 */
2265 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2266 {
2267 struct page new;
2268 unsigned long counters;
2269 void *freelist;
2270
2271 do {
2272 freelist = page->freelist;
2273 counters = page->counters;
2274
2275 new.counters = counters;
2276 VM_BUG_ON(!new.frozen);
2277
2278 new.inuse = page->objects;
2279 new.frozen = freelist != NULL;
2280
2281 } while (!__cmpxchg_double_slab(s, page,
2282 freelist, counters,
2283 NULL, new.counters,
2284 "get_freelist"));
2285
2286 return freelist;
2287 }
2288
2289 /*
2290 * Slow path. The lockless freelist is empty or we need to perform
2291 * debugging duties.
2292 *
2293 * Processing is still very fast if new objects have been freed to the
2294 * regular freelist. In that case we simply take over the regular freelist
2295 * as the lockless freelist and zap the regular freelist.
2296 *
2297 * If that is not working then we fall back to the partial lists. We take the
2298 * first element of the freelist as the object to allocate now and move the
2299 * rest of the freelist to the lockless freelist.
2300 *
2301 * And if we were unable to get a new slab from the partial slab lists then
2302 * we need to allocate a new slab. This is the slowest path since it involves
2303 * a call to the page allocator and the setup of a new slab.
2304 */
2305 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2306 unsigned long addr, struct kmem_cache_cpu *c)
2307 {
2308 void *freelist;
2309 struct page *page;
2310 unsigned long flags;
2311
2312 local_irq_save(flags);
2313 #ifdef CONFIG_PREEMPT
2314 /*
2315 * We may have been preempted and rescheduled on a different
2316 * cpu before disabling interrupts. Need to reload cpu area
2317 * pointer.
2318 */
2319 c = this_cpu_ptr(s->cpu_slab);
2320 #endif
2321
2322 page = c->page;
2323 if (!page)
2324 goto new_slab;
2325 redo:
2326
2327 if (unlikely(!node_match(page, node))) {
2328 int searchnode = node;
2329
2330 if (node != NUMA_NO_NODE && !node_present_pages(node))
2331 searchnode = node_to_mem_node(node);
2332
2333 if (unlikely(!node_match(page, searchnode))) {
2334 stat(s, ALLOC_NODE_MISMATCH);
2335 deactivate_slab(s, page, c->freelist);
2336 c->page = NULL;
2337 c->freelist = NULL;
2338 goto new_slab;
2339 }
2340 }
2341
2342 /*
2343 * By rights, we should be searching for a slab page that was
2344 * PFMEMALLOC but right now, we are losing the pfmemalloc
2345 * information when the page leaves the per-cpu allocator
2346 */
2347 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2348 deactivate_slab(s, page, c->freelist);
2349 c->page = NULL;
2350 c->freelist = NULL;
2351 goto new_slab;
2352 }
2353
2354 /* must check again c->freelist in case of cpu migration or IRQ */
2355 freelist = c->freelist;
2356 if (freelist)
2357 goto load_freelist;
2358
2359 freelist = get_freelist(s, page);
2360
2361 if (!freelist) {
2362 c->page = NULL;
2363 stat(s, DEACTIVATE_BYPASS);
2364 goto new_slab;
2365 }
2366
2367 stat(s, ALLOC_REFILL);
2368
2369 load_freelist:
2370 /*
2371 * freelist is pointing to the list of objects to be used.
2372 * page is pointing to the page from which the objects are obtained.
2373 * That page must be frozen for per cpu allocations to work.
2374 */
2375 VM_BUG_ON(!c->page->frozen);
2376 c->freelist = get_freepointer(s, freelist);
2377 c->tid = next_tid(c->tid);
2378 local_irq_restore(flags);
2379 return freelist;
2380
2381 new_slab:
2382
2383 if (c->partial) {
2384 page = c->page = c->partial;
2385 c->partial = page->next;
2386 stat(s, CPU_PARTIAL_ALLOC);
2387 c->freelist = NULL;
2388 goto redo;
2389 }
2390
2391 freelist = new_slab_objects(s, gfpflags, node, &c);
2392
2393 if (unlikely(!freelist)) {
2394 slab_out_of_memory(s, gfpflags, node);
2395 local_irq_restore(flags);
2396 return NULL;
2397 }
2398
2399 page = c->page;
2400 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2401 goto load_freelist;
2402
2403 /* Only entered in the debug case */
2404 if (kmem_cache_debug(s) &&
2405 !alloc_debug_processing(s, page, freelist, addr))
2406 goto new_slab; /* Slab failed checks. Next slab needed */
2407
2408 deactivate_slab(s, page, get_freepointer(s, freelist));
2409 c->page = NULL;
2410 c->freelist = NULL;
2411 local_irq_restore(flags);
2412 return freelist;
2413 }
2414
2415 /*
2416 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2417 * have the fastpath folded into their functions. So no function call
2418 * overhead for requests that can be satisfied on the fastpath.
2419 *
2420 * The fastpath works by first checking if the lockless freelist can be used.
2421 * If not then __slab_alloc is called for slow processing.
2422 *
2423 * Otherwise we can simply pick the next object from the lockless free list.
2424 */
2425 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2426 gfp_t gfpflags, int node, unsigned long addr)
2427 {
2428 void **object;
2429 struct kmem_cache_cpu *c;
2430 struct page *page;
2431 unsigned long tid;
2432
2433 s = slab_pre_alloc_hook(s, gfpflags);
2434 if (!s)
2435 return NULL;
2436 redo:
2437 /*
2438 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2439 * enabled. We may switch back and forth between cpus while
2440 * reading from one cpu area. That does not matter as long
2441 * as we end up on the original cpu again when doing the cmpxchg.
2442 *
2443 * We should guarantee that tid and kmem_cache are retrieved on
2444 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2445 * to check if it is matched or not.
2446 */
2447 do {
2448 tid = this_cpu_read(s->cpu_slab->tid);
2449 c = raw_cpu_ptr(s->cpu_slab);
2450 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2451 unlikely(tid != READ_ONCE(c->tid)));
2452
2453 /*
2454 * Irqless object alloc/free algorithm used here depends on sequence
2455 * of fetching cpu_slab's data. tid should be fetched before anything
2456 * on c to guarantee that object and page associated with previous tid
2457 * won't be used with current tid. If we fetch tid first, object and
2458 * page could be one associated with next tid and our alloc/free
2459 * request will be failed. In this case, we will retry. So, no problem.
2460 */
2461 barrier();
2462
2463 /*
2464 * The transaction ids are globally unique per cpu and per operation on
2465 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2466 * occurs on the right processor and that there was no operation on the
2467 * linked list in between.
2468 */
2469
2470 object = c->freelist;
2471 page = c->page;
2472 if (unlikely(!object || !node_match(page, node))) {
2473 object = __slab_alloc(s, gfpflags, node, addr, c);
2474 stat(s, ALLOC_SLOWPATH);
2475 } else {
2476 void *next_object = get_freepointer_safe(s, object);
2477
2478 /*
2479 * The cmpxchg will only match if there was no additional
2480 * operation and if we are on the right processor.
2481 *
2482 * The cmpxchg does the following atomically (without lock
2483 * semantics!)
2484 * 1. Relocate first pointer to the current per cpu area.
2485 * 2. Verify that tid and freelist have not been changed
2486 * 3. If they were not changed replace tid and freelist
2487 *
2488 * Since this is without lock semantics the protection is only
2489 * against code executing on this cpu *not* from access by
2490 * other cpus.
2491 */
2492 if (unlikely(!this_cpu_cmpxchg_double(
2493 s->cpu_slab->freelist, s->cpu_slab->tid,
2494 object, tid,
2495 next_object, next_tid(tid)))) {
2496
2497 note_cmpxchg_failure("slab_alloc", s, tid);
2498 goto redo;
2499 }
2500 prefetch_freepointer(s, next_object);
2501 stat(s, ALLOC_FASTPATH);
2502 }
2503
2504 if (unlikely(gfpflags & __GFP_ZERO) && object)
2505 memset(object, 0, s->object_size);
2506
2507 slab_post_alloc_hook(s, gfpflags, object);
2508
2509 return object;
2510 }
2511
2512 static __always_inline void *slab_alloc(struct kmem_cache *s,
2513 gfp_t gfpflags, unsigned long addr)
2514 {
2515 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2516 }
2517
2518 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2519 {
2520 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2521
2522 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2523 s->size, gfpflags);
2524
2525 return ret;
2526 }
2527 EXPORT_SYMBOL(kmem_cache_alloc);
2528
2529 #ifdef CONFIG_TRACING
2530 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2531 {
2532 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2533 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2534 kasan_kmalloc(s, ret, size);
2535 return ret;
2536 }
2537 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2538 #endif
2539
2540 #ifdef CONFIG_NUMA
2541 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2542 {
2543 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2544
2545 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2546 s->object_size, s->size, gfpflags, node);
2547
2548 return ret;
2549 }
2550 EXPORT_SYMBOL(kmem_cache_alloc_node);
2551
2552 #ifdef CONFIG_TRACING
2553 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2554 gfp_t gfpflags,
2555 int node, size_t size)
2556 {
2557 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2558
2559 trace_kmalloc_node(_RET_IP_, ret,
2560 size, s->size, gfpflags, node);
2561
2562 kasan_kmalloc(s, ret, size);
2563 return ret;
2564 }
2565 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2566 #endif
2567 #endif
2568
2569 /*
2570 * Slow path handling. This may still be called frequently since objects
2571 * have a longer lifetime than the cpu slabs in most processing loads.
2572 *
2573 * So we still attempt to reduce cache line usage. Just take the slab
2574 * lock and free the item. If there is no additional partial page
2575 * handling required then we can return immediately.
2576 */
2577 static void __slab_free(struct kmem_cache *s, struct page *page,
2578 void *x, unsigned long addr)
2579 {
2580 void *prior;
2581 void **object = (void *)x;
2582 int was_frozen;
2583 struct page new;
2584 unsigned long counters;
2585 struct kmem_cache_node *n = NULL;
2586 unsigned long uninitialized_var(flags);
2587
2588 stat(s, FREE_SLOWPATH);
2589
2590 if (kmem_cache_debug(s) &&
2591 !(n = free_debug_processing(s, page, x, addr, &flags)))
2592 return;
2593
2594 do {
2595 if (unlikely(n)) {
2596 spin_unlock_irqrestore(&n->list_lock, flags);
2597 n = NULL;
2598 }
2599 prior = page->freelist;
2600 counters = page->counters;
2601 set_freepointer(s, object, prior);
2602 new.counters = counters;
2603 was_frozen = new.frozen;
2604 new.inuse--;
2605 if ((!new.inuse || !prior) && !was_frozen) {
2606
2607 if (kmem_cache_has_cpu_partial(s) && !prior) {
2608
2609 /*
2610 * Slab was on no list before and will be
2611 * partially empty
2612 * We can defer the list move and instead
2613 * freeze it.
2614 */
2615 new.frozen = 1;
2616
2617 } else { /* Needs to be taken off a list */
2618
2619 n = get_node(s, page_to_nid(page));
2620 /*
2621 * Speculatively acquire the list_lock.
2622 * If the cmpxchg does not succeed then we may
2623 * drop the list_lock without any processing.
2624 *
2625 * Otherwise the list_lock will synchronize with
2626 * other processors updating the list of slabs.
