HID: logitech-hidpp: detect HID++ 2.0 errors too
[deliverable/linux.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
10 */
11
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include "slab.h"
20 #include <linux/proc_fs.h>
21 #include <linux/notifier.h>
22 #include <linux/seq_file.h>
23 #include <linux/kmemcheck.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/memory.h>
31 #include <linux/math64.h>
32 #include <linux/fault-inject.h>
33 #include <linux/stacktrace.h>
34 #include <linux/prefetch.h>
35 #include <linux/memcontrol.h>
36
37 #include <trace/events/kmem.h>
38
39 #include "internal.h"
40
41 /*
42 * Lock order:
43 * 1. slab_mutex (Global Mutex)
44 * 2. node->list_lock
45 * 3. slab_lock(page) (Only on some arches and for debugging)
46 *
47 * slab_mutex
48 *
49 * The role of the slab_mutex is to protect the list of all the slabs
50 * and to synchronize major metadata changes to slab cache structures.
51 *
52 * The slab_lock is only used for debugging and on arches that do not
53 * have the ability to do a cmpxchg_double. It only protects the second
54 * double word in the page struct. Meaning
55 * A. page->freelist -> List of object free in a page
56 * B. page->counters -> Counters of objects
57 * C. page->frozen -> frozen state
58 *
59 * If a slab is frozen then it is exempt from list management. It is not
60 * on any list. The processor that froze the slab is the one who can
61 * perform list operations on the page. Other processors may put objects
62 * onto the freelist but the processor that froze the slab is the only
63 * one that can retrieve the objects from the page's freelist.
64 *
65 * The list_lock protects the partial and full list on each node and
66 * the partial slab counter. If taken then no new slabs may be added or
67 * removed from the lists nor make the number of partial slabs be modified.
68 * (Note that the total number of slabs is an atomic value that may be
69 * modified without taking the list lock).
70 *
71 * The list_lock is a centralized lock and thus we avoid taking it as
72 * much as possible. As long as SLUB does not have to handle partial
73 * slabs, operations can continue without any centralized lock. F.e.
74 * allocating a long series of objects that fill up slabs does not require
75 * the list lock.
76 * Interrupts are disabled during allocation and deallocation in order to
77 * make the slab allocator safe to use in the context of an irq. In addition
78 * interrupts are disabled to ensure that the processor does not change
79 * while handling per_cpu slabs, due to kernel preemption.
80 *
81 * SLUB assigns one slab for allocation to each processor.
82 * Allocations only occur from these slabs called cpu slabs.
83 *
84 * Slabs with free elements are kept on a partial list and during regular
85 * operations no list for full slabs is used. If an object in a full slab is
86 * freed then the slab will show up again on the partial lists.
87 * We track full slabs for debugging purposes though because otherwise we
88 * cannot scan all objects.
89 *
90 * Slabs are freed when they become empty. Teardown and setup is
91 * minimal so we rely on the page allocators per cpu caches for
92 * fast frees and allocs.
93 *
94 * Overloading of page flags that are otherwise used for LRU management.
95 *
96 * PageActive The slab is frozen and exempt from list processing.
97 * This means that the slab is dedicated to a purpose
98 * such as satisfying allocations for a specific
99 * processor. Objects may be freed in the slab while
100 * it is frozen but slab_free will then skip the usual
101 * list operations. It is up to the processor holding
102 * the slab to integrate the slab into the slab lists
103 * when the slab is no longer needed.
104 *
105 * One use of this flag is to mark slabs that are
106 * used for allocations. Then such a slab becomes a cpu
107 * slab. The cpu slab may be equipped with an additional
108 * freelist that allows lockless access to
109 * free objects in addition to the regular freelist
110 * that requires the slab lock.
111 *
112 * PageError Slab requires special handling due to debug
113 * options set. This moves slab handling out of
114 * the fast path and disables lockless freelists.
115 */
116
117 static inline int kmem_cache_debug(struct kmem_cache *s)
118 {
119 #ifdef CONFIG_SLUB_DEBUG
120 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
121 #else
122 return 0;
123 #endif
124 }
125
126 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
127 {
128 #ifdef CONFIG_SLUB_CPU_PARTIAL
129 return !kmem_cache_debug(s);
130 #else
131 return false;
132 #endif
133 }
134
135 /*
136 * Issues still to be resolved:
137 *
138 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
139 *
140 * - Variable sizing of the per node arrays
141 */
142
143 /* Enable to test recovery from slab corruption on boot */
144 #undef SLUB_RESILIENCY_TEST
145
146 /* Enable to log cmpxchg failures */
147 #undef SLUB_DEBUG_CMPXCHG
148
149 /*
150 * Mininum number of partial slabs. These will be left on the partial
151 * lists even if they are empty. kmem_cache_shrink may reclaim them.
152 */
153 #define MIN_PARTIAL 5
154
155 /*
156 * Maximum number of desirable partial slabs.
157 * The existence of more partial slabs makes kmem_cache_shrink
158 * sort the partial list by the number of objects in use.
159 */
160 #define MAX_PARTIAL 10
161
162 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
163 SLAB_POISON | SLAB_STORE_USER)
164
165 /*
166 * Debugging flags that require metadata to be stored in the slab. These get
167 * disabled when slub_debug=O is used and a cache's min order increases with
168 * metadata.
169 */
170 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
171
172 #define OO_SHIFT 16
173 #define OO_MASK ((1 << OO_SHIFT) - 1)
174 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
175
176 /* Internal SLUB flags */
177 #define __OBJECT_POISON 0x80000000UL /* Poison object */
178 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
179
180 #ifdef CONFIG_SMP
181 static struct notifier_block slab_notifier;
182 #endif
183
184 /*
185 * Tracking user of a slab.
186 */
187 #define TRACK_ADDRS_COUNT 16
188 struct track {
189 unsigned long addr; /* Called from address */
190 #ifdef CONFIG_STACKTRACE
191 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
192 #endif
193 int cpu; /* Was running on cpu */
194 int pid; /* Pid context */
195 unsigned long when; /* When did the operation occur */
196 };
197
198 enum track_item { TRACK_ALLOC, TRACK_FREE };
199
200 #ifdef CONFIG_SYSFS
201 static int sysfs_slab_add(struct kmem_cache *);
202 static int sysfs_slab_alias(struct kmem_cache *, const char *);
203 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
204 #else
205 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
206 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
207 { return 0; }
208 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
209 #endif
210
211 static inline void stat(const struct kmem_cache *s, enum stat_item si)
212 {
213 #ifdef CONFIG_SLUB_STATS
214 /*
215 * The rmw is racy on a preemptible kernel but this is acceptable, so
216 * avoid this_cpu_add()'s irq-disable overhead.
217 */
218 raw_cpu_inc(s->cpu_slab->stat[si]);
219 #endif
220 }
221
222 /********************************************************************
223 * Core slab cache functions
224 *******************************************************************/
225
226 /* Verify that a pointer has an address that is valid within a slab page */
227 static inline int check_valid_pointer(struct kmem_cache *s,
228 struct page *page, const void *object)
229 {
230 void *base;
231
232 if (!object)
233 return 1;
234
235 base = page_address(page);
236 if (object < base || object >= base + page->objects * s->size ||
237 (object - base) % s->size) {
238 return 0;
239 }
240
241 return 1;
242 }
243
244 static inline void *get_freepointer(struct kmem_cache *s, void *object)
245 {
246 return *(void **)(object + s->offset);
247 }
248
249 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
250 {
251 prefetch(object + s->offset);
252 }
253
254 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
255 {
256 void *p;
257
258 #ifdef CONFIG_DEBUG_PAGEALLOC
259 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
260 #else
261 p = get_freepointer(s, object);
262 #endif
263 return p;
264 }
265
266 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
267 {
268 *(void **)(object + s->offset) = fp;
269 }
270
271 /* Loop over all objects in a slab */
272 #define for_each_object(__p, __s, __addr, __objects) \
273 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
274 __p += (__s)->size)
275
276 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
277 for (__p = (__addr), __idx = 1; __idx <= __objects;\
278 __p += (__s)->size, __idx++)
279
280 /* Determine object index from a given position */
281 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
282 {
283 return (p - addr) / s->size;
284 }
285
286 static inline size_t slab_ksize(const struct kmem_cache *s)
287 {
288 #ifdef CONFIG_SLUB_DEBUG
289 /*
290 * Debugging requires use of the padding between object
291 * and whatever may come after it.
292 */
293 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
294 return s->object_size;
295
296 #endif
297 /*
298 * If we have the need to store the freelist pointer
299 * back there or track user information then we can
300 * only use the space before that information.
301 */
302 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
303 return s->inuse;
304 /*
305 * Else we can use all the padding etc for the allocation
306 */
307 return s->size;
308 }
309
310 static inline int order_objects(int order, unsigned long size, int reserved)
311 {
312 return ((PAGE_SIZE << order) - reserved) / size;
313 }
314
315 static inline struct kmem_cache_order_objects oo_make(int order,
316 unsigned long size, int reserved)
317 {
318 struct kmem_cache_order_objects x = {
319 (order << OO_SHIFT) + order_objects(order, size, reserved)
320 };
321
322 return x;
323 }
324
325 static inline int oo_order(struct kmem_cache_order_objects x)
326 {
327 return x.x >> OO_SHIFT;
328 }
329
330 static inline int oo_objects(struct kmem_cache_order_objects x)
331 {
332 return x.x & OO_MASK;
333 }
334
335 /*
336 * Per slab locking using the pagelock
337 */
338 static __always_inline void slab_lock(struct page *page)
339 {
340 bit_spin_lock(PG_locked, &page->flags);
341 }
342
343 static __always_inline void slab_unlock(struct page *page)
344 {
345 __bit_spin_unlock(PG_locked, &page->flags);
346 }
347
348 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
349 {
350 struct page tmp;
351 tmp.counters = counters_new;
352 /*
353 * page->counters can cover frozen/inuse/objects as well
354 * as page->_count. If we assign to ->counters directly
355 * we run the risk of losing updates to page->_count, so
356 * be careful and only assign to the fields we need.
357 */
358 page->frozen = tmp.frozen;
359 page->inuse = tmp.inuse;
360 page->objects = tmp.objects;
361 }
362
363 /* Interrupts must be disabled (for the fallback code to work right) */
364 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
365 void *freelist_old, unsigned long counters_old,
366 void *freelist_new, unsigned long counters_new,
367 const char *n)
368 {
369 VM_BUG_ON(!irqs_disabled());
370 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
371 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
372 if (s->flags & __CMPXCHG_DOUBLE) {
373 if (cmpxchg_double(&page->freelist, &page->counters,
374 freelist_old, counters_old,
375 freelist_new, counters_new))
376 return 1;
377 } else
378 #endif
379 {
380 slab_lock(page);
381 if (page->freelist == freelist_old &&
382 page->counters == counters_old) {
383 page->freelist = freelist_new;
384 set_page_slub_counters(page, counters_new);
385 slab_unlock(page);
386 return 1;
387 }
388 slab_unlock(page);
389 }
390
391 cpu_relax();
392 stat(s, CMPXCHG_DOUBLE_FAIL);
393
394 #ifdef SLUB_DEBUG_CMPXCHG
395 pr_info("%s %s: cmpxchg double redo ", n, s->name);
396 #endif
397
398 return 0;
399 }
400
401 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
402 void *freelist_old, unsigned long counters_old,
403 void *freelist_new, unsigned long counters_new,
404 const char *n)
405 {
406 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
407 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
408 if (s->flags & __CMPXCHG_DOUBLE) {
409 if (cmpxchg_double(&page->freelist, &page->counters,
410 freelist_old, counters_old,
411 freelist_new, counters_new))
412 return 1;
413 } else
414 #endif
415 {
416 unsigned long flags;
417
418 local_irq_save(flags);
419 slab_lock(page);
420 if (page->freelist == freelist_old &&
421 page->counters == counters_old) {
422 page->freelist = freelist_new;
423 set_page_slub_counters(page, counters_new);
424 slab_unlock(page);
425 local_irq_restore(flags);
426 return 1;
427 }
428 slab_unlock(page);
429 local_irq_restore(flags);
430 }
431
432 cpu_relax();
433 stat(s, CMPXCHG_DOUBLE_FAIL);
434
435 #ifdef SLUB_DEBUG_CMPXCHG
436 pr_info("%s %s: cmpxchg double redo ", n, s->name);
437 #endif
438
439 return 0;
440 }
441
442 #ifdef CONFIG_SLUB_DEBUG
443 /*
444 * Determine a map of object in use on a page.
445 *
446 * Node listlock must be held to guarantee that the page does
447 * not vanish from under us.
448 */
449 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
450 {
451 void *p;
452 void *addr = page_address(page);
453
454 for (p = page->freelist; p; p = get_freepointer(s, p))
455 set_bit(slab_index(p, s, addr), map);
456 }
457
458 /*
459 * Debug settings:
460 */
461 #ifdef CONFIG_SLUB_DEBUG_ON
462 static int slub_debug = DEBUG_DEFAULT_FLAGS;
463 #else
464 static int slub_debug;
465 #endif
466
467 static char *slub_debug_slabs;
468 static int disable_higher_order_debug;
469
470 /*
471 * Object debugging
472 */
473 static void print_section(char *text, u8 *addr, unsigned int length)
474 {
475 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
476 length, 1);
477 }
478
479 static struct track *get_track(struct kmem_cache *s, void *object,
480 enum track_item alloc)
481 {
482 struct track *p;
483
484 if (s->offset)
485 p = object + s->offset + sizeof(void *);
486 else
487 p = object + s->inuse;
488
489 return p + alloc;
490 }
491
492 static void set_track(struct kmem_cache *s, void *object,
493 enum track_item alloc, unsigned long addr)
494 {
495 struct track *p = get_track(s, object, alloc);
496
497 if (addr) {
498 #ifdef CONFIG_STACKTRACE
499 struct stack_trace trace;
500 int i;
501
502 trace.nr_entries = 0;
503 trace.max_entries = TRACK_ADDRS_COUNT;
504 trace.entries = p->addrs;
505 trace.skip = 3;
506 save_stack_trace(&trace);
507
508 /* See rant in lockdep.c */
509 if (trace.nr_entries != 0 &&
510 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
511 trace.nr_entries--;
512
513 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
514 p->addrs[i] = 0;
515 #endif
516 p->addr = addr;
517 p->cpu = smp_processor_id();
518 p->pid = current->pid;
519 p->when = jiffies;
520 } else
521 memset(p, 0, sizeof(struct track));
522 }
523
524 static void init_tracking(struct kmem_cache *s, void *object)
525 {
526 if (!(s->flags & SLAB_STORE_USER))
527 return;
528
529 set_track(s, object, TRACK_FREE, 0UL);
530 set_track(s, object, TRACK_ALLOC, 0UL);
531 }
532
533 static void print_track(const char *s, struct track *t)
534 {
535 if (!t->addr)
536 return;
537
538 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
539 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
540 #ifdef CONFIG_STACKTRACE
541 {
542 int i;
543 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
544 if (t->addrs[i])
545 pr_err("\t%pS\n", (void *)t->addrs[i]);
546 else
547 break;
548 }
549 #endif
550 }
551
552 static void print_tracking(struct kmem_cache *s, void *object)
553 {
554 if (!(s->flags & SLAB_STORE_USER))
555 return;
556
557 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
558 print_track("Freed", get_track(s, object, TRACK_FREE));
559 }
560
561 static void print_page_info(struct page *page)
562 {
563 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
564 page, page->objects, page->inuse, page->freelist, page->flags);
565
566 }
567
568 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
569 {
570 struct va_format vaf;
571 va_list args;
572
573 va_start(args, fmt);
574 vaf.fmt = fmt;
575 vaf.va = &args;
576 pr_err("=============================================================================\n");
577 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
578 pr_err("-----------------------------------------------------------------------------\n\n");
579
580 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
581 va_end(args);
582 }
583
584 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
585 {
586 struct va_format vaf;
587 va_list args;
588
589 va_start(args, fmt);
590 vaf.fmt = fmt;
591 vaf.va = &args;
592 pr_err("FIX %s: %pV\n", s->name, &vaf);
593 va_end(args);
594 }
595
596 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
597 {
598 unsigned int off; /* Offset of last byte */
599 u8 *addr = page_address(page);
600
601 print_tracking(s, p);
602
603 print_page_info(page);
604
605 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
606 p, p - addr, get_freepointer(s, p));
607
608 if (p > addr + 16)
609 print_section("Bytes b4 ", p - 16, 16);
610
611 print_section("Object ", p, min_t(unsigned long, s->object_size,
612 PAGE_SIZE));
613 if (s->flags & SLAB_RED_ZONE)
614 print_section("Redzone ", p + s->object_size,
615 s->inuse - s->object_size);
616
617 if (s->offset)
618 off = s->offset + sizeof(void *);
619 else
620 off = s->inuse;
621
622 if (s->flags & SLAB_STORE_USER)
623 off += 2 * sizeof(struct track);
624
625 if (off != s->size)
626 /* Beginning of the filler is the free pointer */
627 print_section("Padding ", p + off, s->size - off);
628
629 dump_stack();
630 }
631
632 static void object_err(struct kmem_cache *s, struct page *page,
633 u8 *object, char *reason)
634 {
635 slab_bug(s, "%s", reason);
636 print_trailer(s, page, object);
637 }
638
639 static void slab_err(struct kmem_cache *s, struct page *page,
640 const char *fmt, ...)
641 {
642 va_list args;
643 char buf[100];
644
645 va_start(args, fmt);
646 vsnprintf(buf, sizeof(buf), fmt, args);
647 va_end(args);
648 slab_bug(s, "%s", buf);
649 print_page_info(page);
650 dump_stack();
651 }
652
653 static void init_object(struct kmem_cache *s, void *object, u8 val)
654 {
655 u8 *p = object;
656
657 if (s->flags & __OBJECT_POISON) {
658 memset(p, POISON_FREE, s->object_size - 1);
659 p[s->object_size - 1] = POISON_END;
660 }
661
662 if (s->flags & SLAB_RED_ZONE)
663 memset(p + s->object_size, val, s->inuse - s->object_size);
664 }
665
666 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
667 void *from, void *to)
668 {
669 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
670 memset(from, data, to - from);
671 }
672
673 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
674 u8 *object, char *what,
675 u8 *start, unsigned int value, unsigned int bytes)
676 {
677 u8 *fault;
678 u8 *end;
679
680 fault = memchr_inv(start, value, bytes);
681 if (!fault)
682 return 1;
683
684 end = start + bytes;
685 while (end > fault && end[-1] == value)
686 end--;
687
688 slab_bug(s, "%s overwritten", what);
689 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
690 fault, end - 1, fault[0], value);
691 print_trailer(s, page, object);
692
693 restore_bytes(s, what, value, fault, end);
694 return 0;
695 }
696
697 /*
698 * Object layout:
699 *
700 * object address
701 * Bytes of the object to be managed.
