mm, sl[aou]b: Common definition for boot state of the slab allocators
[deliverable/linux.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
10 */
11
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include "slab.h"
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/kmemcheck.h>
23 #include <linux/cpu.h>
24 #include <linux/cpuset.h>
25 #include <linux/mempolicy.h>
26 #include <linux/ctype.h>
27 #include <linux/debugobjects.h>
28 #include <linux/kallsyms.h>
29 #include <linux/memory.h>
30 #include <linux/math64.h>
31 #include <linux/fault-inject.h>
32 #include <linux/stacktrace.h>
33 #include <linux/prefetch.h>
34
35 #include <trace/events/kmem.h>
36
37 /*
38 * Lock order:
39 * 1. slub_lock (Global Semaphore)
40 * 2. node->list_lock
41 * 3. slab_lock(page) (Only on some arches and for debugging)
42 *
43 * slub_lock
44 *
45 * The role of the slub_lock is to protect the list of all the slabs
46 * and to synchronize major metadata changes to slab cache structures.
47 *
48 * The slab_lock is only used for debugging and on arches that do not
49 * have the ability to do a cmpxchg_double. It only protects the second
50 * double word in the page struct. Meaning
51 * A. page->freelist -> List of object free in a page
52 * B. page->counters -> Counters of objects
53 * C. page->frozen -> frozen state
54 *
55 * If a slab is frozen then it is exempt from list management. It is not
56 * on any list. The processor that froze the slab is the one who can
57 * perform list operations on the page. Other processors may put objects
58 * onto the freelist but the processor that froze the slab is the only
59 * one that can retrieve the objects from the page's freelist.
60 *
61 * The list_lock protects the partial and full list on each node and
62 * the partial slab counter. If taken then no new slabs may be added or
63 * removed from the lists nor make the number of partial slabs be modified.
64 * (Note that the total number of slabs is an atomic value that may be
65 * modified without taking the list lock).
66 *
67 * The list_lock is a centralized lock and thus we avoid taking it as
68 * much as possible. As long as SLUB does not have to handle partial
69 * slabs, operations can continue without any centralized lock. F.e.
70 * allocating a long series of objects that fill up slabs does not require
71 * the list lock.
72 * Interrupts are disabled during allocation and deallocation in order to
73 * make the slab allocator safe to use in the context of an irq. In addition
74 * interrupts are disabled to ensure that the processor does not change
75 * while handling per_cpu slabs, due to kernel preemption.
76 *
77 * SLUB assigns one slab for allocation to each processor.
78 * Allocations only occur from these slabs called cpu slabs.
79 *
80 * Slabs with free elements are kept on a partial list and during regular
81 * operations no list for full slabs is used. If an object in a full slab is
82 * freed then the slab will show up again on the partial lists.
83 * We track full slabs for debugging purposes though because otherwise we
84 * cannot scan all objects.
85 *
86 * Slabs are freed when they become empty. Teardown and setup is
87 * minimal so we rely on the page allocators per cpu caches for
88 * fast frees and allocs.
89 *
90 * Overloading of page flags that are otherwise used for LRU management.
91 *
92 * PageActive The slab is frozen and exempt from list processing.
93 * This means that the slab is dedicated to a purpose
94 * such as satisfying allocations for a specific
95 * processor. Objects may be freed in the slab while
96 * it is frozen but slab_free will then skip the usual
97 * list operations. It is up to the processor holding
98 * the slab to integrate the slab into the slab lists
99 * when the slab is no longer needed.
100 *
101 * One use of this flag is to mark slabs that are
102 * used for allocations. Then such a slab becomes a cpu
103 * slab. The cpu slab may be equipped with an additional
104 * freelist that allows lockless access to
105 * free objects in addition to the regular freelist
106 * that requires the slab lock.
107 *
108 * PageError Slab requires special handling due to debug
109 * options set. This moves slab handling out of
110 * the fast path and disables lockless freelists.
111 */
112
113 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
114 SLAB_TRACE | SLAB_DEBUG_FREE)
115
116 static inline int kmem_cache_debug(struct kmem_cache *s)
117 {
118 #ifdef CONFIG_SLUB_DEBUG
119 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
120 #else
121 return 0;
122 #endif
123 }
124
125 /*
126 * Issues still to be resolved:
127 *
128 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
129 *
130 * - Variable sizing of the per node arrays
131 */
132
133 /* Enable to test recovery from slab corruption on boot */
134 #undef SLUB_RESILIENCY_TEST
135
136 /* Enable to log cmpxchg failures */
137 #undef SLUB_DEBUG_CMPXCHG
138
139 /*
140 * Mininum number of partial slabs. These will be left on the partial
141 * lists even if they are empty. kmem_cache_shrink may reclaim them.
142 */
143 #define MIN_PARTIAL 5
144
145 /*
146 * Maximum number of desirable partial slabs.
147 * The existence of more partial slabs makes kmem_cache_shrink
148 * sort the partial list by the number of objects in the.
149 */
150 #define MAX_PARTIAL 10
151
152 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
153 SLAB_POISON | SLAB_STORE_USER)
154
155 /*
156 * Debugging flags that require metadata to be stored in the slab. These get
157 * disabled when slub_debug=O is used and a cache's min order increases with
158 * metadata.
159 */
160 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
161
162 /*
163 * Set of flags that will prevent slab merging
164 */
165 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
166 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
167 SLAB_FAILSLAB)
168
169 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
170 SLAB_CACHE_DMA | SLAB_NOTRACK)
171
172 #define OO_SHIFT 16
173 #define OO_MASK ((1 << OO_SHIFT) - 1)
174 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
175
176 /* Internal SLUB flags */
177 #define __OBJECT_POISON 0x80000000UL /* Poison object */
178 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
179
180 static int kmem_size = sizeof(struct kmem_cache);
181
182 #ifdef CONFIG_SMP
183 static struct notifier_block slab_notifier;
184 #endif
185
186 /* A list of all slab caches on the system */
187 static DECLARE_RWSEM(slub_lock);
188 static LIST_HEAD(slab_caches);
189
190 /*
191 * Tracking user of a slab.
192 */
193 #define TRACK_ADDRS_COUNT 16
194 struct track {
195 unsigned long addr; /* Called from address */
196 #ifdef CONFIG_STACKTRACE
197 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
198 #endif
199 int cpu; /* Was running on cpu */
200 int pid; /* Pid context */
201 unsigned long when; /* When did the operation occur */
202 };
203
204 enum track_item { TRACK_ALLOC, TRACK_FREE };
205
206 #ifdef CONFIG_SYSFS
207 static int sysfs_slab_add(struct kmem_cache *);
208 static int sysfs_slab_alias(struct kmem_cache *, const char *);
209 static void sysfs_slab_remove(struct kmem_cache *);
210
211 #else
212 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
213 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
214 { return 0; }
215 static inline void sysfs_slab_remove(struct kmem_cache *s)
216 {
217 kfree(s->name);
218 kfree(s);
219 }
220
221 #endif
222
223 static inline void stat(const struct kmem_cache *s, enum stat_item si)
224 {
225 #ifdef CONFIG_SLUB_STATS
226 __this_cpu_inc(s->cpu_slab->stat[si]);
227 #endif
228 }
229
230 /********************************************************************
231 * Core slab cache functions
232 *******************************************************************/
233
234 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
235 {
236 return s->node[node];
237 }
238
239 /* Verify that a pointer has an address that is valid within a slab page */
240 static inline int check_valid_pointer(struct kmem_cache *s,
241 struct page *page, const void *object)
242 {
243 void *base;
244
245 if (!object)
246 return 1;
247
248 base = page_address(page);
249 if (object < base || object >= base + page->objects * s->size ||
250 (object - base) % s->size) {
251 return 0;
252 }
253
254 return 1;
255 }
256
257 static inline void *get_freepointer(struct kmem_cache *s, void *object)
258 {
259 return *(void **)(object + s->offset);
260 }
261
262 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
263 {
264 prefetch(object + s->offset);
265 }
266
267 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
268 {
269 void *p;
270
271 #ifdef CONFIG_DEBUG_PAGEALLOC
272 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
273 #else
274 p = get_freepointer(s, object);
275 #endif
276 return p;
277 }
278
279 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
280 {
281 *(void **)(object + s->offset) = fp;
282 }
283
284 /* Loop over all objects in a slab */
285 #define for_each_object(__p, __s, __addr, __objects) \
286 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
287 __p += (__s)->size)
288
289 /* Determine object index from a given position */
290 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
291 {
292 return (p - addr) / s->size;
293 }
294
295 static inline size_t slab_ksize(const struct kmem_cache *s)
296 {
297 #ifdef CONFIG_SLUB_DEBUG
298 /*
299 * Debugging requires use of the padding between object
300 * and whatever may come after it.
301 */
302 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
303 return s->object_size;
304
305 #endif
306 /*
307 * If we have the need to store the freelist pointer
308 * back there or track user information then we can
309 * only use the space before that information.
310 */
311 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
312 return s->inuse;
313 /*
314 * Else we can use all the padding etc for the allocation
315 */
316 return s->size;
317 }
318
319 static inline int order_objects(int order, unsigned long size, int reserved)
320 {
321 return ((PAGE_SIZE << order) - reserved) / size;
322 }
323
324 static inline struct kmem_cache_order_objects oo_make(int order,
325 unsigned long size, int reserved)
326 {
327 struct kmem_cache_order_objects x = {
328 (order << OO_SHIFT) + order_objects(order, size, reserved)
329 };
330
331 return x;
332 }
333
334 static inline int oo_order(struct kmem_cache_order_objects x)
335 {
336 return x.x >> OO_SHIFT;
337 }
338
339 static inline int oo_objects(struct kmem_cache_order_objects x)
340 {
341 return x.x & OO_MASK;
342 }
343
344 /*
345 * Per slab locking using the pagelock
346 */
347 static __always_inline void slab_lock(struct page *page)
348 {
349 bit_spin_lock(PG_locked, &page->flags);
350 }
351
352 static __always_inline void slab_unlock(struct page *page)
353 {
354 __bit_spin_unlock(PG_locked, &page->flags);
355 }
356
357 /* Interrupts must be disabled (for the fallback code to work right) */
358 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
359 void *freelist_old, unsigned long counters_old,
360 void *freelist_new, unsigned long counters_new,
361 const char *n)
362 {
363 VM_BUG_ON(!irqs_disabled());
364 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
365 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
366 if (s->flags & __CMPXCHG_DOUBLE) {
367 if (cmpxchg_double(&page->freelist, &page->counters,
368 freelist_old, counters_old,
369 freelist_new, counters_new))
370 return 1;
371 } else
372 #endif
373 {
374 slab_lock(page);
375 if (page->freelist == freelist_old && page->counters == counters_old) {
376 page->freelist = freelist_new;
377 page->counters = counters_new;
378 slab_unlock(page);
379 return 1;
380 }
381 slab_unlock(page);
382 }
383
384 cpu_relax();
385 stat(s, CMPXCHG_DOUBLE_FAIL);
386
387 #ifdef SLUB_DEBUG_CMPXCHG
388 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
389 #endif
390
391 return 0;
392 }
393
394 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
395 void *freelist_old, unsigned long counters_old,
396 void *freelist_new, unsigned long counters_new,
397 const char *n)
398 {
399 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
400 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
401 if (s->flags & __CMPXCHG_DOUBLE) {
402 if (cmpxchg_double(&page->freelist, &page->counters,
403 freelist_old, counters_old,
404 freelist_new, counters_new))
405 return 1;
406 } else
407 #endif
408 {
409 unsigned long flags;
410
411 local_irq_save(flags);
412 slab_lock(page);
413 if (page->freelist == freelist_old && page->counters == counters_old) {
414 page->freelist = freelist_new;
415 page->counters = counters_new;
416 slab_unlock(page);
417 local_irq_restore(flags);
418 return 1;
419 }
420 slab_unlock(page);
421 local_irq_restore(flags);
422 }
423
424 cpu_relax();
425 stat(s, CMPXCHG_DOUBLE_FAIL);
426
427 #ifdef SLUB_DEBUG_CMPXCHG
428 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
429 #endif
430
431 return 0;
432 }
433
434 #ifdef CONFIG_SLUB_DEBUG
435 /*
436 * Determine a map of object in use on a page.
437 *
438 * Node listlock must be held to guarantee that the page does
439 * not vanish from under us.
440 */
441 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
442 {
443 void *p;
444 void *addr = page_address(page);
445
446 for (p = page->freelist; p; p = get_freepointer(s, p))
447 set_bit(slab_index(p, s, addr), map);
448 }
449
450 /*
451 * Debug settings:
452 */
453 #ifdef CONFIG_SLUB_DEBUG_ON
454 static int slub_debug = DEBUG_DEFAULT_FLAGS;
455 #else
456 static int slub_debug;
457 #endif
458
459 static char *slub_debug_slabs;
460 static int disable_higher_order_debug;
461
462 /*
463 * Object debugging
464 */
465 static void print_section(char *text, u8 *addr, unsigned int length)
466 {
467 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
468 length, 1);
469 }
470
471 static struct track *get_track(struct kmem_cache *s, void *object,
472 enum track_item alloc)
473 {
474 struct track *p;
475
476 if (s->offset)
477 p = object + s->offset + sizeof(void *);
478 else
479 p = object + s->inuse;
480
481 return p + alloc;
482 }
483
484 static void set_track(struct kmem_cache *s, void *object,
485 enum track_item alloc, unsigned long addr)
486 {
487 struct track *p = get_track(s, object, alloc);
488
489 if (addr) {
490 #ifdef CONFIG_STACKTRACE
491 struct stack_trace trace;
492 int i;
493
494 trace.nr_entries = 0;
495 trace.max_entries = TRACK_ADDRS_COUNT;
496 trace.entries = p->addrs;
497 trace.skip = 3;
498 save_stack_trace(&trace);
499
500 /* See rant in lockdep.c */
501 if (trace.nr_entries != 0 &&
502 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
503 trace.nr_entries--;
504
505 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
506 p->addrs[i] = 0;
507 #endif
508 p->addr = addr;
509 p->cpu = smp_processor_id();
510 p->pid = current->pid;
511 p->when = jiffies;
512 } else
513 memset(p, 0, sizeof(struct track));
514 }
515
516 static void init_tracking(struct kmem_cache *s, void *object)
517 {
518 if (!(s->flags & SLAB_STORE_USER))
519 return;
520
521 set_track(s, object, TRACK_FREE, 0UL);
522 set_track(s, object, TRACK_ALLOC, 0UL);
523 }
524
525 static void print_track(const char *s, struct track *t)
526 {
527 if (!t->addr)
528 return;
529
530 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
531 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
532 #ifdef CONFIG_STACKTRACE
533 {
534 int i;
535 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
536 if (t->addrs[i])
537 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
538 else
539 break;
540 }
541 #endif
542 }
543
544 static void print_tracking(struct kmem_cache *s, void *object)
545 {
546 if (!(s->flags & SLAB_STORE_USER))
547 return;
548
549 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
550 print_track("Freed", get_track(s, object, TRACK_FREE));
551 }
552
553 static void print_page_info(struct page *page)
554 {
555 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
556 page, page->objects, page->inuse, page->freelist, page->flags);
557
558 }
559
560 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
561 {
562 va_list args;
563 char buf[100];
564
565 va_start(args, fmt);
566 vsnprintf(buf, sizeof(buf), fmt, args);
567 va_end(args);
568 printk(KERN_ERR "========================================"
569 "=====================================\n");
570 printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
571 printk(KERN_ERR "----------------------------------------"
572 "-------------------------------------\n\n");
573 }
574
575 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
576 {
577 va_list args;
578 char buf[100];
579
580 va_start(args, fmt);
581 vsnprintf(buf, sizeof(buf), fmt, args);
582 va_end(args);
583 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
584 }
585
586 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
587 {
588 unsigned int off; /* Offset of last byte */
589 u8 *addr = page_address(page);
590
591 print_tracking(s, p);
592
593 print_page_info(page);
594
595 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
596 p, p - addr, get_freepointer(s, p));
597
598 if (p > addr + 16)
599 print_section("Bytes b4 ", p - 16, 16);
600
601 print_section("Object ", p, min_t(unsigned long, s->object_size,
602 PAGE_SIZE));
603 if (s->flags & SLAB_RED_ZONE)
604 print_section("Redzone ", p + s->object_size,
605 s->inuse - s->object_size);
606
607 if (s->offset)
608 off = s->offset + sizeof(void *);
609 else
610 off = s->inuse;
611
612 if (s->flags & SLAB_STORE_USER)
613 off += 2 * sizeof(struct track);
614
615 if (off != s->size)
616 /* Beginning of the filler is the free pointer */
617 print_section("Padding ", p + off, s->size - off);
618
619 dump_stack();
620 }
621
622 static void object_err(struct kmem_cache *s, struct page *page,
623 u8 *object, char *reason)
624 {
625 slab_bug(s, "%s", reason);
626 print_trailer(s, page, object);
627 }
628
629 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
630 {
631 va_list args;
632 char buf[100];
633
634 va_start(args, fmt);
635 vsnprintf(buf, sizeof(buf), fmt, args);
636 va_end(args);
637 slab_bug(s, "%s", buf);
638 print_page_info(page);
639 dump_stack();
640 }
641
642 static void init_object(struct kmem_cache *s, void *object, u8 val)
643 {
644 u8 *p = object;
645
646 if (s->flags & __OBJECT_POISON) {
647 memset(p, POISON_FREE, s->object_size - 1);
648 p[s->object_size - 1] = POISON_END;
649 }
650
651 if (s->flags & SLAB_RED_ZONE)
652 memset(p + s->object_size, val, s->inuse - s->object_size);
653 }
654
655 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
656 void *from, void *to)
657 {
658 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
659 memset(from, data, to - from);
660 }
661
662 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
663 u8 *object, char *what,
664 u8 *start, unsigned int value, unsigned int bytes)
665 {
666 u8 *fault;
667 u8 *end;
668
669 fault = memchr_inv(start, value, bytes);
670 if (!fault)
671 return 1;
672
673 end = start + bytes;
674 while (end > fault && end[-1] == value)
675 end--;
676
677 slab_bug(s, "%s overwritten", what);
678 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
679 fault, end - 1, fault[0], value);
680 print_trailer(s, page, object);
681
682 restore_bytes(s, what, value, fault, end);
683 return 0;
684 }
685
686 /*
687 * Object layout:
688 *
689 * object address
690 * Bytes of the object to be managed.
691 * If the freepointer may overlay the object then the free
692 * pointer is the first word of the object.
693 *
694 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
695 * 0xa5 (POISON_END)
696 *
697 * object + s->object_size
698 * Padding to reach word boundary. This is also used for Redzoning.
699 * Padding is extended by another word if Redzoning is enabled and
700 * object_size == inuse.
701 *
702 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
703 * 0xcc (RED_ACTIVE) for objects in use.
704 *
705 * object + s->inuse
706 * Meta data starts here.
707 *
708 * A. Free pointer (if we cannot overwrite object on free)
709 * B. Tracking data for SLAB_STORE_USER
710 * C. Padding to reach required alignment boundary or at mininum
711 * one word if debugging is on to be able to detect writes
712 * before the word boundary.
713 *
714 * Padding is done using 0x5a (POISON_INUSE)
715 *
716 * object + s->size
717 * Nothing is used beyond s->size.
718 *
719 * If slabcaches are merged then the object_size and inuse boundaries are mostly
720 * ignored. And therefore no slab options that rely on these boundaries
721 * may be used with merged slabcaches.
