slub - fix get_object_page comment
[deliverable/linux.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 */
10
11 #include <linux/mm.h>
12 #include <linux/module.h>
13 #include <linux/bit_spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/proc_fs.h>
18 #include <linux/seq_file.h>
19 #include <linux/cpu.h>
20 #include <linux/cpuset.h>
21 #include <linux/mempolicy.h>
22 #include <linux/ctype.h>
23 #include <linux/debugobjects.h>
24 #include <linux/kallsyms.h>
25 #include <linux/memory.h>
26 #include <linux/math64.h>
27
28 /*
29 * Lock order:
30 * 1. slab_lock(page)
31 * 2. slab->list_lock
32 *
33 * The slab_lock protects operations on the object of a particular
34 * slab and its metadata in the page struct. If the slab lock
35 * has been taken then no allocations nor frees can be performed
36 * on the objects in the slab nor can the slab be added or removed
37 * from the partial or full lists since this would mean modifying
38 * the page_struct of the slab.
39 *
40 * The list_lock protects the partial and full list on each node and
41 * the partial slab counter. If taken then no new slabs may be added or
42 * removed from the lists nor make the number of partial slabs be modified.
43 * (Note that the total number of slabs is an atomic value that may be
44 * modified without taking the list lock).
45 *
46 * The list_lock is a centralized lock and thus we avoid taking it as
47 * much as possible. As long as SLUB does not have to handle partial
48 * slabs, operations can continue without any centralized lock. F.e.
49 * allocating a long series of objects that fill up slabs does not require
50 * the list lock.
51 *
52 * The lock order is sometimes inverted when we are trying to get a slab
53 * off a list. We take the list_lock and then look for a page on the list
54 * to use. While we do that objects in the slabs may be freed. We can
55 * only operate on the slab if we have also taken the slab_lock. So we use
56 * a slab_trylock() on the slab. If trylock was successful then no frees
57 * can occur anymore and we can use the slab for allocations etc. If the
58 * slab_trylock() does not succeed then frees are in progress in the slab and
59 * we must stay away from it for a while since we may cause a bouncing
60 * cacheline if we try to acquire the lock. So go onto the next slab.
61 * If all pages are busy then we may allocate a new slab instead of reusing
62 * a partial slab. A new slab has noone operating on it and thus there is
63 * no danger of cacheline contention.
64 *
65 * Interrupts are disabled during allocation and deallocation in order to
66 * make the slab allocator safe to use in the context of an irq. In addition
67 * interrupts are disabled to ensure that the processor does not change
68 * while handling per_cpu slabs, due to kernel preemption.
69 *
70 * SLUB assigns one slab for allocation to each processor.
71 * Allocations only occur from these slabs called cpu slabs.
72 *
73 * Slabs with free elements are kept on a partial list and during regular
74 * operations no list for full slabs is used. If an object in a full slab is
75 * freed then the slab will show up again on the partial lists.
76 * We track full slabs for debugging purposes though because otherwise we
77 * cannot scan all objects.
78 *
79 * Slabs are freed when they become empty. Teardown and setup is
80 * minimal so we rely on the page allocators per cpu caches for
81 * fast frees and allocs.
82 *
83 * Overloading of page flags that are otherwise used for LRU management.
84 *
85 * PageActive The slab is frozen and exempt from list processing.
86 * This means that the slab is dedicated to a purpose
87 * such as satisfying allocations for a specific
88 * processor. Objects may be freed in the slab while
89 * it is frozen but slab_free will then skip the usual
90 * list operations. It is up to the processor holding
91 * the slab to integrate the slab into the slab lists
92 * when the slab is no longer needed.
93 *
94 * One use of this flag is to mark slabs that are
95 * used for allocations. Then such a slab becomes a cpu
96 * slab. The cpu slab may be equipped with an additional
97 * freelist that allows lockless access to
98 * free objects in addition to the regular freelist
99 * that requires the slab lock.
100 *
101 * PageError Slab requires special handling due to debug
102 * options set. This moves slab handling out of
103 * the fast path and disables lockless freelists.
104 */
105
106 #ifdef CONFIG_SLUB_DEBUG
107 #define SLABDEBUG 1
108 #else
109 #define SLABDEBUG 0
110 #endif
111
112 /*
113 * Issues still to be resolved:
114 *
115 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
116 *
117 * - Variable sizing of the per node arrays
118 */
119
120 /* Enable to test recovery from slab corruption on boot */
121 #undef SLUB_RESILIENCY_TEST
122
123 /*
124 * Mininum number of partial slabs. These will be left on the partial
125 * lists even if they are empty. kmem_cache_shrink may reclaim them.
126 */
127 #define MIN_PARTIAL 5
128
129 /*
130 * Maximum number of desirable partial slabs.
131 * The existence of more partial slabs makes kmem_cache_shrink
132 * sort the partial list by the number of objects in the.
133 */
134 #define MAX_PARTIAL 10
135
136 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
137 SLAB_POISON | SLAB_STORE_USER)
138
139 /*
140 * Set of flags that will prevent slab merging
141 */
142 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
143 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
144
145 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
146 SLAB_CACHE_DMA)
147
148 #ifndef ARCH_KMALLOC_MINALIGN
149 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
150 #endif
151
152 #ifndef ARCH_SLAB_MINALIGN
153 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
154 #endif
155
156 #define OO_SHIFT 16
157 #define OO_MASK ((1 << OO_SHIFT) - 1)
158 #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
159
160 /* Internal SLUB flags */
161 #define __OBJECT_POISON 0x80000000 /* Poison object */
162 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
163
164 static int kmem_size = sizeof(struct kmem_cache);
165
166 #ifdef CONFIG_SMP
167 static struct notifier_block slab_notifier;
168 #endif
169
170 static enum {
171 DOWN, /* No slab functionality available */
172 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
173 UP, /* Everything works but does not show up in sysfs */
174 SYSFS /* Sysfs up */
175 } slab_state = DOWN;
176
177 /* A list of all slab caches on the system */
178 static DECLARE_RWSEM(slub_lock);
179 static LIST_HEAD(slab_caches);
180
181 /*
182 * Tracking user of a slab.
183 */
184 struct track {
185 unsigned long addr; /* Called from address */
186 int cpu; /* Was running on cpu */
187 int pid; /* Pid context */
188 unsigned long when; /* When did the operation occur */
189 };
190
191 enum track_item { TRACK_ALLOC, TRACK_FREE };
192
193 #ifdef CONFIG_SLUB_DEBUG
194 static int sysfs_slab_add(struct kmem_cache *);
195 static int sysfs_slab_alias(struct kmem_cache *, const char *);
196 static void sysfs_slab_remove(struct kmem_cache *);
197
198 #else
199 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
200 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
201 { return 0; }
202 static inline void sysfs_slab_remove(struct kmem_cache *s)
203 {
204 kfree(s);
205 }
206
207 #endif
208
209 static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
210 {
211 #ifdef CONFIG_SLUB_STATS
212 c->stat[si]++;
213 #endif
214 }
215
216 /********************************************************************
217 * Core slab cache functions
218 *******************************************************************/
219
220 int slab_is_available(void)
221 {
222 return slab_state >= UP;
223 }
224
225 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
226 {
227 #ifdef CONFIG_NUMA
228 return s->node[node];
229 #else
230 return &s->local_node;
231 #endif
232 }
233
234 static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
235 {
236 #ifdef CONFIG_SMP
237 return s->cpu_slab[cpu];
238 #else
239 return &s->cpu_slab;
240 #endif
241 }
242
243 /* Verify that a pointer has an address that is valid within a slab page */
244 static inline int check_valid_pointer(struct kmem_cache *s,
245 struct page *page, const void *object)
246 {
247 void *base;
248
249 if (!object)
250 return 1;
251
252 base = page_address(page);
253 if (object < base || object >= base + page->objects * s->size ||
254 (object - base) % s->size) {
255 return 0;
256 }
257
258 return 1;
259 }
260
261 /*
262 * Slow version of get and set free pointer.
263 *
264 * This version requires touching the cache lines of kmem_cache which
265 * we avoid to do in the fast alloc free paths. There we obtain the offset
266 * from the page struct.
267 */
268 static inline void *get_freepointer(struct kmem_cache *s, void *object)
269 {
270 return *(void **)(object + s->offset);
271 }
272
273 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
274 {
275 *(void **)(object + s->offset) = fp;
276 }
277
278 /* Loop over all objects in a slab */
279 #define for_each_object(__p, __s, __addr, __objects) \
280 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
281 __p += (__s)->size)
282
283 /* Scan freelist */
284 #define for_each_free_object(__p, __s, __free) \
285 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
286
287 /* Determine object index from a given position */
288 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
289 {
290 return (p - addr) / s->size;
291 }
292
293 static inline struct kmem_cache_order_objects oo_make(int order,
294 unsigned long size)
295 {
296 struct kmem_cache_order_objects x = {
297 (order << OO_SHIFT) + (PAGE_SIZE << order) / size
298 };
299
300 return x;
301 }
302
303 static inline int oo_order(struct kmem_cache_order_objects x)
304 {
305 return x.x >> OO_SHIFT;
306 }
307
308 static inline int oo_objects(struct kmem_cache_order_objects x)
309 {
310 return x.x & OO_MASK;
311 }
312
313 #ifdef CONFIG_SLUB_DEBUG
314 /*
315 * Debug settings:
316 */
317 #ifdef CONFIG_SLUB_DEBUG_ON
318 static int slub_debug = DEBUG_DEFAULT_FLAGS;
319 #else
320 static int slub_debug;
321 #endif
322
323 static char *slub_debug_slabs;
324
325 /*
326 * Object debugging
327 */
328 static void print_section(char *text, u8 *addr, unsigned int length)
329 {
330 int i, offset;
331 int newline = 1;
332 char ascii[17];
333
334 ascii[16] = 0;
335
336 for (i = 0; i < length; i++) {
337 if (newline) {
338 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
339 newline = 0;
340 }
341 printk(KERN_CONT " %02x", addr[i]);
342 offset = i % 16;
343 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
344 if (offset == 15) {
345 printk(KERN_CONT " %s\n", ascii);
346 newline = 1;
347 }
348 }
349 if (!newline) {
350 i %= 16;
351 while (i < 16) {
352 printk(KERN_CONT " ");
353 ascii[i] = ' ';
354 i++;
355 }
356 printk(KERN_CONT " %s\n", ascii);
357 }
358 }
359
360 static struct track *get_track(struct kmem_cache *s, void *object,
361 enum track_item alloc)
362 {
363 struct track *p;
364
365 if (s->offset)
366 p = object + s->offset + sizeof(void *);
367 else
368 p = object + s->inuse;
369
370 return p + alloc;
371 }
372
373 static void set_track(struct kmem_cache *s, void *object,
374 enum track_item alloc, unsigned long addr)
375 {
376 struct track *p;
377
378 if (s->offset)
379 p = object + s->offset + sizeof(void *);
380 else
381 p = object + s->inuse;
382
383 p += alloc;
384 if (addr) {
385 p->addr = addr;
386 p->cpu = smp_processor_id();
387 p->pid = current->pid;
388 p->when = jiffies;
389 } else
390 memset(p, 0, sizeof(struct track));
391 }
392
393 static void init_tracking(struct kmem_cache *s, void *object)
394 {
395 if (!(s->flags & SLAB_STORE_USER))
396 return;
397
398 set_track(s, object, TRACK_FREE, 0UL);
399 set_track(s, object, TRACK_ALLOC, 0UL);
400 }
401
402 static void print_track(const char *s, struct track *t)
403 {
404 if (!t->addr)
405 return;
406
407 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
408 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
409 }
410
411 static void print_tracking(struct kmem_cache *s, void *object)
412 {
413 if (!(s->flags & SLAB_STORE_USER))
414 return;
415
416 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
417 print_track("Freed", get_track(s, object, TRACK_FREE));
418 }
419
420 static void print_page_info(struct page *page)
421 {
422 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
423 page, page->objects, page->inuse, page->freelist, page->flags);
424
425 }
426
427 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
428 {
429 va_list args;
430 char buf[100];
431
432 va_start(args, fmt);
433 vsnprintf(buf, sizeof(buf), fmt, args);
434 va_end(args);
435 printk(KERN_ERR "========================================"
436 "=====================================\n");
437 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
438 printk(KERN_ERR "----------------------------------------"
439 "-------------------------------------\n\n");
440 }
441
442 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
443 {
444 va_list args;
445 char buf[100];
446
447 va_start(args, fmt);
448 vsnprintf(buf, sizeof(buf), fmt, args);
449 va_end(args);
450 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
451 }
452
453 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
454 {
455 unsigned int off; /* Offset of last byte */
456 u8 *addr = page_address(page);
457
458 print_tracking(s, p);
459
460 print_page_info(page);
461
462 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
463 p, p - addr, get_freepointer(s, p));
464
465 if (p > addr + 16)
466 print_section("Bytes b4", p - 16, 16);
467
468 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
469
470 if (s->flags & SLAB_RED_ZONE)
471 print_section("Redzone", p + s->objsize,
472 s->inuse - s->objsize);
473
474 if (s->offset)
475 off = s->offset + sizeof(void *);
476 else
477 off = s->inuse;
478
479 if (s->flags & SLAB_STORE_USER)
480 off += 2 * sizeof(struct track);
481
482 if (off != s->size)
483 /* Beginning of the filler is the free pointer */
484 print_section("Padding", p + off, s->size - off);
485
486 dump_stack();
487 }
488
489 static void object_err(struct kmem_cache *s, struct page *page,
490 u8 *object, char *reason)
491 {
492 slab_bug(s, "%s", reason);
493 print_trailer(s, page, object);
494 }
495
496 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
497 {
498 va_list args;
499 char buf[100];
500
501 va_start(args, fmt);
502 vsnprintf(buf, sizeof(buf), fmt, args);
503 va_end(args);
504 slab_bug(s, "%s", buf);
505 print_page_info(page);
506 dump_stack();
507 }
508
509 static void init_object(struct kmem_cache *s, void *object, int active)
510 {
511 u8 *p = object;
512
513 if (s->flags & __OBJECT_POISON) {
514 memset(p, POISON_FREE, s->objsize - 1);
515 p[s->objsize - 1] = POISON_END;
516 }
517
518 if (s->flags & SLAB_RED_ZONE)
519 memset(p + s->objsize,
520 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
521 s->inuse - s->objsize);
522 }
523
524 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
525 {
526 while (bytes) {
527 if (*start != (u8)value)
528 return start;
529 start++;
530 bytes--;
531 }
532 return NULL;
533 }
534
535 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
536 void *from, void *to)
537 {
538 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
539 memset(from, data, to - from);
540 }
541
542 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
543 u8 *object, char *what,
544 u8 *start, unsigned int value, unsigned int bytes)
545 {
546 u8 *fault;
547 u8 *end;
548
549 fault = check_bytes(start, value, bytes);
550 if (!fault)
551 return 1;
552
553 end = start + bytes;
554 while (end > fault && end[-1] == value)
555 end--;
556
557 slab_bug(s, "%s overwritten", what);
558 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
559 fault, end - 1, fault[0], value);
560 print_trailer(s, page, object);
561
562 restore_bytes(s, what, value, fault, end);
563 return 0;
564 }
565
566 /*
567 * Object layout:
568 *
569 * object address
570 * Bytes of the object to be managed.
571 * If the freepointer may overlay the object then the free
572 * pointer is the first word of the object.
573 *
574 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
575 * 0xa5 (POISON_END)
576 *
577 * object + s->objsize
578 * Padding to reach word boundary. This is also used for Redzoning.
579 * Padding is extended by another word if Redzoning is enabled and
580 * objsize == inuse.
581 *
582 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
583 * 0xcc (RED_ACTIVE) for objects in use.
584 *
585 * object + s->inuse
586 * Meta data starts here.
587 *
588 * A. Free pointer (if we cannot overwrite object on free)
589 * B. Tracking data for SLAB_STORE_USER
590 * C. Padding to reach required alignment boundary or at mininum
591 * one word if debugging is on to be able to detect writes
592 * before the word boundary.
593 *
594 * Padding is done using 0x5a (POISON_INUSE)
595 *
596 * object + s->size
597 * Nothing is used beyond s->size.