702 * If the freepointer may overlay the object then the free
703 * pointer is the first word of the object.
704 *
705 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
706 * 0xa5 (POISON_END)
707 *
708 * object + s->object_size
709 * Padding to reach word boundary. This is also used for Redzoning.
710 * Padding is extended by another word if Redzoning is enabled and
711 * object_size == inuse.
712 *
713 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
714 * 0xcc (RED_ACTIVE) for objects in use.
715 *
716 * object + s->inuse
717 * Meta data starts here.
718 *
719 * A. Free pointer (if we cannot overwrite object on free)
720 * B. Tracking data for SLAB_STORE_USER
721 * C. Padding to reach required alignment boundary or at mininum
722 * one word if debugging is on to be able to detect writes
723 * before the word boundary.
724 *
725 * Padding is done using 0x5a (POISON_INUSE)
726 *
727 * object + s->size
728 * Nothing is used beyond s->size.
729 *
730 * If slabcaches are merged then the object_size and inuse boundaries are mostly
731 * ignored. And therefore no slab options that rely on these boundaries
732 * may be used with merged slabcaches.
733 */
734
735 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
736 {
737 unsigned long off = s->inuse; /* The end of info */
738
739 if (s->offset)
740 /* Freepointer is placed after the object. */
741 off += sizeof(void *);
742
743 if (s->flags & SLAB_STORE_USER)
744 /* We also have user information there */
745 off += 2 * sizeof(struct track);
746
747 if (s->size == off)
748 return 1;
749
750 return check_bytes_and_report(s, page, p, "Object padding",
751 p + off, POISON_INUSE, s->size - off);
752 }
753
754 /* Check the pad bytes at the end of a slab page */
755 static int slab_pad_check(struct kmem_cache *s, struct page *page)
756 {
757 u8 *start;
758 u8 *fault;
759 u8 *end;
760 int length;
761 int remainder;
762
763 if (!(s->flags & SLAB_POISON))
764 return 1;
765
766 start = page_address(page);
767 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
768 end = start + length;
769 remainder = length % s->size;
770 if (!remainder)
771 return 1;
772
773 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
774 if (!fault)
775 return 1;
776 while (end > fault && end[-1] == POISON_INUSE)
777 end--;
778
779 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
780 print_section("Padding ", end - remainder, remainder);
781
782 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
783 return 0;
784 }
785
786 static int check_object(struct kmem_cache *s, struct page *page,
787 void *object, u8 val)
788 {
789 u8 *p = object;
790 u8 *endobject = object + s->object_size;
791
792 if (s->flags & SLAB_RED_ZONE) {
793 if (!check_bytes_and_report(s, page, object, "Redzone",
794 endobject, val, s->inuse - s->object_size))
795 return 0;
796 } else {
797 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
798 check_bytes_and_report(s, page, p, "Alignment padding",
799 endobject, POISON_INUSE,
800 s->inuse - s->object_size);
801 }
802 }
803
804 if (s->flags & SLAB_POISON) {
805 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
806 (!check_bytes_and_report(s, page, p, "Poison", p,
807 POISON_FREE, s->object_size - 1) ||
808 !check_bytes_and_report(s, page, p, "Poison",
809 p + s->object_size - 1, POISON_END, 1)))
810 return 0;
811 /*
812 * check_pad_bytes cleans up on its own.
813 */
814 check_pad_bytes(s, page, p);
815 }
816
817 if (!s->offset && val == SLUB_RED_ACTIVE)
818 /*
819 * Object and freepointer overlap. Cannot check
820 * freepointer while object is allocated.
821 */
822 return 1;
823
824 /* Check free pointer validity */
825 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
826 object_err(s, page, p, "Freepointer corrupt");
827 /*
828 * No choice but to zap it and thus lose the remainder
829 * of the free objects in this slab. May cause
830 * another error because the object count is now wrong.
831 */
832 set_freepointer(s, p, NULL);
833 return 0;
834 }
835 return 1;
836 }
837
838 static int check_slab(struct kmem_cache *s, struct page *page)
839 {
840 int maxobj;
841
842 VM_BUG_ON(!irqs_disabled());
843
844 if (!PageSlab(page)) {
845 slab_err(s, page, "Not a valid slab page");
846 return 0;
847 }
848
849 maxobj = order_objects(compound_order(page), s->size, s->reserved);
850 if (page->objects > maxobj) {
851 slab_err(s, page, "objects %u > max %u",
852 page->objects, maxobj);
853 return 0;
854 }
855 if (page->inuse > page->objects) {
856 slab_err(s, page, "inuse %u > max %u",
857 page->inuse, page->objects);
858 return 0;
859 }
860 /* Slab_pad_check fixes things up after itself */
861 slab_pad_check(s, page);
862 return 1;
863 }
864
865 /*
866 * Determine if a certain object on a page is on the freelist. Must hold the
867 * slab lock to guarantee that the chains are in a consistent state.
868 */
869 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
870 {
871 int nr = 0;
872 void *fp;
873 void *object = NULL;
874 int max_objects;
875
876 fp = page->freelist;
877 while (fp && nr <= page->objects) {
878 if (fp == search)
879 return 1;
880 if (!check_valid_pointer(s, page, fp)) {
881 if (object) {
882 object_err(s, page, object,
883 "Freechain corrupt");
884 set_freepointer(s, object, NULL);
885 } else {
886 slab_err(s, page, "Freepointer corrupt");
887 page->freelist = NULL;
888 page->inuse = page->objects;
889 slab_fix(s, "Freelist cleared");
890 return 0;
891 }
892 break;
893 }
894 object = fp;
895 fp = get_freepointer(s, object);
896 nr++;
897 }
898
899 max_objects = order_objects(compound_order(page), s->size, s->reserved);
900 if (max_objects > MAX_OBJS_PER_PAGE)
901 max_objects = MAX_OBJS_PER_PAGE;
902
903 if (page->objects != max_objects) {
904 slab_err(s, page, "Wrong number of objects. Found %d but "
905 "should be %d", page->objects, max_objects);
906 page->objects = max_objects;
907 slab_fix(s, "Number of objects adjusted.");
908 }
909 if (page->inuse != page->objects - nr) {
910 slab_err(s, page, "Wrong object count. Counter is %d but "
911 "counted were %d", page->inuse, page->objects - nr);
912 page->inuse = page->objects - nr;
913 slab_fix(s, "Object count adjusted.");
914 }
915 return search == NULL;
916 }
917
918 static void trace(struct kmem_cache *s, struct page *page, void *object,
919 int alloc)
920 {
921 if (s->flags & SLAB_TRACE) {
922 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
923 s->name,
924 alloc ? "alloc" : "free",
925 object, page->inuse,
926 page->freelist);
927
928 if (!alloc)
929 print_section("Object ", (void *)object,
930 s->object_size);
931
932 dump_stack();
933 }
934 }
935
936 /*
937 * Tracking of fully allocated slabs for debugging purposes.
938 */
939 static void add_full(struct kmem_cache *s,
940 struct kmem_cache_node *n, struct page *page)
941 {
942 if (!(s->flags & SLAB_STORE_USER))
943 return;
944
945 lockdep_assert_held(&n->list_lock);
946 list_add(&page->lru, &n->full);
947 }
948
949 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
950 {
951 if (!(s->flags & SLAB_STORE_USER))
952 return;
953
954 lockdep_assert_held(&n->list_lock);
955 list_del(&page->lru);
956 }
957
958 /* Tracking of the number of slabs for debugging purposes */
959 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
960 {
961 struct kmem_cache_node *n = get_node(s, node);
962
963 return atomic_long_read(&n->nr_slabs);
964 }
965
966 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
967 {
968 return atomic_long_read(&n->nr_slabs);
969 }
970
971 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
972 {
973 struct kmem_cache_node *n = get_node(s, node);
974
975 /*
976 * May be called early in order to allocate a slab for the
977 * kmem_cache_node structure. Solve the chicken-egg
978 * dilemma by deferring the increment of the count during
979 * bootstrap (see early_kmem_cache_node_alloc).
980 */
981 if (likely(n)) {
982 atomic_long_inc(&n->nr_slabs);
983 atomic_long_add(objects, &n->total_objects);
984 }
985 }
986 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
987 {
988 struct kmem_cache_node *n = get_node(s, node);
989
990 atomic_long_dec(&n->nr_slabs);
991 atomic_long_sub(objects, &n->total_objects);
992 }
993
994 /* Object debug checks for alloc/free paths */
995 static void setup_object_debug(struct kmem_cache *s, struct page *page,
996 void *object)
997 {
998 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
999 return;
1000
1001 init_object(s, object, SLUB_RED_INACTIVE);
1002 init_tracking(s, object);
1003 }
1004
1005 static noinline int alloc_debug_processing(struct kmem_cache *s,
1006 struct page *page,
1007 void *object, unsigned long addr)
1008 {
1009 if (!check_slab(s, page))
1010 goto bad;
1011
1012 if (!check_valid_pointer(s, page, object)) {
1013 object_err(s, page, object, "Freelist Pointer check fails");
1014 goto bad;
1015 }
1016
1017 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1018 goto bad;
1019
1020 /* Success perform special debug activities for allocs */
1021 if (s->flags & SLAB_STORE_USER)
1022 set_track(s, object, TRACK_ALLOC, addr);
1023 trace(s, page, object, 1);
1024 init_object(s, object, SLUB_RED_ACTIVE);
1025 return 1;
1026
1027 bad:
1028 if (PageSlab(page)) {
1029 /*
1030 * If this is a slab page then lets do the best we can
1031 * to avoid issues in the future. Marking all objects
1032 * as used avoids touching the remaining objects.
1033 */
1034 slab_fix(s, "Marking all objects used");
1035 page->inuse = page->objects;
1036 page->freelist = NULL;
1037 }
1038 return 0;
1039 }
1040
1041 static noinline struct kmem_cache_node *free_debug_processing(
1042 struct kmem_cache *s, struct page *page, void *object,
1043 unsigned long addr, unsigned long *flags)
1044 {
1045 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1046
1047 spin_lock_irqsave(&n->list_lock, *flags);
1048 slab_lock(page);
1049
1050 if (!check_slab(s, page))
1051 goto fail;
1052
1053 if (!check_valid_pointer(s, page, object)) {
1054 slab_err(s, page, "Invalid object pointer 0x%p", object);
1055 goto fail;
1056 }
1057
1058 if (on_freelist(s, page, object)) {
1059 object_err(s, page, object, "Object already free");
1060 goto fail;
1061 }
1062
1063 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1064 goto out;
1065
1066 if (unlikely(s != page->slab_cache)) {
1067 if (!PageSlab(page)) {
1068 slab_err(s, page, "Attempt to free object(0x%p) "
1069 "outside of slab", object);
1070 } else if (!page->slab_cache) {
1071 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1072 object);
1073 dump_stack();
1074 } else
1075 object_err(s, page, object,
1076 "page slab pointer corrupt.");
1077 goto fail;
1078 }
1079
1080 if (s->flags & SLAB_STORE_USER)
1081 set_track(s, object, TRACK_FREE, addr);
1082 trace(s, page, object, 0);
1083 init_object(s, object, SLUB_RED_INACTIVE);
1084 out:
1085 slab_unlock(page);
1086 /*
1087 * Keep node_lock to preserve integrity
1088 * until the object is actually freed
1089 */
1090 return n;
1091
1092 fail:
1093 slab_unlock(page);
1094 spin_unlock_irqrestore(&n->list_lock, *flags);
1095 slab_fix(s, "Object at 0x%p not freed", object);
1096 return NULL;
1097 }
1098
1099 static int __init setup_slub_debug(char *str)
1100 {
1101 slub_debug = DEBUG_DEFAULT_FLAGS;
1102 if (*str++ != '=' || !*str)
1103 /*
1104 * No options specified. Switch on full debugging.
1105 */
1106 goto out;
1107
1108 if (*str == ',')
1109 /*
1110 * No options but restriction on slabs. This means full
1111 * debugging for slabs matching a pattern.
1112 */
1113 goto check_slabs;
1114
1115 if (tolower(*str) == 'o') {
1116 /*
1117 * Avoid enabling debugging on caches if its minimum order
1118 * would increase as a result.
1119 */
1120 disable_higher_order_debug = 1;
1121 goto out;
1122 }
1123
1124 slub_debug = 0;
1125 if (*str == '-')
1126 /*
1127 * Switch off all debugging measures.
1128 */
1129 goto out;
1130
1131 /*
1132 * Determine which debug features should be switched on
1133 */
1134 for (; *str && *str != ','; str++) {
1135 switch (tolower(*str)) {
1136 case 'f':
1137 slub_debug |= SLAB_DEBUG_FREE;
1138 break;
1139 case 'z':
1140 slub_debug |= SLAB_RED_ZONE;
1141 break;
1142 case 'p':
1143 slub_debug |= SLAB_POISON;
1144 break;
1145 case 'u':
1146 slub_debug |= SLAB_STORE_USER;
1147 break;
1148 case 't':
1149 slub_debug |= SLAB_TRACE;
1150 break;
1151 case 'a':
1152 slub_debug |= SLAB_FAILSLAB;
1153 break;
1154 default:
1155 pr_err("slub_debug option '%c' unknown. skipped\n",
1156 *str);
1157 }
1158 }
1159
1160 check_slabs:
1161 if (*str == ',')
1162 slub_debug_slabs = str + 1;
1163 out:
1164 return 1;
1165 }
1166
1167 __setup("slub_debug", setup_slub_debug);
1168
1169 unsigned long kmem_cache_flags(unsigned long object_size,
1170 unsigned long flags, const char *name,
1171 void (*ctor)(void *))
1172 {
1173 /*
1174 * Enable debugging if selected on the kernel commandline.
1175 */
1176 if (slub_debug && (!slub_debug_slabs || (name &&
1177 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1178 flags |= slub_debug;
1179
1180 return flags;
1181 }
1182 #else
1183 static inline void setup_object_debug(struct kmem_cache *s,
1184 struct page *page, void *object) {}
1185
1186 static inline int alloc_debug_processing(struct kmem_cache *s,
1187 struct page *page, void *object, unsigned long addr) { return 0; }
1188
1189 static inline struct kmem_cache_node *free_debug_processing(
1190 struct kmem_cache *s, struct page *page, void *object,
1191 unsigned long addr, unsigned long *flags) { return NULL; }
1192
1193 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1194 { return 1; }
1195 static inline int check_object(struct kmem_cache *s, struct page *page,
1196 void *object, u8 val) { return 1; }
1197 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1198 struct page *page) {}
1199 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1200 struct page *page) {}
1201 unsigned long kmem_cache_flags(unsigned long object_size,
1202 unsigned long flags, const char *name,
1203 void (*ctor)(void *))
1204 {
1205 return flags;
1206 }
1207 #define slub_debug 0
1208
1209 #define disable_higher_order_debug 0
1210
1211 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1212 { return 0; }
1213 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1214 { return 0; }
1215 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1216 int objects) {}
1217 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1218 int objects) {}
1219
1220 #endif /* CONFIG_SLUB_DEBUG */
1221
1222 /*
1223 * Hooks for other subsystems that check memory allocations. In a typical
1224 * production configuration these hooks all should produce no code at all.
1225 */
1226 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1227 {
1228 kmemleak_alloc(ptr, size, 1, flags);
1229 }
1230
1231 static inline void kfree_hook(const void *x)
1232 {
1233 kmemleak_free(x);
1234 }
1235
1236 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1237 {
1238 flags &= gfp_allowed_mask;
1239 lockdep_trace_alloc(flags);
1240 might_sleep_if(flags & __GFP_WAIT);
1241
1242 return should_failslab(s->object_size, flags, s->flags);
1243 }
1244
1245 static inline void slab_post_alloc_hook(struct kmem_cache *s,
1246 gfp_t flags, void *object)
1247 {
1248 flags &= gfp_allowed_mask;
1249 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
1250 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
1251 }
1252
1253 static inline void slab_free_hook(struct kmem_cache *s, void *x)
1254 {
1255 kmemleak_free_recursive(x, s->flags);
1256
1257 /*
1258 * Trouble is that we may no longer disable interrupts in the fast path
1259 * So in order to make the debug calls that expect irqs to be
1260 * disabled we need to disable interrupts temporarily.
1261 */
1262 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1263 {
1264 unsigned long flags;
1265
1266 local_irq_save(flags);
1267 kmemcheck_slab_free(s, x, s->object_size);
1268 debug_check_no_locks_freed(x, s->object_size);
1269 local_irq_restore(flags);
1270 }
1271 #endif
1272 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1273 debug_check_no_obj_freed(x, s->object_size);
1274 }
1275
1276 /*
1277 * Slab allocation and freeing
1278 */
1279 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1280 gfp_t flags, int node, struct kmem_cache_order_objects oo)
1281 {
1282 struct page *page;
1283 int order = oo_order(oo);
1284
1285 flags |= __GFP_NOTRACK;
1286
1287 if (memcg_charge_slab(s, flags, order))
1288 return NULL;
1289
1290 if (node == NUMA_NO_NODE)
1291 page = alloc_pages(flags, order);
1292 else
1293 page = alloc_pages_exact_node(node, flags, order);
1294
1295 if (!page)
1296 memcg_uncharge_slab(s, order);
1297
1298 return page;
1299 }
1300
1301 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1302 {
1303 struct page *page;
1304 struct kmem_cache_order_objects oo = s->oo;
1305 gfp_t alloc_gfp;
1306
1307 flags &= gfp_allowed_mask;
1308
1309 if (flags & __GFP_WAIT)
1310 local_irq_enable();
1311
1312 flags |= s->allocflags;
1313
1314 /*
1315 * Let the initial higher-order allocation fail under memory pressure
1316 * so we fall-back to the minimum order allocation.
1317 */
1318 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1319
1320 page = alloc_slab_page(s, alloc_gfp, node, oo);
1321 if (unlikely(!page)) {
1322 oo = s->min;
1323 alloc_gfp = flags;
1324 /*
1325 * Allocation may have failed due to fragmentation.
1326 * Try a lower order alloc if possible
1327 */
1328 page = alloc_slab_page(s, alloc_gfp, node, oo);
1329
1330 if (page)
1331 stat(s, ORDER_FALLBACK);
1332 }
1333
1334 if (kmemcheck_enabled && page
1335 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1336 int pages = 1 << oo_order(oo);
1337
1338 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
1339
1340 /*
1341 * Objects from caches that have a constructor don't get
1342 * cleared when they're allocated, so we need to do it here.