722 */
723
724 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
725 {
726 unsigned long off = s->inuse; /* The end of info */
727
728 if (s->offset)
729 /* Freepointer is placed after the object. */
730 off += sizeof(void *);
731
732 if (s->flags & SLAB_STORE_USER)
733 /* We also have user information there */
734 off += 2 * sizeof(struct track);
735
736 if (s->size == off)
737 return 1;
738
739 return check_bytes_and_report(s, page, p, "Object padding",
740 p + off, POISON_INUSE, s->size - off);
741 }
742
743 /* Check the pad bytes at the end of a slab page */
744 static int slab_pad_check(struct kmem_cache *s, struct page *page)
745 {
746 u8 *start;
747 u8 *fault;
748 u8 *end;
749 int length;
750 int remainder;
751
752 if (!(s->flags & SLAB_POISON))
753 return 1;
754
755 start = page_address(page);
756 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
757 end = start + length;
758 remainder = length % s->size;
759 if (!remainder)
760 return 1;
761
762 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
763 if (!fault)
764 return 1;
765 while (end > fault && end[-1] == POISON_INUSE)
766 end--;
767
768 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
769 print_section("Padding ", end - remainder, remainder);
770
771 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
772 return 0;
773 }
774
775 static int check_object(struct kmem_cache *s, struct page *page,
776 void *object, u8 val)
777 {
778 u8 *p = object;
779 u8 *endobject = object + s->object_size;
780
781 if (s->flags & SLAB_RED_ZONE) {
782 if (!check_bytes_and_report(s, page, object, "Redzone",
783 endobject, val, s->inuse - s->object_size))
784 return 0;
785 } else {
786 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
787 check_bytes_and_report(s, page, p, "Alignment padding",
788 endobject, POISON_INUSE, s->inuse - s->object_size);
789 }
790 }
791
792 if (s->flags & SLAB_POISON) {
793 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
794 (!check_bytes_and_report(s, page, p, "Poison", p,
795 POISON_FREE, s->object_size - 1) ||
796 !check_bytes_and_report(s, page, p, "Poison",
797 p + s->object_size - 1, POISON_END, 1)))
798 return 0;
799 /*
800 * check_pad_bytes cleans up on its own.
801 */
802 check_pad_bytes(s, page, p);
803 }
804
805 if (!s->offset && val == SLUB_RED_ACTIVE)
806 /*
807 * Object and freepointer overlap. Cannot check
808 * freepointer while object is allocated.
809 */
810 return 1;
811
812 /* Check free pointer validity */
813 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
814 object_err(s, page, p, "Freepointer corrupt");
815 /*
816 * No choice but to zap it and thus lose the remainder
817 * of the free objects in this slab. May cause
818 * another error because the object count is now wrong.
819 */
820 set_freepointer(s, p, NULL);
821 return 0;
822 }
823 return 1;
824 }
825
826 static int check_slab(struct kmem_cache *s, struct page *page)
827 {
828 int maxobj;
829
830 VM_BUG_ON(!irqs_disabled());
831
832 if (!PageSlab(page)) {
833 slab_err(s, page, "Not a valid slab page");
834 return 0;
835 }
836
837 maxobj = order_objects(compound_order(page), s->size, s->reserved);
838 if (page->objects > maxobj) {
839 slab_err(s, page, "objects %u > max %u",
840 s->name, page->objects, maxobj);
841 return 0;
842 }
843 if (page->inuse > page->objects) {
844 slab_err(s, page, "inuse %u > max %u",
845 s->name, page->inuse, page->objects);
846 return 0;
847 }
848 /* Slab_pad_check fixes things up after itself */
849 slab_pad_check(s, page);
850 return 1;
851 }
852
853 /*
854 * Determine if a certain object on a page is on the freelist. Must hold the
855 * slab lock to guarantee that the chains are in a consistent state.
856 */
857 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
858 {
859 int nr = 0;
860 void *fp;
861 void *object = NULL;
862 unsigned long max_objects;
863
864 fp = page->freelist;
865 while (fp && nr <= page->objects) {
866 if (fp == search)
867 return 1;
868 if (!check_valid_pointer(s, page, fp)) {
869 if (object) {
870 object_err(s, page, object,
871 "Freechain corrupt");
872 set_freepointer(s, object, NULL);
873 break;
874 } else {
875 slab_err(s, page, "Freepointer corrupt");
876 page->freelist = NULL;
877 page->inuse = page->objects;
878 slab_fix(s, "Freelist cleared");
879 return 0;
880 }
881 break;
882 }
883 object = fp;
884 fp = get_freepointer(s, object);
885 nr++;
886 }
887
888 max_objects = order_objects(compound_order(page), s->size, s->reserved);
889 if (max_objects > MAX_OBJS_PER_PAGE)
890 max_objects = MAX_OBJS_PER_PAGE;
891
892 if (page->objects != max_objects) {
893 slab_err(s, page, "Wrong number of objects. Found %d but "
894 "should be %d", page->objects, max_objects);
895 page->objects = max_objects;
896 slab_fix(s, "Number of objects adjusted.");
897 }
898 if (page->inuse != page->objects - nr) {
899 slab_err(s, page, "Wrong object count. Counter is %d but "
900 "counted were %d", page->inuse, page->objects - nr);
901 page->inuse = page->objects - nr;
902 slab_fix(s, "Object count adjusted.");
903 }
904 return search == NULL;
905 }
906
907 static void trace(struct kmem_cache *s, struct page *page, void *object,
908 int alloc)
909 {
910 if (s->flags & SLAB_TRACE) {
911 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
912 s->name,
913 alloc ? "alloc" : "free",
914 object, page->inuse,
915 page->freelist);
916
917 if (!alloc)
918 print_section("Object ", (void *)object, s->object_size);
919
920 dump_stack();
921 }
922 }
923
924 /*
925 * Hooks for other subsystems that check memory allocations. In a typical
926 * production configuration these hooks all should produce no code at all.
927 */
928 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
929 {
930 flags &= gfp_allowed_mask;
931 lockdep_trace_alloc(flags);
932 might_sleep_if(flags & __GFP_WAIT);
933
934 return should_failslab(s->object_size, flags, s->flags);
935 }
936
937 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
938 {
939 flags &= gfp_allowed_mask;
940 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
941 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
942 }
943
944 static inline void slab_free_hook(struct kmem_cache *s, void *x)
945 {
946 kmemleak_free_recursive(x, s->flags);
947
948 /*
949 * Trouble is that we may no longer disable interupts in the fast path
950 * So in order to make the debug calls that expect irqs to be
951 * disabled we need to disable interrupts temporarily.
952 */
953 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
954 {
955 unsigned long flags;
956
957 local_irq_save(flags);
958 kmemcheck_slab_free(s, x, s->object_size);
959 debug_check_no_locks_freed(x, s->object_size);
960 local_irq_restore(flags);
961 }
962 #endif
963 if (!(s->flags & SLAB_DEBUG_OBJECTS))
964 debug_check_no_obj_freed(x, s->object_size);
965 }
966
967 /*
968 * Tracking of fully allocated slabs for debugging purposes.
969 *
970 * list_lock must be held.
971 */
972 static void add_full(struct kmem_cache *s,
973 struct kmem_cache_node *n, struct page *page)
974 {
975 if (!(s->flags & SLAB_STORE_USER))
976 return;
977
978 list_add(&page->lru, &n->full);
979 }
980
981 /*
982 * list_lock must be held.
983 */
984 static void remove_full(struct kmem_cache *s, struct page *page)
985 {
986 if (!(s->flags & SLAB_STORE_USER))
987 return;
988
989 list_del(&page->lru);
990 }
991
992 /* Tracking of the number of slabs for debugging purposes */
993 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
994 {
995 struct kmem_cache_node *n = get_node(s, node);
996
997 return atomic_long_read(&n->nr_slabs);
998 }
999
1000 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1001 {
1002 return atomic_long_read(&n->nr_slabs);
1003 }
1004
1005 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1006 {
1007 struct kmem_cache_node *n = get_node(s, node);
1008
1009 /*
1010 * May be called early in order to allocate a slab for the
1011 * kmem_cache_node structure. Solve the chicken-egg
1012 * dilemma by deferring the increment of the count during
1013 * bootstrap (see early_kmem_cache_node_alloc).
1014 */
1015 if (n) {
1016 atomic_long_inc(&n->nr_slabs);
1017 atomic_long_add(objects, &n->total_objects);
1018 }
1019 }
1020 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1021 {
1022 struct kmem_cache_node *n = get_node(s, node);
1023
1024 atomic_long_dec(&n->nr_slabs);
1025 atomic_long_sub(objects, &n->total_objects);
1026 }
1027
1028 /* Object debug checks for alloc/free paths */
1029 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1030 void *object)
1031 {
1032 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1033 return;
1034
1035 init_object(s, object, SLUB_RED_INACTIVE);
1036 init_tracking(s, object);
1037 }
1038
1039 static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
1040 void *object, unsigned long addr)
1041 {
1042 if (!check_slab(s, page))
1043 goto bad;
1044
1045 if (!check_valid_pointer(s, page, object)) {
1046 object_err(s, page, object, "Freelist Pointer check fails");
1047 goto bad;
1048 }
1049
1050 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1051 goto bad;
1052
1053 /* Success perform special debug activities for allocs */
1054 if (s->flags & SLAB_STORE_USER)
1055 set_track(s, object, TRACK_ALLOC, addr);
1056 trace(s, page, object, 1);
1057 init_object(s, object, SLUB_RED_ACTIVE);
1058 return 1;
1059
1060 bad:
1061 if (PageSlab(page)) {
1062 /*
1063 * If this is a slab page then lets do the best we can
1064 * to avoid issues in the future. Marking all objects
1065 * as used avoids touching the remaining objects.
1066 */
1067 slab_fix(s, "Marking all objects used");
1068 page->inuse = page->objects;
1069 page->freelist = NULL;
1070 }
1071 return 0;
1072 }
1073
1074 static noinline int free_debug_processing(struct kmem_cache *s,
1075 struct page *page, void *object, unsigned long addr)
1076 {
1077 unsigned long flags;
1078 int rc = 0;
1079
1080 local_irq_save(flags);
1081 slab_lock(page);
1082
1083 if (!check_slab(s, page))
1084 goto fail;
1085
1086 if (!check_valid_pointer(s, page, object)) {
1087 slab_err(s, page, "Invalid object pointer 0x%p", object);
1088 goto fail;
1089 }
1090
1091 if (on_freelist(s, page, object)) {
1092 object_err(s, page, object, "Object already free");
1093 goto fail;
1094 }
1095
1096 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1097 goto out;
1098
1099 if (unlikely(s != page->slab)) {
1100 if (!PageSlab(page)) {
1101 slab_err(s, page, "Attempt to free object(0x%p) "
1102 "outside of slab", object);
1103 } else if (!page->slab) {
1104 printk(KERN_ERR
1105 "SLUB <none>: no slab for object 0x%p.\n",
1106 object);
1107 dump_stack();
1108 } else
1109 object_err(s, page, object,
1110 "page slab pointer corrupt.");
1111 goto fail;
1112 }
1113
1114 if (s->flags & SLAB_STORE_USER)
1115 set_track(s, object, TRACK_FREE, addr);
1116 trace(s, page, object, 0);
1117 init_object(s, object, SLUB_RED_INACTIVE);
1118 rc = 1;
1119 out:
1120 slab_unlock(page);
1121 local_irq_restore(flags);
1122 return rc;
1123
1124 fail:
1125 slab_fix(s, "Object at 0x%p not freed", object);
1126 goto out;
1127 }
1128
1129 static int __init setup_slub_debug(char *str)
1130 {
1131 slub_debug = DEBUG_DEFAULT_FLAGS;
1132 if (*str++ != '=' || !*str)
1133 /*
1134 * No options specified. Switch on full debugging.
1135 */
1136 goto out;
1137
1138 if (*str == ',')
1139 /*
1140 * No options but restriction on slabs. This means full
1141 * debugging for slabs matching a pattern.
1142 */
1143 goto check_slabs;
1144
1145 if (tolower(*str) == 'o') {
1146 /*
1147 * Avoid enabling debugging on caches if its minimum order
1148 * would increase as a result.
1149 */
1150 disable_higher_order_debug = 1;
1151 goto out;
1152 }
1153
1154 slub_debug = 0;
1155 if (*str == '-')
1156 /*
1157 * Switch off all debugging measures.
1158 */
1159 goto out;
1160
1161 /*
1162 * Determine which debug features should be switched on
1163 */
1164 for (; *str && *str != ','; str++) {
1165 switch (tolower(*str)) {
1166 case 'f':
1167 slub_debug |= SLAB_DEBUG_FREE;
1168 break;
1169 case 'z':
1170 slub_debug |= SLAB_RED_ZONE;
1171 break;
1172 case 'p':
1173 slub_debug |= SLAB_POISON;
1174 break;
1175 case 'u':
1176 slub_debug |= SLAB_STORE_USER;
1177 break;
1178 case 't':
1179 slub_debug |= SLAB_TRACE;
1180 break;
1181 case 'a':
1182 slub_debug |= SLAB_FAILSLAB;
1183 break;
1184 default:
1185 printk(KERN_ERR "slub_debug option '%c' "
1186 "unknown. skipped\n", *str);
1187 }
1188 }
1189
1190 check_slabs:
1191 if (*str == ',')
1192 slub_debug_slabs = str + 1;
1193 out:
1194 return 1;
1195 }
1196
1197 __setup("slub_debug", setup_slub_debug);
1198
1199 static unsigned long kmem_cache_flags(unsigned long object_size,
1200 unsigned long flags, const char *name,
1201 void (*ctor)(void *))
1202 {
1203 /*
1204 * Enable debugging if selected on the kernel commandline.
1205 */
1206 if (slub_debug && (!slub_debug_slabs ||
1207 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1208 flags |= slub_debug;
1209
1210 return flags;
1211 }
1212 #else
1213 static inline void setup_object_debug(struct kmem_cache *s,
1214 struct page *page, void *object) {}
1215
1216 static inline int alloc_debug_processing(struct kmem_cache *s,
1217 struct page *page, void *object, unsigned long addr) { return 0; }
1218
1219 static inline int free_debug_processing(struct kmem_cache *s,
1220 struct page *page, void *object, unsigned long addr) { return 0; }
1221
1222 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1223 { return 1; }
1224 static inline int check_object(struct kmem_cache *s, struct page *page,
1225 void *object, u8 val) { return 1; }
1226 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1227 struct page *page) {}
1228 static inline void remove_full(struct kmem_cache *s, struct page *page) {}
1229 static inline unsigned long kmem_cache_flags(unsigned long object_size,
1230 unsigned long flags, const char *name,
1231 void (*ctor)(void *))
1232 {
1233 return flags;
1234 }
1235 #define slub_debug 0
1236
1237 #define disable_higher_order_debug 0
1238
1239 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1240 { return 0; }
1241 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1242 { return 0; }
1243 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1244 int objects) {}
1245 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1246 int objects) {}
1247
1248 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1249 { return 0; }
1250
1251 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1252 void *object) {}
1253
1254 static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1255
1256 #endif /* CONFIG_SLUB_DEBUG */
1257
1258 /*
1259 * Slab allocation and freeing
1260 */
1261 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1262 struct kmem_cache_order_objects oo)
1263 {
1264 int order = oo_order(oo);
1265
1266 flags |= __GFP_NOTRACK;
1267
1268 if (node == NUMA_NO_NODE)
1269 return alloc_pages(flags, order);
1270 else
1271 return alloc_pages_exact_node(node, flags, order);
1272 }
1273
1274 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1275 {
1276 struct page *page;
1277 struct kmem_cache_order_objects oo = s->oo;
1278 gfp_t alloc_gfp;
1279
1280 flags &= gfp_allowed_mask;
1281
1282 if (flags & __GFP_WAIT)
1283 local_irq_enable();
1284
1285 flags |= s->allocflags;
1286
1287 /*
1288 * Let the initial higher-order allocation fail under memory pressure
1289 * so we fall-back to the minimum order allocation.
1290 */
1291 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1292
1293 page = alloc_slab_page(alloc_gfp, node, oo);
1294 if (unlikely(!page)) {
1295 oo = s->min;
1296 /*
1297 * Allocation may have failed due to fragmentation.
1298 * Try a lower order alloc if possible
1299 */
1300 page = alloc_slab_page(flags, node, oo);
1301
1302 if (page)
1303 stat(s, ORDER_FALLBACK);
1304 }
1305
1306 if (flags & __GFP_WAIT)
1307 local_irq_disable();
1308
1309 if (!page)
1310 return NULL;
1311
1312 if (kmemcheck_enabled
1313 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1314 int pages = 1 << oo_order(oo);
1315
1316 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1317
1318 /*
1319 * Objects from caches that have a constructor don't get
1320 * cleared when they're allocated, so we need to do it here.
1321 */
1322 if (s->ctor)
1323 kmemcheck_mark_uninitialized_pages(page, pages);
1324 else
1325 kmemcheck_mark_unallocated_pages(page, pages);
1326 }
1327
1328 page->objects = oo_objects(oo);
1329 mod_zone_page_state(page_zone(page),
1330 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1331 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1332 1 << oo_order(oo));
1333
1334 return page;
1335 }
1336
1337 static void setup_object(struct kmem_cache *s, struct page *page,
1338 void *object)
1339 {
1340 setup_object_debug(s, page, object);
1341 if (unlikely(s->ctor))
1342 s->ctor(object);
1343 }
1344
1345 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1346 {
1347 struct page *page;
1348 void *start;
1349 void *last;
1350 void *p;
1351
1352 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1353
1354 page = allocate_slab(s,
1355 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1356 if (!page)
1357 goto out;
1358
1359 inc_slabs_node(s, page_to_nid(page), page->objects);
1360 page->slab = s;
1361 __SetPageSlab(page);
1362
1363 start = page_address(page);
1364
1365 if (unlikely(s->flags & SLAB_POISON))
1366 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1367
1368 last = start;
1369 for_each_object(p, s, start, page->objects) {
1370 setup_object(s, page, last);
1371 set_freepointer(s, last, p);
1372 last = p;
1373 }
1374 setup_object(s, page, last);
1375 set_freepointer(s, last, NULL);
1376
1377 page->freelist = start;
1378 page->inuse = page->objects;
1379 page->frozen = 1;
1380 out:
1381 return page;
1382 }
1383
1384 static void __free_slab(struct kmem_cache *s, struct page *page)
1385 {
1386 int order = compound_order(page);
1387 int pages = 1 << order;
1388
1389 if (kmem_cache_debug(s)) {
1390 void *p;
1391
1392 slab_pad_check(s, page);
1393 for_each_object(p, s, page_address(page),
1394 page->objects)
1395 check_object(s, page, p, SLUB_RED_INACTIVE);
1396 }
1397
1398 kmemcheck_free_shadow(page, compound_order(page));
1399
1400 mod_zone_page_state(page_zone(page),
1401 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1402 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1403 -pages);
1404
1405 __ClearPageSlab(page);
1406 reset_page_mapcount(page);
1407 if (current->reclaim_state)
1408 current->reclaim_state->reclaimed_slab += pages;
1409 __free_pages(page, order);
1410 }
1411
1412 #define need_reserve_slab_rcu \
1413 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1414
1415 static void rcu_free_slab(struct rcu_head *h)
1416 {
1417 struct page *page;
1418
1419 if (need_reserve_slab_rcu)
1420 page = virt_to_head_page(h);
1421 else
1422 page = container_of((struct list_head *)h, struct page, lru);
1423
1424 __free_slab(page->slab, page);
1425 }
1426
1427 static void free_slab(struct kmem_cache *s, struct page *page)
1428 {
1429 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1430 struct rcu_head *head;
1431
1432 if (need_reserve_slab_rcu) {
1433 int order = compound_order(page);
1434 int offset = (PAGE_SIZE << order) - s->reserved;
1435
1436 VM_BUG_ON(s->reserved != sizeof(*head));
1437 head = page_address(page) + offset;
1438 } else {
1439 /*
1440 * RCU free overloads the RCU head over the LRU
1441 */
1442 head = (void *)&page->lru;
1443 }
1444
1445 call_rcu(head, rcu_free_slab);
1446 } else
1447 __free_slab(s, page);
1448 }
1449
1450 static void discard_slab(struct kmem_cache *s, struct page *page)
1451 {
1452 dec_slabs_node(s, page_to_nid(page), page->objects);
1453 free_slab(s, page);
1454 }
1455
1456 /*
1457 * Management of partially allocated slabs.