598 *
599 * If slabcaches are merged then the objsize and inuse boundaries are mostly
600 * ignored. And therefore no slab options that rely on these boundaries
601 * may be used with merged slabcaches.
602 */
603
604 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
605 {
606 unsigned long off = s->inuse; /* The end of info */
607
608 if (s->offset)
609 /* Freepointer is placed after the object. */
610 off += sizeof(void *);
611
612 if (s->flags & SLAB_STORE_USER)
613 /* We also have user information there */
614 off += 2 * sizeof(struct track);
615
616 if (s->size == off)
617 return 1;
618
619 return check_bytes_and_report(s, page, p, "Object padding",
620 p + off, POISON_INUSE, s->size - off);
621 }
622
623 /* Check the pad bytes at the end of a slab page */
624 static int slab_pad_check(struct kmem_cache *s, struct page *page)
625 {
626 u8 *start;
627 u8 *fault;
628 u8 *end;
629 int length;
630 int remainder;
631
632 if (!(s->flags & SLAB_POISON))
633 return 1;
634
635 start = page_address(page);
636 length = (PAGE_SIZE << compound_order(page));
637 end = start + length;
638 remainder = length % s->size;
639 if (!remainder)
640 return 1;
641
642 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
643 if (!fault)
644 return 1;
645 while (end > fault && end[-1] == POISON_INUSE)
646 end--;
647
648 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
649 print_section("Padding", end - remainder, remainder);
650
651 restore_bytes(s, "slab padding", POISON_INUSE, start, end);
652 return 0;
653 }
654
655 static int check_object(struct kmem_cache *s, struct page *page,
656 void *object, int active)
657 {
658 u8 *p = object;
659 u8 *endobject = object + s->objsize;
660
661 if (s->flags & SLAB_RED_ZONE) {
662 unsigned int red =
663 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
664
665 if (!check_bytes_and_report(s, page, object, "Redzone",
666 endobject, red, s->inuse - s->objsize))
667 return 0;
668 } else {
669 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
670 check_bytes_and_report(s, page, p, "Alignment padding",
671 endobject, POISON_INUSE, s->inuse - s->objsize);
672 }
673 }
674
675 if (s->flags & SLAB_POISON) {
676 if (!active && (s->flags & __OBJECT_POISON) &&
677 (!check_bytes_and_report(s, page, p, "Poison", p,
678 POISON_FREE, s->objsize - 1) ||
679 !check_bytes_and_report(s, page, p, "Poison",
680 p + s->objsize - 1, POISON_END, 1)))
681 return 0;
682 /*
683 * check_pad_bytes cleans up on its own.
684 */
685 check_pad_bytes(s, page, p);
686 }
687
688 if (!s->offset && active)
689 /*
690 * Object and freepointer overlap. Cannot check
691 * freepointer while object is allocated.
692 */
693 return 1;
694
695 /* Check free pointer validity */
696 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
697 object_err(s, page, p, "Freepointer corrupt");
698 /*
699 * No choice but to zap it and thus loose the remainder
700 * of the free objects in this slab. May cause
701 * another error because the object count is now wrong.
702 */
703 set_freepointer(s, p, NULL);
704 return 0;
705 }
706 return 1;
707 }
708
709 static int check_slab(struct kmem_cache *s, struct page *page)
710 {
711 int maxobj;
712
713 VM_BUG_ON(!irqs_disabled());
714
715 if (!PageSlab(page)) {
716 slab_err(s, page, "Not a valid slab page");
717 return 0;
718 }
719
720 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
721 if (page->objects > maxobj) {
722 slab_err(s, page, "objects %u > max %u",
723 s->name, page->objects, maxobj);
724 return 0;
725 }
726 if (page->inuse > page->objects) {
727 slab_err(s, page, "inuse %u > max %u",
728 s->name, page->inuse, page->objects);
729 return 0;
730 }
731 /* Slab_pad_check fixes things up after itself */
732 slab_pad_check(s, page);
733 return 1;
734 }
735
736 /*
737 * Determine if a certain object on a page is on the freelist. Must hold the
738 * slab lock to guarantee that the chains are in a consistent state.
739 */
740 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
741 {
742 int nr = 0;
743 void *fp = page->freelist;
744 void *object = NULL;
745 unsigned long max_objects;
746
747 while (fp && nr <= page->objects) {
748 if (fp == search)
749 return 1;
750 if (!check_valid_pointer(s, page, fp)) {
751 if (object) {
752 object_err(s, page, object,
753 "Freechain corrupt");
754 set_freepointer(s, object, NULL);
755 break;
756 } else {
757 slab_err(s, page, "Freepointer corrupt");
758 page->freelist = NULL;
759 page->inuse = page->objects;
760 slab_fix(s, "Freelist cleared");
761 return 0;
762 }
763 break;
764 }
765 object = fp;
766 fp = get_freepointer(s, object);
767 nr++;
768 }
769
770 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
771 if (max_objects > MAX_OBJS_PER_PAGE)
772 max_objects = MAX_OBJS_PER_PAGE;
773
774 if (page->objects != max_objects) {
775 slab_err(s, page, "Wrong number of objects. Found %d but "
776 "should be %d", page->objects, max_objects);
777 page->objects = max_objects;
778 slab_fix(s, "Number of objects adjusted.");
779 }
780 if (page->inuse != page->objects - nr) {
781 slab_err(s, page, "Wrong object count. Counter is %d but "
782 "counted were %d", page->inuse, page->objects - nr);
783 page->inuse = page->objects - nr;
784 slab_fix(s, "Object count adjusted.");
785 }
786 return search == NULL;
787 }
788
789 static void trace(struct kmem_cache *s, struct page *page, void *object,
790 int alloc)
791 {
792 if (s->flags & SLAB_TRACE) {
793 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
794 s->name,
795 alloc ? "alloc" : "free",
796 object, page->inuse,
797 page->freelist);
798
799 if (!alloc)
800 print_section("Object", (void *)object, s->objsize);
801
802 dump_stack();
803 }
804 }
805
806 /*
807 * Tracking of fully allocated slabs for debugging purposes.
808 */
809 static void add_full(struct kmem_cache_node *n, struct page *page)
810 {
811 spin_lock(&n->list_lock);
812 list_add(&page->lru, &n->full);
813 spin_unlock(&n->list_lock);
814 }
815
816 static void remove_full(struct kmem_cache *s, struct page *page)
817 {
818 struct kmem_cache_node *n;
819
820 if (!(s->flags & SLAB_STORE_USER))
821 return;
822
823 n = get_node(s, page_to_nid(page));
824
825 spin_lock(&n->list_lock);
826 list_del(&page->lru);
827 spin_unlock(&n->list_lock);
828 }
829
830 /* Tracking of the number of slabs for debugging purposes */
831 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
832 {
833 struct kmem_cache_node *n = get_node(s, node);
834
835 return atomic_long_read(&n->nr_slabs);
836 }
837
838 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
839 {
840 struct kmem_cache_node *n = get_node(s, node);
841
842 /*
843 * May be called early in order to allocate a slab for the
844 * kmem_cache_node structure. Solve the chicken-egg
845 * dilemma by deferring the increment of the count during
846 * bootstrap (see early_kmem_cache_node_alloc).
847 */
848 if (!NUMA_BUILD || n) {
849 atomic_long_inc(&n->nr_slabs);
850 atomic_long_add(objects, &n->total_objects);
851 }
852 }
853 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
854 {
855 struct kmem_cache_node *n = get_node(s, node);
856
857 atomic_long_dec(&n->nr_slabs);
858 atomic_long_sub(objects, &n->total_objects);
859 }
860
861 /* Object debug checks for alloc/free paths */
862 static void setup_object_debug(struct kmem_cache *s, struct page *page,
863 void *object)
864 {
865 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
866 return;
867
868 init_object(s, object, 0);
869 init_tracking(s, object);
870 }
871
872 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
873 void *object, unsigned long addr)
874 {
875 if (!check_slab(s, page))
876 goto bad;
877
878 if (!on_freelist(s, page, object)) {
879 object_err(s, page, object, "Object already allocated");
880 goto bad;
881 }
882
883 if (!check_valid_pointer(s, page, object)) {
884 object_err(s, page, object, "Freelist Pointer check fails");
885 goto bad;
886 }
887
888 if (!check_object(s, page, object, 0))
889 goto bad;
890
891 /* Success perform special debug activities for allocs */
892 if (s->flags & SLAB_STORE_USER)
893 set_track(s, object, TRACK_ALLOC, addr);
894 trace(s, page, object, 1);
895 init_object(s, object, 1);
896 return 1;
897
898 bad:
899 if (PageSlab(page)) {
900 /*
901 * If this is a slab page then lets do the best we can
902 * to avoid issues in the future. Marking all objects
903 * as used avoids touching the remaining objects.
904 */
905 slab_fix(s, "Marking all objects used");
906 page->inuse = page->objects;
907 page->freelist = NULL;
908 }
909 return 0;
910 }
911
912 static int free_debug_processing(struct kmem_cache *s, struct page *page,
913 void *object, unsigned long addr)
914 {
915 if (!check_slab(s, page))
916 goto fail;
917
918 if (!check_valid_pointer(s, page, object)) {
919 slab_err(s, page, "Invalid object pointer 0x%p", object);
920 goto fail;
921 }
922
923 if (on_freelist(s, page, object)) {
924 object_err(s, page, object, "Object already free");
925 goto fail;
926 }
927
928 if (!check_object(s, page, object, 1))
929 return 0;
930
931 if (unlikely(s != page->slab)) {
932 if (!PageSlab(page)) {
933 slab_err(s, page, "Attempt to free object(0x%p) "
934 "outside of slab", object);
935 } else if (!page->slab) {
936 printk(KERN_ERR
937 "SLUB <none>: no slab for object 0x%p.\n",
938 object);
939 dump_stack();
940 } else
941 object_err(s, page, object,
942 "page slab pointer corrupt.");
943 goto fail;
944 }
945
946 /* Special debug activities for freeing objects */
947 if (!PageSlubFrozen(page) && !page->freelist)
948 remove_full(s, page);
949 if (s->flags & SLAB_STORE_USER)
950 set_track(s, object, TRACK_FREE, addr);
951 trace(s, page, object, 0);
952 init_object(s, object, 0);
953 return 1;
954
955 fail:
956 slab_fix(s, "Object at 0x%p not freed", object);
957 return 0;
958 }
959
960 static int __init setup_slub_debug(char *str)
961 {
962 slub_debug = DEBUG_DEFAULT_FLAGS;
963 if (*str++ != '=' || !*str)
964 /*
965 * No options specified. Switch on full debugging.
966 */
967 goto out;
968
969 if (*str == ',')
970 /*
971 * No options but restriction on slabs. This means full
972 * debugging for slabs matching a pattern.
973 */
974 goto check_slabs;
975
976 slub_debug = 0;
977 if (*str == '-')
978 /*
979 * Switch off all debugging measures.
980 */
981 goto out;
982
983 /*
984 * Determine which debug features should be switched on
985 */
986 for (; *str && *str != ','; str++) {
987 switch (tolower(*str)) {
988 case 'f':
989 slub_debug |= SLAB_DEBUG_FREE;
990 break;
991 case 'z':
992 slub_debug |= SLAB_RED_ZONE;
993 break;
994 case 'p':
995 slub_debug |= SLAB_POISON;
996 break;
997 case 'u':
998 slub_debug |= SLAB_STORE_USER;
999 break;
1000 case 't':
1001 slub_debug |= SLAB_TRACE;
1002 break;
1003 default:
1004 printk(KERN_ERR "slub_debug option '%c' "
1005 "unknown. skipped\n", *str);
1006 }
1007 }
1008
1009 check_slabs:
1010 if (*str == ',')
1011 slub_debug_slabs = str + 1;
1012 out:
1013 return 1;
1014 }
1015
1016 __setup("slub_debug", setup_slub_debug);
1017
1018 static unsigned long kmem_cache_flags(unsigned long objsize,
1019 unsigned long flags, const char *name,
1020 void (*ctor)(void *))
1021 {
1022 /*
1023 * Enable debugging if selected on the kernel commandline.
1024 */
1025 if (slub_debug && (!slub_debug_slabs ||
1026 strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
1027 flags |= slub_debug;
1028
1029 return flags;
1030 }
1031 #else
1032 static inline void setup_object_debug(struct kmem_cache *s,
1033 struct page *page, void *object) {}
1034
1035 static inline int alloc_debug_processing(struct kmem_cache *s,
1036 struct page *page, void *object, unsigned long addr) { return 0; }
1037
1038 static inline int free_debug_processing(struct kmem_cache *s,
1039 struct page *page, void *object, unsigned long addr) { return 0; }
1040
1041 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1042 { return 1; }
1043 static inline int check_object(struct kmem_cache *s, struct page *page,
1044 void *object, int active) { return 1; }
1045 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1046 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1047 unsigned long flags, const char *name,
1048 void (*ctor)(void *))
1049 {
1050 return flags;
1051 }
1052 #define slub_debug 0
1053
1054 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1055 { return 0; }
1056 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1057 int objects) {}
1058 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1059 int objects) {}
1060 #endif
1061
1062 /*
1063 * Slab allocation and freeing
1064 */
1065 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1066 struct kmem_cache_order_objects oo)
1067 {
1068 int order = oo_order(oo);
1069
1070 if (node == -1)
1071 return alloc_pages(flags, order);
1072 else
1073 return alloc_pages_node(node, flags, order);
1074 }
1075
1076 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1077 {
1078 struct page *page;
1079 struct kmem_cache_order_objects oo = s->oo;
1080
1081 flags |= s->allocflags;
1082
1083 page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node,
1084 oo);
1085 if (unlikely(!page)) {
1086 oo = s->min;
1087 /*
1088 * Allocation may have failed due to fragmentation.
1089 * Try a lower order alloc if possible
1090 */
1091 page = alloc_slab_page(flags, node, oo);
1092 if (!page)
1093 return NULL;
1094
1095 stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
1096 }
1097 page->objects = oo_objects(oo);
1098 mod_zone_page_state(page_zone(page),
1099 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1100 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1101 1 << oo_order(oo));
1102
1103 return page;
1104 }
1105
1106 static void setup_object(struct kmem_cache *s, struct page *page,
1107 void *object)
1108 {
1109 setup_object_debug(s, page, object);
1110 if (unlikely(s->ctor))
1111 s->ctor(object);
1112 }
1113
1114 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1115 {
1116 struct page *page;
1117 void *start;
1118 void *last;
1119 void *p;
1120
1121 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1122
1123 page = allocate_slab(s,
1124 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1125 if (!page)
1126 goto out;
1127
1128 inc_slabs_node(s, page_to_nid(page), page->objects);
1129 page->slab = s;
1130 page->flags |= 1 << PG_slab;
1131 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1132 SLAB_STORE_USER | SLAB_TRACE))
1133 __SetPageSlubDebug(page);
1134
1135 start = page_address(page);
1136
1137 if (unlikely(s->flags & SLAB_POISON))
1138 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1139
1140 last = start;
1141 for_each_object(p, s, start, page->objects) {
1142 setup_object(s, page, last);
1143 set_freepointer(s, last, p);
1144 last = p;
1145 }
1146 setup_object(s, page, last);
1147 set_freepointer(s, last, NULL);
1148
1149 page->freelist = start;
1150 page->inuse = 0;
1151 out:
1152 return page;
1153 }
1154
1155 static void __free_slab(struct kmem_cache *s, struct page *page)
1156 {
1157 int order = compound_order(page);
1158 int pages = 1 << order;
1159
1160 if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
1161 void *p;
1162
1163 slab_pad_check(s, page);
1164 for_each_object(p, s, page_address(page),
1165 page->objects)
1166 check_object(s, page, p, 0);
1167 __ClearPageSlubDebug(page);
1168 }
1169
1170 mod_zone_page_state(page_zone(page),
1171 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1172 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1173 -pages);
1174
1175 __ClearPageSlab(page);
1176 reset_page_mapcount(page);
1177 __free_pages(page, order);
1178 }
1179
1180 static void rcu_free_slab(struct rcu_head *h)
1181 {
1182 struct page *page;
1183
1184 page = container_of((struct list_head *)h, struct page, lru);
1185 __free_slab(page->slab, page);
1186 }
1187
1188 static void free_slab(struct kmem_cache *s, struct page *page)
1189 {
1190 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1191 /*
1192 * RCU free overloads the RCU head over the LRU
1193 */
1194 struct rcu_head *head = (void *)&page->lru;
1195
1196 call_rcu(head, rcu_free_slab);
1197 } else
1198 __free_slab(s, page);
1199 }
1200
1201 static void discard_slab(struct kmem_cache *s, struct page *page)
1202 {
1203 dec_slabs_node(s, page_to_nid(page), page->objects);
1204 free_slab(s, page);
1205 }
1206
1207 /*
1208 * Per slab locking using the pagelock
1209 */
1210 static __always_inline void slab_lock(struct page *page)
1211 {
1212 bit_spin_lock(PG_locked, &page->flags);
1213 }
1214
1215 static __always_inline void slab_unlock(struct page *page)
1216 {
1217 __bit_spin_unlock(PG_locked, &page->flags);
1218 }
1219
1220 static __always_inline int slab_trylock(struct page *page)
1221 {
1222 int rc = 1;
1223
1224 rc = bit_spin_trylock(PG_locked, &page->flags);
1225 return rc;
1226 }
1227
1228 /*
1229 * Management of partially allocated slabs
1230 */
1231 static void add_partial(struct kmem_cache_node *n,
1232 struct page *page, int tail)
1233 {
1234 spin_lock(&n->list_lock);
1235 n->nr_partial++;
1236 if (tail)
1237 list_add_tail(&page->lru, &n->partial);
1238 else
1239 list_add(&page->lru, &n->partial);
1240 spin_unlock(&n->list_lock);
1241 }
1242
1243 static void remove_partial(struct kmem_cache *s, struct page *page)
1244 {
1245 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1246
1247 spin_lock(&n->list_lock);
1248 list_del(&page->lru);
1249 n->nr_partial--;
1250 spin_unlock(&n->list_lock);
1251 }
1252
1253 /*
1254 * Lock slab and remove from the partial list.