2627 */
2628 spin_lock_irqsave(&n->list_lock, flags);
2629
2630 }
2631 }
2632
2633 } while (!cmpxchg_double_slab(s, page,
2634 prior, counters,
2635 object, new.counters,
2636 "__slab_free"));
2637
2638 if (likely(!n)) {
2639
2640 /*
2641 * If we just froze the page then put it onto the
2642 * per cpu partial list.
2643 */
2644 if (new.frozen && !was_frozen) {
2645 put_cpu_partial(s, page, 1);
2646 stat(s, CPU_PARTIAL_FREE);
2647 }
2648 /*
2649 * The list lock was not taken therefore no list
2650 * activity can be necessary.
2651 */
2652 if (was_frozen)
2653 stat(s, FREE_FROZEN);
2654 return;
2655 }
2656
2657 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2658 goto slab_empty;
2659
2660 /*
2661 * Objects left in the slab. If it was not on the partial list before
2662 * then add it.
2663 */
2664 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2665 if (kmem_cache_debug(s))
2666 remove_full(s, n, page);
2667 add_partial(n, page, DEACTIVATE_TO_TAIL);
2668 stat(s, FREE_ADD_PARTIAL);
2669 }
2670 spin_unlock_irqrestore(&n->list_lock, flags);
2671 return;
2672
2673 slab_empty:
2674 if (prior) {
2675 /*
2676 * Slab on the partial list.
2677 */
2678 remove_partial(n, page);
2679 stat(s, FREE_REMOVE_PARTIAL);
2680 } else {
2681 /* Slab must be on the full list */
2682 remove_full(s, n, page);
2683 }
2684
2685 spin_unlock_irqrestore(&n->list_lock, flags);
2686 stat(s, FREE_SLAB);
2687 discard_slab(s, page);
2688 }
2689
2690 /*
2691 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2692 * can perform fastpath freeing without additional function calls.
2693 *
2694 * The fastpath is only possible if we are freeing to the current cpu slab
2695 * of this processor. This typically the case if we have just allocated
2696 * the item before.
2697 *
2698 * If fastpath is not possible then fall back to __slab_free where we deal
2699 * with all sorts of special processing.
2700 */
2701 static __always_inline void slab_free(struct kmem_cache *s,
2702 struct page *page, void *x, unsigned long addr)
2703 {
2704 void **object = (void *)x;
2705 struct kmem_cache_cpu *c;
2706 unsigned long tid;
2707
2708 slab_free_hook(s, x);
2709
2710 redo:
2711 /*
2712 * Determine the currently cpus per cpu slab.
2713 * The cpu may change afterward. However that does not matter since
2714 * data is retrieved via this pointer. If we are on the same cpu
2715 * during the cmpxchg then the free will succeed.
2716 */
2717 do {
2718 tid = this_cpu_read(s->cpu_slab->tid);
2719 c = raw_cpu_ptr(s->cpu_slab);
2720 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2721 unlikely(tid != READ_ONCE(c->tid)));
2722
2723 /* Same with comment on barrier() in slab_alloc_node() */
2724 barrier();
2725
2726 if (likely(page == c->page)) {
2727 set_freepointer(s, object, c->freelist);
2728
2729 if (unlikely(!this_cpu_cmpxchg_double(
2730 s->cpu_slab->freelist, s->cpu_slab->tid,
2731 c->freelist, tid,
2732 object, next_tid(tid)))) {
2733
2734 note_cmpxchg_failure("slab_free", s, tid);
2735 goto redo;
2736 }
2737 stat(s, FREE_FASTPATH);
2738 } else
2739 __slab_free(s, page, x, addr);
2740
2741 }
2742
2743 void kmem_cache_free(struct kmem_cache *s, void *x)
2744 {
2745 s = cache_from_obj(s, x);
2746 if (!s)
2747 return;
2748 slab_free(s, virt_to_head_page(x), x, _RET_IP_);
2749 trace_kmem_cache_free(_RET_IP_, x);
2750 }
2751 EXPORT_SYMBOL(kmem_cache_free);
2752
2753 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
2754 {
2755 __kmem_cache_free_bulk(s, size, p);
2756 }
2757 EXPORT_SYMBOL(kmem_cache_free_bulk);
2758
2759 bool kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
2760 void **p)
2761 {
2762 return __kmem_cache_alloc_bulk(s, flags, size, p);
2763 }
2764 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
2765
2766
2767 /*
2768 * Object placement in a slab is made very easy because we always start at
2769 * offset 0. If we tune the size of the object to the alignment then we can
2770 * get the required alignment by putting one properly sized object after
2771 * another.
2772 *
2773 * Notice that the allocation order determines the sizes of the per cpu
2774 * caches. Each processor has always one slab available for allocations.
2775 * Increasing the allocation order reduces the number of times that slabs
2776 * must be moved on and off the partial lists and is therefore a factor in
2777 * locking overhead.
2778 */
2779
2780 /*
2781 * Mininum / Maximum order of slab pages. This influences locking overhead
2782 * and slab fragmentation. A higher order reduces the number of partial slabs
2783 * and increases the number of allocations possible without having to
2784 * take the list_lock.
2785 */
2786 static int slub_min_order;
2787 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2788 static int slub_min_objects;
2789
2790 /*
2791 * Calculate the order of allocation given an slab object size.
2792 *
2793 * The order of allocation has significant impact on performance and other
2794 * system components. Generally order 0 allocations should be preferred since
2795 * order 0 does not cause fragmentation in the page allocator. Larger objects
2796 * be problematic to put into order 0 slabs because there may be too much
2797 * unused space left. We go to a higher order if more than 1/16th of the slab
2798 * would be wasted.
2799 *
2800 * In order to reach satisfactory performance we must ensure that a minimum
2801 * number of objects is in one slab. Otherwise we may generate too much
2802 * activity on the partial lists which requires taking the list_lock. This is
2803 * less a concern for large slabs though which are rarely used.
2804 *
2805 * slub_max_order specifies the order where we begin to stop considering the
2806 * number of objects in a slab as critical. If we reach slub_max_order then
2807 * we try to keep the page order as low as possible. So we accept more waste
2808 * of space in favor of a small page order.
2809 *
2810 * Higher order allocations also allow the placement of more objects in a
2811 * slab and thereby reduce object handling overhead. If the user has
2812 * requested a higher mininum order then we start with that one instead of
2813 * the smallest order which will fit the object.
2814 */
2815 static inline int slab_order(int size, int min_objects,
2816 int max_order, int fract_leftover, int reserved)
2817 {
2818 int order;
2819 int rem;
2820 int min_order = slub_min_order;
2821
2822 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2823 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2824
2825 for (order = max(min_order,
2826 fls(min_objects * size - 1) - PAGE_SHIFT);
2827 order <= max_order; order++) {
2828
2829 unsigned long slab_size = PAGE_SIZE << order;
2830
2831 if (slab_size < min_objects * size + reserved)
2832 continue;
2833
2834 rem = (slab_size - reserved) % size;
2835
2836 if (rem <= slab_size / fract_leftover)
2837 break;
2838
2839 }
2840
2841 return order;
2842 }
2843
2844 static inline int calculate_order(int size, int reserved)
2845 {
2846 int order;
2847 int min_objects;
2848 int fraction;
2849 int max_objects;
2850
2851 /*
2852 * Attempt to find best configuration for a slab. This
2853 * works by first attempting to generate a layout with
2854 * the best configuration and backing off gradually.
2855 *
2856 * First we reduce the acceptable waste in a slab. Then
2857 * we reduce the minimum objects required in a slab.
2858 */
2859 min_objects = slub_min_objects;
2860 if (!min_objects)
2861 min_objects = 4 * (fls(nr_cpu_ids) + 1);
2862 max_objects = order_objects(slub_max_order, size, reserved);
2863 min_objects = min(min_objects, max_objects);
2864
2865 while (min_objects > 1) {
2866 fraction = 16;
2867 while (fraction >= 4) {
2868 order = slab_order(size, min_objects,
2869 slub_max_order, fraction, reserved);
2870 if (order <= slub_max_order)
2871 return order;
2872 fraction /= 2;
2873 }
2874 min_objects--;
2875 }
2876
2877 /*
2878 * We were unable to place multiple objects in a slab. Now
2879 * lets see if we can place a single object there.
2880 */
2881 order = slab_order(size, 1, slub_max_order, 1, reserved);
2882 if (order <= slub_max_order)
2883 return order;
2884
2885 /*
2886 * Doh this slab cannot be placed using slub_max_order.
2887 */
2888 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2889 if (order < MAX_ORDER)
2890 return order;
2891 return -ENOSYS;
2892 }
2893
2894 static void
2895 init_kmem_cache_node(struct kmem_cache_node *n)
2896 {
2897 n->nr_partial = 0;
2898 spin_lock_init(&n->list_lock);
2899 INIT_LIST_HEAD(&n->partial);
2900 #ifdef CONFIG_SLUB_DEBUG
2901 atomic_long_set(&n->nr_slabs, 0);
2902 atomic_long_set(&n->total_objects, 0);
2903 INIT_LIST_HEAD(&n->full);
2904 #endif
2905 }
2906
2907 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2908 {
2909 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2910 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
2911
2912 /*
2913 * Must align to double word boundary for the double cmpxchg
2914 * instructions to work; see __pcpu_double_call_return_bool().
2915 */
2916 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2917 2 * sizeof(void *));
2918
2919 if (!s->cpu_slab)
2920 return 0;
2921
2922 init_kmem_cache_cpus(s);
2923
2924 return 1;
2925 }
2926
2927 static struct kmem_cache *kmem_cache_node;
2928
2929 /*
2930 * No kmalloc_node yet so do it by hand. We know that this is the first
2931 * slab on the node for this slabcache. There are no concurrent accesses
2932 * possible.
2933 *
2934 * Note that this function only works on the kmem_cache_node
2935 * when allocating for the kmem_cache_node. This is used for bootstrapping
2936 * memory on a fresh node that has no slab structures yet.
2937 */
2938 static void early_kmem_cache_node_alloc(int node)
2939 {
2940 struct page *page;
2941 struct kmem_cache_node *n;
2942
2943 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2944
2945 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2946
2947 BUG_ON(!page);
2948 if (page_to_nid(page) != node) {
2949 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
2950 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
2951 }
2952
2953 n = page->freelist;
2954 BUG_ON(!n);
2955 page->freelist = get_freepointer(kmem_cache_node, n);
2956 page->inuse = 1;
2957 page->frozen = 0;
2958 kmem_cache_node->node[node] = n;
2959 #ifdef CONFIG_SLUB_DEBUG
2960 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2961 init_tracking(kmem_cache_node, n);
2962 #endif
2963 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node));
2964 init_kmem_cache_node(n);
2965 inc_slabs_node(kmem_cache_node, node, page->objects);
2966
2967 /*
2968 * No locks need to be taken here as it has just been
2969 * initialized and there is no concurrent access.
