slub: init_kmem_cache_cpus() and put_cpu_partial() can be static
[deliverable/linux.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
10 */
11
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include "slab.h"
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/kmemcheck.h>
23 #include <linux/cpu.h>
24 #include <linux/cpuset.h>
25 #include <linux/mempolicy.h>
26 #include <linux/ctype.h>
27 #include <linux/debugobjects.h>
28 #include <linux/kallsyms.h>
29 #include <linux/memory.h>
30 #include <linux/math64.h>
31 #include <linux/fault-inject.h>
32 #include <linux/stacktrace.h>
33 #include <linux/prefetch.h>
34
35 #include <trace/events/kmem.h>
36
37 #include "internal.h"
38
39 /*
40 * Lock order:
41 * 1. slab_mutex (Global Mutex)
42 * 2. node->list_lock
43 * 3. slab_lock(page) (Only on some arches and for debugging)
44 *
45 * slab_mutex
46 *
47 * The role of the slab_mutex is to protect the list of all the slabs
48 * and to synchronize major metadata changes to slab cache structures.
49 *
50 * The slab_lock is only used for debugging and on arches that do not
51 * have the ability to do a cmpxchg_double. It only protects the second
52 * double word in the page struct. Meaning
53 * A. page->freelist -> List of object free in a page
54 * B. page->counters -> Counters of objects
55 * C. page->frozen -> frozen state
56 *
57 * If a slab is frozen then it is exempt from list management. It is not
58 * on any list. The processor that froze the slab is the one who can
59 * perform list operations on the page. Other processors may put objects
60 * onto the freelist but the processor that froze the slab is the only
61 * one that can retrieve the objects from the page's freelist.
62 *
63 * The list_lock protects the partial and full list on each node and
64 * the partial slab counter. If taken then no new slabs may be added or
65 * removed from the lists nor make the number of partial slabs be modified.
66 * (Note that the total number of slabs is an atomic value that may be
67 * modified without taking the list lock).
68 *
69 * The list_lock is a centralized lock and thus we avoid taking it as
70 * much as possible. As long as SLUB does not have to handle partial
71 * slabs, operations can continue without any centralized lock. F.e.
72 * allocating a long series of objects that fill up slabs does not require
73 * the list lock.
74 * Interrupts are disabled during allocation and deallocation in order to
75 * make the slab allocator safe to use in the context of an irq. In addition
76 * interrupts are disabled to ensure that the processor does not change
77 * while handling per_cpu slabs, due to kernel preemption.
78 *
79 * SLUB assigns one slab for allocation to each processor.
80 * Allocations only occur from these slabs called cpu slabs.
81 *
82 * Slabs with free elements are kept on a partial list and during regular
83 * operations no list for full slabs is used. If an object in a full slab is
84 * freed then the slab will show up again on the partial lists.
85 * We track full slabs for debugging purposes though because otherwise we
86 * cannot scan all objects.
87 *
88 * Slabs are freed when they become empty. Teardown and setup is
89 * minimal so we rely on the page allocators per cpu caches for
90 * fast frees and allocs.
91 *
92 * Overloading of page flags that are otherwise used for LRU management.
93 *
94 * PageActive The slab is frozen and exempt from list processing.
95 * This means that the slab is dedicated to a purpose
96 * such as satisfying allocations for a specific
97 * processor. Objects may be freed in the slab while
98 * it is frozen but slab_free will then skip the usual
99 * list operations. It is up to the processor holding
100 * the slab to integrate the slab into the slab lists
101 * when the slab is no longer needed.
102 *
103 * One use of this flag is to mark slabs that are
104 * used for allocations. Then such a slab becomes a cpu
105 * slab. The cpu slab may be equipped with an additional
106 * freelist that allows lockless access to
107 * free objects in addition to the regular freelist
108 * that requires the slab lock.
109 *
110 * PageError Slab requires special handling due to debug
111 * options set. This moves slab handling out of
112 * the fast path and disables lockless freelists.
113 */
114
115 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
116 SLAB_TRACE | SLAB_DEBUG_FREE)
117
118 static inline int kmem_cache_debug(struct kmem_cache *s)
119 {
120 #ifdef CONFIG_SLUB_DEBUG
121 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
122 #else
123 return 0;
124 #endif
125 }
126
127 /*
128 * Issues still to be resolved:
129 *
130 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
131 *
132 * - Variable sizing of the per node arrays
133 */
134
135 /* Enable to test recovery from slab corruption on boot */
136 #undef SLUB_RESILIENCY_TEST
137
138 /* Enable to log cmpxchg failures */
139 #undef SLUB_DEBUG_CMPXCHG
140
141 /*
142 * Mininum number of partial slabs. These will be left on the partial
143 * lists even if they are empty. kmem_cache_shrink may reclaim them.
144 */
145 #define MIN_PARTIAL 5
146
147 /*
148 * Maximum number of desirable partial slabs.
149 * The existence of more partial slabs makes kmem_cache_shrink
150 * sort the partial list by the number of objects in the.
151 */
152 #define MAX_PARTIAL 10
153
154 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
155 SLAB_POISON | SLAB_STORE_USER)
156
157 /*
158 * Debugging flags that require metadata to be stored in the slab. These get
159 * disabled when slub_debug=O is used and a cache's min order increases with
160 * metadata.
161 */
162 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
163
164 /*
165 * Set of flags that will prevent slab merging
166 */
167 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
168 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
169 SLAB_FAILSLAB)
170
171 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
172 SLAB_CACHE_DMA | SLAB_NOTRACK)
173
174 #define OO_SHIFT 16
175 #define OO_MASK ((1 << OO_SHIFT) - 1)
176 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
177
178 /* Internal SLUB flags */
179 #define __OBJECT_POISON 0x80000000UL /* Poison object */
180 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
181
182 static int kmem_size = sizeof(struct kmem_cache);
183
184 #ifdef CONFIG_SMP
185 static struct notifier_block slab_notifier;
186 #endif
187
188 /*
189 * Tracking user of a slab.
190 */
191 #define TRACK_ADDRS_COUNT 16
192 struct track {
193 unsigned long addr; /* Called from address */
194 #ifdef CONFIG_STACKTRACE
195 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
196 #endif
197 int cpu; /* Was running on cpu */
198 int pid; /* Pid context */
199 unsigned long when; /* When did the operation occur */
200 };
201
202 enum track_item { TRACK_ALLOC, TRACK_FREE };
203
204 #ifdef CONFIG_SYSFS
205 static int sysfs_slab_add(struct kmem_cache *);
206 static int sysfs_slab_alias(struct kmem_cache *, const char *);
207 static void sysfs_slab_remove(struct kmem_cache *);
208
209 #else
210 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
211 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
212 { return 0; }
213 static inline void sysfs_slab_remove(struct kmem_cache *s)
214 {
215 kfree(s->name);
216 kfree(s);
217 }
218
219 #endif
220
221 static inline void stat(const struct kmem_cache *s, enum stat_item si)
222 {
223 #ifdef CONFIG_SLUB_STATS
224 __this_cpu_inc(s->cpu_slab->stat[si]);
225 #endif
226 }
227
228 /********************************************************************
229 * Core slab cache functions
230 *******************************************************************/
231
232 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
233 {
234 return s->node[node];
235 }
236
237 /* Verify that a pointer has an address that is valid within a slab page */
238 static inline int check_valid_pointer(struct kmem_cache *s,
239 struct page *page, const void *object)
240 {
241 void *base;
242
243 if (!object)
244 return 1;
245
246 base = page_address(page);
247 if (object < base || object >= base + page->objects * s->size ||
248 (object - base) % s->size) {
249 return 0;
250 }
251
252 return 1;
253 }
254
255 static inline void *get_freepointer(struct kmem_cache *s, void *object)
256 {
257 return *(void **)(object + s->offset);
258 }
259
260 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
261 {
262 prefetch(object + s->offset);
263 }
264
265 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
266 {
267 void *p;
268
269 #ifdef CONFIG_DEBUG_PAGEALLOC
270 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
271 #else
272 p = get_freepointer(s, object);
273 #endif
274 return p;
275 }
276
277 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
278 {
279 *(void **)(object + s->offset) = fp;
280 }
281
282 /* Loop over all objects in a slab */
283 #define for_each_object(__p, __s, __addr, __objects) \
284 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
285 __p += (__s)->size)
286
287 /* Determine object index from a given position */
288 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
289 {
290 return (p - addr) / s->size;
291 }
292
293 static inline size_t slab_ksize(const struct kmem_cache *s)
294 {
295 #ifdef CONFIG_SLUB_DEBUG
296 /*
297 * Debugging requires use of the padding between object
298 * and whatever may come after it.
299 */
300 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
301 return s->object_size;
302
303 #endif
304 /*
305 * If we have the need to store the freelist pointer
306 * back there or track user information then we can
307 * only use the space before that information.
308 */
309 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
310 return s->inuse;
311 /*
312 * Else we can use all the padding etc for the allocation
313 */
314 return s->size;
315 }
316
317 static inline int order_objects(int order, unsigned long size, int reserved)
318 {
319 return ((PAGE_SIZE << order) - reserved) / size;
320 }
321
322 static inline struct kmem_cache_order_objects oo_make(int order,
323 unsigned long size, int reserved)
324 {
325 struct kmem_cache_order_objects x = {
326 (order << OO_SHIFT) + order_objects(order, size, reserved)
327 };
328
329 return x;
330 }
331
332 static inline int oo_order(struct kmem_cache_order_objects x)
333 {
334 return x.x >> OO_SHIFT;
335 }
336
337 static inline int oo_objects(struct kmem_cache_order_objects x)
338 {
339 return x.x & OO_MASK;
340 }
341
342 /*
343 * Per slab locking using the pagelock
344 */
345 static __always_inline void slab_lock(struct page *page)
346 {
347 bit_spin_lock(PG_locked, &page->flags);
348 }
349
350 static __always_inline void slab_unlock(struct page *page)
351 {
352 __bit_spin_unlock(PG_locked, &page->flags);
353 }
354
355 /* Interrupts must be disabled (for the fallback code to work right) */
356 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
357 void *freelist_old, unsigned long counters_old,
358 void *freelist_new, unsigned long counters_new,
359 const char *n)
360 {
361 VM_BUG_ON(!irqs_disabled());
362 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
363 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
364 if (s->flags & __CMPXCHG_DOUBLE) {
365 if (cmpxchg_double(&page->freelist, &page->counters,
366 freelist_old, counters_old,
367 freelist_new, counters_new))
368 return 1;
369 } else
370 #endif
371 {
372 slab_lock(page);
373 if (page->freelist == freelist_old && page->counters == counters_old) {
374 page->freelist = freelist_new;
375 page->counters = counters_new;
376 slab_unlock(page);
377 return 1;
378 }
379 slab_unlock(page);
380 }
381
382 cpu_relax();
383 stat(s, CMPXCHG_DOUBLE_FAIL);
384
385 #ifdef SLUB_DEBUG_CMPXCHG
386 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
387 #endif
388
389 return 0;
390 }
391
392 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
393 void *freelist_old, unsigned long counters_old,
394 void *freelist_new, unsigned long counters_new,
395 const char *n)
396 {
397 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
398 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
399 if (s->flags & __CMPXCHG_DOUBLE) {
400 if (cmpxchg_double(&page->freelist, &page->counters,
401 freelist_old, counters_old,
402 freelist_new, counters_new))
403 return 1;
404 } else
405 #endif
406 {
407 unsigned long flags;
408
409 local_irq_save(flags);
410 slab_lock(page);
411 if (page->freelist == freelist_old && page->counters == counters_old) {
412 page->freelist = freelist_new;
413 page->counters = counters_new;
414 slab_unlock(page);
415 local_irq_restore(flags);
416 return 1;
417 }
418 slab_unlock(page);
419 local_irq_restore(flags);
420 }
421
422 cpu_relax();
423 stat(s, CMPXCHG_DOUBLE_FAIL);
424
425 #ifdef SLUB_DEBUG_CMPXCHG
426 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
427 #endif
428
429 return 0;
430 }
431
432 #ifdef CONFIG_SLUB_DEBUG
433 /*
434 * Determine a map of object in use on a page.
435 *
436 * Node listlock must be held to guarantee that the page does
437 * not vanish from under us.
438 */
439 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
440 {
441 void *p;
442 void *addr = page_address(page);
443
444 for (p = page->freelist; p; p = get_freepointer(s, p))
445 set_bit(slab_index(p, s, addr), map);
446 }
447
448 /*
449 * Debug settings:
450 */
451 #ifdef CONFIG_SLUB_DEBUG_ON
452 static int slub_debug = DEBUG_DEFAULT_FLAGS;
453 #else
454 static int slub_debug;
455 #endif
456
457 static char *slub_debug_slabs;
458 static int disable_higher_order_debug;
459
460 /*
461 * Object debugging
462 */
463 static void print_section(char *text, u8 *addr, unsigned int length)
464 {
465 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
466 length, 1);
467 }
468
469 static struct track *get_track(struct kmem_cache *s, void *object,
470 enum track_item alloc)
471 {
472 struct track *p;
473
474 if (s->offset)
475 p = object + s->offset + sizeof(void *);
476 else
477 p = object + s->inuse;
478
479 return p + alloc;
480 }
481
482 static void set_track(struct kmem_cache *s, void *object,
483 enum track_item alloc, unsigned long addr)
484 {
485 struct track *p = get_track(s, object, alloc);
486
487 if (addr) {
488 #ifdef CONFIG_STACKTRACE
489 struct stack_trace trace;
490 int i;
491
492 trace.nr_entries = 0;
493 trace.max_entries = TRACK_ADDRS_COUNT;
494 trace.entries = p->addrs;
495 trace.skip = 3;
496 save_stack_trace(&trace);
497
498 /* See rant in lockdep.c */
499 if (trace.nr_entries != 0 &&
500 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
501 trace.nr_entries--;
502
503 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
504 p->addrs[i] = 0;
505 #endif
506 p->addr = addr;
507 p->cpu = smp_processor_id();
508 p->pid = current->pid;
509 p->when = jiffies;
510 } else
511 memset(p, 0, sizeof(struct track));
512 }
513
514 static void init_tracking(struct kmem_cache *s, void *object)
515 {
516 if (!(s->flags & SLAB_STORE_USER))
517 return;
518
519 set_track(s, object, TRACK_FREE, 0UL);
520 set_track(s, object, TRACK_ALLOC, 0UL);
521 }
522
523 static void print_track(const char *s, struct track *t)
524 {
525 if (!t->addr)
526 return;
527
528 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
529 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
530 #ifdef CONFIG_STACKTRACE
531 {
532 int i;
533 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
534 if (t->addrs[i])
535 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
536 else
537 break;
538 }
539 #endif
540 }
541
542 static void print_tracking(struct kmem_cache *s, void *object)
543 {
544 if (!(s->flags & SLAB_STORE_USER))
545 return;
546
547 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
548 print_track("Freed", get_track(s, object, TRACK_FREE));
549 }
550
551 static void print_page_info(struct page *page)
552 {
553 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
554 page, page->objects, page->inuse, page->freelist, page->flags);
555
556 }
557
558 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
559 {
560 va_list args;
561 char buf[100];
562
563 va_start(args, fmt);
564 vsnprintf(buf, sizeof(buf), fmt, args);
565 va_end(args);
566 printk(KERN_ERR "========================================"
567 "=====================================\n");
568 printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
569 printk(KERN_ERR "----------------------------------------"
570 "-------------------------------------\n\n");
571
572 add_taint(TAINT_BAD_PAGE);
573 }
574
575 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
576 {
577 va_list args;
578 char buf[100];
579
580 va_start(args, fmt);
581 vsnprintf(buf, sizeof(buf), fmt, args);
582 va_end(args);
583 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
584 }
585
586 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
587 {
588 unsigned int off; /* Offset of last byte */
589 u8 *addr = page_address(page);
590
591 print_tracking(s, p);
592
593 print_page_info(page);
594
595 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
596 p, p - addr, get_freepointer(s, p));
597
598 if (p > addr + 16)
599 print_section("Bytes b4 ", p - 16, 16);
600
601 print_section("Object ", p, min_t(unsigned long, s->object_size,
602 PAGE_SIZE));
603 if (s->flags & SLAB_RED_ZONE)
604 print_section("Redzone ", p + s->object_size,
605 s->inuse - s->object_size);
606
607 if (s->offset)
608 off = s->offset + sizeof(void *);
609 else
610 off = s->inuse;
611
612 if (s->flags & SLAB_STORE_USER)
613 off += 2 * sizeof(struct track);
614
615 if (off != s->size)
616 /* Beginning of the filler is the free pointer */
617 print_section("Padding ", p + off, s->size - off);
618
619 dump_stack();
620 }
621
622 static void object_err(struct kmem_cache *s, struct page *page,
623 u8 *object, char *reason)
624 {
625 slab_bug(s, "%s", reason);
626 print_trailer(s, page, object);
627 }
628
629 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
630 {
631 va_list args;
632 char buf[100];
633
634 va_start(args, fmt);
635 vsnprintf(buf, sizeof(buf), fmt, args);
636 va_end(args);
637 slab_bug(s, "%s", buf);
638 print_page_info(page);
639 dump_stack();
640 }
641
642 static void init_object(struct kmem_cache *s, void *object, u8 val)
643 {
644 u8 *p = object;
645
646 if (s->flags & __OBJECT_POISON) {
647 memset(p, POISON_FREE, s->object_size - 1);
648 p[s->object_size - 1] = POISON_END;
649 }
650
651 if (s->flags & SLAB_RED_ZONE)
652 memset(p + s->object_size, val, s->inuse - s->object_size);
653 }
654
655 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
656 void *from, void *to)
657 {
658 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
659 memset(from, data, to - from);
660 }
661
662 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
663 u8 *object, char *what,
664 u8 *start, unsigned int value, unsigned int bytes)
665 {
666 u8 *fault;
667 u8 *end;
668
669 fault = memchr_inv(start, value, bytes);
670 if (!fault)
671 return 1;
672
673 end = start + bytes;
674 while (end > fault && end[-1] == value)
675 end--;
676
677 slab_bug(s, "%s overwritten", what);
678 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
679 fault, end - 1, fault[0], value);
680 print_trailer(s, page, object);
681
682 restore_bytes(s, what, value, fault, end);
683 return 0;
684 }
685
686 /*
687 * Object layout:
688 *
689 * object address
690 * Bytes of the object to be managed.
691 * If the freepointer may overlay the object then the free
692 * pointer is the first word of the object.
693 *
694 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
695 * 0xa5 (POISON_END)
696 *
697 * object + s->object_size
698 * Padding to reach word boundary. This is also used for Redzoning.
699 * Padding is extended by another word if Redzoning is enabled and
700 * object_size == inuse.
701 *
702 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
703 * 0xcc (RED_ACTIVE) for objects in use.
704 *
705 * object + s->inuse
706 * Meta data starts here.
707 *
708 * A. Free pointer (if we cannot overwrite object on free)
709 * B. Tracking data for SLAB_STORE_USER
710 * C. Padding to reach required alignment boundary or at mininum
711 * one word if debugging is on to be able to detect writes
712 * before the word boundary.
713 *
714 * Padding is done using 0x5a (POISON_INUSE)
715 *
716 * object + s->size
717 * Nothing is used beyond s->size.
718 *
719 * If slabcaches are merged then the object_size and inuse boundaries are mostly
720 * ignored. And therefore no slab options that rely on these boundaries
721 * may be used with merged slabcaches.