1255 *
1256 * Must hold list_lock.
1257 */
1258 static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1259 struct page *page)
1260 {
1261 if (slab_trylock(page)) {
1262 list_del(&page->lru);
1263 n->nr_partial--;
1264 __SetPageSlubFrozen(page);
1265 return 1;
1266 }
1267 return 0;
1268 }
1269
1270 /*
1271 * Try to allocate a partial slab from a specific node.
1272 */
1273 static struct page *get_partial_node(struct kmem_cache_node *n)
1274 {
1275 struct page *page;
1276
1277 /*
1278 * Racy check. If we mistakenly see no partial slabs then we
1279 * just allocate an empty slab. If we mistakenly try to get a
1280 * partial slab and there is none available then get_partials()
1281 * will return NULL.
1282 */
1283 if (!n || !n->nr_partial)
1284 return NULL;
1285
1286 spin_lock(&n->list_lock);
1287 list_for_each_entry(page, &n->partial, lru)
1288 if (lock_and_freeze_slab(n, page))
1289 goto out;
1290 page = NULL;
1291 out:
1292 spin_unlock(&n->list_lock);
1293 return page;
1294 }
1295
1296 /*
1297 * Get a page from somewhere. Search in increasing NUMA distances.
1298 */
1299 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1300 {
1301 #ifdef CONFIG_NUMA
1302 struct zonelist *zonelist;
1303 struct zoneref *z;
1304 struct zone *zone;
1305 enum zone_type high_zoneidx = gfp_zone(flags);
1306 struct page *page;
1307
1308 /*
1309 * The defrag ratio allows a configuration of the tradeoffs between
1310 * inter node defragmentation and node local allocations. A lower
1311 * defrag_ratio increases the tendency to do local allocations
1312 * instead of attempting to obtain partial slabs from other nodes.
1313 *
1314 * If the defrag_ratio is set to 0 then kmalloc() always
1315 * returns node local objects. If the ratio is higher then kmalloc()
1316 * may return off node objects because partial slabs are obtained
1317 * from other nodes and filled up.
1318 *
1319 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1320 * defrag_ratio = 1000) then every (well almost) allocation will
1321 * first attempt to defrag slab caches on other nodes. This means
1322 * scanning over all nodes to look for partial slabs which may be
1323 * expensive if we do it every time we are trying to find a slab
1324 * with available objects.
1325 */
1326 if (!s->remote_node_defrag_ratio ||
1327 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1328 return NULL;
1329
1330 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1331 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1332 struct kmem_cache_node *n;
1333
1334 n = get_node(s, zone_to_nid(zone));
1335
1336 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1337 n->nr_partial > n->min_partial) {
1338 page = get_partial_node(n);
1339 if (page)
1340 return page;
1341 }
1342 }
1343 #endif
1344 return NULL;
1345 }
1346
1347 /*
1348 * Get a partial page, lock it and return it.
1349 */
1350 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1351 {
1352 struct page *page;
1353 int searchnode = (node == -1) ? numa_node_id() : node;
1354
1355 page = get_partial_node(get_node(s, searchnode));
1356 if (page || (flags & __GFP_THISNODE))
1357 return page;
1358
1359 return get_any_partial(s, flags);
1360 }
1361
1362 /*
1363 * Move a page back to the lists.
1364 *
1365 * Must be called with the slab lock held.
1366 *
1367 * On exit the slab lock will have been dropped.
1368 */
1369 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1370 {
1371 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1372 struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
1373
1374 __ClearPageSlubFrozen(page);
1375 if (page->inuse) {
1376
1377 if (page->freelist) {
1378 add_partial(n, page, tail);
1379 stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1380 } else {
1381 stat(c, DEACTIVATE_FULL);
1382 if (SLABDEBUG && PageSlubDebug(page) &&
1383 (s->flags & SLAB_STORE_USER))
1384 add_full(n, page);
1385 }
1386 slab_unlock(page);
1387 } else {
1388 stat(c, DEACTIVATE_EMPTY);
1389 if (n->nr_partial < n->min_partial) {
1390 /*
1391 * Adding an empty slab to the partial slabs in order
1392 * to avoid page allocator overhead. This slab needs
1393 * to come after the other slabs with objects in
1394 * so that the others get filled first. That way the
1395 * size of the partial list stays small.
1396 *
1397 * kmem_cache_shrink can reclaim any empty slabs from
1398 * the partial list.
1399 */
1400 add_partial(n, page, 1);
1401 slab_unlock(page);
1402 } else {
1403 slab_unlock(page);
1404 stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
1405 discard_slab(s, page);
1406 }
1407 }
1408 }
1409
1410 /*
1411 * Remove the cpu slab
1412 */
1413 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1414 {
1415 struct page *page = c->page;
1416 int tail = 1;
1417
1418 if (page->freelist)
1419 stat(c, DEACTIVATE_REMOTE_FREES);
1420 /*
1421 * Merge cpu freelist into slab freelist. Typically we get here
1422 * because both freelists are empty. So this is unlikely
1423 * to occur.
1424 */
1425 while (unlikely(c->freelist)) {
1426 void **object;
1427
1428 tail = 0; /* Hot objects. Put the slab first */
1429
1430 /* Retrieve object from cpu_freelist */
1431 object = c->freelist;
1432 c->freelist = c->freelist[c->offset];
1433
1434 /* And put onto the regular freelist */
1435 object[c->offset] = page->freelist;
1436 page->freelist = object;
1437 page->inuse--;
1438 }
1439 c->page = NULL;
1440 unfreeze_slab(s, page, tail);
1441 }
1442
1443 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1444 {
1445 stat(c, CPUSLAB_FLUSH);
1446 slab_lock(c->page);
1447 deactivate_slab(s, c);
1448 }
1449
1450 /*
1451 * Flush cpu slab.
1452 *
1453 * Called from IPI handler with interrupts disabled.
1454 */
1455 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1456 {
1457 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1458
1459 if (likely(c && c->page))
1460 flush_slab(s, c);
1461 }
1462
1463 static void flush_cpu_slab(void *d)
1464 {
1465 struct kmem_cache *s = d;
1466
1467 __flush_cpu_slab(s, smp_processor_id());
1468 }
1469
1470 static void flush_all(struct kmem_cache *s)
1471 {
1472 on_each_cpu(flush_cpu_slab, s, 1);
1473 }
1474
1475 /*
1476 * Check if the objects in a per cpu structure fit numa
1477 * locality expectations.
1478 */
1479 static inline int node_match(struct kmem_cache_cpu *c, int node)
1480 {
1481 #ifdef CONFIG_NUMA
1482 if (node != -1 && c->node != node)
1483 return 0;
1484 #endif
1485 return 1;
1486 }
1487
1488 /*
1489 * Slow path. The lockless freelist is empty or we need to perform
1490 * debugging duties.
1491 *
1492 * Interrupts are disabled.
1493 *
1494 * Processing is still very fast if new objects have been freed to the
1495 * regular freelist. In that case we simply take over the regular freelist
1496 * as the lockless freelist and zap the regular freelist.
1497 *
1498 * If that is not working then we fall back to the partial lists. We take the
1499 * first element of the freelist as the object to allocate now and move the
1500 * rest of the freelist to the lockless freelist.
1501 *
1502 * And if we were unable to get a new slab from the partial slab lists then
1503 * we need to allocate a new slab. This is the slowest path since it involves
1504 * a call to the page allocator and the setup of a new slab.
1505 */
1506 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1507 unsigned long addr, struct kmem_cache_cpu *c)
1508 {
1509 void **object;
1510 struct page *new;
1511
1512 /* We handle __GFP_ZERO in the caller */
1513 gfpflags &= ~__GFP_ZERO;
1514
1515 if (!c->page)
1516 goto new_slab;
1517
1518 slab_lock(c->page);
1519 if (unlikely(!node_match(c, node)))
1520 goto another_slab;
1521
1522 stat(c, ALLOC_REFILL);
1523
1524 load_freelist:
1525 object = c->page->freelist;
1526 if (unlikely(!object))
1527 goto another_slab;
1528 if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
1529 goto debug;
1530
1531 c->freelist = object[c->offset];
1532 c->page->inuse = c->page->objects;
1533 c->page->freelist = NULL;
1534 c->node = page_to_nid(c->page);
1535 unlock_out:
1536 slab_unlock(c->page);
1537 stat(c, ALLOC_SLOWPATH);
1538 return object;
1539
1540 another_slab:
1541 deactivate_slab(s, c);
1542
1543 new_slab:
1544 new = get_partial(s, gfpflags, node);
1545 if (new) {
1546 c->page = new;
1547 stat(c, ALLOC_FROM_PARTIAL);
1548 goto load_freelist;
1549 }
1550
1551 if (gfpflags & __GFP_WAIT)
1552 local_irq_enable();
1553
1554 new = new_slab(s, gfpflags, node);
1555
1556 if (gfpflags & __GFP_WAIT)
1557 local_irq_disable();
1558
1559 if (new) {
1560 c = get_cpu_slab(s, smp_processor_id());
1561 stat(c, ALLOC_SLAB);
1562 if (c->page)
1563 flush_slab(s, c);
1564 slab_lock(new);
1565 __SetPageSlubFrozen(new);
1566 c->page = new;
1567 goto load_freelist;
1568 }
1569 return NULL;
1570 debug:
1571 if (!alloc_debug_processing(s, c->page, object, addr))
1572 goto another_slab;
1573
1574 c->page->inuse++;
1575 c->page->freelist = object[c->offset];
1576 c->node = -1;
1577 goto unlock_out;
1578 }
1579
1580 /*
1581 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1582 * have the fastpath folded into their functions. So no function call
1583 * overhead for requests that can be satisfied on the fastpath.
1584 *
1585 * The fastpath works by first checking if the lockless freelist can be used.
1586 * If not then __slab_alloc is called for slow processing.
1587 *
1588 * Otherwise we can simply pick the next object from the lockless free list.
1589 */
1590 static __always_inline void *slab_alloc(struct kmem_cache *s,
1591 gfp_t gfpflags, int node, unsigned long addr)
1592 {
1593 void **object;
1594 struct kmem_cache_cpu *c;
1595 unsigned long flags;
1596 unsigned int objsize;
1597
1598 local_irq_save(flags);
1599 c = get_cpu_slab(s, smp_processor_id());
1600 objsize = c->objsize;
1601 if (unlikely(!c->freelist || !node_match(c, node)))
1602
1603 object = __slab_alloc(s, gfpflags, node, addr, c);
1604
1605 else {
1606 object = c->freelist;
1607 c->freelist = object[c->offset];
1608 stat(c, ALLOC_FASTPATH);
1609 }
1610 local_irq_restore(flags);
1611
1612 if (unlikely((gfpflags & __GFP_ZERO) && object))
1613 memset(object, 0, objsize);
1614
1615 return object;
1616 }
1617
1618 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1619 {
1620 return slab_alloc(s, gfpflags, -1, _RET_IP_);
1621 }
1622 EXPORT_SYMBOL(kmem_cache_alloc);
1623
1624 #ifdef CONFIG_NUMA
1625 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1626 {
1627 return slab_alloc(s, gfpflags, node, _RET_IP_);
1628 }
1629 EXPORT_SYMBOL(kmem_cache_alloc_node);
1630 #endif
1631
1632 /*
1633 * Slow patch handling. This may still be called frequently since objects
1634 * have a longer lifetime than the cpu slabs in most processing loads.
1635 *
1636 * So we still attempt to reduce cache line usage. Just take the slab
1637 * lock and free the item. If there is no additional partial page
1638 * handling required then we can return immediately.
1639 */
1640 static void __slab_free(struct kmem_cache *s, struct page *page,
1641 void *x, unsigned long addr, unsigned int offset)
1642 {
1643 void *prior;
1644 void **object = (void *)x;
1645 struct kmem_cache_cpu *c;
1646
1647 c = get_cpu_slab(s, raw_smp_processor_id());
1648 stat(c, FREE_SLOWPATH);
1649 slab_lock(page);
1650
1651 if (unlikely(SLABDEBUG && PageSlubDebug(page)))
1652 goto debug;
1653
1654 checks_ok:
1655 prior = object[offset] = page->freelist;
1656 page->freelist = object;
1657 page->inuse--;
1658
1659 if (unlikely(PageSlubFrozen(page))) {
1660 stat(c, FREE_FROZEN);
1661 goto out_unlock;
1662 }
1663
1664 if (unlikely(!page->inuse))
1665 goto slab_empty;
1666
1667 /*
1668 * Objects left in the slab. If it was not on the partial list before
1669 * then add it.
1670 */
1671 if (unlikely(!prior)) {
1672 add_partial(get_node(s, page_to_nid(page)), page, 1);
1673 stat(c, FREE_ADD_PARTIAL);
1674 }
1675
1676 out_unlock:
1677 slab_unlock(page);
1678 return;
1679
1680 slab_empty:
1681 if (prior) {
1682 /*
1683 * Slab still on the partial list.
1684 */
1685 remove_partial(s, page);
1686 stat(c, FREE_REMOVE_PARTIAL);
1687 }
1688 slab_unlock(page);
1689 stat(c, FREE_SLAB);
1690 discard_slab(s, page);
1691 return;
1692
1693 debug:
1694 if (!free_debug_processing(s, page, x, addr))
1695 goto out_unlock;
1696 goto checks_ok;
1697 }
1698
1699 /*
1700 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1701 * can perform fastpath freeing without additional function calls.
1702 *
1703 * The fastpath is only possible if we are freeing to the current cpu slab
1704 * of this processor. This typically the case if we have just allocated
1705 * the item before.
1706 *
1707 * If fastpath is not possible then fall back to __slab_free where we deal
1708 * with all sorts of special processing.
