Use non atomic unlock
[deliverable/linux.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
9 */
10
11 #include <linux/mm.h>
12 #include <linux/module.h>
13 #include <linux/bit_spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/seq_file.h>
18 #include <linux/cpu.h>
19 #include <linux/cpuset.h>
20 #include <linux/mempolicy.h>
21 #include <linux/ctype.h>
22 #include <linux/kallsyms.h>
23 #include <linux/memory.h>
24
25 /*
26 * Lock order:
27 * 1. slab_lock(page)
28 * 2. slab->list_lock
29 *
30 * The slab_lock protects operations on the object of a particular
31 * slab and its metadata in the page struct. If the slab lock
32 * has been taken then no allocations nor frees can be performed
33 * on the objects in the slab nor can the slab be added or removed
34 * from the partial or full lists since this would mean modifying
35 * the page_struct of the slab.
36 *
37 * The list_lock protects the partial and full list on each node and
38 * the partial slab counter. If taken then no new slabs may be added or
39 * removed from the lists nor make the number of partial slabs be modified.
40 * (Note that the total number of slabs is an atomic value that may be
41 * modified without taking the list lock).
42 *
43 * The list_lock is a centralized lock and thus we avoid taking it as
44 * much as possible. As long as SLUB does not have to handle partial
45 * slabs, operations can continue without any centralized lock. F.e.
46 * allocating a long series of objects that fill up slabs does not require
47 * the list lock.
48 *
49 * The lock order is sometimes inverted when we are trying to get a slab
50 * off a list. We take the list_lock and then look for a page on the list
51 * to use. While we do that objects in the slabs may be freed. We can
52 * only operate on the slab if we have also taken the slab_lock. So we use
53 * a slab_trylock() on the slab. If trylock was successful then no frees
54 * can occur anymore and we can use the slab for allocations etc. If the
55 * slab_trylock() does not succeed then frees are in progress in the slab and
56 * we must stay away from it for a while since we may cause a bouncing
57 * cacheline if we try to acquire the lock. So go onto the next slab.
58 * If all pages are busy then we may allocate a new slab instead of reusing
59 * a partial slab. A new slab has noone operating on it and thus there is
60 * no danger of cacheline contention.
61 *
62 * Interrupts are disabled during allocation and deallocation in order to
63 * make the slab allocator safe to use in the context of an irq. In addition
64 * interrupts are disabled to ensure that the processor does not change
65 * while handling per_cpu slabs, due to kernel preemption.
66 *
67 * SLUB assigns one slab for allocation to each processor.
68 * Allocations only occur from these slabs called cpu slabs.
69 *
70 * Slabs with free elements are kept on a partial list and during regular
71 * operations no list for full slabs is used. If an object in a full slab is
72 * freed then the slab will show up again on the partial lists.
73 * We track full slabs for debugging purposes though because otherwise we
74 * cannot scan all objects.
75 *
76 * Slabs are freed when they become empty. Teardown and setup is
77 * minimal so we rely on the page allocators per cpu caches for
78 * fast frees and allocs.
79 *
80 * Overloading of page flags that are otherwise used for LRU management.
81 *
82 * PageActive The slab is frozen and exempt from list processing.
83 * This means that the slab is dedicated to a purpose
84 * such as satisfying allocations for a specific
85 * processor. Objects may be freed in the slab while
86 * it is frozen but slab_free will then skip the usual
87 * list operations. It is up to the processor holding
88 * the slab to integrate the slab into the slab lists
89 * when the slab is no longer needed.
90 *
91 * One use of this flag is to mark slabs that are
92 * used for allocations. Then such a slab becomes a cpu
93 * slab. The cpu slab may be equipped with an additional
94 * freelist that allows lockless access to
95 * free objects in addition to the regular freelist
96 * that requires the slab lock.
97 *
98 * PageError Slab requires special handling due to debug
99 * options set. This moves slab handling out of
100 * the fast path and disables lockless freelists.