2970 */
2971 __add_partial(n, page, DEACTIVATE_TO_HEAD);
2972 }
2973
2974 static void free_kmem_cache_nodes(struct kmem_cache *s)
2975 {
2976 int node;
2977 struct kmem_cache_node *n;
2978
2979 for_each_kmem_cache_node(s, node, n) {
2980 kmem_cache_free(kmem_cache_node, n);
2981 s->node[node] = NULL;
2982 }
2983 }
2984
2985 static int init_kmem_cache_nodes(struct kmem_cache *s)
2986 {
2987 int node;
2988
2989 for_each_node_state(node, N_NORMAL_MEMORY) {
2990 struct kmem_cache_node *n;
2991
2992 if (slab_state == DOWN) {
2993 early_kmem_cache_node_alloc(node);
2994 continue;
2995 }
2996 n = kmem_cache_alloc_node(kmem_cache_node,
2997 GFP_KERNEL, node);
2998
2999 if (!n) {
3000 free_kmem_cache_nodes(s);
3001 return 0;
3002 }
3003
3004 s->node[node] = n;
3005 init_kmem_cache_node(n);
3006 }
3007 return 1;
3008 }
3009
3010 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3011 {
3012 if (min < MIN_PARTIAL)
3013 min = MIN_PARTIAL;
3014 else if (min > MAX_PARTIAL)
3015 min = MAX_PARTIAL;
3016 s->min_partial = min;
3017 }
3018
3019 /*
3020 * calculate_sizes() determines the order and the distribution of data within
3021 * a slab object.
3022 */
3023 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3024 {
3025 unsigned long flags = s->flags;
3026 unsigned long size = s->object_size;
3027 int order;
3028
3029 /*
3030 * Round up object size to the next word boundary. We can only
3031 * place the free pointer at word boundaries and this determines
3032 * the possible location of the free pointer.
3033 */
3034 size = ALIGN(size, sizeof(void *));
3035
3036 #ifdef CONFIG_SLUB_DEBUG
3037 /*
3038 * Determine if we can poison the object itself. If the user of
3039 * the slab may touch the object after free or before allocation
3040 * then we should never poison the object itself.
3041 */
3042 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
3043 !s->ctor)
3044 s->flags |= __OBJECT_POISON;
3045 else
3046 s->flags &= ~__OBJECT_POISON;
3047
3048
3049 /*
3050 * If we are Redzoning then check if there is some space between the
3051 * end of the object and the free pointer. If not then add an
3052 * additional word to have some bytes to store Redzone information.
3053 */
3054 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3055 size += sizeof(void *);
3056 #endif
3057
3058 /*
3059 * With that we have determined the number of bytes in actual use
3060 * by the object. This is the potential offset to the free pointer.
3061 */
3062 s->inuse = size;
3063
3064 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
3065 s->ctor)) {
3066 /*
3067 * Relocate free pointer after the object if it is not
3068 * permitted to overwrite the first word of the object on
3069 * kmem_cache_free.
3070 *
3071 * This is the case if we do RCU, have a constructor or
3072 * destructor or are poisoning the objects.
3073 */
3074 s->offset = size;
3075 size += sizeof(void *);
3076 }
3077
3078 #ifdef CONFIG_SLUB_DEBUG
3079 if (flags & SLAB_STORE_USER)
3080 /*
3081 * Need to store information about allocs and frees after
3082 * the object.
3083 */
3084 size += 2 * sizeof(struct track);
3085
3086 if (flags & SLAB_RED_ZONE)
3087 /*
3088 * Add some empty padding so that we can catch
3089 * overwrites from earlier objects rather than let
3090 * tracking information or the free pointer be
3091 * corrupted if a user writes before the start
3092 * of the object.
3093 */
3094 size += sizeof(void *);
3095 #endif
3096
3097 /*
3098 * SLUB stores one object immediately after another beginning from
3099 * offset 0. In order to align the objects we have to simply size
3100 * each object to conform to the alignment.
3101 */
3102 size = ALIGN(size, s->align);
3103 s->size = size;
3104 if (forced_order >= 0)
3105 order = forced_order;
3106 else
3107 order = calculate_order(size, s->reserved);
3108
3109 if (order < 0)
3110 return 0;
3111
3112 s->allocflags = 0;
3113 if (order)
3114 s->allocflags |= __GFP_COMP;
3115
3116 if (s->flags & SLAB_CACHE_DMA)
3117 s->allocflags |= GFP_DMA;
3118
3119 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3120 s->allocflags |= __GFP_RECLAIMABLE;
3121
3122 /*
3123 * Determine the number of objects per slab
3124 */
3125 s->oo = oo_make(order, size, s->reserved);
3126 s->min = oo_make(get_order(size), size, s->reserved);
3127 if (oo_objects(s->oo) > oo_objects(s->max))
3128 s->max = s->oo;
3129
3130 return !!oo_objects(s->oo);
3131 }
3132
3133 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3134 {
3135 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3136 s->reserved = 0;
3137
3138 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3139 s->reserved = sizeof(struct rcu_head);
3140
3141 if (!calculate_sizes(s, -1))
3142 goto error;
3143 if (disable_higher_order_debug) {
3144 /*
3145 * Disable debugging flags that store metadata if the min slab
3146 * order increased.
3147 */
3148 if (get_order(s->size) > get_order(s->object_size)) {
3149 s->flags &= ~DEBUG_METADATA_FLAGS;
3150 s->offset = 0;
3151 if (!calculate_sizes(s, -1))
3152 goto error;
3153 }
3154 }
3155
3156 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3157 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3158 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3159 /* Enable fast mode */
3160 s->flags |= __CMPXCHG_DOUBLE;
3161 #endif
3162
3163 /*
3164 * The larger the object size is, the more pages we want on the partial
3165 * list to avoid pounding the page allocator excessively.
3166 */
3167 set_min_partial(s, ilog2(s->size) / 2);
3168
3169 /*
3170 * cpu_partial determined the maximum number of objects kept in the
3171 * per cpu partial lists of a processor.
3172 *
3173 * Per cpu partial lists mainly contain slabs that just have one
3174 * object freed. If they are used for allocation then they can be
3175 * filled up again with minimal effort. The slab will never hit the
3176 * per node partial lists and therefore no locking will be required.
3177 *
3178 * This setting also determines
3179 *
3180 * A) The number of objects from per cpu partial slabs dumped to the
3181 * per node list when we reach the limit.
3182 * B) The number of objects in cpu partial slabs to extract from the
3183 * per node list when we run out of per cpu objects. We only fetch
3184 * 50% to keep some capacity around for frees.
3185 */
3186 if (!kmem_cache_has_cpu_partial(s))
3187 s->cpu_partial = 0;
3188 else if (s->size >= PAGE_SIZE)
3189 s->cpu_partial = 2;
3190 else if (s->size >= 1024)
3191 s->cpu_partial = 6;
3192 else if (s->size >= 256)
3193 s->cpu_partial = 13;
3194 else
3195 s->cpu_partial = 30;
3196
3197 #ifdef CONFIG_NUMA
3198 s->remote_node_defrag_ratio = 1000;
3199 #endif
3200 if (!init_kmem_cache_nodes(s))
3201 goto error;
3202
3203 if (alloc_kmem_cache_cpus(s))
3204 return 0;
3205
3206 free_kmem_cache_nodes(s);
3207 error:
3208 if (flags & SLAB_PANIC)
3209 panic("Cannot create slab %s size=%lu realsize=%u "
3210 "order=%u offset=%u flags=%lx\n",
3211 s->name, (unsigned long)s->size, s->size,
3212 oo_order(s->oo), s->offset, flags);
3213 return -EINVAL;
3214 }
3215
3216 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3217 const char *text)
3218 {
3219 #ifdef CONFIG_SLUB_DEBUG
3220 void *addr = page_address(page);
3221 void *p;
3222 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3223 sizeof(long), GFP_ATOMIC);
3224 if (!map)
3225 return;
3226 slab_err(s, page, text, s->name);
3227 slab_lock(page);
3228
3229 get_map(s, page, map);
3230 for_each_object(p, s, addr, page->objects) {
3231
3232 if (!test_bit(slab_index(p, s, addr), map)) {
3233 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3234 print_tracking(s, p);
3235 }
3236 }
3237 slab_unlock(page);
3238 kfree(map);
3239 #endif
3240 }
3241
3242 /*
3243 * Attempt to free all partial slabs on a node.
3244 * This is called from kmem_cache_close(). We must be the last thread
3245 * using the cache and therefore we do not need to lock anymore.
3246 */
3247 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3248 {
3249 struct page *page, *h;
3250
3251 list_for_each_entry_safe(page, h, &n->partial, lru) {
3252 if (!page->inuse) {
3253 __remove_partial(n, page);
3254 discard_slab(s, page);
3255 } else {
3256 list_slab_objects(s, page,
3257 "Objects remaining in %s on kmem_cache_close()");
3258 }
3259 }
3260 }
3261
3262 /*
3263 * Release all resources used by a slab cache.
3264 */
3265 static inline int kmem_cache_close(struct kmem_cache *s)
3266 {
3267 int node;
3268 struct kmem_cache_node *n;
3269
3270 flush_all(s);
3271 /* Attempt to free all objects */
3272 for_each_kmem_cache_node(s, node, n) {
3273 free_partial(s, n);
3274 if (n->nr_partial || slabs_node(s, node))
3275 return 1;
3276 }
3277 free_percpu(s->cpu_slab);
3278 free_kmem_cache_nodes(s);
3279 return 0;
3280 }
3281
3282 int __kmem_cache_shutdown(struct kmem_cache *s)
3283 {
3284 return kmem_cache_close(s);
3285 }
3286
3287 /********************************************************************
3288 * Kmalloc subsystem
3289 *******************************************************************/
3290
3291 static int __init setup_slub_min_order(char *str)
3292 {
3293 get_option(&str, &slub_min_order);
3294
3295 return 1;
3296 }
3297
3298 __setup("slub_min_order=", setup_slub_min_order);
3299
3300 static int __init setup_slub_max_order(char *str)
3301 {
3302 get_option(&str, &slub_max_order);
3303 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3304
3305 return 1;
3306 }
3307
3308 __setup("slub_max_order=", setup_slub_max_order);
3309
3310 static int __init setup_slub_min_objects(char *str)
3311 {
3312 get_option(&str, &slub_min_objects);
3313
3314 return 1;
3315 }
3316
3317 __setup("slub_min_objects=", setup_slub_min_objects);
3318
3319 void *__kmalloc(size_t size, gfp_t flags)
3320 {
3321 struct kmem_cache *s;
3322 void *ret;
3323
3324 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3325 return kmalloc_large(size, flags);
3326
3327 s = kmalloc_slab(size, flags);
3328
3329 if (unlikely(ZERO_OR_NULL_PTR(s)))
3330 return s;
3331
3332 ret = slab_alloc(s, flags, _RET_IP_);
3333
3334 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3335
3336 kasan_kmalloc(s, ret, size);
3337
3338 return ret;
3339 }
3340 EXPORT_SYMBOL(__kmalloc);
3341
3342 #ifdef CONFIG_NUMA
3343 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3344 {
3345 struct page *page;
3346 void *ptr = NULL;
3347
3348 flags |= __GFP_COMP | __GFP_NOTRACK;
3349 page = alloc_kmem_pages_node(node, flags, get_order(size));
3350 if (page)
3351 ptr = page_address(page);
3352
3353 kmalloc_large_node_hook(ptr, size, flags);
3354 return ptr;
3355 }
3356
3357 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3358 {
3359 struct kmem_cache *s;
3360 void *ret;
3361
3362 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3363 ret = kmalloc_large_node(size, flags, node);
3364
3365 trace_kmalloc_node(_RET_IP_, ret,
3366 size, PAGE_SIZE << get_order(size),
3367 flags, node);
3368
3369 return ret;
3370 }
3371
3372 s = kmalloc_slab(size, flags);
3373
3374 if (unlikely(ZERO_OR_NULL_PTR(s)))
3375 return s;
3376
3377 ret = slab_alloc_node(s, flags, node, _RET_IP_);
3378
3379 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3380
3381 kasan_kmalloc(s, ret, size);
3382
3383 return ret;
3384 }
3385 EXPORT_SYMBOL(__kmalloc_node);
3386 #endif
3387
3388 static size_t __ksize(const void *object)
3389 {
3390 struct page *page;
3391
3392 if (unlikely(object == ZERO_SIZE_PTR))
3393 return 0;
3394
3395 page = virt_to_head_page(object);
3396
3397 if (unlikely(!PageSlab(page))) {
3398 WARN_ON(!PageCompound(page));
3399 return PAGE_SIZE << compound_order(page);
3400 }
3401
3402 return slab_ksize(page->slab_cache);
3403 }
3404
3405 size_t ksize(const void *object)
3406 {
3407 size_t size = __ksize(object);
3408 /* We assume that ksize callers could use whole allocated area,
3409 so we need unpoison this area. */
3410 kasan_krealloc(object, size);
3411 return size;
3412 }
3413 EXPORT_SYMBOL(ksize);
3414
3415 void kfree(const void *x)
3416 {
3417 struct page *page;
3418 void *object = (void *)x;
3419
3420 trace_kfree(_RET_IP_, x);
3421
3422 if (unlikely(ZERO_OR_NULL_PTR(x)))
3423 return;
3424
3425 page = virt_to_head_page(x);
3426 if (unlikely(!PageSlab(page))) {
3427 BUG_ON(!PageCompound(page));
3428 kfree_hook(x);
3429 __free_kmem_pages(page, compound_order(page));
3430 return;
3431 }
3432 slab_free(page->slab_cache, page, object, _RET_IP_);
3433 }
3434 EXPORT_SYMBOL(kfree);
3435
3436 #define SHRINK_PROMOTE_MAX 32
3437
3438 /*
3439 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3440 * up most to the head of the partial lists. New allocations will then
3441 * fill those up and thus they can be removed from the partial lists.