1709 */
1710 static __always_inline void slab_free(struct kmem_cache *s,
1711 struct page *page, void *x, unsigned long addr)
1712 {
1713 void **object = (void *)x;
1714 struct kmem_cache_cpu *c;
1715 unsigned long flags;
1716
1717 local_irq_save(flags);
1718 c = get_cpu_slab(s, smp_processor_id());
1719 debug_check_no_locks_freed(object, c->objsize);
1720 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1721 debug_check_no_obj_freed(object, s->objsize);
1722 if (likely(page == c->page && c->node >= 0)) {
1723 object[c->offset] = c->freelist;
1724 c->freelist = object;
1725 stat(c, FREE_FASTPATH);
1726 } else
1727 __slab_free(s, page, x, addr, c->offset);
1728
1729 local_irq_restore(flags);
1730 }
1731
1732 void kmem_cache_free(struct kmem_cache *s, void *x)
1733 {
1734 struct page *page;
1735
1736 page = virt_to_head_page(x);
1737
1738 slab_free(s, page, x, _RET_IP_);
1739 }
1740 EXPORT_SYMBOL(kmem_cache_free);
1741
1742 /* Figure out on which slab page the object resides */
1743 static struct page *get_object_page(const void *x)
1744 {
1745 struct page *page = virt_to_head_page(x);
1746
1747 if (!PageSlab(page))
1748 return NULL;
1749
1750 return page;
1751 }
1752
1753 /*
1754 * Object placement in a slab is made very easy because we always start at
1755 * offset 0. If we tune the size of the object to the alignment then we can
1756 * get the required alignment by putting one properly sized object after
1757 * another.
1758 *
1759 * Notice that the allocation order determines the sizes of the per cpu
1760 * caches. Each processor has always one slab available for allocations.
1761 * Increasing the allocation order reduces the number of times that slabs
1762 * must be moved on and off the partial lists and is therefore a factor in
1763 * locking overhead.
1764 */
1765
1766 /*
1767 * Mininum / Maximum order of slab pages. This influences locking overhead
1768 * and slab fragmentation. A higher order reduces the number of partial slabs
1769 * and increases the number of allocations possible without having to
1770 * take the list_lock.
1771 */
1772 static int slub_min_order;
1773 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1774 static int slub_min_objects;
1775
1776 /*
1777 * Merge control. If this is set then no merging of slab caches will occur.
1778 * (Could be removed. This was introduced to pacify the merge skeptics.)
1779 */
1780 static int slub_nomerge;
1781
1782 /*
1783 * Calculate the order of allocation given an slab object size.
1784 *
1785 * The order of allocation has significant impact on performance and other
1786 * system components. Generally order 0 allocations should be preferred since
1787 * order 0 does not cause fragmentation in the page allocator. Larger objects
1788 * be problematic to put into order 0 slabs because there may be too much
1789 * unused space left. We go to a higher order if more than 1/16th of the slab
1790 * would be wasted.
1791 *
1792 * In order to reach satisfactory performance we must ensure that a minimum
1793 * number of objects is in one slab. Otherwise we may generate too much
1794 * activity on the partial lists which requires taking the list_lock. This is
1795 * less a concern for large slabs though which are rarely used.
1796 *
1797 * slub_max_order specifies the order where we begin to stop considering the
1798 * number of objects in a slab as critical. If we reach slub_max_order then
1799 * we try to keep the page order as low as possible. So we accept more waste
1800 * of space in favor of a small page order.
1801 *
1802 * Higher order allocations also allow the placement of more objects in a
1803 * slab and thereby reduce object handling overhead. If the user has
1804 * requested a higher mininum order then we start with that one instead of
1805 * the smallest order which will fit the object.
1806 */
1807 static inline int slab_order(int size, int min_objects,
1808 int max_order, int fract_leftover)
1809 {
1810 int order;
1811 int rem;
1812 int min_order = slub_min_order;
1813
1814 if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1815 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
1816
1817 for (order = max(min_order,
1818 fls(min_objects * size - 1) - PAGE_SHIFT);
1819 order <= max_order; order++) {
1820
1821 unsigned long slab_size = PAGE_SIZE << order;
1822
1823 if (slab_size < min_objects * size)
1824 continue;
1825
1826 rem = slab_size % size;
1827
1828 if (rem <= slab_size / fract_leftover)
1829 break;
1830
1831 }
1832
1833 return order;
1834 }
1835
1836 static inline int calculate_order(int size)
1837 {
1838 int order;
1839 int min_objects;
1840 int fraction;
1841
1842 /*
1843 * Attempt to find best configuration for a slab. This
1844 * works by first attempting to generate a layout with
1845 * the best configuration and backing off gradually.
1846 *
1847 * First we reduce the acceptable waste in a slab. Then
1848 * we reduce the minimum objects required in a slab.
1849 */
1850 min_objects = slub_min_objects;
1851 if (!min_objects)
1852 min_objects = 4 * (fls(nr_cpu_ids) + 1);
1853 while (min_objects > 1) {
1854 fraction = 16;
1855 while (fraction >= 4) {
1856 order = slab_order(size, min_objects,
1857 slub_max_order, fraction);
1858 if (order <= slub_max_order)
1859 return order;
1860 fraction /= 2;
1861 }
1862 min_objects /= 2;
1863 }
1864
1865 /*
1866 * We were unable to place multiple objects in a slab. Now
1867 * lets see if we can place a single object there.
1868 */
1869 order = slab_order(size, 1, slub_max_order, 1);
1870 if (order <= slub_max_order)
1871 return order;
1872
1873 /*
1874 * Doh this slab cannot be placed using slub_max_order.
1875 */
1876 order = slab_order(size, 1, MAX_ORDER, 1);
1877 if (order <= MAX_ORDER)
1878 return order;
1879 return -ENOSYS;
1880 }
1881
1882 /*
1883 * Figure out what the alignment of the objects will be.
1884 */
1885 static unsigned long calculate_alignment(unsigned long flags,
1886 unsigned long align, unsigned long size)
1887 {
1888 /*
1889 * If the user wants hardware cache aligned objects then follow that
1890 * suggestion if the object is sufficiently large.
1891 *
1892 * The hardware cache alignment cannot override the specified
1893 * alignment though. If that is greater then use it.
1894 */
1895 if (flags & SLAB_HWCACHE_ALIGN) {
1896 unsigned long ralign = cache_line_size();
1897 while (size <= ralign / 2)
1898 ralign /= 2;
1899 align = max(align, ralign);
1900 }
1901
1902 if (align < ARCH_SLAB_MINALIGN)
1903 align = ARCH_SLAB_MINALIGN;
1904
1905 return ALIGN(align, sizeof(void *));
1906 }
1907
1908 static void init_kmem_cache_cpu(struct kmem_cache *s,
1909 struct kmem_cache_cpu *c)
1910 {
1911 c->page = NULL;
1912 c->freelist = NULL;
1913 c->node = 0;
1914 c->offset = s->offset / sizeof(void *);
1915 c->objsize = s->objsize;
1916 #ifdef CONFIG_SLUB_STATS
1917 memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
1918 #endif
1919 }
1920
1921 static void
1922 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
1923 {
1924 n->nr_partial = 0;
1925
1926 /*
1927 * The larger the object size is, the more pages we want on the partial
1928 * list to avoid pounding the page allocator excessively.
1929 */
1930 n->min_partial = ilog2(s->size);
1931 if (n->min_partial < MIN_PARTIAL)
1932 n->min_partial = MIN_PARTIAL;
1933 else if (n->min_partial > MAX_PARTIAL)
1934 n->min_partial = MAX_PARTIAL;
1935
1936 spin_lock_init(&n->list_lock);
1937 INIT_LIST_HEAD(&n->partial);
1938 #ifdef CONFIG_SLUB_DEBUG
1939 atomic_long_set(&n->nr_slabs, 0);
1940 atomic_long_set(&n->total_objects, 0);
1941 INIT_LIST_HEAD(&n->full);
1942 #endif
1943 }
1944
1945 #ifdef CONFIG_SMP
1946 /*
1947 * Per cpu array for per cpu structures.
1948 *
1949 * The per cpu array places all kmem_cache_cpu structures from one processor
1950 * close together meaning that it becomes possible that multiple per cpu
1951 * structures are contained in one cacheline. This may be particularly
1952 * beneficial for the kmalloc caches.
1953 *
1954 * A desktop system typically has around 60-80 slabs. With 100 here we are
1955 * likely able to get per cpu structures for all caches from the array defined
1956 * here. We must be able to cover all kmalloc caches during bootstrap.
1957 *
1958 * If the per cpu array is exhausted then fall back to kmalloc
1959 * of individual cachelines. No sharing is possible then.
1960 */
1961 #define NR_KMEM_CACHE_CPU 100
1962
1963 static DEFINE_PER_CPU(struct kmem_cache_cpu,
1964 kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
1965
1966 static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
1967 static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
1968
1969 static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
1970 int cpu, gfp_t flags)
1971 {
1972 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
1973
1974 if (c)
1975 per_cpu(kmem_cache_cpu_free, cpu) =
1976 (void *)c->freelist;
1977 else {
1978 /* Table overflow: So allocate ourselves */
1979 c = kmalloc_node(
1980 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
1981 flags, cpu_to_node(cpu));
1982 if (!c)
1983 return NULL;
1984 }
1985
1986 init_kmem_cache_cpu(s, c);
1987 return c;
1988 }
1989
1990 static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
1991 {
1992 if (c < per_cpu(kmem_cache_cpu, cpu) ||
1993 c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
1994 kfree(c);
1995 return;
1996 }
1997 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
1998 per_cpu(kmem_cache_cpu_free, cpu) = c;
1999 }
2000
2001 static void free_kmem_cache_cpus(struct kmem_cache *s)
2002 {
2003 int cpu;
2004
2005 for_each_online_cpu(cpu) {
2006 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2007
2008 if (c) {
2009 s->cpu_slab[cpu] = NULL;
2010 free_kmem_cache_cpu(c, cpu);
2011 }
2012 }
2013 }
2014
2015 static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2016 {
2017 int cpu;
2018
2019 for_each_online_cpu(cpu) {
2020 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2021
2022 if (c)
2023 continue;
2024
2025 c = alloc_kmem_cache_cpu(s, cpu, flags);
2026 if (!c) {
2027 free_kmem_cache_cpus(s);
2028 return 0;
2029 }
2030 s->cpu_slab[cpu] = c;
2031 }
2032 return 1;
2033 }
2034
2035 /*
2036 * Initialize the per cpu array.
2037 */
2038 static void init_alloc_cpu_cpu(int cpu)
2039 {
2040 int i;
2041
2042 if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
2043 return;
2044
2045 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2046 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2047
2048 cpu_set(cpu, kmem_cach_cpu_free_init_once);
2049 }
2050
2051 static void __init init_alloc_cpu(void)
2052 {
2053 int cpu;
2054
2055 for_each_online_cpu(cpu)
2056 init_alloc_cpu_cpu(cpu);
2057 }
2058
2059 #else
2060 static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2061 static inline void init_alloc_cpu(void) {}
2062
2063 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2064 {
2065 init_kmem_cache_cpu(s, &s->cpu_slab);
2066 return 1;
2067 }
2068 #endif
2069
2070 #ifdef CONFIG_NUMA
2071 /*
2072 * No kmalloc_node yet so do it by hand. We know that this is the first
2073 * slab on the node for this slabcache. There are no concurrent accesses
2074 * possible.
2075 *
2076 * Note that this function only works on the kmalloc_node_cache
2077 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2078 * memory on a fresh node that has no slab structures yet.
2079 */
2080 static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
2081 int node)
2082 {
2083 struct page *page;
2084 struct kmem_cache_node *n;
2085 unsigned long flags;
2086
2087 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2088
2089 page = new_slab(kmalloc_caches, gfpflags, node);
2090
2091 BUG_ON(!page);
2092 if (page_to_nid(page) != node) {
2093 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2094 "node %d\n", node);
2095 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2096 "in order to be able to continue\n");
2097 }
2098
2099 n = page->freelist;
2100 BUG_ON(!n);
2101 page->freelist = get_freepointer(kmalloc_caches, n);
2102 page->inuse++;
2103 kmalloc_caches->node[node] = n;
2104 #ifdef CONFIG_SLUB_DEBUG
2105 init_object(kmalloc_caches, n, 1);
2106 init_tracking(kmalloc_caches, n);
2107 #endif
2108 init_kmem_cache_node(n, kmalloc_caches);
2109 inc_slabs_node(kmalloc_caches, node, page->objects);
2110
2111 /*
2112 * lockdep requires consistent irq usage for each lock
2113 * so even though there cannot be a race this early in
2114 * the boot sequence, we still disable irqs.
2115 */
2116 local_irq_save(flags);
2117 add_partial(n, page, 0);
2118 local_irq_restore(flags);
2119 return n;
2120 }
2121
2122 static void free_kmem_cache_nodes(struct kmem_cache *s)
2123 {
2124 int node;
2125
2126 for_each_node_state(node, N_NORMAL_MEMORY) {
2127 struct kmem_cache_node *n = s->node[node];
2128 if (n && n != &s->local_node)
2129 kmem_cache_free(kmalloc_caches, n);
2130 s->node[node] = NULL;
2131 }
2132 }
2133
2134 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2135 {
2136 int node;
2137 int local_node;
2138
2139 if (slab_state >= UP)
2140 local_node = page_to_nid(virt_to_page(s));
2141 else
2142 local_node = 0;
2143
2144 for_each_node_state(node, N_NORMAL_MEMORY) {
2145 struct kmem_cache_node *n;
2146
2147 if (local_node == node)
2148 n = &s->local_node;
2149 else {
2150 if (slab_state == DOWN) {
2151 n = early_kmem_cache_node_alloc(gfpflags,
2152 node);
2153 continue;
2154 }
2155 n = kmem_cache_alloc_node(kmalloc_caches,
2156 gfpflags, node);
2157
2158 if (!n) {
2159 free_kmem_cache_nodes(s);
2160 return 0;
2161 }
2162
2163 }
2164 s->node[node] = n;
2165 init_kmem_cache_node(n, s);
2166 }
2167 return 1;
2168 }
2169 #else
2170 static void free_kmem_cache_nodes(struct kmem_cache *s)
2171 {
2172 }
2173
2174 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2175 {
2176 init_kmem_cache_node(&s->local_node, s);
2177 return 1;
2178 }
2179 #endif
2180
2181 /*
2182 * calculate_sizes() determines the order and the distribution of data within
2183 * a slab object.
2184 */
2185 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2186 {
2187 unsigned long flags = s->flags;
2188 unsigned long size = s->objsize;
2189 unsigned long align = s->align;
2190 int order;
2191
2192 /*
2193 * Round up object size to the next word boundary. We can only
2194 * place the free pointer at word boundaries and this determines
2195 * the possible location of the free pointer.
2196 */
2197 size = ALIGN(size, sizeof(void *));
2198
2199 #ifdef CONFIG_SLUB_DEBUG
2200 /*
2201 * Determine if we can poison the object itself. If the user of
2202 * the slab may touch the object after free or before allocation
2203 * then we should never poison the object itself.
2204 */
2205 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2206 !s->ctor)
2207 s->flags |= __OBJECT_POISON;
2208 else
2209 s->flags &= ~__OBJECT_POISON;
2210
2211
2212 /*
2213 * If we are Redzoning then check if there is some space between the
2214 * end of the object and the free pointer. If not then add an
2215 * additional word to have some bytes to store Redzone information.
2216 */
2217 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2218 size += sizeof(void *);
2219 #endif
2220
2221 /*
2222 * With that we have determined the number of bytes in actual use
2223 * by the object. This is the potential offset to the free pointer.
2224 */
2225 s->inuse = size;
2226
2227 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2228 s->ctor)) {
2229 /*
2230 * Relocate free pointer after the object if it is not
2231 * permitted to overwrite the first word of the object on
2232 * kmem_cache_free.
2233 *
2234 * This is the case if we do RCU, have a constructor or
2235 * destructor or are poisoning the objects.
2236 */
2237 s->offset = size;
2238 size += sizeof(void *);
2239 }
2240
2241 #ifdef CONFIG_SLUB_DEBUG
2242 if (flags & SLAB_STORE_USER)
2243 /*
2244 * Need to store information about allocs and frees after
2245 * the object.
2246 */
2247 size += 2 * sizeof(struct track);
2248
2249 if (flags & SLAB_RED_ZONE)
2250 /*
2251 * Add some empty padding so that we can catch
2252 * overwrites from earlier objects rather than let
2253 * tracking information or the free pointer be
2254 * corrupted if an user writes before the start
2255 * of the object.
2256 */
2257 size += sizeof(void *);
2258 #endif
2259
2260 /*
2261 * Determine the alignment based on various parameters that the
2262 * user specified and the dynamic determination of cache line size
2263 * on bootup.