101 */
102
103 #define FROZEN (1 << PG_active)
104
105 #ifdef CONFIG_SLUB_DEBUG
106 #define SLABDEBUG (1 << PG_error)
107 #else
108 #define SLABDEBUG 0
109 #endif
110
111 static inline int SlabFrozen(struct page *page)
112 {
113 return page->flags & FROZEN;
114 }
115
116 static inline void SetSlabFrozen(struct page *page)
117 {
118 page->flags |= FROZEN;
119 }
120
121 static inline void ClearSlabFrozen(struct page *page)
122 {
123 page->flags &= ~FROZEN;
124 }
125
126 static inline int SlabDebug(struct page *page)
127 {
128 return page->flags & SLABDEBUG;
129 }
130
131 static inline void SetSlabDebug(struct page *page)
132 {
133 page->flags |= SLABDEBUG;
134 }
135
136 static inline void ClearSlabDebug(struct page *page)
137 {
138 page->flags &= ~SLABDEBUG;
139 }
140
141 /*
142 * Issues still to be resolved:
143 *
144 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
145 *
146 * - Variable sizing of the per node arrays
147 */
148
149 /* Enable to test recovery from slab corruption on boot */
150 #undef SLUB_RESILIENCY_TEST
151
152 /*
153 * Currently fastpath is not supported if preemption is enabled.
154 */
155 #if defined(CONFIG_FAST_CMPXCHG_LOCAL) && !defined(CONFIG_PREEMPT)
156 #define SLUB_FASTPATH
157 #endif
158
159 #if PAGE_SHIFT <= 12
160
161 /*
162 * Small page size. Make sure that we do not fragment memory
163 */
164 #define DEFAULT_MAX_ORDER 1
165 #define DEFAULT_MIN_OBJECTS 4
166
167 #else
168
169 /*
170 * Large page machines are customarily able to handle larger
171 * page orders.
172 */
173 #define DEFAULT_MAX_ORDER 2
174 #define DEFAULT_MIN_OBJECTS 8
175
176 #endif
177
178 /*
179 * Mininum number of partial slabs. These will be left on the partial
180 * lists even if they are empty. kmem_cache_shrink may reclaim them.
181 */
182 #define MIN_PARTIAL 5
183
184 /*
185 * Maximum number of desirable partial slabs.
186 * The existence of more partial slabs makes kmem_cache_shrink
187 * sort the partial list by the number of objects in the.
188 */
189 #define MAX_PARTIAL 10
190
191 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
192 SLAB_POISON | SLAB_STORE_USER)
193
194 /*
195 * Set of flags that will prevent slab merging
196 */
197 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
198 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
199
200 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
201 SLAB_CACHE_DMA)
202
203 #ifndef ARCH_KMALLOC_MINALIGN
204 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
205 #endif
206
207 #ifndef ARCH_SLAB_MINALIGN
208 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
209 #endif
210
211 /* Internal SLUB flags */
212 #define __OBJECT_POISON 0x80000000 /* Poison object */
213 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
214
215 /* Not all arches define cache_line_size */
216 #ifndef cache_line_size
217 #define cache_line_size() L1_CACHE_BYTES
218 #endif
219
220 static int kmem_size = sizeof(struct kmem_cache);
221
222 #ifdef CONFIG_SMP
223 static struct notifier_block slab_notifier;
224 #endif
225
226 static enum {
227 DOWN, /* No slab functionality available */
228 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
229 UP, /* Everything works but does not show up in sysfs */
230 SYSFS /* Sysfs up */
231 } slab_state = DOWN;
232
233 /* A list of all slab caches on the system */
234 static DECLARE_RWSEM(slub_lock);
235 static LIST_HEAD(slab_caches);
236
237 /*
238 * Tracking user of a slab.
239 */
240 struct track {
241 void *addr; /* Called from address */
242 int cpu; /* Was running on cpu */
243 int pid; /* Pid context */
244 unsigned long when; /* When did the operation occur */
245 };
246
247 enum track_item { TRACK_ALLOC, TRACK_FREE };
248
249 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
250 static int sysfs_slab_add(struct kmem_cache *);
251 static int sysfs_slab_alias(struct kmem_cache *, const char *);
252 static void sysfs_slab_remove(struct kmem_cache *);
253
254 #else
255 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
256 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
257 { return 0; }
258 static inline void sysfs_slab_remove(struct kmem_cache *s)
259 {
260 kfree(s);
261 }
262
263 #endif
264
265 static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
266 {
267 #ifdef CONFIG_SLUB_STATS
268 c->stat[si]++;
269 #endif
270 }
271
272 /********************************************************************
273 * Core slab cache functions
274 *******************************************************************/
275
276 int slab_is_available(void)
277 {
278 return slab_state >= UP;
279 }
280
281 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
282 {
283 #ifdef CONFIG_NUMA
284 return s->node[node];
285 #else
286 return &s->local_node;
287 #endif
288 }
289
290 static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
291 {
292 #ifdef CONFIG_SMP
293 return s->cpu_slab[cpu];
294 #else
295 return &s->cpu_slab;
296 #endif
297 }
298
299 /*
300 * The end pointer in a slab is special. It points to the first object in the
301 * slab but has bit 0 set to mark it.
