8fbb2fd70b64b78bb6236d09e8c7128b58a22c22
[deliverable/linux.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 */
10
11 #include <linux/mm.h>
12 #include <linux/swap.h> /* struct reclaim_state */
13 #include <linux/module.h>
14 #include <linux/bit_spinlock.h>
15 #include <linux/interrupt.h>
16 #include <linux/bitops.h>
17 #include <linux/slab.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/kmemtrace.h>
21 #include <linux/kmemcheck.h>
22 #include <linux/cpu.h>
23 #include <linux/cpuset.h>
24 #include <linux/mempolicy.h>
25 #include <linux/ctype.h>
26 #include <linux/debugobjects.h>
27 #include <linux/kallsyms.h>
28 #include <linux/memory.h>
29 #include <linux/math64.h>
30 #include <linux/fault-inject.h>
31
32 /*
33 * Lock order:
34 * 1. slab_lock(page)
35 * 2. slab->list_lock
36 *
37 * The slab_lock protects operations on the object of a particular
38 * slab and its metadata in the page struct. If the slab lock
39 * has been taken then no allocations nor frees can be performed
40 * on the objects in the slab nor can the slab be added or removed
41 * from the partial or full lists since this would mean modifying
42 * the page_struct of the slab.
43 *
44 * The list_lock protects the partial and full list on each node and
45 * the partial slab counter. If taken then no new slabs may be added or
46 * removed from the lists nor make the number of partial slabs be modified.
47 * (Note that the total number of slabs is an atomic value that may be
48 * modified without taking the list lock).
49 *
50 * The list_lock is a centralized lock and thus we avoid taking it as
51 * much as possible. As long as SLUB does not have to handle partial
52 * slabs, operations can continue without any centralized lock. F.e.
53 * allocating a long series of objects that fill up slabs does not require
54 * the list lock.
55 *
56 * The lock order is sometimes inverted when we are trying to get a slab
57 * off a list. We take the list_lock and then look for a page on the list
58 * to use. While we do that objects in the slabs may be freed. We can
59 * only operate on the slab if we have also taken the slab_lock. So we use
60 * a slab_trylock() on the slab. If trylock was successful then no frees
61 * can occur anymore and we can use the slab for allocations etc. If the
62 * slab_trylock() does not succeed then frees are in progress in the slab and
63 * we must stay away from it for a while since we may cause a bouncing
64 * cacheline if we try to acquire the lock. So go onto the next slab.
65 * If all pages are busy then we may allocate a new slab instead of reusing
66 * a partial slab. A new slab has noone operating on it and thus there is
67 * no danger of cacheline contention.
68 *
69 * Interrupts are disabled during allocation and deallocation in order to
70 * make the slab allocator safe to use in the context of an irq. In addition
71 * interrupts are disabled to ensure that the processor does not change
72 * while handling per_cpu slabs, due to kernel preemption.
73 *
74 * SLUB assigns one slab for allocation to each processor.
75 * Allocations only occur from these slabs called cpu slabs.
76 *
77 * Slabs with free elements are kept on a partial list and during regular
78 * operations no list for full slabs is used. If an object in a full slab is
79 * freed then the slab will show up again on the partial lists.
80 * We track full slabs for debugging purposes though because otherwise we
81 * cannot scan all objects.
82 *
83 * Slabs are freed when they become empty. Teardown and setup is
84 * minimal so we rely on the page allocators per cpu caches for
85 * fast frees and allocs.
86 *
87 * Overloading of page flags that are otherwise used for LRU management.
88 *
89 * PageActive The slab is frozen and exempt from list processing.
90 * This means that the slab is dedicated to a purpose
91 * such as satisfying allocations for a specific
92 * processor. Objects may be freed in the slab while
93 * it is frozen but slab_free will then skip the usual
94 * list operations. It is up to the processor holding
95 * the slab to integrate the slab into the slab lists
96 * when the slab is no longer needed.
97 *
98 * One use of this flag is to mark slabs that are
99 * used for allocations. Then such a slab becomes a cpu
100 * slab. The cpu slab may be equipped with an additional
101 * freelist that allows lockless access to
102 * free objects in addition to the regular freelist
103 * that requires the slab lock.
104 *
105 * PageError Slab requires special handling due to debug
106 * options set. This moves slab handling out of
107 * the fast path and disables lockless freelists.
108 */
109
110 #ifdef CONFIG_SLUB_DEBUG
111 #define SLABDEBUG 1
112 #else
113 #define SLABDEBUG 0
114 #endif
115
116 /*
117 * Issues still to be resolved:
118 *
119 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
120 *
121 * - Variable sizing of the per node arrays
122 */
123
124 /* Enable to test recovery from slab corruption on boot */
125 #undef SLUB_RESILIENCY_TEST
126
127 /*
128 * Mininum number of partial slabs. These will be left on the partial
129 * lists even if they are empty. kmem_cache_shrink may reclaim them.
130 */
131 #define MIN_PARTIAL 5
132
133 /*
134 * Maximum number of desirable partial slabs.
135 * The existence of more partial slabs makes kmem_cache_shrink
136 * sort the partial list by the number of objects in the.
137 */
138 #define MAX_PARTIAL 10
139
140 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
141 SLAB_POISON | SLAB_STORE_USER)
142
143 /*
144 * Debugging flags that require metadata to be stored in the slab. These get
145 * disabled when slub_debug=O is used and a cache's min order increases with
146 * metadata.
147 */
148 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
149
150 /*
151 * Set of flags that will prevent slab merging
152 */
153 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
154 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE)
155
156 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
157 SLAB_CACHE_DMA | SLAB_NOTRACK)
158
159 #ifndef ARCH_KMALLOC_MINALIGN
160 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
161 #endif
162
163 #ifndef ARCH_SLAB_MINALIGN
164 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
165 #endif
166
167 #define OO_SHIFT 16
168 #define OO_MASK ((1 << OO_SHIFT) - 1)
169 #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
170
171 /* Internal SLUB flags */
172 #define __OBJECT_POISON 0x80000000 /* Poison object */
173 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
174
175 static int kmem_size = sizeof(struct kmem_cache);
176
177 #ifdef CONFIG_SMP
178 static struct notifier_block slab_notifier;
179 #endif
180
181 static enum {
182 DOWN, /* No slab functionality available */
183 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
184 UP, /* Everything works but does not show up in sysfs */
185 SYSFS /* Sysfs up */
186 } slab_state = DOWN;
187
188 /* A list of all slab caches on the system */
189 static DECLARE_RWSEM(slub_lock);
190 static LIST_HEAD(slab_caches);
191
192 /*
193 * Tracking user of a slab.
194 */
195 struct track {
196 unsigned long addr; /* Called from address */
197 int cpu; /* Was running on cpu */
198 int pid; /* Pid context */
199 unsigned long when; /* When did the operation occur */
200 };
201
202 enum track_item { TRACK_ALLOC, TRACK_FREE };
203
204 #ifdef CONFIG_SLUB_DEBUG
205 static int sysfs_slab_add(struct kmem_cache *);
206 static int sysfs_slab_alias(struct kmem_cache *, const char *);
207 static void sysfs_slab_remove(struct kmem_cache *);
208
209 #else
210 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
211 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
212 { return 0; }
213 static inline void sysfs_slab_remove(struct kmem_cache *s)
214 {
215 kfree(s);
216 }
217
218 #endif
219
220 static inline void stat(struct kmem_cache *s, enum stat_item si)
221 {
222 #ifdef CONFIG_SLUB_STATS
223 __this_cpu_inc(s->cpu_slab->stat[si]);
224 #endif
225 }
226
227 /********************************************************************
228 * Core slab cache functions
229 *******************************************************************/
230
231 int slab_is_available(void)
232 {
233 return slab_state >= UP;
234 }
235
236 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
237 {
238 #ifdef CONFIG_NUMA
239 return s->node[node];
240 #else
241 return &s->local_node;
242 #endif
243 }
244
245 /* Verify that a pointer has an address that is valid within a slab page */
246 static inline int check_valid_pointer(struct kmem_cache *s,
247 struct page *page, const void *object)
248 {
249 void *base;
250
251 if (!object)
252 return 1;
253
254 base = page_address(page);
255 if (object < base || object >= base + page->objects * s->size ||
256 (object - base) % s->size) {
257 return 0;
258 }
259
260 return 1;
261 }
262
263 static inline void *get_freepointer(struct kmem_cache *s, void *object)
264 {
265 return *(void **)(object + s->offset);
266 }
267
268 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
269 {
270 *(void **)(object + s->offset) = fp;
271 }
272
273 /* Loop over all objects in a slab */
274 #define for_each_object(__p, __s, __addr, __objects) \
275 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
276 __p += (__s)->size)
277
278 /* Scan freelist */
279 #define for_each_free_object(__p, __s, __free) \
280 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
281
282 /* Determine object index from a given position */
283 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
284 {
285 return (p - addr) / s->size;
286 }
287
288 static inline struct kmem_cache_order_objects oo_make(int order,
289 unsigned long size)
290 {
291 struct kmem_cache_order_objects x = {
292 (order << OO_SHIFT) + (PAGE_SIZE << order) / size
293 };
294
295 return x;
296 }
297
298 static inline int oo_order(struct kmem_cache_order_objects x)
299 {
300 return x.x >> OO_SHIFT;
301 }
302
303 static inline int oo_objects(struct kmem_cache_order_objects x)
304 {
305 return x.x & OO_MASK;
306 }
307
308 #ifdef CONFIG_SLUB_DEBUG
309 /*
310 * Debug settings:
311 */
312 #ifdef CONFIG_SLUB_DEBUG_ON
313 static int slub_debug = DEBUG_DEFAULT_FLAGS;
314 #else
315 static int slub_debug;
316 #endif
317
318 static char *slub_debug_slabs;
319 static int disable_higher_order_debug;
320
321 /*
322 * Object debugging
323 */
324 static void print_section(char *text, u8 *addr, unsigned int length)
325 {
326 int i, offset;
327 int newline = 1;
328 char ascii[17];
329
330 ascii[16] = 0;
331
332 for (i = 0; i < length; i++) {
333 if (newline) {
334 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
335 newline = 0;
336 }
337 printk(KERN_CONT " %02x", addr[i]);
338 offset = i % 16;
339 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
340 if (offset == 15) {
341 printk(KERN_CONT " %s\n", ascii);
342 newline = 1;
343 }
344 }
345 if (!newline) {
346 i %= 16;
347 while (i < 16) {
348 printk(KERN_CONT " ");
349 ascii[i] = ' ';
350 i++;
351 }
352 printk(KERN_CONT " %s\n", ascii);
353 }
354 }
355
356 static struct track *get_track(struct kmem_cache *s, void *object,
357 enum track_item alloc)
358 {
359 struct track *p;
360
361 if (s->offset)
362 p = object + s->offset + sizeof(void *);
363 else
364 p = object + s->inuse;
365
366 return p + alloc;
367 }
368
369 static void set_track(struct kmem_cache *s, void *object,
370 enum track_item alloc, unsigned long addr)
371 {
372 struct track *p = get_track(s, object, alloc);
373
374 if (addr) {
375 p->addr = addr;
376 p->cpu = smp_processor_id();
377 p->pid = current->pid;
378 p->when = jiffies;
379 } else
380 memset(p, 0, sizeof(struct track));
381 }
382
383 static void init_tracking(struct kmem_cache *s, void *object)
384 {
385 if (!(s->flags & SLAB_STORE_USER))
386 return;
387
388 set_track(s, object, TRACK_FREE, 0UL);
389 set_track(s, object, TRACK_ALLOC, 0UL);
390 }
391
392 static void print_track(const char *s, struct track *t)
393 {
394 if (!t->addr)
395 return;
396
397 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
398 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
399 }
400
401 static void print_tracking(struct kmem_cache *s, void *object)
402 {
403 if (!(s->flags & SLAB_STORE_USER))
404 return;
405
406 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
407 print_track("Freed", get_track(s, object, TRACK_FREE));
408 }
409
410 static void print_page_info(struct page *page)
411 {
412 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
413 page, page->objects, page->inuse, page->freelist, page->flags);
414
415 }
416
417 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
418 {
419 va_list args;
420 char buf[100];
421
422 va_start(args, fmt);
423 vsnprintf(buf, sizeof(buf), fmt, args);
424 va_end(args);
425 printk(KERN_ERR "========================================"
426 "=====================================\n");
427 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
428 printk(KERN_ERR "----------------------------------------"
429 "-------------------------------------\n\n");
430 }
431
432 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
433 {
434 va_list args;
435 char buf[100];
436
437 va_start(args, fmt);
438 vsnprintf(buf, sizeof(buf), fmt, args);
439 va_end(args);
440 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
441 }
442
443 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
444 {
445 unsigned int off; /* Offset of last byte */
446 u8 *addr = page_address(page);
447
448 print_tracking(s, p);
449
450 print_page_info(page);
451
452 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
453 p, p - addr, get_freepointer(s, p));
454
455 if (p > addr + 16)
456 print_section("Bytes b4", p - 16, 16);
457
458 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
459
460 if (s->flags & SLAB_RED_ZONE)
461 print_section("Redzone", p + s->objsize,
462 s->inuse - s->objsize);
463
464 if (s->offset)
465 off = s->offset + sizeof(void *);
466 else
467 off = s->inuse;
468
469 if (s->flags & SLAB_STORE_USER)
470 off += 2 * sizeof(struct track);
471
472 if (off != s->size)
473 /* Beginning of the filler is the free pointer */
474 print_section("Padding", p + off, s->size - off);
475
476 dump_stack();
477 }
478
479 static void object_err(struct kmem_cache *s, struct page *page,
480 u8 *object, char *reason)
481 {
482 slab_bug(s, "%s", reason);
483 print_trailer(s, page, object);
484 }
485
486 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
487 {
488 va_list args;
489 char buf[100];
490
491 va_start(args, fmt);
492 vsnprintf(buf, sizeof(buf), fmt, args);
493 va_end(args);
494 slab_bug(s, "%s", buf);
495 print_page_info(page);
496 dump_stack();
497 }
498
499 static void init_object(struct kmem_cache *s, void *object, int active)
500 {
501 u8 *p = object;
502
503 if (s->flags & __OBJECT_POISON) {
504 memset(p, POISON_FREE, s->objsize - 1);
505 p[s->objsize - 1] = POISON_END;
506 }
507
508 if (s->flags & SLAB_RED_ZONE)
509 memset(p + s->objsize,
510 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
511 s->inuse - s->objsize);
512 }
513
514 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
515 {
516 while (bytes) {
517 if (*start != (u8)value)
518 return start;
519 start++;
520 bytes--;
521 }
522 return NULL;
523 }
524
525 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
526 void *from, void *to)
527 {
528 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
529 memset(from, data, to - from);
530 }
531
532 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
533 u8 *object, char *what,
534 u8 *start, unsigned int value, unsigned int bytes)
535 {
536 u8 *fault;
537 u8 *end;
538
539 fault = check_bytes(start, value, bytes);
540 if (!fault)
541 return 1;
542
543 end = start + bytes;
544 while (end > fault && end[-1] == value)
545 end--;
546
547 slab_bug(s, "%s overwritten", what);
548 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
549 fault, end - 1, fault[0], value);
550 print_trailer(s, page, object);
551
552 restore_bytes(s, what, value, fault, end);
553 return 0;
554 }
555
556 /*
557 * Object layout:
558 *
559 * object address
560 * Bytes of the object to be managed.
561 * If the freepointer may overlay the object then the free
562 * pointer is the first word of the object.
563 *
564 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
565 * 0xa5 (POISON_END)
566 *
567 * object + s->objsize
568 * Padding to reach word boundary. This is also used for Redzoning.
569 * Padding is extended by another word if Redzoning is enabled and
570 * objsize == inuse.
571 *
572 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
573 * 0xcc (RED_ACTIVE) for objects in use.
574 *
575 * object + s->inuse
576 * Meta data starts here.
577 *
578 * A. Free pointer (if we cannot overwrite object on free)
579 * B. Tracking data for SLAB_STORE_USER
580 * C. Padding to reach required alignment boundary or at mininum
581 * one word if debugging is on to be able to detect writes
582 * before the word boundary.
583 *
584 * Padding is done using 0x5a (POISON_INUSE)
585 *
586 * object + s->size
587 * Nothing is used beyond s->size.
588 *
589 * If slabcaches are merged then the objsize and inuse boundaries are mostly
590 * ignored. And therefore no slab options that rely on these boundaries
591 * may be used with merged slabcaches.
