mm: mlock: add mlock flags to enable VM_LOCKONFAULT usage
[deliverable/linux.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
10 */
11
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include "slab.h"
20 #include <linux/proc_fs.h>
21 #include <linux/notifier.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/kmemcheck.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/debugobjects.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memory.h>
32 #include <linux/math64.h>
33 #include <linux/fault-inject.h>
34 #include <linux/stacktrace.h>
35 #include <linux/prefetch.h>
36 #include <linux/memcontrol.h>
37
38 #include <trace/events/kmem.h>
39
40 #include "internal.h"
41
42 /*
43 * Lock order:
44 * 1. slab_mutex (Global Mutex)
45 * 2. node->list_lock
46 * 3. slab_lock(page) (Only on some arches and for debugging)
47 *
48 * slab_mutex
49 *
50 * The role of the slab_mutex is to protect the list of all the slabs
51 * and to synchronize major metadata changes to slab cache structures.
52 *
53 * The slab_lock is only used for debugging and on arches that do not
54 * have the ability to do a cmpxchg_double. It only protects the second
55 * double word in the page struct. Meaning
56 * A. page->freelist -> List of object free in a page
57 * B. page->counters -> Counters of objects
58 * C. page->frozen -> frozen state
59 *
60 * If a slab is frozen then it is exempt from list management. It is not
61 * on any list. The processor that froze the slab is the one who can
62 * perform list operations on the page. Other processors may put objects
63 * onto the freelist but the processor that froze the slab is the only
64 * one that can retrieve the objects from the page's freelist.
65 *
66 * The list_lock protects the partial and full list on each node and
67 * the partial slab counter. If taken then no new slabs may be added or
68 * removed from the lists nor make the number of partial slabs be modified.
69 * (Note that the total number of slabs is an atomic value that may be
70 * modified without taking the list lock).
71 *
72 * The list_lock is a centralized lock and thus we avoid taking it as
73 * much as possible. As long as SLUB does not have to handle partial
74 * slabs, operations can continue without any centralized lock. F.e.
75 * allocating a long series of objects that fill up slabs does not require
76 * the list lock.
77 * Interrupts are disabled during allocation and deallocation in order to
78 * make the slab allocator safe to use in the context of an irq. In addition
79 * interrupts are disabled to ensure that the processor does not change
80 * while handling per_cpu slabs, due to kernel preemption.
81 *
82 * SLUB assigns one slab for allocation to each processor.
83 * Allocations only occur from these slabs called cpu slabs.
84 *
85 * Slabs with free elements are kept on a partial list and during regular
86 * operations no list for full slabs is used. If an object in a full slab is
87 * freed then the slab will show up again on the partial lists.
88 * We track full slabs for debugging purposes though because otherwise we
89 * cannot scan all objects.
90 *
91 * Slabs are freed when they become empty. Teardown and setup is
92 * minimal so we rely on the page allocators per cpu caches for
93 * fast frees and allocs.
94 *
95 * Overloading of page flags that are otherwise used for LRU management.
96 *
97 * PageActive The slab is frozen and exempt from list processing.
98 * This means that the slab is dedicated to a purpose
99 * such as satisfying allocations for a specific
100 * processor. Objects may be freed in the slab while
101 * it is frozen but slab_free will then skip the usual
102 * list operations. It is up to the processor holding
103 * the slab to integrate the slab into the slab lists
104 * when the slab is no longer needed.
105 *
106 * One use of this flag is to mark slabs that are
107 * used for allocations. Then such a slab becomes a cpu
108 * slab. The cpu slab may be equipped with an additional
109 * freelist that allows lockless access to
110 * free objects in addition to the regular freelist
111 * that requires the slab lock.
112 *
113 * PageError Slab requires special handling due to debug
114 * options set. This moves slab handling out of
115 * the fast path and disables lockless freelists.
116 */
117
118 static inline int kmem_cache_debug(struct kmem_cache *s)
119 {
120 #ifdef CONFIG_SLUB_DEBUG
121 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
122 #else
123 return 0;
124 #endif
125 }
126
127 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
128 {
129 #ifdef CONFIG_SLUB_CPU_PARTIAL
130 return !kmem_cache_debug(s);
131 #else
132 return false;
133 #endif
134 }
135
136 /*
137 * Issues still to be resolved:
138 *
139 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
140 *
141 * - Variable sizing of the per node arrays
142 */
143
144 /* Enable to test recovery from slab corruption on boot */
145 #undef SLUB_RESILIENCY_TEST
146
147 /* Enable to log cmpxchg failures */
148 #undef SLUB_DEBUG_CMPXCHG
149
150 /*
151 * Mininum number of partial slabs. These will be left on the partial
152 * lists even if they are empty. kmem_cache_shrink may reclaim them.
153 */
154 #define MIN_PARTIAL 5
155
156 /*
157 * Maximum number of desirable partial slabs.
158 * The existence of more partial slabs makes kmem_cache_shrink
159 * sort the partial list by the number of objects in use.
160 */
161 #define MAX_PARTIAL 10
162
163 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
164 SLAB_POISON | SLAB_STORE_USER)
165
166 /*
167 * Debugging flags that require metadata to be stored in the slab. These get
168 * disabled when slub_debug=O is used and a cache's min order increases with
169 * metadata.
170 */
171 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
172
173 #define OO_SHIFT 16
174 #define OO_MASK ((1 << OO_SHIFT) - 1)
175 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
176
177 /* Internal SLUB flags */
178 #define __OBJECT_POISON 0x80000000UL /* Poison object */
179 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
180
181 #ifdef CONFIG_SMP
182 static struct notifier_block slab_notifier;
183 #endif
184
185 /*
186 * Tracking user of a slab.
187 */
188 #define TRACK_ADDRS_COUNT 16
189 struct track {
190 unsigned long addr; /* Called from address */
191 #ifdef CONFIG_STACKTRACE
192 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
193 #endif
194 int cpu; /* Was running on cpu */
195 int pid; /* Pid context */
196 unsigned long when; /* When did the operation occur */
197 };
198
199 enum track_item { TRACK_ALLOC, TRACK_FREE };
200
201 #ifdef CONFIG_SYSFS
202 static int sysfs_slab_add(struct kmem_cache *);
203 static int sysfs_slab_alias(struct kmem_cache *, const char *);
204 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
205 #else
206 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
207 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
208 { return 0; }
209 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
210 #endif
211
212 static inline void stat(const struct kmem_cache *s, enum stat_item si)
213 {
214 #ifdef CONFIG_SLUB_STATS
215 /*
216 * The rmw is racy on a preemptible kernel but this is acceptable, so
217 * avoid this_cpu_add()'s irq-disable overhead.
218 */
219 raw_cpu_inc(s->cpu_slab->stat[si]);
220 #endif
221 }
222
223 /********************************************************************
224 * Core slab cache functions
225 *******************************************************************/
226
227 /* Verify that a pointer has an address that is valid within a slab page */
228 static inline int check_valid_pointer(struct kmem_cache *s,
229 struct page *page, const void *object)
230 {
231 void *base;
232
233 if (!object)
234 return 1;
235
236 base = page_address(page);
237 if (object < base || object >= base + page->objects * s->size ||
238 (object - base) % s->size) {
239 return 0;
240 }
241
242 return 1;
243 }
244
245 static inline void *get_freepointer(struct kmem_cache *s, void *object)
246 {
247 return *(void **)(object + s->offset);
248 }
249
250 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
251 {
252 prefetch(object + s->offset);
253 }
254
255 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
256 {
257 void *p;
258
259 #ifdef CONFIG_DEBUG_PAGEALLOC
260 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
261 #else
262 p = get_freepointer(s, object);
263 #endif
264 return p;
265 }
266
267 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
268 {
269 *(void **)(object + s->offset) = fp;
270 }
271
272 /* Loop over all objects in a slab */
273 #define for_each_object(__p, __s, __addr, __objects) \
274 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
275 __p += (__s)->size)
276
277 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
278 for (__p = (__addr), __idx = 1; __idx <= __objects;\
279 __p += (__s)->size, __idx++)
280
281 /* Determine object index from a given position */
282 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
283 {
284 return (p - addr) / s->size;
285 }
286
287 static inline size_t slab_ksize(const struct kmem_cache *s)
288 {
289 #ifdef CONFIG_SLUB_DEBUG
290 /*
291 * Debugging requires use of the padding between object
292 * and whatever may come after it.
293 */
294 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
295 return s->object_size;
296
297 #endif
298 /*
299 * If we have the need to store the freelist pointer
300 * back there or track user information then we can
301 * only use the space before that information.
302 */
303 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
304 return s->inuse;
305 /*
306 * Else we can use all the padding etc for the allocation
307 */
308 return s->size;
309 }
310
311 static inline int order_objects(int order, unsigned long size, int reserved)
312 {
313 return ((PAGE_SIZE << order) - reserved) / size;
314 }
315
316 static inline struct kmem_cache_order_objects oo_make(int order,
317 unsigned long size, int reserved)
318 {
319 struct kmem_cache_order_objects x = {
320 (order << OO_SHIFT) + order_objects(order, size, reserved)
321 };
322
323 return x;
324 }
325
326 static inline int oo_order(struct kmem_cache_order_objects x)
327 {
328 return x.x >> OO_SHIFT;
329 }
330
331 static inline int oo_objects(struct kmem_cache_order_objects x)
332 {
333 return x.x & OO_MASK;
334 }
335
336 /*
337 * Per slab locking using the pagelock
338 */
339 static __always_inline void slab_lock(struct page *page)
340 {
341 bit_spin_lock(PG_locked, &page->flags);
342 }
343
344 static __always_inline void slab_unlock(struct page *page)
345 {
346 __bit_spin_unlock(PG_locked, &page->flags);
347 }
348
349 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
350 {
351 struct page tmp;
352 tmp.counters = counters_new;
353 /*
354 * page->counters can cover frozen/inuse/objects as well
355 * as page->_count. If we assign to ->counters directly
356 * we run the risk of losing updates to page->_count, so
357 * be careful and only assign to the fields we need.
358 */
359 page->frozen = tmp.frozen;
360 page->inuse = tmp.inuse;
361 page->objects = tmp.objects;
362 }
363
364 /* Interrupts must be disabled (for the fallback code to work right) */
365 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
366 void *freelist_old, unsigned long counters_old,
367 void *freelist_new, unsigned long counters_new,
368 const char *n)
369 {
370 VM_BUG_ON(!irqs_disabled());
371 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
372 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
373 if (s->flags & __CMPXCHG_DOUBLE) {
374 if (cmpxchg_double(&page->freelist, &page->counters,
375 freelist_old, counters_old,
376 freelist_new, counters_new))
377 return true;
378 } else
379 #endif
380 {
381 slab_lock(page);
382 if (page->freelist == freelist_old &&
383 page->counters == counters_old) {
384 page->freelist = freelist_new;
385 set_page_slub_counters(page, counters_new);
386 slab_unlock(page);
387 return true;
388 }
389 slab_unlock(page);
390 }
391
392 cpu_relax();
393 stat(s, CMPXCHG_DOUBLE_FAIL);
394
395 #ifdef SLUB_DEBUG_CMPXCHG
396 pr_info("%s %s: cmpxchg double redo ", n, s->name);
397 #endif
398
399 return false;
400 }
401
402 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
403 void *freelist_old, unsigned long counters_old,
404 void *freelist_new, unsigned long counters_new,
405 const char *n)
406 {
407 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
408 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
409 if (s->flags & __CMPXCHG_DOUBLE) {
410 if (cmpxchg_double(&page->freelist, &page->counters,
411 freelist_old, counters_old,
412 freelist_new, counters_new))
413 return true;
414 } else
415 #endif
416 {
417 unsigned long flags;
418
419 local_irq_save(flags);
420 slab_lock(page);
421 if (page->freelist == freelist_old &&
422 page->counters == counters_old) {
423 page->freelist = freelist_new;
424 set_page_slub_counters(page, counters_new);
425 slab_unlock(page);
426 local_irq_restore(flags);
427 return true;
428 }
429 slab_unlock(page);
430 local_irq_restore(flags);
431 }
432
433 cpu_relax();
434 stat(s, CMPXCHG_DOUBLE_FAIL);
435
436 #ifdef SLUB_DEBUG_CMPXCHG
437 pr_info("%s %s: cmpxchg double redo ", n, s->name);
438 #endif
439
440 return false;
441 }
442
443 #ifdef CONFIG_SLUB_DEBUG
444 /*
445 * Determine a map of object in use on a page.
446 *
447 * Node listlock must be held to guarantee that the page does
448 * not vanish from under us.
449 */
450 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
451 {
452 void *p;
453 void *addr = page_address(page);
454
455 for (p = page->freelist; p; p = get_freepointer(s, p))
456 set_bit(slab_index(p, s, addr), map);
457 }
458
459 /*
460 * Debug settings:
461 */
462 #if defined(CONFIG_SLUB_DEBUG_ON)
463 static int slub_debug = DEBUG_DEFAULT_FLAGS;
464 #elif defined(CONFIG_KASAN)
465 static int slub_debug = SLAB_STORE_USER;
466 #else
467 static int slub_debug;
468 #endif
469
470 static char *slub_debug_slabs;
471 static int disable_higher_order_debug;
472
473 /*
474 * slub is about to manipulate internal object metadata. This memory lies
475 * outside the range of the allocated object, so accessing it would normally
476 * be reported by kasan as a bounds error. metadata_access_enable() is used
477 * to tell kasan that these accesses are OK.
478 */
479 static inline void metadata_access_enable(void)
480 {
481 kasan_disable_current();
482 }
483
484 static inline void metadata_access_disable(void)
485 {
486 kasan_enable_current();
487 }
488
489 /*
490 * Object debugging
491 */
492 static void print_section(char *text, u8 *addr, unsigned int length)
493 {
494 metadata_access_enable();
495 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
496 length, 1);
497 metadata_access_disable();
498 }
499
500 static struct track *get_track(struct kmem_cache *s, void *object,
501 enum track_item alloc)
502 {
503 struct track *p;
504
505 if (s->offset)
506 p = object + s->offset + sizeof(void *);
507 else
508 p = object + s->inuse;
509
510 return p + alloc;
511 }
512
513 static void set_track(struct kmem_cache *s, void *object,
514 enum track_item alloc, unsigned long addr)
515 {
516 struct track *p = get_track(s, object, alloc);
517
518 if (addr) {
519 #ifdef CONFIG_STACKTRACE
520 struct stack_trace trace;
521 int i;
522
523 trace.nr_entries = 0;
524 trace.max_entries = TRACK_ADDRS_COUNT;
525 trace.entries = p->addrs;
526 trace.skip = 3;
527 metadata_access_enable();
528 save_stack_trace(&trace);
529 metadata_access_disable();
530
531 /* See rant in lockdep.c */
532 if (trace.nr_entries != 0 &&
533 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
534 trace.nr_entries--;
535
536 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
537 p->addrs[i] = 0;
538 #endif
539 p->addr = addr;
540 p->cpu = smp_processor_id();
541 p->pid = current->pid;
542 p->when = jiffies;
543 } else
544 memset(p, 0, sizeof(struct track));
545 }
546
547 static void init_tracking(struct kmem_cache *s, void *object)
548 {
549 if (!(s->flags & SLAB_STORE_USER))
550 return;
551
552 set_track(s, object, TRACK_FREE, 0UL);
553 set_track(s, object, TRACK_ALLOC, 0UL);
554 }
555
556 static void print_track(const char *s, struct track *t)
557 {
558 if (!t->addr)
559 return;
560
561 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
562 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
563 #ifdef CONFIG_STACKTRACE
564 {
565 int i;
566 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
567 if (t->addrs[i])
568 pr_err("\t%pS\n", (void *)t->addrs[i]);
569 else
570 break;
571 }
572 #endif
573 }
574
575 static void print_tracking(struct kmem_cache *s, void *object)
576 {
577 if (!(s->flags & SLAB_STORE_USER))
578 return;
579
580 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
581 print_track("Freed", get_track(s, object, TRACK_FREE));
582 }
583
584 static void print_page_info(struct page *page)
585 {
586 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
587 page, page->objects, page->inuse, page->freelist, page->flags);
588
589 }
590
591 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
592 {
593 struct va_format vaf;
594 va_list args;
595
596 va_start(args, fmt);
597 vaf.fmt = fmt;
598 vaf.va = &args;
599 pr_err("=============================================================================\n");
600 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
601 pr_err("-----------------------------------------------------------------------------\n\n");
602
603 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
604 va_end(args);
605 }
606
607 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
608 {
609 struct va_format vaf;
610 va_list args;
611
612 va_start(args, fmt);
613 vaf.fmt = fmt;
614 vaf.va = &args;
615 pr_err("FIX %s: %pV\n", s->name, &vaf);
616 va_end(args);
617 }
618
619 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
620 {
621 unsigned int off; /* Offset of last byte */
622 u8 *addr = page_address(page);
623
624 print_tracking(s, p);
625
626 print_page_info(page);
627
628 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
629 p, p - addr, get_freepointer(s, p));
630
631 if (p > addr + 16)
632 print_section("Bytes b4 ", p - 16, 16);
633
634 print_section("Object ", p, min_t(unsigned long, s->object_size,
635 PAGE_SIZE));
636 if (s->flags & SLAB_RED_ZONE)
637 print_section("Redzone ", p + s->object_size,
638 s->inuse - s->object_size);
639
640 if (s->offset)
641 off = s->offset + sizeof(void *);
642 else
643 off = s->inuse;
644
645 if (s->flags & SLAB_STORE_USER)
646 off += 2 * sizeof(struct track);
647
648 if (off != s->size)
649 /* Beginning of the filler is the free pointer */
650 print_section("Padding ", p + off, s->size - off);
651
652 dump_stack();
653 }
654
655 void object_err(struct kmem_cache *s, struct page *page,
656 u8 *object, char *reason)
657 {
658 slab_bug(s, "%s", reason);
659 print_trailer(s, page, object);
660 }
661
662 static void slab_err(struct kmem_cache *s, struct page *page,
663 const char *fmt, ...)
664 {
665 va_list args;
666 char buf[100];
667
668 va_start(args, fmt);
669 vsnprintf(buf, sizeof(buf), fmt, args);
670 va_end(args);
671 slab_bug(s, "%s", buf);
672 print_page_info(page);
673 dump_stack();
674 }
675
676 static void init_object(struct kmem_cache *s, void *object, u8 val)
677 {
678 u8 *p = object;
679
680 if (s->flags & __OBJECT_POISON) {
681 memset(p, POISON_FREE, s->object_size - 1);
682 p[s->object_size - 1] = POISON_END;
683 }
684
685 if (s->flags & SLAB_RED_ZONE)
686 memset(p + s->object_size, val, s->inuse - s->object_size);
687 }
688
689 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
690 void *from, void *to)
691 {
692 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
693 memset(from, data, to - from);
694 }
695
696 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
697 u8 *object, char *what,
698 u8 *start, unsigned int value, unsigned int bytes)
699 {
700 u8 *fault;
701 u8 *end;
702
703 metadata_access_enable();
704 fault = memchr_inv(start, value, bytes);
705 metadata_access_disable();
706 if (!fault)
707 return 1;
708
709 end = start + bytes;
710 while (end > fault && end[-1] == value)
711 end--;
712
713 slab_bug(s, "%s overwritten", what);
714 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
715 fault, end - 1, fault[0], value);
716 print_trailer(s, page, object);
717
718 restore_bytes(s, what, value, fault, end);
719 return 0;
720 }
721
722 /*
723 * Object layout:
724 *
725 * object address
726 * Bytes of the object to be managed.
727 * If the freepointer may overlay the object then the free
728 * pointer is the first word of the object.