1343 */
1344 if (s->ctor)
1345 kmemcheck_mark_uninitialized_pages(page, pages);
1346 else
1347 kmemcheck_mark_unallocated_pages(page, pages);
1348 }
1349
1350 if (flags & __GFP_WAIT)
1351 local_irq_disable();
1352 if (!page)
1353 return NULL;
1354
1355 page->objects = oo_objects(oo);
1356 mod_zone_page_state(page_zone(page),
1357 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1358 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1359 1 << oo_order(oo));
1360
1361 return page;
1362 }
1363
1364 static void setup_object(struct kmem_cache *s, struct page *page,
1365 void *object)
1366 {
1367 setup_object_debug(s, page, object);
1368 if (unlikely(s->ctor))
1369 s->ctor(object);
1370 }
1371
1372 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1373 {
1374 struct page *page;
1375 void *start;
1376 void *p;
1377 int order;
1378 int idx;
1379
1380 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1381 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
1382 BUG();
1383 }
1384
1385 page = allocate_slab(s,
1386 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1387 if (!page)
1388 goto out;
1389
1390 order = compound_order(page);
1391 inc_slabs_node(s, page_to_nid(page), page->objects);
1392 page->slab_cache = s;
1393 __SetPageSlab(page);
1394 if (page->pfmemalloc)
1395 SetPageSlabPfmemalloc(page);
1396
1397 start = page_address(page);
1398
1399 if (unlikely(s->flags & SLAB_POISON))
1400 memset(start, POISON_INUSE, PAGE_SIZE << order);
1401
1402 for_each_object_idx(p, idx, s, start, page->objects) {
1403 setup_object(s, page, p);
1404 if (likely(idx < page->objects))
1405 set_freepointer(s, p, p + s->size);
1406 else
1407 set_freepointer(s, p, NULL);
1408 }
1409
1410 page->freelist = start;
1411 page->inuse = page->objects;
1412 page->frozen = 1;
1413 out:
1414 return page;
1415 }
1416
1417 static void __free_slab(struct kmem_cache *s, struct page *page)
1418 {
1419 int order = compound_order(page);
1420 int pages = 1 << order;
1421
1422 if (kmem_cache_debug(s)) {
1423 void *p;
1424
1425 slab_pad_check(s, page);
1426 for_each_object(p, s, page_address(page),
1427 page->objects)
1428 check_object(s, page, p, SLUB_RED_INACTIVE);
1429 }
1430
1431 kmemcheck_free_shadow(page, compound_order(page));
1432
1433 mod_zone_page_state(page_zone(page),
1434 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1435 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1436 -pages);
1437
1438 __ClearPageSlabPfmemalloc(page);
1439 __ClearPageSlab(page);
1440
1441 page_mapcount_reset(page);
1442 if (current->reclaim_state)
1443 current->reclaim_state->reclaimed_slab += pages;
1444 __free_pages(page, order);
1445 memcg_uncharge_slab(s, order);
1446 }
1447
1448 #define need_reserve_slab_rcu \
1449 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1450
1451 static void rcu_free_slab(struct rcu_head *h)
1452 {
1453 struct page *page;
1454
1455 if (need_reserve_slab_rcu)
1456 page = virt_to_head_page(h);
1457 else
1458 page = container_of((struct list_head *)h, struct page, lru);
1459
1460 __free_slab(page->slab_cache, page);
1461 }
1462
1463 static void free_slab(struct kmem_cache *s, struct page *page)
1464 {
1465 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1466 struct rcu_head *head;
1467
1468 if (need_reserve_slab_rcu) {
1469 int order = compound_order(page);
1470 int offset = (PAGE_SIZE << order) - s->reserved;
1471
1472 VM_BUG_ON(s->reserved != sizeof(*head));
1473 head = page_address(page) + offset;
1474 } else {
1475 /*
1476 * RCU free overloads the RCU head over the LRU
1477 */
1478 head = (void *)&page->lru;
1479 }
1480
1481 call_rcu(head, rcu_free_slab);
1482 } else
1483 __free_slab(s, page);
1484 }
1485
1486 static void discard_slab(struct kmem_cache *s, struct page *page)
1487 {
1488 dec_slabs_node(s, page_to_nid(page), page->objects);
1489 free_slab(s, page);
1490 }
1491
1492 /*
1493 * Management of partially allocated slabs.
1494 */
1495 static inline void
1496 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1497 {
1498 n->nr_partial++;
1499 if (tail == DEACTIVATE_TO_TAIL)
1500 list_add_tail(&page->lru, &n->partial);
1501 else
1502 list_add(&page->lru, &n->partial);
1503 }
1504
1505 static inline void add_partial(struct kmem_cache_node *n,
1506 struct page *page, int tail)
1507 {
1508 lockdep_assert_held(&n->list_lock);
1509 __add_partial(n, page, tail);
1510 }
1511
1512 static inline void
1513 __remove_partial(struct kmem_cache_node *n, struct page *page)
1514 {
1515 list_del(&page->lru);
1516 n->nr_partial--;
1517 }
1518
1519 static inline void remove_partial(struct kmem_cache_node *n,
1520 struct page *page)
1521 {
1522 lockdep_assert_held(&n->list_lock);
1523 __remove_partial(n, page);
1524 }
1525
1526 /*
1527 * Remove slab from the partial list, freeze it and
1528 * return the pointer to the freelist.
1529 *
1530 * Returns a list of objects or NULL if it fails.
1531 */
1532 static inline void *acquire_slab(struct kmem_cache *s,
1533 struct kmem_cache_node *n, struct page *page,
1534 int mode, int *objects)
1535 {
1536 void *freelist;
1537 unsigned long counters;
1538 struct page new;
1539
1540 lockdep_assert_held(&n->list_lock);
1541
1542 /*
1543 * Zap the freelist and set the frozen bit.
1544 * The old freelist is the list of objects for the
1545 * per cpu allocation list.
1546 */
1547 freelist = page->freelist;
1548 counters = page->counters;
1549 new.counters = counters;
1550 *objects = new.objects - new.inuse;
1551 if (mode) {
1552 new.inuse = page->objects;
1553 new.freelist = NULL;
1554 } else {
1555 new.freelist = freelist;
1556 }
1557
1558 VM_BUG_ON(new.frozen);
1559 new.frozen = 1;
1560
1561 if (!__cmpxchg_double_slab(s, page,
1562 freelist, counters,
1563 new.freelist, new.counters,
1564 "acquire_slab"))
1565 return NULL;
1566
1567 remove_partial(n, page);
1568 WARN_ON(!freelist);
1569 return freelist;
1570 }
1571
1572 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1573 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1574
1575 /*
1576 * Try to allocate a partial slab from a specific node.
1577 */
1578 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1579 struct kmem_cache_cpu *c, gfp_t flags)
1580 {
1581 struct page *page, *page2;
1582 void *object = NULL;
1583 int available = 0;
1584 int objects;
1585
1586 /*
1587 * Racy check. If we mistakenly see no partial slabs then we
1588 * just allocate an empty slab. If we mistakenly try to get a
1589 * partial slab and there is none available then get_partials()
1590 * will return NULL.
1591 */
1592 if (!n || !n->nr_partial)
1593 return NULL;
1594
1595 spin_lock(&n->list_lock);
1596 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1597 void *t;
1598
1599 if (!pfmemalloc_match(page, flags))
1600 continue;
1601
1602 t = acquire_slab(s, n, page, object == NULL, &objects);
1603 if (!t)
1604 break;
1605
1606 available += objects;
1607 if (!object) {
1608 c->page = page;
1609 stat(s, ALLOC_FROM_PARTIAL);
1610 object = t;
1611 } else {
1612 put_cpu_partial(s, page, 0);
1613 stat(s, CPU_PARTIAL_NODE);
1614 }
1615 if (!kmem_cache_has_cpu_partial(s)
1616 || available > s->cpu_partial / 2)
1617 break;
1618
1619 }
1620 spin_unlock(&n->list_lock);
1621 return object;
1622 }
1623
1624 /*
1625 * Get a page from somewhere. Search in increasing NUMA distances.
1626 */
1627 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1628 struct kmem_cache_cpu *c)
1629 {
1630 #ifdef CONFIG_NUMA
1631 struct zonelist *zonelist;
1632 struct zoneref *z;
1633 struct zone *zone;
1634 enum zone_type high_zoneidx = gfp_zone(flags);
1635 void *object;
1636 unsigned int cpuset_mems_cookie;
1637
1638 /*
1639 * The defrag ratio allows a configuration of the tradeoffs between
1640 * inter node defragmentation and node local allocations. A lower
1641 * defrag_ratio increases the tendency to do local allocations
1642 * instead of attempting to obtain partial slabs from other nodes.
1643 *
1644 * If the defrag_ratio is set to 0 then kmalloc() always
1645 * returns node local objects. If the ratio is higher then kmalloc()
1646 * may return off node objects because partial slabs are obtained
1647 * from other nodes and filled up.
1648 *
1649 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1650 * defrag_ratio = 1000) then every (well almost) allocation will
1651 * first attempt to defrag slab caches on other nodes. This means
1652 * scanning over all nodes to look for partial slabs which may be
1653 * expensive if we do it every time we are trying to find a slab
1654 * with available objects.
1655 */
1656 if (!s->remote_node_defrag_ratio ||
1657 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1658 return NULL;
1659
1660 do {
1661 cpuset_mems_cookie = read_mems_allowed_begin();
1662 zonelist = node_zonelist(mempolicy_slab_node(), flags);
1663 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1664 struct kmem_cache_node *n;
1665
1666 n = get_node(s, zone_to_nid(zone));
1667
1668 if (n && cpuset_zone_allowed(zone,
1669 flags | __GFP_HARDWALL) &&
1670 n->nr_partial > s->min_partial) {
1671 object = get_partial_node(s, n, c, flags);
1672 if (object) {
1673 /*
1674 * Don't check read_mems_allowed_retry()
1675 * here - if mems_allowed was updated in
1676 * parallel, that was a harmless race
1677 * between allocation and the cpuset
1678 * update
1679 */
1680 return object;
1681 }
1682 }
1683 }
1684 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1685 #endif
1686 return NULL;
1687 }
1688
1689 /*
1690 * Get a partial page, lock it and return it.
1691 */
1692 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1693 struct kmem_cache_cpu *c)
1694 {
1695 void *object;
1696 int searchnode = node;
1697
1698 if (node == NUMA_NO_NODE)
1699 searchnode = numa_mem_id();
1700 else if (!node_present_pages(node))
1701 searchnode = node_to_mem_node(node);
1702
1703 object = get_partial_node(s, get_node(s, searchnode), c, flags);
1704 if (object || node != NUMA_NO_NODE)
1705 return object;
1706
1707 return get_any_partial(s, flags, c);
1708 }
1709
1710 #ifdef CONFIG_PREEMPT
1711 /*
1712 * Calculate the next globally unique transaction for disambiguiation
1713 * during cmpxchg. The transactions start with the cpu number and are then
1714 * incremented by CONFIG_NR_CPUS.
1715 */
1716 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1717 #else
1718 /*
1719 * No preemption supported therefore also no need to check for
1720 * different cpus.
1721 */
1722 #define TID_STEP 1
1723 #endif
1724
1725 static inline unsigned long next_tid(unsigned long tid)
1726 {
1727 return tid + TID_STEP;
1728 }
1729
1730 static inline unsigned int tid_to_cpu(unsigned long tid)
1731 {
1732 return tid % TID_STEP;
1733 }
1734
1735 static inline unsigned long tid_to_event(unsigned long tid)
1736 {
1737 return tid / TID_STEP;
1738 }
1739
1740 static inline unsigned int init_tid(int cpu)
1741 {
1742 return cpu;
1743 }
1744
1745 static inline void note_cmpxchg_failure(const char *n,
1746 const struct kmem_cache *s, unsigned long tid)
1747 {
1748 #ifdef SLUB_DEBUG_CMPXCHG
1749 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1750
1751 pr_info("%s %s: cmpxchg redo ", n, s->name);
1752
1753 #ifdef CONFIG_PREEMPT
1754 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1755 pr_warn("due to cpu change %d -> %d\n",
1756 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1757 else
1758 #endif
1759 if (tid_to_event(tid) != tid_to_event(actual_tid))
1760 pr_warn("due to cpu running other code. Event %ld->%ld\n",
1761 tid_to_event(tid), tid_to_event(actual_tid));
1762 else
1763 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1764 actual_tid, tid, next_tid(tid));
1765 #endif
1766 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1767 }
1768
1769 static void init_kmem_cache_cpus(struct kmem_cache *s)
1770 {
1771 int cpu;
1772
1773 for_each_possible_cpu(cpu)
1774 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1775 }
1776
1777 /*
1778 * Remove the cpu slab
1779 */
1780 static void deactivate_slab(struct kmem_cache *s, struct page *page,
1781 void *freelist)
1782 {
1783 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1784 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1785 int lock = 0;
1786 enum slab_modes l = M_NONE, m = M_NONE;
1787 void *nextfree;
1788 int tail = DEACTIVATE_TO_HEAD;
1789 struct page new;
1790 struct page old;
1791
1792 if (page->freelist) {
1793 stat(s, DEACTIVATE_REMOTE_FREES);
1794 tail = DEACTIVATE_TO_TAIL;
1795 }
1796
1797 /*
1798 * Stage one: Free all available per cpu objects back
1799 * to the page freelist while it is still frozen. Leave the
1800 * last one.
1801 *
1802 * There is no need to take the list->lock because the page
1803 * is still frozen.
1804 */
1805 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1806 void *prior;
1807 unsigned long counters;
1808
1809 do {
1810 prior = page->freelist;
1811 counters = page->counters;
1812 set_freepointer(s, freelist, prior);
1813 new.counters = counters;
1814 new.inuse--;
1815 VM_BUG_ON(!new.frozen);
1816
1817 } while (!__cmpxchg_double_slab(s, page,
1818 prior, counters,
1819 freelist, new.counters,
1820 "drain percpu freelist"));
1821
1822 freelist = nextfree;
1823 }
1824
1825 /*
1826 * Stage two: Ensure that the page is unfrozen while the
1827 * list presence reflects the actual number of objects
1828 * during unfreeze.
1829 *
1830 * We setup the list membership and then perform a cmpxchg
1831 * with the count. If there is a mismatch then the page
1832 * is not unfrozen but the page is on the wrong list.
1833 *
1834 * Then we restart the process which may have to remove
1835 * the page from the list that we just put it on again
1836 * because the number of objects in the slab may have
1837 * changed.
1838 */
1839 redo:
1840
1841 old.freelist = page->freelist;
1842 old.counters = page->counters;
1843 VM_BUG_ON(!old.frozen);
1844
1845 /* Determine target state of the slab */
1846 new.counters = old.counters;
1847 if (freelist) {
1848 new.inuse--;
1849 set_freepointer(s, freelist, old.freelist);
1850 new.freelist = freelist;
1851 } else
1852 new.freelist = old.freelist;
1853
1854 new.frozen = 0;
1855
1856 if (!new.inuse && n->nr_partial >= s->min_partial)
1857 m = M_FREE;
1858 else if (new.freelist) {
1859 m = M_PARTIAL;
1860 if (!lock) {
1861 lock = 1;
1862 /*
1863 * Taking the spinlock removes the possiblity
1864 * that acquire_slab() will see a slab page that
1865 * is frozen
1866 */
1867 spin_lock(&n->list_lock);
1868 }
1869 } else {
1870 m = M_FULL;
1871 if (kmem_cache_debug(s) && !lock) {
1872 lock = 1;
1873 /*
1874 * This also ensures that the scanning of full
1875 * slabs from diagnostic functions will not see
1876 * any frozen slabs.
1877 */
1878 spin_lock(&n->list_lock);
1879 }
1880 }
1881
1882 if (l != m) {
1883
1884 if (l == M_PARTIAL)
1885
1886 remove_partial(n, page);
1887
1888 else if (l == M_FULL)
1889
1890 remove_full(s, n, page);
1891
1892 if (m == M_PARTIAL) {
1893
1894 add_partial(n, page, tail);
1895 stat(s, tail);
1896
1897 } else if (m == M_FULL) {
1898
1899 stat(s, DEACTIVATE_FULL);
1900 add_full(s, n, page);
1901
1902 }
1903 }
1904
1905 l = m;
1906 if (!__cmpxchg_double_slab(s, page,
1907 old.freelist, old.counters,
1908 new.freelist, new.counters,
1909 "unfreezing slab"))
1910 goto redo;
1911
1912 if (lock)
1913 spin_unlock(&n->list_lock);
1914
1915 if (m == M_FREE) {
1916 stat(s, DEACTIVATE_EMPTY);
1917 discard_slab(s, page);
1918 stat(s, FREE_SLAB);
1919 }
1920 }
1921
1922 /*
1923 * Unfreeze all the cpu partial slabs.
1924 *
1925 * This function must be called with interrupts disabled
1926 * for the cpu using c (or some other guarantee must be there
1927 * to guarantee no concurrent accesses).
1928 */
1929 static void unfreeze_partials(struct kmem_cache *s,
1930 struct kmem_cache_cpu *c)
1931 {
1932 #ifdef CONFIG_SLUB_CPU_PARTIAL
1933 struct kmem_cache_node *n = NULL, *n2 = NULL;
1934 struct page *page, *discard_page = NULL;
1935
1936 while ((page = c->partial)) {
1937 struct page new;
1938 struct page old;
1939
1940 c->partial = page->next;
1941
1942 n2 = get_node(s, page_to_nid(page));
1943 if (n != n2) {
1944 if (n)
1945 spin_unlock(&n->list_lock);
1946
1947 n = n2;
1948 spin_lock(&n->list_lock);
1949 }
1950
1951 do {
1952
1953 old.freelist = page->freelist;
1954 old.counters = page->counters;
1955 VM_BUG_ON(!old.frozen);
1956
1957 new.counters = old.counters;
1958 new.freelist = old.freelist;
1959
1960 new.frozen = 0;
1961
1962 } while (!__cmpxchg_double_slab(s, page,
1963 old.freelist, old.counters,
1964 new.freelist, new.counters,
1965 "unfreezing slab"));
1966
1967 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
1968 page->next = discard_page;
1969 discard_page = page;
1970 } else {
1971 add_partial(n, page, DEACTIVATE_TO_TAIL);
1972 stat(s, FREE_ADD_PARTIAL);
1973 }
1974 }
1975
1976 if (n)
1977 spin_unlock(&n->list_lock);
1978
1979 while (discard_page) {
1980 page = discard_page;
1981 discard_page = discard_page->next;
1982
1983 stat(s, DEACTIVATE_EMPTY);
1984 discard_slab(s, page);
1985 stat(s, FREE_SLAB);
1986 }
1987 #endif
1988 }
1989
1990 /*
1991 * Put a page that was just frozen (in __slab_free) into a partial page
1992 * slot if available. This is done without interrupts disabled and without
1993 * preemption disabled. The cmpxchg is racy and may put the partial page
1994 * onto a random cpus partial slot.
1995 *
1996 * If we did not find a slot then simply move all the partials to the
1997 * per node partial list.
1998 */
1999 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2000 {
2001 #ifdef CONFIG_SLUB_CPU_PARTIAL
2002 struct page *oldpage;
2003 int pages;
2004 int pobjects;
2005
2006 do {
2007 pages = 0;
2008 pobjects = 0;
2009 oldpage = this_cpu_read(s->cpu_slab->partial);
2010
2011 if (oldpage) {
2012 pobjects = oldpage->pobjects;
2013 pages = oldpage->pages;
2014 if (drain && pobjects > s->cpu_partial) {
2015 unsigned long flags;
2016 /*
2017 * partial array is full. Move the existing
2018 * set to the per node partial list.