1458 *
1459 * list_lock must be held.
1460 */
1461 static inline void add_partial(struct kmem_cache_node *n,
1462 struct page *page, int tail)
1463 {
1464 n->nr_partial++;
1465 if (tail == DEACTIVATE_TO_TAIL)
1466 list_add_tail(&page->lru, &n->partial);
1467 else
1468 list_add(&page->lru, &n->partial);
1469 }
1470
1471 /*
1472 * list_lock must be held.
1473 */
1474 static inline void remove_partial(struct kmem_cache_node *n,
1475 struct page *page)
1476 {
1477 list_del(&page->lru);
1478 n->nr_partial--;
1479 }
1480
1481 /*
1482 * Remove slab from the partial list, freeze it and
1483 * return the pointer to the freelist.
1484 *
1485 * Returns a list of objects or NULL if it fails.
1486 *
1487 * Must hold list_lock since we modify the partial list.
1488 */
1489 static inline void *acquire_slab(struct kmem_cache *s,
1490 struct kmem_cache_node *n, struct page *page,
1491 int mode)
1492 {
1493 void *freelist;
1494 unsigned long counters;
1495 struct page new;
1496
1497 /*
1498 * Zap the freelist and set the frozen bit.
1499 * The old freelist is the list of objects for the
1500 * per cpu allocation list.
1501 */
1502 freelist = page->freelist;
1503 counters = page->counters;
1504 new.counters = counters;
1505 if (mode) {
1506 new.inuse = page->objects;
1507 new.freelist = NULL;
1508 } else {
1509 new.freelist = freelist;
1510 }
1511
1512 VM_BUG_ON(new.frozen);
1513 new.frozen = 1;
1514
1515 if (!__cmpxchg_double_slab(s, page,
1516 freelist, counters,
1517 new.freelist, new.counters,
1518 "acquire_slab"))
1519 return NULL;
1520
1521 remove_partial(n, page);
1522 WARN_ON(!freelist);
1523 return freelist;
1524 }
1525
1526 static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1527
1528 /*
1529 * Try to allocate a partial slab from a specific node.
1530 */
1531 static void *get_partial_node(struct kmem_cache *s,
1532 struct kmem_cache_node *n, struct kmem_cache_cpu *c)
1533 {
1534 struct page *page, *page2;
1535 void *object = NULL;
1536
1537 /*
1538 * Racy check. If we mistakenly see no partial slabs then we
1539 * just allocate an empty slab. If we mistakenly try to get a
1540 * partial slab and there is none available then get_partials()
1541 * will return NULL.
1542 */
1543 if (!n || !n->nr_partial)
1544 return NULL;
1545
1546 spin_lock(&n->list_lock);
1547 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1548 void *t = acquire_slab(s, n, page, object == NULL);
1549 int available;
1550
1551 if (!t)
1552 break;
1553
1554 if (!object) {
1555 c->page = page;
1556 stat(s, ALLOC_FROM_PARTIAL);
1557 object = t;
1558 available = page->objects - page->inuse;
1559 } else {
1560 available = put_cpu_partial(s, page, 0);
1561 stat(s, CPU_PARTIAL_NODE);
1562 }
1563 if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
1564 break;
1565
1566 }
1567 spin_unlock(&n->list_lock);
1568 return object;
1569 }
1570
1571 /*
1572 * Get a page from somewhere. Search in increasing NUMA distances.
1573 */
1574 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1575 struct kmem_cache_cpu *c)
1576 {
1577 #ifdef CONFIG_NUMA
1578 struct zonelist *zonelist;
1579 struct zoneref *z;
1580 struct zone *zone;
1581 enum zone_type high_zoneidx = gfp_zone(flags);
1582 void *object;
1583 unsigned int cpuset_mems_cookie;
1584
1585 /*
1586 * The defrag ratio allows a configuration of the tradeoffs between
1587 * inter node defragmentation and node local allocations. A lower
1588 * defrag_ratio increases the tendency to do local allocations
1589 * instead of attempting to obtain partial slabs from other nodes.
1590 *
1591 * If the defrag_ratio is set to 0 then kmalloc() always
1592 * returns node local objects. If the ratio is higher then kmalloc()
1593 * may return off node objects because partial slabs are obtained
1594 * from other nodes and filled up.
1595 *
1596 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1597 * defrag_ratio = 1000) then every (well almost) allocation will
1598 * first attempt to defrag slab caches on other nodes. This means
1599 * scanning over all nodes to look for partial slabs which may be
1600 * expensive if we do it every time we are trying to find a slab
1601 * with available objects.
1602 */
1603 if (!s->remote_node_defrag_ratio ||
1604 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1605 return NULL;
1606
1607 do {
1608 cpuset_mems_cookie = get_mems_allowed();
1609 zonelist = node_zonelist(slab_node(), flags);
1610 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1611 struct kmem_cache_node *n;
1612
1613 n = get_node(s, zone_to_nid(zone));
1614
1615 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1616 n->nr_partial > s->min_partial) {
1617 object = get_partial_node(s, n, c);
1618 if (object) {
1619 /*
1620 * Return the object even if
1621 * put_mems_allowed indicated that
1622 * the cpuset mems_allowed was
1623 * updated in parallel. It's a
1624 * harmless race between the alloc
1625 * and the cpuset update.
1626 */
1627 put_mems_allowed(cpuset_mems_cookie);
1628 return object;
1629 }
1630 }
1631 }
1632 } while (!put_mems_allowed(cpuset_mems_cookie));
1633 #endif
1634 return NULL;
1635 }
1636
1637 /*
1638 * Get a partial page, lock it and return it.
1639 */
1640 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1641 struct kmem_cache_cpu *c)
1642 {
1643 void *object;
1644 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1645
1646 object = get_partial_node(s, get_node(s, searchnode), c);
1647 if (object || node != NUMA_NO_NODE)
1648 return object;
1649
1650 return get_any_partial(s, flags, c);
1651 }
1652
1653 #ifdef CONFIG_PREEMPT
1654 /*
1655 * Calculate the next globally unique transaction for disambiguiation
1656 * during cmpxchg. The transactions start with the cpu number and are then
1657 * incremented by CONFIG_NR_CPUS.
1658 */
1659 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1660 #else
1661 /*
1662 * No preemption supported therefore also no need to check for
1663 * different cpus.
1664 */
1665 #define TID_STEP 1
1666 #endif
1667
1668 static inline unsigned long next_tid(unsigned long tid)
1669 {
1670 return tid + TID_STEP;
1671 }
1672
1673 static inline unsigned int tid_to_cpu(unsigned long tid)
1674 {
1675 return tid % TID_STEP;
1676 }
1677
1678 static inline unsigned long tid_to_event(unsigned long tid)
1679 {
1680 return tid / TID_STEP;
1681 }
1682
1683 static inline unsigned int init_tid(int cpu)
1684 {
1685 return cpu;
1686 }
1687
1688 static inline void note_cmpxchg_failure(const char *n,
1689 const struct kmem_cache *s, unsigned long tid)
1690 {
1691 #ifdef SLUB_DEBUG_CMPXCHG
1692 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1693
1694 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1695
1696 #ifdef CONFIG_PREEMPT
1697 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1698 printk("due to cpu change %d -> %d\n",
1699 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1700 else
1701 #endif
1702 if (tid_to_event(tid) != tid_to_event(actual_tid))
1703 printk("due to cpu running other code. Event %ld->%ld\n",
1704 tid_to_event(tid), tid_to_event(actual_tid));
1705 else
1706 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1707 actual_tid, tid, next_tid(tid));
1708 #endif
1709 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1710 }
1711
1712 void init_kmem_cache_cpus(struct kmem_cache *s)
1713 {
1714 int cpu;
1715
1716 for_each_possible_cpu(cpu)
1717 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1718 }
1719
1720 /*
1721 * Remove the cpu slab
1722 */
1723 static void deactivate_slab(struct kmem_cache *s, struct page *page, void *freelist)
1724 {
1725 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1726 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1727 int lock = 0;
1728 enum slab_modes l = M_NONE, m = M_NONE;
1729 void *nextfree;
1730 int tail = DEACTIVATE_TO_HEAD;
1731 struct page new;
1732 struct page old;
1733
1734 if (page->freelist) {
1735 stat(s, DEACTIVATE_REMOTE_FREES);
1736 tail = DEACTIVATE_TO_TAIL;
1737 }
1738
1739 /*
1740 * Stage one: Free all available per cpu objects back
1741 * to the page freelist while it is still frozen. Leave the
1742 * last one.
1743 *
1744 * There is no need to take the list->lock because the page
1745 * is still frozen.
1746 */
1747 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1748 void *prior;
1749 unsigned long counters;
1750
1751 do {
1752 prior = page->freelist;
1753 counters = page->counters;
1754 set_freepointer(s, freelist, prior);
1755 new.counters = counters;
1756 new.inuse--;
1757 VM_BUG_ON(!new.frozen);
1758
1759 } while (!__cmpxchg_double_slab(s, page,
1760 prior, counters,
1761 freelist, new.counters,
1762 "drain percpu freelist"));
1763
1764 freelist = nextfree;
1765 }
1766
1767 /*
1768 * Stage two: Ensure that the page is unfrozen while the
1769 * list presence reflects the actual number of objects
1770 * during unfreeze.
1771 *
1772 * We setup the list membership and then perform a cmpxchg
1773 * with the count. If there is a mismatch then the page
1774 * is not unfrozen but the page is on the wrong list.
1775 *
1776 * Then we restart the process which may have to remove
1777 * the page from the list that we just put it on again
1778 * because the number of objects in the slab may have
1779 * changed.
1780 */
1781 redo:
1782
1783 old.freelist = page->freelist;
1784 old.counters = page->counters;
1785 VM_BUG_ON(!old.frozen);
1786
1787 /* Determine target state of the slab */
1788 new.counters = old.counters;
1789 if (freelist) {
1790 new.inuse--;
1791 set_freepointer(s, freelist, old.freelist);
1792 new.freelist = freelist;
1793 } else
1794 new.freelist = old.freelist;
1795
1796 new.frozen = 0;
1797
1798 if (!new.inuse && n->nr_partial > s->min_partial)
1799 m = M_FREE;
1800 else if (new.freelist) {
1801 m = M_PARTIAL;
1802 if (!lock) {
1803 lock = 1;
1804 /*
1805 * Taking the spinlock removes the possiblity
1806 * that acquire_slab() will see a slab page that
1807 * is frozen
1808 */
1809 spin_lock(&n->list_lock);
1810 }
1811 } else {
1812 m = M_FULL;
1813 if (kmem_cache_debug(s) && !lock) {
1814 lock = 1;
1815 /*
1816 * This also ensures that the scanning of full
1817 * slabs from diagnostic functions will not see
1818 * any frozen slabs.
1819 */
1820 spin_lock(&n->list_lock);
1821 }
1822 }
1823
1824 if (l != m) {
1825
1826 if (l == M_PARTIAL)
1827
1828 remove_partial(n, page);
1829
1830 else if (l == M_FULL)
1831
1832 remove_full(s, page);
1833
1834 if (m == M_PARTIAL) {
1835
1836 add_partial(n, page, tail);
1837 stat(s, tail);
1838
1839 } else if (m == M_FULL) {
1840
1841 stat(s, DEACTIVATE_FULL);
1842 add_full(s, n, page);
1843
1844 }
1845 }
1846
1847 l = m;
1848 if (!__cmpxchg_double_slab(s, page,
1849 old.freelist, old.counters,
1850 new.freelist, new.counters,
1851 "unfreezing slab"))
1852 goto redo;
1853
1854 if (lock)
1855 spin_unlock(&n->list_lock);
1856
1857 if (m == M_FREE) {
1858 stat(s, DEACTIVATE_EMPTY);
1859 discard_slab(s, page);
1860 stat(s, FREE_SLAB);
1861 }
1862 }
1863
1864 /*
1865 * Unfreeze all the cpu partial slabs.
1866 *
1867 * This function must be called with interrupt disabled.
1868 */
1869 static void unfreeze_partials(struct kmem_cache *s)
1870 {
1871 struct kmem_cache_node *n = NULL, *n2 = NULL;
1872 struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
1873 struct page *page, *discard_page = NULL;
1874
1875 while ((page = c->partial)) {
1876 struct page new;
1877 struct page old;
1878
1879 c->partial = page->next;
1880
1881 n2 = get_node(s, page_to_nid(page));
1882 if (n != n2) {
1883 if (n)
1884 spin_unlock(&n->list_lock);
1885
1886 n = n2;
1887 spin_lock(&n->list_lock);
1888 }
1889
1890 do {
1891
1892 old.freelist = page->freelist;
1893 old.counters = page->counters;
1894 VM_BUG_ON(!old.frozen);
1895
1896 new.counters = old.counters;
1897 new.freelist = old.freelist;
1898
1899 new.frozen = 0;
1900
1901 } while (!__cmpxchg_double_slab(s, page,
1902 old.freelist, old.counters,
1903 new.freelist, new.counters,
1904 "unfreezing slab"));
1905
1906 if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
1907 page->next = discard_page;
1908 discard_page = page;
1909 } else {
1910 add_partial(n, page, DEACTIVATE_TO_TAIL);
1911 stat(s, FREE_ADD_PARTIAL);
1912 }
1913 }
1914
1915 if (n)
1916 spin_unlock(&n->list_lock);
1917
1918 while (discard_page) {
1919 page = discard_page;
1920 discard_page = discard_page->next;
1921
1922 stat(s, DEACTIVATE_EMPTY);
1923 discard_slab(s, page);
1924 stat(s, FREE_SLAB);
1925 }
1926 }
1927
1928 /*
1929 * Put a page that was just frozen (in __slab_free) into a partial page
1930 * slot if available. This is done without interrupts disabled and without
1931 * preemption disabled. The cmpxchg is racy and may put the partial page
1932 * onto a random cpus partial slot.
1933 *
1934 * If we did not find a slot then simply move all the partials to the
1935 * per node partial list.
1936 */
1937 int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
1938 {
1939 struct page *oldpage;
1940 int pages;
1941 int pobjects;
1942
1943 do {
1944 pages = 0;
1945 pobjects = 0;
1946 oldpage = this_cpu_read(s->cpu_slab->partial);
1947
1948 if (oldpage) {
1949 pobjects = oldpage->pobjects;
1950 pages = oldpage->pages;
1951 if (drain && pobjects > s->cpu_partial) {
1952 unsigned long flags;
1953 /*
1954 * partial array is full. Move the existing
1955 * set to the per node partial list.
1956 */
1957 local_irq_save(flags);
1958 unfreeze_partials(s);
1959 local_irq_restore(flags);
1960 pobjects = 0;
1961 pages = 0;
1962 stat(s, CPU_PARTIAL_DRAIN);
1963 }
1964 }
1965
1966 pages++;
1967 pobjects += page->objects - page->inuse;
1968
1969 page->pages = pages;
1970 page->pobjects = pobjects;
1971 page->next = oldpage;
1972
1973 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
1974 return pobjects;
1975 }
1976
1977 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1978 {
1979 stat(s, CPUSLAB_FLUSH);
1980 deactivate_slab(s, c->page, c->freelist);
1981
1982 c->tid = next_tid(c->tid);
1983 c->page = NULL;
1984 c->freelist = NULL;
1985 }
1986
1987 /*
1988 * Flush cpu slab.
1989 *
1990 * Called from IPI handler with interrupts disabled.
1991 */
1992 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1993 {
1994 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
1995
1996 if (likely(c)) {
1997 if (c->page)
1998 flush_slab(s, c);
1999
2000 unfreeze_partials(s);
2001 }
2002 }
2003
2004 static void flush_cpu_slab(void *d)
2005 {
2006 struct kmem_cache *s = d;
2007
2008 __flush_cpu_slab(s, smp_processor_id());
2009 }
2010
2011 static bool has_cpu_slab(int cpu, void *info)
2012 {
2013 struct kmem_cache *s = info;
2014 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2015
2016 return c->page || c->partial;
2017 }
2018
2019 static void flush_all(struct kmem_cache *s)
2020 {
2021 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2022 }
2023
2024 /*
2025 * Check if the objects in a per cpu structure fit numa
2026 * locality expectations.
2027 */
2028 static inline int node_match(struct page *page, int node)
2029 {
2030 #ifdef CONFIG_NUMA
2031 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2032 return 0;
2033 #endif
2034 return 1;
2035 }
2036
2037 static int count_free(struct page *page)
2038 {
2039 return page->objects - page->inuse;
2040 }
2041
2042 static unsigned long count_partial(struct kmem_cache_node *n,
2043 int (*get_count)(struct page *))
2044 {
2045 unsigned long flags;
2046 unsigned long x = 0;
2047 struct page *page;
2048
2049 spin_lock_irqsave(&n->list_lock, flags);
2050 list_for_each_entry(page, &n->partial, lru)
2051 x += get_count(page);
2052 spin_unlock_irqrestore(&n->list_lock, flags);
2053 return x;
2054 }
2055
2056 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2057 {
2058 #ifdef CONFIG_SLUB_DEBUG
2059 return atomic_long_read(&n->total_objects);
2060 #else
2061 return 0;
2062 #endif
2063 }
2064
2065 static noinline void
2066 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2067 {
2068 int node;
2069
2070 printk(KERN_WARNING
2071 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2072 nid, gfpflags);
2073 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
2074 "default order: %d, min order: %d\n", s->name, s->object_size,
2075 s->size, oo_order(s->oo), oo_order(s->min));
2076
2077 if (oo_order(s->min) > get_order(s->object_size))
2078 printk(KERN_WARNING " %s debugging increased min order, use "
2079 "slub_debug=O to disable.\n", s->name);
2080
2081 for_each_online_node(node) {
2082 struct kmem_cache_node *n = get_node(s, node);
2083 unsigned long nr_slabs;
2084 unsigned long nr_objs;
2085 unsigned long nr_free;
2086
2087 if (!n)
2088 continue;
2089
2090 nr_free = count_partial(n, count_free);
2091 nr_slabs = node_nr_slabs(n);
2092 nr_objs = node_nr_objs(n);
2093
2094 printk(KERN_WARNING
2095 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2096 node, nr_slabs, nr_objs, nr_free);
2097 }
2098 }
2099
2100 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2101 int node, struct kmem_cache_cpu **pc)
2102 {
2103 void *freelist;
2104 struct kmem_cache_cpu *c = *pc;
2105 struct page *page;
2106
2107 freelist = get_partial(s, flags, node, c);
2108
2109 if (freelist)
2110 return freelist;
2111
2112 page = new_slab(s, flags, node);
2113 if (page) {
2114 c = __this_cpu_ptr(s->cpu_slab);
2115 if (c->page)
2116 flush_slab(s, c);
2117
2118 /*
2119 * No other reference to the page yet so we can
2120 * muck around with it freely without cmpxchg
2121 */
2122 freelist = page->freelist;
2123 page->freelist = NULL;
2124
2125 stat(s, ALLOC_SLAB);
2126 c->page = page;
2127 *pc = c;
2128 } else
2129 freelist = NULL;
2130
2131 return freelist;
2132 }
2133
2134 /*
2135 * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
2136 * or deactivate the page.