722 */
723
724 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
725 {
726 unsigned long off = s->inuse; /* The end of info */
727
728 if (s->offset)
729 /* Freepointer is placed after the object. */
730 off += sizeof(void *);
731
732 if (s->flags & SLAB_STORE_USER)
733 /* We also have user information there */
734 off += 2 * sizeof(struct track);
735
736 if (s->size == off)
737 return 1;
738
739 return check_bytes_and_report(s, page, p, "Object padding",
740 p + off, POISON_INUSE, s->size - off);
741 }
742
743 /* Check the pad bytes at the end of a slab page */
744 static int slab_pad_check(struct kmem_cache *s, struct page *page)
745 {
746 u8 *start;
747 u8 *fault;
748 u8 *end;
749 int length;
750 int remainder;
751
752 if (!(s->flags & SLAB_POISON))
753 return 1;
754
755 start = page_address(page);
756 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
757 end = start + length;
758 remainder = length % s->size;
759 if (!remainder)
760 return 1;
761
762 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
763 if (!fault)
764 return 1;
765 while (end > fault && end[-1] == POISON_INUSE)
766 end--;
767
768 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
769 print_section("Padding ", end - remainder, remainder);
770
771 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
772 return 0;
773 }
774
775 static int check_object(struct kmem_cache *s, struct page *page,
776 void *object, u8 val)
777 {
778 u8 *p = object;
779 u8 *endobject = object + s->object_size;
780
781 if (s->flags & SLAB_RED_ZONE) {
782 if (!check_bytes_and_report(s, page, object, "Redzone",
783 endobject, val, s->inuse - s->object_size))
784 return 0;
785 } else {
786 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
787 check_bytes_and_report(s, page, p, "Alignment padding",
788 endobject, POISON_INUSE, s->inuse - s->object_size);
789 }
790 }
791
792 if (s->flags & SLAB_POISON) {
793 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
794 (!check_bytes_and_report(s, page, p, "Poison", p,
795 POISON_FREE, s->object_size - 1) ||
796 !check_bytes_and_report(s, page, p, "Poison",
797 p + s->object_size - 1, POISON_END, 1)))
798 return 0;
799 /*
800 * check_pad_bytes cleans up on its own.
801 */
802 check_pad_bytes(s, page, p);
803 }
804
805 if (!s->offset && val == SLUB_RED_ACTIVE)
806 /*
807 * Object and freepointer overlap. Cannot check
808 * freepointer while object is allocated.
809 */
810 return 1;
811
812 /* Check free pointer validity */
813 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
814 object_err(s, page, p, "Freepointer corrupt");
815 /*
816 * No choice but to zap it and thus lose the remainder
817 * of the free objects in this slab. May cause
818 * another error because the object count is now wrong.
819 */
820 set_freepointer(s, p, NULL);
821 return 0;
822 }
823 return 1;
824 }
825
826 static int check_slab(struct kmem_cache *s, struct page *page)
827 {
828 int maxobj;
829
830 VM_BUG_ON(!irqs_disabled());
831
832 if (!PageSlab(page)) {
833 slab_err(s, page, "Not a valid slab page");
834 return 0;
835 }
836
837 maxobj = order_objects(compound_order(page), s->size, s->reserved);
838 if (page->objects > maxobj) {
839 slab_err(s, page, "objects %u > max %u",
840 s->name, page->objects, maxobj);
841 return 0;
842 }
843 if (page->inuse > page->objects) {
844 slab_err(s, page, "inuse %u > max %u",
845 s->name, page->inuse, page->objects);
846 return 0;
847 }
848 /* Slab_pad_check fixes things up after itself */
849 slab_pad_check(s, page);
850 return 1;
851 }
852
853 /*
854 * Determine if a certain object on a page is on the freelist. Must hold the
855 * slab lock to guarantee that the chains are in a consistent state.
856 */
857 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
858 {
859 int nr = 0;
860 void *fp;
861 void *object = NULL;
862 unsigned long max_objects;
863
864 fp = page->freelist;
865 while (fp && nr <= page->objects) {
866 if (fp == search)
867 return 1;
868 if (!check_valid_pointer(s, page, fp)) {
869 if (object) {
870 object_err(s, page, object,
871 "Freechain corrupt");
872 set_freepointer(s, object, NULL);
873 break;
874 } else {
875 slab_err(s, page, "Freepointer corrupt");
876 page->freelist = NULL;
877 page->inuse = page->objects;
878 slab_fix(s, "Freelist cleared");
879 return 0;
880 }
881 break;
882 }
883 object = fp;
884 fp = get_freepointer(s, object);
885 nr++;
886 }
887
888 max_objects = order_objects(compound_order(page), s->size, s->reserved);
889 if (max_objects > MAX_OBJS_PER_PAGE)
890 max_objects = MAX_OBJS_PER_PAGE;
891
892 if (page->objects != max_objects) {
893 slab_err(s, page, "Wrong number of objects. Found %d but "
894 "should be %d", page->objects, max_objects);
895 page->objects = max_objects;
896 slab_fix(s, "Number of objects adjusted.");
897 }
898 if (page->inuse != page->objects - nr) {
899 slab_err(s, page, "Wrong object count. Counter is %d but "
900 "counted were %d", page->inuse, page->objects - nr);
901 page->inuse = page->objects - nr;
902 slab_fix(s, "Object count adjusted.");
903 }
904 return search == NULL;
905 }
906
907 static void trace(struct kmem_cache *s, struct page *page, void *object,
908 int alloc)
909 {
910 if (s->flags & SLAB_TRACE) {
911 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
912 s->name,
913 alloc ? "alloc" : "free",
914 object, page->inuse,
915 page->freelist);
916
917 if (!alloc)
918 print_section("Object ", (void *)object, s->object_size);
919
920 dump_stack();
921 }
922 }
923
924 /*
925 * Hooks for other subsystems that check memory allocations. In a typical
926 * production configuration these hooks all should produce no code at all.
927 */
928 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
929 {
930 flags &= gfp_allowed_mask;
931 lockdep_trace_alloc(flags);
932 might_sleep_if(flags & __GFP_WAIT);
933
934 return should_failslab(s->object_size, flags, s->flags);
935 }
936
937 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
938 {
939 flags &= gfp_allowed_mask;
940 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
941 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
942 }
943
944 static inline void slab_free_hook(struct kmem_cache *s, void *x)
945 {
946 kmemleak_free_recursive(x, s->flags);
947
948 /*
949 * Trouble is that we may no longer disable interupts in the fast path
950 * So in order to make the debug calls that expect irqs to be
951 * disabled we need to disable interrupts temporarily.
952 */
953 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
954 {
955 unsigned long flags;
956
957 local_irq_save(flags);
958 kmemcheck_slab_free(s, x, s->object_size);
959 debug_check_no_locks_freed(x, s->object_size);
960 local_irq_restore(flags);
961 }
962 #endif
963 if (!(s->flags & SLAB_DEBUG_OBJECTS))
964 debug_check_no_obj_freed(x, s->object_size);
965 }
966
967 /*
968 * Tracking of fully allocated slabs for debugging purposes.
969 *
970 * list_lock must be held.
971 */
972 static void add_full(struct kmem_cache *s,
973 struct kmem_cache_node *n, struct page *page)
974 {
975 if (!(s->flags & SLAB_STORE_USER))
976 return;
977
978 list_add(&page->lru, &n->full);
979 }
980
981 /*
982 * list_lock must be held.
983 */
984 static void remove_full(struct kmem_cache *s, struct page *page)
985 {
986 if (!(s->flags & SLAB_STORE_USER))
987 return;
988
989 list_del(&page->lru);
990 }
991
992 /* Tracking of the number of slabs for debugging purposes */
993 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
994 {
995 struct kmem_cache_node *n = get_node(s, node);
996
997 return atomic_long_read(&n->nr_slabs);
998 }
999
1000 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1001 {
1002 return atomic_long_read(&n->nr_slabs);
1003 }
1004
1005 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1006 {
1007 struct kmem_cache_node *n = get_node(s, node);
1008
1009 /*
1010 * May be called early in order to allocate a slab for the
1011 * kmem_cache_node structure. Solve the chicken-egg
1012 * dilemma by deferring the increment of the count during
1013 * bootstrap (see early_kmem_cache_node_alloc).
1014 */
1015 if (n) {
1016 atomic_long_inc(&n->nr_slabs);
1017 atomic_long_add(objects, &n->total_objects);
1018 }
1019 }
1020 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1021 {
1022 struct kmem_cache_node *n = get_node(s, node);
1023
1024 atomic_long_dec(&n->nr_slabs);
1025 atomic_long_sub(objects, &n->total_objects);
1026 }
1027
1028 /* Object debug checks for alloc/free paths */
1029 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1030 void *object)
1031 {
1032 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1033 return;
1034
1035 init_object(s, object, SLUB_RED_INACTIVE);
1036 init_tracking(s, object);
1037 }
1038
1039 static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
1040 void *object, unsigned long addr)
1041 {
1042 if (!check_slab(s, page))
1043 goto bad;
1044
1045 if (!check_valid_pointer(s, page, object)) {
1046 object_err(s, page, object, "Freelist Pointer check fails");
1047 goto bad;
1048 }
1049
1050 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1051 goto bad;
1052
1053 /* Success perform special debug activities for allocs */
1054 if (s->flags & SLAB_STORE_USER)
1055 set_track(s, object, TRACK_ALLOC, addr);
1056 trace(s, page, object, 1);
1057 init_object(s, object, SLUB_RED_ACTIVE);
1058 return 1;
1059
1060 bad:
1061 if (PageSlab(page)) {
1062 /*
1063 * If this is a slab page then lets do the best we can
1064 * to avoid issues in the future. Marking all objects
1065 * as used avoids touching the remaining objects.
1066 */
1067 slab_fix(s, "Marking all objects used");
1068 page->inuse = page->objects;
1069 page->freelist = NULL;
1070 }
1071 return 0;
1072 }
1073
1074 static noinline struct kmem_cache_node *free_debug_processing(
1075 struct kmem_cache *s, struct page *page, void *object,
1076 unsigned long addr, unsigned long *flags)
1077 {
1078 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1079
1080 spin_lock_irqsave(&n->list_lock, *flags);
1081 slab_lock(page);
1082
1083 if (!check_slab(s, page))
1084 goto fail;
1085
1086 if (!check_valid_pointer(s, page, object)) {
1087 slab_err(s, page, "Invalid object pointer 0x%p", object);
1088 goto fail;
1089 }
1090
1091 if (on_freelist(s, page, object)) {
1092 object_err(s, page, object, "Object already free");
1093 goto fail;
1094 }
1095
1096 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1097 goto out;
1098
1099 if (unlikely(s != page->slab)) {
1100 if (!PageSlab(page)) {
1101 slab_err(s, page, "Attempt to free object(0x%p) "
1102 "outside of slab", object);
1103 } else if (!page->slab) {
1104 printk(KERN_ERR
1105 "SLUB <none>: no slab for object 0x%p.\n",
1106 object);
1107 dump_stack();
1108 } else
1109 object_err(s, page, object,
1110 "page slab pointer corrupt.");
1111 goto fail;
1112 }
1113
1114 if (s->flags & SLAB_STORE_USER)
1115 set_track(s, object, TRACK_FREE, addr);
1116 trace(s, page, object, 0);
1117 init_object(s, object, SLUB_RED_INACTIVE);
1118 out:
1119 slab_unlock(page);
1120 /*
1121 * Keep node_lock to preserve integrity
1122 * until the object is actually freed
1123 */
1124 return n;
1125
1126 fail:
1127 slab_unlock(page);
1128 spin_unlock_irqrestore(&n->list_lock, *flags);
1129 slab_fix(s, "Object at 0x%p not freed", object);
1130 return NULL;
1131 }
1132
1133 static int __init setup_slub_debug(char *str)
1134 {
1135 slub_debug = DEBUG_DEFAULT_FLAGS;
1136 if (*str++ != '=' || !*str)
1137 /*
1138 * No options specified. Switch on full debugging.
1139 */
1140 goto out;
1141
1142 if (*str == ',')
1143 /*
1144 * No options but restriction on slabs. This means full
1145 * debugging for slabs matching a pattern.
1146 */
1147 goto check_slabs;
1148
1149 if (tolower(*str) == 'o') {
1150 /*
1151 * Avoid enabling debugging on caches if its minimum order
1152 * would increase as a result.
1153 */
1154 disable_higher_order_debug = 1;
1155 goto out;
1156 }
1157
1158 slub_debug = 0;
1159 if (*str == '-')
1160 /*
1161 * Switch off all debugging measures.
1162 */
1163 goto out;
1164
1165 /*
1166 * Determine which debug features should be switched on
1167 */
1168 for (; *str && *str != ','; str++) {
1169 switch (tolower(*str)) {
1170 case 'f':
1171 slub_debug |= SLAB_DEBUG_FREE;
1172 break;
1173 case 'z':
1174 slub_debug |= SLAB_RED_ZONE;
1175 break;
1176 case 'p':
1177 slub_debug |= SLAB_POISON;
1178 break;
1179 case 'u':
1180 slub_debug |= SLAB_STORE_USER;
1181 break;
1182 case 't':
1183 slub_debug |= SLAB_TRACE;
1184 break;
1185 case 'a':
1186 slub_debug |= SLAB_FAILSLAB;
1187 break;
1188 default:
1189 printk(KERN_ERR "slub_debug option '%c' "
1190 "unknown. skipped\n", *str);
1191 }
1192 }
1193
1194 check_slabs:
1195 if (*str == ',')
1196 slub_debug_slabs = str + 1;
1197 out:
1198 return 1;
1199 }
1200
1201 __setup("slub_debug", setup_slub_debug);
1202
1203 static unsigned long kmem_cache_flags(unsigned long object_size,
1204 unsigned long flags, const char *name,
1205 void (*ctor)(void *))
1206 {
1207 /*
1208 * Enable debugging if selected on the kernel commandline.
1209 */
1210 if (slub_debug && (!slub_debug_slabs ||
1211 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1212 flags |= slub_debug;
1213
1214 return flags;
1215 }
1216 #else
1217 static inline void setup_object_debug(struct kmem_cache *s,
1218 struct page *page, void *object) {}
1219
1220 static inline int alloc_debug_processing(struct kmem_cache *s,
1221 struct page *page, void *object, unsigned long addr) { return 0; }
1222
1223 static inline struct kmem_cache_node *free_debug_processing(
1224 struct kmem_cache *s, struct page *page, void *object,
1225 unsigned long addr, unsigned long *flags) { return NULL; }
1226
1227 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1228 { return 1; }
1229 static inline int check_object(struct kmem_cache *s, struct page *page,
1230 void *object, u8 val) { return 1; }
1231 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1232 struct page *page) {}
1233 static inline void remove_full(struct kmem_cache *s, struct page *page) {}
1234 static inline unsigned long kmem_cache_flags(unsigned long object_size,
1235 unsigned long flags, const char *name,
1236 void (*ctor)(void *))
1237 {
1238 return flags;
1239 }
1240 #define slub_debug 0
1241
1242 #define disable_higher_order_debug 0
1243
1244 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1245 { return 0; }
1246 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1247 { return 0; }
1248 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1249 int objects) {}
1250 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1251 int objects) {}
1252
1253 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1254 { return 0; }
1255
1256 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1257 void *object) {}
1258
1259 static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1260
1261 #endif /* CONFIG_SLUB_DEBUG */
1262
1263 /*
1264 * Slab allocation and freeing
1265 */
1266 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1267 struct kmem_cache_order_objects oo)
1268 {
1269 int order = oo_order(oo);
1270
1271 flags |= __GFP_NOTRACK;
1272
1273 if (node == NUMA_NO_NODE)
1274 return alloc_pages(flags, order);
1275 else
1276 return alloc_pages_exact_node(node, flags, order);
1277 }
1278
1279 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1280 {
1281 struct page *page;
1282 struct kmem_cache_order_objects oo = s->oo;
1283 gfp_t alloc_gfp;
1284
1285 flags &= gfp_allowed_mask;
1286
1287 if (flags & __GFP_WAIT)
1288 local_irq_enable();
1289
1290 flags |= s->allocflags;
1291
1292 /*
1293 * Let the initial higher-order allocation fail under memory pressure
1294 * so we fall-back to the minimum order allocation.
1295 */
1296 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1297
1298 page = alloc_slab_page(alloc_gfp, node, oo);
1299 if (unlikely(!page)) {
1300 oo = s->min;
1301 /*
1302 * Allocation may have failed due to fragmentation.
1303 * Try a lower order alloc if possible
1304 */
1305 page = alloc_slab_page(flags, node, oo);
1306
1307 if (page)
1308 stat(s, ORDER_FALLBACK);
1309 }
1310
1311 if (kmemcheck_enabled && page
1312 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1313 int pages = 1 << oo_order(oo);
1314
1315 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1316
1317 /*
1318 * Objects from caches that have a constructor don't get
1319 * cleared when they're allocated, so we need to do it here.
1320 */
1321 if (s->ctor)
1322 kmemcheck_mark_uninitialized_pages(page, pages);
1323 else
1324 kmemcheck_mark_unallocated_pages(page, pages);
1325 }
1326
1327 if (flags & __GFP_WAIT)
1328 local_irq_disable();
1329 if (!page)
1330 return NULL;
1331
1332 page->objects = oo_objects(oo);
1333 mod_zone_page_state(page_zone(page),
1334 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1335 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1336 1 << oo_order(oo));
1337
1338 return page;
1339 }
1340
1341 static void setup_object(struct kmem_cache *s, struct page *page,
1342 void *object)
1343 {
1344 setup_object_debug(s, page, object);
1345 if (unlikely(s->ctor))
1346 s->ctor(object);
1347 }
1348
1349 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1350 {
1351 struct page *page;
1352 void *start;
1353 void *last;
1354 void *p;
1355
1356 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1357
1358 page = allocate_slab(s,
1359 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1360 if (!page)
1361 goto out;
1362
1363 inc_slabs_node(s, page_to_nid(page), page->objects);
1364 page->slab = s;
1365 __SetPageSlab(page);
1366 if (page->pfmemalloc)
1367 SetPageSlabPfmemalloc(page);
1368
1369 start = page_address(page);
1370
1371 if (unlikely(s->flags & SLAB_POISON))
1372 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1373
1374 last = start;
1375 for_each_object(p, s, start, page->objects) {
1376 setup_object(s, page, last);
1377 set_freepointer(s, last, p);
1378 last = p;
1379 }
1380 setup_object(s, page, last);
1381 set_freepointer(s, last, NULL);
1382
1383 page->freelist = start;
1384 page->inuse = page->objects;
1385 page->frozen = 1;
1386 out:
1387 return page;
1388 }
1389
1390 static void __free_slab(struct kmem_cache *s, struct page *page)
1391 {
1392 int order = compound_order(page);
1393 int pages = 1 << order;
1394
1395 if (kmem_cache_debug(s)) {
1396 void *p;
1397
1398 slab_pad_check(s, page);
1399 for_each_object(p, s, page_address(page),
1400 page->objects)
1401 check_object(s, page, p, SLUB_RED_INACTIVE);
1402 }
1403
1404 kmemcheck_free_shadow(page, compound_order(page));
1405
1406 mod_zone_page_state(page_zone(page),
1407 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1408 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1409 -pages);
1410
1411 __ClearPageSlabPfmemalloc(page);
1412 __ClearPageSlab(page);
1413 reset_page_mapcount(page);
1414 if (current->reclaim_state)
1415 current->reclaim_state->reclaimed_slab += pages;
1416 __free_pages(page, order);
1417 }
1418
1419 #define need_reserve_slab_rcu \
1420 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1421
1422 static void rcu_free_slab(struct rcu_head *h)
1423 {
1424 struct page *page;
1425
1426 if (need_reserve_slab_rcu)
1427 page = virt_to_head_page(h);
1428 else
1429 page = container_of((struct list_head *)h, struct page, lru);
1430
1431 __free_slab(page->slab, page);
1432 }
1433
1434 static void free_slab(struct kmem_cache *s, struct page *page)
1435 {
1436 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1437 struct rcu_head *head;
1438
1439 if (need_reserve_slab_rcu) {
1440 int order = compound_order(page);
1441 int offset = (PAGE_SIZE << order) - s->reserved;
1442
1443 VM_BUG_ON(s->reserved != sizeof(*head));
1444 head = page_address(page) + offset;
1445 } else {
1446 /*
1447 * RCU free overloads the RCU head over the LRU
1448 */
1449 head = (void *)&page->lru;
1450 }
1451
1452 call_rcu(head, rcu_free_slab);
1453 } else
1454 __free_slab(s, page);
1455 }
1456
1457 static void discard_slab(struct kmem_cache *s, struct page *page)
1458 {
1459 dec_slabs_node(s, page_to_nid(page), page->objects);
1460 free_slab(s, page);
1461 }
1462
1463 /*
1464 * Management of partially allocated slabs.