592 */
593
594 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
595 {
596 unsigned long off = s->inuse; /* The end of info */
597
598 if (s->offset)
599 /* Freepointer is placed after the object. */
600 off += sizeof(void *);
601
602 if (s->flags & SLAB_STORE_USER)
603 /* We also have user information there */
604 off += 2 * sizeof(struct track);
605
606 if (s->size == off)
607 return 1;
608
609 return check_bytes_and_report(s, page, p, "Object padding",
610 p + off, POISON_INUSE, s->size - off);
611 }
612
613 /* Check the pad bytes at the end of a slab page */
614 static int slab_pad_check(struct kmem_cache *s, struct page *page)
615 {
616 u8 *start;
617 u8 *fault;
618 u8 *end;
619 int length;
620 int remainder;
621
622 if (!(s->flags & SLAB_POISON))
623 return 1;
624
625 start = page_address(page);
626 length = (PAGE_SIZE << compound_order(page));
627 end = start + length;
628 remainder = length % s->size;
629 if (!remainder)
630 return 1;
631
632 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
633 if (!fault)
634 return 1;
635 while (end > fault && end[-1] == POISON_INUSE)
636 end--;
637
638 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
639 print_section("Padding", end - remainder, remainder);
640
641 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
642 return 0;
643 }
644
645 static int check_object(struct kmem_cache *s, struct page *page,
646 void *object, int active)
647 {
648 u8 *p = object;
649 u8 *endobject = object + s->objsize;
650
651 if (s->flags & SLAB_RED_ZONE) {
652 unsigned int red =
653 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
654
655 if (!check_bytes_and_report(s, page, object, "Redzone",
656 endobject, red, s->inuse - s->objsize))
657 return 0;
658 } else {
659 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
660 check_bytes_and_report(s, page, p, "Alignment padding",
661 endobject, POISON_INUSE, s->inuse - s->objsize);
662 }
663 }
664
665 if (s->flags & SLAB_POISON) {
666 if (!active && (s->flags & __OBJECT_POISON) &&
667 (!check_bytes_and_report(s, page, p, "Poison", p,
668 POISON_FREE, s->objsize - 1) ||
669 !check_bytes_and_report(s, page, p, "Poison",
670 p + s->objsize - 1, POISON_END, 1)))
671 return 0;
672 /*
673 * check_pad_bytes cleans up on its own.
674 */
675 check_pad_bytes(s, page, p);
676 }
677
678 if (!s->offset && active)
679 /*
680 * Object and freepointer overlap. Cannot check
681 * freepointer while object is allocated.
682 */
683 return 1;
684
685 /* Check free pointer validity */
686 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
687 object_err(s, page, p, "Freepointer corrupt");
688 /*
689 * No choice but to zap it and thus lose the remainder
690 * of the free objects in this slab. May cause
691 * another error because the object count is now wrong.
692 */
693 set_freepointer(s, p, NULL);
694 return 0;
695 }
696 return 1;
697 }
698
699 static int check_slab(struct kmem_cache *s, struct page *page)
700 {
701 int maxobj;
702
703 VM_BUG_ON(!irqs_disabled());
704
705 if (!PageSlab(page)) {
706 slab_err(s, page, "Not a valid slab page");
707 return 0;
708 }
709
710 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
711 if (page->objects > maxobj) {
712 slab_err(s, page, "objects %u > max %u",
713 s->name, page->objects, maxobj);
714 return 0;
715 }
716 if (page->inuse > page->objects) {
717 slab_err(s, page, "inuse %u > max %u",
718 s->name, page->inuse, page->objects);
719 return 0;
720 }
721 /* Slab_pad_check fixes things up after itself */
722 slab_pad_check(s, page);
723 return 1;
724 }
725
726 /*
727 * Determine if a certain object on a page is on the freelist. Must hold the
728 * slab lock to guarantee that the chains are in a consistent state.
729 */
730 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
731 {
732 int nr = 0;
733 void *fp = page->freelist;
734 void *object = NULL;
735 unsigned long max_objects;
736
737 while (fp && nr <= page->objects) {
738 if (fp == search)
739 return 1;
740 if (!check_valid_pointer(s, page, fp)) {
741 if (object) {
742 object_err(s, page, object,
743 "Freechain corrupt");
744 set_freepointer(s, object, NULL);
745 break;
746 } else {
747 slab_err(s, page, "Freepointer corrupt");
748 page->freelist = NULL;
749 page->inuse = page->objects;
750 slab_fix(s, "Freelist cleared");
751 return 0;
752 }
753 break;
754 }
755 object = fp;
756 fp = get_freepointer(s, object);
757 nr++;
758 }
759
760 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
761 if (max_objects > MAX_OBJS_PER_PAGE)
762 max_objects = MAX_OBJS_PER_PAGE;
763
764 if (page->objects != max_objects) {
765 slab_err(s, page, "Wrong number of objects. Found %d but "
766 "should be %d", page->objects, max_objects);
767 page->objects = max_objects;
768 slab_fix(s, "Number of objects adjusted.");
769 }
770 if (page->inuse != page->objects - nr) {
771 slab_err(s, page, "Wrong object count. Counter is %d but "
772 "counted were %d", page->inuse, page->objects - nr);
773 page->inuse = page->objects - nr;
774 slab_fix(s, "Object count adjusted.");
775 }
776 return search == NULL;
777 }
778
779 static void trace(struct kmem_cache *s, struct page *page, void *object,
780 int alloc)
781 {
782 if (s->flags & SLAB_TRACE) {
783 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
784 s->name,
785 alloc ? "alloc" : "free",
786 object, page->inuse,
787 page->freelist);
788
789 if (!alloc)
790 print_section("Object", (void *)object, s->objsize);
791
792 dump_stack();
793 }
794 }
795
796 /*
797 * Tracking of fully allocated slabs for debugging purposes.
798 */
799 static void add_full(struct kmem_cache_node *n, struct page *page)
800 {
801 spin_lock(&n->list_lock);
802 list_add(&page->lru, &n->full);
803 spin_unlock(&n->list_lock);
804 }
805
806 static void remove_full(struct kmem_cache *s, struct page *page)
807 {
808 struct kmem_cache_node *n;
809
810 if (!(s->flags & SLAB_STORE_USER))
811 return;
812
813 n = get_node(s, page_to_nid(page));
814
815 spin_lock(&n->list_lock);
816 list_del(&page->lru);
817 spin_unlock(&n->list_lock);
818 }
819
820 /* Tracking of the number of slabs for debugging purposes */
821 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
822 {
823 struct kmem_cache_node *n = get_node(s, node);
824
825 return atomic_long_read(&n->nr_slabs);
826 }
827
828 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
829 {
830 return atomic_long_read(&n->nr_slabs);
831 }
832
833 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
834 {
835 struct kmem_cache_node *n = get_node(s, node);
836
837 /*
838 * May be called early in order to allocate a slab for the
839 * kmem_cache_node structure. Solve the chicken-egg
840 * dilemma by deferring the increment of the count during
841 * bootstrap (see early_kmem_cache_node_alloc).
842 */
843 if (!NUMA_BUILD || n) {
844 atomic_long_inc(&n->nr_slabs);
845 atomic_long_add(objects, &n->total_objects);
846 }
847 }
848 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
849 {
850 struct kmem_cache_node *n = get_node(s, node);
851
852 atomic_long_dec(&n->nr_slabs);
853 atomic_long_sub(objects, &n->total_objects);
854 }
855
856 /* Object debug checks for alloc/free paths */
857 static void setup_object_debug(struct kmem_cache *s, struct page *page,
858 void *object)
859 {
860 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
861 return;
862
863 init_object(s, object, 0);
864 init_tracking(s, object);
865 }
866
867 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
868 void *object, unsigned long addr)
869 {
870 if (!check_slab(s, page))
871 goto bad;
872
873 if (!on_freelist(s, page, object)) {
874 object_err(s, page, object, "Object already allocated");
875 goto bad;
876 }
877
878 if (!check_valid_pointer(s, page, object)) {
879 object_err(s, page, object, "Freelist Pointer check fails");
880 goto bad;
881 }
882
883 if (!check_object(s, page, object, 0))
884 goto bad;
885
886 /* Success perform special debug activities for allocs */
887 if (s->flags & SLAB_STORE_USER)
888 set_track(s, object, TRACK_ALLOC, addr);
889 trace(s, page, object, 1);
890 init_object(s, object, 1);
891 return 1;
892
893 bad:
894 if (PageSlab(page)) {
895 /*
896 * If this is a slab page then lets do the best we can
897 * to avoid issues in the future. Marking all objects
898 * as used avoids touching the remaining objects.
899 */
900 slab_fix(s, "Marking all objects used");
901 page->inuse = page->objects;
902 page->freelist = NULL;
903 }
904 return 0;
905 }
906
907 static int free_debug_processing(struct kmem_cache *s, struct page *page,
908 void *object, unsigned long addr)
909 {
910 if (!check_slab(s, page))
911 goto fail;
912
913 if (!check_valid_pointer(s, page, object)) {
914 slab_err(s, page, "Invalid object pointer 0x%p", object);
915 goto fail;
916 }
917
918 if (on_freelist(s, page, object)) {
919 object_err(s, page, object, "Object already free");
920 goto fail;
921 }
922
923 if (!check_object(s, page, object, 1))
924 return 0;
925
926 if (unlikely(s != page->slab)) {
927 if (!PageSlab(page)) {
928 slab_err(s, page, "Attempt to free object(0x%p) "
929 "outside of slab", object);
930 } else if (!page->slab) {
931 printk(KERN_ERR
932 "SLUB <none>: no slab for object 0x%p.\n",
933 object);
934 dump_stack();
935 } else
936 object_err(s, page, object,
937 "page slab pointer corrupt.");
938 goto fail;
939 }
940
941 /* Special debug activities for freeing objects */
942 if (!PageSlubFrozen(page) && !page->freelist)
943 remove_full(s, page);
944 if (s->flags & SLAB_STORE_USER)
945 set_track(s, object, TRACK_FREE, addr);
946 trace(s, page, object, 0);
947 init_object(s, object, 0);
948 return 1;
949
950 fail:
951 slab_fix(s, "Object at 0x%p not freed", object);
952 return 0;
953 }
954
955 static int __init setup_slub_debug(char *str)
956 {
957 slub_debug = DEBUG_DEFAULT_FLAGS;
958 if (*str++ != '=' || !*str)
959 /*
960 * No options specified. Switch on full debugging.
961 */
962 goto out;
963
964 if (*str == ',')
965 /*
966 * No options but restriction on slabs. This means full
967 * debugging for slabs matching a pattern.
968 */
969 goto check_slabs;
970
971 if (tolower(*str) == 'o') {
972 /*
973 * Avoid enabling debugging on caches if its minimum order
974 * would increase as a result.
975 */
976 disable_higher_order_debug = 1;
977 goto out;
978 }
979
980 slub_debug = 0;
981 if (*str == '-')
982 /*
983 * Switch off all debugging measures.
984 */
985 goto out;
986
987 /*
988 * Determine which debug features should be switched on
989 */
990 for (; *str && *str != ','; str++) {
991 switch (tolower(*str)) {
992 case 'f':
993 slub_debug |= SLAB_DEBUG_FREE;
994 break;
995 case 'z':
996 slub_debug |= SLAB_RED_ZONE;
997 break;
998 case 'p':
999 slub_debug |= SLAB_POISON;
1000 break;
1001 case 'u':
1002 slub_debug |= SLAB_STORE_USER;
1003 break;
1004 case 't':
1005 slub_debug |= SLAB_TRACE;
1006 break;
1007 default:
1008 printk(KERN_ERR "slub_debug option '%c' "
1009 "unknown. skipped\n", *str);
1010 }
1011 }
1012
1013 check_slabs:
1014 if (*str == ',')
1015 slub_debug_slabs = str + 1;
1016 out:
1017 return 1;
1018 }
1019
1020 __setup("slub_debug", setup_slub_debug);
1021
1022 static unsigned long kmem_cache_flags(unsigned long objsize,
1023 unsigned long flags, const char *name,
1024 void (*ctor)(void *))
1025 {
1026 /*
1027 * Enable debugging if selected on the kernel commandline.
1028 */
1029 if (slub_debug && (!slub_debug_slabs ||
1030 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1031 flags |= slub_debug;
1032
1033 return flags;
1034 }
1035 #else
1036 static inline void setup_object_debug(struct kmem_cache *s,
1037 struct page *page, void *object) {}
1038
1039 static inline int alloc_debug_processing(struct kmem_cache *s,
1040 struct page *page, void *object, unsigned long addr) { return 0; }
1041
1042 static inline int free_debug_processing(struct kmem_cache *s,
1043 struct page *page, void *object, unsigned long addr) { return 0; }
1044
1045 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1046 { return 1; }
1047 static inline int check_object(struct kmem_cache *s, struct page *page,
1048 void *object, int active) { return 1; }
1049 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1050 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1051 unsigned long flags, const char *name,
1052 void (*ctor)(void *))
1053 {
1054 return flags;
1055 }
1056 #define slub_debug 0
1057
1058 #define disable_higher_order_debug 0
1059
1060 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1061 { return 0; }
1062 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1063 { return 0; }
1064 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1065 int objects) {}
1066 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1067 int objects) {}
1068 #endif
1069
1070 /*
1071 * Slab allocation and freeing
1072 */
1073 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1074 struct kmem_cache_order_objects oo)
1075 {
1076 int order = oo_order(oo);
1077
1078 flags |= __GFP_NOTRACK;
1079
1080 if (node == -1)
1081 return alloc_pages(flags, order);
1082 else
1083 return alloc_pages_node(node, flags, order);
1084 }
1085
1086 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1087 {
1088 struct page *page;
1089 struct kmem_cache_order_objects oo = s->oo;
1090 gfp_t alloc_gfp;
1091
1092 flags |= s->allocflags;
1093
1094 /*
1095 * Let the initial higher-order allocation fail under memory pressure
1096 * so we fall-back to the minimum order allocation.
1097 */
1098 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1099
1100 page = alloc_slab_page(alloc_gfp, node, oo);
1101 if (unlikely(!page)) {
1102 oo = s->min;
1103 /*
1104 * Allocation may have failed due to fragmentation.
1105 * Try a lower order alloc if possible
1106 */
1107 page = alloc_slab_page(flags, node, oo);
1108 if (!page)
1109 return NULL;
1110
1111 stat(s, ORDER_FALLBACK);
1112 }
1113
1114 if (kmemcheck_enabled
1115 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1116 int pages = 1 << oo_order(oo);
1117
1118 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1119
1120 /*
1121 * Objects from caches that have a constructor don't get
1122 * cleared when they're allocated, so we need to do it here.
1123 */
1124 if (s->ctor)
1125 kmemcheck_mark_uninitialized_pages(page, pages);
1126 else
1127 kmemcheck_mark_unallocated_pages(page, pages);
1128 }
1129
1130 page->objects = oo_objects(oo);
1131 mod_zone_page_state(page_zone(page),
1132 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1133 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1134 1 << oo_order(oo));
1135
1136 return page;
1137 }
1138
1139 static void setup_object(struct kmem_cache *s, struct page *page,
1140 void *object)
1141 {
1142 setup_object_debug(s, page, object);
1143 if (unlikely(s->ctor))
1144 s->ctor(object);
1145 }
1146
1147 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1148 {
1149 struct page *page;
1150 void *start;
1151 void *last;
1152 void *p;
1153
1154 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1155
1156 page = allocate_slab(s,
1157 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1158 if (!page)
1159 goto out;
1160
1161 inc_slabs_node(s, page_to_nid(page), page->objects);
1162 page->slab = s;
1163 page->flags |= 1 << PG_slab;
1164 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1165 SLAB_STORE_USER | SLAB_TRACE))
1166 __SetPageSlubDebug(page);
1167
1168 start = page_address(page);
1169
1170 if (unlikely(s->flags & SLAB_POISON))
1171 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1172
1173 last = start;
1174 for_each_object(p, s, start, page->objects) {
1175 setup_object(s, page, last);
1176 set_freepointer(s, last, p);
1177 last = p;
1178 }
1179 setup_object(s, page, last);
1180 set_freepointer(s, last, NULL);
1181
1182 page->freelist = start;
1183 page->inuse = 0;
1184 out:
1185 return page;
1186 }
1187
1188 static void __free_slab(struct kmem_cache *s, struct page *page)
1189 {
1190 int order = compound_order(page);
1191 int pages = 1 << order;
1192
1193 if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
1194 void *p;
1195
1196 slab_pad_check(s, page);
1197 for_each_object(p, s, page_address(page),
1198 page->objects)
1199 check_object(s, page, p, 0);
1200 __ClearPageSlubDebug(page);
1201 }
1202
1203 kmemcheck_free_shadow(page, compound_order(page));
1204
1205 mod_zone_page_state(page_zone(page),
1206 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1207 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1208 -pages);
1209
1210 __ClearPageSlab(page);
1211 reset_page_mapcount(page);
1212 if (current->reclaim_state)
1213 current->reclaim_state->reclaimed_slab += pages;
1214 __free_pages(page, order);
1215 }
1216
1217 static void rcu_free_slab(struct rcu_head *h)
1218 {
1219 struct page *page;
1220
1221 page = container_of((struct list_head *)h, struct page, lru);
1222 __free_slab(page->slab, page);
1223 }
1224
1225 static void free_slab(struct kmem_cache *s, struct page *page)
1226 {
1227 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1228 /*
1229 * RCU free overloads the RCU head over the LRU
1230 */
1231 struct rcu_head *head = (void *)&page->lru;
1232
1233 call_rcu(head, rcu_free_slab);
1234 } else
1235 __free_slab(s, page);
1236 }
1237
1238 static void discard_slab(struct kmem_cache *s, struct page *page)
1239 {
1240 dec_slabs_node(s, page_to_nid(page), page->objects);
1241 free_slab(s, page);
1242 }
1243
1244 /*
1245 * Per slab locking using the pagelock
1246 */
1247 static __always_inline void slab_lock(struct page *page)
1248 {
1249 bit_spin_lock(PG_locked, &page->flags);
1250 }
1251
1252 static __always_inline void slab_unlock(struct page *page)
1253 {
1254 __bit_spin_unlock(PG_locked, &page->flags);
1255 }
1256
1257 static __always_inline int slab_trylock(struct page *page)
1258 {
1259 int rc = 1;
1260
1261 rc = bit_spin_trylock(PG_locked, &page->flags);
1262 return rc;
1263 }
1264
1265 /*
1266 * Management of partially allocated slabs
1267 */
1268 static void add_partial(struct kmem_cache_node *n,
1269 struct page *page, int tail)
1270 {
1271 spin_lock(&n->list_lock);
1272 n->nr_partial++;
1273 if (tail)
1274 list_add_tail(&page->lru, &n->partial);
1275 else
1276 list_add(&page->lru, &n->partial);
1277 spin_unlock(&n->list_lock);
1278 }
1279
1280 static void remove_partial(struct kmem_cache *s, struct page *page)
1281 {
1282 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1283
1284 spin_lock(&n->list_lock);
1285 list_del(&page->lru);
1286 n->nr_partial--;
1287 spin_unlock(&n->list_lock);
1288 }
1289
1290 /*
1291 * Lock slab and remove from the partial list.