2137 *
2138 * The page is still frozen if the return value is not NULL.
2139 *
2140 * If this function returns NULL then the page has been unfrozen.
2141 *
2142 * This function must be called with interrupt disabled.
2143 */
2144 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2145 {
2146 struct page new;
2147 unsigned long counters;
2148 void *freelist;
2149
2150 do {
2151 freelist = page->freelist;
2152 counters = page->counters;
2153
2154 new.counters = counters;
2155 VM_BUG_ON(!new.frozen);
2156
2157 new.inuse = page->objects;
2158 new.frozen = freelist != NULL;
2159
2160 } while (!__cmpxchg_double_slab(s, page,
2161 freelist, counters,
2162 NULL, new.counters,
2163 "get_freelist"));
2164
2165 return freelist;
2166 }
2167
2168 /*
2169 * Slow path. The lockless freelist is empty or we need to perform
2170 * debugging duties.
2171 *
2172 * Processing is still very fast if new objects have been freed to the
2173 * regular freelist. In that case we simply take over the regular freelist
2174 * as the lockless freelist and zap the regular freelist.
2175 *
2176 * If that is not working then we fall back to the partial lists. We take the
2177 * first element of the freelist as the object to allocate now and move the
2178 * rest of the freelist to the lockless freelist.
2179 *
2180 * And if we were unable to get a new slab from the partial slab lists then
2181 * we need to allocate a new slab. This is the slowest path since it involves
2182 * a call to the page allocator and the setup of a new slab.
2183 */
2184 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2185 unsigned long addr, struct kmem_cache_cpu *c)
2186 {
2187 void *freelist;
2188 struct page *page;
2189 unsigned long flags;
2190
2191 local_irq_save(flags);
2192 #ifdef CONFIG_PREEMPT
2193 /*
2194 * We may have been preempted and rescheduled on a different
2195 * cpu before disabling interrupts. Need to reload cpu area
2196 * pointer.
2197 */
2198 c = this_cpu_ptr(s->cpu_slab);
2199 #endif
2200
2201 page = c->page;
2202 if (!page)
2203 goto new_slab;
2204 redo:
2205
2206 if (unlikely(!node_match(page, node))) {
2207 stat(s, ALLOC_NODE_MISMATCH);
2208 deactivate_slab(s, page, c->freelist);
2209 c->page = NULL;
2210 c->freelist = NULL;
2211 goto new_slab;
2212 }
2213
2214 /* must check again c->freelist in case of cpu migration or IRQ */
2215 freelist = c->freelist;
2216 if (freelist)
2217 goto load_freelist;
2218
2219 stat(s, ALLOC_SLOWPATH);
2220
2221 freelist = get_freelist(s, page);
2222
2223 if (!freelist) {
2224 c->page = NULL;
2225 stat(s, DEACTIVATE_BYPASS);
2226 goto new_slab;
2227 }
2228
2229 stat(s, ALLOC_REFILL);
2230
2231 load_freelist:
2232 /*
2233 * freelist is pointing to the list of objects to be used.
2234 * page is pointing to the page from which the objects are obtained.
2235 * That page must be frozen for per cpu allocations to work.
2236 */
2237 VM_BUG_ON(!c->page->frozen);
2238 c->freelist = get_freepointer(s, freelist);
2239 c->tid = next_tid(c->tid);
2240 local_irq_restore(flags);
2241 return freelist;
2242
2243 new_slab:
2244
2245 if (c->partial) {
2246 page = c->page = c->partial;
2247 c->partial = page->next;
2248 stat(s, CPU_PARTIAL_ALLOC);
2249 c->freelist = NULL;
2250 goto redo;
2251 }
2252
2253 freelist = new_slab_objects(s, gfpflags, node, &c);
2254
2255 if (unlikely(!freelist)) {
2256 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2257 slab_out_of_memory(s, gfpflags, node);
2258
2259 local_irq_restore(flags);
2260 return NULL;
2261 }
2262
2263 page = c->page;
2264 if (likely(!kmem_cache_debug(s)))
2265 goto load_freelist;
2266
2267 /* Only entered in the debug case */
2268 if (!alloc_debug_processing(s, page, freelist, addr))
2269 goto new_slab; /* Slab failed checks. Next slab needed */
2270
2271 deactivate_slab(s, page, get_freepointer(s, freelist));
2272 c->page = NULL;
2273 c->freelist = NULL;
2274 local_irq_restore(flags);
2275 return freelist;
2276 }
2277
2278 /*
2279 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2280 * have the fastpath folded into their functions. So no function call
2281 * overhead for requests that can be satisfied on the fastpath.
2282 *
2283 * The fastpath works by first checking if the lockless freelist can be used.
2284 * If not then __slab_alloc is called for slow processing.
2285 *
2286 * Otherwise we can simply pick the next object from the lockless free list.
2287 */
2288 static __always_inline void *slab_alloc(struct kmem_cache *s,
2289 gfp_t gfpflags, int node, unsigned long addr)
2290 {
2291 void **object;
2292 struct kmem_cache_cpu *c;
2293 struct page *page;
2294 unsigned long tid;
2295
2296 if (slab_pre_alloc_hook(s, gfpflags))
2297 return NULL;
2298
2299 redo:
2300
2301 /*
2302 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2303 * enabled. We may switch back and forth between cpus while
2304 * reading from one cpu area. That does not matter as long
2305 * as we end up on the original cpu again when doing the cmpxchg.
2306 */
2307 c = __this_cpu_ptr(s->cpu_slab);
2308
2309 /*
2310 * The transaction ids are globally unique per cpu and per operation on
2311 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2312 * occurs on the right processor and that there was no operation on the
2313 * linked list in between.
2314 */
2315 tid = c->tid;
2316 barrier();
2317
2318 object = c->freelist;
2319 page = c->page;
2320 if (unlikely(!object || !node_match(page, node)))
2321
2322 object = __slab_alloc(s, gfpflags, node, addr, c);
2323
2324 else {
2325 void *next_object = get_freepointer_safe(s, object);
2326
2327 /*
2328 * The cmpxchg will only match if there was no additional
2329 * operation and if we are on the right processor.
2330 *
2331 * The cmpxchg does the following atomically (without lock semantics!)
2332 * 1. Relocate first pointer to the current per cpu area.
2333 * 2. Verify that tid and freelist have not been changed
2334 * 3. If they were not changed replace tid and freelist
2335 *
2336 * Since this is without lock semantics the protection is only against
2337 * code executing on this cpu *not* from access by other cpus.
2338 */
2339 if (unlikely(!this_cpu_cmpxchg_double(
2340 s->cpu_slab->freelist, s->cpu_slab->tid,
2341 object, tid,
2342 next_object, next_tid(tid)))) {
2343
2344 note_cmpxchg_failure("slab_alloc", s, tid);
2345 goto redo;
2346 }
2347 prefetch_freepointer(s, next_object);
2348 stat(s, ALLOC_FASTPATH);
2349 }
2350
2351 if (unlikely(gfpflags & __GFP_ZERO) && object)
2352 memset(object, 0, s->object_size);
2353
2354 slab_post_alloc_hook(s, gfpflags, object);
2355
2356 return object;
2357 }
2358
2359 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2360 {
2361 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2362
2363 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, s->size, gfpflags);
2364
2365 return ret;
2366 }
2367 EXPORT_SYMBOL(kmem_cache_alloc);
2368
2369 #ifdef CONFIG_TRACING
2370 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2371 {
2372 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2373 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2374 return ret;
2375 }
2376 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2377
2378 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
2379 {
2380 void *ret = kmalloc_order(size, flags, order);
2381 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2382 return ret;
2383 }
2384 EXPORT_SYMBOL(kmalloc_order_trace);
2385 #endif
2386
2387 #ifdef CONFIG_NUMA
2388 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2389 {
2390 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2391
2392 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2393 s->object_size, s->size, gfpflags, node);
2394
2395 return ret;
2396 }
2397 EXPORT_SYMBOL(kmem_cache_alloc_node);
2398
2399 #ifdef CONFIG_TRACING
2400 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2401 gfp_t gfpflags,
2402 int node, size_t size)
2403 {
2404 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2405
2406 trace_kmalloc_node(_RET_IP_, ret,
2407 size, s->size, gfpflags, node);
2408 return ret;
2409 }
2410 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2411 #endif
2412 #endif
2413
2414 /*
2415 * Slow patch handling. This may still be called frequently since objects
2416 * have a longer lifetime than the cpu slabs in most processing loads.
2417 *
2418 * So we still attempt to reduce cache line usage. Just take the slab
2419 * lock and free the item. If there is no additional partial page
2420 * handling required then we can return immediately.
2421 */
2422 static void __slab_free(struct kmem_cache *s, struct page *page,
2423 void *x, unsigned long addr)
2424 {
2425 void *prior;
2426 void **object = (void *)x;
2427 int was_frozen;
2428 int inuse;
2429 struct page new;
2430 unsigned long counters;
2431 struct kmem_cache_node *n = NULL;
2432 unsigned long uninitialized_var(flags);
2433
2434 stat(s, FREE_SLOWPATH);
2435
2436 if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
2437 return;
2438
2439 do {
2440 prior = page->freelist;
2441 counters = page->counters;
2442 set_freepointer(s, object, prior);
2443 new.counters = counters;
2444 was_frozen = new.frozen;
2445 new.inuse--;
2446 if ((!new.inuse || !prior) && !was_frozen && !n) {
2447
2448 if (!kmem_cache_debug(s) && !prior)
2449
2450 /*
2451 * Slab was on no list before and will be partially empty
2452 * We can defer the list move and instead freeze it.
2453 */
2454 new.frozen = 1;
2455
2456 else { /* Needs to be taken off a list */
2457
2458 n = get_node(s, page_to_nid(page));
2459 /*
2460 * Speculatively acquire the list_lock.
2461 * If the cmpxchg does not succeed then we may
2462 * drop the list_lock without any processing.
2463 *
2464 * Otherwise the list_lock will synchronize with
2465 * other processors updating the list of slabs.
2466 */
2467 spin_lock_irqsave(&n->list_lock, flags);
2468
2469 }
2470 }
2471 inuse = new.inuse;
2472
2473 } while (!cmpxchg_double_slab(s, page,
2474 prior, counters,
2475 object, new.counters,
2476 "__slab_free"));
2477
2478 if (likely(!n)) {
2479
2480 /*
2481 * If we just froze the page then put it onto the
2482 * per cpu partial list.
2483 */
2484 if (new.frozen && !was_frozen) {
2485 put_cpu_partial(s, page, 1);
2486 stat(s, CPU_PARTIAL_FREE);
2487 }
2488 /*
2489 * The list lock was not taken therefore no list
2490 * activity can be necessary.
2491 */
2492 if (was_frozen)
2493 stat(s, FREE_FROZEN);
2494 return;
2495 }
2496
2497 /*
2498 * was_frozen may have been set after we acquired the list_lock in
2499 * an earlier loop. So we need to check it here again.
2500 */
2501 if (was_frozen)
2502 stat(s, FREE_FROZEN);
2503 else {
2504 if (unlikely(!inuse && n->nr_partial > s->min_partial))
2505 goto slab_empty;
2506
2507 /*
2508 * Objects left in the slab. If it was not on the partial list before
2509 * then add it.
2510 */
2511 if (unlikely(!prior)) {
2512 remove_full(s, page);
2513 add_partial(n, page, DEACTIVATE_TO_TAIL);
2514 stat(s, FREE_ADD_PARTIAL);
2515 }
2516 }
2517 spin_unlock_irqrestore(&n->list_lock, flags);
2518 return;
2519
2520 slab_empty:
2521 if (prior) {
2522 /*
2523 * Slab on the partial list.
2524 */
2525 remove_partial(n, page);
2526 stat(s, FREE_REMOVE_PARTIAL);
2527 } else
2528 /* Slab must be on the full list */
2529 remove_full(s, page);
2530
2531 spin_unlock_irqrestore(&n->list_lock, flags);
2532 stat(s, FREE_SLAB);
2533 discard_slab(s, page);
2534 }
2535
2536 /*
2537 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2538 * can perform fastpath freeing without additional function calls.
2539 *
2540 * The fastpath is only possible if we are freeing to the current cpu slab
2541 * of this processor. This typically the case if we have just allocated
2542 * the item before.
2543 *
2544 * If fastpath is not possible then fall back to __slab_free where we deal
2545 * with all sorts of special processing.
2546 */
2547 static __always_inline void slab_free(struct kmem_cache *s,
2548 struct page *page, void *x, unsigned long addr)
2549 {
2550 void **object = (void *)x;
2551 struct kmem_cache_cpu *c;
2552 unsigned long tid;
2553
2554 slab_free_hook(s, x);
2555
2556 redo:
2557 /*
2558 * Determine the currently cpus per cpu slab.
2559 * The cpu may change afterward. However that does not matter since
2560 * data is retrieved via this pointer. If we are on the same cpu
2561 * during the cmpxchg then the free will succedd.
2562 */
2563 c = __this_cpu_ptr(s->cpu_slab);
2564
2565 tid = c->tid;
2566 barrier();
2567
2568 if (likely(page == c->page)) {
2569 set_freepointer(s, object, c->freelist);
2570
2571 if (unlikely(!this_cpu_cmpxchg_double(
2572 s->cpu_slab->freelist, s->cpu_slab->tid,
2573 c->freelist, tid,
2574 object, next_tid(tid)))) {
2575
2576 note_cmpxchg_failure("slab_free", s, tid);
2577 goto redo;
2578 }
2579 stat(s, FREE_FASTPATH);
2580 } else
2581 __slab_free(s, page, x, addr);
2582
2583 }
2584
2585 void kmem_cache_free(struct kmem_cache *s, void *x)
2586 {
2587 struct page *page;
2588
2589 page = virt_to_head_page(x);
2590
2591 slab_free(s, page, x, _RET_IP_);
2592
2593 trace_kmem_cache_free(_RET_IP_, x);
2594 }
2595 EXPORT_SYMBOL(kmem_cache_free);
2596
2597 /*
2598 * Object placement in a slab is made very easy because we always start at
2599 * offset 0. If we tune the size of the object to the alignment then we can
2600 * get the required alignment by putting one properly sized object after
2601 * another.
2602 *
2603 * Notice that the allocation order determines the sizes of the per cpu
2604 * caches. Each processor has always one slab available for allocations.
2605 * Increasing the allocation order reduces the number of times that slabs
2606 * must be moved on and off the partial lists and is therefore a factor in
2607 * locking overhead.
2608 */
2609
2610 /*
2611 * Mininum / Maximum order of slab pages. This influences locking overhead
2612 * and slab fragmentation. A higher order reduces the number of partial slabs
2613 * and increases the number of allocations possible without having to
2614 * take the list_lock.
2615 */
2616 static int slub_min_order;
2617 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2618 static int slub_min_objects;
2619
2620 /*
2621 * Merge control. If this is set then no merging of slab caches will occur.
2622 * (Could be removed. This was introduced to pacify the merge skeptics.)
2623 */
2624 static int slub_nomerge;
2625
2626 /*
2627 * Calculate the order of allocation given an slab object size.
2628 *
2629 * The order of allocation has significant impact on performance and other
2630 * system components. Generally order 0 allocations should be preferred since
2631 * order 0 does not cause fragmentation in the page allocator. Larger objects
2632 * be problematic to put into order 0 slabs because there may be too much
2633 * unused space left. We go to a higher order if more than 1/16th of the slab
2634 * would be wasted.
2635 *
2636 * In order to reach satisfactory performance we must ensure that a minimum
2637 * number of objects is in one slab. Otherwise we may generate too much
2638 * activity on the partial lists which requires taking the list_lock. This is
2639 * less a concern for large slabs though which are rarely used.
2640 *
2641 * slub_max_order specifies the order where we begin to stop considering the
2642 * number of objects in a slab as critical. If we reach slub_max_order then
2643 * we try to keep the page order as low as possible. So we accept more waste
2644 * of space in favor of a small page order.
2645 *
2646 * Higher order allocations also allow the placement of more objects in a
2647 * slab and thereby reduce object handling overhead. If the user has
2648 * requested a higher mininum order then we start with that one instead of
2649 * the smallest order which will fit the object.
2650 */
2651 static inline int slab_order(int size, int min_objects,
2652 int max_order, int fract_leftover, int reserved)
2653 {
2654 int order;
2655 int rem;
2656 int min_order = slub_min_order;
2657
2658 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2659 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2660
2661 for (order = max(min_order,
2662 fls(min_objects * size - 1) - PAGE_SHIFT);
2663 order <= max_order; order++) {
2664
2665 unsigned long slab_size = PAGE_SIZE << order;
2666
2667 if (slab_size < min_objects * size + reserved)
2668 continue;
2669
2670 rem = (slab_size - reserved) % size;
2671
2672 if (rem <= slab_size / fract_leftover)
2673 break;
2674
2675 }
2676
2677 return order;
2678 }
2679
2680 static inline int calculate_order(int size, int reserved)
2681 {
2682 int order;
2683 int min_objects;
2684 int fraction;
2685 int max_objects;
2686
2687 /*
2688 * Attempt to find best configuration for a slab. This
2689 * works by first attempting to generate a layout with
2690 * the best configuration and backing off gradually.
2691 *
2692 * First we reduce the acceptable waste in a slab. Then
2693 * we reduce the minimum objects required in a slab.
2694 */
2695 min_objects = slub_min_objects;
2696 if (!min_objects)
2697 min_objects = 4 * (fls(nr_cpu_ids) + 1);
2698 max_objects = order_objects(slub_max_order, size, reserved);
2699 min_objects = min(min_objects, max_objects);
2700
2701 while (min_objects > 1) {
2702 fraction = 16;
2703 while (fraction >= 4) {
2704 order = slab_order(size, min_objects,
2705 slub_max_order, fraction, reserved);
2706 if (order <= slub_max_order)
2707 return order;
2708 fraction /= 2;
2709 }
2710 min_objects--;
2711 }
2712
2713 /*
2714 * We were unable to place multiple objects in a slab. Now
2715 * lets see if we can place a single object there.
2716 */
2717 order = slab_order(size, 1, slub_max_order, 1, reserved);
2718 if (order <= slub_max_order)
2719 return order;
2720
2721 /*
2722 * Doh this slab cannot be placed using slub_max_order.
2723 */
2724 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2725 if (order < MAX_ORDER)
2726 return order;
2727 return -ENOSYS;
2728 }
2729
2730 /*
2731 * Figure out what the alignment of the objects will be.
2732 */
2733 static unsigned long calculate_alignment(unsigned long flags,
2734 unsigned long align, unsigned long size)
2735 {
2736 /*
2737 * If the user wants hardware cache aligned objects then follow that
2738 * suggestion if the object is sufficiently large.
2739 *
2740 * The hardware cache alignment cannot override the specified
2741 * alignment though. If that is greater then use it.
2742 */
2743 if (flags & SLAB_HWCACHE_ALIGN) {
2744 unsigned long ralign = cache_line_size();
2745 while (size <= ralign / 2)
2746 ralign /= 2;
2747 align = max(align, ralign);
2748 }
2749
2750 if (align < ARCH_SLAB_MINALIGN)
2751 align = ARCH_SLAB_MINALIGN;
2752
2753 return ALIGN(align, sizeof(void *));
2754 }
2755
2756 static void
2757 init_kmem_cache_node(struct kmem_cache_node *n)
2758 {
2759 n->nr_partial = 0;
2760 spin_lock_init(&n->list_lock);
2761 INIT_LIST_HEAD(&n->partial);
2762 #ifdef CONFIG_SLUB_DEBUG
2763 atomic_long_set(&n->nr_slabs, 0);
2764 atomic_long_set(&n->total_objects, 0);
2765 INIT_LIST_HEAD(&n->full);
2766 #endif
2767 }
2768
2769 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2770 {
2771 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2772 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
2773
2774 /*
2775 * Must align to double word boundary for the double cmpxchg
2776 * instructions to work; see __pcpu_double_call_return_bool().