1465 *
1466 * list_lock must be held.
1467 */
1468 static inline void add_partial(struct kmem_cache_node *n,
1469 struct page *page, int tail)
1470 {
1471 n->nr_partial++;
1472 if (tail == DEACTIVATE_TO_TAIL)
1473 list_add_tail(&page->lru, &n->partial);
1474 else
1475 list_add(&page->lru, &n->partial);
1476 }
1477
1478 /*
1479 * list_lock must be held.
1480 */
1481 static inline void remove_partial(struct kmem_cache_node *n,
1482 struct page *page)
1483 {
1484 list_del(&page->lru);
1485 n->nr_partial--;
1486 }
1487
1488 /*
1489 * Remove slab from the partial list, freeze it and
1490 * return the pointer to the freelist.
1491 *
1492 * Returns a list of objects or NULL if it fails.
1493 *
1494 * Must hold list_lock since we modify the partial list.
1495 */
1496 static inline void *acquire_slab(struct kmem_cache *s,
1497 struct kmem_cache_node *n, struct page *page,
1498 int mode)
1499 {
1500 void *freelist;
1501 unsigned long counters;
1502 struct page new;
1503
1504 /*
1505 * Zap the freelist and set the frozen bit.
1506 * The old freelist is the list of objects for the
1507 * per cpu allocation list.
1508 */
1509 freelist = page->freelist;
1510 counters = page->counters;
1511 new.counters = counters;
1512 if (mode) {
1513 new.inuse = page->objects;
1514 new.freelist = NULL;
1515 } else {
1516 new.freelist = freelist;
1517 }
1518
1519 VM_BUG_ON(new.frozen);
1520 new.frozen = 1;
1521
1522 if (!__cmpxchg_double_slab(s, page,
1523 freelist, counters,
1524 new.freelist, new.counters,
1525 "acquire_slab"))
1526 return NULL;
1527
1528 remove_partial(n, page);
1529 WARN_ON(!freelist);
1530 return freelist;
1531 }
1532
1533 static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1534
1535 /*
1536 * Try to allocate a partial slab from a specific node.
1537 */
1538 static void *get_partial_node(struct kmem_cache *s,
1539 struct kmem_cache_node *n, struct kmem_cache_cpu *c)
1540 {
1541 struct page *page, *page2;
1542 void *object = NULL;
1543
1544 /*
1545 * Racy check. If we mistakenly see no partial slabs then we
1546 * just allocate an empty slab. If we mistakenly try to get a
1547 * partial slab and there is none available then get_partials()
1548 * will return NULL.
1549 */
1550 if (!n || !n->nr_partial)
1551 return NULL;
1552
1553 spin_lock(&n->list_lock);
1554 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1555 void *t = acquire_slab(s, n, page, object == NULL);
1556 int available;
1557
1558 if (!t)
1559 break;
1560
1561 if (!object) {
1562 c->page = page;
1563 stat(s, ALLOC_FROM_PARTIAL);
1564 object = t;
1565 available = page->objects - page->inuse;
1566 } else {
1567 available = put_cpu_partial(s, page, 0);
1568 stat(s, CPU_PARTIAL_NODE);
1569 }
1570 if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
1571 break;
1572
1573 }
1574 spin_unlock(&n->list_lock);
1575 return object;
1576 }
1577
1578 /*
1579 * Get a page from somewhere. Search in increasing NUMA distances.
1580 */
1581 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1582 struct kmem_cache_cpu *c)
1583 {
1584 #ifdef CONFIG_NUMA
1585 struct zonelist *zonelist;
1586 struct zoneref *z;
1587 struct zone *zone;
1588 enum zone_type high_zoneidx = gfp_zone(flags);
1589 void *object;
1590 unsigned int cpuset_mems_cookie;
1591
1592 /*
1593 * The defrag ratio allows a configuration of the tradeoffs between
1594 * inter node defragmentation and node local allocations. A lower
1595 * defrag_ratio increases the tendency to do local allocations
1596 * instead of attempting to obtain partial slabs from other nodes.
1597 *
1598 * If the defrag_ratio is set to 0 then kmalloc() always
1599 * returns node local objects. If the ratio is higher then kmalloc()
1600 * may return off node objects because partial slabs are obtained
1601 * from other nodes and filled up.
1602 *
1603 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1604 * defrag_ratio = 1000) then every (well almost) allocation will
1605 * first attempt to defrag slab caches on other nodes. This means
1606 * scanning over all nodes to look for partial slabs which may be
1607 * expensive if we do it every time we are trying to find a slab
1608 * with available objects.
1609 */
1610 if (!s->remote_node_defrag_ratio ||
1611 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1612 return NULL;
1613
1614 do {
1615 cpuset_mems_cookie = get_mems_allowed();
1616 zonelist = node_zonelist(slab_node(), flags);
1617 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1618 struct kmem_cache_node *n;
1619
1620 n = get_node(s, zone_to_nid(zone));
1621
1622 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1623 n->nr_partial > s->min_partial) {
1624 object = get_partial_node(s, n, c);
1625 if (object) {
1626 /*
1627 * Return the object even if
1628 * put_mems_allowed indicated that
1629 * the cpuset mems_allowed was
1630 * updated in parallel. It's a
1631 * harmless race between the alloc
1632 * and the cpuset update.
1633 */
1634 put_mems_allowed(cpuset_mems_cookie);
1635 return object;
1636 }
1637 }
1638 }
1639 } while (!put_mems_allowed(cpuset_mems_cookie));
1640 #endif
1641 return NULL;
1642 }
1643
1644 /*
1645 * Get a partial page, lock it and return it.
1646 */
1647 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1648 struct kmem_cache_cpu *c)
1649 {
1650 void *object;
1651 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1652
1653 object = get_partial_node(s, get_node(s, searchnode), c);
1654 if (object || node != NUMA_NO_NODE)
1655 return object;
1656
1657 return get_any_partial(s, flags, c);
1658 }
1659
1660 #ifdef CONFIG_PREEMPT
1661 /*
1662 * Calculate the next globally unique transaction for disambiguiation
1663 * during cmpxchg. The transactions start with the cpu number and are then
1664 * incremented by CONFIG_NR_CPUS.
1665 */
1666 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1667 #else
1668 /*
1669 * No preemption supported therefore also no need to check for
1670 * different cpus.
1671 */
1672 #define TID_STEP 1
1673 #endif
1674
1675 static inline unsigned long next_tid(unsigned long tid)
1676 {
1677 return tid + TID_STEP;
1678 }
1679
1680 static inline unsigned int tid_to_cpu(unsigned long tid)
1681 {
1682 return tid % TID_STEP;
1683 }
1684
1685 static inline unsigned long tid_to_event(unsigned long tid)
1686 {
1687 return tid / TID_STEP;
1688 }
1689
1690 static inline unsigned int init_tid(int cpu)
1691 {
1692 return cpu;
1693 }
1694
1695 static inline void note_cmpxchg_failure(const char *n,
1696 const struct kmem_cache *s, unsigned long tid)
1697 {
1698 #ifdef SLUB_DEBUG_CMPXCHG
1699 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1700
1701 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1702
1703 #ifdef CONFIG_PREEMPT
1704 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1705 printk("due to cpu change %d -> %d\n",
1706 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1707 else
1708 #endif
1709 if (tid_to_event(tid) != tid_to_event(actual_tid))
1710 printk("due to cpu running other code. Event %ld->%ld\n",
1711 tid_to_event(tid), tid_to_event(actual_tid));
1712 else
1713 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1714 actual_tid, tid, next_tid(tid));
1715 #endif
1716 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1717 }
1718
1719 static void init_kmem_cache_cpus(struct kmem_cache *s)
1720 {
1721 int cpu;
1722
1723 for_each_possible_cpu(cpu)
1724 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1725 }
1726
1727 /*
1728 * Remove the cpu slab
1729 */
1730 static void deactivate_slab(struct kmem_cache *s, struct page *page, void *freelist)
1731 {
1732 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1733 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1734 int lock = 0;
1735 enum slab_modes l = M_NONE, m = M_NONE;
1736 void *nextfree;
1737 int tail = DEACTIVATE_TO_HEAD;
1738 struct page new;
1739 struct page old;
1740
1741 if (page->freelist) {
1742 stat(s, DEACTIVATE_REMOTE_FREES);
1743 tail = DEACTIVATE_TO_TAIL;
1744 }
1745
1746 /*
1747 * Stage one: Free all available per cpu objects back
1748 * to the page freelist while it is still frozen. Leave the
1749 * last one.
1750 *
1751 * There is no need to take the list->lock because the page
1752 * is still frozen.
1753 */
1754 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1755 void *prior;
1756 unsigned long counters;
1757
1758 do {
1759 prior = page->freelist;
1760 counters = page->counters;
1761 set_freepointer(s, freelist, prior);
1762 new.counters = counters;
1763 new.inuse--;
1764 VM_BUG_ON(!new.frozen);
1765
1766 } while (!__cmpxchg_double_slab(s, page,
1767 prior, counters,
1768 freelist, new.counters,
1769 "drain percpu freelist"));
1770
1771 freelist = nextfree;
1772 }
1773
1774 /*
1775 * Stage two: Ensure that the page is unfrozen while the
1776 * list presence reflects the actual number of objects
1777 * during unfreeze.
1778 *
1779 * We setup the list membership and then perform a cmpxchg
1780 * with the count. If there is a mismatch then the page
1781 * is not unfrozen but the page is on the wrong list.
1782 *
1783 * Then we restart the process which may have to remove
1784 * the page from the list that we just put it on again
1785 * because the number of objects in the slab may have
1786 * changed.
1787 */
1788 redo:
1789
1790 old.freelist = page->freelist;
1791 old.counters = page->counters;
1792 VM_BUG_ON(!old.frozen);
1793
1794 /* Determine target state of the slab */
1795 new.counters = old.counters;
1796 if (freelist) {
1797 new.inuse--;
1798 set_freepointer(s, freelist, old.freelist);
1799 new.freelist = freelist;
1800 } else
1801 new.freelist = old.freelist;
1802
1803 new.frozen = 0;
1804
1805 if (!new.inuse && n->nr_partial > s->min_partial)
1806 m = M_FREE;
1807 else if (new.freelist) {
1808 m = M_PARTIAL;
1809 if (!lock) {
1810 lock = 1;
1811 /*
1812 * Taking the spinlock removes the possiblity
1813 * that acquire_slab() will see a slab page that
1814 * is frozen
1815 */
1816 spin_lock(&n->list_lock);
1817 }
1818 } else {
1819 m = M_FULL;
1820 if (kmem_cache_debug(s) && !lock) {
1821 lock = 1;
1822 /*
1823 * This also ensures that the scanning of full
1824 * slabs from diagnostic functions will not see
1825 * any frozen slabs.
1826 */
1827 spin_lock(&n->list_lock);
1828 }
1829 }
1830
1831 if (l != m) {
1832
1833 if (l == M_PARTIAL)
1834
1835 remove_partial(n, page);
1836
1837 else if (l == M_FULL)
1838
1839 remove_full(s, page);
1840
1841 if (m == M_PARTIAL) {
1842
1843 add_partial(n, page, tail);
1844 stat(s, tail);
1845
1846 } else if (m == M_FULL) {
1847
1848 stat(s, DEACTIVATE_FULL);
1849 add_full(s, n, page);
1850
1851 }
1852 }
1853
1854 l = m;
1855 if (!__cmpxchg_double_slab(s, page,
1856 old.freelist, old.counters,
1857 new.freelist, new.counters,
1858 "unfreezing slab"))
1859 goto redo;
1860
1861 if (lock)
1862 spin_unlock(&n->list_lock);
1863
1864 if (m == M_FREE) {
1865 stat(s, DEACTIVATE_EMPTY);
1866 discard_slab(s, page);
1867 stat(s, FREE_SLAB);
1868 }
1869 }
1870
1871 /*
1872 * Unfreeze all the cpu partial slabs.
1873 *
1874 * This function must be called with interrupt disabled.
1875 */
1876 static void unfreeze_partials(struct kmem_cache *s)
1877 {
1878 struct kmem_cache_node *n = NULL, *n2 = NULL;
1879 struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
1880 struct page *page, *discard_page = NULL;
1881
1882 while ((page = c->partial)) {
1883 struct page new;
1884 struct page old;
1885
1886 c->partial = page->next;
1887
1888 n2 = get_node(s, page_to_nid(page));
1889 if (n != n2) {
1890 if (n)
1891 spin_unlock(&n->list_lock);
1892
1893 n = n2;
1894 spin_lock(&n->list_lock);
1895 }
1896
1897 do {
1898
1899 old.freelist = page->freelist;
1900 old.counters = page->counters;
1901 VM_BUG_ON(!old.frozen);
1902
1903 new.counters = old.counters;
1904 new.freelist = old.freelist;
1905
1906 new.frozen = 0;
1907
1908 } while (!__cmpxchg_double_slab(s, page,
1909 old.freelist, old.counters,
1910 new.freelist, new.counters,
1911 "unfreezing slab"));
1912
1913 if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
1914 page->next = discard_page;
1915 discard_page = page;
1916 } else {
1917 add_partial(n, page, DEACTIVATE_TO_TAIL);
1918 stat(s, FREE_ADD_PARTIAL);
1919 }
1920 }
1921
1922 if (n)
1923 spin_unlock(&n->list_lock);
1924
1925 while (discard_page) {
1926 page = discard_page;
1927 discard_page = discard_page->next;
1928
1929 stat(s, DEACTIVATE_EMPTY);
1930 discard_slab(s, page);
1931 stat(s, FREE_SLAB);
1932 }
1933 }
1934
1935 /*
1936 * Put a page that was just frozen (in __slab_free) into a partial page
1937 * slot if available. This is done without interrupts disabled and without
1938 * preemption disabled. The cmpxchg is racy and may put the partial page
1939 * onto a random cpus partial slot.
1940 *
1941 * If we did not find a slot then simply move all the partials to the
1942 * per node partial list.
1943 */
1944 static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
1945 {
1946 struct page *oldpage;
1947 int pages;
1948 int pobjects;
1949
1950 do {
1951 pages = 0;
1952 pobjects = 0;
1953 oldpage = this_cpu_read(s->cpu_slab->partial);
1954
1955 if (oldpage) {
1956 pobjects = oldpage->pobjects;
1957 pages = oldpage->pages;
1958 if (drain && pobjects > s->cpu_partial) {
1959 unsigned long flags;
1960 /*
1961 * partial array is full. Move the existing
1962 * set to the per node partial list.
1963 */
1964 local_irq_save(flags);
1965 unfreeze_partials(s);
1966 local_irq_restore(flags);
1967 oldpage = NULL;
1968 pobjects = 0;
1969 pages = 0;
1970 stat(s, CPU_PARTIAL_DRAIN);
1971 }
1972 }
1973
1974 pages++;
1975 pobjects += page->objects - page->inuse;
1976
1977 page->pages = pages;
1978 page->pobjects = pobjects;
1979 page->next = oldpage;
1980
1981 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
1982 return pobjects;
1983 }
1984
1985 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1986 {
1987 stat(s, CPUSLAB_FLUSH);
1988 deactivate_slab(s, c->page, c->freelist);
1989
1990 c->tid = next_tid(c->tid);
1991 c->page = NULL;
1992 c->freelist = NULL;
1993 }
1994
1995 /*
1996 * Flush cpu slab.
1997 *
1998 * Called from IPI handler with interrupts disabled.
1999 */
2000 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2001 {
2002 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2003
2004 if (likely(c)) {
2005 if (c->page)
2006 flush_slab(s, c);
2007
2008 unfreeze_partials(s);
2009 }
2010 }
2011
2012 static void flush_cpu_slab(void *d)
2013 {
2014 struct kmem_cache *s = d;
2015
2016 __flush_cpu_slab(s, smp_processor_id());
2017 }
2018
2019 static bool has_cpu_slab(int cpu, void *info)
2020 {
2021 struct kmem_cache *s = info;
2022 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2023
2024 return c->page || c->partial;
2025 }
2026
2027 static void flush_all(struct kmem_cache *s)
2028 {
2029 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2030 }
2031
2032 /*
2033 * Check if the objects in a per cpu structure fit numa
2034 * locality expectations.
2035 */
2036 static inline int node_match(struct page *page, int node)
2037 {
2038 #ifdef CONFIG_NUMA
2039 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2040 return 0;
2041 #endif
2042 return 1;
2043 }
2044
2045 static int count_free(struct page *page)
2046 {
2047 return page->objects - page->inuse;
2048 }
2049
2050 static unsigned long count_partial(struct kmem_cache_node *n,
2051 int (*get_count)(struct page *))
2052 {
2053 unsigned long flags;
2054 unsigned long x = 0;
2055 struct page *page;
2056
2057 spin_lock_irqsave(&n->list_lock, flags);
2058 list_for_each_entry(page, &n->partial, lru)
2059 x += get_count(page);
2060 spin_unlock_irqrestore(&n->list_lock, flags);
2061 return x;
2062 }
2063
2064 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2065 {
2066 #ifdef CONFIG_SLUB_DEBUG
2067 return atomic_long_read(&n->total_objects);
2068 #else
2069 return 0;
2070 #endif
2071 }
2072
2073 static noinline void
2074 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2075 {
2076 int node;
2077
2078 printk(KERN_WARNING
2079 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2080 nid, gfpflags);
2081 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
2082 "default order: %d, min order: %d\n", s->name, s->object_size,
2083 s->size, oo_order(s->oo), oo_order(s->min));
2084
2085 if (oo_order(s->min) > get_order(s->object_size))
2086 printk(KERN_WARNING " %s debugging increased min order, use "
2087 "slub_debug=O to disable.\n", s->name);
2088
2089 for_each_online_node(node) {
2090 struct kmem_cache_node *n = get_node(s, node);
2091 unsigned long nr_slabs;
2092 unsigned long nr_objs;
2093 unsigned long nr_free;
2094
2095 if (!n)
2096 continue;
2097
2098 nr_free = count_partial(n, count_free);
2099 nr_slabs = node_nr_slabs(n);
2100 nr_objs = node_nr_objs(n);
2101
2102 printk(KERN_WARNING
2103 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2104 node, nr_slabs, nr_objs, nr_free);
2105 }
2106 }
2107
2108 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2109 int node, struct kmem_cache_cpu **pc)
2110 {
2111 void *freelist;
2112 struct kmem_cache_cpu *c = *pc;
2113 struct page *page;
2114
2115 freelist = get_partial(s, flags, node, c);
2116
2117 if (freelist)
2118 return freelist;
2119
2120 page = new_slab(s, flags, node);
2121 if (page) {
2122 c = __this_cpu_ptr(s->cpu_slab);
2123 if (c->page)
2124 flush_slab(s, c);
2125
2126 /*
2127 * No other reference to the page yet so we can
2128 * muck around with it freely without cmpxchg
2129 */
2130 freelist = page->freelist;
2131 page->freelist = NULL;
2132
2133 stat(s, ALLOC_SLAB);
2134 c->page = page;
2135 *pc = c;
2136 } else
2137 freelist = NULL;
2138
2139 return freelist;
2140 }
2141
2142 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2143 {
2144 if (unlikely(PageSlabPfmemalloc(page)))
2145 return gfp_pfmemalloc_allowed(gfpflags);
2146
2147 return true;
2148 }
2149
2150 /*
2151 * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
2152 * or deactivate the page.