3442 *
3443 * The slabs with the least items are placed last. This results in them
3444 * being allocated from last increasing the chance that the last objects
3445 * are freed in them.
3446 */
3447 int __kmem_cache_shrink(struct kmem_cache *s, bool deactivate)
3448 {
3449 int node;
3450 int i;
3451 struct kmem_cache_node *n;
3452 struct page *page;
3453 struct page *t;
3454 struct list_head discard;
3455 struct list_head promote[SHRINK_PROMOTE_MAX];
3456 unsigned long flags;
3457 int ret = 0;
3458
3459 if (deactivate) {
3460 /*
3461 * Disable empty slabs caching. Used to avoid pinning offline
3462 * memory cgroups by kmem pages that can be freed.
3463 */
3464 s->cpu_partial = 0;
3465 s->min_partial = 0;
3466
3467 /*
3468 * s->cpu_partial is checked locklessly (see put_cpu_partial),
3469 * so we have to make sure the change is visible.
3470 */
3471 kick_all_cpus_sync();
3472 }
3473
3474 flush_all(s);
3475 for_each_kmem_cache_node(s, node, n) {
3476 INIT_LIST_HEAD(&discard);
3477 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3478 INIT_LIST_HEAD(promote + i);
3479
3480 spin_lock_irqsave(&n->list_lock, flags);
3481
3482 /*
3483 * Build lists of slabs to discard or promote.
3484 *
3485 * Note that concurrent frees may occur while we hold the
3486 * list_lock. page->inuse here is the upper limit.
3487 */
3488 list_for_each_entry_safe(page, t, &n->partial, lru) {
3489 int free = page->objects - page->inuse;
3490
3491 /* Do not reread page->inuse */
3492 barrier();
3493
3494 /* We do not keep full slabs on the list */
3495 BUG_ON(free <= 0);
3496
3497 if (free == page->objects) {
3498 list_move(&page->lru, &discard);
3499 n->nr_partial--;
3500 } else if (free <= SHRINK_PROMOTE_MAX)
3501 list_move(&page->lru, promote + free - 1);
3502 }
3503
3504 /*
3505 * Promote the slabs filled up most to the head of the
3506 * partial list.
3507 */
3508 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3509 list_splice(promote + i, &n->partial);
3510
3511 spin_unlock_irqrestore(&n->list_lock, flags);
3512
3513 /* Release empty slabs */
3514 list_for_each_entry_safe(page, t, &discard, lru)
3515 discard_slab(s, page);
3516
3517 if (slabs_node(s, node))
3518 ret = 1;
3519 }
3520
3521 return ret;
3522 }
3523
3524 static int slab_mem_going_offline_callback(void *arg)
3525 {
3526 struct kmem_cache *s;
3527
3528 mutex_lock(&slab_mutex);
3529 list_for_each_entry(s, &slab_caches, list)
3530 __kmem_cache_shrink(s, false);
3531 mutex_unlock(&slab_mutex);
3532
3533 return 0;
3534 }
3535
3536 static void slab_mem_offline_callback(void *arg)
3537 {
3538 struct kmem_cache_node *n;
3539 struct kmem_cache *s;
3540 struct memory_notify *marg = arg;
3541 int offline_node;
3542
3543 offline_node = marg->status_change_nid_normal;
3544
3545 /*
3546 * If the node still has available memory. we need kmem_cache_node
3547 * for it yet.
3548 */
3549 if (offline_node < 0)
3550 return;
3551
3552 mutex_lock(&slab_mutex);
3553 list_for_each_entry(s, &slab_caches, list) {
3554 n = get_node(s, offline_node);
3555 if (n) {
3556 /*
3557 * if n->nr_slabs > 0, slabs still exist on the node
3558 * that is going down. We were unable to free them,
3559 * and offline_pages() function shouldn't call this
3560 * callback. So, we must fail.
3561 */
3562 BUG_ON(slabs_node(s, offline_node));
3563
3564 s->node[offline_node] = NULL;
3565 kmem_cache_free(kmem_cache_node, n);
3566 }
3567 }
3568 mutex_unlock(&slab_mutex);
3569 }
3570
3571 static int slab_mem_going_online_callback(void *arg)
3572 {
3573 struct kmem_cache_node *n;
3574 struct kmem_cache *s;
3575 struct memory_notify *marg = arg;
3576 int nid = marg->status_change_nid_normal;
3577 int ret = 0;
3578
3579 /*
3580 * If the node's memory is already available, then kmem_cache_node is
3581 * already created. Nothing to do.
3582 */
3583 if (nid < 0)
3584 return 0;
3585
3586 /*
3587 * We are bringing a node online. No memory is available yet. We must
3588 * allocate a kmem_cache_node structure in order to bring the node
3589 * online.
3590 */
3591 mutex_lock(&slab_mutex);
3592 list_for_each_entry(s, &slab_caches, list) {
3593 /*
3594 * XXX: kmem_cache_alloc_node will fallback to other nodes
3595 * since memory is not yet available from the node that
3596 * is brought up.
3597 */
3598 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3599 if (!n) {
3600 ret = -ENOMEM;
3601 goto out;
3602 }
3603 init_kmem_cache_node(n);
3604 s->node[nid] = n;
3605 }
3606 out:
3607 mutex_unlock(&slab_mutex);
3608 return ret;
3609 }
3610
3611 static int slab_memory_callback(struct notifier_block *self,
3612 unsigned long action, void *arg)
3613 {
3614 int ret = 0;
3615
3616 switch (action) {
3617 case MEM_GOING_ONLINE:
3618 ret = slab_mem_going_online_callback(arg);
3619 break;
3620 case MEM_GOING_OFFLINE:
3621 ret = slab_mem_going_offline_callback(arg);
3622 break;
3623 case MEM_OFFLINE:
3624 case MEM_CANCEL_ONLINE:
3625 slab_mem_offline_callback(arg);
3626 break;
3627 case MEM_ONLINE:
3628 case MEM_CANCEL_OFFLINE:
3629 break;
3630 }
3631 if (ret)
3632 ret = notifier_from_errno(ret);
3633 else
3634 ret = NOTIFY_OK;
3635 return ret;
3636 }
3637
3638 static struct notifier_block slab_memory_callback_nb = {
3639 .notifier_call = slab_memory_callback,
3640 .priority = SLAB_CALLBACK_PRI,
3641 };
3642
3643 /********************************************************************
3644 * Basic setup of slabs
3645 *******************************************************************/
3646
3647 /*
3648 * Used for early kmem_cache structures that were allocated using
3649 * the page allocator. Allocate them properly then fix up the pointers
3650 * that may be pointing to the wrong kmem_cache structure.
3651 */
3652
3653 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3654 {
3655 int node;
3656 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3657 struct kmem_cache_node *n;
3658
3659 memcpy(s, static_cache, kmem_cache->object_size);
3660
3661 /*
3662 * This runs very early, and only the boot processor is supposed to be
3663 * up. Even if it weren't true, IRQs are not up so we couldn't fire
3664 * IPIs around.
3665 */
3666 __flush_cpu_slab(s, smp_processor_id());
3667 for_each_kmem_cache_node(s, node, n) {
3668 struct page *p;
3669
3670 list_for_each_entry(p, &n->partial, lru)
3671 p->slab_cache = s;
3672
3673 #ifdef CONFIG_SLUB_DEBUG
3674 list_for_each_entry(p, &n->full, lru)
3675 p->slab_cache = s;
3676 #endif
3677 }
3678 slab_init_memcg_params(s);
3679 list_add(&s->list, &slab_caches);
3680 return s;
3681 }
3682
3683 void __init kmem_cache_init(void)
3684 {
3685 static __initdata struct kmem_cache boot_kmem_cache,
3686 boot_kmem_cache_node;
3687
3688 if (debug_guardpage_minorder())
3689 slub_max_order = 0;
3690
3691 kmem_cache_node = &boot_kmem_cache_node;
3692 kmem_cache = &boot_kmem_cache;
3693
3694 create_boot_cache(kmem_cache_node, "kmem_cache_node",
3695 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3696
3697 register_hotmemory_notifier(&slab_memory_callback_nb);
3698
3699 /* Able to allocate the per node structures */
3700 slab_state = PARTIAL;
3701
3702 create_boot_cache(kmem_cache, "kmem_cache",
3703 offsetof(struct kmem_cache, node) +
3704 nr_node_ids * sizeof(struct kmem_cache_node *),
3705 SLAB_HWCACHE_ALIGN);
3706
3707 kmem_cache = bootstrap(&boot_kmem_cache);
3708
3709 /*
3710 * Allocate kmem_cache_node properly from the kmem_cache slab.
3711 * kmem_cache_node is separately allocated so no need to
3712 * update any list pointers.
3713 */
3714 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3715
3716 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3717 setup_kmalloc_cache_index_table();
3718 create_kmalloc_caches(0);
3719
3720 #ifdef CONFIG_SMP
3721 register_cpu_notifier(&slab_notifier);
3722 #endif
3723
3724 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
3725 cache_line_size(),
3726 slub_min_order, slub_max_order, slub_min_objects,
3727 nr_cpu_ids, nr_node_ids);
3728 }
3729
3730 void __init kmem_cache_init_late(void)
3731 {
3732 }
3733
3734 struct kmem_cache *
3735 __kmem_cache_alias(const char *name, size_t size, size_t align,
3736 unsigned long flags, void (*ctor)(void *))
3737 {
3738 struct kmem_cache *s, *c;
3739
3740 s = find_mergeable(size, align, flags, name, ctor);
3741 if (s) {
3742 s->refcount++;
3743
3744 /*
3745 * Adjust the object sizes so that we clear
3746 * the complete object on kzalloc.