2777 */
2778 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2779 2 * sizeof(void *));
2780
2781 if (!s->cpu_slab)
2782 return 0;
2783
2784 init_kmem_cache_cpus(s);
2785
2786 return 1;
2787 }
2788
2789 static struct kmem_cache *kmem_cache_node;
2790
2791 /*
2792 * No kmalloc_node yet so do it by hand. We know that this is the first
2793 * slab on the node for this slabcache. There are no concurrent accesses
2794 * possible.
2795 *
2796 * Note that this function only works on the kmalloc_node_cache
2797 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2798 * memory on a fresh node that has no slab structures yet.
2799 */
2800 static void early_kmem_cache_node_alloc(int node)
2801 {
2802 struct page *page;
2803 struct kmem_cache_node *n;
2804
2805 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2806
2807 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2808
2809 BUG_ON(!page);
2810 if (page_to_nid(page) != node) {
2811 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2812 "node %d\n", node);
2813 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2814 "in order to be able to continue\n");
2815 }
2816
2817 n = page->freelist;
2818 BUG_ON(!n);
2819 page->freelist = get_freepointer(kmem_cache_node, n);
2820 page->inuse = 1;
2821 page->frozen = 0;
2822 kmem_cache_node->node[node] = n;
2823 #ifdef CONFIG_SLUB_DEBUG
2824 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2825 init_tracking(kmem_cache_node, n);
2826 #endif
2827 init_kmem_cache_node(n);
2828 inc_slabs_node(kmem_cache_node, node, page->objects);
2829
2830 add_partial(n, page, DEACTIVATE_TO_HEAD);
2831 }
2832
2833 static void free_kmem_cache_nodes(struct kmem_cache *s)
2834 {
2835 int node;
2836
2837 for_each_node_state(node, N_NORMAL_MEMORY) {
2838 struct kmem_cache_node *n = s->node[node];
2839
2840 if (n)
2841 kmem_cache_free(kmem_cache_node, n);
2842
2843 s->node[node] = NULL;
2844 }
2845 }
2846
2847 static int init_kmem_cache_nodes(struct kmem_cache *s)
2848 {
2849 int node;
2850
2851 for_each_node_state(node, N_NORMAL_MEMORY) {
2852 struct kmem_cache_node *n;
2853
2854 if (slab_state == DOWN) {
2855 early_kmem_cache_node_alloc(node);
2856 continue;
2857 }
2858 n = kmem_cache_alloc_node(kmem_cache_node,
2859 GFP_KERNEL, node);
2860
2861 if (!n) {
2862 free_kmem_cache_nodes(s);
2863 return 0;
2864 }
2865
2866 s->node[node] = n;
2867 init_kmem_cache_node(n);
2868 }
2869 return 1;
2870 }
2871
2872 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2873 {
2874 if (min < MIN_PARTIAL)
2875 min = MIN_PARTIAL;
2876 else if (min > MAX_PARTIAL)
2877 min = MAX_PARTIAL;
2878 s->min_partial = min;
2879 }
2880
2881 /*
2882 * calculate_sizes() determines the order and the distribution of data within
2883 * a slab object.
2884 */
2885 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2886 {
2887 unsigned long flags = s->flags;
2888 unsigned long size = s->object_size;
2889 unsigned long align = s->align;
2890 int order;
2891
2892 /*
2893 * Round up object size to the next word boundary. We can only
2894 * place the free pointer at word boundaries and this determines
2895 * the possible location of the free pointer.
2896 */
2897 size = ALIGN(size, sizeof(void *));
2898
2899 #ifdef CONFIG_SLUB_DEBUG
2900 /*
2901 * Determine if we can poison the object itself. If the user of
2902 * the slab may touch the object after free or before allocation
2903 * then we should never poison the object itself.
2904 */
2905 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2906 !s->ctor)
2907 s->flags |= __OBJECT_POISON;
2908 else
2909 s->flags &= ~__OBJECT_POISON;
2910
2911
2912 /*
2913 * If we are Redzoning then check if there is some space between the
2914 * end of the object and the free pointer. If not then add an
2915 * additional word to have some bytes to store Redzone information.
2916 */
2917 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
2918 size += sizeof(void *);
2919 #endif
2920
2921 /*
2922 * With that we have determined the number of bytes in actual use
2923 * by the object. This is the potential offset to the free pointer.
2924 */
2925 s->inuse = size;
2926
2927 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2928 s->ctor)) {
2929 /*
2930 * Relocate free pointer after the object if it is not
2931 * permitted to overwrite the first word of the object on
2932 * kmem_cache_free.
2933 *
2934 * This is the case if we do RCU, have a constructor or
2935 * destructor or are poisoning the objects.
2936 */
2937 s->offset = size;
2938 size += sizeof(void *);
2939 }
2940
2941 #ifdef CONFIG_SLUB_DEBUG
2942 if (flags & SLAB_STORE_USER)
2943 /*
2944 * Need to store information about allocs and frees after
2945 * the object.
2946 */
2947 size += 2 * sizeof(struct track);
2948
2949 if (flags & SLAB_RED_ZONE)
2950 /*
2951 * Add some empty padding so that we can catch
2952 * overwrites from earlier objects rather than let
2953 * tracking information or the free pointer be
2954 * corrupted if a user writes before the start
2955 * of the object.
2956 */
2957 size += sizeof(void *);
2958 #endif
2959
2960 /*
2961 * Determine the alignment based on various parameters that the
2962 * user specified and the dynamic determination of cache line size
2963 * on bootup.
2964 */
2965 align = calculate_alignment(flags, align, s->object_size);
2966 s->align = align;
2967
2968 /*
2969 * SLUB stores one object immediately after another beginning from
2970 * offset 0. In order to align the objects we have to simply size
2971 * each object to conform to the alignment.
2972 */
2973 size = ALIGN(size, align);
2974 s->size = size;
2975 if (forced_order >= 0)
2976 order = forced_order;
2977 else
2978 order = calculate_order(size, s->reserved);
2979
2980 if (order < 0)
2981 return 0;
2982
2983 s->allocflags = 0;
2984 if (order)
2985 s->allocflags |= __GFP_COMP;
2986
2987 if (s->flags & SLAB_CACHE_DMA)
2988 s->allocflags |= SLUB_DMA;
2989
2990 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2991 s->allocflags |= __GFP_RECLAIMABLE;
2992
2993 /*
2994 * Determine the number of objects per slab
2995 */
2996 s->oo = oo_make(order, size, s->reserved);
2997 s->min = oo_make(get_order(size), size, s->reserved);
2998 if (oo_objects(s->oo) > oo_objects(s->max))
2999 s->max = s->oo;
3000
3001 return !!oo_objects(s->oo);
3002
3003 }
3004
3005 static int kmem_cache_open(struct kmem_cache *s,
3006 const char *name, size_t size,
3007 size_t align, unsigned long flags,
3008 void (*ctor)(void *))
3009 {
3010 memset(s, 0, kmem_size);
3011 s->name = name;
3012 s->ctor = ctor;
3013 s->object_size = size;
3014 s->align = align;
3015 s->flags = kmem_cache_flags(size, flags, name, ctor);
3016 s->reserved = 0;
3017
3018 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3019 s->reserved = sizeof(struct rcu_head);
3020
3021 if (!calculate_sizes(s, -1))
3022 goto error;
3023 if (disable_higher_order_debug) {
3024 /*
3025 * Disable debugging flags that store metadata if the min slab
3026 * order increased.
3027 */
3028 if (get_order(s->size) > get_order(s->object_size)) {
3029 s->flags &= ~DEBUG_METADATA_FLAGS;
3030 s->offset = 0;
3031 if (!calculate_sizes(s, -1))
3032 goto error;
3033 }
3034 }
3035
3036 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3037 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3038 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3039 /* Enable fast mode */
3040 s->flags |= __CMPXCHG_DOUBLE;
3041 #endif
3042
3043 /*
3044 * The larger the object size is, the more pages we want on the partial
3045 * list to avoid pounding the page allocator excessively.
3046 */
3047 set_min_partial(s, ilog2(s->size) / 2);
3048
3049 /*
3050 * cpu_partial determined the maximum number of objects kept in the
3051 * per cpu partial lists of a processor.
3052 *
3053 * Per cpu partial lists mainly contain slabs that just have one
3054 * object freed. If they are used for allocation then they can be
3055 * filled up again with minimal effort. The slab will never hit the
3056 * per node partial lists and therefore no locking will be required.
3057 *
3058 * This setting also determines
3059 *
3060 * A) The number of objects from per cpu partial slabs dumped to the
3061 * per node list when we reach the limit.
3062 * B) The number of objects in cpu partial slabs to extract from the
3063 * per node list when we run out of per cpu objects. We only fetch 50%
3064 * to keep some capacity around for frees.
3065 */
3066 if (kmem_cache_debug(s))
3067 s->cpu_partial = 0;
3068 else if (s->size >= PAGE_SIZE)
3069 s->cpu_partial = 2;
3070 else if (s->size >= 1024)
3071 s->cpu_partial = 6;
3072 else if (s->size >= 256)
3073 s->cpu_partial = 13;
3074 else
3075 s->cpu_partial = 30;
3076
3077 s->refcount = 1;
3078 #ifdef CONFIG_NUMA
3079 s->remote_node_defrag_ratio = 1000;
3080 #endif
3081 if (!init_kmem_cache_nodes(s))
3082 goto error;
3083
3084 if (alloc_kmem_cache_cpus(s))
3085 return 1;
3086
3087 free_kmem_cache_nodes(s);
3088 error:
3089 if (flags & SLAB_PANIC)
3090 panic("Cannot create slab %s size=%lu realsize=%u "
3091 "order=%u offset=%u flags=%lx\n",
3092 s->name, (unsigned long)size, s->size, oo_order(s->oo),
3093 s->offset, flags);
3094 return 0;
3095 }
3096
3097 /*
3098 * Determine the size of a slab object
3099 */
3100 unsigned int kmem_cache_size(struct kmem_cache *s)
3101 {
3102 return s->object_size;
3103 }
3104 EXPORT_SYMBOL(kmem_cache_size);
3105
3106 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3107 const char *text)
3108 {
3109 #ifdef CONFIG_SLUB_DEBUG
3110 void *addr = page_address(page);
3111 void *p;
3112 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3113 sizeof(long), GFP_ATOMIC);
3114 if (!map)
3115 return;
3116 slab_err(s, page, "%s", text);
3117 slab_lock(page);
3118
3119 get_map(s, page, map);
3120 for_each_object(p, s, addr, page->objects) {
3121
3122 if (!test_bit(slab_index(p, s, addr), map)) {
3123 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3124 p, p - addr);
3125 print_tracking(s, p);
3126 }
3127 }
3128 slab_unlock(page);
3129 kfree(map);
3130 #endif
3131 }
3132
3133 /*
3134 * Attempt to free all partial slabs on a node.
3135 * This is called from kmem_cache_close(). We must be the last thread
3136 * using the cache and therefore we do not need to lock anymore.
3137 */
3138 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3139 {
3140 struct page *page, *h;
3141
3142 list_for_each_entry_safe(page, h, &n->partial, lru) {
3143 if (!page->inuse) {
3144 remove_partial(n, page);
3145 discard_slab(s, page);
3146 } else {
3147 list_slab_objects(s, page,
3148 "Objects remaining on kmem_cache_close()");
3149 }
3150 }
3151 }
3152
3153 /*
3154 * Release all resources used by a slab cache.
3155 */
3156 static inline int kmem_cache_close(struct kmem_cache *s)
3157 {
3158 int node;
3159
3160 flush_all(s);
3161 free_percpu(s->cpu_slab);
3162 /* Attempt to free all objects */
3163 for_each_node_state(node, N_NORMAL_MEMORY) {
3164 struct kmem_cache_node *n = get_node(s, node);
3165
3166 free_partial(s, n);
3167 if (n->nr_partial || slabs_node(s, node))
3168 return 1;
3169 }
3170 free_kmem_cache_nodes(s);
3171 return 0;
3172 }
3173
3174 /*
3175 * Close a cache and release the kmem_cache structure
3176 * (must be used for caches created using kmem_cache_create)
3177 */
3178 void kmem_cache_destroy(struct kmem_cache *s)
3179 {
3180 down_write(&slub_lock);
3181 s->refcount--;
3182 if (!s->refcount) {
3183 list_del(&s->list);
3184 up_write(&slub_lock);
3185 if (kmem_cache_close(s)) {
3186 printk(KERN_ERR "SLUB %s: %s called for cache that "
3187 "still has objects.\n", s->name, __func__);
3188 dump_stack();
3189 }
3190 if (s->flags & SLAB_DESTROY_BY_RCU)
3191 rcu_barrier();
3192 sysfs_slab_remove(s);
3193 } else
3194 up_write(&slub_lock);
3195 }
3196 EXPORT_SYMBOL(kmem_cache_destroy);
3197
3198 /********************************************************************
3199 * Kmalloc subsystem
3200 *******************************************************************/
3201
3202 struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
3203 EXPORT_SYMBOL(kmalloc_caches);
3204
3205 static struct kmem_cache *kmem_cache;
3206
3207 #ifdef CONFIG_ZONE_DMA
3208 static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
3209 #endif
3210
3211 static int __init setup_slub_min_order(char *str)
3212 {
3213 get_option(&str, &slub_min_order);
3214
3215 return 1;
3216 }
3217
3218 __setup("slub_min_order=", setup_slub_min_order);
3219
3220 static int __init setup_slub_max_order(char *str)
3221 {
3222 get_option(&str, &slub_max_order);
3223 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3224
3225 return 1;
3226 }
3227
3228 __setup("slub_max_order=", setup_slub_max_order);
3229
3230 static int __init setup_slub_min_objects(char *str)
3231 {
3232 get_option(&str, &slub_min_objects);
3233
3234 return 1;
3235 }
3236
3237 __setup("slub_min_objects=", setup_slub_min_objects);
3238
3239 static int __init setup_slub_nomerge(char *str)
3240 {
3241 slub_nomerge = 1;
3242 return 1;
3243 }
3244
3245 __setup("slub_nomerge", setup_slub_nomerge);
3246
3247 static struct kmem_cache *__init create_kmalloc_cache(const char *name,
3248 int size, unsigned int flags)
3249 {
3250 struct kmem_cache *s;
3251
3252 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3253
3254 /*
3255 * This function is called with IRQs disabled during early-boot on
3256 * single CPU so there's no need to take slub_lock here.
3257 */
3258 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
3259 flags, NULL))
3260 goto panic;
3261
3262 list_add(&s->list, &slab_caches);
3263 return s;
3264
3265 panic:
3266 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
3267 return NULL;
3268 }
3269
3270 /*
3271 * Conversion table for small slabs sizes / 8 to the index in the
3272 * kmalloc array. This is necessary for slabs < 192 since we have non power
3273 * of two cache sizes there. The size of larger slabs can be determined using
3274 * fls.
3275 */
3276 static s8 size_index[24] = {
3277 3, /* 8 */
3278 4, /* 16 */
3279 5, /* 24 */
3280 5, /* 32 */
3281 6, /* 40 */
3282 6, /* 48 */
3283 6, /* 56 */
3284 6, /* 64 */
3285 1, /* 72 */
3286 1, /* 80 */
3287 1, /* 88 */
3288 1, /* 96 */
3289 7, /* 104 */
3290 7, /* 112 */
3291 7, /* 120 */
3292 7, /* 128 */
3293 2, /* 136 */
3294 2, /* 144 */
3295 2, /* 152 */
3296 2, /* 160 */
3297 2, /* 168 */
3298 2, /* 176 */
3299 2, /* 184 */
3300 2 /* 192 */
3301 };
3302
3303 static inline int size_index_elem(size_t bytes)
3304 {
3305 return (bytes - 1) / 8;
3306 }
3307
3308 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
3309 {
3310 int index;
3311
3312 if (size <= 192) {
3313 if (!size)
3314 return ZERO_SIZE_PTR;
3315
3316 index = size_index[size_index_elem(size)];
3317 } else
3318 index = fls(size - 1);
3319
3320 #ifdef CONFIG_ZONE_DMA
3321 if (unlikely((flags & SLUB_DMA)))
3322 return kmalloc_dma_caches[index];
3323
3324 #endif
3325 return kmalloc_caches[index];
3326 }
3327
3328 void *__kmalloc(size_t size, gfp_t flags)
3329 {
3330 struct kmem_cache *s;
3331 void *ret;
3332
3333 if (unlikely(size > SLUB_MAX_SIZE))
3334 return kmalloc_large(size, flags);
3335
3336 s = get_slab(size, flags);
3337
3338 if (unlikely(ZERO_OR_NULL_PTR(s)))
3339 return s;
3340
3341 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
3342
3343 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3344
3345 return ret;
3346 }
3347 EXPORT_SYMBOL(__kmalloc);
3348
3349 #ifdef CONFIG_NUMA
3350 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3351 {
3352 struct page *page;
3353 void *ptr = NULL;
3354
3355 flags |= __GFP_COMP | __GFP_NOTRACK;
3356 page = alloc_pages_node(node, flags, get_order(size));
3357 if (page)
3358 ptr = page_address(page);
3359
3360 kmemleak_alloc(ptr, size, 1, flags);
3361 return ptr;
3362 }
3363
3364 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3365 {
3366 struct kmem_cache *s;
3367 void *ret;
3368
3369 if (unlikely(size > SLUB_MAX_SIZE)) {
3370 ret = kmalloc_large_node(size, flags, node);
3371
3372 trace_kmalloc_node(_RET_IP_, ret,
3373 size, PAGE_SIZE << get_order(size),
3374 flags, node);
3375
3376 return ret;
3377 }
3378
3379 s = get_slab(size, flags);
3380
3381 if (unlikely(ZERO_OR_NULL_PTR(s)))
3382 return s;
3383
3384 ret = slab_alloc(s, flags, node, _RET_IP_);
3385
3386 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3387
3388 return ret;
3389 }
3390 EXPORT_SYMBOL(__kmalloc_node);
3391 #endif
3392
3393 size_t ksize(const void *object)
3394 {
3395 struct page *page;
3396
3397 if (unlikely(object == ZERO_SIZE_PTR))
3398 return 0;
3399
3400 page = virt_to_head_page(object);
3401
3402 if (unlikely(!PageSlab(page))) {
3403 WARN_ON(!PageCompound(page));
3404 return PAGE_SIZE << compound_order(page);
3405 }
3406
3407 return slab_ksize(page->slab);
3408 }
3409 EXPORT_SYMBOL(ksize);
3410
3411 #ifdef CONFIG_SLUB_DEBUG
3412 bool verify_mem_not_deleted(const void *x)
3413 {
3414 struct page *page;
3415 void *object = (void *)x;
3416 unsigned long flags;
3417 bool rv;
3418
3419 if (unlikely(ZERO_OR_NULL_PTR(x)))
3420 return false;
3421
3422 local_irq_save(flags);
3423
3424 page = virt_to_head_page(x);
3425 if (unlikely(!PageSlab(page))) {
3426 /* maybe it was from stack? */
3427 rv = true;
3428 goto out_unlock;
3429 }
3430
3431 slab_lock(page);
3432 if (on_freelist(page->slab, page, object)) {
3433 object_err(page->slab, page, object, "Object is on free-list");
3434 rv = false;
3435 } else {
3436 rv = true;
3437 }
3438 slab_unlock(page);
3439
3440 out_unlock:
3441 local_irq_restore(flags);
3442 return rv;
3443 }
3444 EXPORT_SYMBOL(verify_mem_not_deleted);
3445 #endif
3446
3447 void kfree(const void *x)
3448 {
3449 struct page *page;
3450 void *object = (void *)x;
3451
3452 trace_kfree(_RET_IP_, x);
3453
3454 if (unlikely(ZERO_OR_NULL_PTR(x)))
3455 return;
3456
3457 page = virt_to_head_page(x);
3458 if (unlikely(!PageSlab(page))) {
3459 BUG_ON(!PageCompound(page));
3460 kmemleak_free(x);
3461 put_page(page);
3462 return;
3463 }
3464 slab_free(page->slab, page, object, _RET_IP_);
3465 }
3466 EXPORT_SYMBOL(kfree);
3467
3468 /*
3469 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3470 * the remaining slabs by the number of items in use. The slabs with the
3471 * most items in use come first. New allocations will then fill those up
3472 * and thus they can be removed from the partial lists.