2019 */
2020 local_irq_save(flags);
2021 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2022 local_irq_restore(flags);
2023 oldpage = NULL;
2024 pobjects = 0;
2025 pages = 0;
2026 stat(s, CPU_PARTIAL_DRAIN);
2027 }
2028 }
2029
2030 pages++;
2031 pobjects += page->objects - page->inuse;
2032
2033 page->pages = pages;
2034 page->pobjects = pobjects;
2035 page->next = oldpage;
2036
2037 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2038 != oldpage);
2039 #endif
2040 }
2041
2042 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2043 {
2044 stat(s, CPUSLAB_FLUSH);
2045 deactivate_slab(s, c->page, c->freelist);
2046
2047 c->tid = next_tid(c->tid);
2048 c->page = NULL;
2049 c->freelist = NULL;
2050 }
2051
2052 /*
2053 * Flush cpu slab.
2054 *
2055 * Called from IPI handler with interrupts disabled.
2056 */
2057 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2058 {
2059 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2060
2061 if (likely(c)) {
2062 if (c->page)
2063 flush_slab(s, c);
2064
2065 unfreeze_partials(s, c);
2066 }
2067 }
2068
2069 static void flush_cpu_slab(void *d)
2070 {
2071 struct kmem_cache *s = d;
2072
2073 __flush_cpu_slab(s, smp_processor_id());
2074 }
2075
2076 static bool has_cpu_slab(int cpu, void *info)
2077 {
2078 struct kmem_cache *s = info;
2079 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2080
2081 return c->page || c->partial;
2082 }
2083
2084 static void flush_all(struct kmem_cache *s)
2085 {
2086 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2087 }
2088
2089 /*
2090 * Check if the objects in a per cpu structure fit numa
2091 * locality expectations.
2092 */
2093 static inline int node_match(struct page *page, int node)
2094 {
2095 #ifdef CONFIG_NUMA
2096 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2097 return 0;
2098 #endif
2099 return 1;
2100 }
2101
2102 #ifdef CONFIG_SLUB_DEBUG
2103 static int count_free(struct page *page)
2104 {
2105 return page->objects - page->inuse;
2106 }
2107
2108 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2109 {
2110 return atomic_long_read(&n->total_objects);
2111 }
2112 #endif /* CONFIG_SLUB_DEBUG */
2113
2114 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2115 static unsigned long count_partial(struct kmem_cache_node *n,
2116 int (*get_count)(struct page *))
2117 {
2118 unsigned long flags;
2119 unsigned long x = 0;
2120 struct page *page;
2121
2122 spin_lock_irqsave(&n->list_lock, flags);
2123 list_for_each_entry(page, &n->partial, lru)
2124 x += get_count(page);
2125 spin_unlock_irqrestore(&n->list_lock, flags);
2126 return x;
2127 }
2128 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2129
2130 static noinline void
2131 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2132 {
2133 #ifdef CONFIG_SLUB_DEBUG
2134 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2135 DEFAULT_RATELIMIT_BURST);
2136 int node;
2137 struct kmem_cache_node *n;
2138
2139 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2140 return;
2141
2142 pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2143 nid, gfpflags);
2144 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2145 s->name, s->object_size, s->size, oo_order(s->oo),
2146 oo_order(s->min));
2147
2148 if (oo_order(s->min) > get_order(s->object_size))
2149 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2150 s->name);
2151
2152 for_each_kmem_cache_node(s, node, n) {
2153 unsigned long nr_slabs;
2154 unsigned long nr_objs;
2155 unsigned long nr_free;
2156
2157 nr_free = count_partial(n, count_free);
2158 nr_slabs = node_nr_slabs(n);
2159 nr_objs = node_nr_objs(n);
2160
2161 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2162 node, nr_slabs, nr_objs, nr_free);
2163 }
2164 #endif
2165 }
2166
2167 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2168 int node, struct kmem_cache_cpu **pc)
2169 {
2170 void *freelist;
2171 struct kmem_cache_cpu *c = *pc;
2172 struct page *page;
2173
2174 freelist = get_partial(s, flags, node, c);
2175
2176 if (freelist)
2177 return freelist;
2178
2179 page = new_slab(s, flags, node);
2180 if (page) {
2181 c = raw_cpu_ptr(s->cpu_slab);
2182 if (c->page)
2183 flush_slab(s, c);
2184
2185 /*
2186 * No other reference to the page yet so we can
2187 * muck around with it freely without cmpxchg
2188 */
2189 freelist = page->freelist;
2190 page->freelist = NULL;
2191
2192 stat(s, ALLOC_SLAB);
2193 c->page = page;
2194 *pc = c;
2195 } else
2196 freelist = NULL;
2197
2198 return freelist;
2199 }
2200
2201 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2202 {
2203 if (unlikely(PageSlabPfmemalloc(page)))
2204 return gfp_pfmemalloc_allowed(gfpflags);
2205
2206 return true;
2207 }
2208
2209 /*
2210 * Check the page->freelist of a page and either transfer the freelist to the
2211 * per cpu freelist or deactivate the page.
2212 *
2213 * The page is still frozen if the return value is not NULL.
2214 *
2215 * If this function returns NULL then the page has been unfrozen.
2216 *
2217 * This function must be called with interrupt disabled.
2218 */
2219 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2220 {
2221 struct page new;
2222 unsigned long counters;
2223 void *freelist;
2224
2225 do {
2226 freelist = page->freelist;
2227 counters = page->counters;
2228
2229 new.counters = counters;
2230 VM_BUG_ON(!new.frozen);
2231
2232 new.inuse = page->objects;
2233 new.frozen = freelist != NULL;
2234
2235 } while (!__cmpxchg_double_slab(s, page,
2236 freelist, counters,
2237 NULL, new.counters,
2238 "get_freelist"));
2239
2240 return freelist;
2241 }
2242
2243 /*
2244 * Slow path. The lockless freelist is empty or we need to perform
2245 * debugging duties.
2246 *
2247 * Processing is still very fast if new objects have been freed to the
2248 * regular freelist. In that case we simply take over the regular freelist
2249 * as the lockless freelist and zap the regular freelist.
2250 *
2251 * If that is not working then we fall back to the partial lists. We take the
2252 * first element of the freelist as the object to allocate now and move the
2253 * rest of the freelist to the lockless freelist.
2254 *
2255 * And if we were unable to get a new slab from the partial slab lists then
2256 * we need to allocate a new slab. This is the slowest path since it involves
2257 * a call to the page allocator and the setup of a new slab.
2258 */
2259 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2260 unsigned long addr, struct kmem_cache_cpu *c)
2261 {
2262 void *freelist;
2263 struct page *page;
2264 unsigned long flags;
2265
2266 local_irq_save(flags);
2267 #ifdef CONFIG_PREEMPT
2268 /*
2269 * We may have been preempted and rescheduled on a different
2270 * cpu before disabling interrupts. Need to reload cpu area
2271 * pointer.
2272 */
2273 c = this_cpu_ptr(s->cpu_slab);
2274 #endif
2275
2276 page = c->page;
2277 if (!page)
2278 goto new_slab;
2279 redo:
2280
2281 if (unlikely(!node_match(page, node))) {
2282 int searchnode = node;
2283
2284 if (node != NUMA_NO_NODE && !node_present_pages(node))
2285 searchnode = node_to_mem_node(node);
2286
2287 if (unlikely(!node_match(page, searchnode))) {
2288 stat(s, ALLOC_NODE_MISMATCH);
2289 deactivate_slab(s, page, c->freelist);
2290 c->page = NULL;
2291 c->freelist = NULL;
2292 goto new_slab;
2293 }
2294 }
2295
2296 /*
2297 * By rights, we should be searching for a slab page that was
2298 * PFMEMALLOC but right now, we are losing the pfmemalloc
2299 * information when the page leaves the per-cpu allocator
2300 */
2301 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2302 deactivate_slab(s, page, c->freelist);
2303 c->page = NULL;
2304 c->freelist = NULL;
2305 goto new_slab;
2306 }
2307
2308 /* must check again c->freelist in case of cpu migration or IRQ */
2309 freelist = c->freelist;
2310 if (freelist)
2311 goto load_freelist;
2312
2313 freelist = get_freelist(s, page);
2314
2315 if (!freelist) {
2316 c->page = NULL;
2317 stat(s, DEACTIVATE_BYPASS);
2318 goto new_slab;
2319 }
2320
2321 stat(s, ALLOC_REFILL);
2322
2323 load_freelist:
2324 /*
2325 * freelist is pointing to the list of objects to be used.
2326 * page is pointing to the page from which the objects are obtained.
2327 * That page must be frozen for per cpu allocations to work.
2328 */
2329 VM_BUG_ON(!c->page->frozen);
2330 c->freelist = get_freepointer(s, freelist);
2331 c->tid = next_tid(c->tid);
2332 local_irq_restore(flags);
2333 return freelist;
2334
2335 new_slab:
2336
2337 if (c->partial) {
2338 page = c->page = c->partial;
2339 c->partial = page->next;
2340 stat(s, CPU_PARTIAL_ALLOC);
2341 c->freelist = NULL;
2342 goto redo;
2343 }
2344
2345 freelist = new_slab_objects(s, gfpflags, node, &c);
2346
2347 if (unlikely(!freelist)) {
2348 slab_out_of_memory(s, gfpflags, node);
2349 local_irq_restore(flags);
2350 return NULL;
2351 }
2352
2353 page = c->page;
2354 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2355 goto load_freelist;
2356
2357 /* Only entered in the debug case */
2358 if (kmem_cache_debug(s) &&
2359 !alloc_debug_processing(s, page, freelist, addr))
2360 goto new_slab; /* Slab failed checks. Next slab needed */
2361
2362 deactivate_slab(s, page, get_freepointer(s, freelist));
2363 c->page = NULL;
2364 c->freelist = NULL;
2365 local_irq_restore(flags);
2366 return freelist;
2367 }
2368
2369 /*
2370 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2371 * have the fastpath folded into their functions. So no function call
2372 * overhead for requests that can be satisfied on the fastpath.
2373 *
2374 * The fastpath works by first checking if the lockless freelist can be used.
2375 * If not then __slab_alloc is called for slow processing.
2376 *
2377 * Otherwise we can simply pick the next object from the lockless free list.
2378 */
2379 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2380 gfp_t gfpflags, int node, unsigned long addr)
2381 {
2382 void **object;
2383 struct kmem_cache_cpu *c;
2384 struct page *page;
2385 unsigned long tid;
2386
2387 if (slab_pre_alloc_hook(s, gfpflags))
2388 return NULL;
2389
2390 s = memcg_kmem_get_cache(s, gfpflags);
2391 redo:
2392 /*
2393 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2394 * enabled. We may switch back and forth between cpus while
2395 * reading from one cpu area. That does not matter as long
2396 * as we end up on the original cpu again when doing the cmpxchg.
2397 *
2398 * Preemption is disabled for the retrieval of the tid because that
2399 * must occur from the current processor. We cannot allow rescheduling
2400 * on a different processor between the determination of the pointer
2401 * and the retrieval of the tid.
2402 */
2403 preempt_disable();
2404 c = this_cpu_ptr(s->cpu_slab);
2405
2406 /*
2407 * The transaction ids are globally unique per cpu and per operation on
2408 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2409 * occurs on the right processor and that there was no operation on the
2410 * linked list in between.
2411 */
2412 tid = c->tid;
2413 preempt_enable();
2414
2415 object = c->freelist;
2416 page = c->page;
2417 if (unlikely(!object || !node_match(page, node))) {
2418 object = __slab_alloc(s, gfpflags, node, addr, c);
2419 stat(s, ALLOC_SLOWPATH);
2420 } else {
2421 void *next_object = get_freepointer_safe(s, object);
2422
2423 /*
2424 * The cmpxchg will only match if there was no additional
2425 * operation and if we are on the right processor.
2426 *
2427 * The cmpxchg does the following atomically (without lock
2428 * semantics!)
2429 * 1. Relocate first pointer to the current per cpu area.
2430 * 2. Verify that tid and freelist have not been changed
2431 * 3. If they were not changed replace tid and freelist
2432 *
2433 * Since this is without lock semantics the protection is only
2434 * against code executing on this cpu *not* from access by
2435 * other cpus.
2436 */
2437 if (unlikely(!this_cpu_cmpxchg_double(
2438 s->cpu_slab->freelist, s->cpu_slab->tid,
2439 object, tid,
2440 next_object, next_tid(tid)))) {
2441
2442 note_cmpxchg_failure("slab_alloc", s, tid);
2443 goto redo;
2444 }
2445 prefetch_freepointer(s, next_object);
2446 stat(s, ALLOC_FASTPATH);
2447 }
2448
2449 if (unlikely(gfpflags & __GFP_ZERO) && object)
2450 memset(object, 0, s->object_size);
2451
2452 slab_post_alloc_hook(s, gfpflags, object);
2453
2454 return object;
2455 }
2456
2457 static __always_inline void *slab_alloc(struct kmem_cache *s,
2458 gfp_t gfpflags, unsigned long addr)
2459 {
2460 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2461 }
2462
2463 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2464 {
2465 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2466
2467 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2468 s->size, gfpflags);
2469
2470 return ret;
2471 }
2472 EXPORT_SYMBOL(kmem_cache_alloc);
2473
2474 #ifdef CONFIG_TRACING
2475 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2476 {
2477 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2478 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2479 return ret;
2480 }
2481 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2482 #endif
2483
2484 #ifdef CONFIG_NUMA
2485 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2486 {
2487 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2488
2489 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2490 s->object_size, s->size, gfpflags, node);
2491
2492 return ret;
2493 }
2494 EXPORT_SYMBOL(kmem_cache_alloc_node);
2495
2496 #ifdef CONFIG_TRACING
2497 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2498 gfp_t gfpflags,
2499 int node, size_t size)
2500 {
2501 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2502
2503 trace_kmalloc_node(_RET_IP_, ret,
2504 size, s->size, gfpflags, node);
2505 return ret;
2506 }
2507 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2508 #endif
2509 #endif
2510
2511 /*
2512 * Slow patch handling. This may still be called frequently since objects
2513 * have a longer lifetime than the cpu slabs in most processing loads.
2514 *
2515 * So we still attempt to reduce cache line usage. Just take the slab
2516 * lock and free the item. If there is no additional partial page
2517 * handling required then we can return immediately.
2518 */
2519 static void __slab_free(struct kmem_cache *s, struct page *page,
2520 void *x, unsigned long addr)
2521 {
2522 void *prior;
2523 void **object = (void *)x;
2524 int was_frozen;
2525 struct page new;
2526 unsigned long counters;
2527 struct kmem_cache_node *n = NULL;
2528 unsigned long uninitialized_var(flags);
2529
2530 stat(s, FREE_SLOWPATH);
2531
2532 if (kmem_cache_debug(s) &&
2533 !(n = free_debug_processing(s, page, x, addr, &flags)))
2534 return;
2535
2536 do {
2537 if (unlikely(n)) {
2538 spin_unlock_irqrestore(&n->list_lock, flags);
2539 n = NULL;
2540 }
2541 prior = page->freelist;
2542 counters = page->counters;
2543 set_freepointer(s, object, prior);
2544 new.counters = counters;
2545 was_frozen = new.frozen;
2546 new.inuse--;
2547 if ((!new.inuse || !prior) && !was_frozen) {
2548
2549 if (kmem_cache_has_cpu_partial(s) && !prior) {
2550
2551 /*
2552 * Slab was on no list before and will be
2553 * partially empty
2554 * We can defer the list move and instead
2555 * freeze it.
2556 */
2557 new.frozen = 1;
2558
2559 } else { /* Needs to be taken off a list */
2560
2561 n = get_node(s, page_to_nid(page));
2562 /*
2563 * Speculatively acquire the list_lock.
2564 * If the cmpxchg does not succeed then we may
2565 * drop the list_lock without any processing.
2566 *
2567 * Otherwise the list_lock will synchronize with
2568 * other processors updating the list of slabs.
2569 */
2570 spin_lock_irqsave(&n->list_lock, flags);
2571
2572 }
2573 }
2574
2575 } while (!cmpxchg_double_slab(s, page,
2576 prior, counters,
2577 object, new.counters,
2578 "__slab_free"));
2579
2580 if (likely(!n)) {
2581
2582 /*
2583 * If we just froze the page then put it onto the
2584 * per cpu partial list.
2585 */
2586 if (new.frozen && !was_frozen) {
2587 put_cpu_partial(s, page, 1);
2588 stat(s, CPU_PARTIAL_FREE);
2589 }
2590 /*
2591 * The list lock was not taken therefore no list
2592 * activity can be necessary.
2593 */
2594 if (was_frozen)
2595 stat(s, FREE_FROZEN);
2596 return;
2597 }
2598
2599 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2600 goto slab_empty;
2601
2602 /*
2603 * Objects left in the slab. If it was not on the partial list before
2604 * then add it.
2605 */
2606 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2607 if (kmem_cache_debug(s))
2608 remove_full(s, n, page);
2609 add_partial(n, page, DEACTIVATE_TO_TAIL);
2610 stat(s, FREE_ADD_PARTIAL);
2611 }
2612 spin_unlock_irqrestore(&n->list_lock, flags);
2613 return;
2614
2615 slab_empty:
2616 if (prior) {
2617 /*
2618 * Slab on the partial list.
2619 */
2620 remove_partial(n, page);
2621 stat(s, FREE_REMOVE_PARTIAL);
2622 } else {
2623 /* Slab must be on the full list */
2624 remove_full(s, n, page);
2625 }
2626
2627 spin_unlock_irqrestore(&n->list_lock, flags);
2628 stat(s, FREE_SLAB);
2629 discard_slab(s, page);
2630 }
2631
2632 /*
2633 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2634 * can perform fastpath freeing without additional function calls.
2635 *
2636 * The fastpath is only possible if we are freeing to the current cpu slab
2637 * of this processor. This typically the case if we have just allocated
2638 * the item before.
2639 *
2640 * If fastpath is not possible then fall back to __slab_free where we deal
2641 * with all sorts of special processing.
2642 */
2643 static __always_inline void slab_free(struct kmem_cache *s,
2644 struct page *page, void *x, unsigned long addr)
2645 {
2646 void **object = (void *)x;
2647 struct kmem_cache_cpu *c;
2648 unsigned long tid;
2649
2650 slab_free_hook(s, x);
2651
2652 redo:
2653 /*
2654 * Determine the currently cpus per cpu slab.
2655 * The cpu may change afterward. However that does not matter since
2656 * data is retrieved via this pointer. If we are on the same cpu
2657 * during the cmpxchg then the free will succedd.