729 *
730 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
731 * 0xa5 (POISON_END)
732 *
733 * object + s->object_size
734 * Padding to reach word boundary. This is also used for Redzoning.
735 * Padding is extended by another word if Redzoning is enabled and
736 * object_size == inuse.
737 *
738 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
739 * 0xcc (RED_ACTIVE) for objects in use.
740 *
741 * object + s->inuse
742 * Meta data starts here.
743 *
744 * A. Free pointer (if we cannot overwrite object on free)
745 * B. Tracking data for SLAB_STORE_USER
746 * C. Padding to reach required alignment boundary or at mininum
747 * one word if debugging is on to be able to detect writes
748 * before the word boundary.
749 *
750 * Padding is done using 0x5a (POISON_INUSE)
751 *
752 * object + s->size
753 * Nothing is used beyond s->size.
754 *
755 * If slabcaches are merged then the object_size and inuse boundaries are mostly
756 * ignored. And therefore no slab options that rely on these boundaries
757 * may be used with merged slabcaches.
758 */
759
760 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
761 {
762 unsigned long off = s->inuse; /* The end of info */
763
764 if (s->offset)
765 /* Freepointer is placed after the object. */
766 off += sizeof(void *);
767
768 if (s->flags & SLAB_STORE_USER)
769 /* We also have user information there */
770 off += 2 * sizeof(struct track);
771
772 if (s->size == off)
773 return 1;
774
775 return check_bytes_and_report(s, page, p, "Object padding",
776 p + off, POISON_INUSE, s->size - off);
777 }
778
779 /* Check the pad bytes at the end of a slab page */
780 static int slab_pad_check(struct kmem_cache *s, struct page *page)
781 {
782 u8 *start;
783 u8 *fault;
784 u8 *end;
785 int length;
786 int remainder;
787
788 if (!(s->flags & SLAB_POISON))
789 return 1;
790
791 start = page_address(page);
792 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
793 end = start + length;
794 remainder = length % s->size;
795 if (!remainder)
796 return 1;
797
798 metadata_access_enable();
799 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
800 metadata_access_disable();
801 if (!fault)
802 return 1;
803 while (end > fault && end[-1] == POISON_INUSE)
804 end--;
805
806 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
807 print_section("Padding ", end - remainder, remainder);
808
809 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
810 return 0;
811 }
812
813 static int check_object(struct kmem_cache *s, struct page *page,
814 void *object, u8 val)
815 {
816 u8 *p = object;
817 u8 *endobject = object + s->object_size;
818
819 if (s->flags & SLAB_RED_ZONE) {
820 if (!check_bytes_and_report(s, page, object, "Redzone",
821 endobject, val, s->inuse - s->object_size))
822 return 0;
823 } else {
824 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
825 check_bytes_and_report(s, page, p, "Alignment padding",
826 endobject, POISON_INUSE,
827 s->inuse - s->object_size);
828 }
829 }
830
831 if (s->flags & SLAB_POISON) {
832 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
833 (!check_bytes_and_report(s, page, p, "Poison", p,
834 POISON_FREE, s->object_size - 1) ||
835 !check_bytes_and_report(s, page, p, "Poison",
836 p + s->object_size - 1, POISON_END, 1)))
837 return 0;
838 /*
839 * check_pad_bytes cleans up on its own.
840 */
841 check_pad_bytes(s, page, p);
842 }
843
844 if (!s->offset && val == SLUB_RED_ACTIVE)
845 /*
846 * Object and freepointer overlap. Cannot check
847 * freepointer while object is allocated.
848 */
849 return 1;
850
851 /* Check free pointer validity */
852 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
853 object_err(s, page, p, "Freepointer corrupt");
854 /*
855 * No choice but to zap it and thus lose the remainder
856 * of the free objects in this slab. May cause
857 * another error because the object count is now wrong.
858 */
859 set_freepointer(s, p, NULL);
860 return 0;
861 }
862 return 1;
863 }
864
865 static int check_slab(struct kmem_cache *s, struct page *page)
866 {
867 int maxobj;
868
869 VM_BUG_ON(!irqs_disabled());
870
871 if (!PageSlab(page)) {
872 slab_err(s, page, "Not a valid slab page");
873 return 0;
874 }
875
876 maxobj = order_objects(compound_order(page), s->size, s->reserved);
877 if (page->objects > maxobj) {
878 slab_err(s, page, "objects %u > max %u",
879 page->objects, maxobj);
880 return 0;
881 }
882 if (page->inuse > page->objects) {
883 slab_err(s, page, "inuse %u > max %u",
884 page->inuse, page->objects);
885 return 0;
886 }
887 /* Slab_pad_check fixes things up after itself */
888 slab_pad_check(s, page);
889 return 1;
890 }
891
892 /*
893 * Determine if a certain object on a page is on the freelist. Must hold the
894 * slab lock to guarantee that the chains are in a consistent state.
895 */
896 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
897 {
898 int nr = 0;
899 void *fp;
900 void *object = NULL;
901 int max_objects;
902
903 fp = page->freelist;
904 while (fp && nr <= page->objects) {
905 if (fp == search)
906 return 1;
907 if (!check_valid_pointer(s, page, fp)) {
908 if (object) {
909 object_err(s, page, object,
910 "Freechain corrupt");
911 set_freepointer(s, object, NULL);
912 } else {
913 slab_err(s, page, "Freepointer corrupt");
914 page->freelist = NULL;
915 page->inuse = page->objects;
916 slab_fix(s, "Freelist cleared");
917 return 0;
918 }
919 break;
920 }
921 object = fp;
922 fp = get_freepointer(s, object);
923 nr++;
924 }
925
926 max_objects = order_objects(compound_order(page), s->size, s->reserved);
927 if (max_objects > MAX_OBJS_PER_PAGE)
928 max_objects = MAX_OBJS_PER_PAGE;
929
930 if (page->objects != max_objects) {
931 slab_err(s, page, "Wrong number of objects. Found %d but "
932 "should be %d", page->objects, max_objects);
933 page->objects = max_objects;
934 slab_fix(s, "Number of objects adjusted.");
935 }
936 if (page->inuse != page->objects - nr) {
937 slab_err(s, page, "Wrong object count. Counter is %d but "
938 "counted were %d", page->inuse, page->objects - nr);
939 page->inuse = page->objects - nr;
940 slab_fix(s, "Object count adjusted.");
941 }
942 return search == NULL;
943 }
944
945 static void trace(struct kmem_cache *s, struct page *page, void *object,
946 int alloc)
947 {
948 if (s->flags & SLAB_TRACE) {
949 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
950 s->name,
951 alloc ? "alloc" : "free",
952 object, page->inuse,
953 page->freelist);
954
955 if (!alloc)
956 print_section("Object ", (void *)object,
957 s->object_size);
958
959 dump_stack();
960 }
961 }
962
963 /*
964 * Tracking of fully allocated slabs for debugging purposes.
965 */
966 static void add_full(struct kmem_cache *s,
967 struct kmem_cache_node *n, struct page *page)
968 {
969 if (!(s->flags & SLAB_STORE_USER))
970 return;
971
972 lockdep_assert_held(&n->list_lock);
973 list_add(&page->lru, &n->full);
974 }
975
976 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
977 {
978 if (!(s->flags & SLAB_STORE_USER))
979 return;
980
981 lockdep_assert_held(&n->list_lock);
982 list_del(&page->lru);
983 }
984
985 /* Tracking of the number of slabs for debugging purposes */
986 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
987 {
988 struct kmem_cache_node *n = get_node(s, node);
989
990 return atomic_long_read(&n->nr_slabs);
991 }
992
993 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
994 {
995 return atomic_long_read(&n->nr_slabs);
996 }
997
998 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
999 {
1000 struct kmem_cache_node *n = get_node(s, node);
1001
1002 /*
1003 * May be called early in order to allocate a slab for the
1004 * kmem_cache_node structure. Solve the chicken-egg
1005 * dilemma by deferring the increment of the count during
1006 * bootstrap (see early_kmem_cache_node_alloc).
1007 */
1008 if (likely(n)) {
1009 atomic_long_inc(&n->nr_slabs);
1010 atomic_long_add(objects, &n->total_objects);
1011 }
1012 }
1013 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1014 {
1015 struct kmem_cache_node *n = get_node(s, node);
1016
1017 atomic_long_dec(&n->nr_slabs);
1018 atomic_long_sub(objects, &n->total_objects);
1019 }
1020
1021 /* Object debug checks for alloc/free paths */
1022 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1023 void *object)
1024 {
1025 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1026 return;
1027
1028 init_object(s, object, SLUB_RED_INACTIVE);
1029 init_tracking(s, object);
1030 }
1031
1032 static noinline int alloc_debug_processing(struct kmem_cache *s,
1033 struct page *page,
1034 void *object, unsigned long addr)
1035 {
1036 if (!check_slab(s, page))
1037 goto bad;
1038
1039 if (!check_valid_pointer(s, page, object)) {
1040 object_err(s, page, object, "Freelist Pointer check fails");
1041 goto bad;
1042 }
1043
1044 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1045 goto bad;
1046
1047 /* Success perform special debug activities for allocs */
1048 if (s->flags & SLAB_STORE_USER)
1049 set_track(s, object, TRACK_ALLOC, addr);
1050 trace(s, page, object, 1);
1051 init_object(s, object, SLUB_RED_ACTIVE);
1052 return 1;
1053
1054 bad:
1055 if (PageSlab(page)) {
1056 /*
1057 * If this is a slab page then lets do the best we can
1058 * to avoid issues in the future. Marking all objects
1059 * as used avoids touching the remaining objects.
1060 */
1061 slab_fix(s, "Marking all objects used");
1062 page->inuse = page->objects;
1063 page->freelist = NULL;
1064 }
1065 return 0;
1066 }
1067
1068 static noinline struct kmem_cache_node *free_debug_processing(
1069 struct kmem_cache *s, struct page *page, void *object,
1070 unsigned long addr, unsigned long *flags)
1071 {
1072 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1073
1074 spin_lock_irqsave(&n->list_lock, *flags);
1075 slab_lock(page);
1076
1077 if (!check_slab(s, page))
1078 goto fail;
1079
1080 if (!check_valid_pointer(s, page, object)) {
1081 slab_err(s, page, "Invalid object pointer 0x%p", object);
1082 goto fail;
1083 }
1084
1085 if (on_freelist(s, page, object)) {
1086 object_err(s, page, object, "Object already free");
1087 goto fail;
1088 }
1089
1090 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1091 goto out;
1092
1093 if (unlikely(s != page->slab_cache)) {
1094 if (!PageSlab(page)) {
1095 slab_err(s, page, "Attempt to free object(0x%p) "
1096 "outside of slab", object);
1097 } else if (!page->slab_cache) {
1098 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1099 object);
1100 dump_stack();
1101 } else
1102 object_err(s, page, object,
1103 "page slab pointer corrupt.");
1104 goto fail;
1105 }
1106
1107 if (s->flags & SLAB_STORE_USER)
1108 set_track(s, object, TRACK_FREE, addr);
1109 trace(s, page, object, 0);
1110 init_object(s, object, SLUB_RED_INACTIVE);
1111 out:
1112 slab_unlock(page);
1113 /*
1114 * Keep node_lock to preserve integrity
1115 * until the object is actually freed
1116 */
1117 return n;
1118
1119 fail:
1120 slab_unlock(page);
1121 spin_unlock_irqrestore(&n->list_lock, *flags);
1122 slab_fix(s, "Object at 0x%p not freed", object);
1123 return NULL;
1124 }
1125
1126 static int __init setup_slub_debug(char *str)
1127 {
1128 slub_debug = DEBUG_DEFAULT_FLAGS;
1129 if (*str++ != '=' || !*str)
1130 /*
1131 * No options specified. Switch on full debugging.
1132 */
1133 goto out;
1134
1135 if (*str == ',')
1136 /*
1137 * No options but restriction on slabs. This means full
1138 * debugging for slabs matching a pattern.
1139 */
1140 goto check_slabs;
1141
1142 slub_debug = 0;
1143 if (*str == '-')
1144 /*
1145 * Switch off all debugging measures.
1146 */
1147 goto out;
1148
1149 /*
1150 * Determine which debug features should be switched on
1151 */
1152 for (; *str && *str != ','; str++) {
1153 switch (tolower(*str)) {
1154 case 'f':
1155 slub_debug |= SLAB_DEBUG_FREE;
1156 break;
1157 case 'z':
1158 slub_debug |= SLAB_RED_ZONE;
1159 break;
1160 case 'p':
1161 slub_debug |= SLAB_POISON;
1162 break;
1163 case 'u':
1164 slub_debug |= SLAB_STORE_USER;
1165 break;
1166 case 't':
1167 slub_debug |= SLAB_TRACE;
1168 break;
1169 case 'a':
1170 slub_debug |= SLAB_FAILSLAB;
1171 break;
1172 case 'o':
1173 /*
1174 * Avoid enabling debugging on caches if its minimum
1175 * order would increase as a result.
1176 */
1177 disable_higher_order_debug = 1;
1178 break;
1179 default:
1180 pr_err("slub_debug option '%c' unknown. skipped\n",
1181 *str);
1182 }
1183 }
1184
1185 check_slabs:
1186 if (*str == ',')
1187 slub_debug_slabs = str + 1;
1188 out:
1189 return 1;
1190 }
1191
1192 __setup("slub_debug", setup_slub_debug);
1193
1194 unsigned long kmem_cache_flags(unsigned long object_size,
1195 unsigned long flags, const char *name,
1196 void (*ctor)(void *))
1197 {
1198 /*
1199 * Enable debugging if selected on the kernel commandline.
1200 */
1201 if (slub_debug && (!slub_debug_slabs || (name &&
1202 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1203 flags |= slub_debug;
1204
1205 return flags;
1206 }
1207 #else
1208 static inline void setup_object_debug(struct kmem_cache *s,
1209 struct page *page, void *object) {}
1210
1211 static inline int alloc_debug_processing(struct kmem_cache *s,
1212 struct page *page, void *object, unsigned long addr) { return 0; }
1213
1214 static inline struct kmem_cache_node *free_debug_processing(
1215 struct kmem_cache *s, struct page *page, void *object,
1216 unsigned long addr, unsigned long *flags) { return NULL; }
1217
1218 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1219 { return 1; }
1220 static inline int check_object(struct kmem_cache *s, struct page *page,
1221 void *object, u8 val) { return 1; }
1222 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1223 struct page *page) {}
1224 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1225 struct page *page) {}
1226 unsigned long kmem_cache_flags(unsigned long object_size,
1227 unsigned long flags, const char *name,
1228 void (*ctor)(void *))
1229 {
1230 return flags;
1231 }
1232 #define slub_debug 0
1233
1234 #define disable_higher_order_debug 0
1235
1236 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1237 { return 0; }
1238 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1239 { return 0; }
1240 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1241 int objects) {}
1242 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1243 int objects) {}
1244
1245 #endif /* CONFIG_SLUB_DEBUG */
1246
1247 /*
1248 * Hooks for other subsystems that check memory allocations. In a typical
1249 * production configuration these hooks all should produce no code at all.
1250 */
1251 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1252 {
1253 kmemleak_alloc(ptr, size, 1, flags);
1254 kasan_kmalloc_large(ptr, size);
1255 }
1256
1257 static inline void kfree_hook(const void *x)
1258 {
1259 kmemleak_free(x);
1260 kasan_kfree_large(x);
1261 }
1262
1263 static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
1264 gfp_t flags)
1265 {
1266 flags &= gfp_allowed_mask;
1267 lockdep_trace_alloc(flags);
1268 might_sleep_if(flags & __GFP_WAIT);
1269
1270 if (should_failslab(s->object_size, flags, s->flags))
1271 return NULL;
1272
1273 return memcg_kmem_get_cache(s, flags);
1274 }
1275
1276 static inline void slab_post_alloc_hook(struct kmem_cache *s,
1277 gfp_t flags, void *object)
1278 {
1279 flags &= gfp_allowed_mask;
1280 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
1281 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
1282 memcg_kmem_put_cache(s);
1283 kasan_slab_alloc(s, object);
1284 }
1285
1286 static inline void slab_free_hook(struct kmem_cache *s, void *x)
1287 {
1288 kmemleak_free_recursive(x, s->flags);
1289
1290 /*
1291 * Trouble is that we may no longer disable interrupts in the fast path
1292 * So in order to make the debug calls that expect irqs to be
1293 * disabled we need to disable interrupts temporarily.
1294 */
1295 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1296 {
1297 unsigned long flags;
1298
1299 local_irq_save(flags);
1300 kmemcheck_slab_free(s, x, s->object_size);
1301 debug_check_no_locks_freed(x, s->object_size);
1302 local_irq_restore(flags);
1303 }
1304 #endif
1305 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1306 debug_check_no_obj_freed(x, s->object_size);
1307
1308 kasan_slab_free(s, x);
1309 }
1310
1311 static void setup_object(struct kmem_cache *s, struct page *page,
1312 void *object)
1313 {
1314 setup_object_debug(s, page, object);
1315 if (unlikely(s->ctor)) {
1316 kasan_unpoison_object_data(s, object);
1317 s->ctor(object);
1318 kasan_poison_object_data(s, object);
1319 }
1320 }
1321
1322 /*
1323 * Slab allocation and freeing
1324 */
1325 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1326 gfp_t flags, int node, struct kmem_cache_order_objects oo)
1327 {
1328 struct page *page;
1329 int order = oo_order(oo);
1330
1331 flags |= __GFP_NOTRACK;
1332
1333 if (node == NUMA_NO_NODE)
1334 page = alloc_pages(flags, order);
1335 else
1336 page = __alloc_pages_node(node, flags, order);
1337
1338 if (page && memcg_charge_slab(page, flags, order, s)) {
1339 __free_pages(page, order);
1340 page = NULL;
1341 }
1342
1343 return page;
1344 }
1345
1346 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1347 {
1348 struct page *page;
1349 struct kmem_cache_order_objects oo = s->oo;
1350 gfp_t alloc_gfp;
1351 void *start, *p;
1352 int idx, order;
1353
1354 flags &= gfp_allowed_mask;
1355
1356 if (flags & __GFP_WAIT)
1357 local_irq_enable();
1358
1359 flags |= s->allocflags;
1360
1361 /*
1362 * Let the initial higher-order allocation fail under memory pressure
1363 * so we fall-back to the minimum order allocation.
1364 */
1365 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1366 if ((alloc_gfp & __GFP_WAIT) && oo_order(oo) > oo_order(s->min))
1367 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_WAIT;
1368
1369 page = alloc_slab_page(s, alloc_gfp, node, oo);
1370 if (unlikely(!page)) {
1371 oo = s->min;
1372 alloc_gfp = flags;
1373 /*
1374 * Allocation may have failed due to fragmentation.
1375 * Try a lower order alloc if possible
1376 */
1377 page = alloc_slab_page(s, alloc_gfp, node, oo);
1378 if (unlikely(!page))
1379 goto out;
1380 stat(s, ORDER_FALLBACK);
1381 }
1382
1383 if (kmemcheck_enabled &&
1384 !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1385 int pages = 1 << oo_order(oo);
1386
1387 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
1388
1389 /*
1390 * Objects from caches that have a constructor don't get
1391 * cleared when they're allocated, so we need to do it here.