3747 */
3748 s->object_size = max(s->object_size, (int)size);
3749 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3750
3751 for_each_memcg_cache(c, s) {
3752 c->object_size = s->object_size;
3753 c->inuse = max_t(int, c->inuse,
3754 ALIGN(size, sizeof(void *)));
3755 }
3756
3757 if (sysfs_slab_alias(s, name)) {
3758 s->refcount--;
3759 s = NULL;
3760 }
3761 }
3762
3763 return s;
3764 }
3765
3766 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3767 {
3768 int err;
3769
3770 err = kmem_cache_open(s, flags);
3771 if (err)
3772 return err;
3773
3774 /* Mutex is not taken during early boot */
3775 if (slab_state <= UP)
3776 return 0;
3777
3778 memcg_propagate_slab_attrs(s);
3779 err = sysfs_slab_add(s);
3780 if (err)
3781 kmem_cache_close(s);
3782
3783 return err;
3784 }
3785
3786 #ifdef CONFIG_SMP
3787 /*
3788 * Use the cpu notifier to insure that the cpu slabs are flushed when
3789 * necessary.
3790 */
3791 static int slab_cpuup_callback(struct notifier_block *nfb,
3792 unsigned long action, void *hcpu)
3793 {
3794 long cpu = (long)hcpu;
3795 struct kmem_cache *s;
3796 unsigned long flags;
3797
3798 switch (action) {
3799 case CPU_UP_CANCELED:
3800 case CPU_UP_CANCELED_FROZEN:
3801 case CPU_DEAD:
3802 case CPU_DEAD_FROZEN:
3803 mutex_lock(&slab_mutex);
3804 list_for_each_entry(s, &slab_caches, list) {
3805 local_irq_save(flags);
3806 __flush_cpu_slab(s, cpu);
3807 local_irq_restore(flags);
3808 }
3809 mutex_unlock(&slab_mutex);
3810 break;
3811 default:
3812 break;
3813 }
3814 return NOTIFY_OK;
3815 }
3816
3817 static struct notifier_block slab_notifier = {
3818 .notifier_call = slab_cpuup_callback
3819 };
3820
3821 #endif
3822
3823 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3824 {
3825 struct kmem_cache *s;
3826 void *ret;
3827
3828 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3829 return kmalloc_large(size, gfpflags);
3830
3831 s = kmalloc_slab(size, gfpflags);
3832
3833 if (unlikely(ZERO_OR_NULL_PTR(s)))
3834 return s;
3835
3836 ret = slab_alloc(s, gfpflags, caller);
3837
3838 /* Honor the call site pointer we received. */
3839 trace_kmalloc(caller, ret, size, s->size, gfpflags);
3840
3841 return ret;
3842 }
3843
3844 #ifdef CONFIG_NUMA
3845 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3846 int node, unsigned long caller)
3847 {
3848 struct kmem_cache *s;
3849 void *ret;
3850
3851 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3852 ret = kmalloc_large_node(size, gfpflags, node);
3853
3854 trace_kmalloc_node(caller, ret,
3855 size, PAGE_SIZE << get_order(size),
3856 gfpflags, node);
3857
3858 return ret;
3859 }
3860
3861 s = kmalloc_slab(size, gfpflags);
3862
3863 if (unlikely(ZERO_OR_NULL_PTR(s)))
3864 return s;
3865
3866 ret = slab_alloc_node(s, gfpflags, node, caller);
3867
3868 /* Honor the call site pointer we received. */
3869 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3870
3871 return ret;
3872 }
3873 #endif
3874
3875 #ifdef CONFIG_SYSFS
3876 static int count_inuse(struct page *page)
3877 {
3878 return page->inuse;
3879 }
3880
3881 static int count_total(struct page *page)
3882 {
3883 return page->objects;
3884 }
3885 #endif
3886
3887 #ifdef CONFIG_SLUB_DEBUG
3888 static int validate_slab(struct kmem_cache *s, struct page *page,
3889 unsigned long *map)
3890 {
3891 void *p;
3892 void *addr = page_address(page);
3893
3894 if (!check_slab(s, page) ||
3895 !on_freelist(s, page, NULL))
3896 return 0;
3897
3898 /* Now we know that a valid freelist exists */
3899 bitmap_zero(map, page->objects);
3900
3901 get_map(s, page, map);
3902 for_each_object(p, s, addr, page->objects) {
3903 if (test_bit(slab_index(p, s, addr), map))
3904 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3905 return 0;
3906 }
3907
3908 for_each_object(p, s, addr, page->objects)
3909 if (!test_bit(slab_index(p, s, addr), map))
3910 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3911 return 0;
3912 return 1;
3913 }
3914
3915 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3916 unsigned long *map)
3917 {
3918 slab_lock(page);
3919 validate_slab(s, page, map);
3920 slab_unlock(page);
3921 }
3922
3923 static int validate_slab_node(struct kmem_cache *s,
3924 struct kmem_cache_node *n, unsigned long *map)
3925 {
3926 unsigned long count = 0;
3927 struct page *page;
3928 unsigned long flags;
3929
3930 spin_lock_irqsave(&n->list_lock, flags);
3931
3932 list_for_each_entry(page, &n->partial, lru) {
3933 validate_slab_slab(s, page, map);
3934 count++;
3935 }
3936 if (count != n->nr_partial)
3937 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
3938 s->name, count, n->nr_partial);
3939
3940 if (!(s->flags & SLAB_STORE_USER))
3941 goto out;
3942
3943 list_for_each_entry(page, &n->full, lru) {
3944 validate_slab_slab(s, page, map);
3945 count++;
3946 }
3947 if (count != atomic_long_read(&n->nr_slabs))
3948 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
3949 s->name, count, atomic_long_read(&n->nr_slabs));
3950
3951 out:
3952 spin_unlock_irqrestore(&n->list_lock, flags);
3953 return count;
3954 }
3955
3956 static long validate_slab_cache(struct kmem_cache *s)
3957 {
3958 int node;
3959 unsigned long count = 0;
3960 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3961 sizeof(unsigned long), GFP_KERNEL);
3962 struct kmem_cache_node *n;
3963
3964 if (!map)
3965 return -ENOMEM;
3966
3967 flush_all(s);
3968 for_each_kmem_cache_node(s, node, n)
3969 count += validate_slab_node(s, n, map);
3970 kfree(map);
3971 return count;
3972 }
3973 /*
3974 * Generate lists of code addresses where slabcache objects are allocated
3975 * and freed.
3976 */
3977
3978 struct location {
3979 unsigned long count;
3980 unsigned long addr;
3981 long long sum_time;
3982 long min_time;
3983 long max_time;
3984 long min_pid;
3985 long max_pid;
3986 DECLARE_BITMAP(cpus, NR_CPUS);
3987 nodemask_t nodes;
3988 };
3989
3990 struct loc_track {
3991 unsigned long max;
3992 unsigned long count;
3993 struct location *loc;
3994 };
3995
3996 static void free_loc_track(struct loc_track *t)
3997 {
3998 if (t->max)
3999 free_pages((unsigned long)t->loc,
4000 get_order(sizeof(struct location) * t->max));
4001 }
4002
4003 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4004 {
4005 struct location *l;
4006 int order;
4007
4008 order = get_order(sizeof(struct location) * max);
4009
4010 l = (void *)__get_free_pages(flags, order);
4011 if (!l)
4012 return 0;
4013
4014 if (t->count) {
4015 memcpy(l, t->loc, sizeof(struct location) * t->count);
4016 free_loc_track(t);
4017 }
4018 t->max = max;
4019 t->loc = l;
4020 return 1;
4021 }
4022
4023 static int add_location(struct loc_track *t, struct kmem_cache *s,
4024 const struct track *track)
4025 {
4026 long start, end, pos;
4027 struct location *l;
4028 unsigned long caddr;
4029 unsigned long age = jiffies - track->when;
4030
4031 start = -1;
4032 end = t->count;
4033
4034 for ( ; ; ) {
4035 pos = start + (end - start + 1) / 2;
4036
4037 /*
4038 * There is nothing at "end". If we end up there
4039 * we need to add something to before end.
4040 */
4041 if (pos == end)
4042 break;
4043
4044 caddr = t->loc[pos].addr;
4045 if (track->addr == caddr) {
4046
4047 l = &t->loc[pos];
4048 l->count++;
4049 if (track->when) {
4050 l->sum_time += age;
4051 if (age < l->min_time)
4052 l->min_time = age;
4053 if (age > l->max_time)
4054 l->max_time = age;
4055
4056 if (track->pid < l->min_pid)
4057 l->min_pid = track->pid;
4058 if (track->pid > l->max_pid)
4059 l->max_pid = track->pid;
4060
4061 cpumask_set_cpu(track->cpu,
4062 to_cpumask(l->cpus));
4063 }
4064 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4065 return 1;
4066 }
4067
4068 if (track->addr < caddr)
4069 end = pos;
4070 else
4071 start = pos;
4072 }
4073
4074 /*
4075 * Not found. Insert new tracking element.