3473 *
3474 * The slabs with the least items are placed last. This results in them
3475 * being allocated from last increasing the chance that the last objects
3476 * are freed in them.
3477 */
3478 int kmem_cache_shrink(struct kmem_cache *s)
3479 {
3480 int node;
3481 int i;
3482 struct kmem_cache_node *n;
3483 struct page *page;
3484 struct page *t;
3485 int objects = oo_objects(s->max);
3486 struct list_head *slabs_by_inuse =
3487 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3488 unsigned long flags;
3489
3490 if (!slabs_by_inuse)
3491 return -ENOMEM;
3492
3493 flush_all(s);
3494 for_each_node_state(node, N_NORMAL_MEMORY) {
3495 n = get_node(s, node);
3496
3497 if (!n->nr_partial)
3498 continue;
3499
3500 for (i = 0; i < objects; i++)
3501 INIT_LIST_HEAD(slabs_by_inuse + i);
3502
3503 spin_lock_irqsave(&n->list_lock, flags);
3504
3505 /*
3506 * Build lists indexed by the items in use in each slab.
3507 *
3508 * Note that concurrent frees may occur while we hold the
3509 * list_lock. page->inuse here is the upper limit.
3510 */
3511 list_for_each_entry_safe(page, t, &n->partial, lru) {
3512 list_move(&page->lru, slabs_by_inuse + page->inuse);
3513 if (!page->inuse)
3514 n->nr_partial--;
3515 }
3516
3517 /*
3518 * Rebuild the partial list with the slabs filled up most
3519 * first and the least used slabs at the end.
3520 */
3521 for (i = objects - 1; i > 0; i--)
3522 list_splice(slabs_by_inuse + i, n->partial.prev);
3523
3524 spin_unlock_irqrestore(&n->list_lock, flags);
3525
3526 /* Release empty slabs */
3527 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3528 discard_slab(s, page);
3529 }
3530
3531 kfree(slabs_by_inuse);
3532 return 0;
3533 }
3534 EXPORT_SYMBOL(kmem_cache_shrink);
3535
3536 #if defined(CONFIG_MEMORY_HOTPLUG)
3537 static int slab_mem_going_offline_callback(void *arg)
3538 {
3539 struct kmem_cache *s;
3540
3541 down_read(&slub_lock);
3542 list_for_each_entry(s, &slab_caches, list)
3543 kmem_cache_shrink(s);
3544 up_read(&slub_lock);
3545
3546 return 0;
3547 }
3548
3549 static void slab_mem_offline_callback(void *arg)
3550 {
3551 struct kmem_cache_node *n;
3552 struct kmem_cache *s;
3553 struct memory_notify *marg = arg;
3554 int offline_node;
3555
3556 offline_node = marg->status_change_nid;
3557
3558 /*
3559 * If the node still has available memory. we need kmem_cache_node
3560 * for it yet.
3561 */
3562 if (offline_node < 0)
3563 return;
3564
3565 down_read(&slub_lock);
3566 list_for_each_entry(s, &slab_caches, list) {
3567 n = get_node(s, offline_node);
3568 if (n) {
3569 /*
3570 * if n->nr_slabs > 0, slabs still exist on the node
3571 * that is going down. We were unable to free them,
3572 * and offline_pages() function shouldn't call this
3573 * callback. So, we must fail.
3574 */
3575 BUG_ON(slabs_node(s, offline_node));
3576
3577 s->node[offline_node] = NULL;
3578 kmem_cache_free(kmem_cache_node, n);
3579 }
3580 }
3581 up_read(&slub_lock);
3582 }
3583
3584 static int slab_mem_going_online_callback(void *arg)
3585 {
3586 struct kmem_cache_node *n;
3587 struct kmem_cache *s;
3588 struct memory_notify *marg = arg;
3589 int nid = marg->status_change_nid;
3590 int ret = 0;
3591
3592 /*
3593 * If the node's memory is already available, then kmem_cache_node is
3594 * already created. Nothing to do.
3595 */
3596 if (nid < 0)
3597 return 0;
3598
3599 /*
3600 * We are bringing a node online. No memory is available yet. We must
3601 * allocate a kmem_cache_node structure in order to bring the node
3602 * online.
3603 */
3604 down_read(&slub_lock);
3605 list_for_each_entry(s, &slab_caches, list) {
3606 /*
3607 * XXX: kmem_cache_alloc_node will fallback to other nodes
3608 * since memory is not yet available from the node that
3609 * is brought up.
3610 */
3611 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3612 if (!n) {
3613 ret = -ENOMEM;
3614 goto out;
3615 }
3616 init_kmem_cache_node(n);
3617 s->node[nid] = n;
3618 }
3619 out:
3620 up_read(&slub_lock);
3621 return ret;
3622 }
3623
3624 static int slab_memory_callback(struct notifier_block *self,
3625 unsigned long action, void *arg)
3626 {
3627 int ret = 0;
3628
3629 switch (action) {
3630 case MEM_GOING_ONLINE:
3631 ret = slab_mem_going_online_callback(arg);
3632 break;
3633 case MEM_GOING_OFFLINE:
3634 ret = slab_mem_going_offline_callback(arg);
3635 break;
3636 case MEM_OFFLINE:
3637 case MEM_CANCEL_ONLINE:
3638 slab_mem_offline_callback(arg);
3639 break;
3640 case MEM_ONLINE:
3641 case MEM_CANCEL_OFFLINE:
3642 break;
3643 }
3644 if (ret)
3645 ret = notifier_from_errno(ret);
3646 else
3647 ret = NOTIFY_OK;
3648 return ret;
3649 }
3650
3651 #endif /* CONFIG_MEMORY_HOTPLUG */
3652
3653 /********************************************************************
3654 * Basic setup of slabs
3655 *******************************************************************/
3656
3657 /*
3658 * Used for early kmem_cache structures that were allocated using
3659 * the page allocator
3660 */
3661
3662 static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3663 {
3664 int node;
3665
3666 list_add(&s->list, &slab_caches);
3667 s->refcount = -1;
3668
3669 for_each_node_state(node, N_NORMAL_MEMORY) {
3670 struct kmem_cache_node *n = get_node(s, node);
3671 struct page *p;
3672
3673 if (n) {
3674 list_for_each_entry(p, &n->partial, lru)
3675 p->slab = s;
3676
3677 #ifdef CONFIG_SLUB_DEBUG
3678 list_for_each_entry(p, &n->full, lru)
3679 p->slab = s;
3680 #endif
3681 }
3682 }
3683 }
3684
3685 void __init kmem_cache_init(void)
3686 {
3687 int i;
3688 int caches = 0;
3689 struct kmem_cache *temp_kmem_cache;
3690 int order;
3691 struct kmem_cache *temp_kmem_cache_node;
3692 unsigned long kmalloc_size;
3693
3694 if (debug_guardpage_minorder())
3695 slub_max_order = 0;
3696
3697 kmem_size = offsetof(struct kmem_cache, node) +
3698 nr_node_ids * sizeof(struct kmem_cache_node *);
3699
3700 /* Allocate two kmem_caches from the page allocator */
3701 kmalloc_size = ALIGN(kmem_size, cache_line_size());
3702 order = get_order(2 * kmalloc_size);
3703 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3704
3705 /*
3706 * Must first have the slab cache available for the allocations of the
3707 * struct kmem_cache_node's. There is special bootstrap code in
3708 * kmem_cache_open for slab_state == DOWN.
3709 */
3710 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3711
3712 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3713 sizeof(struct kmem_cache_node),
3714 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3715
3716 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3717
3718 /* Able to allocate the per node structures */
3719 slab_state = PARTIAL;
3720
3721 temp_kmem_cache = kmem_cache;
3722 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3723 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3724 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3725 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
3726
3727 /*
3728 * Allocate kmem_cache_node properly from the kmem_cache slab.
3729 * kmem_cache_node is separately allocated so no need to
3730 * update any list pointers.
3731 */
3732 temp_kmem_cache_node = kmem_cache_node;
3733
3734 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3735 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3736
3737 kmem_cache_bootstrap_fixup(kmem_cache_node);
3738
3739 caches++;
3740 kmem_cache_bootstrap_fixup(kmem_cache);
3741 caches++;
3742 /* Free temporary boot structure */
3743 free_pages((unsigned long)temp_kmem_cache, order);
3744
3745 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3746
3747 /*
3748 * Patch up the size_index table if we have strange large alignment
3749 * requirements for the kmalloc array. This is only the case for
3750 * MIPS it seems. The standard arches will not generate any code here.
3751 *
3752 * Largest permitted alignment is 256 bytes due to the way we
3753 * handle the index determination for the smaller caches.
3754 *
3755 * Make sure that nothing crazy happens if someone starts tinkering
3756 * around with ARCH_KMALLOC_MINALIGN
3757 */
3758 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3759 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3760
3761 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3762 int elem = size_index_elem(i);
3763 if (elem >= ARRAY_SIZE(size_index))
3764 break;
3765 size_index[elem] = KMALLOC_SHIFT_LOW;
3766 }
3767
3768 if (KMALLOC_MIN_SIZE == 64) {
3769 /*
3770 * The 96 byte size cache is not used if the alignment
3771 * is 64 byte.
3772 */
3773 for (i = 64 + 8; i <= 96; i += 8)
3774 size_index[size_index_elem(i)] = 7;
3775 } else if (KMALLOC_MIN_SIZE == 128) {
3776 /*
3777 * The 192 byte sized cache is not used if the alignment
3778 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3779 * instead.
3780 */
3781 for (i = 128 + 8; i <= 192; i += 8)
3782 size_index[size_index_elem(i)] = 8;
3783 }
3784
3785 /* Caches that are not of the two-to-the-power-of size */
3786 if (KMALLOC_MIN_SIZE <= 32) {
3787 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3788 caches++;
3789 }
3790
3791 if (KMALLOC_MIN_SIZE <= 64) {
3792 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3793 caches++;
3794 }
3795
3796 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3797 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3798 caches++;
3799 }
3800
3801 slab_state = UP;
3802
3803 /* Provide the correct kmalloc names now that the caches are up */
3804 if (KMALLOC_MIN_SIZE <= 32) {
3805 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3806 BUG_ON(!kmalloc_caches[1]->name);
3807 }
3808
3809 if (KMALLOC_MIN_SIZE <= 64) {
3810 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3811 BUG_ON(!kmalloc_caches[2]->name);
3812 }
3813
3814 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3815 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3816
3817 BUG_ON(!s);
3818 kmalloc_caches[i]->name = s;
3819 }
3820
3821 #ifdef CONFIG_SMP
3822 register_cpu_notifier(&slab_notifier);
3823 #endif
3824
3825 #ifdef CONFIG_ZONE_DMA
3826 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3827 struct kmem_cache *s = kmalloc_caches[i];
3828
3829 if (s && s->size) {
3830 char *name = kasprintf(GFP_NOWAIT,
3831 "dma-kmalloc-%d", s->object_size);
3832
3833 BUG_ON(!name);
3834 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3835 s->object_size, SLAB_CACHE_DMA);
3836 }
3837 }
3838 #endif
3839 printk(KERN_INFO
3840 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3841 " CPUs=%d, Nodes=%d\n",
3842 caches, cache_line_size(),
3843 slub_min_order, slub_max_order, slub_min_objects,
3844 nr_cpu_ids, nr_node_ids);
3845 }
3846
3847 void __init kmem_cache_init_late(void)
3848 {
3849 }
3850
3851 /*
3852 * Find a mergeable slab cache
3853 */
3854 static int slab_unmergeable(struct kmem_cache *s)
3855 {
3856 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3857 return 1;
3858
3859 if (s->ctor)
3860 return 1;
3861
3862 /*
3863 * We may have set a slab to be unmergeable during bootstrap.
3864 */
3865 if (s->refcount < 0)
3866 return 1;
3867
3868 return 0;
3869 }
3870
3871 static struct kmem_cache *find_mergeable(size_t size,
3872 size_t align, unsigned long flags, const char *name,
3873 void (*ctor)(void *))
3874 {
3875 struct kmem_cache *s;
3876
3877 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3878 return NULL;
3879
3880 if (ctor)
3881 return NULL;
3882
3883 size = ALIGN(size, sizeof(void *));
3884 align = calculate_alignment(flags, align, size);
3885 size = ALIGN(size, align);
3886 flags = kmem_cache_flags(size, flags, name, NULL);
3887
3888 list_for_each_entry(s, &slab_caches, list) {
3889 if (slab_unmergeable(s))
3890 continue;
3891
3892 if (size > s->size)
3893 continue;
3894
3895 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3896 continue;
3897 /*
3898 * Check if alignment is compatible.
3899 * Courtesy of Adrian Drzewiecki
3900 */
3901 if ((s->size & ~(align - 1)) != s->size)
3902 continue;
3903
3904 if (s->size - size >= sizeof(void *))
3905 continue;
3906
3907 return s;
3908 }
3909 return NULL;
3910 }
3911
3912 struct kmem_cache *__kmem_cache_create(const char *name, size_t size,
3913 size_t align, unsigned long flags, void (*ctor)(void *))
3914 {
3915 struct kmem_cache *s;
3916 char *n;
3917
3918 down_write(&slub_lock);
3919 s = find_mergeable(size, align, flags, name, ctor);
3920 if (s) {
3921 s->refcount++;
3922 /*
3923 * Adjust the object sizes so that we clear
3924 * the complete object on kzalloc.
3925 */
3926 s->object_size = max(s->object_size, (int)size);
3927 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3928
3929 if (sysfs_slab_alias(s, name)) {
3930 s->refcount--;
3931 goto err;
3932 }
3933 up_write(&slub_lock);
3934 return s;
3935 }
3936
3937 n = kstrdup(name, GFP_KERNEL);
3938 if (!n)
3939 goto err;
3940
3941 s = kmalloc(kmem_size, GFP_KERNEL);
3942 if (s) {
3943 if (kmem_cache_open(s, n,
3944 size, align, flags, ctor)) {
3945 list_add(&s->list, &slab_caches);
3946 up_write(&slub_lock);
3947 if (sysfs_slab_add(s)) {
3948 down_write(&slub_lock);
3949 list_del(&s->list);
3950 kfree(n);
3951 kfree(s);
3952 goto err;
3953 }
3954 return s;
3955 }
3956 kfree(s);
3957 }
3958 kfree(n);
3959 err:
3960 up_write(&slub_lock);
3961 return s;
3962 }
3963
3964 #ifdef CONFIG_SMP
3965 /*
3966 * Use the cpu notifier to insure that the cpu slabs are flushed when
3967 * necessary.
3968 */
3969 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3970 unsigned long action, void *hcpu)
3971 {
3972 long cpu = (long)hcpu;
3973 struct kmem_cache *s;
3974 unsigned long flags;
3975
3976 switch (action) {
3977 case CPU_UP_CANCELED:
3978 case CPU_UP_CANCELED_FROZEN:
3979 case CPU_DEAD:
3980 case CPU_DEAD_FROZEN:
3981 down_read(&slub_lock);
3982 list_for_each_entry(s, &slab_caches, list) {
3983 local_irq_save(flags);
3984 __flush_cpu_slab(s, cpu);
3985 local_irq_restore(flags);
3986 }
3987 up_read(&slub_lock);
3988 break;
3989 default:
3990 break;
3991 }
3992 return NOTIFY_OK;
3993 }
3994
3995 static struct notifier_block __cpuinitdata slab_notifier = {
3996 .notifier_call = slab_cpuup_callback
3997 };
3998
3999 #endif
4000
4001 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4002 {
4003 struct kmem_cache *s;
4004 void *ret;
4005
4006 if (unlikely(size > SLUB_MAX_SIZE))
4007 return kmalloc_large(size, gfpflags);
4008
4009 s = get_slab(size, gfpflags);
4010
4011 if (unlikely(ZERO_OR_NULL_PTR(s)))
4012 return s;
4013
4014 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
4015
4016 /* Honor the call site pointer we received. */
4017 trace_kmalloc(caller, ret, size, s->size, gfpflags);
4018
4019 return ret;
4020 }
4021
4022 #ifdef CONFIG_NUMA
4023 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4024 int node, unsigned long caller)
4025 {
4026 struct kmem_cache *s;
4027 void *ret;
4028
4029 if (unlikely(size > SLUB_MAX_SIZE)) {
4030 ret = kmalloc_large_node(size, gfpflags, node);
4031
4032 trace_kmalloc_node(caller, ret,
4033 size, PAGE_SIZE << get_order(size),
4034 gfpflags, node);
4035
4036 return ret;
4037 }
4038
4039 s = get_slab(size, gfpflags);
4040
4041 if (unlikely(ZERO_OR_NULL_PTR(s)))
4042 return s;
4043
4044 ret = slab_alloc(s, gfpflags, node, caller);
4045
4046 /* Honor the call site pointer we received. */
4047 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4048
4049 return ret;
4050 }
4051 #endif
4052
4053 #ifdef CONFIG_SYSFS
4054 static int count_inuse(struct page *page)
4055 {
4056 return page->inuse;
4057 }
4058
4059 static int count_total(struct page *page)
4060 {
4061 return page->objects;
4062 }
4063 #endif
4064
4065 #ifdef CONFIG_SLUB_DEBUG
4066 static int validate_slab(struct kmem_cache *s, struct page *page,
4067 unsigned long *map)
4068 {
4069 void *p;
4070 void *addr = page_address(page);
4071
4072 if (!check_slab(s, page) ||
4073 !on_freelist(s, page, NULL))
4074 return 0;
4075
4076 /* Now we know that a valid freelist exists */
4077 bitmap_zero(map, page->objects);
4078
4079 get_map(s, page, map);
4080 for_each_object(p, s, addr, page->objects) {
4081 if (test_bit(slab_index(p, s, addr), map))
4082 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4083 return 0;
4084 }
4085
4086 for_each_object(p, s, addr, page->objects)
4087 if (!test_bit(slab_index(p, s, addr), map))
4088 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4089 return 0;
4090 return 1;
4091 }
4092
4093 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4094 unsigned long *map)
4095 {
4096 slab_lock(page);
4097 validate_slab(s, page, map);
4098 slab_unlock(page);
4099 }
4100
4101 static int validate_slab_node(struct kmem_cache *s,
4102 struct kmem_cache_node *n, unsigned long *map)
4103 {
4104 unsigned long count = 0;
4105 struct page *page;
4106 unsigned long flags;
4107
4108 spin_lock_irqsave(&n->list_lock, flags);
4109
4110 list_for_each_entry(page, &n->partial, lru) {
4111 validate_slab_slab(s, page, map);
4112 count++;
4113 }
4114 if (count != n->nr_partial)
4115 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
4116 "counter=%ld\n", s->name, count, n->nr_partial);
4117
4118 if (!(s->flags & SLAB_STORE_USER))
4119 goto out;
4120
4121 list_for_each_entry(page, &n->full, lru) {
4122 validate_slab_slab(s, page, map);
4123 count++;
4124 }
4125 if (count != atomic_long_read(&n->nr_slabs))
4126 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
4127 "counter=%ld\n", s->name, count,
4128 atomic_long_read(&n->nr_slabs));
4129
4130 out:
4131 spin_unlock_irqrestore(&n->list_lock, flags);
4132 return count;
4133 }
4134
4135 static long validate_slab_cache(struct kmem_cache *s)
4136 {
4137 int node;
4138 unsigned long count = 0;
4139 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4140 sizeof(unsigned long), GFP_KERNEL);
4141
4142 if (!map)
4143 return -ENOMEM;
4144
4145 flush_all(s);
4146 for_each_node_state(node, N_NORMAL_MEMORY) {
4147 struct kmem_cache_node *n = get_node(s, node);
4148
4149 count += validate_slab_node(s, n, map);
4150 }
4151 kfree(map);
4152 return count;
4153 }
4154 /*
4155 * Generate lists of code addresses where slabcache objects are allocated
4156 * and freed.