2153 *
2154 * The page is still frozen if the return value is not NULL.
2155 *
2156 * If this function returns NULL then the page has been unfrozen.
2157 *
2158 * This function must be called with interrupt disabled.
2159 */
2160 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2161 {
2162 struct page new;
2163 unsigned long counters;
2164 void *freelist;
2165
2166 do {
2167 freelist = page->freelist;
2168 counters = page->counters;
2169
2170 new.counters = counters;
2171 VM_BUG_ON(!new.frozen);
2172
2173 new.inuse = page->objects;
2174 new.frozen = freelist != NULL;
2175
2176 } while (!__cmpxchg_double_slab(s, page,
2177 freelist, counters,
2178 NULL, new.counters,
2179 "get_freelist"));
2180
2181 return freelist;
2182 }
2183
2184 /*
2185 * Slow path. The lockless freelist is empty or we need to perform
2186 * debugging duties.
2187 *
2188 * Processing is still very fast if new objects have been freed to the
2189 * regular freelist. In that case we simply take over the regular freelist
2190 * as the lockless freelist and zap the regular freelist.
2191 *
2192 * If that is not working then we fall back to the partial lists. We take the
2193 * first element of the freelist as the object to allocate now and move the
2194 * rest of the freelist to the lockless freelist.
2195 *
2196 * And if we were unable to get a new slab from the partial slab lists then
2197 * we need to allocate a new slab. This is the slowest path since it involves
2198 * a call to the page allocator and the setup of a new slab.
2199 */
2200 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2201 unsigned long addr, struct kmem_cache_cpu *c)
2202 {
2203 void *freelist;
2204 struct page *page;
2205 unsigned long flags;
2206
2207 local_irq_save(flags);
2208 #ifdef CONFIG_PREEMPT
2209 /*
2210 * We may have been preempted and rescheduled on a different
2211 * cpu before disabling interrupts. Need to reload cpu area
2212 * pointer.
2213 */
2214 c = this_cpu_ptr(s->cpu_slab);
2215 #endif
2216
2217 page = c->page;
2218 if (!page)
2219 goto new_slab;
2220 redo:
2221
2222 if (unlikely(!node_match(page, node))) {
2223 stat(s, ALLOC_NODE_MISMATCH);
2224 deactivate_slab(s, page, c->freelist);
2225 c->page = NULL;
2226 c->freelist = NULL;
2227 goto new_slab;
2228 }
2229
2230 /*
2231 * By rights, we should be searching for a slab page that was
2232 * PFMEMALLOC but right now, we are losing the pfmemalloc
2233 * information when the page leaves the per-cpu allocator
2234 */
2235 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2236 deactivate_slab(s, page, c->freelist);
2237 c->page = NULL;
2238 c->freelist = NULL;
2239 goto new_slab;
2240 }
2241
2242 /* must check again c->freelist in case of cpu migration or IRQ */
2243 freelist = c->freelist;
2244 if (freelist)
2245 goto load_freelist;
2246
2247 stat(s, ALLOC_SLOWPATH);
2248
2249 freelist = get_freelist(s, page);
2250
2251 if (!freelist) {
2252 c->page = NULL;
2253 stat(s, DEACTIVATE_BYPASS);
2254 goto new_slab;
2255 }
2256
2257 stat(s, ALLOC_REFILL);
2258
2259 load_freelist:
2260 /*
2261 * freelist is pointing to the list of objects to be used.
2262 * page is pointing to the page from which the objects are obtained.
2263 * That page must be frozen for per cpu allocations to work.
2264 */
2265 VM_BUG_ON(!c->page->frozen);
2266 c->freelist = get_freepointer(s, freelist);
2267 c->tid = next_tid(c->tid);
2268 local_irq_restore(flags);
2269 return freelist;
2270
2271 new_slab:
2272
2273 if (c->partial) {
2274 page = c->page = c->partial;
2275 c->partial = page->next;
2276 stat(s, CPU_PARTIAL_ALLOC);
2277 c->freelist = NULL;
2278 goto redo;
2279 }
2280
2281 freelist = new_slab_objects(s, gfpflags, node, &c);
2282
2283 if (unlikely(!freelist)) {
2284 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2285 slab_out_of_memory(s, gfpflags, node);
2286
2287 local_irq_restore(flags);
2288 return NULL;
2289 }
2290
2291 page = c->page;
2292 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2293 goto load_freelist;
2294
2295 /* Only entered in the debug case */
2296 if (kmem_cache_debug(s) && !alloc_debug_processing(s, page, freelist, addr))
2297 goto new_slab; /* Slab failed checks. Next slab needed */
2298
2299 deactivate_slab(s, page, get_freepointer(s, freelist));
2300 c->page = NULL;
2301 c->freelist = NULL;
2302 local_irq_restore(flags);
2303 return freelist;
2304 }
2305
2306 /*
2307 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2308 * have the fastpath folded into their functions. So no function call
2309 * overhead for requests that can be satisfied on the fastpath.
2310 *
2311 * The fastpath works by first checking if the lockless freelist can be used.
2312 * If not then __slab_alloc is called for slow processing.
2313 *
2314 * Otherwise we can simply pick the next object from the lockless free list.
2315 */
2316 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2317 gfp_t gfpflags, int node, unsigned long addr)
2318 {
2319 void **object;
2320 struct kmem_cache_cpu *c;
2321 struct page *page;
2322 unsigned long tid;
2323
2324 if (slab_pre_alloc_hook(s, gfpflags))
2325 return NULL;
2326
2327 redo:
2328
2329 /*
2330 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2331 * enabled. We may switch back and forth between cpus while
2332 * reading from one cpu area. That does not matter as long
2333 * as we end up on the original cpu again when doing the cmpxchg.
2334 */
2335 c = __this_cpu_ptr(s->cpu_slab);
2336
2337 /*
2338 * The transaction ids are globally unique per cpu and per operation on
2339 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2340 * occurs on the right processor and that there was no operation on the
2341 * linked list in between.
2342 */
2343 tid = c->tid;
2344 barrier();
2345
2346 object = c->freelist;
2347 page = c->page;
2348 if (unlikely(!object || !node_match(page, node)))
2349 object = __slab_alloc(s, gfpflags, node, addr, c);
2350
2351 else {
2352 void *next_object = get_freepointer_safe(s, object);
2353
2354 /*
2355 * The cmpxchg will only match if there was no additional
2356 * operation and if we are on the right processor.
2357 *
2358 * The cmpxchg does the following atomically (without lock semantics!)
2359 * 1. Relocate first pointer to the current per cpu area.
2360 * 2. Verify that tid and freelist have not been changed
2361 * 3. If they were not changed replace tid and freelist
2362 *
2363 * Since this is without lock semantics the protection is only against
2364 * code executing on this cpu *not* from access by other cpus.
2365 */
2366 if (unlikely(!this_cpu_cmpxchg_double(
2367 s->cpu_slab->freelist, s->cpu_slab->tid,
2368 object, tid,
2369 next_object, next_tid(tid)))) {
2370
2371 note_cmpxchg_failure("slab_alloc", s, tid);
2372 goto redo;
2373 }
2374 prefetch_freepointer(s, next_object);
2375 stat(s, ALLOC_FASTPATH);
2376 }
2377
2378 if (unlikely(gfpflags & __GFP_ZERO) && object)
2379 memset(object, 0, s->object_size);
2380
2381 slab_post_alloc_hook(s, gfpflags, object);
2382
2383 return object;
2384 }
2385
2386 static __always_inline void *slab_alloc(struct kmem_cache *s,
2387 gfp_t gfpflags, unsigned long addr)
2388 {
2389 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2390 }
2391
2392 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2393 {
2394 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2395
2396 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, s->size, gfpflags);
2397
2398 return ret;
2399 }
2400 EXPORT_SYMBOL(kmem_cache_alloc);
2401
2402 #ifdef CONFIG_TRACING
2403 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2404 {
2405 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2406 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2407 return ret;
2408 }
2409 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2410
2411 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
2412 {
2413 void *ret = kmalloc_order(size, flags, order);
2414 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2415 return ret;
2416 }
2417 EXPORT_SYMBOL(kmalloc_order_trace);
2418 #endif
2419
2420 #ifdef CONFIG_NUMA
2421 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2422 {
2423 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2424
2425 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2426 s->object_size, s->size, gfpflags, node);
2427
2428 return ret;
2429 }
2430 EXPORT_SYMBOL(kmem_cache_alloc_node);
2431
2432 #ifdef CONFIG_TRACING
2433 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2434 gfp_t gfpflags,
2435 int node, size_t size)
2436 {
2437 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2438
2439 trace_kmalloc_node(_RET_IP_, ret,
2440 size, s->size, gfpflags, node);
2441 return ret;
2442 }
2443 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2444 #endif
2445 #endif
2446
2447 /*
2448 * Slow patch handling. This may still be called frequently since objects
2449 * have a longer lifetime than the cpu slabs in most processing loads.
2450 *
2451 * So we still attempt to reduce cache line usage. Just take the slab
2452 * lock and free the item. If there is no additional partial page
2453 * handling required then we can return immediately.
2454 */
2455 static void __slab_free(struct kmem_cache *s, struct page *page,
2456 void *x, unsigned long addr)
2457 {
2458 void *prior;
2459 void **object = (void *)x;
2460 int was_frozen;
2461 int inuse;
2462 struct page new;
2463 unsigned long counters;
2464 struct kmem_cache_node *n = NULL;
2465 unsigned long uninitialized_var(flags);
2466
2467 stat(s, FREE_SLOWPATH);
2468
2469 if (kmem_cache_debug(s) &&
2470 !(n = free_debug_processing(s, page, x, addr, &flags)))
2471 return;
2472
2473 do {
2474 prior = page->freelist;
2475 counters = page->counters;
2476 set_freepointer(s, object, prior);
2477 new.counters = counters;
2478 was_frozen = new.frozen;
2479 new.inuse--;
2480 if ((!new.inuse || !prior) && !was_frozen && !n) {
2481
2482 if (!kmem_cache_debug(s) && !prior)
2483
2484 /*
2485 * Slab was on no list before and will be partially empty
2486 * We can defer the list move and instead freeze it.
2487 */
2488 new.frozen = 1;
2489
2490 else { /* Needs to be taken off a list */
2491
2492 n = get_node(s, page_to_nid(page));
2493 /*
2494 * Speculatively acquire the list_lock.
2495 * If the cmpxchg does not succeed then we may
2496 * drop the list_lock without any processing.
2497 *
2498 * Otherwise the list_lock will synchronize with
2499 * other processors updating the list of slabs.
2500 */
2501 spin_lock_irqsave(&n->list_lock, flags);
2502
2503 }
2504 }
2505 inuse = new.inuse;
2506
2507 } while (!cmpxchg_double_slab(s, page,
2508 prior, counters,
2509 object, new.counters,
2510 "__slab_free"));
2511
2512 if (likely(!n)) {
2513
2514 /*
2515 * If we just froze the page then put it onto the
2516 * per cpu partial list.
2517 */
2518 if (new.frozen && !was_frozen) {
2519 put_cpu_partial(s, page, 1);
2520 stat(s, CPU_PARTIAL_FREE);
2521 }
2522 /*
2523 * The list lock was not taken therefore no list
2524 * activity can be necessary.
2525 */
2526 if (was_frozen)
2527 stat(s, FREE_FROZEN);
2528 return;
2529 }
2530
2531 /*
2532 * was_frozen may have been set after we acquired the list_lock in
2533 * an earlier loop. So we need to check it here again.
2534 */
2535 if (was_frozen)
2536 stat(s, FREE_FROZEN);
2537 else {
2538 if (unlikely(!inuse && n->nr_partial > s->min_partial))
2539 goto slab_empty;
2540
2541 /*
2542 * Objects left in the slab. If it was not on the partial list before
2543 * then add it.
2544 */
2545 if (unlikely(!prior)) {
2546 remove_full(s, page);
2547 add_partial(n, page, DEACTIVATE_TO_TAIL);
2548 stat(s, FREE_ADD_PARTIAL);
2549 }
2550 }
2551 spin_unlock_irqrestore(&n->list_lock, flags);
2552 return;
2553
2554 slab_empty:
2555 if (prior) {
2556 /*
2557 * Slab on the partial list.
2558 */
2559 remove_partial(n, page);
2560 stat(s, FREE_REMOVE_PARTIAL);
2561 } else
2562 /* Slab must be on the full list */
2563 remove_full(s, page);
2564
2565 spin_unlock_irqrestore(&n->list_lock, flags);
2566 stat(s, FREE_SLAB);
2567 discard_slab(s, page);
2568 }
2569
2570 /*
2571 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2572 * can perform fastpath freeing without additional function calls.
2573 *
2574 * The fastpath is only possible if we are freeing to the current cpu slab
2575 * of this processor. This typically the case if we have just allocated
2576 * the item before.
2577 *
2578 * If fastpath is not possible then fall back to __slab_free where we deal
2579 * with all sorts of special processing.
2580 */
2581 static __always_inline void slab_free(struct kmem_cache *s,
2582 struct page *page, void *x, unsigned long addr)
2583 {
2584 void **object = (void *)x;
2585 struct kmem_cache_cpu *c;
2586 unsigned long tid;
2587
2588 slab_free_hook(s, x);
2589
2590 redo:
2591 /*
2592 * Determine the currently cpus per cpu slab.
2593 * The cpu may change afterward. However that does not matter since
2594 * data is retrieved via this pointer. If we are on the same cpu
2595 * during the cmpxchg then the free will succedd.
2596 */
2597 c = __this_cpu_ptr(s->cpu_slab);
2598
2599 tid = c->tid;
2600 barrier();
2601
2602 if (likely(page == c->page)) {
2603 set_freepointer(s, object, c->freelist);
2604
2605 if (unlikely(!this_cpu_cmpxchg_double(
2606 s->cpu_slab->freelist, s->cpu_slab->tid,
2607 c->freelist, tid,
2608 object, next_tid(tid)))) {
2609
2610 note_cmpxchg_failure("slab_free", s, tid);
2611 goto redo;
2612 }
2613 stat(s, FREE_FASTPATH);
2614 } else
2615 __slab_free(s, page, x, addr);
2616
2617 }
2618
2619 void kmem_cache_free(struct kmem_cache *s, void *x)
2620 {
2621 struct page *page;
2622
2623 page = virt_to_head_page(x);
2624
2625 slab_free(s, page, x, _RET_IP_);
2626
2627 trace_kmem_cache_free(_RET_IP_, x);
2628 }
2629 EXPORT_SYMBOL(kmem_cache_free);
2630
2631 /*
2632 * Object placement in a slab is made very easy because we always start at
2633 * offset 0. If we tune the size of the object to the alignment then we can
2634 * get the required alignment by putting one properly sized object after
2635 * another.
2636 *
2637 * Notice that the allocation order determines the sizes of the per cpu
2638 * caches. Each processor has always one slab available for allocations.
2639 * Increasing the allocation order reduces the number of times that slabs
2640 * must be moved on and off the partial lists and is therefore a factor in
2641 * locking overhead.
2642 */
2643
2644 /*
2645 * Mininum / Maximum order of slab pages. This influences locking overhead
2646 * and slab fragmentation. A higher order reduces the number of partial slabs
2647 * and increases the number of allocations possible without having to
2648 * take the list_lock.
2649 */
2650 static int slub_min_order;
2651 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2652 static int slub_min_objects;
2653
2654 /*
2655 * Merge control. If this is set then no merging of slab caches will occur.
2656 * (Could be removed. This was introduced to pacify the merge skeptics.)
2657 */
2658 static int slub_nomerge;
2659
2660 /*
2661 * Calculate the order of allocation given an slab object size.
2662 *
2663 * The order of allocation has significant impact on performance and other
2664 * system components. Generally order 0 allocations should be preferred since
2665 * order 0 does not cause fragmentation in the page allocator. Larger objects
2666 * be problematic to put into order 0 slabs because there may be too much
2667 * unused space left. We go to a higher order if more than 1/16th of the slab
2668 * would be wasted.
2669 *
2670 * In order to reach satisfactory performance we must ensure that a minimum
2671 * number of objects is in one slab. Otherwise we may generate too much
2672 * activity on the partial lists which requires taking the list_lock. This is
2673 * less a concern for large slabs though which are rarely used.
2674 *
2675 * slub_max_order specifies the order where we begin to stop considering the
2676 * number of objects in a slab as critical. If we reach slub_max_order then
2677 * we try to keep the page order as low as possible. So we accept more waste
2678 * of space in favor of a small page order.
2679 *
2680 * Higher order allocations also allow the placement of more objects in a
2681 * slab and thereby reduce object handling overhead. If the user has
2682 * requested a higher mininum order then we start with that one instead of
2683 * the smallest order which will fit the object.
2684 */
2685 static inline int slab_order(int size, int min_objects,
2686 int max_order, int fract_leftover, int reserved)
2687 {
2688 int order;
2689 int rem;
2690 int min_order = slub_min_order;
2691
2692 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2693 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2694
2695 for (order = max(min_order,
2696 fls(min_objects * size - 1) - PAGE_SHIFT);
2697 order <= max_order; order++) {
2698
2699 unsigned long slab_size = PAGE_SIZE << order;
2700
2701 if (slab_size < min_objects * size + reserved)
2702 continue;
2703
2704 rem = (slab_size - reserved) % size;
2705
2706 if (rem <= slab_size / fract_leftover)
2707 break;
2708
2709 }
2710
2711 return order;
2712 }
2713
2714 static inline int calculate_order(int size, int reserved)
2715 {
2716 int order;
2717 int min_objects;
2718 int fraction;
2719 int max_objects;
2720
2721 /*
2722 * Attempt to find best configuration for a slab. This
2723 * works by first attempting to generate a layout with
2724 * the best configuration and backing off gradually.
2725 *
2726 * First we reduce the acceptable waste in a slab. Then
2727 * we reduce the minimum objects required in a slab.
2728 */
2729 min_objects = slub_min_objects;
2730 if (!min_objects)
2731 min_objects = 4 * (fls(nr_cpu_ids) + 1);
2732 max_objects = order_objects(slub_max_order, size, reserved);
2733 min_objects = min(min_objects, max_objects);
2734
2735 while (min_objects > 1) {
2736 fraction = 16;
2737 while (fraction >= 4) {
2738 order = slab_order(size, min_objects,
2739 slub_max_order, fraction, reserved);
2740 if (order <= slub_max_order)
2741 return order;
2742 fraction /= 2;
2743 }
2744 min_objects--;
2745 }
2746
2747 /*
2748 * We were unable to place multiple objects in a slab. Now
2749 * lets see if we can place a single object there.
2750 */
2751 order = slab_order(size, 1, slub_max_order, 1, reserved);
2752 if (order <= slub_max_order)
2753 return order;
2754
2755 /*
2756 * Doh this slab cannot be placed using slub_max_order.
2757 */
2758 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2759 if (order < MAX_ORDER)
2760 return order;
2761 return -ENOSYS;
2762 }
2763
2764 /*
2765 * Figure out what the alignment of the objects will be.
2766 */
2767 static unsigned long calculate_alignment(unsigned long flags,
2768 unsigned long align, unsigned long size)
2769 {
2770 /*
2771 * If the user wants hardware cache aligned objects then follow that
2772 * suggestion if the object is sufficiently large.
2773 *
2774 * The hardware cache alignment cannot override the specified
2775 * alignment though. If that is greater then use it.