302 *
303 * Note that SLUB relies on page_mapping returning NULL for pages with bit 0
304 * in the mapping set.
305 */
306 static inline int is_end(void *addr)
307 {
308 return (unsigned long)addr & PAGE_MAPPING_ANON;
309 }
310
311 void *slab_address(struct page *page)
312 {
313 return page->end - PAGE_MAPPING_ANON;
314 }
315
316 static inline int check_valid_pointer(struct kmem_cache *s,
317 struct page *page, const void *object)
318 {
319 void *base;
320
321 if (object == page->end)
322 return 1;
323
324 base = slab_address(page);
325 if (object < base || object >= base + s->objects * s->size ||
326 (object - base) % s->size) {
327 return 0;
328 }
329
330 return 1;
331 }
332
333 /*
334 * Slow version of get and set free pointer.
335 *
336 * This version requires touching the cache lines of kmem_cache which
337 * we avoid to do in the fast alloc free paths. There we obtain the offset
338 * from the page struct.
339 */
340 static inline void *get_freepointer(struct kmem_cache *s, void *object)
341 {
342 return *(void **)(object + s->offset);
343 }
344
345 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
346 {
347 *(void **)(object + s->offset) = fp;
348 }
349
350 /* Loop over all objects in a slab */
351 #define for_each_object(__p, __s, __addr) \
352 for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
353 __p += (__s)->size)
354
355 /* Scan freelist */
356 #define for_each_free_object(__p, __s, __free) \
357 for (__p = (__free); (__p) != page->end; __p = get_freepointer((__s),\
358 __p))
359
360 /* Determine object index from a given position */
361 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
362 {
363 return (p - addr) / s->size;
364 }
365
366 #ifdef CONFIG_SLUB_DEBUG
367 /*
368 * Debug settings:
369 */
370 #ifdef CONFIG_SLUB_DEBUG_ON
371 static int slub_debug = DEBUG_DEFAULT_FLAGS;
372 #else
373 static int slub_debug;
374 #endif
375
376 static char *slub_debug_slabs;
377
378 /*
379 * Object debugging
380 */
381 static void print_section(char *text, u8 *addr, unsigned int length)
382 {
383 int i, offset;
384 int newline = 1;
385 char ascii[17];
386
387 ascii[16] = 0;
388
389 for (i = 0; i < length; i++) {
390 if (newline) {
391 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
392 newline = 0;
393 }
394 printk(KERN_CONT " %02x", addr[i]);
395 offset = i % 16;
396 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
397 if (offset == 15) {
398 printk(KERN_CONT " %s\n", ascii);
399 newline = 1;
400 }
401 }
402 if (!newline) {
403 i %= 16;
404 while (i < 16) {
405 printk(KERN_CONT " ");
406 ascii[i] = ' ';
407 i++;
408 }
409 printk(KERN_CONT " %s\n", ascii);
410 }
411 }
412
413 static struct track *get_track(struct kmem_cache *s, void *object,
414 enum track_item alloc)
415 {
416 struct track *p;
417
418 if (s->offset)
419 p = object + s->offset + sizeof(void *);
420 else
421 p = object + s->inuse;
422
423 return p + alloc;
424 }
425
426 static void set_track(struct kmem_cache *s, void *object,
427 enum track_item alloc, void *addr)
428 {
429 struct track *p;
430
431 if (s->offset)
432 p = object + s->offset + sizeof(void *);
433 else
434 p = object + s->inuse;
435
436 p += alloc;
437 if (addr) {
438 p->addr = addr;
439 p->cpu = smp_processor_id();
440 p->pid = current ? current->pid : -1;
441 p->when = jiffies;
442 } else
443 memset(p, 0, sizeof(struct track));
444 }
445
446 static void init_tracking(struct kmem_cache *s, void *object)
447 {
448 if (!(s->flags & SLAB_STORE_USER))
449 return;
450
451 set_track(s, object, TRACK_FREE, NULL);
452 set_track(s, object, TRACK_ALLOC, NULL);
453 }
454
455 static void print_track(const char *s, struct track *t)
456 {
457 if (!t->addr)
458 return;
459
460 printk(KERN_ERR "INFO: %s in ", s);
461 __print_symbol("%s", (unsigned long)t->addr);
462 printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
463 }
464
465 static void print_tracking(struct kmem_cache *s, void *object)
466 {
467 if (!(s->flags & SLAB_STORE_USER))
468 return;
469