1392 */
1393 if (s->ctor)
1394 kmemcheck_mark_uninitialized_pages(page, pages);
1395 else
1396 kmemcheck_mark_unallocated_pages(page, pages);
1397 }
1398
1399 page->objects = oo_objects(oo);
1400
1401 order = compound_order(page);
1402 page->slab_cache = s;
1403 __SetPageSlab(page);
1404 if (page_is_pfmemalloc(page))
1405 SetPageSlabPfmemalloc(page);
1406
1407 start = page_address(page);
1408
1409 if (unlikely(s->flags & SLAB_POISON))
1410 memset(start, POISON_INUSE, PAGE_SIZE << order);
1411
1412 kasan_poison_slab(page);
1413
1414 for_each_object_idx(p, idx, s, start, page->objects) {
1415 setup_object(s, page, p);
1416 if (likely(idx < page->objects))
1417 set_freepointer(s, p, p + s->size);
1418 else
1419 set_freepointer(s, p, NULL);
1420 }
1421
1422 page->freelist = start;
1423 page->inuse = page->objects;
1424 page->frozen = 1;
1425
1426 out:
1427 if (flags & __GFP_WAIT)
1428 local_irq_disable();
1429 if (!page)
1430 return NULL;
1431
1432 mod_zone_page_state(page_zone(page),
1433 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1434 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1435 1 << oo_order(oo));
1436
1437 inc_slabs_node(s, page_to_nid(page), page->objects);
1438
1439 return page;
1440 }
1441
1442 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1443 {
1444 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1445 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
1446 BUG();
1447 }
1448
1449 return allocate_slab(s,
1450 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1451 }
1452
1453 static void __free_slab(struct kmem_cache *s, struct page *page)
1454 {
1455 int order = compound_order(page);
1456 int pages = 1 << order;
1457
1458 if (kmem_cache_debug(s)) {
1459 void *p;
1460
1461 slab_pad_check(s, page);
1462 for_each_object(p, s, page_address(page),
1463 page->objects)
1464 check_object(s, page, p, SLUB_RED_INACTIVE);
1465 }
1466
1467 kmemcheck_free_shadow(page, compound_order(page));
1468
1469 mod_zone_page_state(page_zone(page),
1470 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1471 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1472 -pages);
1473
1474 __ClearPageSlabPfmemalloc(page);
1475 __ClearPageSlab(page);
1476
1477 page_mapcount_reset(page);
1478 if (current->reclaim_state)
1479 current->reclaim_state->reclaimed_slab += pages;
1480 __free_kmem_pages(page, order);
1481 }
1482
1483 #define need_reserve_slab_rcu \
1484 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1485
1486 static void rcu_free_slab(struct rcu_head *h)
1487 {
1488 struct page *page;
1489
1490 if (need_reserve_slab_rcu)
1491 page = virt_to_head_page(h);
1492 else
1493 page = container_of((struct list_head *)h, struct page, lru);
1494
1495 __free_slab(page->slab_cache, page);
1496 }
1497
1498 static void free_slab(struct kmem_cache *s, struct page *page)
1499 {
1500 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1501 struct rcu_head *head;
1502
1503 if (need_reserve_slab_rcu) {
1504 int order = compound_order(page);
1505 int offset = (PAGE_SIZE << order) - s->reserved;
1506
1507 VM_BUG_ON(s->reserved != sizeof(*head));
1508 head = page_address(page) + offset;
1509 } else {
1510 /*
1511 * RCU free overloads the RCU head over the LRU
1512 */
1513 head = (void *)&page->lru;
1514 }
1515
1516 call_rcu(head, rcu_free_slab);
1517 } else
1518 __free_slab(s, page);
1519 }
1520
1521 static void discard_slab(struct kmem_cache *s, struct page *page)
1522 {
1523 dec_slabs_node(s, page_to_nid(page), page->objects);
1524 free_slab(s, page);
1525 }
1526
1527 /*
1528 * Management of partially allocated slabs.
1529 */
1530 static inline void
1531 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1532 {
1533 n->nr_partial++;
1534 if (tail == DEACTIVATE_TO_TAIL)
1535 list_add_tail(&page->lru, &n->partial);
1536 else
1537 list_add(&page->lru, &n->partial);
1538 }
1539
1540 static inline void add_partial(struct kmem_cache_node *n,
1541 struct page *page, int tail)
1542 {
1543 lockdep_assert_held(&n->list_lock);
1544 __add_partial(n, page, tail);
1545 }
1546
1547 static inline void
1548 __remove_partial(struct kmem_cache_node *n, struct page *page)
1549 {
1550 list_del(&page->lru);
1551 n->nr_partial--;
1552 }
1553
1554 static inline void remove_partial(struct kmem_cache_node *n,
1555 struct page *page)
1556 {
1557 lockdep_assert_held(&n->list_lock);
1558 __remove_partial(n, page);
1559 }
1560
1561 /*
1562 * Remove slab from the partial list, freeze it and
1563 * return the pointer to the freelist.
1564 *
1565 * Returns a list of objects or NULL if it fails.
1566 */
1567 static inline void *acquire_slab(struct kmem_cache *s,
1568 struct kmem_cache_node *n, struct page *page,
1569 int mode, int *objects)
1570 {
1571 void *freelist;
1572 unsigned long counters;
1573 struct page new;
1574
1575 lockdep_assert_held(&n->list_lock);
1576
1577 /*
1578 * Zap the freelist and set the frozen bit.
1579 * The old freelist is the list of objects for the
1580 * per cpu allocation list.
1581 */
1582 freelist = page->freelist;
1583 counters = page->counters;
1584 new.counters = counters;
1585 *objects = new.objects - new.inuse;
1586 if (mode) {
1587 new.inuse = page->objects;
1588 new.freelist = NULL;
1589 } else {
1590 new.freelist = freelist;
1591 }
1592
1593 VM_BUG_ON(new.frozen);
1594 new.frozen = 1;
1595
1596 if (!__cmpxchg_double_slab(s, page,
1597 freelist, counters,
1598 new.freelist, new.counters,
1599 "acquire_slab"))
1600 return NULL;
1601
1602 remove_partial(n, page);
1603 WARN_ON(!freelist);
1604 return freelist;
1605 }
1606
1607 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1608 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1609
1610 /*
1611 * Try to allocate a partial slab from a specific node.
1612 */
1613 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1614 struct kmem_cache_cpu *c, gfp_t flags)
1615 {
1616 struct page *page, *page2;
1617 void *object = NULL;
1618 int available = 0;
1619 int objects;
1620
1621 /*
1622 * Racy check. If we mistakenly see no partial slabs then we
1623 * just allocate an empty slab. If we mistakenly try to get a
1624 * partial slab and there is none available then get_partials()
1625 * will return NULL.
1626 */
1627 if (!n || !n->nr_partial)
1628 return NULL;
1629
1630 spin_lock(&n->list_lock);
1631 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1632 void *t;
1633
1634 if (!pfmemalloc_match(page, flags))
1635 continue;
1636
1637 t = acquire_slab(s, n, page, object == NULL, &objects);
1638 if (!t)
1639 break;
1640
1641 available += objects;
1642 if (!object) {
1643 c->page = page;
1644 stat(s, ALLOC_FROM_PARTIAL);
1645 object = t;
1646 } else {
1647 put_cpu_partial(s, page, 0);
1648 stat(s, CPU_PARTIAL_NODE);
1649 }
1650 if (!kmem_cache_has_cpu_partial(s)
1651 || available > s->cpu_partial / 2)
1652 break;
1653
1654 }
1655 spin_unlock(&n->list_lock);
1656 return object;
1657 }
1658
1659 /*
1660 * Get a page from somewhere. Search in increasing NUMA distances.
1661 */
1662 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1663 struct kmem_cache_cpu *c)
1664 {
1665 #ifdef CONFIG_NUMA
1666 struct zonelist *zonelist;
1667 struct zoneref *z;
1668 struct zone *zone;
1669 enum zone_type high_zoneidx = gfp_zone(flags);
1670 void *object;
1671 unsigned int cpuset_mems_cookie;
1672
1673 /*
1674 * The defrag ratio allows a configuration of the tradeoffs between
1675 * inter node defragmentation and node local allocations. A lower
1676 * defrag_ratio increases the tendency to do local allocations
1677 * instead of attempting to obtain partial slabs from other nodes.
1678 *
1679 * If the defrag_ratio is set to 0 then kmalloc() always
1680 * returns node local objects. If the ratio is higher then kmalloc()
1681 * may return off node objects because partial slabs are obtained
1682 * from other nodes and filled up.
1683 *
1684 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1685 * defrag_ratio = 1000) then every (well almost) allocation will
1686 * first attempt to defrag slab caches on other nodes. This means
1687 * scanning over all nodes to look for partial slabs which may be
1688 * expensive if we do it every time we are trying to find a slab
1689 * with available objects.
1690 */
1691 if (!s->remote_node_defrag_ratio ||
1692 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1693 return NULL;
1694
1695 do {
1696 cpuset_mems_cookie = read_mems_allowed_begin();
1697 zonelist = node_zonelist(mempolicy_slab_node(), flags);
1698 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1699 struct kmem_cache_node *n;
1700
1701 n = get_node(s, zone_to_nid(zone));
1702
1703 if (n && cpuset_zone_allowed(zone, flags) &&
1704 n->nr_partial > s->min_partial) {
1705 object = get_partial_node(s, n, c, flags);
1706 if (object) {
1707 /*
1708 * Don't check read_mems_allowed_retry()
1709 * here - if mems_allowed was updated in
1710 * parallel, that was a harmless race
1711 * between allocation and the cpuset
1712 * update
1713 */
1714 return object;
1715 }
1716 }
1717 }
1718 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1719 #endif
1720 return NULL;
1721 }
1722
1723 /*
1724 * Get a partial page, lock it and return it.
1725 */
1726 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1727 struct kmem_cache_cpu *c)
1728 {
1729 void *object;
1730 int searchnode = node;
1731
1732 if (node == NUMA_NO_NODE)
1733 searchnode = numa_mem_id();
1734 else if (!node_present_pages(node))
1735 searchnode = node_to_mem_node(node);
1736
1737 object = get_partial_node(s, get_node(s, searchnode), c, flags);
1738 if (object || node != NUMA_NO_NODE)
1739 return object;
1740
1741 return get_any_partial(s, flags, c);
1742 }
1743
1744 #ifdef CONFIG_PREEMPT
1745 /*
1746 * Calculate the next globally unique transaction for disambiguiation
1747 * during cmpxchg. The transactions start with the cpu number and are then
1748 * incremented by CONFIG_NR_CPUS.
1749 */
1750 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1751 #else
1752 /*
1753 * No preemption supported therefore also no need to check for
1754 * different cpus.
1755 */
1756 #define TID_STEP 1
1757 #endif
1758
1759 static inline unsigned long next_tid(unsigned long tid)
1760 {
1761 return tid + TID_STEP;
1762 }
1763
1764 static inline unsigned int tid_to_cpu(unsigned long tid)
1765 {
1766 return tid % TID_STEP;
1767 }
1768
1769 static inline unsigned long tid_to_event(unsigned long tid)
1770 {
1771 return tid / TID_STEP;
1772 }
1773
1774 static inline unsigned int init_tid(int cpu)
1775 {
1776 return cpu;
1777 }
1778
1779 static inline void note_cmpxchg_failure(const char *n,
1780 const struct kmem_cache *s, unsigned long tid)
1781 {
1782 #ifdef SLUB_DEBUG_CMPXCHG
1783 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1784
1785 pr_info("%s %s: cmpxchg redo ", n, s->name);
1786
1787 #ifdef CONFIG_PREEMPT
1788 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1789 pr_warn("due to cpu change %d -> %d\n",
1790 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1791 else
1792 #endif
1793 if (tid_to_event(tid) != tid_to_event(actual_tid))
1794 pr_warn("due to cpu running other code. Event %ld->%ld\n",
1795 tid_to_event(tid), tid_to_event(actual_tid));
1796 else
1797 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1798 actual_tid, tid, next_tid(tid));
1799 #endif
1800 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1801 }
1802
1803 static void init_kmem_cache_cpus(struct kmem_cache *s)
1804 {
1805 int cpu;
1806
1807 for_each_possible_cpu(cpu)
1808 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1809 }
1810
1811 /*
1812 * Remove the cpu slab
1813 */
1814 static void deactivate_slab(struct kmem_cache *s, struct page *page,
1815 void *freelist)
1816 {
1817 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1818 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1819 int lock = 0;
1820 enum slab_modes l = M_NONE, m = M_NONE;
1821 void *nextfree;
1822 int tail = DEACTIVATE_TO_HEAD;
1823 struct page new;
1824 struct page old;
1825
1826 if (page->freelist) {
1827 stat(s, DEACTIVATE_REMOTE_FREES);
1828 tail = DEACTIVATE_TO_TAIL;
1829 }
1830
1831 /*
1832 * Stage one: Free all available per cpu objects back
1833 * to the page freelist while it is still frozen. Leave the
1834 * last one.
1835 *
1836 * There is no need to take the list->lock because the page
1837 * is still frozen.
1838 */
1839 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1840 void *prior;
1841 unsigned long counters;
1842
1843 do {
1844 prior = page->freelist;
1845 counters = page->counters;
1846 set_freepointer(s, freelist, prior);
1847 new.counters = counters;
1848 new.inuse--;
1849 VM_BUG_ON(!new.frozen);
1850
1851 } while (!__cmpxchg_double_slab(s, page,
1852 prior, counters,
1853 freelist, new.counters,
1854 "drain percpu freelist"));
1855
1856 freelist = nextfree;
1857 }
1858
1859 /*
1860 * Stage two: Ensure that the page is unfrozen while the
1861 * list presence reflects the actual number of objects
1862 * during unfreeze.
1863 *
1864 * We setup the list membership and then perform a cmpxchg
1865 * with the count. If there is a mismatch then the page
1866 * is not unfrozen but the page is on the wrong list.
1867 *
1868 * Then we restart the process which may have to remove
1869 * the page from the list that we just put it on again
1870 * because the number of objects in the slab may have
1871 * changed.
1872 */
1873 redo:
1874
1875 old.freelist = page->freelist;
1876 old.counters = page->counters;
1877 VM_BUG_ON(!old.frozen);
1878
1879 /* Determine target state of the slab */
1880 new.counters = old.counters;
1881 if (freelist) {
1882 new.inuse--;
1883 set_freepointer(s, freelist, old.freelist);
1884 new.freelist = freelist;
1885 } else
1886 new.freelist = old.freelist;
1887
1888 new.frozen = 0;
1889
1890 if (!new.inuse && n->nr_partial >= s->min_partial)
1891 m = M_FREE;
1892 else if (new.freelist) {
1893 m = M_PARTIAL;
1894 if (!lock) {
1895 lock = 1;
1896 /*
1897 * Taking the spinlock removes the possiblity
1898 * that acquire_slab() will see a slab page that
1899 * is frozen
1900 */
1901 spin_lock(&n->list_lock);
1902 }
1903 } else {
1904 m = M_FULL;
1905 if (kmem_cache_debug(s) && !lock) {
1906 lock = 1;
1907 /*
1908 * This also ensures that the scanning of full
1909 * slabs from diagnostic functions will not see
1910 * any frozen slabs.
1911 */
1912 spin_lock(&n->list_lock);
1913 }
1914 }
1915
1916 if (l != m) {
1917
1918 if (l == M_PARTIAL)
1919
1920 remove_partial(n, page);
1921
1922 else if (l == M_FULL)
1923
1924 remove_full(s, n, page);
1925
1926 if (m == M_PARTIAL) {
1927
1928 add_partial(n, page, tail);
1929 stat(s, tail);
1930
1931 } else if (m == M_FULL) {
1932
1933 stat(s, DEACTIVATE_FULL);
1934 add_full(s, n, page);
1935
1936 }
1937 }
1938
1939 l = m;
1940 if (!__cmpxchg_double_slab(s, page,
1941 old.freelist, old.counters,
1942 new.freelist, new.counters,
1943 "unfreezing slab"))
1944 goto redo;
1945
1946 if (lock)
1947 spin_unlock(&n->list_lock);
1948
1949 if (m == M_FREE) {
1950 stat(s, DEACTIVATE_EMPTY);
1951 discard_slab(s, page);
1952 stat(s, FREE_SLAB);
1953 }
1954 }
1955
1956 /*
1957 * Unfreeze all the cpu partial slabs.
1958 *
1959 * This function must be called with interrupts disabled
1960 * for the cpu using c (or some other guarantee must be there
1961 * to guarantee no concurrent accesses).
1962 */
1963 static void unfreeze_partials(struct kmem_cache *s,
1964 struct kmem_cache_cpu *c)
1965 {
1966 #ifdef CONFIG_SLUB_CPU_PARTIAL
1967 struct kmem_cache_node *n = NULL, *n2 = NULL;
1968 struct page *page, *discard_page = NULL;
1969
1970 while ((page = c->partial)) {
1971 struct page new;
1972 struct page old;
1973
1974 c->partial = page->next;
1975
1976 n2 = get_node(s, page_to_nid(page));
1977 if (n != n2) {
1978 if (n)
1979 spin_unlock(&n->list_lock);
1980
1981 n = n2;
1982 spin_lock(&n->list_lock);
1983 }
1984
1985 do {
1986
1987 old.freelist = page->freelist;
1988 old.counters = page->counters;
1989 VM_BUG_ON(!old.frozen);
1990
1991 new.counters = old.counters;
1992 new.freelist = old.freelist;
1993
1994 new.frozen = 0;
1995
1996 } while (!__cmpxchg_double_slab(s, page,
1997 old.freelist, old.counters,
1998 new.freelist, new.counters,
1999 "unfreezing slab"));
2000
2001 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2002 page->next = discard_page;
2003 discard_page = page;
2004 } else {
2005 add_partial(n, page, DEACTIVATE_TO_TAIL);
2006 stat(s, FREE_ADD_PARTIAL);
2007 }
2008 }
2009
2010 if (n)
2011 spin_unlock(&n->list_lock);
2012
2013 while (discard_page) {
2014 page = discard_page;
2015 discard_page = discard_page->next;
2016
2017 stat(s, DEACTIVATE_EMPTY);
2018 discard_slab(s, page);
2019 stat(s, FREE_SLAB);
2020 }
2021 #endif
2022 }
2023
2024 /*
2025 * Put a page that was just frozen (in __slab_free) into a partial page
2026 * slot if available. This is done without interrupts disabled and without
2027 * preemption disabled. The cmpxchg is racy and may put the partial page
2028 * onto a random cpus partial slot.
2029 *
2030 * If we did not find a slot then simply move all the partials to the
2031 * per node partial list.
2032 */
2033 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2034 {
2035 #ifdef CONFIG_SLUB_CPU_PARTIAL
2036 struct page *oldpage;
2037 int pages;
2038 int pobjects;
2039
2040 preempt_disable();
2041 do {
2042 pages = 0;
2043 pobjects = 0;
2044 oldpage = this_cpu_read(s->cpu_slab->partial);
2045
2046 if (oldpage) {
2047 pobjects = oldpage->pobjects;
2048 pages = oldpage->pages;
2049 if (drain && pobjects > s->cpu_partial) {
2050 unsigned long flags;
2051 /*
2052 * partial array is full. Move the existing
2053 * set to the per node partial list.
2054 */
2055 local_irq_save(flags);
2056 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2057 local_irq_restore(flags);
2058 oldpage = NULL;
2059 pobjects = 0;
2060 pages = 0;
2061 stat(s, CPU_PARTIAL_DRAIN);
2062 }
2063 }
2064
2065 pages++;
2066 pobjects += page->objects - page->inuse;
2067
2068 page->pages = pages;
2069 page->pobjects = pobjects;
2070 page->next = oldpage;
2071
2072 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2073 != oldpage);
2074 if (unlikely(!s->cpu_partial)) {
2075 unsigned long flags;
2076
2077 local_irq_save(flags);
2078 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2079 local_irq_restore(flags);
2080 }
2081 preempt_enable();
2082 #endif
2083 }
2084
2085 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2086 {
2087 stat(s, CPUSLAB_FLUSH);
2088 deactivate_slab(s, c->page, c->freelist);
2089
2090 c->tid = next_tid(c->tid);
2091 c->page = NULL;
2092 c->freelist = NULL;
2093 }
2094
2095 /*
2096 * Flush cpu slab.