1292 *
1293 * Must hold list_lock.
1294 */
1295 static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1296 struct page *page)
1297 {
1298 if (slab_trylock(page)) {
1299 list_del(&page->lru);
1300 n->nr_partial--;
1301 __SetPageSlubFrozen(page);
1302 return 1;
1303 }
1304 return 0;
1305 }
1306
1307 /*
1308 * Try to allocate a partial slab from a specific node.
1309 */
1310 static struct page *get_partial_node(struct kmem_cache_node *n)
1311 {
1312 struct page *page;
1313
1314 /*
1315 * Racy check. If we mistakenly see no partial slabs then we
1316 * just allocate an empty slab. If we mistakenly try to get a
1317 * partial slab and there is none available then get_partials()
1318 * will return NULL.
1319 */
1320 if (!n || !n->nr_partial)
1321 return NULL;
1322
1323 spin_lock(&n->list_lock);
1324 list_for_each_entry(page, &n->partial, lru)
1325 if (lock_and_freeze_slab(n, page))
1326 goto out;
1327 page = NULL;
1328 out:
1329 spin_unlock(&n->list_lock);
1330 return page;
1331 }
1332
1333 /*
1334 * Get a page from somewhere. Search in increasing NUMA distances.
1335 */
1336 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1337 {
1338 #ifdef CONFIG_NUMA
1339 struct zonelist *zonelist;
1340 struct zoneref *z;
1341 struct zone *zone;
1342 enum zone_type high_zoneidx = gfp_zone(flags);
1343 struct page *page;
1344
1345 /*
1346 * The defrag ratio allows a configuration of the tradeoffs between
1347 * inter node defragmentation and node local allocations. A lower
1348 * defrag_ratio increases the tendency to do local allocations
1349 * instead of attempting to obtain partial slabs from other nodes.
1350 *
1351 * If the defrag_ratio is set to 0 then kmalloc() always
1352 * returns node local objects. If the ratio is higher then kmalloc()
1353 * may return off node objects because partial slabs are obtained
1354 * from other nodes and filled up.
1355 *
1356 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1357 * defrag_ratio = 1000) then every (well almost) allocation will
1358 * first attempt to defrag slab caches on other nodes. This means
1359 * scanning over all nodes to look for partial slabs which may be
1360 * expensive if we do it every time we are trying to find a slab
1361 * with available objects.
1362 */
1363 if (!s->remote_node_defrag_ratio ||
1364 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1365 return NULL;
1366
1367 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1368 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1369 struct kmem_cache_node *n;
1370
1371 n = get_node(s, zone_to_nid(zone));
1372
1373 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1374 n->nr_partial > s->min_partial) {
1375 page = get_partial_node(n);
1376 if (page)
1377 return page;
1378 }
1379 }
1380 #endif
1381 return NULL;
1382 }
1383
1384 /*
1385 * Get a partial page, lock it and return it.
1386 */
1387 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1388 {
1389 struct page *page;
1390 int searchnode = (node == -1) ? numa_node_id() : node;
1391
1392 page = get_partial_node(get_node(s, searchnode));
1393 if (page || (flags & __GFP_THISNODE))
1394 return page;
1395
1396 return get_any_partial(s, flags);
1397 }
1398
1399 /*
1400 * Move a page back to the lists.
1401 *
1402 * Must be called with the slab lock held.
1403 *
1404 * On exit the slab lock will have been dropped.
1405 */
1406 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1407 {
1408 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1409
1410 __ClearPageSlubFrozen(page);
1411 if (page->inuse) {
1412
1413 if (page->freelist) {
1414 add_partial(n, page, tail);
1415 stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1416 } else {
1417 stat(s, DEACTIVATE_FULL);
1418 if (SLABDEBUG && PageSlubDebug(page) &&
1419 (s->flags & SLAB_STORE_USER))
1420 add_full(n, page);
1421 }
1422 slab_unlock(page);
1423 } else {
1424 stat(s, DEACTIVATE_EMPTY);
1425 if (n->nr_partial < s->min_partial) {
1426 /*
1427 * Adding an empty slab to the partial slabs in order
1428 * to avoid page allocator overhead. This slab needs
1429 * to come after the other slabs with objects in
1430 * so that the others get filled first. That way the
1431 * size of the partial list stays small.
1432 *
1433 * kmem_cache_shrink can reclaim any empty slabs from
1434 * the partial list.
1435 */
1436 add_partial(n, page, 1);
1437 slab_unlock(page);
1438 } else {
1439 slab_unlock(page);
1440 stat(s, FREE_SLAB);
1441 discard_slab(s, page);
1442 }
1443 }
1444 }
1445
1446 /*
1447 * Remove the cpu slab
1448 */
1449 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1450 {
1451 struct page *page = c->page;
1452 int tail = 1;
1453
1454 if (page->freelist)
1455 stat(s, DEACTIVATE_REMOTE_FREES);
1456 /*
1457 * Merge cpu freelist into slab freelist. Typically we get here
1458 * because both freelists are empty. So this is unlikely
1459 * to occur.
1460 */
1461 while (unlikely(c->freelist)) {
1462 void **object;
1463
1464 tail = 0; /* Hot objects. Put the slab first */
1465
1466 /* Retrieve object from cpu_freelist */
1467 object = c->freelist;
1468 c->freelist = get_freepointer(s, c->freelist);
1469
1470 /* And put onto the regular freelist */
1471 set_freepointer(s, object, page->freelist);
1472 page->freelist = object;
1473 page->inuse--;
1474 }
1475 c->page = NULL;
1476 unfreeze_slab(s, page, tail);
1477 }
1478
1479 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1480 {
1481 stat(s, CPUSLAB_FLUSH);
1482 slab_lock(c->page);
1483 deactivate_slab(s, c);
1484 }
1485
1486 /*
1487 * Flush cpu slab.
1488 *
1489 * Called from IPI handler with interrupts disabled.
1490 */
1491 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1492 {
1493 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
1494
1495 if (likely(c && c->page))
1496 flush_slab(s, c);
1497 }
1498
1499 static void flush_cpu_slab(void *d)
1500 {
1501 struct kmem_cache *s = d;
1502
1503 __flush_cpu_slab(s, smp_processor_id());
1504 }
1505
1506 static void flush_all(struct kmem_cache *s)
1507 {
1508 on_each_cpu(flush_cpu_slab, s, 1);
1509 }
1510
1511 /*
1512 * Check if the objects in a per cpu structure fit numa
1513 * locality expectations.
1514 */
1515 static inline int node_match(struct kmem_cache_cpu *c, int node)
1516 {
1517 #ifdef CONFIG_NUMA
1518 if (node != -1 && c->node != node)
1519 return 0;
1520 #endif
1521 return 1;
1522 }
1523
1524 static int count_free(struct page *page)
1525 {
1526 return page->objects - page->inuse;
1527 }
1528
1529 static unsigned long count_partial(struct kmem_cache_node *n,
1530 int (*get_count)(struct page *))
1531 {
1532 unsigned long flags;
1533 unsigned long x = 0;
1534 struct page *page;
1535
1536 spin_lock_irqsave(&n->list_lock, flags);
1537 list_for_each_entry(page, &n->partial, lru)
1538 x += get_count(page);
1539 spin_unlock_irqrestore(&n->list_lock, flags);
1540 return x;
1541 }
1542
1543 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1544 {
1545 #ifdef CONFIG_SLUB_DEBUG
1546 return atomic_long_read(&n->total_objects);
1547 #else
1548 return 0;
1549 #endif
1550 }
1551
1552 static noinline void
1553 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1554 {
1555 int node;
1556
1557 printk(KERN_WARNING
1558 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1559 nid, gfpflags);
1560 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
1561 "default order: %d, min order: %d\n", s->name, s->objsize,
1562 s->size, oo_order(s->oo), oo_order(s->min));
1563
1564 if (oo_order(s->min) > get_order(s->objsize))
1565 printk(KERN_WARNING " %s debugging increased min order, use "
1566 "slub_debug=O to disable.\n", s->name);
1567
1568 for_each_online_node(node) {
1569 struct kmem_cache_node *n = get_node(s, node);
1570 unsigned long nr_slabs;
1571 unsigned long nr_objs;
1572 unsigned long nr_free;
1573
1574 if (!n)
1575 continue;
1576
1577 nr_free = count_partial(n, count_free);
1578 nr_slabs = node_nr_slabs(n);
1579 nr_objs = node_nr_objs(n);
1580
1581 printk(KERN_WARNING
1582 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
1583 node, nr_slabs, nr_objs, nr_free);
1584 }
1585 }
1586
1587 /*
1588 * Slow path. The lockless freelist is empty or we need to perform
1589 * debugging duties.
1590 *
1591 * Interrupts are disabled.
1592 *
1593 * Processing is still very fast if new objects have been freed to the
1594 * regular freelist. In that case we simply take over the regular freelist
1595 * as the lockless freelist and zap the regular freelist.
1596 *
1597 * If that is not working then we fall back to the partial lists. We take the
1598 * first element of the freelist as the object to allocate now and move the
1599 * rest of the freelist to the lockless freelist.
1600 *
1601 * And if we were unable to get a new slab from the partial slab lists then
1602 * we need to allocate a new slab. This is the slowest path since it involves
1603 * a call to the page allocator and the setup of a new slab.
1604 */
1605 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1606 unsigned long addr, struct kmem_cache_cpu *c)
1607 {
1608 void **object;
1609 struct page *new;
1610
1611 /* We handle __GFP_ZERO in the caller */
1612 gfpflags &= ~__GFP_ZERO;
1613
1614 if (!c->page)
1615 goto new_slab;
1616
1617 slab_lock(c->page);
1618 if (unlikely(!node_match(c, node)))
1619 goto another_slab;
1620
1621 stat(s, ALLOC_REFILL);
1622
1623 load_freelist:
1624 object = c->page->freelist;
1625 if (unlikely(!object))
1626 goto another_slab;
1627 if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
1628 goto debug;
1629
1630 c->freelist = get_freepointer(s, object);
1631 c->page->inuse = c->page->objects;
1632 c->page->freelist = NULL;
1633 c->node = page_to_nid(c->page);
1634 unlock_out:
1635 slab_unlock(c->page);
1636 stat(s, ALLOC_SLOWPATH);
1637 return object;
1638
1639 another_slab:
1640 deactivate_slab(s, c);
1641
1642 new_slab:
1643 new = get_partial(s, gfpflags, node);
1644 if (new) {
1645 c->page = new;
1646 stat(s, ALLOC_FROM_PARTIAL);
1647 goto load_freelist;
1648 }
1649
1650 if (gfpflags & __GFP_WAIT)
1651 local_irq_enable();
1652
1653 new = new_slab(s, gfpflags, node);
1654
1655 if (gfpflags & __GFP_WAIT)
1656 local_irq_disable();
1657
1658 if (new) {
1659 c = __this_cpu_ptr(s->cpu_slab);
1660 stat(s, ALLOC_SLAB);
1661 if (c->page)
1662 flush_slab(s, c);
1663 slab_lock(new);
1664 __SetPageSlubFrozen(new);
1665 c->page = new;
1666 goto load_freelist;
1667 }
1668 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
1669 slab_out_of_memory(s, gfpflags, node);
1670 return NULL;
1671 debug:
1672 if (!alloc_debug_processing(s, c->page, object, addr))
1673 goto another_slab;
1674
1675 c->page->inuse++;
1676 c->page->freelist = get_freepointer(s, object);
1677 c->node = -1;
1678 goto unlock_out;
1679 }
1680
1681 /*
1682 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1683 * have the fastpath folded into their functions. So no function call
1684 * overhead for requests that can be satisfied on the fastpath.
1685 *
1686 * The fastpath works by first checking if the lockless freelist can be used.
1687 * If not then __slab_alloc is called for slow processing.
1688 *
1689 * Otherwise we can simply pick the next object from the lockless free list.
1690 */
1691 static __always_inline void *slab_alloc(struct kmem_cache *s,
1692 gfp_t gfpflags, int node, unsigned long addr)
1693 {
1694 void **object;
1695 struct kmem_cache_cpu *c;
1696 unsigned long flags;
1697
1698 gfpflags &= gfp_allowed_mask;
1699
1700 lockdep_trace_alloc(gfpflags);
1701 might_sleep_if(gfpflags & __GFP_WAIT);
1702
1703 if (should_failslab(s->objsize, gfpflags))
1704 return NULL;
1705
1706 local_irq_save(flags);
1707 c = __this_cpu_ptr(s->cpu_slab);
1708 object = c->freelist;
1709 if (unlikely(!object || !node_match(c, node)))
1710
1711 object = __slab_alloc(s, gfpflags, node, addr, c);
1712
1713 else {
1714 c->freelist = get_freepointer(s, object);
1715 stat(s, ALLOC_FASTPATH);
1716 }
1717 local_irq_restore(flags);
1718
1719 if (unlikely(gfpflags & __GFP_ZERO) && object)
1720 memset(object, 0, s->objsize);
1721
1722 kmemcheck_slab_alloc(s, gfpflags, object, s->objsize);
1723 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, gfpflags);
1724
1725 return object;
1726 }
1727
1728 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1729 {
1730 void *ret = slab_alloc(s, gfpflags, -1, _RET_IP_);
1731
1732 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
1733
1734 return ret;
1735 }
1736 EXPORT_SYMBOL(kmem_cache_alloc);
1737
1738 #ifdef CONFIG_TRACING
1739 void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
1740 {
1741 return slab_alloc(s, gfpflags, -1, _RET_IP_);
1742 }
1743 EXPORT_SYMBOL(kmem_cache_alloc_notrace);
1744 #endif
1745
1746 #ifdef CONFIG_NUMA
1747 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1748 {
1749 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1750
1751 trace_kmem_cache_alloc_node(_RET_IP_, ret,
1752 s->objsize, s->size, gfpflags, node);
1753
1754 return ret;
1755 }
1756 EXPORT_SYMBOL(kmem_cache_alloc_node);
1757 #endif
1758
1759 #ifdef CONFIG_TRACING
1760 void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
1761 gfp_t gfpflags,
1762 int node)
1763 {
1764 return slab_alloc(s, gfpflags, node, _RET_IP_);
1765 }
1766 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
1767 #endif
1768
1769 /*
1770 * Slow patch handling. This may still be called frequently since objects
1771 * have a longer lifetime than the cpu slabs in most processing loads.
1772 *
1773 * So we still attempt to reduce cache line usage. Just take the slab
1774 * lock and free the item. If there is no additional partial page
1775 * handling required then we can return immediately.