2264 */
2265 align = calculate_alignment(flags, align, s->objsize);
2266
2267 /*
2268 * SLUB stores one object immediately after another beginning from
2269 * offset 0. In order to align the objects we have to simply size
2270 * each object to conform to the alignment.
2271 */
2272 size = ALIGN(size, align);
2273 s->size = size;
2274 if (forced_order >= 0)
2275 order = forced_order;
2276 else
2277 order = calculate_order(size);
2278
2279 if (order < 0)
2280 return 0;
2281
2282 s->allocflags = 0;
2283 if (order)
2284 s->allocflags |= __GFP_COMP;
2285
2286 if (s->flags & SLAB_CACHE_DMA)
2287 s->allocflags |= SLUB_DMA;
2288
2289 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2290 s->allocflags |= __GFP_RECLAIMABLE;
2291
2292 /*
2293 * Determine the number of objects per slab
2294 */
2295 s->oo = oo_make(order, size);
2296 s->min = oo_make(get_order(size), size);
2297 if (oo_objects(s->oo) > oo_objects(s->max))
2298 s->max = s->oo;
2299
2300 return !!oo_objects(s->oo);
2301
2302 }
2303
2304 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2305 const char *name, size_t size,
2306 size_t align, unsigned long flags,
2307 void (*ctor)(void *))
2308 {
2309 memset(s, 0, kmem_size);
2310 s->name = name;
2311 s->ctor = ctor;
2312 s->objsize = size;
2313 s->align = align;
2314 s->flags = kmem_cache_flags(size, flags, name, ctor);
2315
2316 if (!calculate_sizes(s, -1))
2317 goto error;
2318
2319 s->refcount = 1;
2320 #ifdef CONFIG_NUMA
2321 s->remote_node_defrag_ratio = 1000;
2322 #endif
2323 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2324 goto error;
2325
2326 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2327 return 1;
2328 free_kmem_cache_nodes(s);
2329 error:
2330 if (flags & SLAB_PANIC)
2331 panic("Cannot create slab %s size=%lu realsize=%u "
2332 "order=%u offset=%u flags=%lx\n",
2333 s->name, (unsigned long)size, s->size, oo_order(s->oo),
2334 s->offset, flags);
2335 return 0;
2336 }
2337
2338 /*
2339 * Check if a given pointer is valid
2340 */
2341 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2342 {
2343 struct page *page;
2344
2345 page = get_object_page(object);
2346
2347 if (!page || s != page->slab)
2348 /* No slab or wrong slab */
2349 return 0;
2350
2351 if (!check_valid_pointer(s, page, object))
2352 return 0;
2353
2354 /*
2355 * We could also check if the object is on the slabs freelist.
2356 * But this would be too expensive and it seems that the main
2357 * purpose of kmem_ptr_valid() is to check if the object belongs
2358 * to a certain slab.
2359 */
2360 return 1;
2361 }
2362 EXPORT_SYMBOL(kmem_ptr_validate);
2363
2364 /*
2365 * Determine the size of a slab object
2366 */
2367 unsigned int kmem_cache_size(struct kmem_cache *s)
2368 {
2369 return s->objsize;
2370 }
2371 EXPORT_SYMBOL(kmem_cache_size);
2372
2373 const char *kmem_cache_name(struct kmem_cache *s)
2374 {
2375 return s->name;
2376 }
2377 EXPORT_SYMBOL(kmem_cache_name);
2378
2379 static void list_slab_objects(struct kmem_cache *s, struct page *page,
2380 const char *text)
2381 {
2382 #ifdef CONFIG_SLUB_DEBUG
2383 void *addr = page_address(page);
2384 void *p;
2385 DECLARE_BITMAP(map, page->objects);
2386
2387 bitmap_zero(map, page->objects);
2388 slab_err(s, page, "%s", text);
2389 slab_lock(page);
2390 for_each_free_object(p, s, page->freelist)
2391 set_bit(slab_index(p, s, addr), map);
2392
2393 for_each_object(p, s, addr, page->objects) {
2394
2395 if (!test_bit(slab_index(p, s, addr), map)) {
2396 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2397 p, p - addr);
2398 print_tracking(s, p);
2399 }
2400 }
2401 slab_unlock(page);
2402 #endif
2403 }
2404
2405 /*
2406 * Attempt to free all partial slabs on a node.
2407 */
2408 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2409 {
2410 unsigned long flags;
2411 struct page *page, *h;
2412
2413 spin_lock_irqsave(&n->list_lock, flags);
2414 list_for_each_entry_safe(page, h, &n->partial, lru) {
2415 if (!page->inuse) {
2416 list_del(&page->lru);
2417 discard_slab(s, page);
2418 n->nr_partial--;
2419 } else {
2420 list_slab_objects(s, page,
2421 "Objects remaining on kmem_cache_close()");
2422 }
2423 }
2424 spin_unlock_irqrestore(&n->list_lock, flags);
2425 }
2426
2427 /*
2428 * Release all resources used by a slab cache.
2429 */
2430 static inline int kmem_cache_close(struct kmem_cache *s)
2431 {
2432 int node;
2433
2434 flush_all(s);
2435
2436 /* Attempt to free all objects */
2437 free_kmem_cache_cpus(s);
2438 for_each_node_state(node, N_NORMAL_MEMORY) {
2439 struct kmem_cache_node *n = get_node(s, node);
2440
2441 free_partial(s, n);
2442 if (n->nr_partial || slabs_node(s, node))
2443 return 1;
2444 }
2445 free_kmem_cache_nodes(s);
2446 return 0;
2447 }
2448
2449 /*
2450 * Close a cache and release the kmem_cache structure
2451 * (must be used for caches created using kmem_cache_create)
2452 */
2453 void kmem_cache_destroy(struct kmem_cache *s)
2454 {
2455 down_write(&slub_lock);
2456 s->refcount--;
2457 if (!s->refcount) {
2458 list_del(&s->list);
2459 up_write(&slub_lock);
2460 if (kmem_cache_close(s)) {
2461 printk(KERN_ERR "SLUB %s: %s called for cache that "
2462 "still has objects.\n", s->name, __func__);
2463 dump_stack();
2464 }
2465 sysfs_slab_remove(s);
2466 } else
2467 up_write(&slub_lock);
2468 }
2469 EXPORT_SYMBOL(kmem_cache_destroy);
2470
2471 /********************************************************************
2472 * Kmalloc subsystem
2473 *******************************************************************/
2474
2475 struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned;
2476 EXPORT_SYMBOL(kmalloc_caches);
2477
2478 static int __init setup_slub_min_order(char *str)
2479 {
2480 get_option(&str, &slub_min_order);
2481
2482 return 1;
2483 }
2484
2485 __setup("slub_min_order=", setup_slub_min_order);
2486
2487 static int __init setup_slub_max_order(char *str)
2488 {
2489 get_option(&str, &slub_max_order);
2490
2491 return 1;
2492 }
2493
2494 __setup("slub_max_order=", setup_slub_max_order);
2495
2496 static int __init setup_slub_min_objects(char *str)
2497 {
2498 get_option(&str, &slub_min_objects);
2499
2500 return 1;
2501 }
2502
2503 __setup("slub_min_objects=", setup_slub_min_objects);
2504
2505 static int __init setup_slub_nomerge(char *str)
2506 {
2507 slub_nomerge = 1;
2508 return 1;
2509 }
2510
2511 __setup("slub_nomerge", setup_slub_nomerge);
2512
2513 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2514 const char *name, int size, gfp_t gfp_flags)
2515 {
2516 unsigned int flags = 0;
2517
2518 if (gfp_flags & SLUB_DMA)
2519 flags = SLAB_CACHE_DMA;
2520
2521 down_write(&slub_lock);
2522 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2523 flags, NULL))
2524 goto panic;
2525
2526 list_add(&s->list, &slab_caches);
2527 up_write(&slub_lock);
2528 if (sysfs_slab_add(s))
2529 goto panic;
2530 return s;
2531
2532 panic:
2533 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2534 }
2535
2536 #ifdef CONFIG_ZONE_DMA
2537 static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1];
2538
2539 static void sysfs_add_func(struct work_struct *w)
2540 {
2541 struct kmem_cache *s;
2542
2543 down_write(&slub_lock);
2544 list_for_each_entry(s, &slab_caches, list) {
2545 if (s->flags & __SYSFS_ADD_DEFERRED) {
2546 s->flags &= ~__SYSFS_ADD_DEFERRED;
2547 sysfs_slab_add(s);
2548 }
2549 }
2550 up_write(&slub_lock);
2551 }
2552
2553 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2554
2555 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2556 {
2557 struct kmem_cache *s;
2558 char *text;
2559 size_t realsize;
2560
2561 s = kmalloc_caches_dma[index];
2562 if (s)
2563 return s;
2564
2565 /* Dynamically create dma cache */
2566 if (flags & __GFP_WAIT)
2567 down_write(&slub_lock);
2568 else {
2569 if (!down_write_trylock(&slub_lock))
2570 goto out;
2571 }
2572
2573 if (kmalloc_caches_dma[index])
2574 goto unlock_out;
2575
2576 realsize = kmalloc_caches[index].objsize;
2577 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2578 (unsigned int)realsize);
2579 s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2580
2581 if (!s || !text || !kmem_cache_open(s, flags, text,
2582 realsize, ARCH_KMALLOC_MINALIGN,
2583 SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2584 kfree(s);
2585 kfree(text);
2586 goto unlock_out;
2587 }
2588
2589 list_add(&s->list, &slab_caches);
2590 kmalloc_caches_dma[index] = s;
2591
2592 schedule_work(&sysfs_add_work);
2593
2594 unlock_out:
2595 up_write(&slub_lock);
2596 out:
2597 return kmalloc_caches_dma[index];
2598 }
2599 #endif
2600
2601 /*
2602 * Conversion table for small slabs sizes / 8 to the index in the
2603 * kmalloc array. This is necessary for slabs < 192 since we have non power
2604 * of two cache sizes there. The size of larger slabs can be determined using
2605 * fls.
2606 */
2607 static s8 size_index[24] = {
2608 3, /* 8 */
2609 4, /* 16 */
2610 5, /* 24 */
2611 5, /* 32 */
2612 6, /* 40 */
2613 6, /* 48 */
2614 6, /* 56 */
2615 6, /* 64 */
2616 1, /* 72 */
2617 1, /* 80 */
2618 1, /* 88 */
2619 1, /* 96 */
2620 7, /* 104 */
2621 7, /* 112 */
2622 7, /* 120 */
2623 7, /* 128 */
2624 2, /* 136 */
2625 2, /* 144 */
2626 2, /* 152 */
2627 2, /* 160 */
2628 2, /* 168 */
2629 2, /* 176 */
2630 2, /* 184 */
2631 2 /* 192 */
2632 };
2633
2634 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2635 {
2636 int index;
2637
2638 if (size <= 192) {
2639 if (!size)
2640 return ZERO_SIZE_PTR;
2641
2642 index = size_index[(size - 1) / 8];
2643 } else
2644 index = fls(size - 1);
2645
2646 #ifdef CONFIG_ZONE_DMA
2647 if (unlikely((flags & SLUB_DMA)))
2648 return dma_kmalloc_cache(index, flags);
2649
2650 #endif
2651 return &kmalloc_caches[index];
2652 }
2653
2654 void *__kmalloc(size_t size, gfp_t flags)
2655 {
2656 struct kmem_cache *s;
2657
2658 if (unlikely(size > PAGE_SIZE))
2659 return kmalloc_large(size, flags);
2660
2661 s = get_slab(size, flags);
2662
2663 if (unlikely(ZERO_OR_NULL_PTR(s)))
2664 return s;
2665
2666 return slab_alloc(s, flags, -1, _RET_IP_);
2667 }
2668 EXPORT_SYMBOL(__kmalloc);
2669
2670 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2671 {
2672 struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
2673 get_order(size));
2674
2675 if (page)
2676 return page_address(page);
2677 else
2678 return NULL;
2679 }
2680
2681 #ifdef CONFIG_NUMA
2682 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2683 {
2684 struct kmem_cache *s;
2685
2686 if (unlikely(size > PAGE_SIZE))
2687 return kmalloc_large_node(size, flags, node);
2688
2689 s = get_slab(size, flags);
2690
2691 if (unlikely(ZERO_OR_NULL_PTR(s)))
2692 return s;
2693
2694 return slab_alloc(s, flags, node, _RET_IP_);
2695 }
2696 EXPORT_SYMBOL(__kmalloc_node);
2697 #endif
2698
2699 size_t ksize(const void *object)
2700 {
2701 struct page *page;
2702 struct kmem_cache *s;
2703
2704 if (unlikely(object == ZERO_SIZE_PTR))
2705 return 0;
2706
2707 page = virt_to_head_page(object);
2708
2709 if (unlikely(!PageSlab(page))) {
2710 WARN_ON(!PageCompound(page));
2711 return PAGE_SIZE << compound_order(page);
2712 }
2713 s = page->slab;
2714
2715 #ifdef CONFIG_SLUB_DEBUG
2716 /*
2717 * Debugging requires use of the padding between object
2718 * and whatever may come after it.
2719 */
2720 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2721 return s->objsize;
2722
2723 #endif
2724 /*
2725 * If we have the need to store the freelist pointer
2726 * back there or track user information then we can
2727 * only use the space before that information.
2728 */
2729 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2730 return s->inuse;
2731 /*
2732 * Else we can use all the padding etc for the allocation
2733 */
2734 return s->size;
2735 }
2736
2737 void kfree(const void *x)
2738 {
2739 struct page *page;
2740 void *object = (void *)x;
2741
2742 if (unlikely(ZERO_OR_NULL_PTR(x)))
2743 return;
2744
2745 page = virt_to_head_page(x);
2746 if (unlikely(!PageSlab(page))) {
2747 BUG_ON(!PageCompound(page));
2748 put_page(page);
2749 return;
2750 }
2751 slab_free(page->slab, page, object, _RET_IP_);
2752 }
2753 EXPORT_SYMBOL(kfree);
2754
2755 /*
2756 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2757 * the remaining slabs by the number of items in use. The slabs with the
2758 * most items in use come first. New allocations will then fill those up
2759 * and thus they can be removed from the partial lists.
2760 *
2761 * The slabs with the least items are placed last. This results in them
2762 * being allocated from last increasing the chance that the last objects
2763 * are freed in them.
2764 */
2765 int kmem_cache_shrink(struct kmem_cache *s)
2766 {
2767 int node;
2768 int i;
2769 struct kmem_cache_node *n;
2770 struct page *page;
2771 struct page *t;
2772 int objects = oo_objects(s->max);
2773 struct list_head *slabs_by_inuse =
2774 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2775 unsigned long flags;
2776
2777 if (!slabs_by_inuse)
2778 return -ENOMEM;
2779
2780 flush_all(s);
2781 for_each_node_state(node, N_NORMAL_MEMORY) {
2782 n = get_node(s, node);
2783
2784 if (!n->nr_partial)
2785 continue;
2786
2787 for (i = 0; i < objects; i++)
2788 INIT_LIST_HEAD(slabs_by_inuse + i);
2789
2790 spin_lock_irqsave(&n->list_lock, flags);
2791
2792 /*
2793 * Build lists indexed by the items in use in each slab.
2794 *
2795 * Note that concurrent frees may occur while we hold the
2796 * list_lock. page->inuse here is the upper limit.
2797 */
2798 list_for_each_entry_safe(page, t, &n->partial, lru) {
2799 if (!page->inuse && slab_trylock(page)) {
2800 /*
2801 * Must hold slab lock here because slab_free
2802 * may have freed the last object and be
2803 * waiting to release the slab.
2804 */
2805 list_del(&page->lru);
2806 n->nr_partial--;
2807 slab_unlock(page);
2808 discard_slab(s, page);
2809 } else {
2810 list_move(&page->lru,
2811 slabs_by_inuse + page->inuse);
2812 }
2813 }
2814
2815 /*
2816 * Rebuild the partial list with the slabs filled up most
2817 * first and the least used slabs at the end.