4076 */
4077 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4078 return 0;
4079
4080 l = t->loc + pos;
4081 if (pos < t->count)
4082 memmove(l + 1, l,
4083 (t->count - pos) * sizeof(struct location));
4084 t->count++;
4085 l->count = 1;
4086 l->addr = track->addr;
4087 l->sum_time = age;
4088 l->min_time = age;
4089 l->max_time = age;
4090 l->min_pid = track->pid;
4091 l->max_pid = track->pid;
4092 cpumask_clear(to_cpumask(l->cpus));
4093 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4094 nodes_clear(l->nodes);
4095 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4096 return 1;
4097 }
4098
4099 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4100 struct page *page, enum track_item alloc,
4101 unsigned long *map)
4102 {
4103 void *addr = page_address(page);
4104 void *p;
4105
4106 bitmap_zero(map, page->objects);
4107 get_map(s, page, map);
4108
4109 for_each_object(p, s, addr, page->objects)
4110 if (!test_bit(slab_index(p, s, addr), map))
4111 add_location(t, s, get_track(s, p, alloc));
4112 }
4113
4114 static int list_locations(struct kmem_cache *s, char *buf,
4115 enum track_item alloc)
4116 {
4117 int len = 0;
4118 unsigned long i;
4119 struct loc_track t = { 0, 0, NULL };
4120 int node;
4121 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4122 sizeof(unsigned long), GFP_KERNEL);
4123 struct kmem_cache_node *n;
4124
4125 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4126 GFP_TEMPORARY)) {
4127 kfree(map);
4128 return sprintf(buf, "Out of memory\n");
4129 }
4130 /* Push back cpu slabs */
4131 flush_all(s);
4132
4133 for_each_kmem_cache_node(s, node, n) {
4134 unsigned long flags;
4135 struct page *page;
4136
4137 if (!atomic_long_read(&n->nr_slabs))
4138 continue;
4139
4140 spin_lock_irqsave(&n->list_lock, flags);
4141 list_for_each_entry(page, &n->partial, lru)
4142 process_slab(&t, s, page, alloc, map);
4143 list_for_each_entry(page, &n->full, lru)
4144 process_slab(&t, s, page, alloc, map);
4145 spin_unlock_irqrestore(&n->list_lock, flags);
4146 }
4147
4148 for (i = 0; i < t.count; i++) {
4149 struct location *l = &t.loc[i];
4150
4151 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4152 break;
4153 len += sprintf(buf + len, "%7ld ", l->count);
4154
4155 if (l->addr)
4156 len += sprintf(buf + len, "%pS", (void *)l->addr);
4157 else
4158 len += sprintf(buf + len, "<not-available>");
4159
4160 if (l->sum_time != l->min_time) {
4161 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4162 l->min_time,
4163 (long)div_u64(l->sum_time, l->count),
4164 l->max_time);
4165 } else
4166 len += sprintf(buf + len, " age=%ld",
4167 l->min_time);
4168
4169 if (l->min_pid != l->max_pid)
4170 len += sprintf(buf + len, " pid=%ld-%ld",
4171 l->min_pid, l->max_pid);
4172 else
4173 len += sprintf(buf + len, " pid=%ld",
4174 l->min_pid);
4175
4176 if (num_online_cpus() > 1 &&
4177 !cpumask_empty(to_cpumask(l->cpus)) &&
4178 len < PAGE_SIZE - 60)
4179 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4180 " cpus=%*pbl",
4181 cpumask_pr_args(to_cpumask(l->cpus)));
4182
4183 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4184 len < PAGE_SIZE - 60)
4185 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4186 " nodes=%*pbl",
4187 nodemask_pr_args(&l->nodes));
4188
4189 len += sprintf(buf + len, "\n");
4190 }
4191
4192 free_loc_track(&t);
4193 kfree(map);
4194 if (!t.count)
4195 len += sprintf(buf, "No data\n");
4196 return len;
4197 }
4198 #endif
4199
4200 #ifdef SLUB_RESILIENCY_TEST
4201 static void __init resiliency_test(void)
4202 {
4203 u8 *p;
4204
4205 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4206
4207 pr_err("SLUB resiliency testing\n");
4208 pr_err("-----------------------\n");
4209 pr_err("A. Corruption after allocation\n");
4210
4211 p = kzalloc(16, GFP_KERNEL);
4212 p[16] = 0x12;
4213 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4214 p + 16);
4215
4216 validate_slab_cache(kmalloc_caches[4]);
4217
4218 /* Hmmm... The next two are dangerous */
4219 p = kzalloc(32, GFP_KERNEL);
4220 p[32 + sizeof(void *)] = 0x34;
4221 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4222 p);
4223 pr_err("If allocated object is overwritten then not detectable\n\n");
4224
4225 validate_slab_cache(kmalloc_caches[5]);
4226 p = kzalloc(64, GFP_KERNEL);
4227 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4228 *p = 0x56;
4229 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4230 p);
4231 pr_err("If allocated object is overwritten then not detectable\n\n");
4232 validate_slab_cache(kmalloc_caches[6]);
4233
4234 pr_err("\nB. Corruption after free\n");
4235 p = kzalloc(128, GFP_KERNEL);
4236 kfree(p);
4237 *p = 0x78;
4238 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4239 validate_slab_cache(kmalloc_caches[7]);
4240
4241 p = kzalloc(256, GFP_KERNEL);
4242 kfree(p);
4243 p[50] = 0x9a;
4244 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4245 validate_slab_cache(kmalloc_caches[8]);
4246
4247 p = kzalloc(512, GFP_KERNEL);
4248 kfree(p);
4249 p[512] = 0xab;
4250 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4251 validate_slab_cache(kmalloc_caches[9]);
4252 }
4253 #else
4254 #ifdef CONFIG_SYSFS
4255 static void resiliency_test(void) {};
4256 #endif
4257 #endif
4258
4259 #ifdef CONFIG_SYSFS
4260 enum slab_stat_type {
4261 SL_ALL, /* All slabs */
4262 SL_PARTIAL, /* Only partially allocated slabs */
4263 SL_CPU, /* Only slabs used for cpu caches */
4264 SL_OBJECTS, /* Determine allocated objects not slabs */
4265 SL_TOTAL /* Determine object capacity not slabs */
4266 };
4267
4268 #define SO_ALL (1 << SL_ALL)
4269 #define SO_PARTIAL (1 << SL_PARTIAL)
4270 #define SO_CPU (1 << SL_CPU)
4271 #define SO_OBJECTS (1 << SL_OBJECTS)
4272 #define SO_TOTAL (1 << SL_TOTAL)
4273
4274 static ssize_t show_slab_objects(struct kmem_cache *s,
4275 char *buf, unsigned long flags)
4276 {
4277 unsigned long total = 0;
4278 int node;
4279 int x;
4280 unsigned long *nodes;
4281
4282 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4283 if (!nodes)
4284 return -ENOMEM;
4285
4286 if (flags & SO_CPU) {
4287 int cpu;
4288
4289 for_each_possible_cpu(cpu) {
4290 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4291 cpu);
4292 int node;
4293 struct page *page;
4294
4295 page = READ_ONCE(c->page);
4296 if (!page)
4297 continue;
4298
4299 node = page_to_nid(page);
4300 if (flags & SO_TOTAL)
4301 x = page->objects;
4302 else if (flags & SO_OBJECTS)
4303 x = page->inuse;
4304 else
4305 x = 1;
4306
4307 total += x;
4308 nodes[node] += x;
4309
4310 page = READ_ONCE(c->partial);
4311 if (page) {
4312 node = page_to_nid(page);
4313 if (flags & SO_TOTAL)
4314 WARN_ON_ONCE(1);
4315 else if (flags & SO_OBJECTS)
4316 WARN_ON_ONCE(1);
4317 else
4318 x = page->pages;
4319 total += x;
4320 nodes[node] += x;
4321 }
4322 }
4323 }
4324
4325 get_online_mems();
4326 #ifdef CONFIG_SLUB_DEBUG
4327 if (flags & SO_ALL) {
4328 struct kmem_cache_node *n;
4329
4330 for_each_kmem_cache_node(s, node, n) {
4331
4332 if (flags & SO_TOTAL)
4333 x = atomic_long_read(&n->total_objects);
4334 else if (flags & SO_OBJECTS)
4335 x = atomic_long_read(&n->total_objects) -
4336 count_partial(n, count_free);
4337 else
4338 x = atomic_long_read(&n->nr_slabs);
4339 total += x;
4340 nodes[node] += x;
4341 }
4342
4343 } else
4344 #endif
4345 if (flags & SO_PARTIAL) {
4346 struct kmem_cache_node *n;
4347
4348 for_each_kmem_cache_node(s, node, n) {
4349 if (flags & SO_TOTAL)
4350 x = count_partial(n, count_total);
4351 else if (flags & SO_OBJECTS)
4352 x = count_partial(n, count_inuse);
4353 else
4354 x = n->nr_partial;
4355 total += x;
4356 nodes[node] += x;
4357 }
4358 }
4359 x = sprintf(buf, "%lu", total);
4360 #ifdef CONFIG_NUMA
4361 for (node = 0; node < nr_node_ids; node++)
4362 if (nodes[node])
4363 x += sprintf(buf + x, " N%d=%lu",
4364 node, nodes[node]);
4365 #endif
4366 put_online_mems();
4367 kfree(nodes);
4368 return x + sprintf(buf + x, "\n");
4369 }
4370
4371 #ifdef CONFIG_SLUB_DEBUG
4372 static int any_slab_objects(struct kmem_cache *s)
4373 {
4374 int node;
4375 struct kmem_cache_node *n;
4376
4377 for_each_kmem_cache_node(s, node, n)
4378 if (atomic_long_read(&n->total_objects))
4379 return 1;
4380
4381 return 0;
4382 }
4383 #endif
4384
4385 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4386 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4387
4388 struct slab_attribute {
4389 struct attribute attr;
4390 ssize_t (*show)(struct kmem_cache *s, char *buf);
4391 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4392 };
4393
4394 #define SLAB_ATTR_RO(_name) \
4395 static struct slab_attribute _name##_attr = \
4396 __ATTR(_name, 0400, _name##_show, NULL)
4397
4398 #define SLAB_ATTR(_name) \
4399 static struct slab_attribute _name##_attr = \
4400 __ATTR(_name, 0600, _name##_show, _name##_store)
4401
4402 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4403 {
4404 return sprintf(buf, "%d\n", s->size);
4405 }
4406 SLAB_ATTR_RO(slab_size);
4407
4408 static ssize_t align_show(struct kmem_cache *s, char *buf)
4409 {
4410 return sprintf(buf, "%d\n", s->align);
4411 }
4412 SLAB_ATTR_RO(align);
4413
4414 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4415 {
4416 return sprintf(buf, "%d\n", s->object_size);
4417 }
4418 SLAB_ATTR_RO(object_size);
4419
4420 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4421 {
4422 return sprintf(buf, "%d\n", oo_objects(s->oo));
4423 }
4424 SLAB_ATTR_RO(objs_per_slab);
4425
4426 static ssize_t order_store(struct kmem_cache *s,
4427 const char *buf, size_t length)
4428 {
4429 unsigned long order;
4430 int err;
4431
4432 err = kstrtoul(buf, 10, &order);
4433 if (err)
4434 return err;
4435
4436 if (order > slub_max_order || order < slub_min_order)
4437 return -EINVAL;
4438
4439 calculate_sizes(s, order);
4440 return length;
4441 }
4442
4443 static ssize_t order_show(struct kmem_cache *s, char *buf)
4444 {
4445 return sprintf(buf, "%d\n", oo_order(s->oo));
4446 }
4447 SLAB_ATTR(order);
4448
4449 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4450 {
4451 return sprintf(buf, "%lu\n", s->min_partial);
4452 }
4453
4454 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4455 size_t length)
4456 {
4457 unsigned long min;
4458 int err;
4459
4460 err = kstrtoul(buf, 10, &min);
4461 if (err)
4462 return err;
4463
4464 set_min_partial(s, min);
4465 return length;
4466 }
4467 SLAB_ATTR(min_partial);
4468
4469 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4470 {
4471 return sprintf(buf, "%u\n", s->cpu_partial);
4472 }
4473
4474 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4475 size_t length)
4476 {
4477 unsigned long objects;
4478 int err;
4479
4480 err = kstrtoul(buf, 10, &objects);
4481 if (err)
4482 return err;
4483 if (objects && !kmem_cache_has_cpu_partial(s))
4484 return -EINVAL;
4485
4486 s->cpu_partial = objects;
4487 flush_all(s);
4488 return length;
4489 }
4490 SLAB_ATTR(cpu_partial);
4491
4492 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4493 {
4494 if (!s->ctor)
4495 return 0;
4496 return sprintf(buf, "%pS\n", s->ctor);
4497 }
4498 SLAB_ATTR_RO(ctor);
4499
4500 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4501 {
4502 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
4503 }
4504 SLAB_ATTR_RO(aliases);
4505
4506 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4507 {
4508 return show_slab_objects(s, buf, SO_PARTIAL);
4509 }
4510 SLAB_ATTR_RO(partial);
4511
4512 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4513 {
4514 return show_slab_objects(s, buf, SO_CPU);
4515 }
4516 SLAB_ATTR_RO(cpu_slabs);
4517
4518 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4519 {
4520 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4521 }
4522 SLAB_ATTR_RO(objects);
4523
4524 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4525 {
4526 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4527 }
4528 SLAB_ATTR_RO(objects_partial);
4529
4530 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4531 {
4532 int objects = 0;
4533 int pages = 0;
4534 int cpu;
4535 int len;
4536
4537 for_each_online_cpu(cpu) {
4538 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4539
4540 if (page) {
4541 pages += page->pages;
4542 objects += page->pobjects;
4543 }
4544 }
4545
4546 len = sprintf(buf, "%d(%d)", objects, pages);
4547
4548 #ifdef CONFIG_SMP
4549 for_each_online_cpu(cpu) {
4550 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4551
4552 if (page && len < PAGE_SIZE - 20)
4553 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4554 page->pobjects, page->pages);
4555 }
4556 #endif
4557 return len + sprintf(buf + len, "\n");
4558 }
4559 SLAB_ATTR_RO(slabs_cpu_partial);
4560
4561 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4562 {
4563 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4564 }
4565
4566 static ssize_t reclaim_account_store(struct kmem_cache *s,
4567 const char *buf, size_t length)
4568 {
4569 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4570 if (buf[0] == '1')
4571 s->flags |= SLAB_RECLAIM_ACCOUNT;
4572 return length;
4573 }
4574 SLAB_ATTR(reclaim_account);
4575
4576 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4577 {
4578 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4579 }
4580 SLAB_ATTR_RO(hwcache_align);
4581
4582 #ifdef CONFIG_ZONE_DMA
4583 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4584 {
4585 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4586 }
4587 SLAB_ATTR_RO(cache_dma);
4588 #endif
4589
4590 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4591 {
4592 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4593 }
4594 SLAB_ATTR_RO(destroy_by_rcu);
4595
4596 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4597 {
4598 return sprintf(buf, "%d\n", s->reserved);
4599 }
4600 SLAB_ATTR_RO(reserved);
4601
4602 #ifdef CONFIG_SLUB_DEBUG
4603 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4604 {
4605 return show_slab_objects(s, buf, SO_ALL);
4606 }
4607 SLAB_ATTR_RO(slabs);
4608
4609 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4610 {
4611 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4612 }
4613 SLAB_ATTR_RO(total_objects);
4614
4615 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4616 {
4617 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4618 }
4619
4620 static ssize_t sanity_checks_store(struct kmem_cache *s,
4621 const char *buf, size_t length)
4622 {
4623 s->flags &= ~SLAB_DEBUG_FREE;
4624 if (buf[0] == '1') {
4625 s->flags &= ~__CMPXCHG_DOUBLE;
4626 s->flags |= SLAB_DEBUG_FREE;
4627 }
4628 return length;
4629 }
4630 SLAB_ATTR(sanity_checks);
4631
4632 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4633 {
4634 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4635 }
4636
4637 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4638 size_t length)
4639 {
4640 /*
4641 * Tracing a merged cache is going to give confusing results
4642 * as well as cause other issues like converting a mergeable
4643 * cache into an umergeable one.