1776 */
1777 static void __slab_free(struct kmem_cache *s, struct page *page,
1778 void *x, unsigned long addr)
1779 {
1780 void *prior;
1781 void **object = (void *)x;
1782
1783 stat(s, FREE_SLOWPATH);
1784 slab_lock(page);
1785
1786 if (unlikely(SLABDEBUG && PageSlubDebug(page)))
1787 goto debug;
1788
1789 checks_ok:
1790 prior = page->freelist;
1791 set_freepointer(s, object, prior);
1792 page->freelist = object;
1793 page->inuse--;
1794
1795 if (unlikely(PageSlubFrozen(page))) {
1796 stat(s, FREE_FROZEN);
1797 goto out_unlock;
1798 }
1799
1800 if (unlikely(!page->inuse))
1801 goto slab_empty;
1802
1803 /*
1804 * Objects left in the slab. If it was not on the partial list before
1805 * then add it.
1806 */
1807 if (unlikely(!prior)) {
1808 add_partial(get_node(s, page_to_nid(page)), page, 1);
1809 stat(s, FREE_ADD_PARTIAL);
1810 }
1811
1812 out_unlock:
1813 slab_unlock(page);
1814 return;
1815
1816 slab_empty:
1817 if (prior) {
1818 /*
1819 * Slab still on the partial list.
1820 */
1821 remove_partial(s, page);
1822 stat(s, FREE_REMOVE_PARTIAL);
1823 }
1824 slab_unlock(page);
1825 stat(s, FREE_SLAB);
1826 discard_slab(s, page);
1827 return;
1828
1829 debug:
1830 if (!free_debug_processing(s, page, x, addr))
1831 goto out_unlock;
1832 goto checks_ok;
1833 }
1834
1835 /*
1836 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1837 * can perform fastpath freeing without additional function calls.
1838 *
1839 * The fastpath is only possible if we are freeing to the current cpu slab
1840 * of this processor. This typically the case if we have just allocated
1841 * the item before.
1842 *
1843 * If fastpath is not possible then fall back to __slab_free where we deal
1844 * with all sorts of special processing.
1845 */
1846 static __always_inline void slab_free(struct kmem_cache *s,
1847 struct page *page, void *x, unsigned long addr)
1848 {
1849 void **object = (void *)x;
1850 struct kmem_cache_cpu *c;
1851 unsigned long flags;
1852
1853 kmemleak_free_recursive(x, s->flags);
1854 local_irq_save(flags);
1855 c = __this_cpu_ptr(s->cpu_slab);
1856 kmemcheck_slab_free(s, object, s->objsize);
1857 debug_check_no_locks_freed(object, s->objsize);
1858 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1859 debug_check_no_obj_freed(object, s->objsize);
1860 if (likely(page == c->page && c->node >= 0)) {
1861 set_freepointer(s, object, c->freelist);
1862 c->freelist = object;
1863 stat(s, FREE_FASTPATH);
1864 } else
1865 __slab_free(s, page, x, addr);
1866
1867 local_irq_restore(flags);
1868 }
1869
1870 void kmem_cache_free(struct kmem_cache *s, void *x)
1871 {
1872 struct page *page;
1873
1874 page = virt_to_head_page(x);
1875
1876 slab_free(s, page, x, _RET_IP_);
1877
1878 trace_kmem_cache_free(_RET_IP_, x);
1879 }
1880 EXPORT_SYMBOL(kmem_cache_free);
1881
1882 /* Figure out on which slab page the object resides */
1883 static struct page *get_object_page(const void *x)
1884 {
1885 struct page *page = virt_to_head_page(x);
1886
1887 if (!PageSlab(page))
1888 return NULL;
1889
1890 return page;
1891 }
1892
1893 /*
1894 * Object placement in a slab is made very easy because we always start at
1895 * offset 0. If we tune the size of the object to the alignment then we can
1896 * get the required alignment by putting one properly sized object after
1897 * another.
1898 *
1899 * Notice that the allocation order determines the sizes of the per cpu
1900 * caches. Each processor has always one slab available for allocations.
1901 * Increasing the allocation order reduces the number of times that slabs
1902 * must be moved on and off the partial lists and is therefore a factor in
1903 * locking overhead.
1904 */
1905
1906 /*
1907 * Mininum / Maximum order of slab pages. This influences locking overhead
1908 * and slab fragmentation. A higher order reduces the number of partial slabs
1909 * and increases the number of allocations possible without having to
1910 * take the list_lock.
1911 */
1912 static int slub_min_order;
1913 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1914 static int slub_min_objects;
1915
1916 /*
1917 * Merge control. If this is set then no merging of slab caches will occur.
1918 * (Could be removed. This was introduced to pacify the merge skeptics.)
1919 */
1920 static int slub_nomerge;
1921
1922 /*
1923 * Calculate the order of allocation given an slab object size.
1924 *
1925 * The order of allocation has significant impact on performance and other
1926 * system components. Generally order 0 allocations should be preferred since
1927 * order 0 does not cause fragmentation in the page allocator. Larger objects
1928 * be problematic to put into order 0 slabs because there may be too much
1929 * unused space left. We go to a higher order if more than 1/16th of the slab
1930 * would be wasted.
1931 *
1932 * In order to reach satisfactory performance we must ensure that a minimum
1933 * number of objects is in one slab. Otherwise we may generate too much
1934 * activity on the partial lists which requires taking the list_lock. This is
1935 * less a concern for large slabs though which are rarely used.
1936 *
1937 * slub_max_order specifies the order where we begin to stop considering the
1938 * number of objects in a slab as critical. If we reach slub_max_order then
1939 * we try to keep the page order as low as possible. So we accept more waste
1940 * of space in favor of a small page order.
1941 *
1942 * Higher order allocations also allow the placement of more objects in a
1943 * slab and thereby reduce object handling overhead. If the user has
1944 * requested a higher mininum order then we start with that one instead of
1945 * the smallest order which will fit the object.
1946 */
1947 static inline int slab_order(int size, int min_objects,
1948 int max_order, int fract_leftover)
1949 {
1950 int order;
1951 int rem;
1952 int min_order = slub_min_order;
1953
1954 if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1955 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
1956
1957 for (order = max(min_order,
1958 fls(min_objects * size - 1) - PAGE_SHIFT);
1959 order <= max_order; order++) {
1960
1961 unsigned long slab_size = PAGE_SIZE << order;
1962
1963 if (slab_size < min_objects * size)
1964 continue;
1965
1966 rem = slab_size % size;
1967
1968 if (rem <= slab_size / fract_leftover)
1969 break;
1970
1971 }
1972
1973 return order;
1974 }
1975
1976 static inline int calculate_order(int size)
1977 {
1978 int order;
1979 int min_objects;
1980 int fraction;
1981 int max_objects;
1982
1983 /*
1984 * Attempt to find best configuration for a slab. This
1985 * works by first attempting to generate a layout with
1986 * the best configuration and backing off gradually.
1987 *
1988 * First we reduce the acceptable waste in a slab. Then
1989 * we reduce the minimum objects required in a slab.
1990 */
1991 min_objects = slub_min_objects;
1992 if (!min_objects)
1993 min_objects = 4 * (fls(nr_cpu_ids) + 1);
1994 max_objects = (PAGE_SIZE << slub_max_order)/size;
1995 min_objects = min(min_objects, max_objects);
1996
1997 while (min_objects > 1) {
1998 fraction = 16;
1999 while (fraction >= 4) {
2000 order = slab_order(size, min_objects,
2001 slub_max_order, fraction);
2002 if (order <= slub_max_order)
2003 return order;
2004 fraction /= 2;
2005 }
2006 min_objects--;
2007 }
2008
2009 /*
2010 * We were unable to place multiple objects in a slab. Now
2011 * lets see if we can place a single object there.
2012 */
2013 order = slab_order(size, 1, slub_max_order, 1);
2014 if (order <= slub_max_order)
2015 return order;
2016
2017 /*
2018 * Doh this slab cannot be placed using slub_max_order.
2019 */
2020 order = slab_order(size, 1, MAX_ORDER, 1);
2021 if (order < MAX_ORDER)
2022 return order;
2023 return -ENOSYS;
2024 }
2025
2026 /*
2027 * Figure out what the alignment of the objects will be.
2028 */
2029 static unsigned long calculate_alignment(unsigned long flags,
2030 unsigned long align, unsigned long size)
2031 {
2032 /*
2033 * If the user wants hardware cache aligned objects then follow that
2034 * suggestion if the object is sufficiently large.
2035 *
2036 * The hardware cache alignment cannot override the specified
2037 * alignment though. If that is greater then use it.
2038 */
2039 if (flags & SLAB_HWCACHE_ALIGN) {
2040 unsigned long ralign = cache_line_size();
2041 while (size <= ralign / 2)
2042 ralign /= 2;
2043 align = max(align, ralign);
2044 }
2045
2046 if (align < ARCH_SLAB_MINALIGN)
2047 align = ARCH_SLAB_MINALIGN;
2048
2049 return ALIGN(align, sizeof(void *));
2050 }
2051
2052 static void
2053 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
2054 {
2055 n->nr_partial = 0;
2056 spin_lock_init(&n->list_lock);
2057 INIT_LIST_HEAD(&n->partial);
2058 #ifdef CONFIG_SLUB_DEBUG
2059 atomic_long_set(&n->nr_slabs, 0);
2060 atomic_long_set(&n->total_objects, 0);
2061 INIT_LIST_HEAD(&n->full);
2062 #endif
2063 }
2064
2065 static DEFINE_PER_CPU(struct kmem_cache_cpu, kmalloc_percpu[SLUB_PAGE_SHIFT]);
2066
2067 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2068 {
2069 if (s < kmalloc_caches + KMALLOC_CACHES && s >= kmalloc_caches)
2070 /*
2071 * Boot time creation of the kmalloc array. Use static per cpu data
2072 * since the per cpu allocator is not available yet.
2073 */
2074 s->cpu_slab = per_cpu_var(kmalloc_percpu) + (s - kmalloc_caches);
2075 else
2076 s->cpu_slab = alloc_percpu(struct kmem_cache_cpu);
2077
2078 if (!s->cpu_slab)
2079 return 0;
2080
2081 return 1;
2082 }
2083
2084 #ifdef CONFIG_NUMA
2085 /*
2086 * No kmalloc_node yet so do it by hand. We know that this is the first
2087 * slab on the node for this slabcache. There are no concurrent accesses
2088 * possible.
2089 *
2090 * Note that this function only works on the kmalloc_node_cache
2091 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2092 * memory on a fresh node that has no slab structures yet.
2093 */
2094 static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node)
2095 {
2096 struct page *page;
2097 struct kmem_cache_node *n;
2098 unsigned long flags;
2099
2100 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2101
2102 page = new_slab(kmalloc_caches, gfpflags, node);
2103
2104 BUG_ON(!page);
2105 if (page_to_nid(page) != node) {
2106 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2107 "node %d\n", node);
2108 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2109 "in order to be able to continue\n");
2110 }
2111
2112 n = page->freelist;
2113 BUG_ON(!n);
2114 page->freelist = get_freepointer(kmalloc_caches, n);
2115 page->inuse++;
2116 kmalloc_caches->node[node] = n;
2117 #ifdef CONFIG_SLUB_DEBUG
2118 init_object(kmalloc_caches, n, 1);
2119 init_tracking(kmalloc_caches, n);
2120 #endif
2121 init_kmem_cache_node(n, kmalloc_caches);
2122 inc_slabs_node(kmalloc_caches, node, page->objects);
2123
2124 /*
2125 * lockdep requires consistent irq usage for each lock
2126 * so even though there cannot be a race this early in
2127 * the boot sequence, we still disable irqs.
2128 */
2129 local_irq_save(flags);
2130 add_partial(n, page, 0);
2131 local_irq_restore(flags);
2132 }
2133
2134 static void free_kmem_cache_nodes(struct kmem_cache *s)
2135 {
2136 int node;
2137
2138 for_each_node_state(node, N_NORMAL_MEMORY) {
2139 struct kmem_cache_node *n = s->node[node];
2140 if (n && n != &s->local_node)
2141 kmem_cache_free(kmalloc_caches, n);
2142 s->node[node] = NULL;
2143 }
2144 }
2145
2146 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2147 {
2148 int node;
2149 int local_node;
2150
2151 if (slab_state >= UP)
2152 local_node = page_to_nid(virt_to_page(s));
2153 else
2154 local_node = 0;
2155
2156 for_each_node_state(node, N_NORMAL_MEMORY) {
2157 struct kmem_cache_node *n;
2158
2159 if (local_node == node)
2160 n = &s->local_node;
2161 else {
2162 if (slab_state == DOWN) {
2163 early_kmem_cache_node_alloc(gfpflags, node);
2164 continue;
2165 }
2166 n = kmem_cache_alloc_node(kmalloc_caches,
2167 gfpflags, node);
2168
2169 if (!n) {
2170 free_kmem_cache_nodes(s);
2171 return 0;
2172 }
2173
2174 }
2175 s->node[node] = n;
2176 init_kmem_cache_node(n, s);
2177 }
2178 return 1;
2179 }
2180 #else
2181 static void free_kmem_cache_nodes(struct kmem_cache *s)
2182 {
2183 }
2184
2185 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2186 {
2187 init_kmem_cache_node(&s->local_node, s);
2188 return 1;
2189 }
2190 #endif
2191
2192 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2193 {
2194 if (min < MIN_PARTIAL)
2195 min = MIN_PARTIAL;
2196 else if (min > MAX_PARTIAL)
2197 min = MAX_PARTIAL;
2198 s->min_partial = min;
2199 }
2200
2201 /*
2202 * calculate_sizes() determines the order and the distribution of data within
2203 * a slab object.
2204 */
2205 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2206 {
2207 unsigned long flags = s->flags;
2208 unsigned long size = s->objsize;
2209 unsigned long align = s->align;
2210 int order;
2211
2212 /*
2213 * Round up object size to the next word boundary. We can only
2214 * place the free pointer at word boundaries and this determines
2215 * the possible location of the free pointer.
2216 */
2217 size = ALIGN(size, sizeof(void *));
2218
2219 #ifdef CONFIG_SLUB_DEBUG
2220 /*
2221 * Determine if we can poison the object itself. If the user of
2222 * the slab may touch the object after free or before allocation
2223 * then we should never poison the object itself.
2224 */
2225 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2226 !s->ctor)
2227 s->flags |= __OBJECT_POISON;
2228 else
2229 s->flags &= ~__OBJECT_POISON;
2230
2231
2232 /*
2233 * If we are Redzoning then check if there is some space between the
2234 * end of the object and the free pointer. If not then add an
2235 * additional word to have some bytes to store Redzone information.
2236 */
2237 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2238 size += sizeof(void *);
2239 #endif
2240
2241 /*
2242 * With that we have determined the number of bytes in actual use
2243 * by the object. This is the potential offset to the free pointer.
2244 */
2245 s->inuse = size;
2246
2247 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2248 s->ctor)) {
2249 /*
2250 * Relocate free pointer after the object if it is not
2251 * permitted to overwrite the first word of the object on
2252 * kmem_cache_free.
2253 *
2254 * This is the case if we do RCU, have a constructor or
2255 * destructor or are poisoning the objects.
2256 */
2257 s->offset = size;
2258 size += sizeof(void *);
2259 }
2260
2261 #ifdef CONFIG_SLUB_DEBUG
2262 if (flags & SLAB_STORE_USER)
2263 /*
2264 * Need to store information about allocs and frees after
2265 * the object.
2266 */
2267 size += 2 * sizeof(struct track);
2268
2269 if (flags & SLAB_RED_ZONE)
2270 /*
2271 * Add some empty padding so that we can catch
2272 * overwrites from earlier objects rather than let
2273 * tracking information or the free pointer be
2274 * corrupted if a user writes before the start
2275 * of the object.
2276 */
2277 size += sizeof(void *);
2278 #endif
2279
2280 /*
2281 * Determine the alignment based on various parameters that the
2282 * user specified and the dynamic determination of cache line size
2283 * on bootup.
2284 */
2285 align = calculate_alignment(flags, align, s->objsize);
2286 s->align = align;
2287
2288 /*
2289 * SLUB stores one object immediately after another beginning from
2290 * offset 0. In order to align the objects we have to simply size
2291 * each object to conform to the alignment.
2292 */
2293 size = ALIGN(size, align);
2294 s->size = size;
2295 if (forced_order >= 0)
2296 order = forced_order;
2297 else
2298 order = calculate_order(size);
2299
2300 if (order < 0)
2301 return 0;
2302
2303 s->allocflags = 0;
2304 if (order)
2305 s->allocflags |= __GFP_COMP;
2306
2307 if (s->flags & SLAB_CACHE_DMA)
2308 s->allocflags |= SLUB_DMA;
2309
2310 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2311 s->allocflags |= __GFP_RECLAIMABLE;
2312
2313 /*
2314 * Determine the number of objects per slab
2315 */
2316 s->oo = oo_make(order, size);
2317 s->min = oo_make(get_order(size), size);
2318 if (oo_objects(s->oo) > oo_objects(s->max))
2319 s->max = s->oo;
2320
2321 return !!oo_objects(s->oo);
2322
2323 }
2324
2325 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2326 const char *name, size_t size,
2327 size_t align, unsigned long flags,
2328 void (*ctor)(void *))
2329 {
2330 memset(s, 0, kmem_size);
2331 s->name = name;
2332 s->ctor = ctor;
2333 s->objsize = size;
2334 s->align = align;
2335 s->flags = kmem_cache_flags(size, flags, name, ctor);
2336
2337 if (!calculate_sizes(s, -1))
2338 goto error;
2339 if (disable_higher_order_debug) {
2340 /*
2341 * Disable debugging flags that store metadata if the min slab
2342 * order increased.