2097 *
2098 * Called from IPI handler with interrupts disabled.
2099 */
2100 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2101 {
2102 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2103
2104 if (likely(c)) {
2105 if (c->page)
2106 flush_slab(s, c);
2107
2108 unfreeze_partials(s, c);
2109 }
2110 }
2111
2112 static void flush_cpu_slab(void *d)
2113 {
2114 struct kmem_cache *s = d;
2115
2116 __flush_cpu_slab(s, smp_processor_id());
2117 }
2118
2119 static bool has_cpu_slab(int cpu, void *info)
2120 {
2121 struct kmem_cache *s = info;
2122 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2123
2124 return c->page || c->partial;
2125 }
2126
2127 static void flush_all(struct kmem_cache *s)
2128 {
2129 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2130 }
2131
2132 /*
2133 * Check if the objects in a per cpu structure fit numa
2134 * locality expectations.
2135 */
2136 static inline int node_match(struct page *page, int node)
2137 {
2138 #ifdef CONFIG_NUMA
2139 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2140 return 0;
2141 #endif
2142 return 1;
2143 }
2144
2145 #ifdef CONFIG_SLUB_DEBUG
2146 static int count_free(struct page *page)
2147 {
2148 return page->objects - page->inuse;
2149 }
2150
2151 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2152 {
2153 return atomic_long_read(&n->total_objects);
2154 }
2155 #endif /* CONFIG_SLUB_DEBUG */
2156
2157 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2158 static unsigned long count_partial(struct kmem_cache_node *n,
2159 int (*get_count)(struct page *))
2160 {
2161 unsigned long flags;
2162 unsigned long x = 0;
2163 struct page *page;
2164
2165 spin_lock_irqsave(&n->list_lock, flags);
2166 list_for_each_entry(page, &n->partial, lru)
2167 x += get_count(page);
2168 spin_unlock_irqrestore(&n->list_lock, flags);
2169 return x;
2170 }
2171 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2172
2173 static noinline void
2174 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2175 {
2176 #ifdef CONFIG_SLUB_DEBUG
2177 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2178 DEFAULT_RATELIMIT_BURST);
2179 int node;
2180 struct kmem_cache_node *n;
2181
2182 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2183 return;
2184
2185 pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2186 nid, gfpflags);
2187 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2188 s->name, s->object_size, s->size, oo_order(s->oo),
2189 oo_order(s->min));
2190
2191 if (oo_order(s->min) > get_order(s->object_size))
2192 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2193 s->name);
2194
2195 for_each_kmem_cache_node(s, node, n) {
2196 unsigned long nr_slabs;
2197 unsigned long nr_objs;
2198 unsigned long nr_free;
2199
2200 nr_free = count_partial(n, count_free);
2201 nr_slabs = node_nr_slabs(n);
2202 nr_objs = node_nr_objs(n);
2203
2204 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2205 node, nr_slabs, nr_objs, nr_free);
2206 }
2207 #endif
2208 }
2209
2210 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2211 int node, struct kmem_cache_cpu **pc)
2212 {
2213 void *freelist;
2214 struct kmem_cache_cpu *c = *pc;
2215 struct page *page;
2216
2217 freelist = get_partial(s, flags, node, c);
2218
2219 if (freelist)
2220 return freelist;
2221
2222 page = new_slab(s, flags, node);
2223 if (page) {
2224 c = raw_cpu_ptr(s->cpu_slab);
2225 if (c->page)
2226 flush_slab(s, c);
2227
2228 /*
2229 * No other reference to the page yet so we can
2230 * muck around with it freely without cmpxchg
2231 */
2232 freelist = page->freelist;
2233 page->freelist = NULL;
2234
2235 stat(s, ALLOC_SLAB);
2236 c->page = page;
2237 *pc = c;
2238 } else
2239 freelist = NULL;
2240
2241 return freelist;
2242 }
2243
2244 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2245 {
2246 if (unlikely(PageSlabPfmemalloc(page)))
2247 return gfp_pfmemalloc_allowed(gfpflags);
2248
2249 return true;
2250 }
2251
2252 /*
2253 * Check the page->freelist of a page and either transfer the freelist to the
2254 * per cpu freelist or deactivate the page.
2255 *
2256 * The page is still frozen if the return value is not NULL.
2257 *
2258 * If this function returns NULL then the page has been unfrozen.
2259 *
2260 * This function must be called with interrupt disabled.
2261 */
2262 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2263 {
2264 struct page new;
2265 unsigned long counters;
2266 void *freelist;
2267
2268 do {
2269 freelist = page->freelist;
2270 counters = page->counters;
2271
2272 new.counters = counters;
2273 VM_BUG_ON(!new.frozen);
2274
2275 new.inuse = page->objects;
2276 new.frozen = freelist != NULL;
2277
2278 } while (!__cmpxchg_double_slab(s, page,
2279 freelist, counters,
2280 NULL, new.counters,
2281 "get_freelist"));
2282
2283 return freelist;
2284 }
2285
2286 /*
2287 * Slow path. The lockless freelist is empty or we need to perform
2288 * debugging duties.
2289 *
2290 * Processing is still very fast if new objects have been freed to the
2291 * regular freelist. In that case we simply take over the regular freelist
2292 * as the lockless freelist and zap the regular freelist.
2293 *
2294 * If that is not working then we fall back to the partial lists. We take the
2295 * first element of the freelist as the object to allocate now and move the
2296 * rest of the freelist to the lockless freelist.
2297 *
2298 * And if we were unable to get a new slab from the partial slab lists then
2299 * we need to allocate a new slab. This is the slowest path since it involves
2300 * a call to the page allocator and the setup of a new slab.
2301 */
2302 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2303 unsigned long addr, struct kmem_cache_cpu *c)
2304 {
2305 void *freelist;
2306 struct page *page;
2307 unsigned long flags;
2308
2309 local_irq_save(flags);
2310 #ifdef CONFIG_PREEMPT
2311 /*
2312 * We may have been preempted and rescheduled on a different
2313 * cpu before disabling interrupts. Need to reload cpu area
2314 * pointer.
2315 */
2316 c = this_cpu_ptr(s->cpu_slab);
2317 #endif
2318
2319 page = c->page;
2320 if (!page)
2321 goto new_slab;
2322 redo:
2323
2324 if (unlikely(!node_match(page, node))) {
2325 int searchnode = node;
2326
2327 if (node != NUMA_NO_NODE && !node_present_pages(node))
2328 searchnode = node_to_mem_node(node);
2329
2330 if (unlikely(!node_match(page, searchnode))) {
2331 stat(s, ALLOC_NODE_MISMATCH);
2332 deactivate_slab(s, page, c->freelist);
2333 c->page = NULL;
2334 c->freelist = NULL;
2335 goto new_slab;
2336 }
2337 }
2338
2339 /*
2340 * By rights, we should be searching for a slab page that was
2341 * PFMEMALLOC but right now, we are losing the pfmemalloc
2342 * information when the page leaves the per-cpu allocator
2343 */
2344 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2345 deactivate_slab(s, page, c->freelist);
2346 c->page = NULL;
2347 c->freelist = NULL;
2348 goto new_slab;
2349 }
2350
2351 /* must check again c->freelist in case of cpu migration or IRQ */
2352 freelist = c->freelist;
2353 if (freelist)
2354 goto load_freelist;
2355
2356 freelist = get_freelist(s, page);
2357
2358 if (!freelist) {
2359 c->page = NULL;
2360 stat(s, DEACTIVATE_BYPASS);
2361 goto new_slab;
2362 }
2363
2364 stat(s, ALLOC_REFILL);
2365
2366 load_freelist:
2367 /*
2368 * freelist is pointing to the list of objects to be used.
2369 * page is pointing to the page from which the objects are obtained.
2370 * That page must be frozen for per cpu allocations to work.
2371 */
2372 VM_BUG_ON(!c->page->frozen);
2373 c->freelist = get_freepointer(s, freelist);
2374 c->tid = next_tid(c->tid);
2375 local_irq_restore(flags);
2376 return freelist;
2377
2378 new_slab:
2379
2380 if (c->partial) {
2381 page = c->page = c->partial;
2382 c->partial = page->next;
2383 stat(s, CPU_PARTIAL_ALLOC);
2384 c->freelist = NULL;
2385 goto redo;
2386 }
2387
2388 freelist = new_slab_objects(s, gfpflags, node, &c);
2389
2390 if (unlikely(!freelist)) {
2391 slab_out_of_memory(s, gfpflags, node);
2392 local_irq_restore(flags);
2393 return NULL;
2394 }
2395
2396 page = c->page;
2397 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2398 goto load_freelist;
2399
2400 /* Only entered in the debug case */
2401 if (kmem_cache_debug(s) &&
2402 !alloc_debug_processing(s, page, freelist, addr))
2403 goto new_slab; /* Slab failed checks. Next slab needed */
2404
2405 deactivate_slab(s, page, get_freepointer(s, freelist));
2406 c->page = NULL;
2407 c->freelist = NULL;
2408 local_irq_restore(flags);
2409 return freelist;
2410 }
2411
2412 /*
2413 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2414 * have the fastpath folded into their functions. So no function call
2415 * overhead for requests that can be satisfied on the fastpath.
2416 *
2417 * The fastpath works by first checking if the lockless freelist can be used.
2418 * If not then __slab_alloc is called for slow processing.
2419 *
2420 * Otherwise we can simply pick the next object from the lockless free list.
2421 */
2422 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2423 gfp_t gfpflags, int node, unsigned long addr)
2424 {
2425 void **object;
2426 struct kmem_cache_cpu *c;
2427 struct page *page;
2428 unsigned long tid;
2429
2430 s = slab_pre_alloc_hook(s, gfpflags);
2431 if (!s)
2432 return NULL;
2433 redo:
2434 /*
2435 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2436 * enabled. We may switch back and forth between cpus while
2437 * reading from one cpu area. That does not matter as long
2438 * as we end up on the original cpu again when doing the cmpxchg.
2439 *
2440 * We should guarantee that tid and kmem_cache are retrieved on
2441 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2442 * to check if it is matched or not.
2443 */
2444 do {
2445 tid = this_cpu_read(s->cpu_slab->tid);
2446 c = raw_cpu_ptr(s->cpu_slab);
2447 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2448 unlikely(tid != READ_ONCE(c->tid)));
2449
2450 /*
2451 * Irqless object alloc/free algorithm used here depends on sequence
2452 * of fetching cpu_slab's data. tid should be fetched before anything
2453 * on c to guarantee that object and page associated with previous tid
2454 * won't be used with current tid. If we fetch tid first, object and
2455 * page could be one associated with next tid and our alloc/free
2456 * request will be failed. In this case, we will retry. So, no problem.
2457 */
2458 barrier();
2459
2460 /*
2461 * The transaction ids are globally unique per cpu and per operation on
2462 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2463 * occurs on the right processor and that there was no operation on the
2464 * linked list in between.
2465 */
2466
2467 object = c->freelist;
2468 page = c->page;
2469 if (unlikely(!object || !node_match(page, node))) {
2470 object = __slab_alloc(s, gfpflags, node, addr, c);
2471 stat(s, ALLOC_SLOWPATH);
2472 } else {
2473 void *next_object = get_freepointer_safe(s, object);
2474
2475 /*
2476 * The cmpxchg will only match if there was no additional
2477 * operation and if we are on the right processor.
2478 *
2479 * The cmpxchg does the following atomically (without lock
2480 * semantics!)
2481 * 1. Relocate first pointer to the current per cpu area.
2482 * 2. Verify that tid and freelist have not been changed
2483 * 3. If they were not changed replace tid and freelist
2484 *
2485 * Since this is without lock semantics the protection is only
2486 * against code executing on this cpu *not* from access by
2487 * other cpus.
2488 */
2489 if (unlikely(!this_cpu_cmpxchg_double(
2490 s->cpu_slab->freelist, s->cpu_slab->tid,
2491 object, tid,
2492 next_object, next_tid(tid)))) {
2493
2494 note_cmpxchg_failure("slab_alloc", s, tid);
2495 goto redo;
2496 }
2497 prefetch_freepointer(s, next_object);
2498 stat(s, ALLOC_FASTPATH);
2499 }
2500
2501 if (unlikely(gfpflags & __GFP_ZERO) && object)
2502 memset(object, 0, s->object_size);
2503
2504 slab_post_alloc_hook(s, gfpflags, object);
2505
2506 return object;
2507 }
2508
2509 static __always_inline void *slab_alloc(struct kmem_cache *s,
2510 gfp_t gfpflags, unsigned long addr)
2511 {
2512 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2513 }
2514
2515 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2516 {
2517 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2518
2519 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2520 s->size, gfpflags);
2521
2522 return ret;
2523 }
2524 EXPORT_SYMBOL(kmem_cache_alloc);
2525
2526 #ifdef CONFIG_TRACING
2527 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2528 {
2529 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2530 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2531 kasan_kmalloc(s, ret, size);
2532 return ret;
2533 }
2534 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2535 #endif
2536
2537 #ifdef CONFIG_NUMA
2538 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2539 {
2540 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2541
2542 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2543 s->object_size, s->size, gfpflags, node);
2544
2545 return ret;
2546 }
2547 EXPORT_SYMBOL(kmem_cache_alloc_node);
2548
2549 #ifdef CONFIG_TRACING
2550 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2551 gfp_t gfpflags,
2552 int node, size_t size)
2553 {
2554 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2555
2556 trace_kmalloc_node(_RET_IP_, ret,
2557 size, s->size, gfpflags, node);
2558
2559 kasan_kmalloc(s, ret, size);
2560 return ret;
2561 }
2562 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2563 #endif
2564 #endif
2565
2566 /*
2567 * Slow path handling. This may still be called frequently since objects
2568 * have a longer lifetime than the cpu slabs in most processing loads.
2569 *
2570 * So we still attempt to reduce cache line usage. Just take the slab
2571 * lock and free the item. If there is no additional partial page
2572 * handling required then we can return immediately.
2573 */
2574 static void __slab_free(struct kmem_cache *s, struct page *page,
2575 void *x, unsigned long addr)
2576 {
2577 void *prior;
2578 void **object = (void *)x;
2579 int was_frozen;
2580 struct page new;
2581 unsigned long counters;
2582 struct kmem_cache_node *n = NULL;
2583 unsigned long uninitialized_var(flags);
2584
2585 stat(s, FREE_SLOWPATH);
2586
2587 if (kmem_cache_debug(s) &&
2588 !(n = free_debug_processing(s, page, x, addr, &flags)))
2589 return;
2590
2591 do {
2592 if (unlikely(n)) {
2593 spin_unlock_irqrestore(&n->list_lock, flags);
2594 n = NULL;
2595 }
2596 prior = page->freelist;
2597 counters = page->counters;
2598 set_freepointer(s, object, prior);
2599 new.counters = counters;
2600 was_frozen = new.frozen;
2601 new.inuse--;
2602 if ((!new.inuse || !prior) && !was_frozen) {
2603
2604 if (kmem_cache_has_cpu_partial(s) && !prior) {
2605
2606 /*
2607 * Slab was on no list before and will be
2608 * partially empty
2609 * We can defer the list move and instead
2610 * freeze it.
2611 */
2612 new.frozen = 1;
2613
2614 } else { /* Needs to be taken off a list */
2615
2616 n = get_node(s, page_to_nid(page));
2617 /*
2618 * Speculatively acquire the list_lock.
2619 * If the cmpxchg does not succeed then we may
2620 * drop the list_lock without any processing.
2621 *
2622 * Otherwise the list_lock will synchronize with
2623 * other processors updating the list of slabs.
2624 */
2625 spin_lock_irqsave(&n->list_lock, flags);
2626
2627 }
2628 }
2629
2630 } while (!cmpxchg_double_slab(s, page,
2631 prior, counters,
2632 object, new.counters,
2633 "__slab_free"));
2634
2635 if (likely(!n)) {
2636
2637 /*
2638 * If we just froze the page then put it onto the
2639 * per cpu partial list.
2640 */
2641 if (new.frozen && !was_frozen) {
2642 put_cpu_partial(s, page, 1);
2643 stat(s, CPU_PARTIAL_FREE);
2644 }
2645 /*
2646 * The list lock was not taken therefore no list
2647 * activity can be necessary.
2648 */
2649 if (was_frozen)
2650 stat(s, FREE_FROZEN);
2651 return;
2652 }
2653
2654 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2655 goto slab_empty;
2656
2657 /*
2658 * Objects left in the slab. If it was not on the partial list before
2659 * then add it.
2660 */
2661 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2662 if (kmem_cache_debug(s))
2663 remove_full(s, n, page);
2664 add_partial(n, page, DEACTIVATE_TO_TAIL);
2665 stat(s, FREE_ADD_PARTIAL);
2666 }
2667 spin_unlock_irqrestore(&n->list_lock, flags);
2668 return;
2669
2670 slab_empty:
2671 if (prior) {
2672 /*
2673 * Slab on the partial list.
2674 */
2675 remove_partial(n, page);
2676 stat(s, FREE_REMOVE_PARTIAL);
2677 } else {
2678 /* Slab must be on the full list */
2679 remove_full(s, n, page);
2680 }
2681
2682 spin_unlock_irqrestore(&n->list_lock, flags);
2683 stat(s, FREE_SLAB);
2684 discard_slab(s, page);
2685 }
2686
2687 /*
2688 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2689 * can perform fastpath freeing without additional function calls.
2690 *
2691 * The fastpath is only possible if we are freeing to the current cpu slab
2692 * of this processor. This typically the case if we have just allocated
2693 * the item before.
2694 *
2695 * If fastpath is not possible then fall back to __slab_free where we deal
2696 * with all sorts of special processing.
2697 */
2698 static __always_inline void slab_free(struct kmem_cache *s,
2699 struct page *page, void *x, unsigned long addr)
2700 {
2701 void **object = (void *)x;
2702 struct kmem_cache_cpu *c;
2703 unsigned long tid;
2704
2705 slab_free_hook(s, x);
2706
2707 redo:
2708 /*
2709 * Determine the currently cpus per cpu slab.
2710 * The cpu may change afterward. However that does not matter since
2711 * data is retrieved via this pointer. If we are on the same cpu
2712 * during the cmpxchg then the free will succeed.