2658 */
2659 preempt_disable();
2660 c = this_cpu_ptr(s->cpu_slab);
2661
2662 tid = c->tid;
2663 preempt_enable();
2664
2665 if (likely(page == c->page)) {
2666 set_freepointer(s, object, c->freelist);
2667
2668 if (unlikely(!this_cpu_cmpxchg_double(
2669 s->cpu_slab->freelist, s->cpu_slab->tid,
2670 c->freelist, tid,
2671 object, next_tid(tid)))) {
2672
2673 note_cmpxchg_failure("slab_free", s, tid);
2674 goto redo;
2675 }
2676 stat(s, FREE_FASTPATH);
2677 } else
2678 __slab_free(s, page, x, addr);
2679
2680 }
2681
2682 void kmem_cache_free(struct kmem_cache *s, void *x)
2683 {
2684 s = cache_from_obj(s, x);
2685 if (!s)
2686 return;
2687 slab_free(s, virt_to_head_page(x), x, _RET_IP_);
2688 trace_kmem_cache_free(_RET_IP_, x);
2689 }
2690 EXPORT_SYMBOL(kmem_cache_free);
2691
2692 /*
2693 * Object placement in a slab is made very easy because we always start at
2694 * offset 0. If we tune the size of the object to the alignment then we can
2695 * get the required alignment by putting one properly sized object after
2696 * another.
2697 *
2698 * Notice that the allocation order determines the sizes of the per cpu
2699 * caches. Each processor has always one slab available for allocations.
2700 * Increasing the allocation order reduces the number of times that slabs
2701 * must be moved on and off the partial lists and is therefore a factor in
2702 * locking overhead.
2703 */
2704
2705 /*
2706 * Mininum / Maximum order of slab pages. This influences locking overhead
2707 * and slab fragmentation. A higher order reduces the number of partial slabs
2708 * and increases the number of allocations possible without having to
2709 * take the list_lock.
2710 */
2711 static int slub_min_order;
2712 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2713 static int slub_min_objects;
2714
2715 /*
2716 * Calculate the order of allocation given an slab object size.
2717 *
2718 * The order of allocation has significant impact on performance and other
2719 * system components. Generally order 0 allocations should be preferred since
2720 * order 0 does not cause fragmentation in the page allocator. Larger objects
2721 * be problematic to put into order 0 slabs because there may be too much
2722 * unused space left. We go to a higher order if more than 1/16th of the slab
2723 * would be wasted.
2724 *
2725 * In order to reach satisfactory performance we must ensure that a minimum
2726 * number of objects is in one slab. Otherwise we may generate too much
2727 * activity on the partial lists which requires taking the list_lock. This is
2728 * less a concern for large slabs though which are rarely used.
2729 *
2730 * slub_max_order specifies the order where we begin to stop considering the
2731 * number of objects in a slab as critical. If we reach slub_max_order then
2732 * we try to keep the page order as low as possible. So we accept more waste
2733 * of space in favor of a small page order.
2734 *
2735 * Higher order allocations also allow the placement of more objects in a
2736 * slab and thereby reduce object handling overhead. If the user has
2737 * requested a higher mininum order then we start with that one instead of
2738 * the smallest order which will fit the object.
2739 */
2740 static inline int slab_order(int size, int min_objects,
2741 int max_order, int fract_leftover, int reserved)
2742 {
2743 int order;
2744 int rem;
2745 int min_order = slub_min_order;
2746
2747 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2748 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2749
2750 for (order = max(min_order,
2751 fls(min_objects * size - 1) - PAGE_SHIFT);
2752 order <= max_order; order++) {
2753
2754 unsigned long slab_size = PAGE_SIZE << order;
2755
2756 if (slab_size < min_objects * size + reserved)
2757 continue;
2758
2759 rem = (slab_size - reserved) % size;
2760
2761 if (rem <= slab_size / fract_leftover)
2762 break;
2763
2764 }
2765
2766 return order;
2767 }
2768
2769 static inline int calculate_order(int size, int reserved)
2770 {
2771 int order;
2772 int min_objects;
2773 int fraction;
2774 int max_objects;
2775
2776 /*
2777 * Attempt to find best configuration for a slab. This
2778 * works by first attempting to generate a layout with
2779 * the best configuration and backing off gradually.
2780 *
2781 * First we reduce the acceptable waste in a slab. Then
2782 * we reduce the minimum objects required in a slab.
2783 */
2784 min_objects = slub_min_objects;
2785 if (!min_objects)
2786 min_objects = 4 * (fls(nr_cpu_ids) + 1);
2787 max_objects = order_objects(slub_max_order, size, reserved);
2788 min_objects = min(min_objects, max_objects);
2789
2790 while (min_objects > 1) {
2791 fraction = 16;
2792 while (fraction >= 4) {
2793 order = slab_order(size, min_objects,
2794 slub_max_order, fraction, reserved);
2795 if (order <= slub_max_order)
2796 return order;
2797 fraction /= 2;
2798 }
2799 min_objects--;
2800 }
2801
2802 /*
2803 * We were unable to place multiple objects in a slab. Now
2804 * lets see if we can place a single object there.
2805 */
2806 order = slab_order(size, 1, slub_max_order, 1, reserved);
2807 if (order <= slub_max_order)
2808 return order;
2809
2810 /*
2811 * Doh this slab cannot be placed using slub_max_order.
2812 */
2813 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2814 if (order < MAX_ORDER)
2815 return order;
2816 return -ENOSYS;
2817 }
2818
2819 static void
2820 init_kmem_cache_node(struct kmem_cache_node *n)
2821 {
2822 n->nr_partial = 0;
2823 spin_lock_init(&n->list_lock);
2824 INIT_LIST_HEAD(&n->partial);
2825 #ifdef CONFIG_SLUB_DEBUG
2826 atomic_long_set(&n->nr_slabs, 0);
2827 atomic_long_set(&n->total_objects, 0);
2828 INIT_LIST_HEAD(&n->full);
2829 #endif
2830 }
2831
2832 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2833 {
2834 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2835 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
2836
2837 /*
2838 * Must align to double word boundary for the double cmpxchg
2839 * instructions to work; see __pcpu_double_call_return_bool().
2840 */
2841 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2842 2 * sizeof(void *));
2843
2844 if (!s->cpu_slab)
2845 return 0;
2846
2847 init_kmem_cache_cpus(s);
2848
2849 return 1;
2850 }
2851
2852 static struct kmem_cache *kmem_cache_node;
2853
2854 /*
2855 * No kmalloc_node yet so do it by hand. We know that this is the first
2856 * slab on the node for this slabcache. There are no concurrent accesses
2857 * possible.
2858 *
2859 * Note that this function only works on the kmem_cache_node
2860 * when allocating for the kmem_cache_node. This is used for bootstrapping
2861 * memory on a fresh node that has no slab structures yet.
2862 */
2863 static void early_kmem_cache_node_alloc(int node)
2864 {
2865 struct page *page;
2866 struct kmem_cache_node *n;
2867
2868 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2869
2870 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2871
2872 BUG_ON(!page);
2873 if (page_to_nid(page) != node) {
2874 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
2875 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
2876 }
2877
2878 n = page->freelist;
2879 BUG_ON(!n);
2880 page->freelist = get_freepointer(kmem_cache_node, n);
2881 page->inuse = 1;
2882 page->frozen = 0;
2883 kmem_cache_node->node[node] = n;
2884 #ifdef CONFIG_SLUB_DEBUG
2885 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2886 init_tracking(kmem_cache_node, n);
2887 #endif
2888 init_kmem_cache_node(n);
2889 inc_slabs_node(kmem_cache_node, node, page->objects);
2890
2891 /*
2892 * No locks need to be taken here as it has just been
2893 * initialized and there is no concurrent access.
2894 */
2895 __add_partial(n, page, DEACTIVATE_TO_HEAD);
2896 }
2897
2898 static void free_kmem_cache_nodes(struct kmem_cache *s)
2899 {
2900 int node;
2901 struct kmem_cache_node *n;
2902
2903 for_each_kmem_cache_node(s, node, n) {
2904 kmem_cache_free(kmem_cache_node, n);
2905 s->node[node] = NULL;
2906 }
2907 }
2908
2909 static int init_kmem_cache_nodes(struct kmem_cache *s)
2910 {
2911 int node;
2912
2913 for_each_node_state(node, N_NORMAL_MEMORY) {
2914 struct kmem_cache_node *n;
2915
2916 if (slab_state == DOWN) {
2917 early_kmem_cache_node_alloc(node);
2918 continue;
2919 }
2920 n = kmem_cache_alloc_node(kmem_cache_node,
2921 GFP_KERNEL, node);
2922
2923 if (!n) {
2924 free_kmem_cache_nodes(s);
2925 return 0;
2926 }
2927
2928 s->node[node] = n;
2929 init_kmem_cache_node(n);
2930 }
2931 return 1;
2932 }
2933
2934 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2935 {
2936 if (min < MIN_PARTIAL)
2937 min = MIN_PARTIAL;
2938 else if (min > MAX_PARTIAL)
2939 min = MAX_PARTIAL;
2940 s->min_partial = min;
2941 }
2942
2943 /*
2944 * calculate_sizes() determines the order and the distribution of data within
2945 * a slab object.
2946 */
2947 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2948 {
2949 unsigned long flags = s->flags;
2950 unsigned long size = s->object_size;
2951 int order;
2952
2953 /*
2954 * Round up object size to the next word boundary. We can only
2955 * place the free pointer at word boundaries and this determines
2956 * the possible location of the free pointer.
2957 */
2958 size = ALIGN(size, sizeof(void *));
2959
2960 #ifdef CONFIG_SLUB_DEBUG
2961 /*
2962 * Determine if we can poison the object itself. If the user of
2963 * the slab may touch the object after free or before allocation
2964 * then we should never poison the object itself.
2965 */
2966 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2967 !s->ctor)
2968 s->flags |= __OBJECT_POISON;
2969 else
2970 s->flags &= ~__OBJECT_POISON;
2971
2972
2973 /*
2974 * If we are Redzoning then check if there is some space between the
2975 * end of the object and the free pointer. If not then add an
2976 * additional word to have some bytes to store Redzone information.
2977 */
2978 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
2979 size += sizeof(void *);
2980 #endif
2981
2982 /*
2983 * With that we have determined the number of bytes in actual use
2984 * by the object. This is the potential offset to the free pointer.
2985 */
2986 s->inuse = size;
2987
2988 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2989 s->ctor)) {
2990 /*
2991 * Relocate free pointer after the object if it is not
2992 * permitted to overwrite the first word of the object on
2993 * kmem_cache_free.
2994 *
2995 * This is the case if we do RCU, have a constructor or
2996 * destructor or are poisoning the objects.
2997 */
2998 s->offset = size;
2999 size += sizeof(void *);
3000 }
3001
3002 #ifdef CONFIG_SLUB_DEBUG
3003 if (flags & SLAB_STORE_USER)
3004 /*
3005 * Need to store information about allocs and frees after
3006 * the object.
3007 */
3008 size += 2 * sizeof(struct track);
3009
3010 if (flags & SLAB_RED_ZONE)
3011 /*
3012 * Add some empty padding so that we can catch
3013 * overwrites from earlier objects rather than let
3014 * tracking information or the free pointer be
3015 * corrupted if a user writes before the start
3016 * of the object.
3017 */
3018 size += sizeof(void *);
3019 #endif
3020
3021 /*
3022 * SLUB stores one object immediately after another beginning from
3023 * offset 0. In order to align the objects we have to simply size
3024 * each object to conform to the alignment.
3025 */
3026 size = ALIGN(size, s->align);
3027 s->size = size;
3028 if (forced_order >= 0)
3029 order = forced_order;
3030 else
3031 order = calculate_order(size, s->reserved);
3032
3033 if (order < 0)
3034 return 0;
3035
3036 s->allocflags = 0;
3037 if (order)
3038 s->allocflags |= __GFP_COMP;
3039
3040 if (s->flags & SLAB_CACHE_DMA)
3041 s->allocflags |= GFP_DMA;
3042
3043 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3044 s->allocflags |= __GFP_RECLAIMABLE;
3045
3046 /*
3047 * Determine the number of objects per slab
3048 */
3049 s->oo = oo_make(order, size, s->reserved);
3050 s->min = oo_make(get_order(size), size, s->reserved);
3051 if (oo_objects(s->oo) > oo_objects(s->max))
3052 s->max = s->oo;
3053
3054 return !!oo_objects(s->oo);
3055 }
3056
3057 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3058 {
3059 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3060 s->reserved = 0;
3061
3062 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3063 s->reserved = sizeof(struct rcu_head);
3064
3065 if (!calculate_sizes(s, -1))
3066 goto error;
3067 if (disable_higher_order_debug) {
3068 /*
3069 * Disable debugging flags that store metadata if the min slab
3070 * order increased.
3071 */
3072 if (get_order(s->size) > get_order(s->object_size)) {
3073 s->flags &= ~DEBUG_METADATA_FLAGS;
3074 s->offset = 0;
3075 if (!calculate_sizes(s, -1))
3076 goto error;
3077 }
3078 }
3079
3080 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3081 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3082 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3083 /* Enable fast mode */
3084 s->flags |= __CMPXCHG_DOUBLE;
3085 #endif
3086
3087 /*
3088 * The larger the object size is, the more pages we want on the partial
3089 * list to avoid pounding the page allocator excessively.
3090 */
3091 set_min_partial(s, ilog2(s->size) / 2);
3092
3093 /*
3094 * cpu_partial determined the maximum number of objects kept in the
3095 * per cpu partial lists of a processor.
3096 *
3097 * Per cpu partial lists mainly contain slabs that just have one
3098 * object freed. If they are used for allocation then they can be
3099 * filled up again with minimal effort. The slab will never hit the
3100 * per node partial lists and therefore no locking will be required.
3101 *
3102 * This setting also determines
3103 *
3104 * A) The number of objects from per cpu partial slabs dumped to the
3105 * per node list when we reach the limit.
3106 * B) The number of objects in cpu partial slabs to extract from the
3107 * per node list when we run out of per cpu objects. We only fetch
3108 * 50% to keep some capacity around for frees.
3109 */
3110 if (!kmem_cache_has_cpu_partial(s))
3111 s->cpu_partial = 0;
3112 else if (s->size >= PAGE_SIZE)
3113 s->cpu_partial = 2;
3114 else if (s->size >= 1024)
3115 s->cpu_partial = 6;
3116 else if (s->size >= 256)
3117 s->cpu_partial = 13;
3118 else
3119 s->cpu_partial = 30;
3120
3121 #ifdef CONFIG_NUMA
3122 s->remote_node_defrag_ratio = 1000;
3123 #endif
3124 if (!init_kmem_cache_nodes(s))
3125 goto error;
3126
3127 if (alloc_kmem_cache_cpus(s))
3128 return 0;
3129
3130 free_kmem_cache_nodes(s);
3131 error:
3132 if (flags & SLAB_PANIC)
3133 panic("Cannot create slab %s size=%lu realsize=%u "
3134 "order=%u offset=%u flags=%lx\n",
3135 s->name, (unsigned long)s->size, s->size,
3136 oo_order(s->oo), s->offset, flags);
3137 return -EINVAL;
3138 }
3139
3140 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3141 const char *text)
3142 {
3143 #ifdef CONFIG_SLUB_DEBUG
3144 void *addr = page_address(page);
3145 void *p;
3146 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3147 sizeof(long), GFP_ATOMIC);
3148 if (!map)
3149 return;
3150 slab_err(s, page, text, s->name);
3151 slab_lock(page);
3152
3153 get_map(s, page, map);
3154 for_each_object(p, s, addr, page->objects) {
3155
3156 if (!test_bit(slab_index(p, s, addr), map)) {
3157 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3158 print_tracking(s, p);
3159 }
3160 }
3161 slab_unlock(page);
3162 kfree(map);
3163 #endif
3164 }
3165
3166 /*
3167 * Attempt to free all partial slabs on a node.
3168 * This is called from kmem_cache_close(). We must be the last thread
3169 * using the cache and therefore we do not need to lock anymore.
3170 */
3171 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3172 {
3173 struct page *page, *h;
3174
3175 list_for_each_entry_safe(page, h, &n->partial, lru) {
3176 if (!page->inuse) {
3177 __remove_partial(n, page);
3178 discard_slab(s, page);
3179 } else {
3180 list_slab_objects(s, page,
3181 "Objects remaining in %s on kmem_cache_close()");
3182 }
3183 }
3184 }
3185
3186 /*
3187 * Release all resources used by a slab cache.
3188 */
3189 static inline int kmem_cache_close(struct kmem_cache *s)
3190 {
3191 int node;
3192 struct kmem_cache_node *n;
3193
3194 flush_all(s);
3195 /* Attempt to free all objects */
3196 for_each_kmem_cache_node(s, node, n) {
3197 free_partial(s, n);
3198 if (n->nr_partial || slabs_node(s, node))
3199 return 1;
3200 }
3201 free_percpu(s->cpu_slab);
3202 free_kmem_cache_nodes(s);
3203 return 0;
3204 }
3205
3206 int __kmem_cache_shutdown(struct kmem_cache *s)
3207 {
3208 return kmem_cache_close(s);
3209 }
3210
3211 /********************************************************************
3212 * Kmalloc subsystem
3213 *******************************************************************/
3214
3215 static int __init setup_slub_min_order(char *str)
3216 {
3217 get_option(&str, &slub_min_order);
3218
3219 return 1;
3220 }
3221
3222 __setup("slub_min_order=", setup_slub_min_order);
3223
3224 static int __init setup_slub_max_order(char *str)
3225 {
3226 get_option(&str, &slub_max_order);
3227 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3228
3229 return 1;
3230 }
3231
3232 __setup("slub_max_order=", setup_slub_max_order);
3233
3234 static int __init setup_slub_min_objects(char *str)
3235 {
3236 get_option(&str, &slub_min_objects);
3237
3238 return 1;
3239 }
3240
3241 __setup("slub_min_objects=", setup_slub_min_objects);
3242
3243 void *__kmalloc(size_t size, gfp_t flags)
3244 {
3245 struct kmem_cache *s;
3246 void *ret;
3247
3248 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3249 return kmalloc_large(size, flags);
3250
3251 s = kmalloc_slab(size, flags);
3252
3253 if (unlikely(ZERO_OR_NULL_PTR(s)))
3254 return s;
3255
3256 ret = slab_alloc(s, flags, _RET_IP_);
3257
3258 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3259
3260 return ret;
3261 }
3262 EXPORT_SYMBOL(__kmalloc);
3263
3264 #ifdef CONFIG_NUMA
3265 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3266 {
3267 struct page *page;
3268 void *ptr = NULL;
3269
3270 flags |= __GFP_COMP | __GFP_NOTRACK;
3271 page = alloc_kmem_pages_node(node, flags, get_order(size));
3272 if (page)
3273 ptr = page_address(page);
3274
3275 kmalloc_large_node_hook(ptr, size, flags);
3276 return ptr;
3277 }
3278
3279 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3280 {
3281 struct kmem_cache *s;
3282 void *ret;
3283
3284 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3285 ret = kmalloc_large_node(size, flags, node);
3286
3287 trace_kmalloc_node(_RET_IP_, ret,
3288 size, PAGE_SIZE << get_order(size),
3289 flags, node);
3290
3291 return ret;
3292 }
3293
3294 s = kmalloc_slab(size, flags);
3295
3296 if (unlikely(ZERO_OR_NULL_PTR(s)))
3297 return s;
3298
3299 ret = slab_alloc_node(s, flags, node, _RET_IP_);
3300
3301 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3302
3303 return ret;
3304 }
3305 EXPORT_SYMBOL(__kmalloc_node);
3306 #endif
3307
3308 size_t ksize(const void *object)
3309 {
3310 struct page *page;
3311
3312 if (unlikely(object == ZERO_SIZE_PTR))
3313 return 0;
3314
3315 page = virt_to_head_page(object);
3316
3317 if (unlikely(!PageSlab(page))) {
3318 WARN_ON(!PageCompound(page));
3319 return PAGE_SIZE << compound_order(page);
3320 }
3321
3322 return slab_ksize(page->slab_cache);
3323 }
3324 EXPORT_SYMBOL(ksize);
3325
3326 void kfree(const void *x)
3327 {
3328 struct page *page;
3329 void *object = (void *)x;
3330
3331 trace_kfree(_RET_IP_, x);
3332
3333 if (unlikely(ZERO_OR_NULL_PTR(x)))
3334 return;
3335
3336 page = virt_to_head_page(x);
3337 if (unlikely(!PageSlab(page))) {
3338 BUG_ON(!PageCompound(page));
3339 kfree_hook(x);
3340 __free_kmem_pages(page, compound_order(page));
3341 return;
3342 }
3343 slab_free(page->slab_cache, page, object, _RET_IP_);
3344 }
3345 EXPORT_SYMBOL(kfree);
3346
3347 /*
3348 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3349 * the remaining slabs by the number of items in use. The slabs with the
3350 * most items in use come first. New allocations will then fill those up
3351 * and thus they can be removed from the partial lists.