2343 */
2344 if (get_order(s->size) > get_order(s->objsize)) {
2345 s->flags &= ~DEBUG_METADATA_FLAGS;
2346 s->offset = 0;
2347 if (!calculate_sizes(s, -1))
2348 goto error;
2349 }
2350 }
2351
2352 /*
2353 * The larger the object size is, the more pages we want on the partial
2354 * list to avoid pounding the page allocator excessively.
2355 */
2356 set_min_partial(s, ilog2(s->size));
2357 s->refcount = 1;
2358 #ifdef CONFIG_NUMA
2359 s->remote_node_defrag_ratio = 1000;
2360 #endif
2361 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2362 goto error;
2363
2364 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2365 return 1;
2366
2367 free_kmem_cache_nodes(s);
2368 error:
2369 if (flags & SLAB_PANIC)
2370 panic("Cannot create slab %s size=%lu realsize=%u "
2371 "order=%u offset=%u flags=%lx\n",
2372 s->name, (unsigned long)size, s->size, oo_order(s->oo),
2373 s->offset, flags);
2374 return 0;
2375 }
2376
2377 /*
2378 * Check if a given pointer is valid
2379 */
2380 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2381 {
2382 struct page *page;
2383
2384 page = get_object_page(object);
2385
2386 if (!page || s != page->slab)
2387 /* No slab or wrong slab */
2388 return 0;
2389
2390 if (!check_valid_pointer(s, page, object))
2391 return 0;
2392
2393 /*
2394 * We could also check if the object is on the slabs freelist.
2395 * But this would be too expensive and it seems that the main
2396 * purpose of kmem_ptr_valid() is to check if the object belongs
2397 * to a certain slab.
2398 */
2399 return 1;
2400 }
2401 EXPORT_SYMBOL(kmem_ptr_validate);
2402
2403 /*
2404 * Determine the size of a slab object
2405 */
2406 unsigned int kmem_cache_size(struct kmem_cache *s)
2407 {
2408 return s->objsize;
2409 }
2410 EXPORT_SYMBOL(kmem_cache_size);
2411
2412 const char *kmem_cache_name(struct kmem_cache *s)
2413 {
2414 return s->name;
2415 }
2416 EXPORT_SYMBOL(kmem_cache_name);
2417
2418 static void list_slab_objects(struct kmem_cache *s, struct page *page,
2419 const char *text)
2420 {
2421 #ifdef CONFIG_SLUB_DEBUG
2422 void *addr = page_address(page);
2423 void *p;
2424 DECLARE_BITMAP(map, page->objects);
2425
2426 bitmap_zero(map, page->objects);
2427 slab_err(s, page, "%s", text);
2428 slab_lock(page);
2429 for_each_free_object(p, s, page->freelist)
2430 set_bit(slab_index(p, s, addr), map);
2431
2432 for_each_object(p, s, addr, page->objects) {
2433
2434 if (!test_bit(slab_index(p, s, addr), map)) {
2435 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2436 p, p - addr);
2437 print_tracking(s, p);
2438 }
2439 }
2440 slab_unlock(page);
2441 #endif
2442 }
2443
2444 /*
2445 * Attempt to free all partial slabs on a node.
2446 */
2447 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2448 {
2449 unsigned long flags;
2450 struct page *page, *h;
2451
2452 spin_lock_irqsave(&n->list_lock, flags);
2453 list_for_each_entry_safe(page, h, &n->partial, lru) {
2454 if (!page->inuse) {
2455 list_del(&page->lru);
2456 discard_slab(s, page);
2457 n->nr_partial--;
2458 } else {
2459 list_slab_objects(s, page,
2460 "Objects remaining on kmem_cache_close()");
2461 }
2462 }
2463 spin_unlock_irqrestore(&n->list_lock, flags);
2464 }
2465
2466 /*
2467 * Release all resources used by a slab cache.
2468 */
2469 static inline int kmem_cache_close(struct kmem_cache *s)
2470 {
2471 int node;
2472
2473 flush_all(s);
2474 free_percpu(s->cpu_slab);
2475 /* Attempt to free all objects */
2476 for_each_node_state(node, N_NORMAL_MEMORY) {
2477 struct kmem_cache_node *n = get_node(s, node);
2478
2479 free_partial(s, n);
2480 if (n->nr_partial || slabs_node(s, node))
2481 return 1;
2482 }
2483 free_kmem_cache_nodes(s);
2484 return 0;
2485 }
2486
2487 /*
2488 * Close a cache and release the kmem_cache structure
2489 * (must be used for caches created using kmem_cache_create)
2490 */
2491 void kmem_cache_destroy(struct kmem_cache *s)
2492 {
2493 down_write(&slub_lock);
2494 s->refcount--;
2495 if (!s->refcount) {
2496 list_del(&s->list);
2497 up_write(&slub_lock);
2498 if (kmem_cache_close(s)) {
2499 printk(KERN_ERR "SLUB %s: %s called for cache that "
2500 "still has objects.\n", s->name, __func__);
2501 dump_stack();
2502 }
2503 if (s->flags & SLAB_DESTROY_BY_RCU)
2504 rcu_barrier();
2505 sysfs_slab_remove(s);
2506 } else
2507 up_write(&slub_lock);
2508 }
2509 EXPORT_SYMBOL(kmem_cache_destroy);
2510
2511 /********************************************************************
2512 * Kmalloc subsystem
2513 *******************************************************************/
2514
2515 struct kmem_cache kmalloc_caches[KMALLOC_CACHES] __cacheline_aligned;
2516 EXPORT_SYMBOL(kmalloc_caches);
2517
2518 static int __init setup_slub_min_order(char *str)
2519 {
2520 get_option(&str, &slub_min_order);
2521
2522 return 1;
2523 }
2524
2525 __setup("slub_min_order=", setup_slub_min_order);
2526
2527 static int __init setup_slub_max_order(char *str)
2528 {
2529 get_option(&str, &slub_max_order);
2530 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
2531
2532 return 1;
2533 }
2534
2535 __setup("slub_max_order=", setup_slub_max_order);
2536
2537 static int __init setup_slub_min_objects(char *str)
2538 {
2539 get_option(&str, &slub_min_objects);
2540
2541 return 1;
2542 }
2543
2544 __setup("slub_min_objects=", setup_slub_min_objects);
2545
2546 static int __init setup_slub_nomerge(char *str)
2547 {
2548 slub_nomerge = 1;
2549 return 1;
2550 }
2551
2552 __setup("slub_nomerge", setup_slub_nomerge);
2553
2554 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2555 const char *name, int size, gfp_t gfp_flags)
2556 {
2557 unsigned int flags = 0;
2558
2559 if (gfp_flags & SLUB_DMA)
2560 flags = SLAB_CACHE_DMA;
2561
2562 /*
2563 * This function is called with IRQs disabled during early-boot on
2564 * single CPU so there's no need to take slub_lock here.
2565 */
2566 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2567 flags, NULL))
2568 goto panic;
2569
2570 list_add(&s->list, &slab_caches);
2571
2572 if (sysfs_slab_add(s))
2573 goto panic;
2574 return s;
2575
2576 panic:
2577 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2578 }
2579
2580 #ifdef CONFIG_ZONE_DMA
2581 static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT];
2582
2583 static void sysfs_add_func(struct work_struct *w)
2584 {
2585 struct kmem_cache *s;
2586
2587 down_write(&slub_lock);
2588 list_for_each_entry(s, &slab_caches, list) {
2589 if (s->flags & __SYSFS_ADD_DEFERRED) {
2590 s->flags &= ~__SYSFS_ADD_DEFERRED;
2591 sysfs_slab_add(s);
2592 }
2593 }
2594 up_write(&slub_lock);
2595 }
2596
2597 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2598
2599 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2600 {
2601 struct kmem_cache *s;
2602 char *text;
2603 size_t realsize;
2604 unsigned long slabflags;
2605 int i;
2606
2607 s = kmalloc_caches_dma[index];
2608 if (s)
2609 return s;
2610
2611 /* Dynamically create dma cache */
2612 if (flags & __GFP_WAIT)
2613 down_write(&slub_lock);
2614 else {
2615 if (!down_write_trylock(&slub_lock))
2616 goto out;
2617 }
2618
2619 if (kmalloc_caches_dma[index])
2620 goto unlock_out;
2621
2622 realsize = kmalloc_caches[index].objsize;
2623 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2624 (unsigned int)realsize);
2625
2626 s = NULL;
2627 for (i = 0; i < KMALLOC_CACHES; i++)
2628 if (!kmalloc_caches[i].size)
2629 break;
2630
2631 BUG_ON(i >= KMALLOC_CACHES);
2632 s = kmalloc_caches + i;
2633
2634 /*
2635 * Must defer sysfs creation to a workqueue because we don't know
2636 * what context we are called from. Before sysfs comes up, we don't
2637 * need to do anything because our sysfs initcall will start by
2638 * adding all existing slabs to sysfs.
2639 */
2640 slabflags = SLAB_CACHE_DMA|SLAB_NOTRACK;
2641 if (slab_state >= SYSFS)
2642 slabflags |= __SYSFS_ADD_DEFERRED;
2643
2644 if (!text || !kmem_cache_open(s, flags, text,
2645 realsize, ARCH_KMALLOC_MINALIGN, slabflags, NULL)) {
2646 s->size = 0;
2647 kfree(text);
2648 goto unlock_out;
2649 }
2650
2651 list_add(&s->list, &slab_caches);
2652 kmalloc_caches_dma[index] = s;
2653
2654 if (slab_state >= SYSFS)
2655 schedule_work(&sysfs_add_work);
2656
2657 unlock_out:
2658 up_write(&slub_lock);
2659 out:
2660 return kmalloc_caches_dma[index];
2661 }
2662 #endif
2663
2664 /*
2665 * Conversion table for small slabs sizes / 8 to the index in the
2666 * kmalloc array. This is necessary for slabs < 192 since we have non power
2667 * of two cache sizes there. The size of larger slabs can be determined using
2668 * fls.
2669 */
2670 static s8 size_index[24] = {
2671 3, /* 8 */
2672 4, /* 16 */
2673 5, /* 24 */
2674 5, /* 32 */
2675 6, /* 40 */
2676 6, /* 48 */
2677 6, /* 56 */
2678 6, /* 64 */
2679 1, /* 72 */
2680 1, /* 80 */
2681 1, /* 88 */
2682 1, /* 96 */
2683 7, /* 104 */
2684 7, /* 112 */
2685 7, /* 120 */
2686 7, /* 128 */
2687 2, /* 136 */
2688 2, /* 144 */
2689 2, /* 152 */
2690 2, /* 160 */
2691 2, /* 168 */
2692 2, /* 176 */
2693 2, /* 184 */
2694 2 /* 192 */
2695 };
2696
2697 static inline int size_index_elem(size_t bytes)
2698 {
2699 return (bytes - 1) / 8;
2700 }
2701
2702 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2703 {
2704 int index;
2705
2706 if (size <= 192) {
2707 if (!size)
2708 return ZERO_SIZE_PTR;
2709
2710 index = size_index[size_index_elem(size)];
2711 } else
2712 index = fls(size - 1);
2713
2714 #ifdef CONFIG_ZONE_DMA
2715 if (unlikely((flags & SLUB_DMA)))
2716 return dma_kmalloc_cache(index, flags);
2717
2718 #endif
2719 return &kmalloc_caches[index];
2720 }
2721
2722 void *__kmalloc(size_t size, gfp_t flags)
2723 {
2724 struct kmem_cache *s;
2725 void *ret;
2726
2727 if (unlikely(size > SLUB_MAX_SIZE))
2728 return kmalloc_large(size, flags);
2729
2730 s = get_slab(size, flags);
2731
2732 if (unlikely(ZERO_OR_NULL_PTR(s)))
2733 return s;
2734
2735 ret = slab_alloc(s, flags, -1, _RET_IP_);
2736
2737 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
2738
2739 return ret;
2740 }
2741 EXPORT_SYMBOL(__kmalloc);
2742
2743 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2744 {
2745 struct page *page;
2746 void *ptr = NULL;
2747
2748 flags |= __GFP_COMP | __GFP_NOTRACK;
2749 page = alloc_pages_node(node, flags, get_order(size));
2750 if (page)
2751 ptr = page_address(page);
2752
2753 kmemleak_alloc(ptr, size, 1, flags);
2754 return ptr;
2755 }
2756
2757 #ifdef CONFIG_NUMA
2758 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2759 {
2760 struct kmem_cache *s;
2761 void *ret;
2762
2763 if (unlikely(size > SLUB_MAX_SIZE)) {
2764 ret = kmalloc_large_node(size, flags, node);
2765
2766 trace_kmalloc_node(_RET_IP_, ret,
2767 size, PAGE_SIZE << get_order(size),
2768 flags, node);
2769
2770 return ret;
2771 }
2772
2773 s = get_slab(size, flags);
2774
2775 if (unlikely(ZERO_OR_NULL_PTR(s)))
2776 return s;
2777
2778 ret = slab_alloc(s, flags, node, _RET_IP_);
2779
2780 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
2781
2782 return ret;
2783 }
2784 EXPORT_SYMBOL(__kmalloc_node);
2785 #endif
2786
2787 size_t ksize(const void *object)
2788 {
2789 struct page *page;
2790 struct kmem_cache *s;
2791
2792 if (unlikely(object == ZERO_SIZE_PTR))
2793 return 0;
2794
2795 page = virt_to_head_page(object);
2796
2797 if (unlikely(!PageSlab(page))) {
2798 WARN_ON(!PageCompound(page));
2799 return PAGE_SIZE << compound_order(page);
2800 }
2801 s = page->slab;
2802
2803 #ifdef CONFIG_SLUB_DEBUG
2804 /*
2805 * Debugging requires use of the padding between object
2806 * and whatever may come after it.
2807 */
2808 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2809 return s->objsize;
2810
2811 #endif
2812 /*
2813 * If we have the need to store the freelist pointer
2814 * back there or track user information then we can
2815 * only use the space before that information.
2816 */
2817 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2818 return s->inuse;
2819 /*
2820 * Else we can use all the padding etc for the allocation
2821 */
2822 return s->size;
2823 }
2824 EXPORT_SYMBOL(ksize);
2825
2826 void kfree(const void *x)
2827 {
2828 struct page *page;
2829 void *object = (void *)x;
2830
2831 trace_kfree(_RET_IP_, x);
2832
2833 if (unlikely(ZERO_OR_NULL_PTR(x)))
2834 return;
2835
2836 page = virt_to_head_page(x);
2837 if (unlikely(!PageSlab(page))) {
2838 BUG_ON(!PageCompound(page));
2839 kmemleak_free(x);
2840 put_page(page);
2841 return;
2842 }
2843 slab_free(page->slab, page, object, _RET_IP_);
2844 }
2845 EXPORT_SYMBOL(kfree);
2846
2847 /*
2848 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2849 * the remaining slabs by the number of items in use. The slabs with the
2850 * most items in use come first. New allocations will then fill those up
2851 * and thus they can be removed from the partial lists.
2852 *
2853 * The slabs with the least items are placed last. This results in them
2854 * being allocated from last increasing the chance that the last objects
2855 * are freed in them.
2856 */
2857 int kmem_cache_shrink(struct kmem_cache *s)
2858 {
2859 int node;
2860 int i;
2861 struct kmem_cache_node *n;
2862 struct page *page;
2863 struct page *t;
2864 int objects = oo_objects(s->max);
2865 struct list_head *slabs_by_inuse =
2866 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2867 unsigned long flags;
2868
2869 if (!slabs_by_inuse)
2870 return -ENOMEM;
2871
2872 flush_all(s);
2873 for_each_node_state(node, N_NORMAL_MEMORY) {
2874 n = get_node(s, node);
2875
2876 if (!n->nr_partial)
2877 continue;
2878
2879 for (i = 0; i < objects; i++)
2880 INIT_LIST_HEAD(slabs_by_inuse + i);
2881
2882 spin_lock_irqsave(&n->list_lock, flags);
2883
2884 /*
2885 * Build lists indexed by the items in use in each slab.
2886 *
2887 * Note that concurrent frees may occur while we hold the
2888 * list_lock. page->inuse here is the upper limit.
2889 */
2890 list_for_each_entry_safe(page, t, &n->partial, lru) {
2891 if (!page->inuse && slab_trylock(page)) {
2892 /*
2893 * Must hold slab lock here because slab_free
2894 * may have freed the last object and be
2895 * waiting to release the slab.