4644 */
4645 if (s->refcount > 1)
4646 return -EINVAL;
4647
4648 s->flags &= ~SLAB_TRACE;
4649 if (buf[0] == '1') {
4650 s->flags &= ~__CMPXCHG_DOUBLE;
4651 s->flags |= SLAB_TRACE;
4652 }
4653 return length;
4654 }
4655 SLAB_ATTR(trace);
4656
4657 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4658 {
4659 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4660 }
4661
4662 static ssize_t red_zone_store(struct kmem_cache *s,
4663 const char *buf, size_t length)
4664 {
4665 if (any_slab_objects(s))
4666 return -EBUSY;
4667
4668 s->flags &= ~SLAB_RED_ZONE;
4669 if (buf[0] == '1') {
4670 s->flags &= ~__CMPXCHG_DOUBLE;
4671 s->flags |= SLAB_RED_ZONE;
4672 }
4673 calculate_sizes(s, -1);
4674 return length;
4675 }
4676 SLAB_ATTR(red_zone);
4677
4678 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4679 {
4680 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4681 }
4682
4683 static ssize_t poison_store(struct kmem_cache *s,
4684 const char *buf, size_t length)
4685 {
4686 if (any_slab_objects(s))
4687 return -EBUSY;
4688
4689 s->flags &= ~SLAB_POISON;
4690 if (buf[0] == '1') {
4691 s->flags &= ~__CMPXCHG_DOUBLE;
4692 s->flags |= SLAB_POISON;
4693 }
4694 calculate_sizes(s, -1);
4695 return length;
4696 }
4697 SLAB_ATTR(poison);
4698
4699 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4700 {
4701 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4702 }
4703
4704 static ssize_t store_user_store(struct kmem_cache *s,
4705 const char *buf, size_t length)
4706 {
4707 if (any_slab_objects(s))
4708 return -EBUSY;
4709
4710 s->flags &= ~SLAB_STORE_USER;
4711 if (buf[0] == '1') {
4712 s->flags &= ~__CMPXCHG_DOUBLE;
4713 s->flags |= SLAB_STORE_USER;
4714 }
4715 calculate_sizes(s, -1);
4716 return length;
4717 }
4718 SLAB_ATTR(store_user);
4719
4720 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4721 {
4722 return 0;
4723 }
4724
4725 static ssize_t validate_store(struct kmem_cache *s,
4726 const char *buf, size_t length)
4727 {
4728 int ret = -EINVAL;
4729
4730 if (buf[0] == '1') {
4731 ret = validate_slab_cache(s);
4732 if (ret >= 0)
4733 ret = length;
4734 }
4735 return ret;
4736 }
4737 SLAB_ATTR(validate);
4738
4739 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4740 {
4741 if (!(s->flags & SLAB_STORE_USER))
4742 return -ENOSYS;
4743 return list_locations(s, buf, TRACK_ALLOC);
4744 }
4745 SLAB_ATTR_RO(alloc_calls);
4746
4747 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4748 {
4749 if (!(s->flags & SLAB_STORE_USER))
4750 return -ENOSYS;
4751 return list_locations(s, buf, TRACK_FREE);
4752 }
4753 SLAB_ATTR_RO(free_calls);
4754 #endif /* CONFIG_SLUB_DEBUG */
4755
4756 #ifdef CONFIG_FAILSLAB
4757 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4758 {
4759 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4760 }
4761
4762 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4763 size_t length)
4764 {
4765 if (s->refcount > 1)
4766 return -EINVAL;
4767
4768 s->flags &= ~SLAB_FAILSLAB;
4769 if (buf[0] == '1')
4770 s->flags |= SLAB_FAILSLAB;
4771 return length;
4772 }
4773 SLAB_ATTR(failslab);
4774 #endif
4775
4776 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4777 {
4778 return 0;
4779 }
4780
4781 static ssize_t shrink_store(struct kmem_cache *s,
4782 const char *buf, size_t length)
4783 {
4784 if (buf[0] == '1')
4785 kmem_cache_shrink(s);
4786 else
4787 return -EINVAL;
4788 return length;
4789 }
4790 SLAB_ATTR(shrink);
4791
4792 #ifdef CONFIG_NUMA
4793 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4794 {
4795 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4796 }
4797
4798 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4799 const char *buf, size_t length)
4800 {
4801 unsigned long ratio;
4802 int err;
4803
4804 err = kstrtoul(buf, 10, &ratio);
4805 if (err)
4806 return err;
4807
4808 if (ratio <= 100)
4809 s->remote_node_defrag_ratio = ratio * 10;
4810
4811 return length;
4812 }
4813 SLAB_ATTR(remote_node_defrag_ratio);
4814 #endif
4815
4816 #ifdef CONFIG_SLUB_STATS
4817 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4818 {
4819 unsigned long sum = 0;
4820 int cpu;
4821 int len;
4822 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4823
4824 if (!data)
4825 return -ENOMEM;
4826
4827 for_each_online_cpu(cpu) {
4828 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4829
4830 data[cpu] = x;
4831 sum += x;
4832 }
4833
4834 len = sprintf(buf, "%lu", sum);
4835
4836 #ifdef CONFIG_SMP
4837 for_each_online_cpu(cpu) {
4838 if (data[cpu] && len < PAGE_SIZE - 20)
4839 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4840 }
4841 #endif
4842 kfree(data);
4843 return len + sprintf(buf + len, "\n");
4844 }
4845
4846 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4847 {
4848 int cpu;
4849
4850 for_each_online_cpu(cpu)
4851 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4852 }
4853
4854 #define STAT_ATTR(si, text) \
4855 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4856 { \
4857 return show_stat(s, buf, si); \
4858 } \
4859 static ssize_t text##_store(struct kmem_cache *s, \
4860 const char *buf, size_t length) \
4861 { \
4862 if (buf[0] != '0') \
4863 return -EINVAL; \
4864 clear_stat(s, si); \
4865 return length; \
4866 } \
4867 SLAB_ATTR(text); \
4868
4869 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4870 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4871 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4872 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4873 STAT_ATTR(FREE_FROZEN, free_frozen);
4874 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4875 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4876 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4877 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4878 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4879 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4880 STAT_ATTR(FREE_SLAB, free_slab);
4881 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4882 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4883 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4884 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4885 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4886 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4887 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4888 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4889 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4890 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4891 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4892 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
4893 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
4894 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
4895 #endif
4896
4897 static struct attribute *slab_attrs[] = {
4898 &slab_size_attr.attr,
4899 &object_size_attr.attr,
4900 &objs_per_slab_attr.attr,
4901 &order_attr.attr,
4902 &min_partial_attr.attr,
4903 &cpu_partial_attr.attr,
4904 &objects_attr.attr,
4905 &objects_partial_attr.attr,
4906 &partial_attr.attr,
4907 &cpu_slabs_attr.attr,
4908 &ctor_attr.attr,
4909 &aliases_attr.attr,
4910 &align_attr.attr,
4911 &hwcache_align_attr.attr,
4912 &reclaim_account_attr.attr,
4913 &destroy_by_rcu_attr.attr,
4914 &shrink_attr.attr,
4915 &reserved_attr.attr,
4916 &slabs_cpu_partial_attr.attr,
4917 #ifdef CONFIG_SLUB_DEBUG
4918 &total_objects_attr.attr,
4919 &slabs_attr.attr,
4920 &sanity_checks_attr.attr,
4921 &trace_attr.attr,
4922 &red_zone_attr.attr,
4923 &poison_attr.attr,
4924 &store_user_attr.attr,
4925 &validate_attr.attr,
4926 &alloc_calls_attr.attr,
4927 &free_calls_attr.attr,
4928 #endif
4929 #ifdef CONFIG_ZONE_DMA
4930 &cache_dma_attr.attr,
4931 #endif
4932 #ifdef CONFIG_NUMA
4933 &remote_node_defrag_ratio_attr.attr,
4934 #endif
4935 #ifdef CONFIG_SLUB_STATS
4936 &alloc_fastpath_attr.attr,
4937 &alloc_slowpath_attr.attr,
4938 &free_fastpath_attr.attr,
4939 &free_slowpath_attr.attr,
4940 &free_frozen_attr.attr,
4941 &free_add_partial_attr.attr,
4942 &free_remove_partial_attr.attr,
4943 &alloc_from_partial_attr.attr,
4944 &alloc_slab_attr.attr,
4945 &alloc_refill_attr.attr,
4946 &alloc_node_mismatch_attr.attr,
4947 &free_slab_attr.attr,
4948 &cpuslab_flush_attr.attr,
4949 &deactivate_full_attr.attr,
4950 &deactivate_empty_attr.attr,
4951 &deactivate_to_head_attr.attr,
4952 &deactivate_to_tail_attr.attr,
4953 &deactivate_remote_frees_attr.attr,
4954 &deactivate_bypass_attr.attr,
4955 &order_fallback_attr.attr,
4956 &cmpxchg_double_fail_attr.attr,
4957 &cmpxchg_double_cpu_fail_attr.attr,
4958 &cpu_partial_alloc_attr.attr,
4959 &cpu_partial_free_attr.attr,
4960 &cpu_partial_node_attr.attr,
4961 &cpu_partial_drain_attr.attr,
4962 #endif
4963 #ifdef CONFIG_FAILSLAB
4964 &failslab_attr.attr,
4965 #endif
4966
4967 NULL
4968 };
4969
4970 static struct attribute_group slab_attr_group = {
4971 .attrs = slab_attrs,
4972 };
4973
4974 static ssize_t slab_attr_show(struct kobject *kobj,
4975 struct attribute *attr,
4976 char *buf)
4977 {
4978 struct slab_attribute *attribute;
4979 struct kmem_cache *s;
4980 int err;
4981
4982 attribute = to_slab_attr(attr);
4983 s = to_slab(kobj);
4984
4985 if (!attribute->show)
4986 return -EIO;
4987
4988 err = attribute->show(s, buf);
4989
4990 return err;
4991 }
4992
4993 static ssize_t slab_attr_store(struct kobject *kobj,
4994 struct attribute *attr,
4995 const char *buf, size_t len)
4996 {
4997 struct slab_attribute *attribute;
4998 struct kmem_cache *s;
4999 int err;
5000
5001 attribute = to_slab_attr(attr);
5002 s = to_slab(kobj);
5003
5004 if (!attribute->store)
5005 return -EIO;
5006
5007 err = attribute->store(s, buf, len);
5008 #ifdef CONFIG_MEMCG_KMEM
5009 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5010 struct kmem_cache *c;
5011
5012 mutex_lock(&slab_mutex);
5013 if (s->max_attr_size < len)
5014 s->max_attr_size = len;
5015
5016 /*
5017 * This is a best effort propagation, so this function's return
5018 * value will be determined by the parent cache only. This is
5019 * basically because not all attributes will have a well
5020 * defined semantics for rollbacks - most of the actions will
5021 * have permanent effects.