3352 *
3353 * The slabs with the least items are placed last. This results in them
3354 * being allocated from last increasing the chance that the last objects
3355 * are freed in them.
3356 */
3357 int __kmem_cache_shrink(struct kmem_cache *s)
3358 {
3359 int node;
3360 int i;
3361 struct kmem_cache_node *n;
3362 struct page *page;
3363 struct page *t;
3364 int objects = oo_objects(s->max);
3365 struct list_head *slabs_by_inuse =
3366 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3367 unsigned long flags;
3368
3369 if (!slabs_by_inuse)
3370 return -ENOMEM;
3371
3372 flush_all(s);
3373 for_each_kmem_cache_node(s, node, n) {
3374 if (!n->nr_partial)
3375 continue;
3376
3377 for (i = 0; i < objects; i++)
3378 INIT_LIST_HEAD(slabs_by_inuse + i);
3379
3380 spin_lock_irqsave(&n->list_lock, flags);
3381
3382 /*
3383 * Build lists indexed by the items in use in each slab.
3384 *
3385 * Note that concurrent frees may occur while we hold the
3386 * list_lock. page->inuse here is the upper limit.
3387 */
3388 list_for_each_entry_safe(page, t, &n->partial, lru) {
3389 list_move(&page->lru, slabs_by_inuse + page->inuse);
3390 if (!page->inuse)
3391 n->nr_partial--;
3392 }
3393
3394 /*
3395 * Rebuild the partial list with the slabs filled up most
3396 * first and the least used slabs at the end.
3397 */
3398 for (i = objects - 1; i > 0; i--)
3399 list_splice(slabs_by_inuse + i, n->partial.prev);
3400
3401 spin_unlock_irqrestore(&n->list_lock, flags);
3402
3403 /* Release empty slabs */
3404 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3405 discard_slab(s, page);
3406 }
3407
3408 kfree(slabs_by_inuse);
3409 return 0;
3410 }
3411
3412 static int slab_mem_going_offline_callback(void *arg)
3413 {
3414 struct kmem_cache *s;
3415
3416 mutex_lock(&slab_mutex);
3417 list_for_each_entry(s, &slab_caches, list)
3418 __kmem_cache_shrink(s);
3419 mutex_unlock(&slab_mutex);
3420
3421 return 0;
3422 }
3423
3424 static void slab_mem_offline_callback(void *arg)
3425 {
3426 struct kmem_cache_node *n;
3427 struct kmem_cache *s;
3428 struct memory_notify *marg = arg;
3429 int offline_node;
3430
3431 offline_node = marg->status_change_nid_normal;
3432
3433 /*
3434 * If the node still has available memory. we need kmem_cache_node
3435 * for it yet.
3436 */
3437 if (offline_node < 0)
3438 return;
3439
3440 mutex_lock(&slab_mutex);
3441 list_for_each_entry(s, &slab_caches, list) {
3442 n = get_node(s, offline_node);
3443 if (n) {
3444 /*
3445 * if n->nr_slabs > 0, slabs still exist on the node
3446 * that is going down. We were unable to free them,
3447 * and offline_pages() function shouldn't call this
3448 * callback. So, we must fail.
3449 */
3450 BUG_ON(slabs_node(s, offline_node));
3451
3452 s->node[offline_node] = NULL;
3453 kmem_cache_free(kmem_cache_node, n);
3454 }
3455 }
3456 mutex_unlock(&slab_mutex);
3457 }
3458
3459 static int slab_mem_going_online_callback(void *arg)
3460 {
3461 struct kmem_cache_node *n;
3462 struct kmem_cache *s;
3463 struct memory_notify *marg = arg;
3464 int nid = marg->status_change_nid_normal;
3465 int ret = 0;
3466
3467 /*
3468 * If the node's memory is already available, then kmem_cache_node is
3469 * already created. Nothing to do.
3470 */
3471 if (nid < 0)
3472 return 0;
3473
3474 /*
3475 * We are bringing a node online. No memory is available yet. We must
3476 * allocate a kmem_cache_node structure in order to bring the node
3477 * online.
3478 */
3479 mutex_lock(&slab_mutex);
3480 list_for_each_entry(s, &slab_caches, list) {
3481 /*
3482 * XXX: kmem_cache_alloc_node will fallback to other nodes
3483 * since memory is not yet available from the node that
3484 * is brought up.
3485 */
3486 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3487 if (!n) {
3488 ret = -ENOMEM;
3489 goto out;
3490 }
3491 init_kmem_cache_node(n);
3492 s->node[nid] = n;
3493 }
3494 out:
3495 mutex_unlock(&slab_mutex);
3496 return ret;
3497 }
3498
3499 static int slab_memory_callback(struct notifier_block *self,
3500 unsigned long action, void *arg)
3501 {
3502 int ret = 0;
3503
3504 switch (action) {
3505 case MEM_GOING_ONLINE:
3506 ret = slab_mem_going_online_callback(arg);
3507 break;
3508 case MEM_GOING_OFFLINE:
3509 ret = slab_mem_going_offline_callback(arg);
3510 break;
3511 case MEM_OFFLINE:
3512 case MEM_CANCEL_ONLINE:
3513 slab_mem_offline_callback(arg);
3514 break;
3515 case MEM_ONLINE:
3516 case MEM_CANCEL_OFFLINE:
3517 break;
3518 }
3519 if (ret)
3520 ret = notifier_from_errno(ret);
3521 else
3522 ret = NOTIFY_OK;
3523 return ret;
3524 }
3525
3526 static struct notifier_block slab_memory_callback_nb = {
3527 .notifier_call = slab_memory_callback,
3528 .priority = SLAB_CALLBACK_PRI,
3529 };
3530
3531 /********************************************************************
3532 * Basic setup of slabs
3533 *******************************************************************/
3534
3535 /*
3536 * Used for early kmem_cache structures that were allocated using
3537 * the page allocator. Allocate them properly then fix up the pointers
3538 * that may be pointing to the wrong kmem_cache structure.
3539 */
3540
3541 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3542 {
3543 int node;
3544 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3545 struct kmem_cache_node *n;
3546
3547 memcpy(s, static_cache, kmem_cache->object_size);
3548
3549 /*
3550 * This runs very early, and only the boot processor is supposed to be
3551 * up. Even if it weren't true, IRQs are not up so we couldn't fire
3552 * IPIs around.
3553 */
3554 __flush_cpu_slab(s, smp_processor_id());
3555 for_each_kmem_cache_node(s, node, n) {
3556 struct page *p;
3557
3558 list_for_each_entry(p, &n->partial, lru)
3559 p->slab_cache = s;
3560
3561 #ifdef CONFIG_SLUB_DEBUG
3562 list_for_each_entry(p, &n->full, lru)
3563 p->slab_cache = s;
3564 #endif
3565 }
3566 list_add(&s->list, &slab_caches);
3567 return s;
3568 }
3569
3570 void __init kmem_cache_init(void)
3571 {
3572 static __initdata struct kmem_cache boot_kmem_cache,
3573 boot_kmem_cache_node;
3574
3575 if (debug_guardpage_minorder())
3576 slub_max_order = 0;
3577
3578 kmem_cache_node = &boot_kmem_cache_node;
3579 kmem_cache = &boot_kmem_cache;
3580
3581 create_boot_cache(kmem_cache_node, "kmem_cache_node",
3582 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3583
3584 register_hotmemory_notifier(&slab_memory_callback_nb);
3585
3586 /* Able to allocate the per node structures */
3587 slab_state = PARTIAL;
3588
3589 create_boot_cache(kmem_cache, "kmem_cache",
3590 offsetof(struct kmem_cache, node) +
3591 nr_node_ids * sizeof(struct kmem_cache_node *),
3592 SLAB_HWCACHE_ALIGN);
3593
3594 kmem_cache = bootstrap(&boot_kmem_cache);
3595
3596 /*
3597 * Allocate kmem_cache_node properly from the kmem_cache slab.
3598 * kmem_cache_node is separately allocated so no need to
3599 * update any list pointers.
3600 */
3601 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3602
3603 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3604 create_kmalloc_caches(0);
3605
3606 #ifdef CONFIG_SMP
3607 register_cpu_notifier(&slab_notifier);
3608 #endif
3609
3610 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
3611 cache_line_size(),
3612 slub_min_order, slub_max_order, slub_min_objects,
3613 nr_cpu_ids, nr_node_ids);
3614 }
3615
3616 void __init kmem_cache_init_late(void)
3617 {
3618 }
3619
3620 struct kmem_cache *
3621 __kmem_cache_alias(const char *name, size_t size, size_t align,
3622 unsigned long flags, void (*ctor)(void *))
3623 {
3624 struct kmem_cache *s;
3625
3626 s = find_mergeable(size, align, flags, name, ctor);
3627 if (s) {
3628 int i;
3629 struct kmem_cache *c;
3630
3631 s->refcount++;
3632
3633 /*
3634 * Adjust the object sizes so that we clear
3635 * the complete object on kzalloc.
3636 */
3637 s->object_size = max(s->object_size, (int)size);
3638 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3639
3640 for_each_memcg_cache_index(i) {
3641 c = cache_from_memcg_idx(s, i);
3642 if (!c)
3643 continue;
3644 c->object_size = s->object_size;
3645 c->inuse = max_t(int, c->inuse,
3646 ALIGN(size, sizeof(void *)));
3647 }
3648
3649 if (sysfs_slab_alias(s, name)) {
3650 s->refcount--;
3651 s = NULL;
3652 }
3653 }
3654
3655 return s;
3656 }
3657
3658 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3659 {
3660 int err;
3661
3662 err = kmem_cache_open(s, flags);
3663 if (err)
3664 return err;
3665
3666 /* Mutex is not taken during early boot */
3667 if (slab_state <= UP)
3668 return 0;
3669
3670 memcg_propagate_slab_attrs(s);
3671 err = sysfs_slab_add(s);
3672 if (err)
3673 kmem_cache_close(s);
3674
3675 return err;
3676 }
3677
3678 #ifdef CONFIG_SMP
3679 /*
3680 * Use the cpu notifier to insure that the cpu slabs are flushed when
3681 * necessary.
3682 */
3683 static int slab_cpuup_callback(struct notifier_block *nfb,
3684 unsigned long action, void *hcpu)
3685 {
3686 long cpu = (long)hcpu;
3687 struct kmem_cache *s;
3688 unsigned long flags;
3689
3690 switch (action) {
3691 case CPU_UP_CANCELED:
3692 case CPU_UP_CANCELED_FROZEN:
3693 case CPU_DEAD:
3694 case CPU_DEAD_FROZEN:
3695 mutex_lock(&slab_mutex);
3696 list_for_each_entry(s, &slab_caches, list) {
3697 local_irq_save(flags);
3698 __flush_cpu_slab(s, cpu);
3699 local_irq_restore(flags);
3700 }
3701 mutex_unlock(&slab_mutex);
3702 break;
3703 default:
3704 break;
3705 }
3706 return NOTIFY_OK;
3707 }
3708
3709 static struct notifier_block slab_notifier = {
3710 .notifier_call = slab_cpuup_callback
3711 };
3712
3713 #endif
3714
3715 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3716 {
3717 struct kmem_cache *s;
3718 void *ret;
3719
3720 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3721 return kmalloc_large(size, gfpflags);
3722
3723 s = kmalloc_slab(size, gfpflags);
3724
3725 if (unlikely(ZERO_OR_NULL_PTR(s)))
3726 return s;
3727
3728 ret = slab_alloc(s, gfpflags, caller);
3729
3730 /* Honor the call site pointer we received. */
3731 trace_kmalloc(caller, ret, size, s->size, gfpflags);
3732
3733 return ret;
3734 }
3735
3736 #ifdef CONFIG_NUMA
3737 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3738 int node, unsigned long caller)
3739 {
3740 struct kmem_cache *s;
3741 void *ret;
3742
3743 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3744 ret = kmalloc_large_node(size, gfpflags, node);
3745
3746 trace_kmalloc_node(caller, ret,
3747 size, PAGE_SIZE << get_order(size),
3748 gfpflags, node);
3749
3750 return ret;
3751 }
3752
3753 s = kmalloc_slab(size, gfpflags);
3754
3755 if (unlikely(ZERO_OR_NULL_PTR(s)))
3756 return s;
3757
3758 ret = slab_alloc_node(s, gfpflags, node, caller);
3759
3760 /* Honor the call site pointer we received. */
3761 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3762
3763 return ret;
3764 }
3765 #endif
3766
3767 #ifdef CONFIG_SYSFS
3768 static int count_inuse(struct page *page)
3769 {
3770 return page->inuse;
3771 }
3772
3773 static int count_total(struct page *page)
3774 {
3775 return page->objects;
3776 }
3777 #endif
3778
3779 #ifdef CONFIG_SLUB_DEBUG
3780 static int validate_slab(struct kmem_cache *s, struct page *page,
3781 unsigned long *map)
3782 {
3783 void *p;
3784 void *addr = page_address(page);
3785
3786 if (!check_slab(s, page) ||
3787 !on_freelist(s, page, NULL))
3788 return 0;
3789
3790 /* Now we know that a valid freelist exists */
3791 bitmap_zero(map, page->objects);
3792
3793 get_map(s, page, map);
3794 for_each_object(p, s, addr, page->objects) {
3795 if (test_bit(slab_index(p, s, addr), map))
3796 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3797 return 0;
3798 }
3799
3800 for_each_object(p, s, addr, page->objects)
3801 if (!test_bit(slab_index(p, s, addr), map))
3802 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3803 return 0;
3804 return 1;
3805 }
3806
3807 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3808 unsigned long *map)
3809 {
3810 slab_lock(page);
3811 validate_slab(s, page, map);
3812 slab_unlock(page);
3813 }
3814
3815 static int validate_slab_node(struct kmem_cache *s,
3816 struct kmem_cache_node *n, unsigned long *map)
3817 {
3818 unsigned long count = 0;
3819 struct page *page;
3820 unsigned long flags;
3821
3822 spin_lock_irqsave(&n->list_lock, flags);
3823
3824 list_for_each_entry(page, &n->partial, lru) {
3825 validate_slab_slab(s, page, map);
3826 count++;
3827 }
3828 if (count != n->nr_partial)
3829 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
3830 s->name, count, n->nr_partial);
3831
3832 if (!(s->flags & SLAB_STORE_USER))
3833 goto out;
3834
3835 list_for_each_entry(page, &n->full, lru) {
3836 validate_slab_slab(s, page, map);
3837 count++;
3838 }
3839 if (count != atomic_long_read(&n->nr_slabs))
3840 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
3841 s->name, count, atomic_long_read(&n->nr_slabs));
3842
3843 out:
3844 spin_unlock_irqrestore(&n->list_lock, flags);
3845 return count;
3846 }
3847
3848 static long validate_slab_cache(struct kmem_cache *s)
3849 {
3850 int node;
3851 unsigned long count = 0;
3852 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3853 sizeof(unsigned long), GFP_KERNEL);
3854 struct kmem_cache_node *n;
3855
3856 if (!map)
3857 return -ENOMEM;
3858
3859 flush_all(s);
3860 for_each_kmem_cache_node(s, node, n)
3861 count += validate_slab_node(s, n, map);
3862 kfree(map);
3863 return count;
3864 }
3865 /*
3866 * Generate lists of code addresses where slabcache objects are allocated
3867 * and freed.
3868 */
3869
3870 struct location {
3871 unsigned long count;
3872 unsigned long addr;
3873 long long sum_time;
3874 long min_time;
3875 long max_time;
3876 long min_pid;
3877 long max_pid;
3878 DECLARE_BITMAP(cpus, NR_CPUS);
3879 nodemask_t nodes;
3880 };
3881
3882 struct loc_track {
3883 unsigned long max;
3884 unsigned long count;
3885 struct location *loc;
3886 };
3887
3888 static void free_loc_track(struct loc_track *t)
3889 {
3890 if (t->max)
3891 free_pages((unsigned long)t->loc,
3892 get_order(sizeof(struct location) * t->max));
3893 }
3894
3895 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3896 {
3897 struct location *l;
3898 int order;
3899
3900 order = get_order(sizeof(struct location) * max);
3901
3902 l = (void *)__get_free_pages(flags, order);
3903 if (!l)
3904 return 0;
3905
3906 if (t->count) {
3907 memcpy(l, t->loc, sizeof(struct location) * t->count);
3908 free_loc_track(t);
3909 }
3910 t->max = max;
3911 t->loc = l;
3912 return 1;
3913 }
3914
3915 static int add_location(struct loc_track *t, struct kmem_cache *s,
3916 const struct track *track)
3917 {
3918 long start, end, pos;
3919 struct location *l;
3920 unsigned long caddr;
3921 unsigned long age = jiffies - track->when;
3922
3923 start = -1;
3924 end = t->count;
3925
3926 for ( ; ; ) {
3927 pos = start + (end - start + 1) / 2;
3928
3929 /*
3930 * There is nothing at "end". If we end up there
3931 * we need to add something to before end.