2896 */
2897 list_del(&page->lru);
2898 n->nr_partial--;
2899 slab_unlock(page);
2900 discard_slab(s, page);
2901 } else {
2902 list_move(&page->lru,
2903 slabs_by_inuse + page->inuse);
2904 }
2905 }
2906
2907 /*
2908 * Rebuild the partial list with the slabs filled up most
2909 * first and the least used slabs at the end.
2910 */
2911 for (i = objects - 1; i >= 0; i--)
2912 list_splice(slabs_by_inuse + i, n->partial.prev);
2913
2914 spin_unlock_irqrestore(&n->list_lock, flags);
2915 }
2916
2917 kfree(slabs_by_inuse);
2918 return 0;
2919 }
2920 EXPORT_SYMBOL(kmem_cache_shrink);
2921
2922 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2923 static int slab_mem_going_offline_callback(void *arg)
2924 {
2925 struct kmem_cache *s;
2926
2927 down_read(&slub_lock);
2928 list_for_each_entry(s, &slab_caches, list)
2929 kmem_cache_shrink(s);
2930 up_read(&slub_lock);
2931
2932 return 0;
2933 }
2934
2935 static void slab_mem_offline_callback(void *arg)
2936 {
2937 struct kmem_cache_node *n;
2938 struct kmem_cache *s;
2939 struct memory_notify *marg = arg;
2940 int offline_node;
2941
2942 offline_node = marg->status_change_nid;
2943
2944 /*
2945 * If the node still has available memory. we need kmem_cache_node
2946 * for it yet.
2947 */
2948 if (offline_node < 0)
2949 return;
2950
2951 down_read(&slub_lock);
2952 list_for_each_entry(s, &slab_caches, list) {
2953 n = get_node(s, offline_node);
2954 if (n) {
2955 /*
2956 * if n->nr_slabs > 0, slabs still exist on the node
2957 * that is going down. We were unable to free them,
2958 * and offline_pages() function shoudn't call this
2959 * callback. So, we must fail.
2960 */
2961 BUG_ON(slabs_node(s, offline_node));
2962
2963 s->node[offline_node] = NULL;
2964 kmem_cache_free(kmalloc_caches, n);
2965 }
2966 }
2967 up_read(&slub_lock);
2968 }
2969
2970 static int slab_mem_going_online_callback(void *arg)
2971 {
2972 struct kmem_cache_node *n;
2973 struct kmem_cache *s;
2974 struct memory_notify *marg = arg;
2975 int nid = marg->status_change_nid;
2976 int ret = 0;
2977
2978 /*
2979 * If the node's memory is already available, then kmem_cache_node is
2980 * already created. Nothing to do.
2981 */
2982 if (nid < 0)
2983 return 0;
2984
2985 /*
2986 * We are bringing a node online. No memory is available yet. We must
2987 * allocate a kmem_cache_node structure in order to bring the node
2988 * online.
2989 */
2990 down_read(&slub_lock);
2991 list_for_each_entry(s, &slab_caches, list) {
2992 /*
2993 * XXX: kmem_cache_alloc_node will fallback to other nodes
2994 * since memory is not yet available from the node that
2995 * is brought up.
2996 */
2997 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2998 if (!n) {
2999 ret = -ENOMEM;
3000 goto out;
3001 }
3002 init_kmem_cache_node(n, s);
3003 s->node[nid] = n;
3004 }
3005 out:
3006 up_read(&slub_lock);
3007 return ret;
3008 }
3009
3010 static int slab_memory_callback(struct notifier_block *self,
3011 unsigned long action, void *arg)
3012 {
3013 int ret = 0;
3014
3015 switch (action) {
3016 case MEM_GOING_ONLINE:
3017 ret = slab_mem_going_online_callback(arg);
3018 break;
3019 case MEM_GOING_OFFLINE:
3020 ret = slab_mem_going_offline_callback(arg);
3021 break;
3022 case MEM_OFFLINE:
3023 case MEM_CANCEL_ONLINE:
3024 slab_mem_offline_callback(arg);
3025 break;
3026 case MEM_ONLINE:
3027 case MEM_CANCEL_OFFLINE:
3028 break;
3029 }
3030 if (ret)
3031 ret = notifier_from_errno(ret);
3032 else
3033 ret = NOTIFY_OK;
3034 return ret;
3035 }
3036
3037 #endif /* CONFIG_MEMORY_HOTPLUG */
3038
3039 /********************************************************************
3040 * Basic setup of slabs
3041 *******************************************************************/
3042
3043 void __init kmem_cache_init(void)
3044 {
3045 int i;
3046 int caches = 0;
3047
3048 #ifdef CONFIG_NUMA
3049 /*
3050 * Must first have the slab cache available for the allocations of the
3051 * struct kmem_cache_node's. There is special bootstrap code in
3052 * kmem_cache_open for slab_state == DOWN.
3053 */
3054 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
3055 sizeof(struct kmem_cache_node), GFP_NOWAIT);
3056 kmalloc_caches[0].refcount = -1;
3057 caches++;
3058
3059 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3060 #endif
3061
3062 /* Able to allocate the per node structures */
3063 slab_state = PARTIAL;
3064
3065 /* Caches that are not of the two-to-the-power-of size */
3066 if (KMALLOC_MIN_SIZE <= 32) {
3067 create_kmalloc_cache(&kmalloc_caches[1],
3068 "kmalloc-96", 96, GFP_NOWAIT);
3069 caches++;
3070 }
3071 if (KMALLOC_MIN_SIZE <= 64) {
3072 create_kmalloc_cache(&kmalloc_caches[2],
3073 "kmalloc-192", 192, GFP_NOWAIT);
3074 caches++;
3075 }
3076
3077 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3078 create_kmalloc_cache(&kmalloc_caches[i],
3079 "kmalloc", 1 << i, GFP_NOWAIT);
3080 caches++;
3081 }
3082
3083
3084 /*
3085 * Patch up the size_index table if we have strange large alignment
3086 * requirements for the kmalloc array. This is only the case for
3087 * MIPS it seems. The standard arches will not generate any code here.
3088 *
3089 * Largest permitted alignment is 256 bytes due to the way we
3090 * handle the index determination for the smaller caches.
3091 *
3092 * Make sure that nothing crazy happens if someone starts tinkering
3093 * around with ARCH_KMALLOC_MINALIGN
3094 */
3095 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3096 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3097
3098 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3099 int elem = size_index_elem(i);
3100 if (elem >= ARRAY_SIZE(size_index))
3101 break;
3102 size_index[elem] = KMALLOC_SHIFT_LOW;
3103 }
3104
3105 if (KMALLOC_MIN_SIZE == 64) {
3106 /*
3107 * The 96 byte size cache is not used if the alignment
3108 * is 64 byte.
3109 */
3110 for (i = 64 + 8; i <= 96; i += 8)
3111 size_index[size_index_elem(i)] = 7;
3112 } else if (KMALLOC_MIN_SIZE == 128) {
3113 /*
3114 * The 192 byte sized cache is not used if the alignment
3115 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3116 * instead.
3117 */
3118 for (i = 128 + 8; i <= 192; i += 8)
3119 size_index[size_index_elem(i)] = 8;
3120 }
3121
3122 slab_state = UP;
3123
3124 /* Provide the correct kmalloc names now that the caches are up */
3125 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++)
3126 kmalloc_caches[i]. name =
3127 kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3128
3129 #ifdef CONFIG_SMP
3130 register_cpu_notifier(&slab_notifier);
3131 #endif
3132 #ifdef CONFIG_NUMA
3133 kmem_size = offsetof(struct kmem_cache, node) +
3134 nr_node_ids * sizeof(struct kmem_cache_node *);
3135 #else
3136 kmem_size = sizeof(struct kmem_cache);
3137 #endif
3138
3139 printk(KERN_INFO
3140 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3141 " CPUs=%d, Nodes=%d\n",
3142 caches, cache_line_size(),
3143 slub_min_order, slub_max_order, slub_min_objects,
3144 nr_cpu_ids, nr_node_ids);
3145 }
3146
3147 void __init kmem_cache_init_late(void)
3148 {
3149 }
3150
3151 /*
3152 * Find a mergeable slab cache
3153 */
3154 static int slab_unmergeable(struct kmem_cache *s)
3155 {
3156 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3157 return 1;
3158
3159 if (s->ctor)
3160 return 1;
3161
3162 /*
3163 * We may have set a slab to be unmergeable during bootstrap.
3164 */
3165 if (s->refcount < 0)
3166 return 1;
3167
3168 return 0;
3169 }
3170
3171 static struct kmem_cache *find_mergeable(size_t size,
3172 size_t align, unsigned long flags, const char *name,
3173 void (*ctor)(void *))
3174 {
3175 struct kmem_cache *s;
3176
3177 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3178 return NULL;
3179
3180 if (ctor)
3181 return NULL;
3182
3183 size = ALIGN(size, sizeof(void *));
3184 align = calculate_alignment(flags, align, size);
3185 size = ALIGN(size, align);
3186 flags = kmem_cache_flags(size, flags, name, NULL);
3187
3188 list_for_each_entry(s, &slab_caches, list) {
3189 if (slab_unmergeable(s))
3190 continue;
3191
3192 if (size > s->size)
3193 continue;
3194
3195 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3196 continue;
3197 /*
3198 * Check if alignment is compatible.
3199 * Courtesy of Adrian Drzewiecki
3200 */
3201 if ((s->size & ~(align - 1)) != s->size)
3202 continue;
3203
3204 if (s->size - size >= sizeof(void *))
3205 continue;
3206
3207 return s;
3208 }
3209 return NULL;
3210 }
3211
3212 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3213 size_t align, unsigned long flags, void (*ctor)(void *))
3214 {
3215 struct kmem_cache *s;
3216
3217 if (WARN_ON(!name))
3218 return NULL;
3219
3220 down_write(&slub_lock);
3221 s = find_mergeable(size, align, flags, name, ctor);
3222 if (s) {
3223 s->refcount++;
3224 /*
3225 * Adjust the object sizes so that we clear
3226 * the complete object on kzalloc.
3227 */
3228 s->objsize = max(s->objsize, (int)size);
3229 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3230 up_write(&slub_lock);
3231
3232 if (sysfs_slab_alias(s, name)) {
3233 down_write(&slub_lock);
3234 s->refcount--;
3235 up_write(&slub_lock);
3236 goto err;
3237 }
3238 return s;
3239 }
3240
3241 s = kmalloc(kmem_size, GFP_KERNEL);
3242 if (s) {
3243 if (kmem_cache_open(s, GFP_KERNEL, name,
3244 size, align, flags, ctor)) {
3245 list_add(&s->list, &slab_caches);
3246 up_write(&slub_lock);
3247 if (sysfs_slab_add(s)) {
3248 down_write(&slub_lock);
3249 list_del(&s->list);
3250 up_write(&slub_lock);
3251 kfree(s);
3252 goto err;
3253 }
3254 return s;
3255 }
3256 kfree(s);
3257 }
3258 up_write(&slub_lock);
3259
3260 err:
3261 if (flags & SLAB_PANIC)
3262 panic("Cannot create slabcache %s\n", name);
3263 else
3264 s = NULL;
3265 return s;
3266 }
3267 EXPORT_SYMBOL(kmem_cache_create);
3268
3269 #ifdef CONFIG_SMP
3270 /*
3271 * Use the cpu notifier to insure that the cpu slabs are flushed when
3272 * necessary.
3273 */
3274 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3275 unsigned long action, void *hcpu)
3276 {
3277 long cpu = (long)hcpu;
3278 struct kmem_cache *s;
3279 unsigned long flags;
3280
3281 switch (action) {
3282 case CPU_UP_CANCELED:
3283 case CPU_UP_CANCELED_FROZEN:
3284 case CPU_DEAD:
3285 case CPU_DEAD_FROZEN:
3286 down_read(&slub_lock);
3287 list_for_each_entry(s, &slab_caches, list) {
3288 local_irq_save(flags);
3289 __flush_cpu_slab(s, cpu);
3290 local_irq_restore(flags);
3291 }
3292 up_read(&slub_lock);
3293 break;
3294 default:
3295 break;
3296 }
3297 return NOTIFY_OK;
3298 }
3299
3300 static struct notifier_block __cpuinitdata slab_notifier = {
3301 .notifier_call = slab_cpuup_callback
3302 };
3303
3304 #endif
3305
3306 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3307 {
3308 struct kmem_cache *s;
3309 void *ret;
3310
3311 if (unlikely(size > SLUB_MAX_SIZE))
3312 return kmalloc_large(size, gfpflags);
3313
3314 s = get_slab(size, gfpflags);
3315
3316 if (unlikely(ZERO_OR_NULL_PTR(s)))
3317 return s;
3318
3319 ret = slab_alloc(s, gfpflags, -1, caller);
3320
3321 /* Honor the call site pointer we recieved. */
3322 trace_kmalloc(caller, ret, size, s->size, gfpflags);
3323
3324 return ret;
3325 }
3326
3327 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3328 int node, unsigned long caller)
3329 {
3330 struct kmem_cache *s;
3331 void *ret;
3332
3333 if (unlikely(size > SLUB_MAX_SIZE))
3334 return kmalloc_large_node(size, gfpflags, node);
3335
3336 s = get_slab(size, gfpflags);
3337
3338 if (unlikely(ZERO_OR_NULL_PTR(s)))
3339 return s;
3340
3341 ret = slab_alloc(s, gfpflags, node, caller);
3342
3343 /* Honor the call site pointer we recieved. */
3344 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3345
3346 return ret;
3347 }
3348
3349 #ifdef CONFIG_SLUB_DEBUG
3350 static int count_inuse(struct page *page)
3351 {
3352 return page->inuse;
3353 }
3354
3355 static int count_total(struct page *page)
3356 {
3357 return page->objects;
3358 }
3359
3360 static int validate_slab(struct kmem_cache *s, struct page *page,
3361 unsigned long *map)
3362 {
3363 void *p;
3364 void *addr = page_address(page);
3365
3366 if (!check_slab(s, page) ||
3367 !on_freelist(s, page, NULL))
3368 return 0;
3369
3370 /* Now we know that a valid freelist exists */
3371 bitmap_zero(map, page->objects);
3372
3373 for_each_free_object(p, s, page->freelist) {
3374 set_bit(slab_index(p, s, addr), map);
3375 if (!check_object(s, page, p, 0))
3376 return 0;
3377 }
3378
3379 for_each_object(p, s, addr, page->objects)
3380 if (!test_bit(slab_index(p, s, addr), map))
3381 if (!check_object(s, page, p, 1))
3382 return 0;
3383 return 1;
3384 }
3385
3386 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3387 unsigned long *map)
3388 {
3389 if (slab_trylock(page)) {
3390 validate_slab(s, page, map);
3391 slab_unlock(page);
3392 } else
3393 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3394 s->name, page);
3395
3396 if (s->flags & DEBUG_DEFAULT_FLAGS) {
3397 if (!PageSlubDebug(page))
3398 printk(KERN_ERR "SLUB %s: SlubDebug not set "
3399 "on slab 0x%p\n", s->name, page);
3400 } else {
3401 if (PageSlubDebug(page))
3402 printk(KERN_ERR "SLUB %s: SlubDebug set on "
3403 "slab 0x%p\n", s->name, page);
3404 }
3405 }
3406
3407 static int validate_slab_node(struct kmem_cache *s,
3408 struct kmem_cache_node *n, unsigned long *map)
3409 {
3410 unsigned long count = 0;
3411 struct page *page;
3412 unsigned long flags;
3413
3414 spin_lock_irqsave(&n->list_lock, flags);
3415
3416 list_for_each_entry(page, &n->partial, lru) {
3417 validate_slab_slab(s, page, map);
3418 count++;
3419 }
3420 if (count != n->nr_partial)
3421 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3422 "counter=%ld\n", s->name, count, n->nr_partial);
3423
3424 if (!(s->flags & SLAB_STORE_USER))
3425 goto out;
3426
3427 list_for_each_entry(page, &n->full, lru) {
3428 validate_slab_slab(s, page, map);
3429 count++;
3430 }
3431 if (count != atomic_long_read(&n->nr_slabs))
3432 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3433 "counter=%ld\n", s->name, count,
3434 atomic_long_read(&n->nr_slabs));
3435
3436 out:
3437 spin_unlock_irqrestore(&n->list_lock, flags);
3438 return count;
3439 }
3440
3441 static long validate_slab_cache(struct kmem_cache *s)
3442 {
3443 int node;
3444 unsigned long count = 0;
3445 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3446 sizeof(unsigned long), GFP_KERNEL);
3447
3448 if (!map)
3449 return -ENOMEM;
3450
3451 flush_all(s);
3452 for_each_node_state(node, N_NORMAL_MEMORY) {
3453 struct kmem_cache_node *n = get_node(s, node);
3454
3455 count += validate_slab_node(s, n, map);
3456 }
3457 kfree(map);
3458 return count;
3459 }
3460
3461 #ifdef SLUB_RESILIENCY_TEST
3462 static void resiliency_test(void)
3463 {
3464 u8 *p;
3465
3466 printk(KERN_ERR "SLUB resiliency testing\n");
3467 printk(KERN_ERR "-----------------------\n");
3468 printk(KERN_ERR "A. Corruption after allocation\n");
3469
3470 p = kzalloc(16, GFP_KERNEL);
3471 p[16] = 0x12;
3472 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3473 " 0x12->0x%p\n\n", p + 16);
3474
3475 validate_slab_cache(kmalloc_caches + 4);
3476
3477 /* Hmmm... The next two are dangerous */
3478 p = kzalloc(32, GFP_KERNEL);
3479 p[32 + sizeof(void *)] = 0x34;
3480 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3481 " 0x34 -> -0x%p\n", p);
3482 printk(KERN_ERR
3483 "If allocated object is overwritten then not detectable\n\n");
3484
3485 validate_slab_cache(kmalloc_caches + 5);
3486 p = kzalloc(64, GFP_KERNEL);
3487 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3488 *p = 0x56;
3489 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3490 p);
3491 printk(KERN_ERR
3492 "If allocated object is overwritten then not detectable\n\n");
3493 validate_slab_cache(kmalloc_caches + 6);
3494
3495 printk(KERN_ERR "\nB. Corruption after free\n");
3496 p = kzalloc(128, GFP_KERNEL);
3497 kfree(p);
3498 *p = 0x78;
3499 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3500 validate_slab_cache(kmalloc_caches + 7);
3501
3502 p = kzalloc(256, GFP_KERNEL);
3503 kfree(p);
3504 p[50] = 0x9a;
3505 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3506 p);
3507 validate_slab_cache(kmalloc_caches + 8);
3508
3509 p = kzalloc(512, GFP_KERNEL);
3510 kfree(p);
3511 p[512] = 0xab;
3512 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3513 validate_slab_cache(kmalloc_caches + 9);
3514 }
3515 #else
3516 static void resiliency_test(void) {};
3517 #endif
3518
3519 /*
3520 * Generate lists of code addresses where slabcache objects are allocated
3521 * and freed.