2818 */
2819 for (i = objects - 1; i >= 0; i--)
2820 list_splice(slabs_by_inuse + i, n->partial.prev);
2821
2822 spin_unlock_irqrestore(&n->list_lock, flags);
2823 }
2824
2825 kfree(slabs_by_inuse);
2826 return 0;
2827 }
2828 EXPORT_SYMBOL(kmem_cache_shrink);
2829
2830 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2831 static int slab_mem_going_offline_callback(void *arg)
2832 {
2833 struct kmem_cache *s;
2834
2835 down_read(&slub_lock);
2836 list_for_each_entry(s, &slab_caches, list)
2837 kmem_cache_shrink(s);
2838 up_read(&slub_lock);
2839
2840 return 0;
2841 }
2842
2843 static void slab_mem_offline_callback(void *arg)
2844 {
2845 struct kmem_cache_node *n;
2846 struct kmem_cache *s;
2847 struct memory_notify *marg = arg;
2848 int offline_node;
2849
2850 offline_node = marg->status_change_nid;
2851
2852 /*
2853 * If the node still has available memory. we need kmem_cache_node
2854 * for it yet.
2855 */
2856 if (offline_node < 0)
2857 return;
2858
2859 down_read(&slub_lock);
2860 list_for_each_entry(s, &slab_caches, list) {
2861 n = get_node(s, offline_node);
2862 if (n) {
2863 /*
2864 * if n->nr_slabs > 0, slabs still exist on the node
2865 * that is going down. We were unable to free them,
2866 * and offline_pages() function shoudn't call this
2867 * callback. So, we must fail.
2868 */
2869 BUG_ON(slabs_node(s, offline_node));
2870
2871 s->node[offline_node] = NULL;
2872 kmem_cache_free(kmalloc_caches, n);
2873 }
2874 }
2875 up_read(&slub_lock);
2876 }
2877
2878 static int slab_mem_going_online_callback(void *arg)
2879 {
2880 struct kmem_cache_node *n;
2881 struct kmem_cache *s;
2882 struct memory_notify *marg = arg;
2883 int nid = marg->status_change_nid;
2884 int ret = 0;
2885
2886 /*
2887 * If the node's memory is already available, then kmem_cache_node is
2888 * already created. Nothing to do.
2889 */
2890 if (nid < 0)
2891 return 0;
2892
2893 /*
2894 * We are bringing a node online. No memory is available yet. We must
2895 * allocate a kmem_cache_node structure in order to bring the node
2896 * online.
2897 */
2898 down_read(&slub_lock);
2899 list_for_each_entry(s, &slab_caches, list) {
2900 /*
2901 * XXX: kmem_cache_alloc_node will fallback to other nodes
2902 * since memory is not yet available from the node that
2903 * is brought up.
2904 */
2905 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2906 if (!n) {
2907 ret = -ENOMEM;
2908 goto out;
2909 }
2910 init_kmem_cache_node(n, s);
2911 s->node[nid] = n;
2912 }
2913 out:
2914 up_read(&slub_lock);
2915 return ret;
2916 }
2917
2918 static int slab_memory_callback(struct notifier_block *self,
2919 unsigned long action, void *arg)
2920 {
2921 int ret = 0;
2922
2923 switch (action) {
2924 case MEM_GOING_ONLINE:
2925 ret = slab_mem_going_online_callback(arg);
2926 break;
2927 case MEM_GOING_OFFLINE:
2928 ret = slab_mem_going_offline_callback(arg);
2929 break;
2930 case MEM_OFFLINE:
2931 case MEM_CANCEL_ONLINE:
2932 slab_mem_offline_callback(arg);
2933 break;
2934 case MEM_ONLINE:
2935 case MEM_CANCEL_OFFLINE:
2936 break;
2937 }
2938
2939 ret = notifier_from_errno(ret);
2940 return ret;
2941 }
2942
2943 #endif /* CONFIG_MEMORY_HOTPLUG */
2944
2945 /********************************************************************
2946 * Basic setup of slabs
2947 *******************************************************************/
2948
2949 void __init kmem_cache_init(void)
2950 {
2951 int i;
2952 int caches = 0;
2953
2954 init_alloc_cpu();
2955
2956 #ifdef CONFIG_NUMA
2957 /*
2958 * Must first have the slab cache available for the allocations of the
2959 * struct kmem_cache_node's. There is special bootstrap code in
2960 * kmem_cache_open for slab_state == DOWN.
2961 */
2962 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2963 sizeof(struct kmem_cache_node), GFP_KERNEL);
2964 kmalloc_caches[0].refcount = -1;
2965 caches++;
2966
2967 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
2968 #endif
2969
2970 /* Able to allocate the per node structures */
2971 slab_state = PARTIAL;
2972
2973 /* Caches that are not of the two-to-the-power-of size */
2974 if (KMALLOC_MIN_SIZE <= 64) {
2975 create_kmalloc_cache(&kmalloc_caches[1],
2976 "kmalloc-96", 96, GFP_KERNEL);
2977 caches++;
2978 create_kmalloc_cache(&kmalloc_caches[2],
2979 "kmalloc-192", 192, GFP_KERNEL);
2980 caches++;
2981 }
2982
2983 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) {
2984 create_kmalloc_cache(&kmalloc_caches[i],
2985 "kmalloc", 1 << i, GFP_KERNEL);
2986 caches++;
2987 }
2988
2989
2990 /*
2991 * Patch up the size_index table if we have strange large alignment
2992 * requirements for the kmalloc array. This is only the case for
2993 * MIPS it seems. The standard arches will not generate any code here.
2994 *
2995 * Largest permitted alignment is 256 bytes due to the way we
2996 * handle the index determination for the smaller caches.
2997 *
2998 * Make sure that nothing crazy happens if someone starts tinkering
2999 * around with ARCH_KMALLOC_MINALIGN
3000 */
3001 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3002 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3003
3004 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
3005 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
3006
3007 if (KMALLOC_MIN_SIZE == 128) {
3008 /*
3009 * The 192 byte sized cache is not used if the alignment
3010 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3011 * instead.
3012 */
3013 for (i = 128 + 8; i <= 192; i += 8)
3014 size_index[(i - 1) / 8] = 8;
3015 }
3016
3017 slab_state = UP;
3018
3019 /* Provide the correct kmalloc names now that the caches are up */
3020 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++)
3021 kmalloc_caches[i]. name =
3022 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
3023
3024 #ifdef CONFIG_SMP
3025 register_cpu_notifier(&slab_notifier);
3026 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
3027 nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
3028 #else
3029 kmem_size = sizeof(struct kmem_cache);
3030 #endif
3031
3032 printk(KERN_INFO
3033 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3034 " CPUs=%d, Nodes=%d\n",
3035 caches, cache_line_size(),
3036 slub_min_order, slub_max_order, slub_min_objects,
3037 nr_cpu_ids, nr_node_ids);
3038 }
3039
3040 /*
3041 * Find a mergeable slab cache
3042 */
3043 static int slab_unmergeable(struct kmem_cache *s)
3044 {
3045 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3046 return 1;
3047
3048 if (s->ctor)
3049 return 1;
3050
3051 /*
3052 * We may have set a slab to be unmergeable during bootstrap.
3053 */
3054 if (s->refcount < 0)
3055 return 1;
3056
3057 return 0;
3058 }
3059
3060 static struct kmem_cache *find_mergeable(size_t size,
3061 size_t align, unsigned long flags, const char *name,
3062 void (*ctor)(void *))
3063 {
3064 struct kmem_cache *s;
3065
3066 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3067 return NULL;
3068
3069 if (ctor)
3070 return NULL;
3071
3072 size = ALIGN(size, sizeof(void *));
3073 align = calculate_alignment(flags, align, size);
3074 size = ALIGN(size, align);
3075 flags = kmem_cache_flags(size, flags, name, NULL);
3076
3077 list_for_each_entry(s, &slab_caches, list) {
3078 if (slab_unmergeable(s))
3079 continue;
3080
3081 if (size > s->size)
3082 continue;
3083
3084 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3085 continue;
3086 /*
3087 * Check if alignment is compatible.
3088 * Courtesy of Adrian Drzewiecki
3089 */
3090 if ((s->size & ~(align - 1)) != s->size)
3091 continue;
3092
3093 if (s->size - size >= sizeof(void *))
3094 continue;
3095
3096 return s;
3097 }
3098 return NULL;
3099 }
3100
3101 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3102 size_t align, unsigned long flags, void (*ctor)(void *))
3103 {
3104 struct kmem_cache *s;
3105
3106 down_write(&slub_lock);
3107 s = find_mergeable(size, align, flags, name, ctor);
3108 if (s) {
3109 int cpu;
3110
3111 s->refcount++;
3112 /*
3113 * Adjust the object sizes so that we clear
3114 * the complete object on kzalloc.
3115 */
3116 s->objsize = max(s->objsize, (int)size);
3117
3118 /*
3119 * And then we need to update the object size in the
3120 * per cpu structures
3121 */
3122 for_each_online_cpu(cpu)
3123 get_cpu_slab(s, cpu)->objsize = s->objsize;
3124
3125 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3126 up_write(&slub_lock);
3127
3128 if (sysfs_slab_alias(s, name))
3129 goto err;
3130 return s;
3131 }
3132
3133 s = kmalloc(kmem_size, GFP_KERNEL);
3134 if (s) {
3135 if (kmem_cache_open(s, GFP_KERNEL, name,
3136 size, align, flags, ctor)) {
3137 list_add(&s->list, &slab_caches);
3138 up_write(&slub_lock);
3139 if (sysfs_slab_add(s))
3140 goto err;
3141 return s;
3142 }
3143 kfree(s);
3144 }
3145 up_write(&slub_lock);
3146
3147 err:
3148 if (flags & SLAB_PANIC)
3149 panic("Cannot create slabcache %s\n", name);
3150 else
3151 s = NULL;
3152 return s;
3153 }
3154 EXPORT_SYMBOL(kmem_cache_create);
3155
3156 #ifdef CONFIG_SMP
3157 /*
3158 * Use the cpu notifier to insure that the cpu slabs are flushed when
3159 * necessary.
3160 */
3161 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3162 unsigned long action, void *hcpu)
3163 {
3164 long cpu = (long)hcpu;
3165 struct kmem_cache *s;
3166 unsigned long flags;
3167
3168 switch (action) {
3169 case CPU_UP_PREPARE:
3170 case CPU_UP_PREPARE_FROZEN:
3171 init_alloc_cpu_cpu(cpu);
3172 down_read(&slub_lock);
3173 list_for_each_entry(s, &slab_caches, list)
3174 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3175 GFP_KERNEL);
3176 up_read(&slub_lock);
3177 break;
3178
3179 case CPU_UP_CANCELED:
3180 case CPU_UP_CANCELED_FROZEN:
3181 case CPU_DEAD:
3182 case CPU_DEAD_FROZEN:
3183 down_read(&slub_lock);
3184 list_for_each_entry(s, &slab_caches, list) {
3185 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3186
3187 local_irq_save(flags);
3188 __flush_cpu_slab(s, cpu);
3189 local_irq_restore(flags);
3190 free_kmem_cache_cpu(c, cpu);
3191 s->cpu_slab[cpu] = NULL;
3192 }
3193 up_read(&slub_lock);
3194 break;
3195 default:
3196 break;
3197 }
3198 return NOTIFY_OK;
3199 }
3200
3201 static struct notifier_block __cpuinitdata slab_notifier = {
3202 .notifier_call = slab_cpuup_callback
3203 };
3204
3205 #endif
3206
3207 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3208 {
3209 struct kmem_cache *s;
3210
3211 if (unlikely(size > PAGE_SIZE))
3212 return kmalloc_large(size, gfpflags);
3213
3214 s = get_slab(size, gfpflags);
3215
3216 if (unlikely(ZERO_OR_NULL_PTR(s)))
3217 return s;
3218
3219 return slab_alloc(s, gfpflags, -1, caller);
3220 }
3221
3222 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3223 int node, unsigned long caller)
3224 {
3225 struct kmem_cache *s;
3226
3227 if (unlikely(size > PAGE_SIZE))
3228 return kmalloc_large_node(size, gfpflags, node);
3229
3230 s = get_slab(size, gfpflags);
3231
3232 if (unlikely(ZERO_OR_NULL_PTR(s)))
3233 return s;
3234
3235 return slab_alloc(s, gfpflags, node, caller);
3236 }
3237
3238 #ifdef CONFIG_SLUB_DEBUG
3239 static unsigned long count_partial(struct kmem_cache_node *n,
3240 int (*get_count)(struct page *))
3241 {
3242 unsigned long flags;
3243 unsigned long x = 0;
3244 struct page *page;
3245
3246 spin_lock_irqsave(&n->list_lock, flags);
3247 list_for_each_entry(page, &n->partial, lru)
3248 x += get_count(page);
3249 spin_unlock_irqrestore(&n->list_lock, flags);
3250 return x;
3251 }
3252
3253 static int count_inuse(struct page *page)
3254 {
3255 return page->inuse;
3256 }
3257
3258 static int count_total(struct page *page)
3259 {
3260 return page->objects;
3261 }
3262
3263 static int count_free(struct page *page)
3264 {
3265 return page->objects - page->inuse;
3266 }
3267
3268 static int validate_slab(struct kmem_cache *s, struct page *page,
3269 unsigned long *map)
3270 {
3271 void *p;
3272 void *addr = page_address(page);
3273
3274 if (!check_slab(s, page) ||
3275 !on_freelist(s, page, NULL))
3276 return 0;
3277
3278 /* Now we know that a valid freelist exists */
3279 bitmap_zero(map, page->objects);
3280
3281 for_each_free_object(p, s, page->freelist) {
3282 set_bit(slab_index(p, s, addr), map);
3283 if (!check_object(s, page, p, 0))
3284 return 0;
3285 }
3286
3287 for_each_object(p, s, addr, page->objects)
3288 if (!test_bit(slab_index(p, s, addr), map))
3289 if (!check_object(s, page, p, 1))
3290 return 0;
3291 return 1;
3292 }
3293
3294 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3295 unsigned long *map)
3296 {
3297 if (slab_trylock(page)) {
3298 validate_slab(s, page, map);
3299 slab_unlock(page);
3300 } else
3301 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3302 s->name, page);
3303
3304 if (s->flags & DEBUG_DEFAULT_FLAGS) {
3305 if (!PageSlubDebug(page))
3306 printk(KERN_ERR "SLUB %s: SlubDebug not set "
3307 "on slab 0x%p\n", s->name, page);
3308 } else {
3309 if (PageSlubDebug(page))
3310 printk(KERN_ERR "SLUB %s: SlubDebug set on "
3311 "slab 0x%p\n", s->name, page);
3312 }
3313 }
3314
3315 static int validate_slab_node(struct kmem_cache *s,
3316 struct kmem_cache_node *n, unsigned long *map)
3317 {
3318 unsigned long count = 0;
3319 struct page *page;
3320 unsigned long flags;
3321
3322 spin_lock_irqsave(&n->list_lock, flags);
3323
3324 list_for_each_entry(page, &n->partial, lru) {
3325 validate_slab_slab(s, page, map);
3326 count++;
3327 }
3328 if (count != n->nr_partial)
3329 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3330 "counter=%ld\n", s->name, count, n->nr_partial);
3331
3332 if (!(s->flags & SLAB_STORE_USER))
3333 goto out;
3334
3335 list_for_each_entry(page, &n->full, lru) {
3336 validate_slab_slab(s, page, map);
3337 count++;
3338 }
3339 if (count != atomic_long_read(&n->nr_slabs))
3340 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3341 "counter=%ld\n", s->name, count,
3342 atomic_long_read(&n->nr_slabs));
3343
3344 out:
3345 spin_unlock_irqrestore(&n->list_lock, flags);
3346 return count;
3347 }
3348
3349 static long validate_slab_cache(struct kmem_cache *s)
3350 {
3351 int node;
3352 unsigned long count = 0;
3353 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3354 sizeof(unsigned long), GFP_KERNEL);
3355
3356 if (!map)
3357 return -ENOMEM;
3358
3359 flush_all(s);
3360 for_each_node_state(node, N_NORMAL_MEMORY) {
3361 struct kmem_cache_node *n = get_node(s, node);
3362
3363 count += validate_slab_node(s, n, map);
3364 }
3365 kfree(map);
3366 return count;
3367 }
3368
3369 #ifdef SLUB_RESILIENCY_TEST
3370 static void resiliency_test(void)
3371 {
3372 u8 *p;
3373
3374 printk(KERN_ERR "SLUB resiliency testing\n");
3375 printk(KERN_ERR "-----------------------\n");
3376 printk(KERN_ERR "A. Corruption after allocation\n");
3377
3378 p = kzalloc(16, GFP_KERNEL);
3379 p[16] = 0x12;
3380 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3381 " 0x12->0x%p\n\n", p + 16);
3382
3383 validate_slab_cache(kmalloc_caches + 4);
3384
3385 /* Hmmm... The next two are dangerous */
3386 p = kzalloc(32, GFP_KERNEL);
3387 p[32 + sizeof(void *)] = 0x34;
3388 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3389 " 0x34 -> -0x%p\n", p);
3390 printk(KERN_ERR
3391 "If allocated object is overwritten then not detectable\n\n");
3392
3393 validate_slab_cache(kmalloc_caches + 5);
3394 p = kzalloc(64, GFP_KERNEL);
3395 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3396 *p = 0x56;
3397 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3398 p);
3399 printk(KERN_ERR
3400 "If allocated object is overwritten then not detectable\n\n");
3401 validate_slab_cache(kmalloc_caches + 6);
3402
3403 printk(KERN_ERR "\nB. Corruption after free\n");
3404 p = kzalloc(128, GFP_KERNEL);
3405 kfree(p);
3406 *p = 0x78;
3407 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3408 validate_slab_cache(kmalloc_caches + 7);
3409
3410 p = kzalloc(256, GFP_KERNEL);
3411 kfree(p);
3412 p[50] = 0x9a;
3413 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3414 p);
3415 validate_slab_cache(kmalloc_caches + 8);
3416
3417 p = kzalloc(512, GFP_KERNEL);
3418 kfree(p);
3419 p[512] = 0xab;
3420 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3421 validate_slab_cache(kmalloc_caches + 9);
3422 }
3423 #else
3424 static void resiliency_test(void) {};
3425 #endif
3426
3427 /*
3428 * Generate lists of code addresses where slabcache objects are allocated
3429 * and freed.