2776 */
2777 if (flags & SLAB_HWCACHE_ALIGN) {
2778 unsigned long ralign = cache_line_size();
2779 while (size <= ralign / 2)
2780 ralign /= 2;
2781 align = max(align, ralign);
2782 }
2783
2784 if (align < ARCH_SLAB_MINALIGN)
2785 align = ARCH_SLAB_MINALIGN;
2786
2787 return ALIGN(align, sizeof(void *));
2788 }
2789
2790 static void
2791 init_kmem_cache_node(struct kmem_cache_node *n)
2792 {
2793 n->nr_partial = 0;
2794 spin_lock_init(&n->list_lock);
2795 INIT_LIST_HEAD(&n->partial);
2796 #ifdef CONFIG_SLUB_DEBUG
2797 atomic_long_set(&n->nr_slabs, 0);
2798 atomic_long_set(&n->total_objects, 0);
2799 INIT_LIST_HEAD(&n->full);
2800 #endif
2801 }
2802
2803 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2804 {
2805 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2806 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
2807
2808 /*
2809 * Must align to double word boundary for the double cmpxchg
2810 * instructions to work; see __pcpu_double_call_return_bool().
2811 */
2812 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2813 2 * sizeof(void *));
2814
2815 if (!s->cpu_slab)
2816 return 0;
2817
2818 init_kmem_cache_cpus(s);
2819
2820 return 1;
2821 }
2822
2823 static struct kmem_cache *kmem_cache_node;
2824
2825 /*
2826 * No kmalloc_node yet so do it by hand. We know that this is the first
2827 * slab on the node for this slabcache. There are no concurrent accesses
2828 * possible.
2829 *
2830 * Note that this function only works on the kmalloc_node_cache
2831 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2832 * memory on a fresh node that has no slab structures yet.
2833 */
2834 static void early_kmem_cache_node_alloc(int node)
2835 {
2836 struct page *page;
2837 struct kmem_cache_node *n;
2838
2839 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2840
2841 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2842
2843 BUG_ON(!page);
2844 if (page_to_nid(page) != node) {
2845 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2846 "node %d\n", node);
2847 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2848 "in order to be able to continue\n");
2849 }
2850
2851 n = page->freelist;
2852 BUG_ON(!n);
2853 page->freelist = get_freepointer(kmem_cache_node, n);
2854 page->inuse = 1;
2855 page->frozen = 0;
2856 kmem_cache_node->node[node] = n;
2857 #ifdef CONFIG_SLUB_DEBUG
2858 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2859 init_tracking(kmem_cache_node, n);
2860 #endif
2861 init_kmem_cache_node(n);
2862 inc_slabs_node(kmem_cache_node, node, page->objects);
2863
2864 add_partial(n, page, DEACTIVATE_TO_HEAD);
2865 }
2866
2867 static void free_kmem_cache_nodes(struct kmem_cache *s)
2868 {
2869 int node;
2870
2871 for_each_node_state(node, N_NORMAL_MEMORY) {
2872 struct kmem_cache_node *n = s->node[node];
2873
2874 if (n)
2875 kmem_cache_free(kmem_cache_node, n);
2876
2877 s->node[node] = NULL;
2878 }
2879 }
2880
2881 static int init_kmem_cache_nodes(struct kmem_cache *s)
2882 {
2883 int node;
2884
2885 for_each_node_state(node, N_NORMAL_MEMORY) {
2886 struct kmem_cache_node *n;
2887
2888 if (slab_state == DOWN) {
2889 early_kmem_cache_node_alloc(node);
2890 continue;
2891 }
2892 n = kmem_cache_alloc_node(kmem_cache_node,
2893 GFP_KERNEL, node);
2894
2895 if (!n) {
2896 free_kmem_cache_nodes(s);
2897 return 0;
2898 }
2899
2900 s->node[node] = n;
2901 init_kmem_cache_node(n);
2902 }
2903 return 1;
2904 }
2905
2906 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2907 {
2908 if (min < MIN_PARTIAL)
2909 min = MIN_PARTIAL;
2910 else if (min > MAX_PARTIAL)
2911 min = MAX_PARTIAL;
2912 s->min_partial = min;
2913 }
2914
2915 /*
2916 * calculate_sizes() determines the order and the distribution of data within
2917 * a slab object.
2918 */
2919 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2920 {
2921 unsigned long flags = s->flags;
2922 unsigned long size = s->object_size;
2923 unsigned long align = s->align;
2924 int order;
2925
2926 /*
2927 * Round up object size to the next word boundary. We can only
2928 * place the free pointer at word boundaries and this determines
2929 * the possible location of the free pointer.
2930 */
2931 size = ALIGN(size, sizeof(void *));
2932
2933 #ifdef CONFIG_SLUB_DEBUG
2934 /*
2935 * Determine if we can poison the object itself. If the user of
2936 * the slab may touch the object after free or before allocation
2937 * then we should never poison the object itself.
2938 */
2939 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2940 !s->ctor)
2941 s->flags |= __OBJECT_POISON;
2942 else
2943 s->flags &= ~__OBJECT_POISON;
2944
2945
2946 /*
2947 * If we are Redzoning then check if there is some space between the
2948 * end of the object and the free pointer. If not then add an
2949 * additional word to have some bytes to store Redzone information.
2950 */
2951 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
2952 size += sizeof(void *);
2953 #endif
2954
2955 /*
2956 * With that we have determined the number of bytes in actual use
2957 * by the object. This is the potential offset to the free pointer.
2958 */
2959 s->inuse = size;
2960
2961 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2962 s->ctor)) {
2963 /*
2964 * Relocate free pointer after the object if it is not
2965 * permitted to overwrite the first word of the object on
2966 * kmem_cache_free.
2967 *
2968 * This is the case if we do RCU, have a constructor or
2969 * destructor or are poisoning the objects.
2970 */
2971 s->offset = size;
2972 size += sizeof(void *);
2973 }
2974
2975 #ifdef CONFIG_SLUB_DEBUG
2976 if (flags & SLAB_STORE_USER)
2977 /*
2978 * Need to store information about allocs and frees after
2979 * the object.
2980 */
2981 size += 2 * sizeof(struct track);
2982
2983 if (flags & SLAB_RED_ZONE)
2984 /*
2985 * Add some empty padding so that we can catch
2986 * overwrites from earlier objects rather than let
2987 * tracking information or the free pointer be
2988 * corrupted if a user writes before the start
2989 * of the object.
2990 */
2991 size += sizeof(void *);
2992 #endif
2993
2994 /*
2995 * Determine the alignment based on various parameters that the
2996 * user specified and the dynamic determination of cache line size
2997 * on bootup.
2998 */
2999 align = calculate_alignment(flags, align, s->object_size);
3000 s->align = align;
3001
3002 /*
3003 * SLUB stores one object immediately after another beginning from
3004 * offset 0. In order to align the objects we have to simply size
3005 * each object to conform to the alignment.
3006 */
3007 size = ALIGN(size, align);
3008 s->size = size;
3009 if (forced_order >= 0)
3010 order = forced_order;
3011 else
3012 order = calculate_order(size, s->reserved);
3013
3014 if (order < 0)
3015 return 0;
3016
3017 s->allocflags = 0;
3018 if (order)
3019 s->allocflags |= __GFP_COMP;
3020
3021 if (s->flags & SLAB_CACHE_DMA)
3022 s->allocflags |= SLUB_DMA;
3023
3024 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3025 s->allocflags |= __GFP_RECLAIMABLE;
3026
3027 /*
3028 * Determine the number of objects per slab
3029 */
3030 s->oo = oo_make(order, size, s->reserved);
3031 s->min = oo_make(get_order(size), size, s->reserved);
3032 if (oo_objects(s->oo) > oo_objects(s->max))
3033 s->max = s->oo;
3034
3035 return !!oo_objects(s->oo);
3036
3037 }
3038
3039 static int kmem_cache_open(struct kmem_cache *s,
3040 const char *name, size_t size,
3041 size_t align, unsigned long flags,
3042 void (*ctor)(void *))
3043 {
3044 memset(s, 0, kmem_size);
3045 s->name = name;
3046 s->ctor = ctor;
3047 s->object_size = size;
3048 s->align = align;
3049 s->flags = kmem_cache_flags(size, flags, name, ctor);
3050 s->reserved = 0;
3051
3052 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3053 s->reserved = sizeof(struct rcu_head);
3054
3055 if (!calculate_sizes(s, -1))
3056 goto error;
3057 if (disable_higher_order_debug) {
3058 /*
3059 * Disable debugging flags that store metadata if the min slab
3060 * order increased.
3061 */
3062 if (get_order(s->size) > get_order(s->object_size)) {
3063 s->flags &= ~DEBUG_METADATA_FLAGS;
3064 s->offset = 0;
3065 if (!calculate_sizes(s, -1))
3066 goto error;
3067 }
3068 }
3069
3070 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3071 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3072 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3073 /* Enable fast mode */
3074 s->flags |= __CMPXCHG_DOUBLE;
3075 #endif
3076
3077 /*
3078 * The larger the object size is, the more pages we want on the partial
3079 * list to avoid pounding the page allocator excessively.
3080 */
3081 set_min_partial(s, ilog2(s->size) / 2);
3082
3083 /*
3084 * cpu_partial determined the maximum number of objects kept in the
3085 * per cpu partial lists of a processor.
3086 *
3087 * Per cpu partial lists mainly contain slabs that just have one
3088 * object freed. If they are used for allocation then they can be
3089 * filled up again with minimal effort. The slab will never hit the
3090 * per node partial lists and therefore no locking will be required.
3091 *
3092 * This setting also determines
3093 *
3094 * A) The number of objects from per cpu partial slabs dumped to the
3095 * per node list when we reach the limit.
3096 * B) The number of objects in cpu partial slabs to extract from the
3097 * per node list when we run out of per cpu objects. We only fetch 50%
3098 * to keep some capacity around for frees.
3099 */
3100 if (kmem_cache_debug(s))
3101 s->cpu_partial = 0;
3102 else if (s->size >= PAGE_SIZE)
3103 s->cpu_partial = 2;
3104 else if (s->size >= 1024)
3105 s->cpu_partial = 6;
3106 else if (s->size >= 256)
3107 s->cpu_partial = 13;
3108 else
3109 s->cpu_partial = 30;
3110
3111 s->refcount = 1;
3112 #ifdef CONFIG_NUMA
3113 s->remote_node_defrag_ratio = 1000;
3114 #endif
3115 if (!init_kmem_cache_nodes(s))
3116 goto error;
3117
3118 if (alloc_kmem_cache_cpus(s))
3119 return 1;
3120
3121 free_kmem_cache_nodes(s);
3122 error:
3123 if (flags & SLAB_PANIC)
3124 panic("Cannot create slab %s size=%lu realsize=%u "
3125 "order=%u offset=%u flags=%lx\n",
3126 s->name, (unsigned long)size, s->size, oo_order(s->oo),
3127 s->offset, flags);
3128 return 0;
3129 }
3130
3131 /*
3132 * Determine the size of a slab object
3133 */
3134 unsigned int kmem_cache_size(struct kmem_cache *s)
3135 {
3136 return s->object_size;
3137 }
3138 EXPORT_SYMBOL(kmem_cache_size);
3139
3140 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3141 const char *text)
3142 {
3143 #ifdef CONFIG_SLUB_DEBUG
3144 void *addr = page_address(page);
3145 void *p;
3146 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3147 sizeof(long), GFP_ATOMIC);
3148 if (!map)
3149 return;
3150 slab_err(s, page, "%s", text);
3151 slab_lock(page);
3152
3153 get_map(s, page, map);
3154 for_each_object(p, s, addr, page->objects) {
3155
3156 if (!test_bit(slab_index(p, s, addr), map)) {
3157 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3158 p, p - addr);
3159 print_tracking(s, p);
3160 }
3161 }
3162 slab_unlock(page);
3163 kfree(map);
3164 #endif
3165 }
3166
3167 /*
3168 * Attempt to free all partial slabs on a node.
3169 * This is called from kmem_cache_close(). We must be the last thread
3170 * using the cache and therefore we do not need to lock anymore.
3171 */
3172 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3173 {
3174 struct page *page, *h;
3175
3176 list_for_each_entry_safe(page, h, &n->partial, lru) {
3177 if (!page->inuse) {
3178 remove_partial(n, page);
3179 discard_slab(s, page);
3180 } else {
3181 list_slab_objects(s, page,
3182 "Objects remaining on kmem_cache_close()");
3183 }
3184 }
3185 }
3186
3187 /*
3188 * Release all resources used by a slab cache.
3189 */
3190 static inline int kmem_cache_close(struct kmem_cache *s)
3191 {
3192 int node;
3193
3194 flush_all(s);
3195 free_percpu(s->cpu_slab);
3196 /* Attempt to free all objects */
3197 for_each_node_state(node, N_NORMAL_MEMORY) {
3198 struct kmem_cache_node *n = get_node(s, node);
3199
3200 free_partial(s, n);
3201 if (n->nr_partial || slabs_node(s, node))
3202 return 1;
3203 }
3204 free_kmem_cache_nodes(s);
3205 return 0;
3206 }
3207
3208 /*
3209 * Close a cache and release the kmem_cache structure
3210 * (must be used for caches created using kmem_cache_create)
3211 */
3212 void kmem_cache_destroy(struct kmem_cache *s)
3213 {
3214 mutex_lock(&slab_mutex);
3215 s->refcount--;
3216 if (!s->refcount) {
3217 list_del(&s->list);
3218 mutex_unlock(&slab_mutex);
3219 if (kmem_cache_close(s)) {
3220 printk(KERN_ERR "SLUB %s: %s called for cache that "
3221 "still has objects.\n", s->name, __func__);
3222 dump_stack();
3223 }
3224 if (s->flags & SLAB_DESTROY_BY_RCU)
3225 rcu_barrier();
3226 sysfs_slab_remove(s);
3227 } else
3228 mutex_unlock(&slab_mutex);
3229 }
3230 EXPORT_SYMBOL(kmem_cache_destroy);
3231
3232 /********************************************************************
3233 * Kmalloc subsystem
3234 *******************************************************************/
3235
3236 struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
3237 EXPORT_SYMBOL(kmalloc_caches);
3238
3239 static struct kmem_cache *kmem_cache;
3240
3241 #ifdef CONFIG_ZONE_DMA
3242 static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
3243 #endif
3244
3245 static int __init setup_slub_min_order(char *str)
3246 {
3247 get_option(&str, &slub_min_order);
3248
3249 return 1;
3250 }
3251
3252 __setup("slub_min_order=", setup_slub_min_order);
3253
3254 static int __init setup_slub_max_order(char *str)
3255 {
3256 get_option(&str, &slub_max_order);
3257 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3258
3259 return 1;
3260 }
3261
3262 __setup("slub_max_order=", setup_slub_max_order);
3263
3264 static int __init setup_slub_min_objects(char *str)
3265 {
3266 get_option(&str, &slub_min_objects);
3267
3268 return 1;
3269 }
3270
3271 __setup("slub_min_objects=", setup_slub_min_objects);
3272
3273 static int __init setup_slub_nomerge(char *str)
3274 {
3275 slub_nomerge = 1;
3276 return 1;
3277 }
3278
3279 __setup("slub_nomerge", setup_slub_nomerge);
3280
3281 static struct kmem_cache *__init create_kmalloc_cache(const char *name,
3282 int size, unsigned int flags)
3283 {
3284 struct kmem_cache *s;
3285
3286 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3287
3288 /*
3289 * This function is called with IRQs disabled during early-boot on
3290 * single CPU so there's no need to take slab_mutex here.
3291 */
3292 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
3293 flags, NULL))
3294 goto panic;
3295
3296 list_add(&s->list, &slab_caches);
3297 return s;
3298
3299 panic:
3300 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
3301 return NULL;
3302 }
3303
3304 /*
3305 * Conversion table for small slabs sizes / 8 to the index in the
3306 * kmalloc array. This is necessary for slabs < 192 since we have non power
3307 * of two cache sizes there. The size of larger slabs can be determined using
3308 * fls.
3309 */
3310 static s8 size_index[24] = {
3311 3, /* 8 */
3312 4, /* 16 */
3313 5, /* 24 */
3314 5, /* 32 */
3315 6, /* 40 */
3316 6, /* 48 */
3317 6, /* 56 */
3318 6, /* 64 */
3319 1, /* 72 */
3320 1, /* 80 */
3321 1, /* 88 */
3322 1, /* 96 */
3323 7, /* 104 */
3324 7, /* 112 */
3325 7, /* 120 */
3326 7, /* 128 */
3327 2, /* 136 */
3328 2, /* 144 */
3329 2, /* 152 */
3330 2, /* 160 */
3331 2, /* 168 */
3332 2, /* 176 */
3333 2, /* 184 */
3334 2 /* 192 */
3335 };
3336
3337 static inline int size_index_elem(size_t bytes)
3338 {
3339 return (bytes - 1) / 8;
3340 }
3341
3342 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
3343 {
3344 int index;
3345
3346 if (size <= 192) {
3347 if (!size)
3348 return ZERO_SIZE_PTR;
3349
3350 index = size_index[size_index_elem(size)];
3351 } else
3352 index = fls(size - 1);
3353
3354 #ifdef CONFIG_ZONE_DMA
3355 if (unlikely((flags & SLUB_DMA)))
3356 return kmalloc_dma_caches[index];
3357
3358 #endif
3359 return kmalloc_caches[index];
3360 }
3361
3362 void *__kmalloc(size_t size, gfp_t flags)
3363 {
3364 struct kmem_cache *s;
3365 void *ret;
3366
3367 if (unlikely(size > SLUB_MAX_SIZE))
3368 return kmalloc_large(size, flags);
3369
3370 s = get_slab(size, flags);
3371
3372 if (unlikely(ZERO_OR_NULL_PTR(s)))
3373 return s;
3374
3375 ret = slab_alloc(s, flags, _RET_IP_);
3376
3377 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3378
3379 return ret;
3380 }
3381 EXPORT_SYMBOL(__kmalloc);
3382
3383 #ifdef CONFIG_NUMA
3384 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3385 {
3386 struct page *page;
3387 void *ptr = NULL;
3388
3389 flags |= __GFP_COMP | __GFP_NOTRACK;
3390 page = alloc_pages_node(node, flags, get_order(size));
3391 if (page)
3392 ptr = page_address(page);
3393
3394 kmemleak_alloc(ptr, size, 1, flags);
3395 return ptr;
3396 }
3397
3398 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3399 {
3400 struct kmem_cache *s;
3401 void *ret;
3402
3403 if (unlikely(size > SLUB_MAX_SIZE)) {
3404 ret = kmalloc_large_node(size, flags, node);
3405
3406 trace_kmalloc_node(_RET_IP_, ret,
3407 size, PAGE_SIZE << get_order(size),
3408 flags, node);
3409
3410 return ret;
3411 }
3412
3413 s = get_slab(size, flags);
3414
3415 if (unlikely(ZERO_OR_NULL_PTR(s)))
3416 return s;
3417
3418 ret = slab_alloc_node(s, flags, node, _RET_IP_);
3419
3420 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3421
3422 return ret;
3423 }
3424 EXPORT_SYMBOL(__kmalloc_node);
3425 #endif
3426
3427 size_t ksize(const void *object)
3428 {
3429 struct page *page;
3430
3431 if (unlikely(object == ZERO_SIZE_PTR))
3432 return 0;
3433
3434 page = virt_to_head_page(object);
3435
3436 if (unlikely(!PageSlab(page))) {
3437 WARN_ON(!PageCompound(page));
3438 return PAGE_SIZE << compound_order(page);
3439 }
3440
3441 return slab_ksize(page->slab);
3442 }
3443 EXPORT_SYMBOL(ksize);
3444
3445 #ifdef CONFIG_SLUB_DEBUG
3446 bool verify_mem_not_deleted(const void *x)
3447 {
3448 struct page *page;
3449 void *object = (void *)x;
3450 unsigned long flags;
3451 bool rv;
3452
3453 if (unlikely(ZERO_OR_NULL_PTR(x)))
3454 return false;
3455
3456 local_irq_save(flags);
3457
3458 page = virt_to_head_page(x);
3459 if (unlikely(!PageSlab(page))) {
3460 /* maybe it was from stack? */
3461 rv = true;
3462 goto out_unlock;
3463 }
3464
3465 slab_lock(page);
3466 if (on_freelist(page->slab, page, object)) {
3467 object_err(page->slab, page, object, "Object is on free-list");
3468 rv = false;
3469 } else {
3470 rv = true;
3471 }
3472 slab_unlock(page);
3473
3474 out_unlock:
3475 local_irq_restore(flags);
3476 return rv;
3477 }
3478 EXPORT_SYMBOL(verify_mem_not_deleted);
3479 #endif
3480
3481 void kfree(const void *x)
3482 {
3483 struct page *page;
3484 void *object = (void *)x;
3485
3486 trace_kfree(_RET_IP_, x);
3487
3488 if (unlikely(ZERO_OR_NULL_PTR(x)))
3489 return;
3490
3491 page = virt_to_head_page(x);
3492 if (unlikely(!PageSlab(page))) {
3493 BUG_ON(!PageCompound(page));
3494 kmemleak_free(x);
3495 __free_pages(page, compound_order(page));
3496 return;
3497 }
3498 slab_free(page->slab, page, object, _RET_IP_);
3499 }
3500 EXPORT_SYMBOL(kfree);
3501
3502 /*
3503 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3504 * the remaining slabs by the number of items in use. The slabs with the
3505 * most items in use come first. New allocations will then fill those up
3506 * and thus they can be removed from the partial lists.