3522 */
3523
3524 struct location {
3525 unsigned long count;
3526 unsigned long addr;
3527 long long sum_time;
3528 long min_time;
3529 long max_time;
3530 long min_pid;
3531 long max_pid;
3532 DECLARE_BITMAP(cpus, NR_CPUS);
3533 nodemask_t nodes;
3534 };
3535
3536 struct loc_track {
3537 unsigned long max;
3538 unsigned long count;
3539 struct location *loc;
3540 };
3541
3542 static void free_loc_track(struct loc_track *t)
3543 {
3544 if (t->max)
3545 free_pages((unsigned long)t->loc,
3546 get_order(sizeof(struct location) * t->max));
3547 }
3548
3549 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3550 {
3551 struct location *l;
3552 int order;
3553
3554 order = get_order(sizeof(struct location) * max);
3555
3556 l = (void *)__get_free_pages(flags, order);
3557 if (!l)
3558 return 0;
3559
3560 if (t->count) {
3561 memcpy(l, t->loc, sizeof(struct location) * t->count);
3562 free_loc_track(t);
3563 }
3564 t->max = max;
3565 t->loc = l;
3566 return 1;
3567 }
3568
3569 static int add_location(struct loc_track *t, struct kmem_cache *s,
3570 const struct track *track)
3571 {
3572 long start, end, pos;
3573 struct location *l;
3574 unsigned long caddr;
3575 unsigned long age = jiffies - track->when;
3576
3577 start = -1;
3578 end = t->count;
3579
3580 for ( ; ; ) {
3581 pos = start + (end - start + 1) / 2;
3582
3583 /*
3584 * There is nothing at "end". If we end up there
3585 * we need to add something to before end.
3586 */
3587 if (pos == end)
3588 break;
3589
3590 caddr = t->loc[pos].addr;
3591 if (track->addr == caddr) {
3592
3593 l = &t->loc[pos];
3594 l->count++;
3595 if (track->when) {
3596 l->sum_time += age;
3597 if (age < l->min_time)
3598 l->min_time = age;
3599 if (age > l->max_time)
3600 l->max_time = age;
3601
3602 if (track->pid < l->min_pid)
3603 l->min_pid = track->pid;
3604 if (track->pid > l->max_pid)
3605 l->max_pid = track->pid;
3606
3607 cpumask_set_cpu(track->cpu,
3608 to_cpumask(l->cpus));
3609 }
3610 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3611 return 1;
3612 }
3613
3614 if (track->addr < caddr)
3615 end = pos;
3616 else
3617 start = pos;
3618 }
3619
3620 /*
3621 * Not found. Insert new tracking element.
3622 */
3623 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3624 return 0;
3625
3626 l = t->loc + pos;
3627 if (pos < t->count)
3628 memmove(l + 1, l,
3629 (t->count - pos) * sizeof(struct location));
3630 t->count++;
3631 l->count = 1;
3632 l->addr = track->addr;
3633 l->sum_time = age;
3634 l->min_time = age;
3635 l->max_time = age;
3636 l->min_pid = track->pid;
3637 l->max_pid = track->pid;
3638 cpumask_clear(to_cpumask(l->cpus));
3639 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
3640 nodes_clear(l->nodes);
3641 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3642 return 1;
3643 }
3644
3645 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3646 struct page *page, enum track_item alloc)
3647 {
3648 void *addr = page_address(page);
3649 DECLARE_BITMAP(map, page->objects);
3650 void *p;
3651
3652 bitmap_zero(map, page->objects);
3653 for_each_free_object(p, s, page->freelist)
3654 set_bit(slab_index(p, s, addr), map);
3655
3656 for_each_object(p, s, addr, page->objects)
3657 if (!test_bit(slab_index(p, s, addr), map))
3658 add_location(t, s, get_track(s, p, alloc));
3659 }
3660
3661 static int list_locations(struct kmem_cache *s, char *buf,
3662 enum track_item alloc)
3663 {
3664 int len = 0;
3665 unsigned long i;
3666 struct loc_track t = { 0, 0, NULL };
3667 int node;
3668
3669 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3670 GFP_TEMPORARY))
3671 return sprintf(buf, "Out of memory\n");
3672
3673 /* Push back cpu slabs */
3674 flush_all(s);
3675
3676 for_each_node_state(node, N_NORMAL_MEMORY) {
3677 struct kmem_cache_node *n = get_node(s, node);
3678 unsigned long flags;
3679 struct page *page;
3680
3681 if (!atomic_long_read(&n->nr_slabs))
3682 continue;
3683
3684 spin_lock_irqsave(&n->list_lock, flags);
3685 list_for_each_entry(page, &n->partial, lru)
3686 process_slab(&t, s, page, alloc);
3687 list_for_each_entry(page, &n->full, lru)
3688 process_slab(&t, s, page, alloc);
3689 spin_unlock_irqrestore(&n->list_lock, flags);
3690 }
3691
3692 for (i = 0; i < t.count; i++) {
3693 struct location *l = &t.loc[i];
3694
3695 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
3696 break;
3697 len += sprintf(buf + len, "%7ld ", l->count);
3698
3699 if (l->addr)
3700 len += sprint_symbol(buf + len, (unsigned long)l->addr);
3701 else
3702 len += sprintf(buf + len, "<not-available>");
3703
3704 if (l->sum_time != l->min_time) {
3705 len += sprintf(buf + len, " age=%ld/%ld/%ld",
3706 l->min_time,
3707 (long)div_u64(l->sum_time, l->count),
3708 l->max_time);
3709 } else
3710 len += sprintf(buf + len, " age=%ld",
3711 l->min_time);
3712
3713 if (l->min_pid != l->max_pid)
3714 len += sprintf(buf + len, " pid=%ld-%ld",
3715 l->min_pid, l->max_pid);
3716 else
3717 len += sprintf(buf + len, " pid=%ld",
3718 l->min_pid);
3719
3720 if (num_online_cpus() > 1 &&
3721 !cpumask_empty(to_cpumask(l->cpus)) &&
3722 len < PAGE_SIZE - 60) {
3723 len += sprintf(buf + len, " cpus=");
3724 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3725 to_cpumask(l->cpus));
3726 }
3727
3728 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
3729 len < PAGE_SIZE - 60) {
3730 len += sprintf(buf + len, " nodes=");
3731 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3732 l->nodes);
3733 }
3734
3735 len += sprintf(buf + len, "\n");
3736 }
3737
3738 free_loc_track(&t);
3739 if (!t.count)
3740 len += sprintf(buf, "No data\n");
3741 return len;
3742 }
3743
3744 enum slab_stat_type {
3745 SL_ALL, /* All slabs */
3746 SL_PARTIAL, /* Only partially allocated slabs */
3747 SL_CPU, /* Only slabs used for cpu caches */
3748 SL_OBJECTS, /* Determine allocated objects not slabs */
3749 SL_TOTAL /* Determine object capacity not slabs */
3750 };
3751
3752 #define SO_ALL (1 << SL_ALL)
3753 #define SO_PARTIAL (1 << SL_PARTIAL)
3754 #define SO_CPU (1 << SL_CPU)
3755 #define SO_OBJECTS (1 << SL_OBJECTS)
3756 #define SO_TOTAL (1 << SL_TOTAL)
3757
3758 static ssize_t show_slab_objects(struct kmem_cache *s,
3759 char *buf, unsigned long flags)
3760 {
3761 unsigned long total = 0;
3762 int node;
3763 int x;
3764 unsigned long *nodes;
3765 unsigned long *per_cpu;
3766
3767 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3768 if (!nodes)
3769 return -ENOMEM;
3770 per_cpu = nodes + nr_node_ids;
3771
3772 if (flags & SO_CPU) {
3773 int cpu;
3774
3775 for_each_possible_cpu(cpu) {
3776 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3777
3778 if (!c || c->node < 0)
3779 continue;
3780
3781 if (c->page) {
3782 if (flags & SO_TOTAL)
3783 x = c->page->objects;
3784 else if (flags & SO_OBJECTS)
3785 x = c->page->inuse;
3786 else
3787 x = 1;
3788
3789 total += x;
3790 nodes[c->node] += x;
3791 }
3792 per_cpu[c->node]++;
3793 }
3794 }
3795
3796 if (flags & SO_ALL) {
3797 for_each_node_state(node, N_NORMAL_MEMORY) {
3798 struct kmem_cache_node *n = get_node(s, node);
3799
3800 if (flags & SO_TOTAL)
3801 x = atomic_long_read(&n->total_objects);
3802 else if (flags & SO_OBJECTS)
3803 x = atomic_long_read(&n->total_objects) -
3804 count_partial(n, count_free);
3805
3806 else
3807 x = atomic_long_read(&n->nr_slabs);
3808 total += x;
3809 nodes[node] += x;
3810 }
3811
3812 } else if (flags & SO_PARTIAL) {
3813 for_each_node_state(node, N_NORMAL_MEMORY) {
3814 struct kmem_cache_node *n = get_node(s, node);
3815
3816 if (flags & SO_TOTAL)
3817 x = count_partial(n, count_total);
3818 else if (flags & SO_OBJECTS)
3819 x = count_partial(n, count_inuse);
3820 else
3821 x = n->nr_partial;
3822 total += x;
3823 nodes[node] += x;
3824 }
3825 }
3826 x = sprintf(buf, "%lu", total);
3827 #ifdef CONFIG_NUMA
3828 for_each_node_state(node, N_NORMAL_MEMORY)
3829 if (nodes[node])
3830 x += sprintf(buf + x, " N%d=%lu",
3831 node, nodes[node]);
3832 #endif
3833 kfree(nodes);
3834 return x + sprintf(buf + x, "\n");
3835 }
3836
3837 static int any_slab_objects(struct kmem_cache *s)
3838 {
3839 int node;
3840
3841 for_each_online_node(node) {
3842 struct kmem_cache_node *n = get_node(s, node);
3843
3844 if (!n)
3845 continue;
3846
3847 if (atomic_long_read(&n->total_objects))
3848 return 1;
3849 }
3850 return 0;
3851 }
3852
3853 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3854 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3855
3856 struct slab_attribute {
3857 struct attribute attr;
3858 ssize_t (*show)(struct kmem_cache *s, char *buf);
3859 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3860 };
3861
3862 #define SLAB_ATTR_RO(_name) \
3863 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3864
3865 #define SLAB_ATTR(_name) \
3866 static struct slab_attribute _name##_attr = \
3867 __ATTR(_name, 0644, _name##_show, _name##_store)
3868
3869 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3870 {
3871 return sprintf(buf, "%d\n", s->size);
3872 }
3873 SLAB_ATTR_RO(slab_size);
3874
3875 static ssize_t align_show(struct kmem_cache *s, char *buf)
3876 {
3877 return sprintf(buf, "%d\n", s->align);
3878 }
3879 SLAB_ATTR_RO(align);
3880
3881 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3882 {
3883 return sprintf(buf, "%d\n", s->objsize);
3884 }
3885 SLAB_ATTR_RO(object_size);
3886
3887 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3888 {
3889 return sprintf(buf, "%d\n", oo_objects(s->oo));
3890 }
3891 SLAB_ATTR_RO(objs_per_slab);
3892
3893 static ssize_t order_store(struct kmem_cache *s,
3894 const char *buf, size_t length)
3895 {
3896 unsigned long order;
3897 int err;
3898
3899 err = strict_strtoul(buf, 10, &order);
3900 if (err)
3901 return err;
3902
3903 if (order > slub_max_order || order < slub_min_order)
3904 return -EINVAL;
3905
3906 calculate_sizes(s, order);
3907 return length;
3908 }
3909
3910 static ssize_t order_show(struct kmem_cache *s, char *buf)
3911 {
3912 return sprintf(buf, "%d\n", oo_order(s->oo));
3913 }
3914 SLAB_ATTR(order);
3915
3916 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
3917 {
3918 return sprintf(buf, "%lu\n", s->min_partial);
3919 }
3920
3921 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
3922 size_t length)
3923 {
3924 unsigned long min;
3925 int err;
3926
3927 err = strict_strtoul(buf, 10, &min);
3928 if (err)
3929 return err;
3930
3931 set_min_partial(s, min);
3932 return length;
3933 }
3934 SLAB_ATTR(min_partial);
3935
3936 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3937 {
3938 if (s->ctor) {
3939 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3940
3941 return n + sprintf(buf + n, "\n");
3942 }
3943 return 0;
3944 }
3945 SLAB_ATTR_RO(ctor);
3946
3947 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3948 {
3949 return sprintf(buf, "%d\n", s->refcount - 1);
3950 }
3951 SLAB_ATTR_RO(aliases);
3952
3953 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3954 {
3955 return show_slab_objects(s, buf, SO_ALL);
3956 }
3957 SLAB_ATTR_RO(slabs);
3958
3959 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3960 {
3961 return show_slab_objects(s, buf, SO_PARTIAL);
3962 }
3963 SLAB_ATTR_RO(partial);
3964
3965 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3966 {
3967 return show_slab_objects(s, buf, SO_CPU);
3968 }
3969 SLAB_ATTR_RO(cpu_slabs);
3970
3971 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3972 {
3973 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
3974 }
3975 SLAB_ATTR_RO(objects);
3976
3977 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3978 {
3979 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3980 }
3981 SLAB_ATTR_RO(objects_partial);
3982
3983 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
3984 {
3985 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
3986 }
3987 SLAB_ATTR_RO(total_objects);
3988
3989 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3990 {
3991 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3992 }
3993
3994 static ssize_t sanity_checks_store(struct kmem_cache *s,
3995 const char *buf, size_t length)
3996 {
3997 s->flags &= ~SLAB_DEBUG_FREE;
3998 if (buf[0] == '1')
3999 s->flags |= SLAB_DEBUG_FREE;
4000 return length;
4001 }
4002 SLAB_ATTR(sanity_checks);
4003
4004 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4005 {
4006 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4007 }
4008
4009 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4010 size_t length)
4011 {
4012 s->flags &= ~SLAB_TRACE;
4013 if (buf[0] == '1')
4014 s->flags |= SLAB_TRACE;
4015 return length;
4016 }
4017 SLAB_ATTR(trace);
4018
4019 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4020 {
4021 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4022 }
4023
4024 static ssize_t reclaim_account_store(struct kmem_cache *s,
4025 const char *buf, size_t length)
4026 {
4027 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4028 if (buf[0] == '1')
4029 s->flags |= SLAB_RECLAIM_ACCOUNT;
4030 return length;
4031 }
4032 SLAB_ATTR(reclaim_account);
4033
4034 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4035 {
4036 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4037 }
4038 SLAB_ATTR_RO(hwcache_align);
4039
4040 #ifdef CONFIG_ZONE_DMA
4041 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4042 {
4043 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4044 }
4045 SLAB_ATTR_RO(cache_dma);
4046 #endif
4047
4048 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4049 {
4050 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4051 }
4052 SLAB_ATTR_RO(destroy_by_rcu);
4053
4054 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4055 {
4056 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4057 }
4058
4059 static ssize_t red_zone_store(struct kmem_cache *s,
4060 const char *buf, size_t length)
4061 {
4062 if (any_slab_objects(s))
4063 return -EBUSY;
4064
4065 s->flags &= ~SLAB_RED_ZONE;
4066 if (buf[0] == '1')
4067 s->flags |= SLAB_RED_ZONE;
4068 calculate_sizes(s, -1);
4069 return length;
4070 }
4071 SLAB_ATTR(red_zone);
4072
4073 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4074 {
4075 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4076 }
4077
4078 static ssize_t poison_store(struct kmem_cache *s,
4079 const char *buf, size_t length)
4080 {
4081 if (any_slab_objects(s))
4082 return -EBUSY;
4083
4084 s->flags &= ~SLAB_POISON;
4085 if (buf[0] == '1')
4086 s->flags |= SLAB_POISON;
4087 calculate_sizes(s, -1);
4088 return length;
4089 }