3430 */
3431
3432 struct location {
3433 unsigned long count;
3434 unsigned long addr;
3435 long long sum_time;
3436 long min_time;
3437 long max_time;
3438 long min_pid;
3439 long max_pid;
3440 cpumask_t cpus;
3441 nodemask_t nodes;
3442 };
3443
3444 struct loc_track {
3445 unsigned long max;
3446 unsigned long count;
3447 struct location *loc;
3448 };
3449
3450 static void free_loc_track(struct loc_track *t)
3451 {
3452 if (t->max)
3453 free_pages((unsigned long)t->loc,
3454 get_order(sizeof(struct location) * t->max));
3455 }
3456
3457 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3458 {
3459 struct location *l;
3460 int order;
3461
3462 order = get_order(sizeof(struct location) * max);
3463
3464 l = (void *)__get_free_pages(flags, order);
3465 if (!l)
3466 return 0;
3467
3468 if (t->count) {
3469 memcpy(l, t->loc, sizeof(struct location) * t->count);
3470 free_loc_track(t);
3471 }
3472 t->max = max;
3473 t->loc = l;
3474 return 1;
3475 }
3476
3477 static int add_location(struct loc_track *t, struct kmem_cache *s,
3478 const struct track *track)
3479 {
3480 long start, end, pos;
3481 struct location *l;
3482 unsigned long caddr;
3483 unsigned long age = jiffies - track->when;
3484
3485 start = -1;
3486 end = t->count;
3487
3488 for ( ; ; ) {
3489 pos = start + (end - start + 1) / 2;
3490
3491 /*
3492 * There is nothing at "end". If we end up there
3493 * we need to add something to before end.
3494 */
3495 if (pos == end)
3496 break;
3497
3498 caddr = t->loc[pos].addr;
3499 if (track->addr == caddr) {
3500
3501 l = &t->loc[pos];
3502 l->count++;
3503 if (track->when) {
3504 l->sum_time += age;
3505 if (age < l->min_time)
3506 l->min_time = age;
3507 if (age > l->max_time)
3508 l->max_time = age;
3509
3510 if (track->pid < l->min_pid)
3511 l->min_pid = track->pid;
3512 if (track->pid > l->max_pid)
3513 l->max_pid = track->pid;
3514
3515 cpu_set(track->cpu, l->cpus);
3516 }
3517 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3518 return 1;
3519 }
3520
3521 if (track->addr < caddr)
3522 end = pos;
3523 else
3524 start = pos;
3525 }
3526
3527 /*
3528 * Not found. Insert new tracking element.
3529 */
3530 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3531 return 0;
3532
3533 l = t->loc + pos;
3534 if (pos < t->count)
3535 memmove(l + 1, l,
3536 (t->count - pos) * sizeof(struct location));
3537 t->count++;
3538 l->count = 1;
3539 l->addr = track->addr;
3540 l->sum_time = age;
3541 l->min_time = age;
3542 l->max_time = age;
3543 l->min_pid = track->pid;
3544 l->max_pid = track->pid;
3545 cpus_clear(l->cpus);
3546 cpu_set(track->cpu, l->cpus);
3547 nodes_clear(l->nodes);
3548 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3549 return 1;
3550 }
3551
3552 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3553 struct page *page, enum track_item alloc)
3554 {
3555 void *addr = page_address(page);
3556 DECLARE_BITMAP(map, page->objects);
3557 void *p;
3558
3559 bitmap_zero(map, page->objects);
3560 for_each_free_object(p, s, page->freelist)
3561 set_bit(slab_index(p, s, addr), map);
3562
3563 for_each_object(p, s, addr, page->objects)
3564 if (!test_bit(slab_index(p, s, addr), map))
3565 add_location(t, s, get_track(s, p, alloc));
3566 }
3567
3568 static int list_locations(struct kmem_cache *s, char *buf,
3569 enum track_item alloc)
3570 {
3571 int len = 0;
3572 unsigned long i;
3573 struct loc_track t = { 0, 0, NULL };
3574 int node;
3575
3576 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3577 GFP_TEMPORARY))
3578 return sprintf(buf, "Out of memory\n");
3579
3580 /* Push back cpu slabs */
3581 flush_all(s);
3582
3583 for_each_node_state(node, N_NORMAL_MEMORY) {
3584 struct kmem_cache_node *n = get_node(s, node);
3585 unsigned long flags;
3586 struct page *page;
3587
3588 if (!atomic_long_read(&n->nr_slabs))
3589 continue;
3590
3591 spin_lock_irqsave(&n->list_lock, flags);
3592 list_for_each_entry(page, &n->partial, lru)
3593 process_slab(&t, s, page, alloc);
3594 list_for_each_entry(page, &n->full, lru)
3595 process_slab(&t, s, page, alloc);
3596 spin_unlock_irqrestore(&n->list_lock, flags);
3597 }
3598
3599 for (i = 0; i < t.count; i++) {
3600 struct location *l = &t.loc[i];
3601
3602 if (len > PAGE_SIZE - 100)
3603 break;
3604 len += sprintf(buf + len, "%7ld ", l->count);
3605
3606 if (l->addr)
3607 len += sprint_symbol(buf + len, (unsigned long)l->addr);
3608 else
3609 len += sprintf(buf + len, "<not-available>");
3610
3611 if (l->sum_time != l->min_time) {
3612 len += sprintf(buf + len, " age=%ld/%ld/%ld",
3613 l->min_time,
3614 (long)div_u64(l->sum_time, l->count),
3615 l->max_time);
3616 } else
3617 len += sprintf(buf + len, " age=%ld",
3618 l->min_time);
3619
3620 if (l->min_pid != l->max_pid)
3621 len += sprintf(buf + len, " pid=%ld-%ld",
3622 l->min_pid, l->max_pid);
3623 else
3624 len += sprintf(buf + len, " pid=%ld",
3625 l->min_pid);
3626
3627 if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
3628 len < PAGE_SIZE - 60) {
3629 len += sprintf(buf + len, " cpus=");
3630 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3631 l->cpus);
3632 }
3633
3634 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3635 len < PAGE_SIZE - 60) {
3636 len += sprintf(buf + len, " nodes=");
3637 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3638 l->nodes);
3639 }
3640
3641 len += sprintf(buf + len, "\n");
3642 }
3643
3644 free_loc_track(&t);
3645 if (!t.count)
3646 len += sprintf(buf, "No data\n");
3647 return len;
3648 }
3649
3650 enum slab_stat_type {
3651 SL_ALL, /* All slabs */
3652 SL_PARTIAL, /* Only partially allocated slabs */
3653 SL_CPU, /* Only slabs used for cpu caches */
3654 SL_OBJECTS, /* Determine allocated objects not slabs */
3655 SL_TOTAL /* Determine object capacity not slabs */
3656 };
3657
3658 #define SO_ALL (1 << SL_ALL)
3659 #define SO_PARTIAL (1 << SL_PARTIAL)
3660 #define SO_CPU (1 << SL_CPU)
3661 #define SO_OBJECTS (1 << SL_OBJECTS)
3662 #define SO_TOTAL (1 << SL_TOTAL)
3663
3664 static ssize_t show_slab_objects(struct kmem_cache *s,
3665 char *buf, unsigned long flags)
3666 {
3667 unsigned long total = 0;
3668 int node;
3669 int x;
3670 unsigned long *nodes;
3671 unsigned long *per_cpu;
3672
3673 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3674 if (!nodes)
3675 return -ENOMEM;
3676 per_cpu = nodes + nr_node_ids;
3677
3678 if (flags & SO_CPU) {
3679 int cpu;
3680
3681 for_each_possible_cpu(cpu) {
3682 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3683
3684 if (!c || c->node < 0)
3685 continue;
3686
3687 if (c->page) {
3688 if (flags & SO_TOTAL)
3689 x = c->page->objects;
3690 else if (flags & SO_OBJECTS)
3691 x = c->page->inuse;
3692 else
3693 x = 1;
3694
3695 total += x;
3696 nodes[c->node] += x;
3697 }
3698 per_cpu[c->node]++;
3699 }
3700 }
3701
3702 if (flags & SO_ALL) {
3703 for_each_node_state(node, N_NORMAL_MEMORY) {
3704 struct kmem_cache_node *n = get_node(s, node);
3705
3706 if (flags & SO_TOTAL)
3707 x = atomic_long_read(&n->total_objects);
3708 else if (flags & SO_OBJECTS)
3709 x = atomic_long_read(&n->total_objects) -
3710 count_partial(n, count_free);
3711
3712 else
3713 x = atomic_long_read(&n->nr_slabs);
3714 total += x;
3715 nodes[node] += x;
3716 }
3717
3718 } else if (flags & SO_PARTIAL) {
3719 for_each_node_state(node, N_NORMAL_MEMORY) {
3720 struct kmem_cache_node *n = get_node(s, node);
3721
3722 if (flags & SO_TOTAL)
3723 x = count_partial(n, count_total);
3724 else if (flags & SO_OBJECTS)
3725 x = count_partial(n, count_inuse);
3726 else
3727 x = n->nr_partial;
3728 total += x;
3729 nodes[node] += x;
3730 }
3731 }
3732 x = sprintf(buf, "%lu", total);
3733 #ifdef CONFIG_NUMA
3734 for_each_node_state(node, N_NORMAL_MEMORY)
3735 if (nodes[node])
3736 x += sprintf(buf + x, " N%d=%lu",
3737 node, nodes[node]);
3738 #endif
3739 kfree(nodes);
3740 return x + sprintf(buf + x, "\n");
3741 }
3742
3743 static int any_slab_objects(struct kmem_cache *s)
3744 {
3745 int node;
3746
3747 for_each_online_node(node) {
3748 struct kmem_cache_node *n = get_node(s, node);
3749
3750 if (!n)
3751 continue;
3752
3753 if (atomic_long_read(&n->total_objects))
3754 return 1;
3755 }
3756 return 0;
3757 }
3758
3759 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3760 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3761
3762 struct slab_attribute {
3763 struct attribute attr;
3764 ssize_t (*show)(struct kmem_cache *s, char *buf);
3765 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3766 };
3767
3768 #define SLAB_ATTR_RO(_name) \
3769 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3770
3771 #define SLAB_ATTR(_name) \
3772 static struct slab_attribute _name##_attr = \
3773 __ATTR(_name, 0644, _name##_show, _name##_store)
3774
3775 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3776 {
3777 return sprintf(buf, "%d\n", s->size);
3778 }
3779 SLAB_ATTR_RO(slab_size);
3780
3781 static ssize_t align_show(struct kmem_cache *s, char *buf)
3782 {
3783 return sprintf(buf, "%d\n", s->align);
3784 }
3785 SLAB_ATTR_RO(align);
3786
3787 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3788 {
3789 return sprintf(buf, "%d\n", s->objsize);
3790 }
3791 SLAB_ATTR_RO(object_size);
3792
3793 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3794 {
3795 return sprintf(buf, "%d\n", oo_objects(s->oo));
3796 }
3797 SLAB_ATTR_RO(objs_per_slab);
3798
3799 static ssize_t order_store(struct kmem_cache *s,
3800 const char *buf, size_t length)
3801 {
3802 unsigned long order;
3803 int err;
3804
3805 err = strict_strtoul(buf, 10, &order);
3806 if (err)
3807 return err;
3808
3809 if (order > slub_max_order || order < slub_min_order)
3810 return -EINVAL;
3811
3812 calculate_sizes(s, order);
3813 return length;
3814 }
3815
3816 static ssize_t order_show(struct kmem_cache *s, char *buf)
3817 {
3818 return sprintf(buf, "%d\n", oo_order(s->oo));
3819 }
3820 SLAB_ATTR(order);
3821
3822 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3823 {
3824 if (s->ctor) {
3825 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3826
3827 return n + sprintf(buf + n, "\n");
3828 }
3829 return 0;
3830 }
3831 SLAB_ATTR_RO(ctor);
3832
3833 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3834 {
3835 return sprintf(buf, "%d\n", s->refcount - 1);
3836 }
3837 SLAB_ATTR_RO(aliases);
3838
3839 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3840 {
3841 return show_slab_objects(s, buf, SO_ALL);
3842 }
3843 SLAB_ATTR_RO(slabs);
3844
3845 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3846 {
3847 return show_slab_objects(s, buf, SO_PARTIAL);
3848 }
3849 SLAB_ATTR_RO(partial);
3850
3851 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3852 {
3853 return show_slab_objects(s, buf, SO_CPU);
3854 }
3855 SLAB_ATTR_RO(cpu_slabs);
3856
3857 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3858 {
3859 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
3860 }
3861 SLAB_ATTR_RO(objects);
3862
3863 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3864 {
3865 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3866 }
3867 SLAB_ATTR_RO(objects_partial);
3868
3869 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
3870 {
3871 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
3872 }
3873 SLAB_ATTR_RO(total_objects);
3874
3875 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3876 {
3877 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3878 }
3879
3880 static ssize_t sanity_checks_store(struct kmem_cache *s,
3881 const char *buf, size_t length)
3882 {
3883 s->flags &= ~SLAB_DEBUG_FREE;
3884 if (buf[0] == '1')
3885 s->flags |= SLAB_DEBUG_FREE;
3886 return length;
3887 }
3888 SLAB_ATTR(sanity_checks);
3889
3890 static ssize_t trace_show(struct kmem_cache *s, char *buf)
3891 {
3892 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3893 }
3894
3895 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3896 size_t length)
3897 {
3898 s->flags &= ~SLAB_TRACE;
3899 if (buf[0] == '1')
3900 s->flags |= SLAB_TRACE;
3901 return length;
3902 }
3903 SLAB_ATTR(trace);
3904
3905 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3906 {
3907 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3908 }
3909
3910 static ssize_t reclaim_account_store(struct kmem_cache *s,
3911 const char *buf, size_t length)
3912 {
3913 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3914 if (buf[0] == '1')
3915 s->flags |= SLAB_RECLAIM_ACCOUNT;
3916 return length;
3917 }
3918 SLAB_ATTR(reclaim_account);
3919
3920 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3921 {
3922 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
3923 }
3924 SLAB_ATTR_RO(hwcache_align);
3925
3926 #ifdef CONFIG_ZONE_DMA
3927 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3928 {
3929 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3930 }
3931 SLAB_ATTR_RO(cache_dma);
3932 #endif
3933
3934 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3935 {
3936 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3937 }
3938 SLAB_ATTR_RO(destroy_by_rcu);
3939
3940 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3941 {
3942 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3943 }
3944
3945 static ssize_t red_zone_store(struct kmem_cache *s,
3946 const char *buf, size_t length)
3947 {
3948 if (any_slab_objects(s))
3949 return -EBUSY;
3950
3951 s->flags &= ~SLAB_RED_ZONE;
3952 if (buf[0] == '1')
3953 s->flags |= SLAB_RED_ZONE;
3954 calculate_sizes(s, -1);
3955 return length;
3956 }
3957 SLAB_ATTR(red_zone);
3958
3959 static ssize_t poison_show(struct kmem_cache *s, char *buf)
3960 {
3961 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3962 }
3963
3964 static ssize_t poison_store(struct kmem_cache *s,
3965 const char *buf, size_t length)
3966 {
3967 if (any_slab_objects(s))
3968 return -EBUSY;
3969
3970 s->flags &= ~SLAB_POISON;
3971 if (buf[0] == '1')
3972 s->flags |= SLAB_POISON;
3973 calculate_sizes(s, -1);
3974 return length;
3975 }