2713 */
2714 do {
2715 tid = this_cpu_read(s->cpu_slab->tid);
2716 c = raw_cpu_ptr(s->cpu_slab);
2717 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2718 unlikely(tid != READ_ONCE(c->tid)));
2719
2720 /* Same with comment on barrier() in slab_alloc_node() */
2721 barrier();
2722
2723 if (likely(page == c->page)) {
2724 set_freepointer(s, object, c->freelist);
2725
2726 if (unlikely(!this_cpu_cmpxchg_double(
2727 s->cpu_slab->freelist, s->cpu_slab->tid,
2728 c->freelist, tid,
2729 object, next_tid(tid)))) {
2730
2731 note_cmpxchg_failure("slab_free", s, tid);
2732 goto redo;
2733 }
2734 stat(s, FREE_FASTPATH);
2735 } else
2736 __slab_free(s, page, x, addr);
2737
2738 }
2739
2740 void kmem_cache_free(struct kmem_cache *s, void *x)
2741 {
2742 s = cache_from_obj(s, x);
2743 if (!s)
2744 return;
2745 slab_free(s, virt_to_head_page(x), x, _RET_IP_);
2746 trace_kmem_cache_free(_RET_IP_, x);
2747 }
2748 EXPORT_SYMBOL(kmem_cache_free);
2749
2750 /* Note that interrupts must be enabled when calling this function. */
2751 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
2752 {
2753 struct kmem_cache_cpu *c;
2754 struct page *page;
2755 int i;
2756
2757 local_irq_disable();
2758 c = this_cpu_ptr(s->cpu_slab);
2759
2760 for (i = 0; i < size; i++) {
2761 void *object = p[i];
2762
2763 BUG_ON(!object);
2764 /* kmem cache debug support */
2765 s = cache_from_obj(s, object);
2766 if (unlikely(!s))
2767 goto exit;
2768 slab_free_hook(s, object);
2769
2770 page = virt_to_head_page(object);
2771
2772 if (c->page == page) {
2773 /* Fastpath: local CPU free */
2774 set_freepointer(s, object, c->freelist);
2775 c->freelist = object;
2776 } else {
2777 c->tid = next_tid(c->tid);
2778 local_irq_enable();
2779 /* Slowpath: overhead locked cmpxchg_double_slab */
2780 __slab_free(s, page, object, _RET_IP_);
2781 local_irq_disable();
2782 c = this_cpu_ptr(s->cpu_slab);
2783 }
2784 }
2785 exit:
2786 c->tid = next_tid(c->tid);
2787 local_irq_enable();
2788 }
2789 EXPORT_SYMBOL(kmem_cache_free_bulk);
2790
2791 /* Note that interrupts must be enabled when calling this function. */
2792 bool kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
2793 void **p)
2794 {
2795 struct kmem_cache_cpu *c;
2796 int i;
2797
2798 /*
2799 * Drain objects in the per cpu slab, while disabling local
2800 * IRQs, which protects against PREEMPT and interrupts
2801 * handlers invoking normal fastpath.
2802 */
2803 local_irq_disable();
2804 c = this_cpu_ptr(s->cpu_slab);
2805
2806 for (i = 0; i < size; i++) {
2807 void *object = c->freelist;
2808
2809 if (unlikely(!object)) {
2810 local_irq_enable();
2811 /*
2812 * Invoking slow path likely have side-effect
2813 * of re-populating per CPU c->freelist
2814 */
2815 p[i] = __slab_alloc(s, flags, NUMA_NO_NODE,
2816 _RET_IP_, c);
2817 if (unlikely(!p[i])) {
2818 __kmem_cache_free_bulk(s, i, p);
2819 return false;
2820 }
2821 local_irq_disable();
2822 c = this_cpu_ptr(s->cpu_slab);
2823 continue; /* goto for-loop */
2824 }
2825
2826 /* kmem_cache debug support */
2827 s = slab_pre_alloc_hook(s, flags);
2828 if (unlikely(!s)) {
2829 __kmem_cache_free_bulk(s, i, p);
2830 c->tid = next_tid(c->tid);
2831 local_irq_enable();
2832 return false;
2833 }
2834
2835 c->freelist = get_freepointer(s, object);
2836 p[i] = object;
2837
2838 /* kmem_cache debug support */
2839 slab_post_alloc_hook(s, flags, object);
2840 }
2841 c->tid = next_tid(c->tid);
2842 local_irq_enable();
2843
2844 /* Clear memory outside IRQ disabled fastpath loop */
2845 if (unlikely(flags & __GFP_ZERO)) {
2846 int j;
2847
2848 for (j = 0; j < i; j++)
2849 memset(p[j], 0, s->object_size);
2850 }
2851
2852 return true;
2853 }
2854 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
2855
2856
2857 /*
2858 * Object placement in a slab is made very easy because we always start at
2859 * offset 0. If we tune the size of the object to the alignment then we can
2860 * get the required alignment by putting one properly sized object after
2861 * another.
2862 *
2863 * Notice that the allocation order determines the sizes of the per cpu
2864 * caches. Each processor has always one slab available for allocations.
2865 * Increasing the allocation order reduces the number of times that slabs
2866 * must be moved on and off the partial lists and is therefore a factor in
2867 * locking overhead.
2868 */
2869
2870 /*
2871 * Mininum / Maximum order of slab pages. This influences locking overhead
2872 * and slab fragmentation. A higher order reduces the number of partial slabs
2873 * and increases the number of allocations possible without having to
2874 * take the list_lock.
2875 */
2876 static int slub_min_order;
2877 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2878 static int slub_min_objects;
2879
2880 /*
2881 * Calculate the order of allocation given an slab object size.
2882 *
2883 * The order of allocation has significant impact on performance and other
2884 * system components. Generally order 0 allocations should be preferred since
2885 * order 0 does not cause fragmentation in the page allocator. Larger objects
2886 * be problematic to put into order 0 slabs because there may be too much
2887 * unused space left. We go to a higher order if more than 1/16th of the slab
2888 * would be wasted.
2889 *
2890 * In order to reach satisfactory performance we must ensure that a minimum
2891 * number of objects is in one slab. Otherwise we may generate too much
2892 * activity on the partial lists which requires taking the list_lock. This is
2893 * less a concern for large slabs though which are rarely used.
2894 *
2895 * slub_max_order specifies the order where we begin to stop considering the
2896 * number of objects in a slab as critical. If we reach slub_max_order then
2897 * we try to keep the page order as low as possible. So we accept more waste
2898 * of space in favor of a small page order.
2899 *
2900 * Higher order allocations also allow the placement of more objects in a
2901 * slab and thereby reduce object handling overhead. If the user has
2902 * requested a higher mininum order then we start with that one instead of
2903 * the smallest order which will fit the object.
2904 */
2905 static inline int slab_order(int size, int min_objects,
2906 int max_order, int fract_leftover, int reserved)
2907 {
2908 int order;
2909 int rem;
2910 int min_order = slub_min_order;
2911
2912 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2913 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2914
2915 for (order = max(min_order, get_order(min_objects * size + reserved));
2916 order <= max_order; order++) {
2917
2918 unsigned long slab_size = PAGE_SIZE << order;
2919
2920 rem = (slab_size - reserved) % size;
2921
2922 if (rem <= slab_size / fract_leftover)
2923 break;
2924 }
2925
2926 return order;
2927 }
2928
2929 static inline int calculate_order(int size, int reserved)
2930 {
2931 int order;
2932 int min_objects;
2933 int fraction;
2934 int max_objects;
2935
2936 /*
2937 * Attempt to find best configuration for a slab. This
2938 * works by first attempting to generate a layout with
2939 * the best configuration and backing off gradually.
2940 *
2941 * First we increase the acceptable waste in a slab. Then
2942 * we reduce the minimum objects required in a slab.
2943 */
2944 min_objects = slub_min_objects;
2945 if (!min_objects)
2946 min_objects = 4 * (fls(nr_cpu_ids) + 1);
2947 max_objects = order_objects(slub_max_order, size, reserved);
2948 min_objects = min(min_objects, max_objects);
2949
2950 while (min_objects > 1) {
2951 fraction = 16;
2952 while (fraction >= 4) {
2953 order = slab_order(size, min_objects,
2954 slub_max_order, fraction, reserved);
2955 if (order <= slub_max_order)
2956 return order;
2957 fraction /= 2;
2958 }
2959 min_objects--;
2960 }
2961
2962 /*
2963 * We were unable to place multiple objects in a slab. Now
2964 * lets see if we can place a single object there.
2965 */
2966 order = slab_order(size, 1, slub_max_order, 1, reserved);
2967 if (order <= slub_max_order)
2968 return order;
2969
2970 /*
2971 * Doh this slab cannot be placed using slub_max_order.
2972 */
2973 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2974 if (order < MAX_ORDER)
2975 return order;
2976 return -ENOSYS;
2977 }
2978
2979 static void
2980 init_kmem_cache_node(struct kmem_cache_node *n)
2981 {
2982 n->nr_partial = 0;
2983 spin_lock_init(&n->list_lock);
2984 INIT_LIST_HEAD(&n->partial);
2985 #ifdef CONFIG_SLUB_DEBUG
2986 atomic_long_set(&n->nr_slabs, 0);
2987 atomic_long_set(&n->total_objects, 0);
2988 INIT_LIST_HEAD(&n->full);
2989 #endif
2990 }
2991
2992 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2993 {
2994 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2995 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
2996
2997 /*
2998 * Must align to double word boundary for the double cmpxchg
2999 * instructions to work; see __pcpu_double_call_return_bool().
3000 */
3001 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3002 2 * sizeof(void *));
3003
3004 if (!s->cpu_slab)
3005 return 0;
3006
3007 init_kmem_cache_cpus(s);
3008
3009 return 1;
3010 }
3011
3012 static struct kmem_cache *kmem_cache_node;
3013
3014 /*
3015 * No kmalloc_node yet so do it by hand. We know that this is the first
3016 * slab on the node for this slabcache. There are no concurrent accesses
3017 * possible.
3018 *
3019 * Note that this function only works on the kmem_cache_node
3020 * when allocating for the kmem_cache_node. This is used for bootstrapping
3021 * memory on a fresh node that has no slab structures yet.
3022 */
3023 static void early_kmem_cache_node_alloc(int node)
3024 {
3025 struct page *page;
3026 struct kmem_cache_node *n;
3027
3028 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3029
3030 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3031
3032 BUG_ON(!page);
3033 if (page_to_nid(page) != node) {
3034 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3035 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3036 }
3037
3038 n = page->freelist;
3039 BUG_ON(!n);
3040 page->freelist = get_freepointer(kmem_cache_node, n);
3041 page->inuse = 1;
3042 page->frozen = 0;
3043 kmem_cache_node->node[node] = n;
3044 #ifdef CONFIG_SLUB_DEBUG
3045 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3046 init_tracking(kmem_cache_node, n);
3047 #endif
3048 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node));
3049 init_kmem_cache_node(n);
3050 inc_slabs_node(kmem_cache_node, node, page->objects);
3051
3052 /*
3053 * No locks need to be taken here as it has just been
3054 * initialized and there is no concurrent access.
3055 */
3056 __add_partial(n, page, DEACTIVATE_TO_HEAD);
3057 }
3058
3059 static void free_kmem_cache_nodes(struct kmem_cache *s)
3060 {
3061 int node;
3062 struct kmem_cache_node *n;
3063
3064 for_each_kmem_cache_node(s, node, n) {
3065 kmem_cache_free(kmem_cache_node, n);
3066 s->node[node] = NULL;
3067 }
3068 }
3069
3070 static int init_kmem_cache_nodes(struct kmem_cache *s)
3071 {
3072 int node;
3073
3074 for_each_node_state(node, N_NORMAL_MEMORY) {
3075 struct kmem_cache_node *n;
3076
3077 if (slab_state == DOWN) {
3078 early_kmem_cache_node_alloc(node);
3079 continue;
3080 }
3081 n = kmem_cache_alloc_node(kmem_cache_node,
3082 GFP_KERNEL, node);
3083
3084 if (!n) {
3085 free_kmem_cache_nodes(s);
3086 return 0;
3087 }
3088
3089 s->node[node] = n;
3090 init_kmem_cache_node(n);
3091 }
3092 return 1;
3093 }
3094
3095 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3096 {
3097 if (min < MIN_PARTIAL)
3098 min = MIN_PARTIAL;
3099 else if (min > MAX_PARTIAL)
3100 min = MAX_PARTIAL;
3101 s->min_partial = min;
3102 }
3103
3104 /*
3105 * calculate_sizes() determines the order and the distribution of data within
3106 * a slab object.
3107 */
3108 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3109 {
3110 unsigned long flags = s->flags;
3111 unsigned long size = s->object_size;
3112 int order;
3113
3114 /*
3115 * Round up object size to the next word boundary. We can only
3116 * place the free pointer at word boundaries and this determines
3117 * the possible location of the free pointer.
3118 */
3119 size = ALIGN(size, sizeof(void *));
3120
3121 #ifdef CONFIG_SLUB_DEBUG
3122 /*
3123 * Determine if we can poison the object itself. If the user of
3124 * the slab may touch the object after free or before allocation
3125 * then we should never poison the object itself.
3126 */
3127 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
3128 !s->ctor)
3129 s->flags |= __OBJECT_POISON;
3130 else
3131 s->flags &= ~__OBJECT_POISON;
3132
3133
3134 /*
3135 * If we are Redzoning then check if there is some space between the
3136 * end of the object and the free pointer. If not then add an
3137 * additional word to have some bytes to store Redzone information.
3138 */
3139 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3140 size += sizeof(void *);
3141 #endif
3142
3143 /*
3144 * With that we have determined the number of bytes in actual use
3145 * by the object. This is the potential offset to the free pointer.
3146 */
3147 s->inuse = size;
3148
3149 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
3150 s->ctor)) {
3151 /*
3152 * Relocate free pointer after the object if it is not
3153 * permitted to overwrite the first word of the object on
3154 * kmem_cache_free.
3155 *
3156 * This is the case if we do RCU, have a constructor or
3157 * destructor or are poisoning the objects.
3158 */
3159 s->offset = size;
3160 size += sizeof(void *);
3161 }
3162
3163 #ifdef CONFIG_SLUB_DEBUG
3164 if (flags & SLAB_STORE_USER)
3165 /*
3166 * Need to store information about allocs and frees after
3167 * the object.
3168 */
3169 size += 2 * sizeof(struct track);
3170
3171 if (flags & SLAB_RED_ZONE)
3172 /*
3173 * Add some empty padding so that we can catch
3174 * overwrites from earlier objects rather than let
3175 * tracking information or the free pointer be
3176 * corrupted if a user writes before the start
3177 * of the object.
3178 */
3179 size += sizeof(void *);
3180 #endif
3181
3182 /*
3183 * SLUB stores one object immediately after another beginning from
3184 * offset 0. In order to align the objects we have to simply size
3185 * each object to conform to the alignment.
3186 */
3187 size = ALIGN(size, s->align);
3188 s->size = size;
3189 if (forced_order >= 0)
3190 order = forced_order;
3191 else
3192 order = calculate_order(size, s->reserved);
3193
3194 if (order < 0)
3195 return 0;
3196
3197 s->allocflags = 0;
3198 if (order)
3199 s->allocflags |= __GFP_COMP;
3200
3201 if (s->flags & SLAB_CACHE_DMA)
3202 s->allocflags |= GFP_DMA;
3203
3204 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3205 s->allocflags |= __GFP_RECLAIMABLE;
3206
3207 /*
3208 * Determine the number of objects per slab
3209 */
3210 s->oo = oo_make(order, size, s->reserved);
3211 s->min = oo_make(get_order(size), size, s->reserved);
3212 if (oo_objects(s->oo) > oo_objects(s->max))
3213 s->max = s->oo;
3214
3215 return !!oo_objects(s->oo);
3216 }
3217
3218 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3219 {
3220 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3221 s->reserved = 0;
3222
3223 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3224 s->reserved = sizeof(struct rcu_head);
3225
3226 if (!calculate_sizes(s, -1))
3227 goto error;
3228 if (disable_higher_order_debug) {
3229 /*
3230 * Disable debugging flags that store metadata if the min slab
3231 * order increased.
3232 */
3233 if (get_order(s->size) > get_order(s->object_size)) {
3234 s->flags &= ~DEBUG_METADATA_FLAGS;
3235 s->offset = 0;
3236 if (!calculate_sizes(s, -1))
3237 goto error;
3238 }
3239 }
3240
3241 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3242 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3243 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3244 /* Enable fast mode */
3245 s->flags |= __CMPXCHG_DOUBLE;
3246 #endif
3247
3248 /*
3249 * The larger the object size is, the more pages we want on the partial
3250 * list to avoid pounding the page allocator excessively.
3251 */
3252 set_min_partial(s, ilog2(s->size) / 2);
3253
3254 /*
3255 * cpu_partial determined the maximum number of objects kept in the
3256 * per cpu partial lists of a processor.
3257 *
3258 * Per cpu partial lists mainly contain slabs that just have one
3259 * object freed. If they are used for allocation then they can be
3260 * filled up again with minimal effort. The slab will never hit the
3261 * per node partial lists and therefore no locking will be required.
3262 *
3263 * This setting also determines
3264 *
3265 * A) The number of objects from per cpu partial slabs dumped to the
3266 * per node list when we reach the limit.
3267 * B) The number of objects in cpu partial slabs to extract from the
3268 * per node list when we run out of per cpu objects. We only fetch
3269 * 50% to keep some capacity around for frees.
3270 */
3271 if (!kmem_cache_has_cpu_partial(s))
3272 s->cpu_partial = 0;
3273 else if (s->size >= PAGE_SIZE)
3274 s->cpu_partial = 2;
3275 else if (s->size >= 1024)
3276 s->cpu_partial = 6;
3277 else if (s->size >= 256)
3278 s->cpu_partial = 13;
3279 else
3280 s->cpu_partial = 30;
3281
3282 #ifdef CONFIG_NUMA
3283 s->remote_node_defrag_ratio = 1000;
3284 #endif
3285 if (!init_kmem_cache_nodes(s))
3286 goto error;
3287
3288 if (alloc_kmem_cache_cpus(s))
3289 return 0;
3290
3291 free_kmem_cache_nodes(s);
3292 error:
3293 if (flags & SLAB_PANIC)
3294 panic("Cannot create slab %s size=%lu realsize=%u "
3295 "order=%u offset=%u flags=%lx\n",
3296 s->name, (unsigned long)s->size, s->size,
3297 oo_order(s->oo), s->offset, flags);
3298 return -EINVAL;
3299 }
3300
3301 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3302 const char *text)
3303 {
3304 #ifdef CONFIG_SLUB_DEBUG
3305 void *addr = page_address(page);
3306 void *p;
3307 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3308 sizeof(long), GFP_ATOMIC);
3309 if (!map)
3310 return;
3311 slab_err(s, page, text, s->name);
3312 slab_lock(page);
3313
3314 get_map(s, page, map);
3315 for_each_object(p, s, addr, page->objects) {
3316
3317 if (!test_bit(slab_index(p, s, addr), map)) {
3318 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3319 print_tracking(s, p);
3320 }
3321 }
3322 slab_unlock(page);
3323 kfree(map);
3324 #endif
3325 }
3326
3327 /*
3328 * Attempt to free all partial slabs on a node.
3329 * This is called from kmem_cache_close(). We must be the last thread
3330 * using the cache and therefore we do not need to lock anymore.
3331 */
3332 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3333 {
3334 struct page *page, *h;
3335
3336 list_for_each_entry_safe(page, h, &n->partial, lru) {
3337 if (!page->inuse) {
3338 __remove_partial(n, page);
3339 discard_slab(s, page);
3340 } else {
3341 list_slab_objects(s, page,
3342 "Objects remaining in %s on kmem_cache_close()");
3343 }
3344 }
3345 }
3346
3347 /*
3348 * Release all resources used by a slab cache.