3507 *
3508 * The slabs with the least items are placed last. This results in them
3509 * being allocated from last increasing the chance that the last objects
3510 * are freed in them.
3511 */
3512 int kmem_cache_shrink(struct kmem_cache *s)
3513 {
3514 int node;
3515 int i;
3516 struct kmem_cache_node *n;
3517 struct page *page;
3518 struct page *t;
3519 int objects = oo_objects(s->max);
3520 struct list_head *slabs_by_inuse =
3521 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3522 unsigned long flags;
3523
3524 if (!slabs_by_inuse)
3525 return -ENOMEM;
3526
3527 flush_all(s);
3528 for_each_node_state(node, N_NORMAL_MEMORY) {
3529 n = get_node(s, node);
3530
3531 if (!n->nr_partial)
3532 continue;
3533
3534 for (i = 0; i < objects; i++)
3535 INIT_LIST_HEAD(slabs_by_inuse + i);
3536
3537 spin_lock_irqsave(&n->list_lock, flags);
3538
3539 /*
3540 * Build lists indexed by the items in use in each slab.
3541 *
3542 * Note that concurrent frees may occur while we hold the
3543 * list_lock. page->inuse here is the upper limit.
3544 */
3545 list_for_each_entry_safe(page, t, &n->partial, lru) {
3546 list_move(&page->lru, slabs_by_inuse + page->inuse);
3547 if (!page->inuse)
3548 n->nr_partial--;
3549 }
3550
3551 /*
3552 * Rebuild the partial list with the slabs filled up most
3553 * first and the least used slabs at the end.
3554 */
3555 for (i = objects - 1; i > 0; i--)
3556 list_splice(slabs_by_inuse + i, n->partial.prev);
3557
3558 spin_unlock_irqrestore(&n->list_lock, flags);
3559
3560 /* Release empty slabs */
3561 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3562 discard_slab(s, page);
3563 }
3564
3565 kfree(slabs_by_inuse);
3566 return 0;
3567 }
3568 EXPORT_SYMBOL(kmem_cache_shrink);
3569
3570 #if defined(CONFIG_MEMORY_HOTPLUG)
3571 static int slab_mem_going_offline_callback(void *arg)
3572 {
3573 struct kmem_cache *s;
3574
3575 mutex_lock(&slab_mutex);
3576 list_for_each_entry(s, &slab_caches, list)
3577 kmem_cache_shrink(s);
3578 mutex_unlock(&slab_mutex);
3579
3580 return 0;
3581 }
3582
3583 static void slab_mem_offline_callback(void *arg)
3584 {
3585 struct kmem_cache_node *n;
3586 struct kmem_cache *s;
3587 struct memory_notify *marg = arg;
3588 int offline_node;
3589
3590 offline_node = marg->status_change_nid;
3591
3592 /*
3593 * If the node still has available memory. we need kmem_cache_node
3594 * for it yet.
3595 */
3596 if (offline_node < 0)
3597 return;
3598
3599 mutex_lock(&slab_mutex);
3600 list_for_each_entry(s, &slab_caches, list) {
3601 n = get_node(s, offline_node);
3602 if (n) {
3603 /*
3604 * if n->nr_slabs > 0, slabs still exist on the node
3605 * that is going down. We were unable to free them,
3606 * and offline_pages() function shouldn't call this
3607 * callback. So, we must fail.
3608 */
3609 BUG_ON(slabs_node(s, offline_node));
3610
3611 s->node[offline_node] = NULL;
3612 kmem_cache_free(kmem_cache_node, n);
3613 }
3614 }
3615 mutex_unlock(&slab_mutex);
3616 }
3617
3618 static int slab_mem_going_online_callback(void *arg)
3619 {
3620 struct kmem_cache_node *n;
3621 struct kmem_cache *s;
3622 struct memory_notify *marg = arg;
3623 int nid = marg->status_change_nid;
3624 int ret = 0;
3625
3626 /*
3627 * If the node's memory is already available, then kmem_cache_node is
3628 * already created. Nothing to do.
3629 */
3630 if (nid < 0)
3631 return 0;
3632
3633 /*
3634 * We are bringing a node online. No memory is available yet. We must
3635 * allocate a kmem_cache_node structure in order to bring the node
3636 * online.
3637 */
3638 mutex_lock(&slab_mutex);
3639 list_for_each_entry(s, &slab_caches, list) {
3640 /*
3641 * XXX: kmem_cache_alloc_node will fallback to other nodes
3642 * since memory is not yet available from the node that
3643 * is brought up.
3644 */
3645 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3646 if (!n) {
3647 ret = -ENOMEM;
3648 goto out;
3649 }
3650 init_kmem_cache_node(n);
3651 s->node[nid] = n;
3652 }
3653 out:
3654 mutex_unlock(&slab_mutex);
3655 return ret;
3656 }
3657
3658 static int slab_memory_callback(struct notifier_block *self,
3659 unsigned long action, void *arg)
3660 {
3661 int ret = 0;
3662
3663 switch (action) {
3664 case MEM_GOING_ONLINE:
3665 ret = slab_mem_going_online_callback(arg);
3666 break;
3667 case MEM_GOING_OFFLINE:
3668 ret = slab_mem_going_offline_callback(arg);
3669 break;
3670 case MEM_OFFLINE:
3671 case MEM_CANCEL_ONLINE:
3672 slab_mem_offline_callback(arg);
3673 break;
3674 case MEM_ONLINE:
3675 case MEM_CANCEL_OFFLINE:
3676 break;
3677 }
3678 if (ret)
3679 ret = notifier_from_errno(ret);
3680 else
3681 ret = NOTIFY_OK;
3682 return ret;
3683 }
3684
3685 #endif /* CONFIG_MEMORY_HOTPLUG */
3686
3687 /********************************************************************
3688 * Basic setup of slabs
3689 *******************************************************************/
3690
3691 /*
3692 * Used for early kmem_cache structures that were allocated using
3693 * the page allocator
3694 */
3695
3696 static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3697 {
3698 int node;
3699
3700 list_add(&s->list, &slab_caches);
3701 s->refcount = -1;
3702
3703 for_each_node_state(node, N_NORMAL_MEMORY) {
3704 struct kmem_cache_node *n = get_node(s, node);
3705 struct page *p;
3706
3707 if (n) {
3708 list_for_each_entry(p, &n->partial, lru)
3709 p->slab = s;
3710
3711 #ifdef CONFIG_SLUB_DEBUG
3712 list_for_each_entry(p, &n->full, lru)
3713 p->slab = s;
3714 #endif
3715 }
3716 }
3717 }
3718
3719 void __init kmem_cache_init(void)
3720 {
3721 int i;
3722 int caches = 0;
3723 struct kmem_cache *temp_kmem_cache;
3724 int order;
3725 struct kmem_cache *temp_kmem_cache_node;
3726 unsigned long kmalloc_size;
3727
3728 if (debug_guardpage_minorder())
3729 slub_max_order = 0;
3730
3731 kmem_size = offsetof(struct kmem_cache, node) +
3732 nr_node_ids * sizeof(struct kmem_cache_node *);
3733
3734 /* Allocate two kmem_caches from the page allocator */
3735 kmalloc_size = ALIGN(kmem_size, cache_line_size());
3736 order = get_order(2 * kmalloc_size);
3737 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3738
3739 /*
3740 * Must first have the slab cache available for the allocations of the
3741 * struct kmem_cache_node's. There is special bootstrap code in
3742 * kmem_cache_open for slab_state == DOWN.
3743 */
3744 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3745
3746 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3747 sizeof(struct kmem_cache_node),
3748 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3749
3750 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3751
3752 /* Able to allocate the per node structures */
3753 slab_state = PARTIAL;
3754
3755 temp_kmem_cache = kmem_cache;
3756 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3757 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3758 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3759 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
3760
3761 /*
3762 * Allocate kmem_cache_node properly from the kmem_cache slab.
3763 * kmem_cache_node is separately allocated so no need to
3764 * update any list pointers.
3765 */
3766 temp_kmem_cache_node = kmem_cache_node;
3767
3768 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3769 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3770
3771 kmem_cache_bootstrap_fixup(kmem_cache_node);
3772
3773 caches++;
3774 kmem_cache_bootstrap_fixup(kmem_cache);
3775 caches++;
3776 /* Free temporary boot structure */
3777 free_pages((unsigned long)temp_kmem_cache, order);
3778
3779 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3780
3781 /*
3782 * Patch up the size_index table if we have strange large alignment
3783 * requirements for the kmalloc array. This is only the case for
3784 * MIPS it seems. The standard arches will not generate any code here.
3785 *
3786 * Largest permitted alignment is 256 bytes due to the way we
3787 * handle the index determination for the smaller caches.
3788 *
3789 * Make sure that nothing crazy happens if someone starts tinkering
3790 * around with ARCH_KMALLOC_MINALIGN
3791 */
3792 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3793 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3794
3795 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3796 int elem = size_index_elem(i);
3797 if (elem >= ARRAY_SIZE(size_index))
3798 break;
3799 size_index[elem] = KMALLOC_SHIFT_LOW;
3800 }
3801
3802 if (KMALLOC_MIN_SIZE == 64) {
3803 /*
3804 * The 96 byte size cache is not used if the alignment
3805 * is 64 byte.
3806 */
3807 for (i = 64 + 8; i <= 96; i += 8)
3808 size_index[size_index_elem(i)] = 7;
3809 } else if (KMALLOC_MIN_SIZE == 128) {
3810 /*
3811 * The 192 byte sized cache is not used if the alignment
3812 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3813 * instead.
3814 */
3815 for (i = 128 + 8; i <= 192; i += 8)
3816 size_index[size_index_elem(i)] = 8;
3817 }
3818
3819 /* Caches that are not of the two-to-the-power-of size */
3820 if (KMALLOC_MIN_SIZE <= 32) {
3821 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3822 caches++;
3823 }
3824
3825 if (KMALLOC_MIN_SIZE <= 64) {
3826 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3827 caches++;
3828 }
3829
3830 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3831 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3832 caches++;
3833 }
3834
3835 slab_state = UP;
3836
3837 /* Provide the correct kmalloc names now that the caches are up */
3838 if (KMALLOC_MIN_SIZE <= 32) {
3839 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3840 BUG_ON(!kmalloc_caches[1]->name);
3841 }
3842
3843 if (KMALLOC_MIN_SIZE <= 64) {
3844 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3845 BUG_ON(!kmalloc_caches[2]->name);
3846 }
3847
3848 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3849 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3850
3851 BUG_ON(!s);
3852 kmalloc_caches[i]->name = s;
3853 }
3854
3855 #ifdef CONFIG_SMP
3856 register_cpu_notifier(&slab_notifier);
3857 #endif
3858
3859 #ifdef CONFIG_ZONE_DMA
3860 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3861 struct kmem_cache *s = kmalloc_caches[i];
3862
3863 if (s && s->size) {
3864 char *name = kasprintf(GFP_NOWAIT,
3865 "dma-kmalloc-%d", s->object_size);
3866
3867 BUG_ON(!name);
3868 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3869 s->object_size, SLAB_CACHE_DMA);
3870 }
3871 }
3872 #endif
3873 printk(KERN_INFO
3874 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3875 " CPUs=%d, Nodes=%d\n",
3876 caches, cache_line_size(),
3877 slub_min_order, slub_max_order, slub_min_objects,
3878 nr_cpu_ids, nr_node_ids);
3879 }
3880
3881 void __init kmem_cache_init_late(void)
3882 {
3883 }
3884
3885 /*
3886 * Find a mergeable slab cache
3887 */
3888 static int slab_unmergeable(struct kmem_cache *s)
3889 {
3890 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3891 return 1;
3892
3893 if (s->ctor)
3894 return 1;
3895
3896 /*
3897 * We may have set a slab to be unmergeable during bootstrap.
3898 */
3899 if (s->refcount < 0)
3900 return 1;
3901
3902 return 0;
3903 }
3904
3905 static struct kmem_cache *find_mergeable(size_t size,
3906 size_t align, unsigned long flags, const char *name,
3907 void (*ctor)(void *))
3908 {
3909 struct kmem_cache *s;
3910
3911 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3912 return NULL;
3913
3914 if (ctor)
3915 return NULL;
3916
3917 size = ALIGN(size, sizeof(void *));
3918 align = calculate_alignment(flags, align, size);
3919 size = ALIGN(size, align);
3920 flags = kmem_cache_flags(size, flags, name, NULL);
3921
3922 list_for_each_entry(s, &slab_caches, list) {
3923 if (slab_unmergeable(s))
3924 continue;
3925
3926 if (size > s->size)
3927 continue;
3928
3929 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3930 continue;
3931 /*
3932 * Check if alignment is compatible.
3933 * Courtesy of Adrian Drzewiecki
3934 */
3935 if ((s->size & ~(align - 1)) != s->size)
3936 continue;
3937
3938 if (s->size - size >= sizeof(void *))
3939 continue;
3940
3941 return s;
3942 }
3943 return NULL;
3944 }
3945
3946 struct kmem_cache *__kmem_cache_create(const char *name, size_t size,
3947 size_t align, unsigned long flags, void (*ctor)(void *))
3948 {
3949 struct kmem_cache *s;
3950 char *n;
3951
3952 s = find_mergeable(size, align, flags, name, ctor);
3953 if (s) {
3954 s->refcount++;
3955 /*
3956 * Adjust the object sizes so that we clear
3957 * the complete object on kzalloc.
3958 */
3959 s->object_size = max(s->object_size, (int)size);
3960 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3961
3962 if (sysfs_slab_alias(s, name)) {
3963 s->refcount--;
3964 return NULL;
3965 }
3966 return s;
3967 }
3968
3969 n = kstrdup(name, GFP_KERNEL);
3970 if (!n)
3971 return NULL;
3972
3973 s = kmalloc(kmem_size, GFP_KERNEL);
3974 if (s) {
3975 if (kmem_cache_open(s, n,
3976 size, align, flags, ctor)) {
3977 int r;
3978
3979 list_add(&s->list, &slab_caches);
3980 mutex_unlock(&slab_mutex);
3981 r = sysfs_slab_add(s);
3982 mutex_lock(&slab_mutex);
3983
3984 if (!r)
3985 return s;
3986
3987 list_del(&s->list);
3988 kmem_cache_close(s);
3989 }
3990 kfree(s);
3991 }
3992 kfree(n);
3993 return NULL;
3994 }
3995
3996 #ifdef CONFIG_SMP
3997 /*
3998 * Use the cpu notifier to insure that the cpu slabs are flushed when
3999 * necessary.
4000 */
4001 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
4002 unsigned long action, void *hcpu)
4003 {
4004 long cpu = (long)hcpu;
4005 struct kmem_cache *s;
4006 unsigned long flags;
4007
4008 switch (action) {
4009 case CPU_UP_CANCELED:
4010 case CPU_UP_CANCELED_FROZEN:
4011 case CPU_DEAD:
4012 case CPU_DEAD_FROZEN:
4013 mutex_lock(&slab_mutex);
4014 list_for_each_entry(s, &slab_caches, list) {
4015 local_irq_save(flags);
4016 __flush_cpu_slab(s, cpu);
4017 local_irq_restore(flags);
4018 }
4019 mutex_unlock(&slab_mutex);
4020 break;
4021 default:
4022 break;
4023 }
4024 return NOTIFY_OK;
4025 }
4026
4027 static struct notifier_block __cpuinitdata slab_notifier = {
4028 .notifier_call = slab_cpuup_callback
4029 };
4030
4031 #endif
4032
4033 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4034 {
4035 struct kmem_cache *s;
4036 void *ret;
4037
4038 if (unlikely(size > SLUB_MAX_SIZE))
4039 return kmalloc_large(size, gfpflags);
4040
4041 s = get_slab(size, gfpflags);
4042
4043 if (unlikely(ZERO_OR_NULL_PTR(s)))
4044 return s;
4045
4046 ret = slab_alloc(s, gfpflags, caller);
4047
4048 /* Honor the call site pointer we received. */
4049 trace_kmalloc(caller, ret, size, s->size, gfpflags);
4050
4051 return ret;
4052 }
4053
4054 #ifdef CONFIG_NUMA
4055 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4056 int node, unsigned long caller)
4057 {
4058 struct kmem_cache *s;
4059 void *ret;
4060
4061 if (unlikely(size > SLUB_MAX_SIZE)) {
4062 ret = kmalloc_large_node(size, gfpflags, node);
4063
4064 trace_kmalloc_node(caller, ret,
4065 size, PAGE_SIZE << get_order(size),
4066 gfpflags, node);
4067
4068 return ret;
4069 }
4070
4071 s = get_slab(size, gfpflags);
4072
4073 if (unlikely(ZERO_OR_NULL_PTR(s)))
4074 return s;
4075
4076 ret = slab_alloc_node(s, gfpflags, node, caller);
4077
4078 /* Honor the call site pointer we received. */
4079 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4080
4081 return ret;
4082 }
4083 #endif
4084
4085 #ifdef CONFIG_SYSFS
4086 static int count_inuse(struct page *page)
4087 {
4088 return page->inuse;
4089 }
4090
4091 static int count_total(struct page *page)
4092 {
4093 return page->objects;
4094 }
4095 #endif
4096
4097 #ifdef CONFIG_SLUB_DEBUG
4098 static int validate_slab(struct kmem_cache *s, struct page *page,
4099 unsigned long *map)
4100 {
4101 void *p;
4102 void *addr = page_address(page);
4103
4104 if (!check_slab(s, page) ||
4105 !on_freelist(s, page, NULL))
4106 return 0;
4107
4108 /* Now we know that a valid freelist exists */
4109 bitmap_zero(map, page->objects);
4110
4111 get_map(s, page, map);
4112 for_each_object(p, s, addr, page->objects) {
4113 if (test_bit(slab_index(p, s, addr), map))
4114 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4115 return 0;
4116 }
4117
4118 for_each_object(p, s, addr, page->objects)
4119 if (!test_bit(slab_index(p, s, addr), map))
4120 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4121 return 0;
4122 return 1;
4123 }
4124
4125 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4126 unsigned long *map)
4127 {
4128 slab_lock(page);
4129 validate_slab(s, page, map);
4130 slab_unlock(page);
4131 }
4132
4133 static int validate_slab_node(struct kmem_cache *s,
4134 struct kmem_cache_node *n, unsigned long *map)
4135 {
4136 unsigned long count = 0;
4137 struct page *page;
4138 unsigned long flags;
4139
4140 spin_lock_irqsave(&n->list_lock, flags);
4141
4142 list_for_each_entry(page, &n->partial, lru) {
4143 validate_slab_slab(s, page, map);
4144 count++;
4145 }
4146 if (count != n->nr_partial)
4147 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
4148 "counter=%ld\n", s->name, count, n->nr_partial);
4149
4150 if (!(s->flags & SLAB_STORE_USER))
4151 goto out;
4152
4153 list_for_each_entry(page, &n->full, lru) {
4154 validate_slab_slab(s, page, map);
4155 count++;
4156 }
4157 if (count != atomic_long_read(&n->nr_slabs))
4158 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
4159 "counter=%ld\n", s->name, count,
4160 atomic_long_read(&n->nr_slabs));
4161
4162 out:
4163 spin_unlock_irqrestore(&n->list_lock, flags);
4164 return count;
4165 }
4166
4167 static long validate_slab_cache(struct kmem_cache *s)
4168 {
4169 int node;
4170 unsigned long count = 0;
4171 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4172 sizeof(unsigned long), GFP_KERNEL);
4173
4174 if (!map)
4175 return -ENOMEM;
4176
4177 flush_all(s);
4178 for_each_node_state(node, N_NORMAL_MEMORY) {
4179 struct kmem_cache_node *n = get_node(s, node);
4180
4181 count += validate_slab_node(s, n, map);
4182 }
4183 kfree(map);
4184 return count;
4185 }
4186 /*
4187 * Generate lists of code addresses where slabcache objects are allocated
4188 * and freed.