4157 */
4158
4159 struct location {
4160 unsigned long count;
4161 unsigned long addr;
4162 long long sum_time;
4163 long min_time;
4164 long max_time;
4165 long min_pid;
4166 long max_pid;
4167 DECLARE_BITMAP(cpus, NR_CPUS);
4168 nodemask_t nodes;
4169 };
4170
4171 struct loc_track {
4172 unsigned long max;
4173 unsigned long count;
4174 struct location *loc;
4175 };
4176
4177 static void free_loc_track(struct loc_track *t)
4178 {
4179 if (t->max)
4180 free_pages((unsigned long)t->loc,
4181 get_order(sizeof(struct location) * t->max));
4182 }
4183
4184 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4185 {
4186 struct location *l;
4187 int order;
4188
4189 order = get_order(sizeof(struct location) * max);
4190
4191 l = (void *)__get_free_pages(flags, order);
4192 if (!l)
4193 return 0;
4194
4195 if (t->count) {
4196 memcpy(l, t->loc, sizeof(struct location) * t->count);
4197 free_loc_track(t);
4198 }
4199 t->max = max;
4200 t->loc = l;
4201 return 1;
4202 }
4203
4204 static int add_location(struct loc_track *t, struct kmem_cache *s,
4205 const struct track *track)
4206 {
4207 long start, end, pos;
4208 struct location *l;
4209 unsigned long caddr;
4210 unsigned long age = jiffies - track->when;
4211
4212 start = -1;
4213 end = t->count;
4214
4215 for ( ; ; ) {
4216 pos = start + (end - start + 1) / 2;
4217
4218 /*
4219 * There is nothing at "end". If we end up there
4220 * we need to add something to before end.
4221 */
4222 if (pos == end)
4223 break;
4224
4225 caddr = t->loc[pos].addr;
4226 if (track->addr == caddr) {
4227
4228 l = &t->loc[pos];
4229 l->count++;
4230 if (track->when) {
4231 l->sum_time += age;
4232 if (age < l->min_time)
4233 l->min_time = age;
4234 if (age > l->max_time)
4235 l->max_time = age;
4236
4237 if (track->pid < l->min_pid)
4238 l->min_pid = track->pid;
4239 if (track->pid > l->max_pid)
4240 l->max_pid = track->pid;
4241
4242 cpumask_set_cpu(track->cpu,
4243 to_cpumask(l->cpus));
4244 }
4245 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4246 return 1;
4247 }
4248
4249 if (track->addr < caddr)
4250 end = pos;
4251 else
4252 start = pos;
4253 }
4254
4255 /*
4256 * Not found. Insert new tracking element.
4257 */
4258 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4259 return 0;
4260
4261 l = t->loc + pos;
4262 if (pos < t->count)
4263 memmove(l + 1, l,
4264 (t->count - pos) * sizeof(struct location));
4265 t->count++;
4266 l->count = 1;
4267 l->addr = track->addr;
4268 l->sum_time = age;
4269 l->min_time = age;
4270 l->max_time = age;
4271 l->min_pid = track->pid;
4272 l->max_pid = track->pid;
4273 cpumask_clear(to_cpumask(l->cpus));
4274 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4275 nodes_clear(l->nodes);
4276 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4277 return 1;
4278 }
4279
4280 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4281 struct page *page, enum track_item alloc,
4282 unsigned long *map)
4283 {
4284 void *addr = page_address(page);
4285 void *p;
4286
4287 bitmap_zero(map, page->objects);
4288 get_map(s, page, map);
4289
4290 for_each_object(p, s, addr, page->objects)
4291 if (!test_bit(slab_index(p, s, addr), map))
4292 add_location(t, s, get_track(s, p, alloc));
4293 }
4294
4295 static int list_locations(struct kmem_cache *s, char *buf,
4296 enum track_item alloc)
4297 {
4298 int len = 0;
4299 unsigned long i;
4300 struct loc_track t = { 0, 0, NULL };
4301 int node;
4302 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4303 sizeof(unsigned long), GFP_KERNEL);
4304
4305 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4306 GFP_TEMPORARY)) {
4307 kfree(map);
4308 return sprintf(buf, "Out of memory\n");
4309 }
4310 /* Push back cpu slabs */
4311 flush_all(s);
4312
4313 for_each_node_state(node, N_NORMAL_MEMORY) {
4314 struct kmem_cache_node *n = get_node(s, node);
4315 unsigned long flags;
4316 struct page *page;
4317
4318 if (!atomic_long_read(&n->nr_slabs))
4319 continue;
4320
4321 spin_lock_irqsave(&n->list_lock, flags);
4322 list_for_each_entry(page, &n->partial, lru)
4323 process_slab(&t, s, page, alloc, map);
4324 list_for_each_entry(page, &n->full, lru)
4325 process_slab(&t, s, page, alloc, map);
4326 spin_unlock_irqrestore(&n->list_lock, flags);
4327 }
4328
4329 for (i = 0; i < t.count; i++) {
4330 struct location *l = &t.loc[i];
4331
4332 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4333 break;
4334 len += sprintf(buf + len, "%7ld ", l->count);
4335
4336 if (l->addr)
4337 len += sprintf(buf + len, "%pS", (void *)l->addr);
4338 else
4339 len += sprintf(buf + len, "<not-available>");
4340
4341 if (l->sum_time != l->min_time) {
4342 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4343 l->min_time,
4344 (long)div_u64(l->sum_time, l->count),
4345 l->max_time);
4346 } else
4347 len += sprintf(buf + len, " age=%ld",
4348 l->min_time);
4349
4350 if (l->min_pid != l->max_pid)
4351 len += sprintf(buf + len, " pid=%ld-%ld",
4352 l->min_pid, l->max_pid);
4353 else
4354 len += sprintf(buf + len, " pid=%ld",
4355 l->min_pid);
4356
4357 if (num_online_cpus() > 1 &&
4358 !cpumask_empty(to_cpumask(l->cpus)) &&
4359 len < PAGE_SIZE - 60) {
4360 len += sprintf(buf + len, " cpus=");
4361 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4362 to_cpumask(l->cpus));
4363 }
4364
4365 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4366 len < PAGE_SIZE - 60) {
4367 len += sprintf(buf + len, " nodes=");
4368 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4369 l->nodes);
4370 }
4371
4372 len += sprintf(buf + len, "\n");
4373 }
4374
4375 free_loc_track(&t);
4376 kfree(map);
4377 if (!t.count)
4378 len += sprintf(buf, "No data\n");
4379 return len;
4380 }
4381 #endif
4382
4383 #ifdef SLUB_RESILIENCY_TEST
4384 static void resiliency_test(void)
4385 {
4386 u8 *p;
4387
4388 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
4389
4390 printk(KERN_ERR "SLUB resiliency testing\n");
4391 printk(KERN_ERR "-----------------------\n");
4392 printk(KERN_ERR "A. Corruption after allocation\n");
4393
4394 p = kzalloc(16, GFP_KERNEL);
4395 p[16] = 0x12;
4396 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4397 " 0x12->0x%p\n\n", p + 16);
4398
4399 validate_slab_cache(kmalloc_caches[4]);
4400
4401 /* Hmmm... The next two are dangerous */
4402 p = kzalloc(32, GFP_KERNEL);
4403 p[32 + sizeof(void *)] = 0x34;
4404 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4405 " 0x34 -> -0x%p\n", p);
4406 printk(KERN_ERR
4407 "If allocated object is overwritten then not detectable\n\n");
4408
4409 validate_slab_cache(kmalloc_caches[5]);
4410 p = kzalloc(64, GFP_KERNEL);
4411 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4412 *p = 0x56;
4413 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4414 p);
4415 printk(KERN_ERR
4416 "If allocated object is overwritten then not detectable\n\n");
4417 validate_slab_cache(kmalloc_caches[6]);
4418
4419 printk(KERN_ERR "\nB. Corruption after free\n");
4420 p = kzalloc(128, GFP_KERNEL);
4421 kfree(p);
4422 *p = 0x78;
4423 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4424 validate_slab_cache(kmalloc_caches[7]);
4425
4426 p = kzalloc(256, GFP_KERNEL);
4427 kfree(p);
4428 p[50] = 0x9a;
4429 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4430 p);
4431 validate_slab_cache(kmalloc_caches[8]);
4432
4433 p = kzalloc(512, GFP_KERNEL);
4434 kfree(p);
4435 p[512] = 0xab;
4436 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4437 validate_slab_cache(kmalloc_caches[9]);
4438 }
4439 #else
4440 #ifdef CONFIG_SYSFS
4441 static void resiliency_test(void) {};
4442 #endif
4443 #endif
4444
4445 #ifdef CONFIG_SYSFS
4446 enum slab_stat_type {
4447 SL_ALL, /* All slabs */
4448 SL_PARTIAL, /* Only partially allocated slabs */
4449 SL_CPU, /* Only slabs used for cpu caches */
4450 SL_OBJECTS, /* Determine allocated objects not slabs */
4451 SL_TOTAL /* Determine object capacity not slabs */
4452 };
4453
4454 #define SO_ALL (1 << SL_ALL)
4455 #define SO_PARTIAL (1 << SL_PARTIAL)
4456 #define SO_CPU (1 << SL_CPU)
4457 #define SO_OBJECTS (1 << SL_OBJECTS)
4458 #define SO_TOTAL (1 << SL_TOTAL)
4459
4460 static ssize_t show_slab_objects(struct kmem_cache *s,
4461 char *buf, unsigned long flags)
4462 {
4463 unsigned long total = 0;
4464 int node;
4465 int x;
4466 unsigned long *nodes;
4467 unsigned long *per_cpu;
4468
4469 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4470 if (!nodes)
4471 return -ENOMEM;
4472 per_cpu = nodes + nr_node_ids;
4473
4474 if (flags & SO_CPU) {
4475 int cpu;
4476
4477 for_each_possible_cpu(cpu) {
4478 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
4479 int node;
4480 struct page *page;
4481
4482 page = ACCESS_ONCE(c->page);
4483 if (!page)
4484 continue;
4485
4486 node = page_to_nid(page);
4487 if (flags & SO_TOTAL)
4488 x = page->objects;
4489 else if (flags & SO_OBJECTS)
4490 x = page->inuse;
4491 else
4492 x = 1;
4493
4494 total += x;
4495 nodes[node] += x;
4496
4497 page = ACCESS_ONCE(c->partial);
4498 if (page) {
4499 x = page->pobjects;
4500 total += x;
4501 nodes[node] += x;
4502 }
4503
4504 per_cpu[node]++;
4505 }
4506 }
4507
4508 lock_memory_hotplug();
4509 #ifdef CONFIG_SLUB_DEBUG
4510 if (flags & SO_ALL) {
4511 for_each_node_state(node, N_NORMAL_MEMORY) {
4512 struct kmem_cache_node *n = get_node(s, node);
4513
4514 if (flags & SO_TOTAL)
4515 x = atomic_long_read(&n->total_objects);
4516 else if (flags & SO_OBJECTS)
4517 x = atomic_long_read(&n->total_objects) -
4518 count_partial(n, count_free);
4519
4520 else
4521 x = atomic_long_read(&n->nr_slabs);
4522 total += x;
4523 nodes[node] += x;
4524 }
4525
4526 } else
4527 #endif
4528 if (flags & SO_PARTIAL) {
4529 for_each_node_state(node, N_NORMAL_MEMORY) {
4530 struct kmem_cache_node *n = get_node(s, node);
4531
4532 if (flags & SO_TOTAL)
4533 x = count_partial(n, count_total);
4534 else if (flags & SO_OBJECTS)
4535 x = count_partial(n, count_inuse);
4536 else
4537 x = n->nr_partial;
4538 total += x;
4539 nodes[node] += x;
4540 }
4541 }
4542 x = sprintf(buf, "%lu", total);
4543 #ifdef CONFIG_NUMA
4544 for_each_node_state(node, N_NORMAL_MEMORY)
4545 if (nodes[node])
4546 x += sprintf(buf + x, " N%d=%lu",
4547 node, nodes[node]);
4548 #endif
4549 unlock_memory_hotplug();
4550 kfree(nodes);
4551 return x + sprintf(buf + x, "\n");
4552 }
4553
4554 #ifdef CONFIG_SLUB_DEBUG
4555 static int any_slab_objects(struct kmem_cache *s)
4556 {
4557 int node;
4558
4559 for_each_online_node(node) {
4560 struct kmem_cache_node *n = get_node(s, node);
4561
4562 if (!n)
4563 continue;
4564
4565 if (atomic_long_read(&n->total_objects))
4566 return 1;
4567 }
4568 return 0;
4569 }
4570 #endif
4571
4572 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4573 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4574
4575 struct slab_attribute {
4576 struct attribute attr;
4577 ssize_t (*show)(struct kmem_cache *s, char *buf);
4578 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4579 };
4580
4581 #define SLAB_ATTR_RO(_name) \
4582 static struct slab_attribute _name##_attr = \
4583 __ATTR(_name, 0400, _name##_show, NULL)
4584
4585 #define SLAB_ATTR(_name) \
4586 static struct slab_attribute _name##_attr = \
4587 __ATTR(_name, 0600, _name##_show, _name##_store)
4588
4589 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4590 {
4591 return sprintf(buf, "%d\n", s->size);
4592 }
4593 SLAB_ATTR_RO(slab_size);
4594
4595 static ssize_t align_show(struct kmem_cache *s, char *buf)
4596 {
4597 return sprintf(buf, "%d\n", s->align);
4598 }
4599 SLAB_ATTR_RO(align);
4600
4601 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4602 {
4603 return sprintf(buf, "%d\n", s->object_size);
4604 }
4605 SLAB_ATTR_RO(object_size);
4606
4607 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4608 {
4609 return sprintf(buf, "%d\n", oo_objects(s->oo));
4610 }
4611 SLAB_ATTR_RO(objs_per_slab);
4612
4613 static ssize_t order_store(struct kmem_cache *s,
4614 const char *buf, size_t length)
4615 {
4616 unsigned long order;
4617 int err;
4618
4619 err = strict_strtoul(buf, 10, &order);
4620 if (err)
4621 return err;
4622
4623 if (order > slub_max_order || order < slub_min_order)
4624 return -EINVAL;
4625
4626 calculate_sizes(s, order);
4627 return length;
4628 }
4629
4630 static ssize_t order_show(struct kmem_cache *s, char *buf)
4631 {
4632 return sprintf(buf, "%d\n", oo_order(s->oo));
4633 }
4634 SLAB_ATTR(order);
4635
4636 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4637 {
4638 return sprintf(buf, "%lu\n", s->min_partial);
4639 }
4640
4641 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4642 size_t length)
4643 {
4644 unsigned long min;
4645 int err;
4646
4647 err = strict_strtoul(buf, 10, &min);
4648 if (err)
4649 return err;
4650
4651 set_min_partial(s, min);
4652 return length;
4653 }
4654 SLAB_ATTR(min_partial);
4655
4656 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4657 {
4658 return sprintf(buf, "%u\n", s->cpu_partial);
4659 }
4660
4661 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4662 size_t length)
4663 {
4664 unsigned long objects;
4665 int err;
4666
4667 err = strict_strtoul(buf, 10, &objects);
4668 if (err)
4669 return err;
4670 if (objects && kmem_cache_debug(s))
4671 return -EINVAL;
4672
4673 s->cpu_partial = objects;
4674 flush_all(s);
4675 return length;
4676 }
4677 SLAB_ATTR(cpu_partial);
4678
4679 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4680 {
4681 if (!s->ctor)
4682 return 0;
4683 return sprintf(buf, "%pS\n", s->ctor);
4684 }
4685 SLAB_ATTR_RO(ctor);
4686
4687 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4688 {
4689 return sprintf(buf, "%d\n", s->refcount - 1);
4690 }
4691 SLAB_ATTR_RO(aliases);
4692
4693 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4694 {
4695 return show_slab_objects(s, buf, SO_PARTIAL);
4696 }
4697 SLAB_ATTR_RO(partial);
4698
4699 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4700 {
4701 return show_slab_objects(s, buf, SO_CPU);
4702 }
4703 SLAB_ATTR_RO(cpu_slabs);
4704
4705 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4706 {
4707 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4708 }
4709 SLAB_ATTR_RO(objects);
4710
4711 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4712 {
4713 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4714 }
4715 SLAB_ATTR_RO(objects_partial);
4716
4717 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4718 {
4719 int objects = 0;
4720 int pages = 0;
4721 int cpu;
4722 int len;
4723
4724 for_each_online_cpu(cpu) {
4725 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4726
4727 if (page) {
4728 pages += page->pages;
4729 objects += page->pobjects;
4730 }
4731 }
4732
4733 len = sprintf(buf, "%d(%d)", objects, pages);
4734
4735 #ifdef CONFIG_SMP
4736 for_each_online_cpu(cpu) {
4737 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4738
4739 if (page && len < PAGE_SIZE - 20)
4740 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4741 page->pobjects, page->pages);
4742 }
4743 #endif
4744 return len + sprintf(buf + len, "\n");
4745 }
4746 SLAB_ATTR_RO(slabs_cpu_partial);
4747
4748 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4749 {
4750 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4751 }
4752
4753 static ssize_t reclaim_account_store(struct kmem_cache *s,
4754 const char *buf, size_t length)
4755 {
4756 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4757 if (buf[0] == '1')
4758 s->flags |= SLAB_RECLAIM_ACCOUNT;
4759 return length;
4760 }
4761 SLAB_ATTR(reclaim_account);
4762
4763 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4764 {
4765 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4766 }
4767 SLAB_ATTR_RO(hwcache_align);
4768
4769 #ifdef CONFIG_ZONE_DMA
4770 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4771 {
4772 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4773 }
4774 SLAB_ATTR_RO(cache_dma);
4775 #endif
4776
4777 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4778 {
4779 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4780 }
4781 SLAB_ATTR_RO(destroy_by_rcu);
4782
4783 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4784 {
4785 return sprintf(buf, "%d\n", s->reserved);
4786 }
4787 SLAB_ATTR_RO(reserved);
4788
4789 #ifdef CONFIG_SLUB_DEBUG
4790 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4791 {
4792 return show_slab_objects(s, buf, SO_ALL);
4793 }
4794 SLAB_ATTR_RO(slabs);
4795
4796 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4797 {
4798 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4799 }
4800 SLAB_ATTR_RO(total_objects);
4801
4802 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4803 {
4804 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4805 }
4806
4807 static ssize_t sanity_checks_store(struct kmem_cache *s,
4808 const char *buf, size_t length)
4809 {
4810 s->flags &= ~SLAB_DEBUG_FREE;
4811 if (buf[0] == '1') {
4812 s->flags &= ~__CMPXCHG_DOUBLE;
4813 s->flags |= SLAB_DEBUG_FREE;
4814 }
4815 return length;
4816 }
4817 SLAB_ATTR(sanity_checks);
4818
4819 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4820 {
4821 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4822 }
4823
4824 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4825 size_t length)
4826 {
4827 s->flags &= ~SLAB_TRACE;
4828 if (buf[0] == '1') {
4829 s->flags &= ~__CMPXCHG_DOUBLE;