3349 */
3350 static inline int kmem_cache_close(struct kmem_cache *s)
3351 {
3352 int node;
3353 struct kmem_cache_node *n;
3354
3355 flush_all(s);
3356 /* Attempt to free all objects */
3357 for_each_kmem_cache_node(s, node, n) {
3358 free_partial(s, n);
3359 if (n->nr_partial || slabs_node(s, node))
3360 return 1;
3361 }
3362 free_percpu(s->cpu_slab);
3363 free_kmem_cache_nodes(s);
3364 return 0;
3365 }
3366
3367 int __kmem_cache_shutdown(struct kmem_cache *s)
3368 {
3369 return kmem_cache_close(s);
3370 }
3371
3372 /********************************************************************
3373 * Kmalloc subsystem
3374 *******************************************************************/
3375
3376 static int __init setup_slub_min_order(char *str)
3377 {
3378 get_option(&str, &slub_min_order);
3379
3380 return 1;
3381 }
3382
3383 __setup("slub_min_order=", setup_slub_min_order);
3384
3385 static int __init setup_slub_max_order(char *str)
3386 {
3387 get_option(&str, &slub_max_order);
3388 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3389
3390 return 1;
3391 }
3392
3393 __setup("slub_max_order=", setup_slub_max_order);
3394
3395 static int __init setup_slub_min_objects(char *str)
3396 {
3397 get_option(&str, &slub_min_objects);
3398
3399 return 1;
3400 }
3401
3402 __setup("slub_min_objects=", setup_slub_min_objects);
3403
3404 void *__kmalloc(size_t size, gfp_t flags)
3405 {
3406 struct kmem_cache *s;
3407 void *ret;
3408
3409 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3410 return kmalloc_large(size, flags);
3411
3412 s = kmalloc_slab(size, flags);
3413
3414 if (unlikely(ZERO_OR_NULL_PTR(s)))
3415 return s;
3416
3417 ret = slab_alloc(s, flags, _RET_IP_);
3418
3419 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3420
3421 kasan_kmalloc(s, ret, size);
3422
3423 return ret;
3424 }
3425 EXPORT_SYMBOL(__kmalloc);
3426
3427 #ifdef CONFIG_NUMA
3428 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3429 {
3430 struct page *page;
3431 void *ptr = NULL;
3432
3433 flags |= __GFP_COMP | __GFP_NOTRACK;
3434 page = alloc_kmem_pages_node(node, flags, get_order(size));
3435 if (page)
3436 ptr = page_address(page);
3437
3438 kmalloc_large_node_hook(ptr, size, flags);
3439 return ptr;
3440 }
3441
3442 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3443 {
3444 struct kmem_cache *s;
3445 void *ret;
3446
3447 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3448 ret = kmalloc_large_node(size, flags, node);
3449
3450 trace_kmalloc_node(_RET_IP_, ret,
3451 size, PAGE_SIZE << get_order(size),
3452 flags, node);
3453
3454 return ret;
3455 }
3456
3457 s = kmalloc_slab(size, flags);
3458
3459 if (unlikely(ZERO_OR_NULL_PTR(s)))
3460 return s;
3461
3462 ret = slab_alloc_node(s, flags, node, _RET_IP_);
3463
3464 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3465
3466 kasan_kmalloc(s, ret, size);
3467
3468 return ret;
3469 }
3470 EXPORT_SYMBOL(__kmalloc_node);
3471 #endif
3472
3473 static size_t __ksize(const void *object)
3474 {
3475 struct page *page;
3476
3477 if (unlikely(object == ZERO_SIZE_PTR))
3478 return 0;
3479
3480 page = virt_to_head_page(object);
3481
3482 if (unlikely(!PageSlab(page))) {
3483 WARN_ON(!PageCompound(page));
3484 return PAGE_SIZE << compound_order(page);
3485 }
3486
3487 return slab_ksize(page->slab_cache);
3488 }
3489
3490 size_t ksize(const void *object)
3491 {
3492 size_t size = __ksize(object);
3493 /* We assume that ksize callers could use whole allocated area,
3494 so we need unpoison this area. */
3495 kasan_krealloc(object, size);
3496 return size;
3497 }
3498 EXPORT_SYMBOL(ksize);
3499
3500 void kfree(const void *x)
3501 {
3502 struct page *page;
3503 void *object = (void *)x;
3504
3505 trace_kfree(_RET_IP_, x);
3506
3507 if (unlikely(ZERO_OR_NULL_PTR(x)))
3508 return;
3509
3510 page = virt_to_head_page(x);
3511 if (unlikely(!PageSlab(page))) {
3512 BUG_ON(!PageCompound(page));
3513 kfree_hook(x);
3514 __free_kmem_pages(page, compound_order(page));
3515 return;
3516 }
3517 slab_free(page->slab_cache, page, object, _RET_IP_);
3518 }
3519 EXPORT_SYMBOL(kfree);
3520
3521 #define SHRINK_PROMOTE_MAX 32
3522
3523 /*
3524 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3525 * up most to the head of the partial lists. New allocations will then
3526 * fill those up and thus they can be removed from the partial lists.
3527 *
3528 * The slabs with the least items are placed last. This results in them
3529 * being allocated from last increasing the chance that the last objects
3530 * are freed in them.
3531 */
3532 int __kmem_cache_shrink(struct kmem_cache *s, bool deactivate)
3533 {
3534 int node;
3535 int i;
3536 struct kmem_cache_node *n;
3537 struct page *page;
3538 struct page *t;
3539 struct list_head discard;
3540 struct list_head promote[SHRINK_PROMOTE_MAX];
3541 unsigned long flags;
3542 int ret = 0;
3543
3544 if (deactivate) {
3545 /*
3546 * Disable empty slabs caching. Used to avoid pinning offline
3547 * memory cgroups by kmem pages that can be freed.
3548 */
3549 s->cpu_partial = 0;
3550 s->min_partial = 0;
3551
3552 /*
3553 * s->cpu_partial is checked locklessly (see put_cpu_partial),
3554 * so we have to make sure the change is visible.
3555 */
3556 kick_all_cpus_sync();
3557 }
3558
3559 flush_all(s);
3560 for_each_kmem_cache_node(s, node, n) {
3561 INIT_LIST_HEAD(&discard);
3562 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3563 INIT_LIST_HEAD(promote + i);
3564
3565 spin_lock_irqsave(&n->list_lock, flags);
3566
3567 /*
3568 * Build lists of slabs to discard or promote.
3569 *
3570 * Note that concurrent frees may occur while we hold the
3571 * list_lock. page->inuse here is the upper limit.
3572 */
3573 list_for_each_entry_safe(page, t, &n->partial, lru) {
3574 int free = page->objects - page->inuse;
3575
3576 /* Do not reread page->inuse */
3577 barrier();
3578
3579 /* We do not keep full slabs on the list */
3580 BUG_ON(free <= 0);
3581
3582 if (free == page->objects) {
3583 list_move(&page->lru, &discard);
3584 n->nr_partial--;
3585 } else if (free <= SHRINK_PROMOTE_MAX)
3586 list_move(&page->lru, promote + free - 1);
3587 }
3588
3589 /*
3590 * Promote the slabs filled up most to the head of the
3591 * partial list.
3592 */
3593 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3594 list_splice(promote + i, &n->partial);
3595
3596 spin_unlock_irqrestore(&n->list_lock, flags);
3597
3598 /* Release empty slabs */
3599 list_for_each_entry_safe(page, t, &discard, lru)
3600 discard_slab(s, page);
3601
3602 if (slabs_node(s, node))
3603 ret = 1;
3604 }
3605
3606 return ret;
3607 }
3608
3609 static int slab_mem_going_offline_callback(void *arg)
3610 {
3611 struct kmem_cache *s;
3612
3613 mutex_lock(&slab_mutex);
3614 list_for_each_entry(s, &slab_caches, list)
3615 __kmem_cache_shrink(s, false);
3616 mutex_unlock(&slab_mutex);
3617
3618 return 0;
3619 }
3620
3621 static void slab_mem_offline_callback(void *arg)
3622 {
3623 struct kmem_cache_node *n;
3624 struct kmem_cache *s;
3625 struct memory_notify *marg = arg;
3626 int offline_node;
3627
3628 offline_node = marg->status_change_nid_normal;
3629
3630 /*
3631 * If the node still has available memory. we need kmem_cache_node
3632 * for it yet.
3633 */
3634 if (offline_node < 0)
3635 return;
3636
3637 mutex_lock(&slab_mutex);
3638 list_for_each_entry(s, &slab_caches, list) {
3639 n = get_node(s, offline_node);
3640 if (n) {
3641 /*
3642 * if n->nr_slabs > 0, slabs still exist on the node
3643 * that is going down. We were unable to free them,
3644 * and offline_pages() function shouldn't call this
3645 * callback. So, we must fail.
3646 */
3647 BUG_ON(slabs_node(s, offline_node));
3648
3649 s->node[offline_node] = NULL;
3650 kmem_cache_free(kmem_cache_node, n);
3651 }
3652 }
3653 mutex_unlock(&slab_mutex);
3654 }
3655
3656 static int slab_mem_going_online_callback(void *arg)
3657 {
3658 struct kmem_cache_node *n;
3659 struct kmem_cache *s;
3660 struct memory_notify *marg = arg;
3661 int nid = marg->status_change_nid_normal;
3662 int ret = 0;
3663
3664 /*
3665 * If the node's memory is already available, then kmem_cache_node is
3666 * already created. Nothing to do.
3667 */
3668 if (nid < 0)
3669 return 0;
3670
3671 /*
3672 * We are bringing a node online. No memory is available yet. We must
3673 * allocate a kmem_cache_node structure in order to bring the node
3674 * online.
3675 */
3676 mutex_lock(&slab_mutex);
3677 list_for_each_entry(s, &slab_caches, list) {
3678 /*
3679 * XXX: kmem_cache_alloc_node will fallback to other nodes
3680 * since memory is not yet available from the node that
3681 * is brought up.
3682 */
3683 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3684 if (!n) {
3685 ret = -ENOMEM;
3686 goto out;
3687 }
3688 init_kmem_cache_node(n);
3689 s->node[nid] = n;
3690 }
3691 out:
3692 mutex_unlock(&slab_mutex);
3693 return ret;
3694 }
3695
3696 static int slab_memory_callback(struct notifier_block *self,
3697 unsigned long action, void *arg)
3698 {
3699 int ret = 0;
3700
3701 switch (action) {
3702 case MEM_GOING_ONLINE:
3703 ret = slab_mem_going_online_callback(arg);
3704 break;
3705 case MEM_GOING_OFFLINE:
3706 ret = slab_mem_going_offline_callback(arg);
3707 break;
3708 case MEM_OFFLINE:
3709 case MEM_CANCEL_ONLINE:
3710 slab_mem_offline_callback(arg);
3711 break;
3712 case MEM_ONLINE:
3713 case MEM_CANCEL_OFFLINE:
3714 break;
3715 }
3716 if (ret)
3717 ret = notifier_from_errno(ret);
3718 else
3719 ret = NOTIFY_OK;
3720 return ret;
3721 }
3722
3723 static struct notifier_block slab_memory_callback_nb = {
3724 .notifier_call = slab_memory_callback,
3725 .priority = SLAB_CALLBACK_PRI,
3726 };
3727
3728 /********************************************************************
3729 * Basic setup of slabs
3730 *******************************************************************/
3731
3732 /*
3733 * Used for early kmem_cache structures that were allocated using
3734 * the page allocator. Allocate them properly then fix up the pointers
3735 * that may be pointing to the wrong kmem_cache structure.
3736 */
3737
3738 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3739 {
3740 int node;
3741 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3742 struct kmem_cache_node *n;
3743
3744 memcpy(s, static_cache, kmem_cache->object_size);
3745
3746 /*
3747 * This runs very early, and only the boot processor is supposed to be
3748 * up. Even if it weren't true, IRQs are not up so we couldn't fire
3749 * IPIs around.
3750 */
3751 __flush_cpu_slab(s, smp_processor_id());
3752 for_each_kmem_cache_node(s, node, n) {
3753 struct page *p;
3754
3755 list_for_each_entry(p, &n->partial, lru)
3756 p->slab_cache = s;
3757
3758 #ifdef CONFIG_SLUB_DEBUG
3759 list_for_each_entry(p, &n->full, lru)
3760 p->slab_cache = s;
3761 #endif
3762 }
3763 slab_init_memcg_params(s);
3764 list_add(&s->list, &slab_caches);
3765 return s;
3766 }
3767
3768 void __init kmem_cache_init(void)
3769 {
3770 static __initdata struct kmem_cache boot_kmem_cache,
3771 boot_kmem_cache_node;
3772
3773 if (debug_guardpage_minorder())
3774 slub_max_order = 0;
3775
3776 kmem_cache_node = &boot_kmem_cache_node;
3777 kmem_cache = &boot_kmem_cache;
3778
3779 create_boot_cache(kmem_cache_node, "kmem_cache_node",
3780 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3781
3782 register_hotmemory_notifier(&slab_memory_callback_nb);
3783
3784 /* Able to allocate the per node structures */
3785 slab_state = PARTIAL;
3786
3787 create_boot_cache(kmem_cache, "kmem_cache",
3788 offsetof(struct kmem_cache, node) +
3789 nr_node_ids * sizeof(struct kmem_cache_node *),
3790 SLAB_HWCACHE_ALIGN);
3791
3792 kmem_cache = bootstrap(&boot_kmem_cache);
3793
3794 /*
3795 * Allocate kmem_cache_node properly from the kmem_cache slab.
3796 * kmem_cache_node is separately allocated so no need to
3797 * update any list pointers.
3798 */
3799 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3800
3801 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3802 setup_kmalloc_cache_index_table();
3803 create_kmalloc_caches(0);
3804
3805 #ifdef CONFIG_SMP
3806 register_cpu_notifier(&slab_notifier);
3807 #endif
3808
3809 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
3810 cache_line_size(),
3811 slub_min_order, slub_max_order, slub_min_objects,
3812 nr_cpu_ids, nr_node_ids);
3813 }
3814
3815 void __init kmem_cache_init_late(void)
3816 {
3817 }
3818
3819 struct kmem_cache *
3820 __kmem_cache_alias(const char *name, size_t size, size_t align,
3821 unsigned long flags, void (*ctor)(void *))
3822 {
3823 struct kmem_cache *s, *c;
3824
3825 s = find_mergeable(size, align, flags, name, ctor);
3826 if (s) {
3827 s->refcount++;
3828
3829 /*
3830 * Adjust the object sizes so that we clear
3831 * the complete object on kzalloc.
3832 */
3833 s->object_size = max(s->object_size, (int)size);
3834 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3835
3836 for_each_memcg_cache(c, s) {
3837 c->object_size = s->object_size;
3838 c->inuse = max_t(int, c->inuse,
3839 ALIGN(size, sizeof(void *)));
3840 }
3841
3842 if (sysfs_slab_alias(s, name)) {
3843 s->refcount--;
3844 s = NULL;
3845 }
3846 }
3847
3848 return s;
3849 }
3850
3851 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3852 {
3853 int err;
3854
3855 err = kmem_cache_open(s, flags);
3856 if (err)
3857 return err;
3858
3859 /* Mutex is not taken during early boot */
3860 if (slab_state <= UP)
3861 return 0;
3862
3863 memcg_propagate_slab_attrs(s);
3864 err = sysfs_slab_add(s);
3865 if (err)
3866 kmem_cache_close(s);
3867
3868 return err;
3869 }
3870
3871 #ifdef CONFIG_SMP
3872 /*
3873 * Use the cpu notifier to insure that the cpu slabs are flushed when
3874 * necessary.
3875 */
3876 static int slab_cpuup_callback(struct notifier_block *nfb,
3877 unsigned long action, void *hcpu)
3878 {
3879 long cpu = (long)hcpu;
3880 struct kmem_cache *s;
3881 unsigned long flags;
3882
3883 switch (action) {
3884 case CPU_UP_CANCELED:
3885 case CPU_UP_CANCELED_FROZEN:
3886 case CPU_DEAD:
3887 case CPU_DEAD_FROZEN:
3888 mutex_lock(&slab_mutex);
3889 list_for_each_entry(s, &slab_caches, list) {
3890 local_irq_save(flags);
3891 __flush_cpu_slab(s, cpu);
3892 local_irq_restore(flags);
3893 }
3894 mutex_unlock(&slab_mutex);
3895 break;
3896 default:
3897 break;
3898 }
3899 return NOTIFY_OK;
3900 }
3901
3902 static struct notifier_block slab_notifier = {
3903 .notifier_call = slab_cpuup_callback
3904 };
3905
3906 #endif
3907
3908 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3909 {
3910 struct kmem_cache *s;
3911 void *ret;
3912
3913 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3914 return kmalloc_large(size, gfpflags);
3915
3916 s = kmalloc_slab(size, gfpflags);
3917
3918 if (unlikely(ZERO_OR_NULL_PTR(s)))
3919 return s;
3920
3921 ret = slab_alloc(s, gfpflags, caller);
3922
3923 /* Honor the call site pointer we received. */
3924 trace_kmalloc(caller, ret, size, s->size, gfpflags);
3925
3926 return ret;
3927 }
3928
3929 #ifdef CONFIG_NUMA
3930 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3931 int node, unsigned long caller)
3932 {
3933 struct kmem_cache *s;
3934 void *ret;
3935
3936 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3937 ret = kmalloc_large_node(size, gfpflags, node);
3938
3939 trace_kmalloc_node(caller, ret,
3940 size, PAGE_SIZE << get_order(size),
3941 gfpflags, node);
3942
3943 return ret;
3944 }
3945
3946 s = kmalloc_slab(size, gfpflags);
3947
3948 if (unlikely(ZERO_OR_NULL_PTR(s)))
3949 return s;
3950
3951 ret = slab_alloc_node(s, gfpflags, node, caller);
3952
3953 /* Honor the call site pointer we received. */
3954 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3955
3956 return ret;
3957 }
3958 #endif
3959
3960 #ifdef CONFIG_SYSFS
3961 static int count_inuse(struct page *page)
3962 {
3963 return page->inuse;
3964 }
3965
3966 static int count_total(struct page *page)
3967 {
3968 return page->objects;
3969 }
3970 #endif
3971
3972 #ifdef CONFIG_SLUB_DEBUG
3973 static int validate_slab(struct kmem_cache *s, struct page *page,
3974 unsigned long *map)
3975 {
3976 void *p;
3977 void *addr = page_address(page);
3978
3979 if (!check_slab(s, page) ||
3980 !on_freelist(s, page, NULL))
3981 return 0;
3982
3983 /* Now we know that a valid freelist exists */
3984 bitmap_zero(map, page->objects);
3985
3986 get_map(s, page, map);
3987 for_each_object(p, s, addr, page->objects) {
3988 if (test_bit(slab_index(p, s, addr), map))
3989 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3990 return 0;
3991 }
3992
3993 for_each_object(p, s, addr, page->objects)
3994 if (!test_bit(slab_index(p, s, addr), map))
3995 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3996 return 0;
3997 return 1;
3998 }
3999
4000 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4001 unsigned long *map)
4002 {
4003 slab_lock(page);
4004 validate_slab(s, page, map);
4005 slab_unlock(page);
4006 }
4007
4008 static int validate_slab_node(struct kmem_cache *s,
4009 struct kmem_cache_node *n, unsigned long *map)
4010 {
4011 unsigned long count = 0;
4012 struct page *page;
4013 unsigned long flags;
4014
4015 spin_lock_irqsave(&n->list_lock, flags);
4016
4017 list_for_each_entry(page, &n->partial, lru) {
4018 validate_slab_slab(s, page, map);
4019 count++;
4020 }
4021 if (count != n->nr_partial)
4022 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4023 s->name, count, n->nr_partial);
4024
4025 if (!(s->flags & SLAB_STORE_USER))
4026 goto out;
4027
4028 list_for_each_entry(page, &n->full, lru) {
4029 validate_slab_slab(s, page, map);
4030 count++;
4031 }
4032 if (count != atomic_long_read(&n->nr_slabs))
4033 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4034 s->name, count, atomic_long_read(&n->nr_slabs));
4035
4036 out:
4037 spin_unlock_irqrestore(&n->list_lock, flags);
4038 return count;
4039 }
4040
4041 static long validate_slab_cache(struct kmem_cache *s)
4042 {
4043 int node;
4044 unsigned long count = 0;
4045 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4046 sizeof(unsigned long), GFP_KERNEL);
4047 struct kmem_cache_node *n;
4048
4049 if (!map)
4050 return -ENOMEM;
4051
4052 flush_all(s);
4053 for_each_kmem_cache_node(s, node, n)
4054 count += validate_slab_node(s, n, map);
4055 kfree(map);
4056 return count;
4057 }
4058 /*
4059 * Generate lists of code addresses where slabcache objects are allocated
4060 * and freed.