3976 SLAB_ATTR(poison);
3977
3978 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3979 {
3980 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3981 }
3982
3983 static ssize_t store_user_store(struct kmem_cache *s,
3984 const char *buf, size_t length)
3985 {
3986 if (any_slab_objects(s))
3987 return -EBUSY;
3988
3989 s->flags &= ~SLAB_STORE_USER;
3990 if (buf[0] == '1')
3991 s->flags |= SLAB_STORE_USER;
3992 calculate_sizes(s, -1);
3993 return length;
3994 }
3995 SLAB_ATTR(store_user);
3996
3997 static ssize_t validate_show(struct kmem_cache *s, char *buf)
3998 {
3999 return 0;
4000 }
4001
4002 static ssize_t validate_store(struct kmem_cache *s,
4003 const char *buf, size_t length)
4004 {
4005 int ret = -EINVAL;
4006
4007 if (buf[0] == '1') {
4008 ret = validate_slab_cache(s);
4009 if (ret >= 0)
4010 ret = length;
4011 }
4012 return ret;
4013 }
4014 SLAB_ATTR(validate);
4015
4016 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4017 {
4018 return 0;
4019 }
4020
4021 static ssize_t shrink_store(struct kmem_cache *s,
4022 const char *buf, size_t length)
4023 {
4024 if (buf[0] == '1') {
4025 int rc = kmem_cache_shrink(s);
4026
4027 if (rc)
4028 return rc;
4029 } else
4030 return -EINVAL;
4031 return length;
4032 }
4033 SLAB_ATTR(shrink);
4034
4035 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4036 {
4037 if (!(s->flags & SLAB_STORE_USER))
4038 return -ENOSYS;
4039 return list_locations(s, buf, TRACK_ALLOC);
4040 }
4041 SLAB_ATTR_RO(alloc_calls);
4042
4043 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4044 {
4045 if (!(s->flags & SLAB_STORE_USER))
4046 return -ENOSYS;
4047 return list_locations(s, buf, TRACK_FREE);
4048 }
4049 SLAB_ATTR_RO(free_calls);
4050
4051 #ifdef CONFIG_NUMA
4052 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4053 {
4054 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4055 }
4056
4057 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4058 const char *buf, size_t length)
4059 {
4060 unsigned long ratio;
4061 int err;
4062
4063 err = strict_strtoul(buf, 10, &ratio);
4064 if (err)
4065 return err;
4066
4067 if (ratio <= 100)
4068 s->remote_node_defrag_ratio = ratio * 10;
4069
4070 return length;
4071 }
4072 SLAB_ATTR(remote_node_defrag_ratio);
4073 #endif
4074
4075 #ifdef CONFIG_SLUB_STATS
4076 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4077 {
4078 unsigned long sum = 0;
4079 int cpu;
4080 int len;
4081 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4082
4083 if (!data)
4084 return -ENOMEM;
4085
4086 for_each_online_cpu(cpu) {
4087 unsigned x = get_cpu_slab(s, cpu)->stat[si];
4088
4089 data[cpu] = x;
4090 sum += x;
4091 }
4092
4093 len = sprintf(buf, "%lu", sum);
4094
4095 #ifdef CONFIG_SMP
4096 for_each_online_cpu(cpu) {
4097 if (data[cpu] && len < PAGE_SIZE - 20)
4098 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4099 }
4100 #endif
4101 kfree(data);
4102 return len + sprintf(buf + len, "\n");
4103 }
4104
4105 #define STAT_ATTR(si, text) \
4106 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4107 { \
4108 return show_stat(s, buf, si); \
4109 } \
4110 SLAB_ATTR_RO(text); \
4111
4112 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4113 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4114 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4115 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4116 STAT_ATTR(FREE_FROZEN, free_frozen);
4117 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4118 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4119 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4120 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4121 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4122 STAT_ATTR(FREE_SLAB, free_slab);
4123 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4124 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4125 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4126 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4127 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4128 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4129 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4130 #endif
4131
4132 static struct attribute *slab_attrs[] = {
4133 &slab_size_attr.attr,
4134 &object_size_attr.attr,
4135 &objs_per_slab_attr.attr,
4136 &order_attr.attr,
4137 &objects_attr.attr,
4138 &objects_partial_attr.attr,
4139 &total_objects_attr.attr,
4140 &slabs_attr.attr,
4141 &partial_attr.attr,
4142 &cpu_slabs_attr.attr,
4143 &ctor_attr.attr,
4144 &aliases_attr.attr,
4145 &align_attr.attr,
4146 &sanity_checks_attr.attr,
4147 &trace_attr.attr,
4148 &hwcache_align_attr.attr,
4149 &reclaim_account_attr.attr,
4150 &destroy_by_rcu_attr.attr,
4151 &red_zone_attr.attr,
4152 &poison_attr.attr,
4153 &store_user_attr.attr,
4154 &validate_attr.attr,
4155 &shrink_attr.attr,
4156 &alloc_calls_attr.attr,
4157 &free_calls_attr.attr,
4158 #ifdef CONFIG_ZONE_DMA
4159 &cache_dma_attr.attr,
4160 #endif
4161 #ifdef CONFIG_NUMA
4162 &remote_node_defrag_ratio_attr.attr,
4163 #endif
4164 #ifdef CONFIG_SLUB_STATS
4165 &alloc_fastpath_attr.attr,
4166 &alloc_slowpath_attr.attr,
4167 &free_fastpath_attr.attr,
4168 &free_slowpath_attr.attr,
4169 &free_frozen_attr.attr,
4170 &free_add_partial_attr.attr,
4171 &free_remove_partial_attr.attr,
4172 &alloc_from_partial_attr.attr,
4173 &alloc_slab_attr.attr,
4174 &alloc_refill_attr.attr,
4175 &free_slab_attr.attr,
4176 &cpuslab_flush_attr.attr,
4177 &deactivate_full_attr.attr,
4178 &deactivate_empty_attr.attr,
4179 &deactivate_to_head_attr.attr,
4180 &deactivate_to_tail_attr.attr,
4181 &deactivate_remote_frees_attr.attr,
4182 &order_fallback_attr.attr,
4183 #endif
4184 NULL
4185 };
4186
4187 static struct attribute_group slab_attr_group = {
4188 .attrs = slab_attrs,
4189 };
4190
4191 static ssize_t slab_attr_show(struct kobject *kobj,
4192 struct attribute *attr,
4193 char *buf)
4194 {
4195 struct slab_attribute *attribute;
4196 struct kmem_cache *s;
4197 int err;
4198
4199 attribute = to_slab_attr(attr);
4200 s = to_slab(kobj);
4201
4202 if (!attribute->show)
4203 return -EIO;
4204
4205 err = attribute->show(s, buf);
4206
4207 return err;
4208 }
4209
4210 static ssize_t slab_attr_store(struct kobject *kobj,
4211 struct attribute *attr,
4212 const char *buf, size_t len)
4213 {
4214 struct slab_attribute *attribute;
4215 struct kmem_cache *s;
4216 int err;
4217
4218 attribute = to_slab_attr(attr);
4219 s = to_slab(kobj);
4220
4221 if (!attribute->store)
4222 return -EIO;
4223
4224 err = attribute->store(s, buf, len);
4225
4226 return err;
4227 }
4228
4229 static void kmem_cache_release(struct kobject *kobj)
4230 {
4231 struct kmem_cache *s = to_slab(kobj);
4232
4233 kfree(s);
4234 }
4235
4236 static struct sysfs_ops slab_sysfs_ops = {
4237 .show = slab_attr_show,
4238 .store = slab_attr_store,
4239 };
4240
4241 static struct kobj_type slab_ktype = {
4242 .sysfs_ops = &slab_sysfs_ops,
4243 .release = kmem_cache_release
4244 };
4245
4246 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4247 {
4248 struct kobj_type *ktype = get_ktype(kobj);
4249
4250 if (ktype == &slab_ktype)
4251 return 1;
4252 return 0;
4253 }
4254
4255 static struct kset_uevent_ops slab_uevent_ops = {
4256 .filter = uevent_filter,
4257 };
4258
4259 static struct kset *slab_kset;
4260
4261 #define ID_STR_LENGTH 64
4262
4263 /* Create a unique string id for a slab cache:
4264 *
4265 * Format :[flags-]size
4266 */
4267 static char *create_unique_id(struct kmem_cache *s)
4268 {
4269 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4270 char *p = name;
4271
4272 BUG_ON(!name);
4273
4274 *p++ = ':';
4275 /*
4276 * First flags affecting slabcache operations. We will only
4277 * get here for aliasable slabs so we do not need to support
4278 * too many flags. The flags here must cover all flags that
4279 * are matched during merging to guarantee that the id is
4280 * unique.
4281 */
4282 if (s->flags & SLAB_CACHE_DMA)
4283 *p++ = 'd';
4284 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4285 *p++ = 'a';
4286 if (s->flags & SLAB_DEBUG_FREE)
4287 *p++ = 'F';
4288 if (p != name + 1)
4289 *p++ = '-';
4290 p += sprintf(p, "%07d", s->size);
4291 BUG_ON(p > name + ID_STR_LENGTH - 1);
4292 return name;
4293 }
4294
4295 static int sysfs_slab_add(struct kmem_cache *s)
4296 {
4297 int err;
4298 const char *name;
4299 int unmergeable;
4300
4301 if (slab_state < SYSFS)
4302 /* Defer until later */
4303 return 0;
4304
4305 unmergeable = slab_unmergeable(s);
4306 if (unmergeable) {
4307 /*
4308 * Slabcache can never be merged so we can use the name proper.
4309 * This is typically the case for debug situations. In that
4310 * case we can catch duplicate names easily.
4311 */
4312 sysfs_remove_link(&slab_kset->kobj, s->name);
4313 name = s->name;
4314 } else {
4315 /*
4316 * Create a unique name for the slab as a target
4317 * for the symlinks.
4318 */
4319 name = create_unique_id(s);
4320 }
4321
4322 s->kobj.kset = slab_kset;
4323 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4324 if (err) {
4325 kobject_put(&s->kobj);
4326 return err;
4327 }
4328
4329 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4330 if (err)
4331 return err;
4332 kobject_uevent(&s->kobj, KOBJ_ADD);
4333 if (!unmergeable) {
4334 /* Setup first alias */
4335 sysfs_slab_alias(s, s->name);
4336 kfree(name);
4337 }
4338 return 0;
4339 }
4340
4341 static void sysfs_slab_remove(struct kmem_cache *s)
4342 {
4343 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4344 kobject_del(&s->kobj);
4345 kobject_put(&s->kobj);
4346 }
4347
4348 /*
4349 * Need to buffer aliases during bootup until sysfs becomes
4350 * available lest we loose that information.
4351 */
4352 struct saved_alias {
4353 struct kmem_cache *s;
4354 const char *name;
4355 struct saved_alias *next;
4356 };
4357
4358 static struct saved_alias *alias_list;
4359
4360 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4361 {
4362 struct saved_alias *al;
4363
4364 if (slab_state == SYSFS) {
4365 /*
4366 * If we have a leftover link then remove it.
4367 */
4368 sysfs_remove_link(&slab_kset->kobj, name);
4369 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4370 }
4371
4372 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4373 if (!al)
4374 return -ENOMEM;
4375
4376 al->s = s;
4377 al->name = name;
4378 al->next = alias_list;
4379 alias_list = al;
4380 return 0;
4381 }
4382
4383 static int __init slab_sysfs_init(void)
4384 {
4385 struct kmem_cache *s;
4386 int err;
4387
4388 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4389 if (!slab_kset) {
4390 printk(KERN_ERR "Cannot register slab subsystem.\n");
4391 return -ENOSYS;
4392 }
4393
4394 slab_state = SYSFS;
4395
4396 list_for_each_entry(s, &slab_caches, list) {
4397 err = sysfs_slab_add(s);
4398 if (err)
4399 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4400 " to sysfs\n", s->name);
4401 }
4402
4403 while (alias_list) {
4404 struct saved_alias *al = alias_list;
4405
4406 alias_list = alias_list->next;
4407 err = sysfs_slab_alias(al->s, al->name);
4408 if (err)
4409 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4410 " %s to sysfs\n", s->name);
4411 kfree(al);
4412 }
4413
4414 resiliency_test();
4415 return 0;
4416 }
4417
4418 __initcall(slab_sysfs_init);
4419 #endif
4420
4421 /*
4422 * The /proc/slabinfo ABI
4423 */
4424 #ifdef CONFIG_SLABINFO
4425 static void print_slabinfo_header(struct seq_file *m)
4426 {
4427 seq_puts(m, "slabinfo - version: 2.1\n");
4428 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4429 "<objperslab> <pagesperslab>");
4430 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4431 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4432 seq_putc(m, '\n');
4433 }
4434
4435 static void *s_start(struct seq_file *m, loff_t *pos)
4436 {
4437 loff_t n = *pos;
4438
4439 down_read(&slub_lock);
4440 if (!n)
4441 print_slabinfo_header(m);
4442
4443 return seq_list_start(&slab_caches, *pos);
4444 }
4445
4446 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4447 {
4448 return seq_list_next(p, &slab_caches, pos);
4449 }
4450
4451 static void s_stop(struct seq_file *m, void *p)
4452 {
4453 up_read(&slub_lock);
4454 }
4455
4456 static int s_show(struct seq_file *m, void *p)
4457 {
4458 unsigned long nr_partials = 0;
4459 unsigned long nr_slabs = 0;
4460 unsigned long nr_inuse = 0;
4461 unsigned long nr_objs = 0;
4462 unsigned long nr_free = 0;
4463 struct kmem_cache *s;
4464 int node;
4465
4466 s = list_entry(p, struct kmem_cache, list);
4467
4468 for_each_online_node(node) {
4469 struct kmem_cache_node *n = get_node(s, node);
4470
4471 if (!n)
4472 continue;
4473
4474 nr_partials += n->nr_partial;
4475 nr_slabs += atomic_long_read(&n->nr_slabs);
4476 nr_objs += atomic_long_read(&n->total_objects);
4477 nr_free += count_partial(n, count_free);
4478 }
4479
4480 nr_inuse = nr_objs - nr_free;
4481
4482 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4483 nr_objs, s->size, oo_objects(s->oo),
4484 (1 << oo_order(s->oo)));
4485 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4486 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4487 0UL);
4488 seq_putc(m, '\n');
4489 return 0;
4490 }
4491
4492 static const struct seq_operations slabinfo_op = {
4493 .start = s_start,
4494 .next = s_next,
4495 .stop = s_stop,
4496 .show = s_show,
4497 };
4498
4499 static int slabinfo_open(struct inode *inode, struct file *file)
4500 {
4501 return seq_open(file, &slabinfo_op);
4502 }
4503
4504 static const struct file_operations proc_slabinfo_operations = {
4505 .open = slabinfo_open,
4506 .read = seq_read,
4507 .llseek = seq_lseek,
4508 .release = seq_release,
4509 };
4510
4511 static int __init slab_proc_init(void)
4512 {
4513 proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
4514 return 0;
4515 }
4516 module_init(slab_proc_init);
4517 #endif /* CONFIG_SLABINFO */
This page took 0.121027 seconds and 5 git commands to generate.