4830 s->flags |= SLAB_TRACE;
4831 }
4832 return length;
4833 }
4834 SLAB_ATTR(trace);
4835
4836 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4837 {
4838 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4839 }
4840
4841 static ssize_t red_zone_store(struct kmem_cache *s,
4842 const char *buf, size_t length)
4843 {
4844 if (any_slab_objects(s))
4845 return -EBUSY;
4846
4847 s->flags &= ~SLAB_RED_ZONE;
4848 if (buf[0] == '1') {
4849 s->flags &= ~__CMPXCHG_DOUBLE;
4850 s->flags |= SLAB_RED_ZONE;
4851 }
4852 calculate_sizes(s, -1);
4853 return length;
4854 }
4855 SLAB_ATTR(red_zone);
4856
4857 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4858 {
4859 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4860 }
4861
4862 static ssize_t poison_store(struct kmem_cache *s,
4863 const char *buf, size_t length)
4864 {
4865 if (any_slab_objects(s))
4866 return -EBUSY;
4867
4868 s->flags &= ~SLAB_POISON;
4869 if (buf[0] == '1') {
4870 s->flags &= ~__CMPXCHG_DOUBLE;
4871 s->flags |= SLAB_POISON;
4872 }
4873 calculate_sizes(s, -1);
4874 return length;
4875 }
4876 SLAB_ATTR(poison);
4877
4878 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4879 {
4880 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4881 }
4882
4883 static ssize_t store_user_store(struct kmem_cache *s,
4884 const char *buf, size_t length)
4885 {
4886 if (any_slab_objects(s))
4887 return -EBUSY;
4888
4889 s->flags &= ~SLAB_STORE_USER;
4890 if (buf[0] == '1') {
4891 s->flags &= ~__CMPXCHG_DOUBLE;
4892 s->flags |= SLAB_STORE_USER;
4893 }
4894 calculate_sizes(s, -1);
4895 return length;
4896 }
4897 SLAB_ATTR(store_user);
4898
4899 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4900 {
4901 return 0;
4902 }
4903
4904 static ssize_t validate_store(struct kmem_cache *s,
4905 const char *buf, size_t length)
4906 {
4907 int ret = -EINVAL;
4908
4909 if (buf[0] == '1') {
4910 ret = validate_slab_cache(s);
4911 if (ret >= 0)
4912 ret = length;
4913 }
4914 return ret;
4915 }
4916 SLAB_ATTR(validate);
4917
4918 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4919 {
4920 if (!(s->flags & SLAB_STORE_USER))
4921 return -ENOSYS;
4922 return list_locations(s, buf, TRACK_ALLOC);
4923 }
4924 SLAB_ATTR_RO(alloc_calls);
4925
4926 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4927 {
4928 if (!(s->flags & SLAB_STORE_USER))
4929 return -ENOSYS;
4930 return list_locations(s, buf, TRACK_FREE);
4931 }
4932 SLAB_ATTR_RO(free_calls);
4933 #endif /* CONFIG_SLUB_DEBUG */
4934
4935 #ifdef CONFIG_FAILSLAB
4936 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4937 {
4938 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4939 }
4940
4941 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4942 size_t length)
4943 {
4944 s->flags &= ~SLAB_FAILSLAB;
4945 if (buf[0] == '1')
4946 s->flags |= SLAB_FAILSLAB;
4947 return length;
4948 }
4949 SLAB_ATTR(failslab);
4950 #endif
4951
4952 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4953 {
4954 return 0;
4955 }
4956
4957 static ssize_t shrink_store(struct kmem_cache *s,
4958 const char *buf, size_t length)
4959 {
4960 if (buf[0] == '1') {
4961 int rc = kmem_cache_shrink(s);
4962
4963 if (rc)
4964 return rc;
4965 } else
4966 return -EINVAL;
4967 return length;
4968 }
4969 SLAB_ATTR(shrink);
4970
4971 #ifdef CONFIG_NUMA
4972 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4973 {
4974 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4975 }
4976
4977 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4978 const char *buf, size_t length)
4979 {
4980 unsigned long ratio;
4981 int err;
4982
4983 err = strict_strtoul(buf, 10, &ratio);
4984 if (err)
4985 return err;
4986
4987 if (ratio <= 100)
4988 s->remote_node_defrag_ratio = ratio * 10;
4989
4990 return length;
4991 }
4992 SLAB_ATTR(remote_node_defrag_ratio);
4993 #endif
4994
4995 #ifdef CONFIG_SLUB_STATS
4996 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4997 {
4998 unsigned long sum = 0;
4999 int cpu;
5000 int len;
5001 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5002
5003 if (!data)
5004 return -ENOMEM;
5005
5006 for_each_online_cpu(cpu) {
5007 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5008
5009 data[cpu] = x;
5010 sum += x;
5011 }
5012
5013 len = sprintf(buf, "%lu", sum);
5014
5015 #ifdef CONFIG_SMP
5016 for_each_online_cpu(cpu) {
5017 if (data[cpu] && len < PAGE_SIZE - 20)
5018 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5019 }
5020 #endif
5021 kfree(data);
5022 return len + sprintf(buf + len, "\n");
5023 }
5024
5025 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5026 {
5027 int cpu;
5028
5029 for_each_online_cpu(cpu)
5030 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5031 }
5032
5033 #define STAT_ATTR(si, text) \
5034 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5035 { \
5036 return show_stat(s, buf, si); \
5037 } \
5038 static ssize_t text##_store(struct kmem_cache *s, \
5039 const char *buf, size_t length) \
5040 { \
5041 if (buf[0] != '0') \
5042 return -EINVAL; \
5043 clear_stat(s, si); \
5044 return length; \
5045 } \
5046 SLAB_ATTR(text); \
5047
5048 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5049 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5050 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5051 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5052 STAT_ATTR(FREE_FROZEN, free_frozen);
5053 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5054 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5055 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5056 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5057 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5058 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5059 STAT_ATTR(FREE_SLAB, free_slab);
5060 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5061 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5062 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5063 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5064 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5065 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5066 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5067 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5068 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5069 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5070 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5071 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5072 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5073 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5074 #endif
5075
5076 static struct attribute *slab_attrs[] = {
5077 &slab_size_attr.attr,
5078 &object_size_attr.attr,
5079 &objs_per_slab_attr.attr,
5080 &order_attr.attr,
5081 &min_partial_attr.attr,
5082 &cpu_partial_attr.attr,
5083 &objects_attr.attr,
5084 &objects_partial_attr.attr,
5085 &partial_attr.attr,
5086 &cpu_slabs_attr.attr,
5087 &ctor_attr.attr,
5088 &aliases_attr.attr,
5089 &align_attr.attr,
5090 &hwcache_align_attr.attr,
5091 &reclaim_account_attr.attr,
5092 &destroy_by_rcu_attr.attr,
5093 &shrink_attr.attr,
5094 &reserved_attr.attr,
5095 &slabs_cpu_partial_attr.attr,
5096 #ifdef CONFIG_SLUB_DEBUG
5097 &total_objects_attr.attr,
5098 &slabs_attr.attr,
5099 &sanity_checks_attr.attr,
5100 &trace_attr.attr,
5101 &red_zone_attr.attr,
5102 &poison_attr.attr,
5103 &store_user_attr.attr,
5104 &validate_attr.attr,
5105 &alloc_calls_attr.attr,
5106 &free_calls_attr.attr,
5107 #endif
5108 #ifdef CONFIG_ZONE_DMA
5109 &cache_dma_attr.attr,
5110 #endif
5111 #ifdef CONFIG_NUMA
5112 &remote_node_defrag_ratio_attr.attr,
5113 #endif
5114 #ifdef CONFIG_SLUB_STATS
5115 &alloc_fastpath_attr.attr,
5116 &alloc_slowpath_attr.attr,
5117 &free_fastpath_attr.attr,
5118 &free_slowpath_attr.attr,
5119 &free_frozen_attr.attr,
5120 &free_add_partial_attr.attr,
5121 &free_remove_partial_attr.attr,
5122 &alloc_from_partial_attr.attr,
5123 &alloc_slab_attr.attr,
5124 &alloc_refill_attr.attr,
5125 &alloc_node_mismatch_attr.attr,
5126 &free_slab_attr.attr,
5127 &cpuslab_flush_attr.attr,
5128 &deactivate_full_attr.attr,
5129 &deactivate_empty_attr.attr,
5130 &deactivate_to_head_attr.attr,
5131 &deactivate_to_tail_attr.attr,
5132 &deactivate_remote_frees_attr.attr,
5133 &deactivate_bypass_attr.attr,
5134 &order_fallback_attr.attr,
5135 &cmpxchg_double_fail_attr.attr,
5136 &cmpxchg_double_cpu_fail_attr.attr,
5137 &cpu_partial_alloc_attr.attr,
5138 &cpu_partial_free_attr.attr,
5139 &cpu_partial_node_attr.attr,
5140 &cpu_partial_drain_attr.attr,
5141 #endif
5142 #ifdef CONFIG_FAILSLAB
5143 &failslab_attr.attr,
5144 #endif
5145
5146 NULL
5147 };
5148
5149 static struct attribute_group slab_attr_group = {
5150 .attrs = slab_attrs,
5151 };
5152
5153 static ssize_t slab_attr_show(struct kobject *kobj,
5154 struct attribute *attr,
5155 char *buf)
5156 {
5157 struct slab_attribute *attribute;
5158 struct kmem_cache *s;
5159 int err;
5160
5161 attribute = to_slab_attr(attr);
5162 s = to_slab(kobj);
5163
5164 if (!attribute->show)
5165 return -EIO;
5166
5167 err = attribute->show(s, buf);
5168
5169 return err;
5170 }
5171
5172 static ssize_t slab_attr_store(struct kobject *kobj,
5173 struct attribute *attr,
5174 const char *buf, size_t len)
5175 {
5176 struct slab_attribute *attribute;
5177 struct kmem_cache *s;
5178 int err;
5179
5180 attribute = to_slab_attr(attr);
5181 s = to_slab(kobj);
5182
5183 if (!attribute->store)
5184 return -EIO;
5185
5186 err = attribute->store(s, buf, len);
5187
5188 return err;
5189 }
5190
5191 static void kmem_cache_release(struct kobject *kobj)
5192 {
5193 struct kmem_cache *s = to_slab(kobj);
5194
5195 kfree(s->name);
5196 kfree(s);
5197 }
5198
5199 static const struct sysfs_ops slab_sysfs_ops = {
5200 .show = slab_attr_show,
5201 .store = slab_attr_store,
5202 };
5203
5204 static struct kobj_type slab_ktype = {
5205 .sysfs_ops = &slab_sysfs_ops,
5206 .release = kmem_cache_release
5207 };
5208
5209 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5210 {
5211 struct kobj_type *ktype = get_ktype(kobj);
5212
5213 if (ktype == &slab_ktype)
5214 return 1;
5215 return 0;
5216 }
5217
5218 static const struct kset_uevent_ops slab_uevent_ops = {
5219 .filter = uevent_filter,
5220 };
5221
5222 static struct kset *slab_kset;
5223
5224 #define ID_STR_LENGTH 64
5225
5226 /* Create a unique string id for a slab cache:
5227 *
5228 * Format :[flags-]size
5229 */
5230 static char *create_unique_id(struct kmem_cache *s)
5231 {
5232 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5233 char *p = name;
5234
5235 BUG_ON(!name);
5236
5237 *p++ = ':';
5238 /*
5239 * First flags affecting slabcache operations. We will only
5240 * get here for aliasable slabs so we do not need to support
5241 * too many flags. The flags here must cover all flags that
5242 * are matched during merging to guarantee that the id is
5243 * unique.
5244 */
5245 if (s->flags & SLAB_CACHE_DMA)
5246 *p++ = 'd';
5247 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5248 *p++ = 'a';
5249 if (s->flags & SLAB_DEBUG_FREE)
5250 *p++ = 'F';
5251 if (!(s->flags & SLAB_NOTRACK))
5252 *p++ = 't';
5253 if (p != name + 1)
5254 *p++ = '-';
5255 p += sprintf(p, "%07d", s->size);
5256 BUG_ON(p > name + ID_STR_LENGTH - 1);
5257 return name;
5258 }
5259
5260 static int sysfs_slab_add(struct kmem_cache *s)
5261 {
5262 int err;
5263 const char *name;
5264 int unmergeable;
5265
5266 if (slab_state < FULL)
5267 /* Defer until later */
5268 return 0;
5269
5270 unmergeable = slab_unmergeable(s);
5271 if (unmergeable) {
5272 /*
5273 * Slabcache can never be merged so we can use the name proper.
5274 * This is typically the case for debug situations. In that
5275 * case we can catch duplicate names easily.
5276 */
5277 sysfs_remove_link(&slab_kset->kobj, s->name);
5278 name = s->name;
5279 } else {
5280 /*
5281 * Create a unique name for the slab as a target
5282 * for the symlinks.
5283 */
5284 name = create_unique_id(s);
5285 }
5286
5287 s->kobj.kset = slab_kset;
5288 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5289 if (err) {
5290 kobject_put(&s->kobj);
5291 return err;
5292 }
5293
5294 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5295 if (err) {
5296 kobject_del(&s->kobj);
5297 kobject_put(&s->kobj);
5298 return err;
5299 }
5300 kobject_uevent(&s->kobj, KOBJ_ADD);
5301 if (!unmergeable) {
5302 /* Setup first alias */
5303 sysfs_slab_alias(s, s->name);
5304 kfree(name);
5305 }
5306 return 0;
5307 }
5308
5309 static void sysfs_slab_remove(struct kmem_cache *s)
5310 {
5311 if (slab_state < FULL)
5312 /*
5313 * Sysfs has not been setup yet so no need to remove the
5314 * cache from sysfs.
5315 */
5316 return;
5317
5318 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5319 kobject_del(&s->kobj);
5320 kobject_put(&s->kobj);
5321 }
5322
5323 /*
5324 * Need to buffer aliases during bootup until sysfs becomes
5325 * available lest we lose that information.
5326 */
5327 struct saved_alias {
5328 struct kmem_cache *s;
5329 const char *name;
5330 struct saved_alias *next;
5331 };
5332
5333 static struct saved_alias *alias_list;
5334
5335 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5336 {
5337 struct saved_alias *al;
5338
5339 if (slab_state == FULL) {
5340 /*
5341 * If we have a leftover link then remove it.
5342 */
5343 sysfs_remove_link(&slab_kset->kobj, name);
5344 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5345 }
5346
5347 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5348 if (!al)
5349 return -ENOMEM;
5350
5351 al->s = s;
5352 al->name = name;
5353 al->next = alias_list;
5354 alias_list = al;
5355 return 0;
5356 }
5357
5358 static int __init slab_sysfs_init(void)
5359 {
5360 struct kmem_cache *s;
5361 int err;
5362
5363 down_write(&slub_lock);
5364
5365 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5366 if (!slab_kset) {
5367 up_write(&slub_lock);
5368 printk(KERN_ERR "Cannot register slab subsystem.\n");
5369 return -ENOSYS;
5370 }
5371
5372 slab_state = FULL;
5373
5374 list_for_each_entry(s, &slab_caches, list) {
5375 err = sysfs_slab_add(s);
5376 if (err)
5377 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5378 " to sysfs\n", s->name);
5379 }
5380
5381 while (alias_list) {
5382 struct saved_alias *al = alias_list;
5383
5384 alias_list = alias_list->next;
5385 err = sysfs_slab_alias(al->s, al->name);
5386 if (err)
5387 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5388 " %s to sysfs\n", al->name);
5389 kfree(al);
5390 }
5391
5392 up_write(&slub_lock);
5393 resiliency_test();
5394 return 0;
5395 }
5396
5397 __initcall(slab_sysfs_init);
5398 #endif /* CONFIG_SYSFS */
5399
5400 /*
5401 * The /proc/slabinfo ABI
5402 */
5403 #ifdef CONFIG_SLABINFO
5404 static void print_slabinfo_header(struct seq_file *m)
5405 {
5406 seq_puts(m, "slabinfo - version: 2.1\n");
5407 seq_puts(m, "# name <active_objs> <num_objs> <object_size> "
5408 "<objperslab> <pagesperslab>");
5409 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
5410 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
5411 seq_putc(m, '\n');
5412 }
5413
5414 static void *s_start(struct seq_file *m, loff_t *pos)
5415 {
5416 loff_t n = *pos;
5417
5418 down_read(&slub_lock);
5419 if (!n)
5420 print_slabinfo_header(m);
5421
5422 return seq_list_start(&slab_caches, *pos);
5423 }
5424
5425 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
5426 {
5427 return seq_list_next(p, &slab_caches, pos);
5428 }
5429
5430 static void s_stop(struct seq_file *m, void *p)
5431 {
5432 up_read(&slub_lock);
5433 }
5434
5435 static int s_show(struct seq_file *m, void *p)
5436 {
5437 unsigned long nr_partials = 0;
5438 unsigned long nr_slabs = 0;
5439 unsigned long nr_inuse = 0;
5440 unsigned long nr_objs = 0;
5441 unsigned long nr_free = 0;
5442 struct kmem_cache *s;
5443 int node;
5444
5445 s = list_entry(p, struct kmem_cache, list);
5446
5447 for_each_online_node(node) {
5448 struct kmem_cache_node *n = get_node(s, node);
5449
5450 if (!n)
5451 continue;
5452
5453 nr_partials += n->nr_partial;
5454 nr_slabs += atomic_long_read(&n->nr_slabs);
5455 nr_objs += atomic_long_read(&n->total_objects);
5456 nr_free += count_partial(n, count_free);
5457 }
5458
5459 nr_inuse = nr_objs - nr_free;
5460
5461 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
5462 nr_objs, s->size, oo_objects(s->oo),
5463 (1 << oo_order(s->oo)));
5464 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
5465 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
5466 0UL);
5467 seq_putc(m, '\n');
5468 return 0;
5469 }
5470
5471 static const struct seq_operations slabinfo_op = {
5472 .start = s_start,
5473 .next = s_next,
5474 .stop = s_stop,
5475 .show = s_show,
5476 };
5477
5478 static int slabinfo_open(struct inode *inode, struct file *file)
5479 {
5480 return seq_open(file, &slabinfo_op);
5481 }
5482
5483 static const struct file_operations proc_slabinfo_operations = {
5484 .open = slabinfo_open,
5485 .read = seq_read,
5486 .llseek = seq_lseek,
5487 .release = seq_release,
5488 };
5489
5490 static int __init slab_proc_init(void)
5491 {
5492 proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
5493 return 0;
5494 }
5495 module_init(slab_proc_init);
5496 #endif /* CONFIG_SLABINFO */
This page took 0.264396 seconds and 5 git commands to generate.