4189 */
4190
4191 struct location {
4192 unsigned long count;
4193 unsigned long addr;
4194 long long sum_time;
4195 long min_time;
4196 long max_time;
4197 long min_pid;
4198 long max_pid;
4199 DECLARE_BITMAP(cpus, NR_CPUS);
4200 nodemask_t nodes;
4201 };
4202
4203 struct loc_track {
4204 unsigned long max;
4205 unsigned long count;
4206 struct location *loc;
4207 };
4208
4209 static void free_loc_track(struct loc_track *t)
4210 {
4211 if (t->max)
4212 free_pages((unsigned long)t->loc,
4213 get_order(sizeof(struct location) * t->max));
4214 }
4215
4216 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4217 {
4218 struct location *l;
4219 int order;
4220
4221 order = get_order(sizeof(struct location) * max);
4222
4223 l = (void *)__get_free_pages(flags, order);
4224 if (!l)
4225 return 0;
4226
4227 if (t->count) {
4228 memcpy(l, t->loc, sizeof(struct location) * t->count);
4229 free_loc_track(t);
4230 }
4231 t->max = max;
4232 t->loc = l;
4233 return 1;
4234 }
4235
4236 static int add_location(struct loc_track *t, struct kmem_cache *s,
4237 const struct track *track)
4238 {
4239 long start, end, pos;
4240 struct location *l;
4241 unsigned long caddr;
4242 unsigned long age = jiffies - track->when;
4243
4244 start = -1;
4245 end = t->count;
4246
4247 for ( ; ; ) {
4248 pos = start + (end - start + 1) / 2;
4249
4250 /*
4251 * There is nothing at "end". If we end up there
4252 * we need to add something to before end.
4253 */
4254 if (pos == end)
4255 break;
4256
4257 caddr = t->loc[pos].addr;
4258 if (track->addr == caddr) {
4259
4260 l = &t->loc[pos];
4261 l->count++;
4262 if (track->when) {
4263 l->sum_time += age;
4264 if (age < l->min_time)
4265 l->min_time = age;
4266 if (age > l->max_time)
4267 l->max_time = age;
4268
4269 if (track->pid < l->min_pid)
4270 l->min_pid = track->pid;
4271 if (track->pid > l->max_pid)
4272 l->max_pid = track->pid;
4273
4274 cpumask_set_cpu(track->cpu,
4275 to_cpumask(l->cpus));
4276 }
4277 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4278 return 1;
4279 }
4280
4281 if (track->addr < caddr)
4282 end = pos;
4283 else
4284 start = pos;
4285 }
4286
4287 /*
4288 * Not found. Insert new tracking element.
4289 */
4290 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4291 return 0;
4292
4293 l = t->loc + pos;
4294 if (pos < t->count)
4295 memmove(l + 1, l,
4296 (t->count - pos) * sizeof(struct location));
4297 t->count++;
4298 l->count = 1;
4299 l->addr = track->addr;
4300 l->sum_time = age;
4301 l->min_time = age;
4302 l->max_time = age;
4303 l->min_pid = track->pid;
4304 l->max_pid = track->pid;
4305 cpumask_clear(to_cpumask(l->cpus));
4306 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4307 nodes_clear(l->nodes);
4308 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4309 return 1;
4310 }
4311
4312 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4313 struct page *page, enum track_item alloc,
4314 unsigned long *map)
4315 {
4316 void *addr = page_address(page);
4317 void *p;
4318
4319 bitmap_zero(map, page->objects);
4320 get_map(s, page, map);
4321
4322 for_each_object(p, s, addr, page->objects)
4323 if (!test_bit(slab_index(p, s, addr), map))
4324 add_location(t, s, get_track(s, p, alloc));
4325 }
4326
4327 static int list_locations(struct kmem_cache *s, char *buf,
4328 enum track_item alloc)
4329 {
4330 int len = 0;
4331 unsigned long i;
4332 struct loc_track t = { 0, 0, NULL };
4333 int node;
4334 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4335 sizeof(unsigned long), GFP_KERNEL);
4336
4337 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4338 GFP_TEMPORARY)) {
4339 kfree(map);
4340 return sprintf(buf, "Out of memory\n");
4341 }
4342 /* Push back cpu slabs */
4343 flush_all(s);
4344
4345 for_each_node_state(node, N_NORMAL_MEMORY) {
4346 struct kmem_cache_node *n = get_node(s, node);
4347 unsigned long flags;
4348 struct page *page;
4349
4350 if (!atomic_long_read(&n->nr_slabs))
4351 continue;
4352
4353 spin_lock_irqsave(&n->list_lock, flags);
4354 list_for_each_entry(page, &n->partial, lru)
4355 process_slab(&t, s, page, alloc, map);
4356 list_for_each_entry(page, &n->full, lru)
4357 process_slab(&t, s, page, alloc, map);
4358 spin_unlock_irqrestore(&n->list_lock, flags);
4359 }
4360
4361 for (i = 0; i < t.count; i++) {
4362 struct location *l = &t.loc[i];
4363
4364 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4365 break;
4366 len += sprintf(buf + len, "%7ld ", l->count);
4367
4368 if (l->addr)
4369 len += sprintf(buf + len, "%pS", (void *)l->addr);
4370 else
4371 len += sprintf(buf + len, "<not-available>");
4372
4373 if (l->sum_time != l->min_time) {
4374 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4375 l->min_time,
4376 (long)div_u64(l->sum_time, l->count),
4377 l->max_time);
4378 } else
4379 len += sprintf(buf + len, " age=%ld",
4380 l->min_time);
4381
4382 if (l->min_pid != l->max_pid)
4383 len += sprintf(buf + len, " pid=%ld-%ld",
4384 l->min_pid, l->max_pid);
4385 else
4386 len += sprintf(buf + len, " pid=%ld",
4387 l->min_pid);
4388
4389 if (num_online_cpus() > 1 &&
4390 !cpumask_empty(to_cpumask(l->cpus)) &&
4391 len < PAGE_SIZE - 60) {
4392 len += sprintf(buf + len, " cpus=");
4393 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4394 to_cpumask(l->cpus));
4395 }
4396
4397 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4398 len < PAGE_SIZE - 60) {
4399 len += sprintf(buf + len, " nodes=");
4400 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4401 l->nodes);
4402 }
4403
4404 len += sprintf(buf + len, "\n");
4405 }
4406
4407 free_loc_track(&t);
4408 kfree(map);
4409 if (!t.count)
4410 len += sprintf(buf, "No data\n");
4411 return len;
4412 }
4413 #endif
4414
4415 #ifdef SLUB_RESILIENCY_TEST
4416 static void resiliency_test(void)
4417 {
4418 u8 *p;
4419
4420 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
4421
4422 printk(KERN_ERR "SLUB resiliency testing\n");
4423 printk(KERN_ERR "-----------------------\n");
4424 printk(KERN_ERR "A. Corruption after allocation\n");
4425
4426 p = kzalloc(16, GFP_KERNEL);
4427 p[16] = 0x12;
4428 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4429 " 0x12->0x%p\n\n", p + 16);
4430
4431 validate_slab_cache(kmalloc_caches[4]);
4432
4433 /* Hmmm... The next two are dangerous */
4434 p = kzalloc(32, GFP_KERNEL);
4435 p[32 + sizeof(void *)] = 0x34;
4436 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4437 " 0x34 -> -0x%p\n", p);
4438 printk(KERN_ERR
4439 "If allocated object is overwritten then not detectable\n\n");
4440
4441 validate_slab_cache(kmalloc_caches[5]);
4442 p = kzalloc(64, GFP_KERNEL);
4443 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4444 *p = 0x56;
4445 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4446 p);
4447 printk(KERN_ERR
4448 "If allocated object is overwritten then not detectable\n\n");
4449 validate_slab_cache(kmalloc_caches[6]);
4450
4451 printk(KERN_ERR "\nB. Corruption after free\n");
4452 p = kzalloc(128, GFP_KERNEL);
4453 kfree(p);
4454 *p = 0x78;
4455 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4456 validate_slab_cache(kmalloc_caches[7]);
4457
4458 p = kzalloc(256, GFP_KERNEL);
4459 kfree(p);
4460 p[50] = 0x9a;
4461 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4462 p);
4463 validate_slab_cache(kmalloc_caches[8]);
4464
4465 p = kzalloc(512, GFP_KERNEL);
4466 kfree(p);
4467 p[512] = 0xab;
4468 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4469 validate_slab_cache(kmalloc_caches[9]);
4470 }
4471 #else
4472 #ifdef CONFIG_SYSFS
4473 static void resiliency_test(void) {};
4474 #endif
4475 #endif
4476
4477 #ifdef CONFIG_SYSFS
4478 enum slab_stat_type {
4479 SL_ALL, /* All slabs */
4480 SL_PARTIAL, /* Only partially allocated slabs */
4481 SL_CPU, /* Only slabs used for cpu caches */
4482 SL_OBJECTS, /* Determine allocated objects not slabs */
4483 SL_TOTAL /* Determine object capacity not slabs */
4484 };
4485
4486 #define SO_ALL (1 << SL_ALL)
4487 #define SO_PARTIAL (1 << SL_PARTIAL)
4488 #define SO_CPU (1 << SL_CPU)
4489 #define SO_OBJECTS (1 << SL_OBJECTS)
4490 #define SO_TOTAL (1 << SL_TOTAL)
4491
4492 static ssize_t show_slab_objects(struct kmem_cache *s,
4493 char *buf, unsigned long flags)
4494 {
4495 unsigned long total = 0;
4496 int node;
4497 int x;
4498 unsigned long *nodes;
4499 unsigned long *per_cpu;
4500
4501 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4502 if (!nodes)
4503 return -ENOMEM;
4504 per_cpu = nodes + nr_node_ids;
4505
4506 if (flags & SO_CPU) {
4507 int cpu;
4508
4509 for_each_possible_cpu(cpu) {
4510 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
4511 int node;
4512 struct page *page;
4513
4514 page = ACCESS_ONCE(c->page);
4515 if (!page)
4516 continue;
4517
4518 node = page_to_nid(page);
4519 if (flags & SO_TOTAL)
4520 x = page->objects;
4521 else if (flags & SO_OBJECTS)
4522 x = page->inuse;
4523 else
4524 x = 1;
4525
4526 total += x;
4527 nodes[node] += x;
4528
4529 page = ACCESS_ONCE(c->partial);
4530 if (page) {
4531 x = page->pobjects;
4532 total += x;
4533 nodes[node] += x;
4534 }
4535
4536 per_cpu[node]++;
4537 }
4538 }
4539
4540 lock_memory_hotplug();
4541 #ifdef CONFIG_SLUB_DEBUG
4542 if (flags & SO_ALL) {
4543 for_each_node_state(node, N_NORMAL_MEMORY) {
4544 struct kmem_cache_node *n = get_node(s, node);
4545
4546 if (flags & SO_TOTAL)
4547 x = atomic_long_read(&n->total_objects);
4548 else if (flags & SO_OBJECTS)
4549 x = atomic_long_read(&n->total_objects) -
4550 count_partial(n, count_free);
4551
4552 else
4553 x = atomic_long_read(&n->nr_slabs);
4554 total += x;
4555 nodes[node] += x;
4556 }
4557
4558 } else
4559 #endif
4560 if (flags & SO_PARTIAL) {
4561 for_each_node_state(node, N_NORMAL_MEMORY) {
4562 struct kmem_cache_node *n = get_node(s, node);
4563
4564 if (flags & SO_TOTAL)
4565 x = count_partial(n, count_total);
4566 else if (flags & SO_OBJECTS)
4567 x = count_partial(n, count_inuse);
4568 else
4569 x = n->nr_partial;
4570 total += x;
4571 nodes[node] += x;
4572 }
4573 }
4574 x = sprintf(buf, "%lu", total);
4575 #ifdef CONFIG_NUMA
4576 for_each_node_state(node, N_NORMAL_MEMORY)
4577 if (nodes[node])
4578 x += sprintf(buf + x, " N%d=%lu",
4579 node, nodes[node]);
4580 #endif
4581 unlock_memory_hotplug();
4582 kfree(nodes);
4583 return x + sprintf(buf + x, "\n");
4584 }
4585
4586 #ifdef CONFIG_SLUB_DEBUG
4587 static int any_slab_objects(struct kmem_cache *s)
4588 {
4589 int node;
4590
4591 for_each_online_node(node) {
4592 struct kmem_cache_node *n = get_node(s, node);
4593
4594 if (!n)
4595 continue;
4596
4597 if (atomic_long_read(&n->total_objects))
4598 return 1;
4599 }
4600 return 0;
4601 }
4602 #endif
4603
4604 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4605 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4606
4607 struct slab_attribute {
4608 struct attribute attr;
4609 ssize_t (*show)(struct kmem_cache *s, char *buf);
4610 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4611 };
4612
4613 #define SLAB_ATTR_RO(_name) \
4614 static struct slab_attribute _name##_attr = \
4615 __ATTR(_name, 0400, _name##_show, NULL)
4616
4617 #define SLAB_ATTR(_name) \
4618 static struct slab_attribute _name##_attr = \
4619 __ATTR(_name, 0600, _name##_show, _name##_store)
4620
4621 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4622 {
4623 return sprintf(buf, "%d\n", s->size);
4624 }
4625 SLAB_ATTR_RO(slab_size);
4626
4627 static ssize_t align_show(struct kmem_cache *s, char *buf)
4628 {
4629 return sprintf(buf, "%d\n", s->align);
4630 }
4631 SLAB_ATTR_RO(align);
4632
4633 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4634 {
4635 return sprintf(buf, "%d\n", s->object_size);
4636 }
4637 SLAB_ATTR_RO(object_size);
4638
4639 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4640 {
4641 return sprintf(buf, "%d\n", oo_objects(s->oo));
4642 }
4643 SLAB_ATTR_RO(objs_per_slab);
4644
4645 static ssize_t order_store(struct kmem_cache *s,
4646 const char *buf, size_t length)
4647 {
4648 unsigned long order;
4649 int err;
4650
4651 err = strict_strtoul(buf, 10, &order);
4652 if (err)
4653 return err;
4654
4655 if (order > slub_max_order || order < slub_min_order)
4656 return -EINVAL;
4657
4658 calculate_sizes(s, order);
4659 return length;
4660 }
4661
4662 static ssize_t order_show(struct kmem_cache *s, char *buf)
4663 {
4664 return sprintf(buf, "%d\n", oo_order(s->oo));
4665 }
4666 SLAB_ATTR(order);
4667
4668 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4669 {
4670 return sprintf(buf, "%lu\n", s->min_partial);
4671 }
4672
4673 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4674 size_t length)
4675 {
4676 unsigned long min;
4677 int err;
4678
4679 err = strict_strtoul(buf, 10, &min);
4680 if (err)
4681 return err;
4682
4683 set_min_partial(s, min);
4684 return length;
4685 }
4686 SLAB_ATTR(min_partial);
4687
4688 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4689 {
4690 return sprintf(buf, "%u\n", s->cpu_partial);
4691 }
4692
4693 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4694 size_t length)
4695 {
4696 unsigned long objects;
4697 int err;
4698
4699 err = strict_strtoul(buf, 10, &objects);
4700 if (err)
4701 return err;
4702 if (objects && kmem_cache_debug(s))
4703 return -EINVAL;
4704
4705 s->cpu_partial = objects;
4706 flush_all(s);
4707 return length;
4708 }
4709 SLAB_ATTR(cpu_partial);
4710
4711 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4712 {
4713 if (!s->ctor)
4714 return 0;
4715 return sprintf(buf, "%pS\n", s->ctor);
4716 }
4717 SLAB_ATTR_RO(ctor);
4718
4719 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4720 {
4721 return sprintf(buf, "%d\n", s->refcount - 1);
4722 }
4723 SLAB_ATTR_RO(aliases);
4724
4725 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4726 {
4727 return show_slab_objects(s, buf, SO_PARTIAL);
4728 }
4729 SLAB_ATTR_RO(partial);
4730
4731 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4732 {
4733 return show_slab_objects(s, buf, SO_CPU);
4734 }
4735 SLAB_ATTR_RO(cpu_slabs);
4736
4737 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4738 {
4739 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4740 }
4741 SLAB_ATTR_RO(objects);
4742
4743 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4744 {
4745 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4746 }
4747 SLAB_ATTR_RO(objects_partial);
4748
4749 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4750 {
4751 int objects = 0;
4752 int pages = 0;
4753 int cpu;
4754 int len;
4755
4756 for_each_online_cpu(cpu) {
4757 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4758
4759 if (page) {
4760 pages += page->pages;
4761 objects += page->pobjects;
4762 }
4763 }
4764
4765 len = sprintf(buf, "%d(%d)", objects, pages);
4766
4767 #ifdef CONFIG_SMP
4768 for_each_online_cpu(cpu) {
4769 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4770
4771 if (page && len < PAGE_SIZE - 20)
4772 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4773 page->pobjects, page->pages);
4774 }
4775 #endif
4776 return len + sprintf(buf + len, "\n");
4777 }
4778 SLAB_ATTR_RO(slabs_cpu_partial);
4779
4780 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4781 {
4782 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4783 }
4784
4785 static ssize_t reclaim_account_store(struct kmem_cache *s,
4786 const char *buf, size_t length)
4787 {
4788 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4789 if (buf[0] == '1')
4790 s->flags |= SLAB_RECLAIM_ACCOUNT;
4791 return length;
4792 }
4793 SLAB_ATTR(reclaim_account);
4794
4795 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4796 {
4797 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4798 }
4799 SLAB_ATTR_RO(hwcache_align);
4800
4801 #ifdef CONFIG_ZONE_DMA
4802 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4803 {
4804 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4805 }
4806 SLAB_ATTR_RO(cache_dma);
4807 #endif
4808
4809 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4810 {
4811 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4812 }
4813 SLAB_ATTR_RO(destroy_by_rcu);
4814
4815 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4816 {
4817 return sprintf(buf, "%d\n", s->reserved);
4818 }
4819 SLAB_ATTR_RO(reserved);
4820
4821 #ifdef CONFIG_SLUB_DEBUG
4822 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4823 {
4824 return show_slab_objects(s, buf, SO_ALL);
4825 }
4826 SLAB_ATTR_RO(slabs);
4827
4828 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4829 {
4830 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4831 }
4832 SLAB_ATTR_RO(total_objects);
4833
4834 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4835 {
4836 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4837 }
4838
4839 static ssize_t sanity_checks_store(struct kmem_cache *s,
4840 const char *buf, size_t length)
4841 {
4842 s->flags &= ~SLAB_DEBUG_FREE;
4843 if (buf[0] == '1') {
4844 s->flags &= ~__CMPXCHG_DOUBLE;
4845 s->flags |= SLAB_DEBUG_FREE;
4846 }
4847 return length;
4848 }
4849 SLAB_ATTR(sanity_checks);
4850
4851 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4852 {
4853 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4854 }
4855
4856 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4857 size_t length)
4858 {
4859 s->flags &= ~SLAB_TRACE;
4860 if (buf[0] == '1') {
4861 s->flags &= ~__CMPXCHG_DOUBLE;