470 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
471 print_track("Freed", get_track(s, object, TRACK_FREE));
472 }
473
474 static void print_page_info(struct page *page)
475 {
476 printk(KERN_ERR "INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n",
477 page, page->inuse, page->freelist, page->flags);
478
479 }
480
481 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
482 {
483 va_list args;
484 char buf[100];
485
486 va_start(args, fmt);
487 vsnprintf(buf, sizeof(buf), fmt, args);
488 va_end(args);
489 printk(KERN_ERR "========================================"
490 "=====================================\n");
491 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
492 printk(KERN_ERR "----------------------------------------"
493 "-------------------------------------\n\n");
494 }
495
496 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
497 {
498 va_list args;
499 char buf[100];
500
501 va_start(args, fmt);
502 vsnprintf(buf, sizeof(buf), fmt, args);
503 va_end(args);
504 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
505 }
506
507 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
508 {
509 unsigned int off; /* Offset of last byte */
510 u8 *addr = slab_address(page);
511
512 print_tracking(s, p);
513
514 print_page_info(page);
515
516 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
517 p, p - addr, get_freepointer(s, p));
518
519 if (p > addr + 16)
520 print_section("Bytes b4", p - 16, 16);
521
522 print_section("Object", p, min(s->objsize, 128));
523
524 if (s->flags & SLAB_RED_ZONE)
525 print_section("Redzone", p + s->objsize,
526 s->inuse - s->objsize);
527
528 if (s->offset)
529 off = s->offset + sizeof(void *);
530 else
531 off = s->inuse;
532
533 if (s->flags & SLAB_STORE_USER)
534 off += 2 * sizeof(struct track);
535
536 if (off != s->size)
537 /* Beginning of the filler is the free pointer */
538 print_section("Padding", p + off, s->size - off);
539
540 dump_stack();
541 }
542
543 static void object_err(struct kmem_cache *s, struct page *page,
544 u8 *object, char *reason)
545 {
546 slab_bug(s, reason);
547 print_trailer(s, page, object);
548 }
549
550 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
551 {
552 va_list args;
553 char buf[100];
554
555 va_start(args, fmt);
556 vsnprintf(buf, sizeof(buf), fmt, args);
557 va_end(args);
558 slab_bug(s, fmt);
559 print_page_info(page);
560 dump_stack();
561 }
562
563 static void init_object(struct kmem_cache *s, void *object, int active)
564 {
565 u8 *p = object;
566
567 if (s->flags & __OBJECT_POISON) {
568 memset(p, POISON_FREE, s->objsize - 1);
569 p[s->objsize - 1] = POISON_END;
570 }
571
572 if (s->flags & SLAB_RED_ZONE)
573 memset(p + s->objsize,
574 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
575 s->inuse - s->objsize);
576 }
577
578 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
579 {
580 while (bytes) {
581 if (*start != (u8)value)
582 return start;
583 start++;
584 bytes--;
585 }
586 return NULL;
587 }
588
589 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
590 void *from, void *to)
591 {
592 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
593 memset(from, data, to - from);
594 }
595
596 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
597 u8 *object, char *what,
598 u8 *start, unsigned int value, unsigned int bytes)
599 {
600 u8 *fault;
601 u8 *end;
602
603 fault = check_bytes(start, value, bytes);
604 if (!fault)
605 return 1;
606
607 end = start + bytes;
608 while (end > fault && end[-1] == value)
609 end--;
610
611 slab_bug(s, "%s overwritten", what);
612 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
613 fault, end - 1, fault[0], value);
614 print_trailer(s, page, object);
615
616 restore_bytes(s, what, value, fault, end);
617 return 0;
618 }
619
620 /*
621 * Object layout:
622 *
623 * object address
624 * Bytes of the object to be managed.
625 * If the freepointer may overlay the object then the free
626 * pointer is the first word of the object.