3932 */
3933 if (pos == end)
3934 break;
3935
3936 caddr = t->loc[pos].addr;
3937 if (track->addr == caddr) {
3938
3939 l = &t->loc[pos];
3940 l->count++;
3941 if (track->when) {
3942 l->sum_time += age;
3943 if (age < l->min_time)
3944 l->min_time = age;
3945 if (age > l->max_time)
3946 l->max_time = age;
3947
3948 if (track->pid < l->min_pid)
3949 l->min_pid = track->pid;
3950 if (track->pid > l->max_pid)
3951 l->max_pid = track->pid;
3952
3953 cpumask_set_cpu(track->cpu,
3954 to_cpumask(l->cpus));
3955 }
3956 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3957 return 1;
3958 }
3959
3960 if (track->addr < caddr)
3961 end = pos;
3962 else
3963 start = pos;
3964 }
3965
3966 /*
3967 * Not found. Insert new tracking element.
3968 */
3969 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3970 return 0;
3971
3972 l = t->loc + pos;
3973 if (pos < t->count)
3974 memmove(l + 1, l,
3975 (t->count - pos) * sizeof(struct location));
3976 t->count++;
3977 l->count = 1;
3978 l->addr = track->addr;
3979 l->sum_time = age;
3980 l->min_time = age;
3981 l->max_time = age;
3982 l->min_pid = track->pid;
3983 l->max_pid = track->pid;
3984 cpumask_clear(to_cpumask(l->cpus));
3985 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
3986 nodes_clear(l->nodes);
3987 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3988 return 1;
3989 }
3990
3991 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3992 struct page *page, enum track_item alloc,
3993 unsigned long *map)
3994 {
3995 void *addr = page_address(page);
3996 void *p;
3997
3998 bitmap_zero(map, page->objects);
3999 get_map(s, page, map);
4000
4001 for_each_object(p, s, addr, page->objects)
4002 if (!test_bit(slab_index(p, s, addr), map))
4003 add_location(t, s, get_track(s, p, alloc));
4004 }
4005
4006 static int list_locations(struct kmem_cache *s, char *buf,
4007 enum track_item alloc)
4008 {
4009 int len = 0;
4010 unsigned long i;
4011 struct loc_track t = { 0, 0, NULL };
4012 int node;
4013 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4014 sizeof(unsigned long), GFP_KERNEL);
4015 struct kmem_cache_node *n;
4016
4017 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4018 GFP_TEMPORARY)) {
4019 kfree(map);
4020 return sprintf(buf, "Out of memory\n");
4021 }
4022 /* Push back cpu slabs */
4023 flush_all(s);
4024
4025 for_each_kmem_cache_node(s, node, n) {
4026 unsigned long flags;
4027 struct page *page;
4028
4029 if (!atomic_long_read(&n->nr_slabs))
4030 continue;
4031
4032 spin_lock_irqsave(&n->list_lock, flags);
4033 list_for_each_entry(page, &n->partial, lru)
4034 process_slab(&t, s, page, alloc, map);
4035 list_for_each_entry(page, &n->full, lru)
4036 process_slab(&t, s, page, alloc, map);
4037 spin_unlock_irqrestore(&n->list_lock, flags);
4038 }
4039
4040 for (i = 0; i < t.count; i++) {
4041 struct location *l = &t.loc[i];
4042
4043 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4044 break;
4045 len += sprintf(buf + len, "%7ld ", l->count);
4046
4047 if (l->addr)
4048 len += sprintf(buf + len, "%pS", (void *)l->addr);
4049 else
4050 len += sprintf(buf + len, "<not-available>");
4051
4052 if (l->sum_time != l->min_time) {
4053 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4054 l->min_time,
4055 (long)div_u64(l->sum_time, l->count),
4056 l->max_time);
4057 } else
4058 len += sprintf(buf + len, " age=%ld",
4059 l->min_time);
4060
4061 if (l->min_pid != l->max_pid)
4062 len += sprintf(buf + len, " pid=%ld-%ld",
4063 l->min_pid, l->max_pid);
4064 else
4065 len += sprintf(buf + len, " pid=%ld",
4066 l->min_pid);
4067
4068 if (num_online_cpus() > 1 &&
4069 !cpumask_empty(to_cpumask(l->cpus)) &&
4070 len < PAGE_SIZE - 60) {
4071 len += sprintf(buf + len, " cpus=");
4072 len += cpulist_scnprintf(buf + len,
4073 PAGE_SIZE - len - 50,
4074 to_cpumask(l->cpus));
4075 }
4076
4077 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4078 len < PAGE_SIZE - 60) {
4079 len += sprintf(buf + len, " nodes=");
4080 len += nodelist_scnprintf(buf + len,
4081 PAGE_SIZE - len - 50,
4082 l->nodes);
4083 }
4084
4085 len += sprintf(buf + len, "\n");
4086 }
4087
4088 free_loc_track(&t);
4089 kfree(map);
4090 if (!t.count)
4091 len += sprintf(buf, "No data\n");
4092 return len;
4093 }
4094 #endif
4095
4096 #ifdef SLUB_RESILIENCY_TEST
4097 static void __init resiliency_test(void)
4098 {
4099 u8 *p;
4100
4101 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4102
4103 pr_err("SLUB resiliency testing\n");
4104 pr_err("-----------------------\n");
4105 pr_err("A. Corruption after allocation\n");
4106
4107 p = kzalloc(16, GFP_KERNEL);
4108 p[16] = 0x12;
4109 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4110 p + 16);
4111
4112 validate_slab_cache(kmalloc_caches[4]);
4113
4114 /* Hmmm... The next two are dangerous */
4115 p = kzalloc(32, GFP_KERNEL);
4116 p[32 + sizeof(void *)] = 0x34;
4117 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4118 p);
4119 pr_err("If allocated object is overwritten then not detectable\n\n");
4120
4121 validate_slab_cache(kmalloc_caches[5]);
4122 p = kzalloc(64, GFP_KERNEL);
4123 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4124 *p = 0x56;
4125 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4126 p);
4127 pr_err("If allocated object is overwritten then not detectable\n\n");
4128 validate_slab_cache(kmalloc_caches[6]);
4129
4130 pr_err("\nB. Corruption after free\n");
4131 p = kzalloc(128, GFP_KERNEL);
4132 kfree(p);
4133 *p = 0x78;
4134 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4135 validate_slab_cache(kmalloc_caches[7]);
4136
4137 p = kzalloc(256, GFP_KERNEL);
4138 kfree(p);
4139 p[50] = 0x9a;
4140 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4141 validate_slab_cache(kmalloc_caches[8]);
4142
4143 p = kzalloc(512, GFP_KERNEL);
4144 kfree(p);
4145 p[512] = 0xab;
4146 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4147 validate_slab_cache(kmalloc_caches[9]);
4148 }
4149 #else
4150 #ifdef CONFIG_SYSFS
4151 static void resiliency_test(void) {};
4152 #endif
4153 #endif
4154
4155 #ifdef CONFIG_SYSFS
4156 enum slab_stat_type {
4157 SL_ALL, /* All slabs */
4158 SL_PARTIAL, /* Only partially allocated slabs */
4159 SL_CPU, /* Only slabs used for cpu caches */
4160 SL_OBJECTS, /* Determine allocated objects not slabs */
4161 SL_TOTAL /* Determine object capacity not slabs */
4162 };
4163
4164 #define SO_ALL (1 << SL_ALL)
4165 #define SO_PARTIAL (1 << SL_PARTIAL)
4166 #define SO_CPU (1 << SL_CPU)
4167 #define SO_OBJECTS (1 << SL_OBJECTS)
4168 #define SO_TOTAL (1 << SL_TOTAL)
4169
4170 static ssize_t show_slab_objects(struct kmem_cache *s,
4171 char *buf, unsigned long flags)
4172 {
4173 unsigned long total = 0;
4174 int node;
4175 int x;
4176 unsigned long *nodes;
4177
4178 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4179 if (!nodes)
4180 return -ENOMEM;
4181
4182 if (flags & SO_CPU) {
4183 int cpu;
4184
4185 for_each_possible_cpu(cpu) {
4186 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4187 cpu);
4188 int node;
4189 struct page *page;
4190
4191 page = ACCESS_ONCE(c->page);
4192 if (!page)
4193 continue;
4194
4195 node = page_to_nid(page);
4196 if (flags & SO_TOTAL)
4197 x = page->objects;
4198 else if (flags & SO_OBJECTS)
4199 x = page->inuse;
4200 else
4201 x = 1;
4202
4203 total += x;
4204 nodes[node] += x;
4205
4206 page = ACCESS_ONCE(c->partial);
4207 if (page) {
4208 node = page_to_nid(page);
4209 if (flags & SO_TOTAL)
4210 WARN_ON_ONCE(1);
4211 else if (flags & SO_OBJECTS)
4212 WARN_ON_ONCE(1);
4213 else
4214 x = page->pages;
4215 total += x;
4216 nodes[node] += x;
4217 }
4218 }
4219 }
4220
4221 get_online_mems();
4222 #ifdef CONFIG_SLUB_DEBUG
4223 if (flags & SO_ALL) {
4224 struct kmem_cache_node *n;
4225
4226 for_each_kmem_cache_node(s, node, n) {
4227
4228 if (flags & SO_TOTAL)
4229 x = atomic_long_read(&n->total_objects);
4230 else if (flags & SO_OBJECTS)
4231 x = atomic_long_read(&n->total_objects) -
4232 count_partial(n, count_free);
4233 else
4234 x = atomic_long_read(&n->nr_slabs);
4235 total += x;
4236 nodes[node] += x;
4237 }
4238
4239 } else
4240 #endif
4241 if (flags & SO_PARTIAL) {
4242 struct kmem_cache_node *n;
4243
4244 for_each_kmem_cache_node(s, node, n) {
4245 if (flags & SO_TOTAL)
4246 x = count_partial(n, count_total);
4247 else if (flags & SO_OBJECTS)
4248 x = count_partial(n, count_inuse);
4249 else
4250 x = n->nr_partial;
4251 total += x;
4252 nodes[node] += x;
4253 }
4254 }
4255 x = sprintf(buf, "%lu", total);
4256 #ifdef CONFIG_NUMA
4257 for (node = 0; node < nr_node_ids; node++)
4258 if (nodes[node])
4259 x += sprintf(buf + x, " N%d=%lu",
4260 node, nodes[node]);
4261 #endif
4262 put_online_mems();
4263 kfree(nodes);
4264 return x + sprintf(buf + x, "\n");
4265 }
4266
4267 #ifdef CONFIG_SLUB_DEBUG
4268 static int any_slab_objects(struct kmem_cache *s)
4269 {
4270 int node;
4271 struct kmem_cache_node *n;
4272
4273 for_each_kmem_cache_node(s, node, n)
4274 if (atomic_long_read(&n->total_objects))
4275 return 1;
4276
4277 return 0;
4278 }
4279 #endif
4280
4281 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4282 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4283
4284 struct slab_attribute {
4285 struct attribute attr;
4286 ssize_t (*show)(struct kmem_cache *s, char *buf);
4287 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4288 };
4289
4290 #define SLAB_ATTR_RO(_name) \
4291 static struct slab_attribute _name##_attr = \
4292 __ATTR(_name, 0400, _name##_show, NULL)
4293
4294 #define SLAB_ATTR(_name) \
4295 static struct slab_attribute _name##_attr = \
4296 __ATTR(_name, 0600, _name##_show, _name##_store)
4297
4298 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4299 {
4300 return sprintf(buf, "%d\n", s->size);
4301 }
4302 SLAB_ATTR_RO(slab_size);
4303
4304 static ssize_t align_show(struct kmem_cache *s, char *buf)
4305 {
4306 return sprintf(buf, "%d\n", s->align);
4307 }
4308 SLAB_ATTR_RO(align);
4309
4310 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4311 {
4312 return sprintf(buf, "%d\n", s->object_size);
4313 }
4314 SLAB_ATTR_RO(object_size);
4315
4316 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4317 {
4318 return sprintf(buf, "%d\n", oo_objects(s->oo));
4319 }
4320 SLAB_ATTR_RO(objs_per_slab);
4321
4322 static ssize_t order_store(struct kmem_cache *s,
4323 const char *buf, size_t length)
4324 {
4325 unsigned long order;
4326 int err;
4327
4328 err = kstrtoul(buf, 10, &order);
4329 if (err)
4330 return err;
4331
4332 if (order > slub_max_order || order < slub_min_order)
4333 return -EINVAL;
4334
4335 calculate_sizes(s, order);
4336 return length;
4337 }
4338
4339 static ssize_t order_show(struct kmem_cache *s, char *buf)
4340 {
4341 return sprintf(buf, "%d\n", oo_order(s->oo));
4342 }
4343 SLAB_ATTR(order);
4344
4345 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4346 {
4347 return sprintf(buf, "%lu\n", s->min_partial);
4348 }
4349
4350 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4351 size_t length)
4352 {
4353 unsigned long min;
4354 int err;
4355
4356 err = kstrtoul(buf, 10, &min);
4357 if (err)
4358 return err;
4359
4360 set_min_partial(s, min);
4361 return length;
4362 }
4363 SLAB_ATTR(min_partial);
4364
4365 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4366 {
4367 return sprintf(buf, "%u\n", s->cpu_partial);
4368 }
4369
4370 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4371 size_t length)
4372 {
4373 unsigned long objects;
4374 int err;
4375
4376 err = kstrtoul(buf, 10, &objects);
4377 if (err)
4378 return err;
4379 if (objects && !kmem_cache_has_cpu_partial(s))
4380 return -EINVAL;
4381
4382 s->cpu_partial = objects;
4383 flush_all(s);
4384 return length;
4385 }
4386 SLAB_ATTR(cpu_partial);
4387
4388 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4389 {
4390 if (!s->ctor)
4391 return 0;
4392 return sprintf(buf, "%pS\n", s->ctor);
4393 }
4394 SLAB_ATTR_RO(ctor);
4395
4396 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4397 {
4398 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
4399 }
4400 SLAB_ATTR_RO(aliases);
4401
4402 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4403 {
4404 return show_slab_objects(s, buf, SO_PARTIAL);
4405 }
4406 SLAB_ATTR_RO(partial);
4407
4408 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4409 {
4410 return show_slab_objects(s, buf, SO_CPU);
4411 }
4412 SLAB_ATTR_RO(cpu_slabs);
4413
4414 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4415 {
4416 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4417 }
4418 SLAB_ATTR_RO(objects);
4419
4420 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4421 {
4422 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4423 }
4424 SLAB_ATTR_RO(objects_partial);
4425
4426 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4427 {
4428 int objects = 0;
4429 int pages = 0;
4430 int cpu;
4431 int len;
4432
4433 for_each_online_cpu(cpu) {
4434 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4435
4436 if (page) {
4437 pages += page->pages;
4438 objects += page->pobjects;
4439 }
4440 }
4441
4442 len = sprintf(buf, "%d(%d)", objects, pages);
4443
4444 #ifdef CONFIG_SMP
4445 for_each_online_cpu(cpu) {
4446 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4447
4448 if (page && len < PAGE_SIZE - 20)
4449 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4450 page->pobjects, page->pages);
4451 }
4452 #endif
4453 return len + sprintf(buf + len, "\n");
4454 }
4455 SLAB_ATTR_RO(slabs_cpu_partial);
4456
4457 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4458 {
4459 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4460 }
4461
4462 static ssize_t reclaim_account_store(struct kmem_cache *s,
4463 const char *buf, size_t length)
4464 {
4465 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4466 if (buf[0] == '1')
4467 s->flags |= SLAB_RECLAIM_ACCOUNT;
4468 return length;
4469 }
4470 SLAB_ATTR(reclaim_account);
4471
4472 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4473 {
4474 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4475 }
4476 SLAB_ATTR_RO(hwcache_align);
4477
4478 #ifdef CONFIG_ZONE_DMA
4479 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4480 {
4481 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4482 }
4483 SLAB_ATTR_RO(cache_dma);
4484 #endif
4485
4486 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4487 {
4488 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4489 }
4490 SLAB_ATTR_RO(destroy_by_rcu);
4491
4492 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4493 {
4494 return sprintf(buf, "%d\n", s->reserved);
4495 }
4496 SLAB_ATTR_RO(reserved);
4497
4498 #ifdef CONFIG_SLUB_DEBUG
4499 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4500 {
4501 return show_slab_objects(s, buf, SO_ALL);
4502 }
4503 SLAB_ATTR_RO(slabs);
4504
4505 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4506 {
4507 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4508 }
4509 SLAB_ATTR_RO(total_objects);
4510
4511 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4512 {
4513 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4514 }
4515
4516 static ssize_t sanity_checks_store(struct kmem_cache *s,
4517 const char *buf, size_t length)
4518 {
4519 s->flags &= ~SLAB_DEBUG_FREE;
4520 if (buf[0] == '1') {
4521 s->flags &= ~__CMPXCHG_DOUBLE;
4522 s->flags |= SLAB_DEBUG_FREE;
4523 }
4524 return length;
4525 }
4526 SLAB_ATTR(sanity_checks);
4527
4528 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4529 {
4530 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4531 }
4532
4533 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4534 size_t length)
4535 {
4536 /*
4537 * Tracing a merged cache is going to give confusing results
4538 * as well as cause other issues like converting a mergeable
4539 * cache into an umergeable one.