5022 *
5023 * Returning the error value of any of the children that fail
5024 * is not 100 % defined, in the sense that users seeing the
5025 * error code won't be able to know anything about the state of
5026 * the cache.
5027 *
5028 * Only returning the error code for the parent cache at least
5029 * has well defined semantics. The cache being written to
5030 * directly either failed or succeeded, in which case we loop
5031 * through the descendants with best-effort propagation.
5032 */
5033 for_each_memcg_cache(c, s)
5034 attribute->store(c, buf, len);
5035 mutex_unlock(&slab_mutex);
5036 }
5037 #endif
5038 return err;
5039 }
5040
5041 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5042 {
5043 #ifdef CONFIG_MEMCG_KMEM
5044 int i;
5045 char *buffer = NULL;
5046 struct kmem_cache *root_cache;
5047
5048 if (is_root_cache(s))
5049 return;
5050
5051 root_cache = s->memcg_params.root_cache;
5052
5053 /*
5054 * This mean this cache had no attribute written. Therefore, no point
5055 * in copying default values around
5056 */
5057 if (!root_cache->max_attr_size)
5058 return;
5059
5060 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5061 char mbuf[64];
5062 char *buf;
5063 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5064
5065 if (!attr || !attr->store || !attr->show)
5066 continue;
5067
5068 /*
5069 * It is really bad that we have to allocate here, so we will
5070 * do it only as a fallback. If we actually allocate, though,
5071 * we can just use the allocated buffer until the end.
5072 *
5073 * Most of the slub attributes will tend to be very small in
5074 * size, but sysfs allows buffers up to a page, so they can
5075 * theoretically happen.
5076 */
5077 if (buffer)
5078 buf = buffer;
5079 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5080 buf = mbuf;
5081 else {
5082 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5083 if (WARN_ON(!buffer))
5084 continue;
5085 buf = buffer;
5086 }
5087
5088 attr->show(root_cache, buf);
5089 attr->store(s, buf, strlen(buf));
5090 }
5091
5092 if (buffer)
5093 free_page((unsigned long)buffer);
5094 #endif
5095 }
5096
5097 static void kmem_cache_release(struct kobject *k)
5098 {
5099 slab_kmem_cache_release(to_slab(k));
5100 }
5101
5102 static const struct sysfs_ops slab_sysfs_ops = {
5103 .show = slab_attr_show,
5104 .store = slab_attr_store,
5105 };
5106
5107 static struct kobj_type slab_ktype = {
5108 .sysfs_ops = &slab_sysfs_ops,
5109 .release = kmem_cache_release,
5110 };
5111
5112 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5113 {
5114 struct kobj_type *ktype = get_ktype(kobj);
5115
5116 if (ktype == &slab_ktype)
5117 return 1;
5118 return 0;
5119 }
5120
5121 static const struct kset_uevent_ops slab_uevent_ops = {
5122 .filter = uevent_filter,
5123 };
5124
5125 static struct kset *slab_kset;
5126
5127 static inline struct kset *cache_kset(struct kmem_cache *s)
5128 {
5129 #ifdef CONFIG_MEMCG_KMEM
5130 if (!is_root_cache(s))
5131 return s->memcg_params.root_cache->memcg_kset;
5132 #endif
5133 return slab_kset;
5134 }
5135
5136 #define ID_STR_LENGTH 64
5137
5138 /* Create a unique string id for a slab cache:
5139 *
5140 * Format :[flags-]size
5141 */
5142 static char *create_unique_id(struct kmem_cache *s)
5143 {
5144 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5145 char *p = name;
5146
5147 BUG_ON(!name);
5148
5149 *p++ = ':';
5150 /*
5151 * First flags affecting slabcache operations. We will only
5152 * get here for aliasable slabs so we do not need to support
5153 * too many flags. The flags here must cover all flags that
5154 * are matched during merging to guarantee that the id is
5155 * unique.
5156 */
5157 if (s->flags & SLAB_CACHE_DMA)
5158 *p++ = 'd';
5159 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5160 *p++ = 'a';
5161 if (s->flags & SLAB_DEBUG_FREE)
5162 *p++ = 'F';
5163 if (!(s->flags & SLAB_NOTRACK))
5164 *p++ = 't';
5165 if (p != name + 1)
5166 *p++ = '-';
5167 p += sprintf(p, "%07d", s->size);
5168
5169 BUG_ON(p > name + ID_STR_LENGTH - 1);
5170 return name;
5171 }
5172
5173 static int sysfs_slab_add(struct kmem_cache *s)
5174 {
5175 int err;
5176 const char *name;
5177 int unmergeable = slab_unmergeable(s);
5178
5179 if (unmergeable) {
5180 /*
5181 * Slabcache can never be merged so we can use the name proper.
5182 * This is typically the case for debug situations. In that
5183 * case we can catch duplicate names easily.
5184 */
5185 sysfs_remove_link(&slab_kset->kobj, s->name);
5186 name = s->name;
5187 } else {
5188 /*
5189 * Create a unique name for the slab as a target
5190 * for the symlinks.
5191 */
5192 name = create_unique_id(s);
5193 }
5194
5195 s->kobj.kset = cache_kset(s);
5196 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5197 if (err)
5198 goto out_put_kobj;
5199
5200 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5201 if (err)
5202 goto out_del_kobj;
5203
5204 #ifdef CONFIG_MEMCG_KMEM
5205 if (is_root_cache(s)) {
5206 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5207 if (!s->memcg_kset) {
5208 err = -ENOMEM;
5209 goto out_del_kobj;
5210 }
5211 }
5212 #endif
5213
5214 kobject_uevent(&s->kobj, KOBJ_ADD);
5215 if (!unmergeable) {
5216 /* Setup first alias */
5217 sysfs_slab_alias(s, s->name);
5218 }
5219 out:
5220 if (!unmergeable)
5221 kfree(name);
5222 return err;
5223 out_del_kobj:
5224 kobject_del(&s->kobj);
5225 out_put_kobj:
5226 kobject_put(&s->kobj);
5227 goto out;
5228 }
5229
5230 void sysfs_slab_remove(struct kmem_cache *s)
5231 {
5232 if (slab_state < FULL)
5233 /*
5234 * Sysfs has not been setup yet so no need to remove the
5235 * cache from sysfs.
5236 */
5237 return;
5238
5239 #ifdef CONFIG_MEMCG_KMEM
5240 kset_unregister(s->memcg_kset);
5241 #endif
5242 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5243 kobject_del(&s->kobj);
5244 kobject_put(&s->kobj);
5245 }
5246
5247 /*
5248 * Need to buffer aliases during bootup until sysfs becomes
5249 * available lest we lose that information.
5250 */
5251 struct saved_alias {
5252 struct kmem_cache *s;
5253 const char *name;
5254 struct saved_alias *next;
5255 };
5256
5257 static struct saved_alias *alias_list;
5258
5259 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5260 {
5261 struct saved_alias *al;
5262
5263 if (slab_state == FULL) {
5264 /*
5265 * If we have a leftover link then remove it.
5266 */
5267 sysfs_remove_link(&slab_kset->kobj, name);
5268 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5269 }
5270
5271 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5272 if (!al)
5273 return -ENOMEM;
5274
5275 al->s = s;
5276 al->name = name;
5277 al->next = alias_list;
5278 alias_list = al;
5279 return 0;
5280 }
5281
5282 static int __init slab_sysfs_init(void)
5283 {
5284 struct kmem_cache *s;
5285 int err;
5286
5287 mutex_lock(&slab_mutex);
5288
5289 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5290 if (!slab_kset) {
5291 mutex_unlock(&slab_mutex);
5292 pr_err("Cannot register slab subsystem.\n");
5293 return -ENOSYS;
5294 }
5295
5296 slab_state = FULL;
5297
5298 list_for_each_entry(s, &slab_caches, list) {
5299 err = sysfs_slab_add(s);
5300 if (err)
5301 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5302 s->name);
5303 }
5304
5305 while (alias_list) {
5306 struct saved_alias *al = alias_list;
5307
5308 alias_list = alias_list->next;
5309 err = sysfs_slab_alias(al->s, al->name);
5310 if (err)
5311 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5312 al->name);
5313 kfree(al);
5314 }
5315
5316 mutex_unlock(&slab_mutex);
5317 resiliency_test();
5318 return 0;
5319 }
5320
5321 __initcall(slab_sysfs_init);
5322 #endif /* CONFIG_SYSFS */
5323
5324 /*
5325 * The /proc/slabinfo ABI
5326 */
5327 #ifdef CONFIG_SLABINFO
5328 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5329 {
5330 unsigned long nr_slabs = 0;
5331 unsigned long nr_objs = 0;
5332 unsigned long nr_free = 0;
5333 int node;
5334 struct kmem_cache_node *n;
5335
5336 for_each_kmem_cache_node(s, node, n) {
5337 nr_slabs += node_nr_slabs(n);
5338 nr_objs += node_nr_objs(n);
5339 nr_free += count_partial(n, count_free);
5340 }
5341
5342 sinfo->active_objs = nr_objs - nr_free;
5343 sinfo->num_objs = nr_objs;
5344 sinfo->active_slabs = nr_slabs;
5345 sinfo->num_slabs = nr_slabs;
5346 sinfo->objects_per_slab = oo_objects(s->oo);
5347 sinfo->cache_order = oo_order(s->oo);
5348 }
5349
5350 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5351 {
5352 }
5353
5354 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5355 size_t count, loff_t *ppos)
5356 {
5357 return -EIO;
5358 }
5359 #endif /* CONFIG_SLABINFO */
This page took 0.145291 seconds and 5 git commands to generate.