4090 SLAB_ATTR(poison);
4091
4092 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4093 {
4094 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4095 }
4096
4097 static ssize_t store_user_store(struct kmem_cache *s,
4098 const char *buf, size_t length)
4099 {
4100 if (any_slab_objects(s))
4101 return -EBUSY;
4102
4103 s->flags &= ~SLAB_STORE_USER;
4104 if (buf[0] == '1')
4105 s->flags |= SLAB_STORE_USER;
4106 calculate_sizes(s, -1);
4107 return length;
4108 }
4109 SLAB_ATTR(store_user);
4110
4111 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4112 {
4113 return 0;
4114 }
4115
4116 static ssize_t validate_store(struct kmem_cache *s,
4117 const char *buf, size_t length)
4118 {
4119 int ret = -EINVAL;
4120
4121 if (buf[0] == '1') {
4122 ret = validate_slab_cache(s);
4123 if (ret >= 0)
4124 ret = length;
4125 }
4126 return ret;
4127 }
4128 SLAB_ATTR(validate);
4129
4130 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4131 {
4132 return 0;
4133 }
4134
4135 static ssize_t shrink_store(struct kmem_cache *s,
4136 const char *buf, size_t length)
4137 {
4138 if (buf[0] == '1') {
4139 int rc = kmem_cache_shrink(s);
4140
4141 if (rc)
4142 return rc;
4143 } else
4144 return -EINVAL;
4145 return length;
4146 }
4147 SLAB_ATTR(shrink);
4148
4149 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4150 {
4151 if (!(s->flags & SLAB_STORE_USER))
4152 return -ENOSYS;
4153 return list_locations(s, buf, TRACK_ALLOC);
4154 }
4155 SLAB_ATTR_RO(alloc_calls);
4156
4157 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4158 {
4159 if (!(s->flags & SLAB_STORE_USER))
4160 return -ENOSYS;
4161 return list_locations(s, buf, TRACK_FREE);
4162 }
4163 SLAB_ATTR_RO(free_calls);
4164
4165 #ifdef CONFIG_NUMA
4166 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4167 {
4168 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4169 }
4170
4171 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4172 const char *buf, size_t length)
4173 {
4174 unsigned long ratio;
4175 int err;
4176
4177 err = strict_strtoul(buf, 10, &ratio);
4178 if (err)
4179 return err;
4180
4181 if (ratio <= 100)
4182 s->remote_node_defrag_ratio = ratio * 10;
4183
4184 return length;
4185 }
4186 SLAB_ATTR(remote_node_defrag_ratio);
4187 #endif
4188
4189 #ifdef CONFIG_SLUB_STATS
4190 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4191 {
4192 unsigned long sum = 0;
4193 int cpu;
4194 int len;
4195 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4196
4197 if (!data)
4198 return -ENOMEM;
4199
4200 for_each_online_cpu(cpu) {
4201 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4202
4203 data[cpu] = x;
4204 sum += x;
4205 }
4206
4207 len = sprintf(buf, "%lu", sum);
4208
4209 #ifdef CONFIG_SMP
4210 for_each_online_cpu(cpu) {
4211 if (data[cpu] && len < PAGE_SIZE - 20)
4212 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4213 }
4214 #endif
4215 kfree(data);
4216 return len + sprintf(buf + len, "\n");
4217 }
4218
4219 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4220 {
4221 int cpu;
4222
4223 for_each_online_cpu(cpu)
4224 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4225 }
4226
4227 #define STAT_ATTR(si, text) \
4228 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4229 { \
4230 return show_stat(s, buf, si); \
4231 } \
4232 static ssize_t text##_store(struct kmem_cache *s, \
4233 const char *buf, size_t length) \
4234 { \
4235 if (buf[0] != '0') \
4236 return -EINVAL; \
4237 clear_stat(s, si); \
4238 return length; \
4239 } \
4240 SLAB_ATTR(text); \
4241
4242 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4243 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4244 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4245 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4246 STAT_ATTR(FREE_FROZEN, free_frozen);
4247 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4248 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4249 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4250 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4251 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4252 STAT_ATTR(FREE_SLAB, free_slab);
4253 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4254 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4255 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4256 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4257 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4258 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4259 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4260 #endif
4261
4262 static struct attribute *slab_attrs[] = {
4263 &slab_size_attr.attr,
4264 &object_size_attr.attr,
4265 &objs_per_slab_attr.attr,
4266 &order_attr.attr,
4267 &min_partial_attr.attr,
4268 &objects_attr.attr,
4269 &objects_partial_attr.attr,
4270 &total_objects_attr.attr,
4271 &slabs_attr.attr,
4272 &partial_attr.attr,
4273 &cpu_slabs_attr.attr,
4274 &ctor_attr.attr,
4275 &aliases_attr.attr,
4276 &align_attr.attr,
4277 &sanity_checks_attr.attr,
4278 &trace_attr.attr,
4279 &hwcache_align_attr.attr,
4280 &reclaim_account_attr.attr,
4281 &destroy_by_rcu_attr.attr,
4282 &red_zone_attr.attr,
4283 &poison_attr.attr,
4284 &store_user_attr.attr,
4285 &validate_attr.attr,
4286 &shrink_attr.attr,
4287 &alloc_calls_attr.attr,
4288 &free_calls_attr.attr,
4289 #ifdef CONFIG_ZONE_DMA
4290 &cache_dma_attr.attr,
4291 #endif
4292 #ifdef CONFIG_NUMA
4293 &remote_node_defrag_ratio_attr.attr,
4294 #endif
4295 #ifdef CONFIG_SLUB_STATS
4296 &alloc_fastpath_attr.attr,
4297 &alloc_slowpath_attr.attr,
4298 &free_fastpath_attr.attr,
4299 &free_slowpath_attr.attr,
4300 &free_frozen_attr.attr,
4301 &free_add_partial_attr.attr,
4302 &free_remove_partial_attr.attr,
4303 &alloc_from_partial_attr.attr,
4304 &alloc_slab_attr.attr,
4305 &alloc_refill_attr.attr,
4306 &free_slab_attr.attr,
4307 &cpuslab_flush_attr.attr,
4308 &deactivate_full_attr.attr,
4309 &deactivate_empty_attr.attr,
4310 &deactivate_to_head_attr.attr,
4311 &deactivate_to_tail_attr.attr,
4312 &deactivate_remote_frees_attr.attr,
4313 &order_fallback_attr.attr,
4314 #endif
4315 NULL
4316 };
4317
4318 static struct attribute_group slab_attr_group = {
4319 .attrs = slab_attrs,
4320 };
4321
4322 static ssize_t slab_attr_show(struct kobject *kobj,
4323 struct attribute *attr,
4324 char *buf)
4325 {
4326 struct slab_attribute *attribute;
4327 struct kmem_cache *s;
4328 int err;
4329
4330 attribute = to_slab_attr(attr);
4331 s = to_slab(kobj);
4332
4333 if (!attribute->show)
4334 return -EIO;
4335
4336 err = attribute->show(s, buf);
4337
4338 return err;
4339 }
4340
4341 static ssize_t slab_attr_store(struct kobject *kobj,
4342 struct attribute *attr,
4343 const char *buf, size_t len)
4344 {
4345 struct slab_attribute *attribute;
4346 struct kmem_cache *s;
4347 int err;
4348
4349 attribute = to_slab_attr(attr);
4350 s = to_slab(kobj);
4351
4352 if (!attribute->store)
4353 return -EIO;
4354
4355 err = attribute->store(s, buf, len);
4356
4357 return err;
4358 }
4359
4360 static void kmem_cache_release(struct kobject *kobj)
4361 {
4362 struct kmem_cache *s = to_slab(kobj);
4363
4364 kfree(s);
4365 }
4366
4367 static struct sysfs_ops slab_sysfs_ops = {
4368 .show = slab_attr_show,
4369 .store = slab_attr_store,
4370 };
4371
4372 static struct kobj_type slab_ktype = {
4373 .sysfs_ops = &slab_sysfs_ops,
4374 .release = kmem_cache_release
4375 };
4376
4377 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4378 {
4379 struct kobj_type *ktype = get_ktype(kobj);
4380
4381 if (ktype == &slab_ktype)
4382 return 1;
4383 return 0;
4384 }
4385
4386 static struct kset_uevent_ops slab_uevent_ops = {
4387 .filter = uevent_filter,
4388 };
4389
4390 static struct kset *slab_kset;
4391
4392 #define ID_STR_LENGTH 64
4393
4394 /* Create a unique string id for a slab cache:
4395 *
4396 * Format :[flags-]size
4397 */
4398 static char *create_unique_id(struct kmem_cache *s)
4399 {
4400 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4401 char *p = name;
4402
4403 BUG_ON(!name);
4404
4405 *p++ = ':';
4406 /*
4407 * First flags affecting slabcache operations. We will only
4408 * get here for aliasable slabs so we do not need to support
4409 * too many flags. The flags here must cover all flags that
4410 * are matched during merging to guarantee that the id is
4411 * unique.
4412 */
4413 if (s->flags & SLAB_CACHE_DMA)
4414 *p++ = 'd';
4415 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4416 *p++ = 'a';
4417 if (s->flags & SLAB_DEBUG_FREE)
4418 *p++ = 'F';
4419 if (!(s->flags & SLAB_NOTRACK))
4420 *p++ = 't';
4421 if (p != name + 1)
4422 *p++ = '-';
4423 p += sprintf(p, "%07d", s->size);
4424 BUG_ON(p > name + ID_STR_LENGTH - 1);
4425 return name;
4426 }
4427
4428 static int sysfs_slab_add(struct kmem_cache *s)
4429 {
4430 int err;
4431 const char *name;
4432 int unmergeable;
4433
4434 if (slab_state < SYSFS)
4435 /* Defer until later */
4436 return 0;
4437
4438 unmergeable = slab_unmergeable(s);
4439 if (unmergeable) {
4440 /*
4441 * Slabcache can never be merged so we can use the name proper.
4442 * This is typically the case for debug situations. In that
4443 * case we can catch duplicate names easily.
4444 */
4445 sysfs_remove_link(&slab_kset->kobj, s->name);
4446 name = s->name;
4447 } else {
4448 /*
4449 * Create a unique name for the slab as a target
4450 * for the symlinks.
4451 */
4452 name = create_unique_id(s);
4453 }
4454
4455 s->kobj.kset = slab_kset;
4456 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4457 if (err) {
4458 kobject_put(&s->kobj);
4459 return err;
4460 }
4461
4462 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4463 if (err) {
4464 kobject_del(&s->kobj);
4465 kobject_put(&s->kobj);
4466 return err;
4467 }
4468 kobject_uevent(&s->kobj, KOBJ_ADD);
4469 if (!unmergeable) {
4470 /* Setup first alias */
4471 sysfs_slab_alias(s, s->name);
4472 kfree(name);
4473 }
4474 return 0;
4475 }
4476
4477 static void sysfs_slab_remove(struct kmem_cache *s)
4478 {
4479 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4480 kobject_del(&s->kobj);
4481 kobject_put(&s->kobj);
4482 }
4483
4484 /*
4485 * Need to buffer aliases during bootup until sysfs becomes
4486 * available lest we lose that information.
4487 */
4488 struct saved_alias {
4489 struct kmem_cache *s;
4490 const char *name;
4491 struct saved_alias *next;
4492 };
4493
4494 static struct saved_alias *alias_list;
4495
4496 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4497 {
4498 struct saved_alias *al;
4499
4500 if (slab_state == SYSFS) {
4501 /*
4502 * If we have a leftover link then remove it.
4503 */
4504 sysfs_remove_link(&slab_kset->kobj, name);
4505 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4506 }
4507
4508 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4509 if (!al)
4510 return -ENOMEM;
4511
4512 al->s = s;
4513 al->name = name;
4514 al->next = alias_list;
4515 alias_list = al;
4516 return 0;
4517 }
4518
4519 static int __init slab_sysfs_init(void)
4520 {
4521 struct kmem_cache *s;
4522 int err;
4523
4524 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4525 if (!slab_kset) {
4526 printk(KERN_ERR "Cannot register slab subsystem.\n");
4527 return -ENOSYS;
4528 }
4529
4530 slab_state = SYSFS;
4531
4532 list_for_each_entry(s, &slab_caches, list) {
4533 err = sysfs_slab_add(s);
4534 if (err)
4535 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4536 " to sysfs\n", s->name);
4537 }
4538
4539 while (alias_list) {
4540 struct saved_alias *al = alias_list;
4541
4542 alias_list = alias_list->next;
4543 err = sysfs_slab_alias(al->s, al->name);
4544 if (err)
4545 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4546 " %s to sysfs\n", s->name);
4547 kfree(al);
4548 }
4549
4550 resiliency_test();
4551 return 0;
4552 }
4553
4554 __initcall(slab_sysfs_init);
4555 #endif
4556
4557 /*
4558 * The /proc/slabinfo ABI
4559 */
4560 #ifdef CONFIG_SLABINFO
4561 static void print_slabinfo_header(struct seq_file *m)
4562 {
4563 seq_puts(m, "slabinfo - version: 2.1\n");
4564 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4565 "<objperslab> <pagesperslab>");
4566 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4567 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4568 seq_putc(m, '\n');
4569 }
4570
4571 static void *s_start(struct seq_file *m, loff_t *pos)
4572 {
4573 loff_t n = *pos;
4574
4575 down_read(&slub_lock);
4576 if (!n)
4577 print_slabinfo_header(m);
4578
4579 return seq_list_start(&slab_caches, *pos);
4580 }
4581
4582 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4583 {
4584 return seq_list_next(p, &slab_caches, pos);
4585 }
4586
4587 static void s_stop(struct seq_file *m, void *p)
4588 {
4589 up_read(&slub_lock);
4590 }
4591
4592 static int s_show(struct seq_file *m, void *p)
4593 {
4594 unsigned long nr_partials = 0;
4595 unsigned long nr_slabs = 0;
4596 unsigned long nr_inuse = 0;
4597 unsigned long nr_objs = 0;
4598 unsigned long nr_free = 0;
4599 struct kmem_cache *s;
4600 int node;
4601
4602 s = list_entry(p, struct kmem_cache, list);
4603
4604 for_each_online_node(node) {
4605 struct kmem_cache_node *n = get_node(s, node);
4606
4607 if (!n)
4608 continue;
4609
4610 nr_partials += n->nr_partial;
4611 nr_slabs += atomic_long_read(&n->nr_slabs);
4612 nr_objs += atomic_long_read(&n->total_objects);
4613 nr_free += count_partial(n, count_free);
4614 }
4615
4616 nr_inuse = nr_objs - nr_free;
4617
4618 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4619 nr_objs, s->size, oo_objects(s->oo),
4620 (1 << oo_order(s->oo)));
4621 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4622 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4623 0UL);
4624 seq_putc(m, '\n');
4625 return 0;
4626 }
4627
4628 static const struct seq_operations slabinfo_op = {
4629 .start = s_start,
4630 .next = s_next,
4631 .stop = s_stop,
4632 .show = s_show,
4633 };
4634
4635 static int slabinfo_open(struct inode *inode, struct file *file)
4636 {
4637 return seq_open(file, &slabinfo_op);
4638 }
4639
4640 static const struct file_operations proc_slabinfo_operations = {
4641 .open = slabinfo_open,
4642 .read = seq_read,
4643 .llseek = seq_lseek,
4644 .release = seq_release,
4645 };
4646
4647 static int __init slab_proc_init(void)
4648 {
4649 proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
4650 return 0;
4651 }
4652 module_init(slab_proc_init);
4653 #endif /* CONFIG_SLABINFO */
This page took 0.203321 seconds and 4 git commands to generate.