4862 s->flags |= SLAB_TRACE;
4863 }
4864 return length;
4865 }
4866 SLAB_ATTR(trace);
4867
4868 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4869 {
4870 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4871 }
4872
4873 static ssize_t red_zone_store(struct kmem_cache *s,
4874 const char *buf, size_t length)
4875 {
4876 if (any_slab_objects(s))
4877 return -EBUSY;
4878
4879 s->flags &= ~SLAB_RED_ZONE;
4880 if (buf[0] == '1') {
4881 s->flags &= ~__CMPXCHG_DOUBLE;
4882 s->flags |= SLAB_RED_ZONE;
4883 }
4884 calculate_sizes(s, -1);
4885 return length;
4886 }
4887 SLAB_ATTR(red_zone);
4888
4889 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4890 {
4891 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4892 }
4893
4894 static ssize_t poison_store(struct kmem_cache *s,
4895 const char *buf, size_t length)
4896 {
4897 if (any_slab_objects(s))
4898 return -EBUSY;
4899
4900 s->flags &= ~SLAB_POISON;
4901 if (buf[0] == '1') {
4902 s->flags &= ~__CMPXCHG_DOUBLE;
4903 s->flags |= SLAB_POISON;
4904 }
4905 calculate_sizes(s, -1);
4906 return length;
4907 }
4908 SLAB_ATTR(poison);
4909
4910 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4911 {
4912 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4913 }
4914
4915 static ssize_t store_user_store(struct kmem_cache *s,
4916 const char *buf, size_t length)
4917 {
4918 if (any_slab_objects(s))
4919 return -EBUSY;
4920
4921 s->flags &= ~SLAB_STORE_USER;
4922 if (buf[0] == '1') {
4923 s->flags &= ~__CMPXCHG_DOUBLE;
4924 s->flags |= SLAB_STORE_USER;
4925 }
4926 calculate_sizes(s, -1);
4927 return length;
4928 }
4929 SLAB_ATTR(store_user);
4930
4931 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4932 {
4933 return 0;
4934 }
4935
4936 static ssize_t validate_store(struct kmem_cache *s,
4937 const char *buf, size_t length)
4938 {
4939 int ret = -EINVAL;
4940
4941 if (buf[0] == '1') {
4942 ret = validate_slab_cache(s);
4943 if (ret >= 0)
4944 ret = length;
4945 }
4946 return ret;
4947 }
4948 SLAB_ATTR(validate);
4949
4950 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4951 {
4952 if (!(s->flags & SLAB_STORE_USER))
4953 return -ENOSYS;
4954 return list_locations(s, buf, TRACK_ALLOC);
4955 }
4956 SLAB_ATTR_RO(alloc_calls);
4957
4958 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4959 {
4960 if (!(s->flags & SLAB_STORE_USER))
4961 return -ENOSYS;
4962 return list_locations(s, buf, TRACK_FREE);
4963 }
4964 SLAB_ATTR_RO(free_calls);
4965 #endif /* CONFIG_SLUB_DEBUG */
4966
4967 #ifdef CONFIG_FAILSLAB
4968 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4969 {
4970 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4971 }
4972
4973 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4974 size_t length)
4975 {
4976 s->flags &= ~SLAB_FAILSLAB;
4977 if (buf[0] == '1')
4978 s->flags |= SLAB_FAILSLAB;
4979 return length;
4980 }
4981 SLAB_ATTR(failslab);
4982 #endif
4983
4984 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4985 {
4986 return 0;
4987 }
4988
4989 static ssize_t shrink_store(struct kmem_cache *s,
4990 const char *buf, size_t length)
4991 {
4992 if (buf[0] == '1') {
4993 int rc = kmem_cache_shrink(s);
4994
4995 if (rc)
4996 return rc;
4997 } else
4998 return -EINVAL;
4999 return length;
5000 }
5001 SLAB_ATTR(shrink);
5002
5003 #ifdef CONFIG_NUMA
5004 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5005 {
5006 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
5007 }
5008
5009 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5010 const char *buf, size_t length)
5011 {
5012 unsigned long ratio;
5013 int err;
5014
5015 err = strict_strtoul(buf, 10, &ratio);
5016 if (err)
5017 return err;
5018
5019 if (ratio <= 100)
5020 s->remote_node_defrag_ratio = ratio * 10;
5021
5022 return length;
5023 }
5024 SLAB_ATTR(remote_node_defrag_ratio);
5025 #endif
5026
5027 #ifdef CONFIG_SLUB_STATS
5028 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5029 {
5030 unsigned long sum = 0;
5031 int cpu;
5032 int len;
5033 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5034
5035 if (!data)
5036 return -ENOMEM;
5037
5038 for_each_online_cpu(cpu) {
5039 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5040
5041 data[cpu] = x;
5042 sum += x;
5043 }
5044
5045 len = sprintf(buf, "%lu", sum);
5046
5047 #ifdef CONFIG_SMP
5048 for_each_online_cpu(cpu) {
5049 if (data[cpu] && len < PAGE_SIZE - 20)
5050 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5051 }
5052 #endif
5053 kfree(data);
5054 return len + sprintf(buf + len, "\n");
5055 }
5056
5057 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5058 {
5059 int cpu;
5060
5061 for_each_online_cpu(cpu)
5062 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5063 }
5064
5065 #define STAT_ATTR(si, text) \
5066 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5067 { \
5068 return show_stat(s, buf, si); \
5069 } \
5070 static ssize_t text##_store(struct kmem_cache *s, \
5071 const char *buf, size_t length) \
5072 { \
5073 if (buf[0] != '0') \
5074 return -EINVAL; \
5075 clear_stat(s, si); \
5076 return length; \
5077 } \
5078 SLAB_ATTR(text); \
5079
5080 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5081 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5082 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5083 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5084 STAT_ATTR(FREE_FROZEN, free_frozen);
5085 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5086 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5087 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5088 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5089 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5090 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5091 STAT_ATTR(FREE_SLAB, free_slab);
5092 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5093 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5094 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5095 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5096 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5097 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5098 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5099 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5100 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5101 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5102 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5103 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5104 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5105 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5106 #endif
5107
5108 static struct attribute *slab_attrs[] = {
5109 &slab_size_attr.attr,
5110 &object_size_attr.attr,
5111 &objs_per_slab_attr.attr,
5112 &order_attr.attr,
5113 &min_partial_attr.attr,
5114 &cpu_partial_attr.attr,
5115 &objects_attr.attr,
5116 &objects_partial_attr.attr,
5117 &partial_attr.attr,
5118 &cpu_slabs_attr.attr,
5119 &ctor_attr.attr,
5120 &aliases_attr.attr,
5121 &align_attr.attr,
5122 &hwcache_align_attr.attr,
5123 &reclaim_account_attr.attr,
5124 &destroy_by_rcu_attr.attr,
5125 &shrink_attr.attr,
5126 &reserved_attr.attr,
5127 &slabs_cpu_partial_attr.attr,
5128 #ifdef CONFIG_SLUB_DEBUG
5129 &total_objects_attr.attr,
5130 &slabs_attr.attr,
5131 &sanity_checks_attr.attr,
5132 &trace_attr.attr,
5133 &red_zone_attr.attr,
5134 &poison_attr.attr,
5135 &store_user_attr.attr,
5136 &validate_attr.attr,
5137 &alloc_calls_attr.attr,
5138 &free_calls_attr.attr,
5139 #endif
5140 #ifdef CONFIG_ZONE_DMA
5141 &cache_dma_attr.attr,
5142 #endif
5143 #ifdef CONFIG_NUMA
5144 &remote_node_defrag_ratio_attr.attr,
5145 #endif
5146 #ifdef CONFIG_SLUB_STATS
5147 &alloc_fastpath_attr.attr,
5148 &alloc_slowpath_attr.attr,
5149 &free_fastpath_attr.attr,
5150 &free_slowpath_attr.attr,
5151 &free_frozen_attr.attr,
5152 &free_add_partial_attr.attr,
5153 &free_remove_partial_attr.attr,
5154 &alloc_from_partial_attr.attr,
5155 &alloc_slab_attr.attr,
5156 &alloc_refill_attr.attr,
5157 &alloc_node_mismatch_attr.attr,
5158 &free_slab_attr.attr,
5159 &cpuslab_flush_attr.attr,
5160 &deactivate_full_attr.attr,
5161 &deactivate_empty_attr.attr,
5162 &deactivate_to_head_attr.attr,
5163 &deactivate_to_tail_attr.attr,
5164 &deactivate_remote_frees_attr.attr,
5165 &deactivate_bypass_attr.attr,
5166 &order_fallback_attr.attr,
5167 &cmpxchg_double_fail_attr.attr,
5168 &cmpxchg_double_cpu_fail_attr.attr,
5169 &cpu_partial_alloc_attr.attr,
5170 &cpu_partial_free_attr.attr,
5171 &cpu_partial_node_attr.attr,
5172 &cpu_partial_drain_attr.attr,
5173 #endif
5174 #ifdef CONFIG_FAILSLAB
5175 &failslab_attr.attr,
5176 #endif
5177
5178 NULL
5179 };
5180
5181 static struct attribute_group slab_attr_group = {
5182 .attrs = slab_attrs,
5183 };
5184
5185 static ssize_t slab_attr_show(struct kobject *kobj,
5186 struct attribute *attr,
5187 char *buf)
5188 {
5189 struct slab_attribute *attribute;
5190 struct kmem_cache *s;
5191 int err;
5192
5193 attribute = to_slab_attr(attr);
5194 s = to_slab(kobj);
5195
5196 if (!attribute->show)
5197 return -EIO;
5198
5199 err = attribute->show(s, buf);
5200
5201 return err;
5202 }
5203
5204 static ssize_t slab_attr_store(struct kobject *kobj,
5205 struct attribute *attr,
5206 const char *buf, size_t len)
5207 {
5208 struct slab_attribute *attribute;
5209 struct kmem_cache *s;
5210 int err;
5211
5212 attribute = to_slab_attr(attr);
5213 s = to_slab(kobj);
5214
5215 if (!attribute->store)
5216 return -EIO;
5217
5218 err = attribute->store(s, buf, len);
5219
5220 return err;
5221 }
5222
5223 static void kmem_cache_release(struct kobject *kobj)
5224 {
5225 struct kmem_cache *s = to_slab(kobj);
5226
5227 kfree(s->name);
5228 kfree(s);
5229 }
5230
5231 static const struct sysfs_ops slab_sysfs_ops = {
5232 .show = slab_attr_show,
5233 .store = slab_attr_store,
5234 };
5235
5236 static struct kobj_type slab_ktype = {
5237 .sysfs_ops = &slab_sysfs_ops,
5238 .release = kmem_cache_release
5239 };
5240
5241 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5242 {
5243 struct kobj_type *ktype = get_ktype(kobj);
5244
5245 if (ktype == &slab_ktype)
5246 return 1;
5247 return 0;
5248 }
5249
5250 static const struct kset_uevent_ops slab_uevent_ops = {
5251 .filter = uevent_filter,
5252 };
5253
5254 static struct kset *slab_kset;
5255
5256 #define ID_STR_LENGTH 64
5257
5258 /* Create a unique string id for a slab cache:
5259 *
5260 * Format :[flags-]size
5261 */
5262 static char *create_unique_id(struct kmem_cache *s)
5263 {
5264 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5265 char *p = name;
5266
5267 BUG_ON(!name);
5268
5269 *p++ = ':';
5270 /*
5271 * First flags affecting slabcache operations. We will only
5272 * get here for aliasable slabs so we do not need to support
5273 * too many flags. The flags here must cover all flags that
5274 * are matched during merging to guarantee that the id is
5275 * unique.
5276 */
5277 if (s->flags & SLAB_CACHE_DMA)
5278 *p++ = 'd';
5279 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5280 *p++ = 'a';
5281 if (s->flags & SLAB_DEBUG_FREE)
5282 *p++ = 'F';
5283 if (!(s->flags & SLAB_NOTRACK))
5284 *p++ = 't';
5285 if (p != name + 1)
5286 *p++ = '-';
5287 p += sprintf(p, "%07d", s->size);
5288 BUG_ON(p > name + ID_STR_LENGTH - 1);
5289 return name;
5290 }
5291
5292 static int sysfs_slab_add(struct kmem_cache *s)
5293 {
5294 int err;
5295 const char *name;
5296 int unmergeable;
5297
5298 if (slab_state < FULL)
5299 /* Defer until later */
5300 return 0;
5301
5302 unmergeable = slab_unmergeable(s);
5303 if (unmergeable) {
5304 /*
5305 * Slabcache can never be merged so we can use the name proper.
5306 * This is typically the case for debug situations. In that
5307 * case we can catch duplicate names easily.
5308 */
5309 sysfs_remove_link(&slab_kset->kobj, s->name);
5310 name = s->name;
5311 } else {
5312 /*
5313 * Create a unique name for the slab as a target
5314 * for the symlinks.
5315 */
5316 name = create_unique_id(s);
5317 }
5318
5319 s->kobj.kset = slab_kset;
5320 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5321 if (err) {
5322 kobject_put(&s->kobj);
5323 return err;
5324 }
5325
5326 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5327 if (err) {
5328 kobject_del(&s->kobj);
5329 kobject_put(&s->kobj);
5330 return err;
5331 }
5332 kobject_uevent(&s->kobj, KOBJ_ADD);
5333 if (!unmergeable) {
5334 /* Setup first alias */
5335 sysfs_slab_alias(s, s->name);
5336 kfree(name);
5337 }
5338 return 0;
5339 }
5340
5341 static void sysfs_slab_remove(struct kmem_cache *s)
5342 {
5343 if (slab_state < FULL)
5344 /*
5345 * Sysfs has not been setup yet so no need to remove the
5346 * cache from sysfs.
5347 */
5348 return;
5349
5350 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5351 kobject_del(&s->kobj);
5352 kobject_put(&s->kobj);
5353 }
5354
5355 /*
5356 * Need to buffer aliases during bootup until sysfs becomes
5357 * available lest we lose that information.
5358 */
5359 struct saved_alias {
5360 struct kmem_cache *s;
5361 const char *name;
5362 struct saved_alias *next;
5363 };
5364
5365 static struct saved_alias *alias_list;
5366
5367 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5368 {
5369 struct saved_alias *al;
5370
5371 if (slab_state == FULL) {
5372 /*
5373 * If we have a leftover link then remove it.
5374 */
5375 sysfs_remove_link(&slab_kset->kobj, name);
5376 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5377 }
5378
5379 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5380 if (!al)
5381 return -ENOMEM;
5382
5383 al->s = s;
5384 al->name = name;
5385 al->next = alias_list;
5386 alias_list = al;
5387 return 0;
5388 }
5389
5390 static int __init slab_sysfs_init(void)
5391 {
5392 struct kmem_cache *s;
5393 int err;
5394
5395 mutex_lock(&slab_mutex);
5396
5397 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5398 if (!slab_kset) {
5399 mutex_unlock(&slab_mutex);
5400 printk(KERN_ERR "Cannot register slab subsystem.\n");
5401 return -ENOSYS;
5402 }
5403
5404 slab_state = FULL;
5405
5406 list_for_each_entry(s, &slab_caches, list) {
5407 err = sysfs_slab_add(s);
5408 if (err)
5409 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5410 " to sysfs\n", s->name);
5411 }
5412
5413 while (alias_list) {
5414 struct saved_alias *al = alias_list;
5415
5416 alias_list = alias_list->next;
5417 err = sysfs_slab_alias(al->s, al->name);
5418 if (err)
5419 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5420 " %s to sysfs\n", al->name);
5421 kfree(al);
5422 }
5423
5424 mutex_unlock(&slab_mutex);
5425 resiliency_test();
5426 return 0;
5427 }
5428
5429 __initcall(slab_sysfs_init);
5430 #endif /* CONFIG_SYSFS */
5431
5432 /*
5433 * The /proc/slabinfo ABI
5434 */
5435 #ifdef CONFIG_SLABINFO
5436 static void print_slabinfo_header(struct seq_file *m)
5437 {
5438 seq_puts(m, "slabinfo - version: 2.1\n");
5439 seq_puts(m, "# name <active_objs> <num_objs> <object_size> "
5440 "<objperslab> <pagesperslab>");
5441 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
5442 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
5443 seq_putc(m, '\n');
5444 }
5445
5446 static void *s_start(struct seq_file *m, loff_t *pos)
5447 {
5448 loff_t n = *pos;
5449
5450 mutex_lock(&slab_mutex);
5451 if (!n)
5452 print_slabinfo_header(m);
5453
5454 return seq_list_start(&slab_caches, *pos);
5455 }
5456
5457 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
5458 {
5459 return seq_list_next(p, &slab_caches, pos);
5460 }
5461
5462 static void s_stop(struct seq_file *m, void *p)
5463 {
5464 mutex_unlock(&slab_mutex);
5465 }
5466
5467 static int s_show(struct seq_file *m, void *p)
5468 {
5469 unsigned long nr_partials = 0;
5470 unsigned long nr_slabs = 0;
5471 unsigned long nr_inuse = 0;
5472 unsigned long nr_objs = 0;
5473 unsigned long nr_free = 0;
5474 struct kmem_cache *s;
5475 int node;
5476
5477 s = list_entry(p, struct kmem_cache, list);
5478
5479 for_each_online_node(node) {
5480 struct kmem_cache_node *n = get_node(s, node);
5481
5482 if (!n)
5483 continue;
5484
5485 nr_partials += n->nr_partial;
5486 nr_slabs += atomic_long_read(&n->nr_slabs);
5487 nr_objs += atomic_long_read(&n->total_objects);
5488 nr_free += count_partial(n, count_free);
5489 }
5490
5491 nr_inuse = nr_objs - nr_free;
5492
5493 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
5494 nr_objs, s->size, oo_objects(s->oo),
5495 (1 << oo_order(s->oo)));
5496 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
5497 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
5498 0UL);
5499 seq_putc(m, '\n');
5500 return 0;
5501 }
5502
5503 static const struct seq_operations slabinfo_op = {
5504 .start = s_start,
5505 .next = s_next,
5506 .stop = s_stop,
5507 .show = s_show,
5508 };
5509
5510 static int slabinfo_open(struct inode *inode, struct file *file)
5511 {
5512 return seq_open(file, &slabinfo_op);
5513 }
5514
5515 static const struct file_operations proc_slabinfo_operations = {
5516 .open = slabinfo_open,
5517 .read = seq_read,
5518 .llseek = seq_lseek,
5519 .release = seq_release,
5520 };
5521
5522 static int __init slab_proc_init(void)
5523 {
5524 proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
5525 return 0;
5526 }
5527 module_init(slab_proc_init);
5528 #endif /* CONFIG_SLABINFO */
This page took 0.14193 seconds and 5 git commands to generate.