4061 */
4062
4063 struct location {
4064 unsigned long count;
4065 unsigned long addr;
4066 long long sum_time;
4067 long min_time;
4068 long max_time;
4069 long min_pid;
4070 long max_pid;
4071 DECLARE_BITMAP(cpus, NR_CPUS);
4072 nodemask_t nodes;
4073 };
4074
4075 struct loc_track {
4076 unsigned long max;
4077 unsigned long count;
4078 struct location *loc;
4079 };
4080
4081 static void free_loc_track(struct loc_track *t)
4082 {
4083 if (t->max)
4084 free_pages((unsigned long)t->loc,
4085 get_order(sizeof(struct location) * t->max));
4086 }
4087
4088 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4089 {
4090 struct location *l;
4091 int order;
4092
4093 order = get_order(sizeof(struct location) * max);
4094
4095 l = (void *)__get_free_pages(flags, order);
4096 if (!l)
4097 return 0;
4098
4099 if (t->count) {
4100 memcpy(l, t->loc, sizeof(struct location) * t->count);
4101 free_loc_track(t);
4102 }
4103 t->max = max;
4104 t->loc = l;
4105 return 1;
4106 }
4107
4108 static int add_location(struct loc_track *t, struct kmem_cache *s,
4109 const struct track *track)
4110 {
4111 long start, end, pos;
4112 struct location *l;
4113 unsigned long caddr;
4114 unsigned long age = jiffies - track->when;
4115
4116 start = -1;
4117 end = t->count;
4118
4119 for ( ; ; ) {
4120 pos = start + (end - start + 1) / 2;
4121
4122 /*
4123 * There is nothing at "end". If we end up there
4124 * we need to add something to before end.
4125 */
4126 if (pos == end)
4127 break;
4128
4129 caddr = t->loc[pos].addr;
4130 if (track->addr == caddr) {
4131
4132 l = &t->loc[pos];
4133 l->count++;
4134 if (track->when) {
4135 l->sum_time += age;
4136 if (age < l->min_time)
4137 l->min_time = age;
4138 if (age > l->max_time)
4139 l->max_time = age;
4140
4141 if (track->pid < l->min_pid)
4142 l->min_pid = track->pid;
4143 if (track->pid > l->max_pid)
4144 l->max_pid = track->pid;
4145
4146 cpumask_set_cpu(track->cpu,
4147 to_cpumask(l->cpus));
4148 }
4149 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4150 return 1;
4151 }
4152
4153 if (track->addr < caddr)
4154 end = pos;
4155 else
4156 start = pos;
4157 }
4158
4159 /*
4160 * Not found. Insert new tracking element.
4161 */
4162 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4163 return 0;
4164
4165 l = t->loc + pos;
4166 if (pos < t->count)
4167 memmove(l + 1, l,
4168 (t->count - pos) * sizeof(struct location));
4169 t->count++;
4170 l->count = 1;
4171 l->addr = track->addr;
4172 l->sum_time = age;
4173 l->min_time = age;
4174 l->max_time = age;
4175 l->min_pid = track->pid;
4176 l->max_pid = track->pid;
4177 cpumask_clear(to_cpumask(l->cpus));
4178 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4179 nodes_clear(l->nodes);
4180 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4181 return 1;
4182 }
4183
4184 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4185 struct page *page, enum track_item alloc,
4186 unsigned long *map)
4187 {
4188 void *addr = page_address(page);
4189 void *p;
4190
4191 bitmap_zero(map, page->objects);
4192 get_map(s, page, map);
4193
4194 for_each_object(p, s, addr, page->objects)
4195 if (!test_bit(slab_index(p, s, addr), map))
4196 add_location(t, s, get_track(s, p, alloc));
4197 }
4198
4199 static int list_locations(struct kmem_cache *s, char *buf,
4200 enum track_item alloc)
4201 {
4202 int len = 0;
4203 unsigned long i;
4204 struct loc_track t = { 0, 0, NULL };
4205 int node;
4206 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4207 sizeof(unsigned long), GFP_KERNEL);
4208 struct kmem_cache_node *n;
4209
4210 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4211 GFP_TEMPORARY)) {
4212 kfree(map);
4213 return sprintf(buf, "Out of memory\n");
4214 }
4215 /* Push back cpu slabs */
4216 flush_all(s);
4217
4218 for_each_kmem_cache_node(s, node, n) {
4219 unsigned long flags;
4220 struct page *page;
4221
4222 if (!atomic_long_read(&n->nr_slabs))
4223 continue;
4224
4225 spin_lock_irqsave(&n->list_lock, flags);
4226 list_for_each_entry(page, &n->partial, lru)
4227 process_slab(&t, s, page, alloc, map);
4228 list_for_each_entry(page, &n->full, lru)
4229 process_slab(&t, s, page, alloc, map);
4230 spin_unlock_irqrestore(&n->list_lock, flags);
4231 }
4232
4233 for (i = 0; i < t.count; i++) {
4234 struct location *l = &t.loc[i];
4235
4236 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4237 break;
4238 len += sprintf(buf + len, "%7ld ", l->count);
4239
4240 if (l->addr)
4241 len += sprintf(buf + len, "%pS", (void *)l->addr);
4242 else
4243 len += sprintf(buf + len, "<not-available>");
4244
4245 if (l->sum_time != l->min_time) {
4246 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4247 l->min_time,
4248 (long)div_u64(l->sum_time, l->count),
4249 l->max_time);
4250 } else
4251 len += sprintf(buf + len, " age=%ld",
4252 l->min_time);
4253
4254 if (l->min_pid != l->max_pid)
4255 len += sprintf(buf + len, " pid=%ld-%ld",
4256 l->min_pid, l->max_pid);
4257 else
4258 len += sprintf(buf + len, " pid=%ld",
4259 l->min_pid);
4260
4261 if (num_online_cpus() > 1 &&
4262 !cpumask_empty(to_cpumask(l->cpus)) &&
4263 len < PAGE_SIZE - 60)
4264 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4265 " cpus=%*pbl",
4266 cpumask_pr_args(to_cpumask(l->cpus)));
4267
4268 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4269 len < PAGE_SIZE - 60)
4270 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4271 " nodes=%*pbl",
4272 nodemask_pr_args(&l->nodes));
4273
4274 len += sprintf(buf + len, "\n");
4275 }
4276
4277 free_loc_track(&t);
4278 kfree(map);
4279 if (!t.count)
4280 len += sprintf(buf, "No data\n");
4281 return len;
4282 }
4283 #endif
4284
4285 #ifdef SLUB_RESILIENCY_TEST
4286 static void __init resiliency_test(void)
4287 {
4288 u8 *p;
4289
4290 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4291
4292 pr_err("SLUB resiliency testing\n");
4293 pr_err("-----------------------\n");
4294 pr_err("A. Corruption after allocation\n");
4295
4296 p = kzalloc(16, GFP_KERNEL);
4297 p[16] = 0x12;
4298 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4299 p + 16);
4300
4301 validate_slab_cache(kmalloc_caches[4]);
4302
4303 /* Hmmm... The next two are dangerous */
4304 p = kzalloc(32, GFP_KERNEL);
4305 p[32 + sizeof(void *)] = 0x34;
4306 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4307 p);
4308 pr_err("If allocated object is overwritten then not detectable\n\n");
4309
4310 validate_slab_cache(kmalloc_caches[5]);
4311 p = kzalloc(64, GFP_KERNEL);
4312 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4313 *p = 0x56;
4314 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4315 p);
4316 pr_err("If allocated object is overwritten then not detectable\n\n");
4317 validate_slab_cache(kmalloc_caches[6]);
4318
4319 pr_err("\nB. Corruption after free\n");
4320 p = kzalloc(128, GFP_KERNEL);
4321 kfree(p);
4322 *p = 0x78;
4323 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4324 validate_slab_cache(kmalloc_caches[7]);
4325
4326 p = kzalloc(256, GFP_KERNEL);
4327 kfree(p);
4328 p[50] = 0x9a;
4329 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4330 validate_slab_cache(kmalloc_caches[8]);
4331
4332 p = kzalloc(512, GFP_KERNEL);
4333 kfree(p);
4334 p[512] = 0xab;
4335 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4336 validate_slab_cache(kmalloc_caches[9]);
4337 }
4338 #else
4339 #ifdef CONFIG_SYSFS
4340 static void resiliency_test(void) {};
4341 #endif
4342 #endif
4343
4344 #ifdef CONFIG_SYSFS
4345 enum slab_stat_type {
4346 SL_ALL, /* All slabs */
4347 SL_PARTIAL, /* Only partially allocated slabs */
4348 SL_CPU, /* Only slabs used for cpu caches */
4349 SL_OBJECTS, /* Determine allocated objects not slabs */
4350 SL_TOTAL /* Determine object capacity not slabs */
4351 };
4352
4353 #define SO_ALL (1 << SL_ALL)
4354 #define SO_PARTIAL (1 << SL_PARTIAL)
4355 #define SO_CPU (1 << SL_CPU)
4356 #define SO_OBJECTS (1 << SL_OBJECTS)
4357 #define SO_TOTAL (1 << SL_TOTAL)
4358
4359 static ssize_t show_slab_objects(struct kmem_cache *s,
4360 char *buf, unsigned long flags)
4361 {
4362 unsigned long total = 0;
4363 int node;
4364 int x;
4365 unsigned long *nodes;
4366
4367 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4368 if (!nodes)
4369 return -ENOMEM;
4370
4371 if (flags & SO_CPU) {
4372 int cpu;
4373
4374 for_each_possible_cpu(cpu) {
4375 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4376 cpu);
4377 int node;
4378 struct page *page;
4379
4380 page = READ_ONCE(c->page);
4381 if (!page)
4382 continue;
4383
4384 node = page_to_nid(page);
4385 if (flags & SO_TOTAL)
4386 x = page->objects;
4387 else if (flags & SO_OBJECTS)
4388 x = page->inuse;
4389 else
4390 x = 1;
4391
4392 total += x;
4393 nodes[node] += x;
4394
4395 page = READ_ONCE(c->partial);
4396 if (page) {
4397 node = page_to_nid(page);
4398 if (flags & SO_TOTAL)
4399 WARN_ON_ONCE(1);
4400 else if (flags & SO_OBJECTS)
4401 WARN_ON_ONCE(1);
4402 else
4403 x = page->pages;
4404 total += x;
4405 nodes[node] += x;
4406 }
4407 }
4408 }
4409
4410 get_online_mems();
4411 #ifdef CONFIG_SLUB_DEBUG
4412 if (flags & SO_ALL) {
4413 struct kmem_cache_node *n;
4414
4415 for_each_kmem_cache_node(s, node, n) {
4416
4417 if (flags & SO_TOTAL)
4418 x = atomic_long_read(&n->total_objects);
4419 else if (flags & SO_OBJECTS)
4420 x = atomic_long_read(&n->total_objects) -
4421 count_partial(n, count_free);
4422 else
4423 x = atomic_long_read(&n->nr_slabs);
4424 total += x;
4425 nodes[node] += x;
4426 }
4427
4428 } else
4429 #endif
4430 if (flags & SO_PARTIAL) {
4431 struct kmem_cache_node *n;
4432
4433 for_each_kmem_cache_node(s, node, n) {
4434 if (flags & SO_TOTAL)
4435 x = count_partial(n, count_total);
4436 else if (flags & SO_OBJECTS)
4437 x = count_partial(n, count_inuse);
4438 else
4439 x = n->nr_partial;
4440 total += x;
4441 nodes[node] += x;
4442 }
4443 }
4444 x = sprintf(buf, "%lu", total);
4445 #ifdef CONFIG_NUMA
4446 for (node = 0; node < nr_node_ids; node++)
4447 if (nodes[node])
4448 x += sprintf(buf + x, " N%d=%lu",
4449 node, nodes[node]);
4450 #endif
4451 put_online_mems();
4452 kfree(nodes);
4453 return x + sprintf(buf + x, "\n");
4454 }
4455
4456 #ifdef CONFIG_SLUB_DEBUG
4457 static int any_slab_objects(struct kmem_cache *s)
4458 {
4459 int node;
4460 struct kmem_cache_node *n;
4461
4462 for_each_kmem_cache_node(s, node, n)
4463 if (atomic_long_read(&n->total_objects))
4464 return 1;
4465
4466 return 0;
4467 }
4468 #endif
4469
4470 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4471 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4472
4473 struct slab_attribute {
4474 struct attribute attr;
4475 ssize_t (*show)(struct kmem_cache *s, char *buf);
4476 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4477 };
4478
4479 #define SLAB_ATTR_RO(_name) \
4480 static struct slab_attribute _name##_attr = \
4481 __ATTR(_name, 0400, _name##_show, NULL)
4482
4483 #define SLAB_ATTR(_name) \
4484 static struct slab_attribute _name##_attr = \
4485 __ATTR(_name, 0600, _name##_show, _name##_store)
4486
4487 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4488 {
4489 return sprintf(buf, "%d\n", s->size);
4490 }
4491 SLAB_ATTR_RO(slab_size);
4492
4493 static ssize_t align_show(struct kmem_cache *s, char *buf)
4494 {
4495 return sprintf(buf, "%d\n", s->align);
4496 }
4497 SLAB_ATTR_RO(align);
4498
4499 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4500 {
4501 return sprintf(buf, "%d\n", s->object_size);
4502 }
4503 SLAB_ATTR_RO(object_size);
4504
4505 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4506 {
4507 return sprintf(buf, "%d\n", oo_objects(s->oo));
4508 }
4509 SLAB_ATTR_RO(objs_per_slab);
4510
4511 static ssize_t order_store(struct kmem_cache *s,
4512 const char *buf, size_t length)
4513 {
4514 unsigned long order;
4515 int err;
4516
4517 err = kstrtoul(buf, 10, &order);
4518 if (err)
4519 return err;
4520
4521 if (order > slub_max_order || order < slub_min_order)
4522 return -EINVAL;
4523
4524 calculate_sizes(s, order);
4525 return length;
4526 }
4527
4528 static ssize_t order_show(struct kmem_cache *s, char *buf)
4529 {
4530 return sprintf(buf, "%d\n", oo_order(s->oo));
4531 }
4532 SLAB_ATTR(order);
4533
4534 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4535 {
4536 return sprintf(buf, "%lu\n", s->min_partial);
4537 }
4538
4539 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4540 size_t length)
4541 {
4542 unsigned long min;
4543 int err;
4544
4545 err = kstrtoul(buf, 10, &min);
4546 if (err)
4547 return err;
4548
4549 set_min_partial(s, min);
4550 return length;
4551 }
4552 SLAB_ATTR(min_partial);
4553
4554 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4555 {
4556 return sprintf(buf, "%u\n", s->cpu_partial);
4557 }
4558
4559 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4560 size_t length)
4561 {
4562 unsigned long objects;
4563 int err;
4564
4565 err = kstrtoul(buf, 10, &objects);
4566 if (err)
4567 return err;
4568 if (objects && !kmem_cache_has_cpu_partial(s))
4569 return -EINVAL;
4570
4571 s->cpu_partial = objects;
4572 flush_all(s);
4573 return length;
4574 }
4575 SLAB_ATTR(cpu_partial);
4576
4577 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4578 {
4579 if (!s->ctor)
4580 return 0;
4581 return sprintf(buf, "%pS\n", s->ctor);
4582 }
4583 SLAB_ATTR_RO(ctor);
4584
4585 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4586 {
4587 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
4588 }
4589 SLAB_ATTR_RO(aliases);
4590
4591 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4592 {
4593 return show_slab_objects(s, buf, SO_PARTIAL);
4594 }
4595 SLAB_ATTR_RO(partial);
4596
4597 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4598 {
4599 return show_slab_objects(s, buf, SO_CPU);
4600 }
4601 SLAB_ATTR_RO(cpu_slabs);
4602
4603 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4604 {
4605 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4606 }
4607 SLAB_ATTR_RO(objects);
4608
4609 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4610 {
4611 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4612 }
4613 SLAB_ATTR_RO(objects_partial);
4614
4615 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4616 {
4617 int objects = 0;
4618 int pages = 0;
4619 int cpu;
4620 int len;
4621
4622 for_each_online_cpu(cpu) {
4623 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4624
4625 if (page) {
4626 pages += page->pages;
4627 objects += page->pobjects;
4628 }
4629 }
4630
4631 len = sprintf(buf, "%d(%d)", objects, pages);
4632
4633 #ifdef CONFIG_SMP
4634 for_each_online_cpu(cpu) {
4635 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4636
4637 if (page && len < PAGE_SIZE - 20)
4638 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4639 page->pobjects, page->pages);
4640 }
4641 #endif
4642 return len + sprintf(buf + len, "\n");
4643 }
4644 SLAB_ATTR_RO(slabs_cpu_partial);
4645
4646 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4647 {
4648 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4649 }
4650
4651 static ssize_t reclaim_account_store(struct kmem_cache *s,
4652 const char *buf, size_t length)
4653 {
4654 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4655 if (buf[0] == '1')
4656 s->flags |= SLAB_RECLAIM_ACCOUNT;
4657 return length;
4658 }
4659 SLAB_ATTR(reclaim_account);
4660
4661 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4662 {
4663 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4664 }
4665 SLAB_ATTR_RO(hwcache_align);
4666
4667 #ifdef CONFIG_ZONE_DMA
4668 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4669 {
4670 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4671 }
4672 SLAB_ATTR_RO(cache_dma);
4673 #endif
4674
4675 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4676 {
4677 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4678 }
4679 SLAB_ATTR_RO(destroy_by_rcu);
4680
4681 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4682 {
4683 return sprintf(buf, "%d\n", s->reserved);
4684 }
4685 SLAB_ATTR_RO(reserved);
4686
4687 #ifdef CONFIG_SLUB_DEBUG
4688 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4689 {
4690 return show_slab_objects(s, buf, SO_ALL);
4691 }
4692 SLAB_ATTR_RO(slabs);
4693
4694 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4695 {
4696 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4697 }
4698 SLAB_ATTR_RO(total_objects);
4699
4700 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4701 {
4702 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4703 }
4704
4705 static ssize_t sanity_checks_store(struct kmem_cache *s,
4706 const char *buf, size_t length)
4707 {
4708 s->flags &= ~SLAB_DEBUG_FREE;
4709 if (buf[0] == '1') {
4710 s->flags &= ~__CMPXCHG_DOUBLE;
4711 s->flags |= SLAB_DEBUG_FREE;
4712 }
4713 return length;
4714 }
4715 SLAB_ATTR(sanity_checks);
4716
4717 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4718 {
4719 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4720 }
4721
4722 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4723 size_t length)
4724 {
4725 /*
4726 * Tracing a merged cache is going to give confusing results
4727 * as well as cause other issues like converting a mergeable
4728 * cache into an umergeable one.