4540 */
4541 if (s->refcount > 1)
4542 return -EINVAL;
4543
4544 s->flags &= ~SLAB_TRACE;
4545 if (buf[0] == '1') {
4546 s->flags &= ~__CMPXCHG_DOUBLE;
4547 s->flags |= SLAB_TRACE;
4548 }
4549 return length;
4550 }
4551 SLAB_ATTR(trace);
4552
4553 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4554 {
4555 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4556 }
4557
4558 static ssize_t red_zone_store(struct kmem_cache *s,
4559 const char *buf, size_t length)
4560 {
4561 if (any_slab_objects(s))
4562 return -EBUSY;
4563
4564 s->flags &= ~SLAB_RED_ZONE;
4565 if (buf[0] == '1') {
4566 s->flags &= ~__CMPXCHG_DOUBLE;
4567 s->flags |= SLAB_RED_ZONE;
4568 }
4569 calculate_sizes(s, -1);
4570 return length;
4571 }
4572 SLAB_ATTR(red_zone);
4573
4574 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4575 {
4576 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4577 }
4578
4579 static ssize_t poison_store(struct kmem_cache *s,
4580 const char *buf, size_t length)
4581 {
4582 if (any_slab_objects(s))
4583 return -EBUSY;
4584
4585 s->flags &= ~SLAB_POISON;
4586 if (buf[0] == '1') {
4587 s->flags &= ~__CMPXCHG_DOUBLE;
4588 s->flags |= SLAB_POISON;
4589 }
4590 calculate_sizes(s, -1);
4591 return length;
4592 }
4593 SLAB_ATTR(poison);
4594
4595 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4596 {
4597 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4598 }
4599
4600 static ssize_t store_user_store(struct kmem_cache *s,
4601 const char *buf, size_t length)
4602 {
4603 if (any_slab_objects(s))
4604 return -EBUSY;
4605
4606 s->flags &= ~SLAB_STORE_USER;
4607 if (buf[0] == '1') {
4608 s->flags &= ~__CMPXCHG_DOUBLE;
4609 s->flags |= SLAB_STORE_USER;
4610 }
4611 calculate_sizes(s, -1);
4612 return length;
4613 }
4614 SLAB_ATTR(store_user);
4615
4616 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4617 {
4618 return 0;
4619 }
4620
4621 static ssize_t validate_store(struct kmem_cache *s,
4622 const char *buf, size_t length)
4623 {
4624 int ret = -EINVAL;
4625
4626 if (buf[0] == '1') {
4627 ret = validate_slab_cache(s);
4628 if (ret >= 0)
4629 ret = length;
4630 }
4631 return ret;
4632 }
4633 SLAB_ATTR(validate);
4634
4635 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4636 {
4637 if (!(s->flags & SLAB_STORE_USER))
4638 return -ENOSYS;
4639 return list_locations(s, buf, TRACK_ALLOC);
4640 }
4641 SLAB_ATTR_RO(alloc_calls);
4642
4643 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4644 {
4645 if (!(s->flags & SLAB_STORE_USER))
4646 return -ENOSYS;
4647 return list_locations(s, buf, TRACK_FREE);
4648 }
4649 SLAB_ATTR_RO(free_calls);
4650 #endif /* CONFIG_SLUB_DEBUG */
4651
4652 #ifdef CONFIG_FAILSLAB
4653 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4654 {
4655 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4656 }
4657
4658 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4659 size_t length)
4660 {
4661 if (s->refcount > 1)
4662 return -EINVAL;
4663
4664 s->flags &= ~SLAB_FAILSLAB;
4665 if (buf[0] == '1')
4666 s->flags |= SLAB_FAILSLAB;
4667 return length;
4668 }
4669 SLAB_ATTR(failslab);
4670 #endif
4671
4672 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4673 {
4674 return 0;
4675 }
4676
4677 static ssize_t shrink_store(struct kmem_cache *s,
4678 const char *buf, size_t length)
4679 {
4680 if (buf[0] == '1') {
4681 int rc = kmem_cache_shrink(s);
4682
4683 if (rc)
4684 return rc;
4685 } else
4686 return -EINVAL;
4687 return length;
4688 }
4689 SLAB_ATTR(shrink);
4690
4691 #ifdef CONFIG_NUMA
4692 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4693 {
4694 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4695 }
4696
4697 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4698 const char *buf, size_t length)
4699 {
4700 unsigned long ratio;
4701 int err;
4702
4703 err = kstrtoul(buf, 10, &ratio);
4704 if (err)
4705 return err;
4706
4707 if (ratio <= 100)
4708 s->remote_node_defrag_ratio = ratio * 10;
4709
4710 return length;
4711 }
4712 SLAB_ATTR(remote_node_defrag_ratio);
4713 #endif
4714
4715 #ifdef CONFIG_SLUB_STATS
4716 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4717 {
4718 unsigned long sum = 0;
4719 int cpu;
4720 int len;
4721 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4722
4723 if (!data)
4724 return -ENOMEM;
4725
4726 for_each_online_cpu(cpu) {
4727 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4728
4729 data[cpu] = x;
4730 sum += x;
4731 }
4732
4733 len = sprintf(buf, "%lu", sum);
4734
4735 #ifdef CONFIG_SMP
4736 for_each_online_cpu(cpu) {
4737 if (data[cpu] && len < PAGE_SIZE - 20)
4738 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4739 }
4740 #endif
4741 kfree(data);
4742 return len + sprintf(buf + len, "\n");
4743 }
4744
4745 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4746 {
4747 int cpu;
4748
4749 for_each_online_cpu(cpu)
4750 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4751 }
4752
4753 #define STAT_ATTR(si, text) \
4754 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4755 { \
4756 return show_stat(s, buf, si); \
4757 } \
4758 static ssize_t text##_store(struct kmem_cache *s, \
4759 const char *buf, size_t length) \
4760 { \
4761 if (buf[0] != '0') \
4762 return -EINVAL; \
4763 clear_stat(s, si); \
4764 return length; \
4765 } \
4766 SLAB_ATTR(text); \
4767
4768 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4769 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4770 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4771 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4772 STAT_ATTR(FREE_FROZEN, free_frozen);
4773 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4774 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4775 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4776 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4777 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4778 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4779 STAT_ATTR(FREE_SLAB, free_slab);
4780 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4781 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4782 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4783 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4784 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4785 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4786 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4787 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4788 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4789 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4790 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4791 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
4792 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
4793 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
4794 #endif
4795
4796 static struct attribute *slab_attrs[] = {
4797 &slab_size_attr.attr,
4798 &object_size_attr.attr,
4799 &objs_per_slab_attr.attr,
4800 &order_attr.attr,
4801 &min_partial_attr.attr,
4802 &cpu_partial_attr.attr,
4803 &objects_attr.attr,
4804 &objects_partial_attr.attr,
4805 &partial_attr.attr,
4806 &cpu_slabs_attr.attr,
4807 &ctor_attr.attr,
4808 &aliases_attr.attr,
4809 &align_attr.attr,
4810 &hwcache_align_attr.attr,
4811 &reclaim_account_attr.attr,
4812 &destroy_by_rcu_attr.attr,
4813 &shrink_attr.attr,
4814 &reserved_attr.attr,
4815 &slabs_cpu_partial_attr.attr,
4816 #ifdef CONFIG_SLUB_DEBUG
4817 &total_objects_attr.attr,
4818 &slabs_attr.attr,
4819 &sanity_checks_attr.attr,
4820 &trace_attr.attr,
4821 &red_zone_attr.attr,
4822 &poison_attr.attr,
4823 &store_user_attr.attr,
4824 &validate_attr.attr,
4825 &alloc_calls_attr.attr,
4826 &free_calls_attr.attr,
4827 #endif
4828 #ifdef CONFIG_ZONE_DMA
4829 &cache_dma_attr.attr,
4830 #endif
4831 #ifdef CONFIG_NUMA
4832 &remote_node_defrag_ratio_attr.attr,
4833 #endif
4834 #ifdef CONFIG_SLUB_STATS
4835 &alloc_fastpath_attr.attr,
4836 &alloc_slowpath_attr.attr,
4837 &free_fastpath_attr.attr,
4838 &free_slowpath_attr.attr,
4839 &free_frozen_attr.attr,
4840 &free_add_partial_attr.attr,
4841 &free_remove_partial_attr.attr,
4842 &alloc_from_partial_attr.attr,
4843 &alloc_slab_attr.attr,
4844 &alloc_refill_attr.attr,
4845 &alloc_node_mismatch_attr.attr,
4846 &free_slab_attr.attr,
4847 &cpuslab_flush_attr.attr,
4848 &deactivate_full_attr.attr,
4849 &deactivate_empty_attr.attr,
4850 &deactivate_to_head_attr.attr,
4851 &deactivate_to_tail_attr.attr,
4852 &deactivate_remote_frees_attr.attr,
4853 &deactivate_bypass_attr.attr,
4854 &order_fallback_attr.attr,
4855 &cmpxchg_double_fail_attr.attr,
4856 &cmpxchg_double_cpu_fail_attr.attr,
4857 &cpu_partial_alloc_attr.attr,
4858 &cpu_partial_free_attr.attr,
4859 &cpu_partial_node_attr.attr,
4860 &cpu_partial_drain_attr.attr,
4861 #endif
4862 #ifdef CONFIG_FAILSLAB
4863 &failslab_attr.attr,
4864 #endif
4865
4866 NULL
4867 };
4868
4869 static struct attribute_group slab_attr_group = {
4870 .attrs = slab_attrs,
4871 };
4872
4873 static ssize_t slab_attr_show(struct kobject *kobj,
4874 struct attribute *attr,
4875 char *buf)
4876 {
4877 struct slab_attribute *attribute;
4878 struct kmem_cache *s;
4879 int err;
4880
4881 attribute = to_slab_attr(attr);
4882 s = to_slab(kobj);
4883
4884 if (!attribute->show)
4885 return -EIO;
4886
4887 err = attribute->show(s, buf);
4888
4889 return err;
4890 }
4891
4892 static ssize_t slab_attr_store(struct kobject *kobj,
4893 struct attribute *attr,
4894 const char *buf, size_t len)
4895 {
4896 struct slab_attribute *attribute;
4897 struct kmem_cache *s;
4898 int err;
4899
4900 attribute = to_slab_attr(attr);
4901 s = to_slab(kobj);
4902
4903 if (!attribute->store)
4904 return -EIO;
4905
4906 err = attribute->store(s, buf, len);
4907 #ifdef CONFIG_MEMCG_KMEM
4908 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
4909 int i;
4910
4911 mutex_lock(&slab_mutex);
4912 if (s->max_attr_size < len)
4913 s->max_attr_size = len;
4914
4915 /*
4916 * This is a best effort propagation, so this function's return
4917 * value will be determined by the parent cache only. This is
4918 * basically because not all attributes will have a well
4919 * defined semantics for rollbacks - most of the actions will
4920 * have permanent effects.
4921 *
4922 * Returning the error value of any of the children that fail
4923 * is not 100 % defined, in the sense that users seeing the
4924 * error code won't be able to know anything about the state of
4925 * the cache.
4926 *
4927 * Only returning the error code for the parent cache at least
4928 * has well defined semantics. The cache being written to
4929 * directly either failed or succeeded, in which case we loop
4930 * through the descendants with best-effort propagation.
4931 */
4932 for_each_memcg_cache_index(i) {
4933 struct kmem_cache *c = cache_from_memcg_idx(s, i);
4934 if (c)
4935 attribute->store(c, buf, len);
4936 }
4937 mutex_unlock(&slab_mutex);
4938 }
4939 #endif
4940 return err;
4941 }
4942
4943 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
4944 {
4945 #ifdef CONFIG_MEMCG_KMEM
4946 int i;
4947 char *buffer = NULL;
4948 struct kmem_cache *root_cache;
4949
4950 if (is_root_cache(s))
4951 return;
4952
4953 root_cache = s->memcg_params->root_cache;
4954
4955 /*
4956 * This mean this cache had no attribute written. Therefore, no point
4957 * in copying default values around
4958 */
4959 if (!root_cache->max_attr_size)
4960 return;
4961
4962 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
4963 char mbuf[64];
4964 char *buf;
4965 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
4966
4967 if (!attr || !attr->store || !attr->show)
4968 continue;
4969
4970 /*
4971 * It is really bad that we have to allocate here, so we will
4972 * do it only as a fallback. If we actually allocate, though,
4973 * we can just use the allocated buffer until the end.
4974 *
4975 * Most of the slub attributes will tend to be very small in
4976 * size, but sysfs allows buffers up to a page, so they can
4977 * theoretically happen.
4978 */
4979 if (buffer)
4980 buf = buffer;
4981 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
4982 buf = mbuf;
4983 else {
4984 buffer = (char *) get_zeroed_page(GFP_KERNEL);
4985 if (WARN_ON(!buffer))
4986 continue;
4987 buf = buffer;
4988 }
4989
4990 attr->show(root_cache, buf);
4991 attr->store(s, buf, strlen(buf));
4992 }
4993
4994 if (buffer)
4995 free_page((unsigned long)buffer);
4996 #endif
4997 }
4998
4999 static void kmem_cache_release(struct kobject *k)
5000 {
5001 slab_kmem_cache_release(to_slab(k));
5002 }
5003
5004 static const struct sysfs_ops slab_sysfs_ops = {
5005 .show = slab_attr_show,
5006 .store = slab_attr_store,
5007 };
5008
5009 static struct kobj_type slab_ktype = {
5010 .sysfs_ops = &slab_sysfs_ops,
5011 .release = kmem_cache_release,
5012 };
5013
5014 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5015 {
5016 struct kobj_type *ktype = get_ktype(kobj);
5017
5018 if (ktype == &slab_ktype)
5019 return 1;
5020 return 0;
5021 }
5022
5023 static const struct kset_uevent_ops slab_uevent_ops = {
5024 .filter = uevent_filter,
5025 };
5026
5027 static struct kset *slab_kset;
5028
5029 static inline struct kset *cache_kset(struct kmem_cache *s)
5030 {
5031 #ifdef CONFIG_MEMCG_KMEM
5032 if (!is_root_cache(s))
5033 return s->memcg_params->root_cache->memcg_kset;
5034 #endif
5035 return slab_kset;
5036 }
5037
5038 #define ID_STR_LENGTH 64
5039
5040 /* Create a unique string id for a slab cache:
5041 *
5042 * Format :[flags-]size
5043 */
5044 static char *create_unique_id(struct kmem_cache *s)
5045 {
5046 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5047 char *p = name;
5048
5049 BUG_ON(!name);
5050
5051 *p++ = ':';
5052 /*
5053 * First flags affecting slabcache operations. We will only
5054 * get here for aliasable slabs so we do not need to support
5055 * too many flags. The flags here must cover all flags that
5056 * are matched during merging to guarantee that the id is
5057 * unique.
5058 */
5059 if (s->flags & SLAB_CACHE_DMA)
5060 *p++ = 'd';
5061 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5062 *p++ = 'a';
5063 if (s->flags & SLAB_DEBUG_FREE)
5064 *p++ = 'F';
5065 if (!(s->flags & SLAB_NOTRACK))
5066 *p++ = 't';
5067 if (p != name + 1)
5068 *p++ = '-';
5069 p += sprintf(p, "%07d", s->size);
5070
5071 BUG_ON(p > name + ID_STR_LENGTH - 1);
5072 return name;
5073 }
5074
5075 static int sysfs_slab_add(struct kmem_cache *s)
5076 {
5077 int err;
5078 const char *name;
5079 int unmergeable = slab_unmergeable(s);
5080
5081 if (unmergeable) {
5082 /*
5083 * Slabcache can never be merged so we can use the name proper.
5084 * This is typically the case for debug situations. In that
5085 * case we can catch duplicate names easily.
5086 */
5087 sysfs_remove_link(&slab_kset->kobj, s->name);
5088 name = s->name;
5089 } else {
5090 /*
5091 * Create a unique name for the slab as a target
5092 * for the symlinks.
5093 */
5094 name = create_unique_id(s);
5095 }
5096
5097 s->kobj.kset = cache_kset(s);
5098 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5099 if (err)
5100 goto out_put_kobj;
5101
5102 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5103 if (err)
5104 goto out_del_kobj;
5105
5106 #ifdef CONFIG_MEMCG_KMEM
5107 if (is_root_cache(s)) {
5108 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5109 if (!s->memcg_kset) {
5110 err = -ENOMEM;
5111 goto out_del_kobj;
5112 }
5113 }
5114 #endif
5115
5116 kobject_uevent(&s->kobj, KOBJ_ADD);
5117 if (!unmergeable) {
5118 /* Setup first alias */
5119 sysfs_slab_alias(s, s->name);
5120 }
5121 out:
5122 if (!unmergeable)
5123 kfree(name);
5124 return err;
5125 out_del_kobj:
5126 kobject_del(&s->kobj);
5127 out_put_kobj:
5128 kobject_put(&s->kobj);
5129 goto out;
5130 }
5131
5132 void sysfs_slab_remove(struct kmem_cache *s)
5133 {
5134 if (slab_state < FULL)
5135 /*
5136 * Sysfs has not been setup yet so no need to remove the
5137 * cache from sysfs.
5138 */
5139 return;
5140
5141 #ifdef CONFIG_MEMCG_KMEM
5142 kset_unregister(s->memcg_kset);
5143 #endif
5144 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5145 kobject_del(&s->kobj);
5146 kobject_put(&s->kobj);
5147 }
5148
5149 /*
5150 * Need to buffer aliases during bootup until sysfs becomes
5151 * available lest we lose that information.
5152 */
5153 struct saved_alias {
5154 struct kmem_cache *s;
5155 const char *name;
5156 struct saved_alias *next;
5157 };
5158
5159 static struct saved_alias *alias_list;
5160
5161 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5162 {
5163 struct saved_alias *al;
5164
5165 if (slab_state == FULL) {
5166 /*
5167 * If we have a leftover link then remove it.
5168 */
5169 sysfs_remove_link(&slab_kset->kobj, name);
5170 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5171 }
5172
5173 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5174 if (!al)
5175 return -ENOMEM;
5176
5177 al->s = s;
5178 al->name = name;
5179 al->next = alias_list;
5180 alias_list = al;
5181 return 0;
5182 }
5183
5184 static int __init slab_sysfs_init(void)
5185 {
5186 struct kmem_cache *s;
5187 int err;
5188
5189 mutex_lock(&slab_mutex);
5190
5191 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5192 if (!slab_kset) {
5193 mutex_unlock(&slab_mutex);
5194 pr_err("Cannot register slab subsystem.\n");
5195 return -ENOSYS;
5196 }
5197
5198 slab_state = FULL;
5199
5200 list_for_each_entry(s, &slab_caches, list) {
5201 err = sysfs_slab_add(s);
5202 if (err)
5203 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5204 s->name);
5205 }
5206
5207 while (alias_list) {
5208 struct saved_alias *al = alias_list;
5209
5210 alias_list = alias_list->next;
5211 err = sysfs_slab_alias(al->s, al->name);
5212 if (err)
5213 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5214 al->name);
5215 kfree(al);
5216 }
5217
5218 mutex_unlock(&slab_mutex);
5219 resiliency_test();
5220 return 0;
5221 }
5222
5223 __initcall(slab_sysfs_init);
5224 #endif /* CONFIG_SYSFS */
5225
5226 /*
5227 * The /proc/slabinfo ABI
5228 */
5229 #ifdef CONFIG_SLABINFO
5230 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5231 {
5232 unsigned long nr_slabs = 0;
5233 unsigned long nr_objs = 0;
5234 unsigned long nr_free = 0;
5235 int node;
5236 struct kmem_cache_node *n;
5237
5238 for_each_kmem_cache_node(s, node, n) {
5239 nr_slabs += node_nr_slabs(n);
5240 nr_objs += node_nr_objs(n);
5241 nr_free += count_partial(n, count_free);
5242 }
5243
5244 sinfo->active_objs = nr_objs - nr_free;
5245 sinfo->num_objs = nr_objs;
5246 sinfo->active_slabs = nr_slabs;
5247 sinfo->num_slabs = nr_slabs;
5248 sinfo->objects_per_slab = oo_objects(s->oo);
5249 sinfo->cache_order = oo_order(s->oo);
5250 }
5251
5252 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5253 {
5254 }
5255
5256 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5257 size_t count, loff_t *ppos)
5258 {
5259 return -EIO;
5260 }
5261 #endif /* CONFIG_SLABINFO */
This page took 0.139753 seconds and 5 git commands to generate.