4729 */
4730 if (s->refcount > 1)
4731 return -EINVAL;
4732
4733 s->flags &= ~SLAB_TRACE;
4734 if (buf[0] == '1') {
4735 s->flags &= ~__CMPXCHG_DOUBLE;
4736 s->flags |= SLAB_TRACE;
4737 }
4738 return length;
4739 }
4740 SLAB_ATTR(trace);
4741
4742 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4743 {
4744 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4745 }
4746
4747 static ssize_t red_zone_store(struct kmem_cache *s,
4748 const char *buf, size_t length)
4749 {
4750 if (any_slab_objects(s))
4751 return -EBUSY;
4752
4753 s->flags &= ~SLAB_RED_ZONE;
4754 if (buf[0] == '1') {
4755 s->flags &= ~__CMPXCHG_DOUBLE;
4756 s->flags |= SLAB_RED_ZONE;
4757 }
4758 calculate_sizes(s, -1);
4759 return length;
4760 }
4761 SLAB_ATTR(red_zone);
4762
4763 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4764 {
4765 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4766 }
4767
4768 static ssize_t poison_store(struct kmem_cache *s,
4769 const char *buf, size_t length)
4770 {
4771 if (any_slab_objects(s))
4772 return -EBUSY;
4773
4774 s->flags &= ~SLAB_POISON;
4775 if (buf[0] == '1') {
4776 s->flags &= ~__CMPXCHG_DOUBLE;
4777 s->flags |= SLAB_POISON;
4778 }
4779 calculate_sizes(s, -1);
4780 return length;
4781 }
4782 SLAB_ATTR(poison);
4783
4784 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4785 {
4786 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4787 }
4788
4789 static ssize_t store_user_store(struct kmem_cache *s,
4790 const char *buf, size_t length)
4791 {
4792 if (any_slab_objects(s))
4793 return -EBUSY;
4794
4795 s->flags &= ~SLAB_STORE_USER;
4796 if (buf[0] == '1') {
4797 s->flags &= ~__CMPXCHG_DOUBLE;
4798 s->flags |= SLAB_STORE_USER;
4799 }
4800 calculate_sizes(s, -1);
4801 return length;
4802 }
4803 SLAB_ATTR(store_user);
4804
4805 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4806 {
4807 return 0;
4808 }
4809
4810 static ssize_t validate_store(struct kmem_cache *s,
4811 const char *buf, size_t length)
4812 {
4813 int ret = -EINVAL;
4814
4815 if (buf[0] == '1') {
4816 ret = validate_slab_cache(s);
4817 if (ret >= 0)
4818 ret = length;
4819 }
4820 return ret;
4821 }
4822 SLAB_ATTR(validate);
4823
4824 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4825 {
4826 if (!(s->flags & SLAB_STORE_USER))
4827 return -ENOSYS;
4828 return list_locations(s, buf, TRACK_ALLOC);
4829 }
4830 SLAB_ATTR_RO(alloc_calls);
4831
4832 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4833 {
4834 if (!(s->flags & SLAB_STORE_USER))
4835 return -ENOSYS;
4836 return list_locations(s, buf, TRACK_FREE);
4837 }
4838 SLAB_ATTR_RO(free_calls);
4839 #endif /* CONFIG_SLUB_DEBUG */
4840
4841 #ifdef CONFIG_FAILSLAB
4842 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4843 {
4844 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4845 }
4846
4847 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4848 size_t length)
4849 {
4850 if (s->refcount > 1)
4851 return -EINVAL;
4852
4853 s->flags &= ~SLAB_FAILSLAB;
4854 if (buf[0] == '1')
4855 s->flags |= SLAB_FAILSLAB;
4856 return length;
4857 }
4858 SLAB_ATTR(failslab);
4859 #endif
4860
4861 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4862 {
4863 return 0;
4864 }
4865
4866 static ssize_t shrink_store(struct kmem_cache *s,
4867 const char *buf, size_t length)
4868 {
4869 if (buf[0] == '1')
4870 kmem_cache_shrink(s);
4871 else
4872 return -EINVAL;
4873 return length;
4874 }
4875 SLAB_ATTR(shrink);
4876
4877 #ifdef CONFIG_NUMA
4878 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4879 {
4880 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4881 }
4882
4883 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4884 const char *buf, size_t length)
4885 {
4886 unsigned long ratio;
4887 int err;
4888
4889 err = kstrtoul(buf, 10, &ratio);
4890 if (err)
4891 return err;
4892
4893 if (ratio <= 100)
4894 s->remote_node_defrag_ratio = ratio * 10;
4895
4896 return length;
4897 }
4898 SLAB_ATTR(remote_node_defrag_ratio);
4899 #endif
4900
4901 #ifdef CONFIG_SLUB_STATS
4902 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4903 {
4904 unsigned long sum = 0;
4905 int cpu;
4906 int len;
4907 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4908
4909 if (!data)
4910 return -ENOMEM;
4911
4912 for_each_online_cpu(cpu) {
4913 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4914
4915 data[cpu] = x;
4916 sum += x;
4917 }
4918
4919 len = sprintf(buf, "%lu", sum);
4920
4921 #ifdef CONFIG_SMP
4922 for_each_online_cpu(cpu) {
4923 if (data[cpu] && len < PAGE_SIZE - 20)
4924 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4925 }
4926 #endif
4927 kfree(data);
4928 return len + sprintf(buf + len, "\n");
4929 }
4930
4931 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4932 {
4933 int cpu;
4934
4935 for_each_online_cpu(cpu)
4936 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4937 }
4938
4939 #define STAT_ATTR(si, text) \
4940 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4941 { \
4942 return show_stat(s, buf, si); \
4943 } \
4944 static ssize_t text##_store(struct kmem_cache *s, \
4945 const char *buf, size_t length) \
4946 { \
4947 if (buf[0] != '0') \
4948 return -EINVAL; \
4949 clear_stat(s, si); \
4950 return length; \
4951 } \
4952 SLAB_ATTR(text); \
4953
4954 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4955 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4956 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4957 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4958 STAT_ATTR(FREE_FROZEN, free_frozen);
4959 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4960 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4961 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4962 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4963 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4964 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4965 STAT_ATTR(FREE_SLAB, free_slab);
4966 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4967 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4968 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4969 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4970 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4971 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4972 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4973 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4974 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4975 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4976 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4977 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
4978 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
4979 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
4980 #endif
4981
4982 static struct attribute *slab_attrs[] = {
4983 &slab_size_attr.attr,
4984 &object_size_attr.attr,
4985 &objs_per_slab_attr.attr,
4986 &order_attr.attr,
4987 &min_partial_attr.attr,
4988 &cpu_partial_attr.attr,
4989 &objects_attr.attr,
4990 &objects_partial_attr.attr,
4991 &partial_attr.attr,
4992 &cpu_slabs_attr.attr,
4993 &ctor_attr.attr,
4994 &aliases_attr.attr,
4995 &align_attr.attr,
4996 &hwcache_align_attr.attr,
4997 &reclaim_account_attr.attr,
4998 &destroy_by_rcu_attr.attr,
4999 &shrink_attr.attr,
5000 &reserved_attr.attr,
5001 &slabs_cpu_partial_attr.attr,
5002 #ifdef CONFIG_SLUB_DEBUG
5003 &total_objects_attr.attr,
5004 &slabs_attr.attr,
5005 &sanity_checks_attr.attr,
5006 &trace_attr.attr,
5007 &red_zone_attr.attr,
5008 &poison_attr.attr,
5009 &store_user_attr.attr,
5010 &validate_attr.attr,
5011 &alloc_calls_attr.attr,
5012 &free_calls_attr.attr,
5013 #endif
5014 #ifdef CONFIG_ZONE_DMA
5015 &cache_dma_attr.attr,
5016 #endif
5017 #ifdef CONFIG_NUMA
5018 &remote_node_defrag_ratio_attr.attr,
5019 #endif
5020 #ifdef CONFIG_SLUB_STATS
5021 &alloc_fastpath_attr.attr,
5022 &alloc_slowpath_attr.attr,
5023 &free_fastpath_attr.attr,
5024 &free_slowpath_attr.attr,
5025 &free_frozen_attr.attr,
5026 &free_add_partial_attr.attr,
5027 &free_remove_partial_attr.attr,
5028 &alloc_from_partial_attr.attr,
5029 &alloc_slab_attr.attr,
5030 &alloc_refill_attr.attr,
5031 &alloc_node_mismatch_attr.attr,
5032 &free_slab_attr.attr,
5033 &cpuslab_flush_attr.attr,
5034 &deactivate_full_attr.attr,
5035 &deactivate_empty_attr.attr,
5036 &deactivate_to_head_attr.attr,
5037 &deactivate_to_tail_attr.attr,
5038 &deactivate_remote_frees_attr.attr,
5039 &deactivate_bypass_attr.attr,
5040 &order_fallback_attr.attr,
5041 &cmpxchg_double_fail_attr.attr,
5042 &cmpxchg_double_cpu_fail_attr.attr,
5043 &cpu_partial_alloc_attr.attr,
5044 &cpu_partial_free_attr.attr,
5045 &cpu_partial_node_attr.attr,
5046 &cpu_partial_drain_attr.attr,
5047 #endif
5048 #ifdef CONFIG_FAILSLAB
5049 &failslab_attr.attr,
5050 #endif
5051
5052 NULL
5053 };
5054
5055 static struct attribute_group slab_attr_group = {
5056 .attrs = slab_attrs,
5057 };
5058
5059 static ssize_t slab_attr_show(struct kobject *kobj,
5060 struct attribute *attr,
5061 char *buf)
5062 {
5063 struct slab_attribute *attribute;
5064 struct kmem_cache *s;
5065 int err;
5066
5067 attribute = to_slab_attr(attr);
5068 s = to_slab(kobj);
5069
5070 if (!attribute->show)
5071 return -EIO;
5072
5073 err = attribute->show(s, buf);
5074
5075 return err;
5076 }
5077
5078 static ssize_t slab_attr_store(struct kobject *kobj,
5079 struct attribute *attr,
5080 const char *buf, size_t len)
5081 {
5082 struct slab_attribute *attribute;
5083 struct kmem_cache *s;
5084 int err;
5085
5086 attribute = to_slab_attr(attr);
5087 s = to_slab(kobj);
5088
5089 if (!attribute->store)
5090 return -EIO;
5091
5092 err = attribute->store(s, buf, len);
5093 #ifdef CONFIG_MEMCG_KMEM
5094 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5095 struct kmem_cache *c;
5096
5097 mutex_lock(&slab_mutex);
5098 if (s->max_attr_size < len)
5099 s->max_attr_size = len;
5100
5101 /*
5102 * This is a best effort propagation, so this function's return
5103 * value will be determined by the parent cache only. This is
5104 * basically because not all attributes will have a well
5105 * defined semantics for rollbacks - most of the actions will
5106 * have permanent effects.
5107 *
5108 * Returning the error value of any of the children that fail
5109 * is not 100 % defined, in the sense that users seeing the
5110 * error code won't be able to know anything about the state of
5111 * the cache.
5112 *
5113 * Only returning the error code for the parent cache at least
5114 * has well defined semantics. The cache being written to
5115 * directly either failed or succeeded, in which case we loop
5116 * through the descendants with best-effort propagation.
5117 */
5118 for_each_memcg_cache(c, s)
5119 attribute->store(c, buf, len);
5120 mutex_unlock(&slab_mutex);
5121 }
5122 #endif
5123 return err;
5124 }
5125
5126 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5127 {
5128 #ifdef CONFIG_MEMCG_KMEM
5129 int i;
5130 char *buffer = NULL;
5131 struct kmem_cache *root_cache;
5132
5133 if (is_root_cache(s))
5134 return;
5135
5136 root_cache = s->memcg_params.root_cache;
5137
5138 /*
5139 * This mean this cache had no attribute written. Therefore, no point
5140 * in copying default values around
5141 */
5142 if (!root_cache->max_attr_size)
5143 return;
5144
5145 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5146 char mbuf[64];
5147 char *buf;
5148 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5149
5150 if (!attr || !attr->store || !attr->show)
5151 continue;
5152
5153 /*
5154 * It is really bad that we have to allocate here, so we will
5155 * do it only as a fallback. If we actually allocate, though,
5156 * we can just use the allocated buffer until the end.
5157 *
5158 * Most of the slub attributes will tend to be very small in
5159 * size, but sysfs allows buffers up to a page, so they can
5160 * theoretically happen.
5161 */
5162 if (buffer)
5163 buf = buffer;
5164 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5165 buf = mbuf;
5166 else {
5167 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5168 if (WARN_ON(!buffer))
5169 continue;
5170 buf = buffer;
5171 }
5172
5173 attr->show(root_cache, buf);
5174 attr->store(s, buf, strlen(buf));
5175 }
5176
5177 if (buffer)
5178 free_page((unsigned long)buffer);
5179 #endif
5180 }
5181
5182 static void kmem_cache_release(struct kobject *k)
5183 {
5184 slab_kmem_cache_release(to_slab(k));
5185 }
5186
5187 static const struct sysfs_ops slab_sysfs_ops = {
5188 .show = slab_attr_show,
5189 .store = slab_attr_store,
5190 };
5191
5192 static struct kobj_type slab_ktype = {
5193 .sysfs_ops = &slab_sysfs_ops,
5194 .release = kmem_cache_release,
5195 };
5196
5197 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5198 {
5199 struct kobj_type *ktype = get_ktype(kobj);
5200
5201 if (ktype == &slab_ktype)
5202 return 1;
5203 return 0;
5204 }
5205
5206 static const struct kset_uevent_ops slab_uevent_ops = {
5207 .filter = uevent_filter,
5208 };
5209
5210 static struct kset *slab_kset;
5211
5212 static inline struct kset *cache_kset(struct kmem_cache *s)
5213 {
5214 #ifdef CONFIG_MEMCG_KMEM
5215 if (!is_root_cache(s))
5216 return s->memcg_params.root_cache->memcg_kset;
5217 #endif
5218 return slab_kset;
5219 }
5220
5221 #define ID_STR_LENGTH 64
5222
5223 /* Create a unique string id for a slab cache:
5224 *
5225 * Format :[flags-]size
5226 */
5227 static char *create_unique_id(struct kmem_cache *s)
5228 {
5229 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5230 char *p = name;
5231
5232 BUG_ON(!name);
5233
5234 *p++ = ':';
5235 /*
5236 * First flags affecting slabcache operations. We will only
5237 * get here for aliasable slabs so we do not need to support
5238 * too many flags. The flags here must cover all flags that
5239 * are matched during merging to guarantee that the id is
5240 * unique.
5241 */
5242 if (s->flags & SLAB_CACHE_DMA)
5243 *p++ = 'd';
5244 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5245 *p++ = 'a';
5246 if (s->flags & SLAB_DEBUG_FREE)
5247 *p++ = 'F';
5248 if (!(s->flags & SLAB_NOTRACK))
5249 *p++ = 't';
5250 if (p != name + 1)
5251 *p++ = '-';
5252 p += sprintf(p, "%07d", s->size);
5253
5254 BUG_ON(p > name + ID_STR_LENGTH - 1);
5255 return name;
5256 }
5257
5258 static int sysfs_slab_add(struct kmem_cache *s)
5259 {
5260 int err;
5261 const char *name;
5262 int unmergeable = slab_unmergeable(s);
5263
5264 if (unmergeable) {
5265 /*
5266 * Slabcache can never be merged so we can use the name proper.
5267 * This is typically the case for debug situations. In that
5268 * case we can catch duplicate names easily.
5269 */
5270 sysfs_remove_link(&slab_kset->kobj, s->name);
5271 name = s->name;
5272 } else {
5273 /*
5274 * Create a unique name for the slab as a target
5275 * for the symlinks.
5276 */
5277 name = create_unique_id(s);
5278 }
5279
5280 s->kobj.kset = cache_kset(s);
5281 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5282 if (err)
5283 goto out;
5284
5285 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5286 if (err)
5287 goto out_del_kobj;
5288
5289 #ifdef CONFIG_MEMCG_KMEM
5290 if (is_root_cache(s)) {
5291 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5292 if (!s->memcg_kset) {
5293 err = -ENOMEM;
5294 goto out_del_kobj;
5295 }
5296 }
5297 #endif
5298
5299 kobject_uevent(&s->kobj, KOBJ_ADD);
5300 if (!unmergeable) {
5301 /* Setup first alias */
5302 sysfs_slab_alias(s, s->name);
5303 }
5304 out:
5305 if (!unmergeable)
5306 kfree(name);
5307 return err;
5308 out_del_kobj:
5309 kobject_del(&s->kobj);
5310 goto out;
5311 }
5312
5313 void sysfs_slab_remove(struct kmem_cache *s)
5314 {
5315 if (slab_state < FULL)
5316 /*
5317 * Sysfs has not been setup yet so no need to remove the
5318 * cache from sysfs.
5319 */
5320 return;
5321
5322 #ifdef CONFIG_MEMCG_KMEM
5323 kset_unregister(s->memcg_kset);
5324 #endif
5325 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5326 kobject_del(&s->kobj);
5327 kobject_put(&s->kobj);
5328 }
5329
5330 /*
5331 * Need to buffer aliases during bootup until sysfs becomes
5332 * available lest we lose that information.
5333 */
5334 struct saved_alias {
5335 struct kmem_cache *s;
5336 const char *name;
5337 struct saved_alias *next;
5338 };
5339
5340 static struct saved_alias *alias_list;
5341
5342 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5343 {
5344 struct saved_alias *al;
5345
5346 if (slab_state == FULL) {
5347 /*
5348 * If we have a leftover link then remove it.
5349 */
5350 sysfs_remove_link(&slab_kset->kobj, name);
5351 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5352 }
5353
5354 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5355 if (!al)
5356 return -ENOMEM;
5357
5358 al->s = s;
5359 al->name = name;
5360 al->next = alias_list;
5361 alias_list = al;
5362 return 0;
5363 }
5364
5365 static int __init slab_sysfs_init(void)
5366 {
5367 struct kmem_cache *s;
5368 int err;
5369
5370 mutex_lock(&slab_mutex);
5371
5372 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5373 if (!slab_kset) {
5374 mutex_unlock(&slab_mutex);
5375 pr_err("Cannot register slab subsystem.\n");
5376 return -ENOSYS;
5377 }
5378
5379 slab_state = FULL;
5380
5381 list_for_each_entry(s, &slab_caches, list) {
5382 err = sysfs_slab_add(s);
5383 if (err)
5384 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5385 s->name);
5386 }
5387
5388 while (alias_list) {
5389 struct saved_alias *al = alias_list;
5390
5391 alias_list = alias_list->next;
5392 err = sysfs_slab_alias(al->s, al->name);
5393 if (err)
5394 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5395 al->name);
5396 kfree(al);
5397 }
5398
5399 mutex_unlock(&slab_mutex);
5400 resiliency_test();
5401 return 0;
5402 }
5403
5404 __initcall(slab_sysfs_init);
5405 #endif /* CONFIG_SYSFS */
5406
5407 /*
5408 * The /proc/slabinfo ABI
5409 */
5410 #ifdef CONFIG_SLABINFO
5411 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5412 {
5413 unsigned long nr_slabs = 0;
5414 unsigned long nr_objs = 0;
5415 unsigned long nr_free = 0;
5416 int node;
5417 struct kmem_cache_node *n;
5418
5419 for_each_kmem_cache_node(s, node, n) {
5420 nr_slabs += node_nr_slabs(n);
5421 nr_objs += node_nr_objs(n);
5422 nr_free += count_partial(n, count_free);
5423 }
5424
5425 sinfo->active_objs = nr_objs - nr_free;
5426 sinfo->num_objs = nr_objs;
5427 sinfo->active_slabs = nr_slabs;
5428 sinfo->num_slabs = nr_slabs;
5429 sinfo->objects_per_slab = oo_objects(s->oo);
5430 sinfo->cache_order = oo_order(s->oo);
5431 }
5432
5433 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5434 {
5435 }
5436
5437 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5438 size_t count, loff_t *ppos)
5439 {
5440 return -EIO;
5441 }
5442 #endif /* CONFIG_SLABINFO */
This page took 0.147097 seconds and 5 git commands to generate.