627 *
628 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
629 * 0xa5 (POISON_END)
630 *
631 * object + s->objsize
632 * Padding to reach word boundary. This is also used for Redzoning.
633 * Padding is extended by another word if Redzoning is enabled and
634 * objsize == inuse.
635 *
636 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
637 * 0xcc (RED_ACTIVE) for objects in use.
638 *
639 * object + s->inuse
640 * Meta data starts here.
641 *
642 * A. Free pointer (if we cannot overwrite object on free)
643 * B. Tracking data for SLAB_STORE_USER
644 * C. Padding to reach required alignment boundary or at mininum
645 * one word if debuggin is on to be able to detect writes
646 * before the word boundary.
647 *
648 * Padding is done using 0x5a (POISON_INUSE)
649 *
650 * object + s->size
651 * Nothing is used beyond s->size.
652 *
653 * If slabcaches are merged then the objsize and inuse boundaries are mostly
654 * ignored. And therefore no slab options that rely on these boundaries
655 * may be used with merged slabcaches.
656 */
657
658 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
659 {
660 unsigned long off = s->inuse; /* The end of info */
661
662 if (s->offset)
663 /* Freepointer is placed after the object. */
664 off += sizeof(void *);
665
666 if (s->flags & SLAB_STORE_USER)
667 /* We also have user information there */
668 off += 2 * sizeof(struct track);
669
670 if (s->size == off)
671 return 1;
672
673 return check_bytes_and_report(s, page, p, "Object padding",
674 p + off, POISON_INUSE, s->size - off);
675 }
676
677 static int slab_pad_check(struct kmem_cache *s, struct page *page)
678 {
679 u8 *start;
680 u8 *fault;
681 u8 *end;
682 int length;
683 int remainder;
684
685 if (!(s->flags & SLAB_POISON))
686 return 1;
687
688 start = slab_address(page);
689 end = start + (PAGE_SIZE << s->order);
690 length = s->objects * s->size;
691 remainder = end - (start + length);
692 if (!remainder)
693 return 1;
694
695 fault = check_bytes(start + length, POISON_INUSE, remainder);
696 if (!fault)
697 return 1;
698 while (end > fault && end[-1] == POISON_INUSE)
699 end--;
700
701 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
702 print_section("Padding", start, length);
703
704 restore_bytes(s, "slab padding", POISON_INUSE, start, end);
705 return 0;
706 }
707
708 static int check_object(struct kmem_cache *s, struct page *page,
709 void *object, int active)
710 {
711 u8 *p = object;
712 u8 *endobject = object + s->objsize;
713
714 if (s->flags & SLAB_RED_ZONE) {
715 unsigned int red =
716 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
717
718 if (!check_bytes_and_report(s, page, object, "Redzone",
719 endobject, red, s->inuse - s->objsize))
720 return 0;
721 } else {
722 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse)
723 check_bytes_and_report(s, page, p, "Alignment padding", endobject,
724 POISON_INUSE, s->inuse - s->objsize);
725 }
726
727 if (s->flags & SLAB_POISON) {
728 if (!active && (s->flags & __OBJECT_POISON) &&
729 (!check_bytes_and_report(s, page, p, "Poison", p,
730 POISON_FREE, s->objsize - 1) ||
731 !check_bytes_and_report(s, page, p, "Poison",
732 p + s->objsize - 1, POISON_END, 1)))
733 return 0;
734 /*
735 * check_pad_bytes cleans up on its own.
736 */
737 check_pad_bytes(s, page, p);
738 }
739
740 if (!s->offset && active)
741 /*
742 * Object and freepointer overlap. Cannot check
743 * freepointer while object is allocated.
744 */
745 return 1;
746
747 /* Check free pointer validity */
748 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
749 object_err(s, page, p, "Freepointer corrupt");
750 /*
751 * No choice but to zap it and thus loose the remainder
752 * of the free objects in this slab. May cause
753 * another error because the object count is now wrong.
754 */
755 set_freepointer(s, p, page->end);
756 return 0;
757 }
758 return 1;
759 }
760
761 static int check_slab(struct kmem_cache *s, struct page *page)
762 {
763 VM_BUG_ON(!irqs_disabled());
764
765 if (!PageSlab(page)) {
766 slab_err(s, page, "Not a valid slab page");
767 return 0;
768 }
769 if (page->inuse > s->objects) {
770 slab_err(s, page, "inuse %u > max %u",
771 s->name, page->inuse, s->objects);
772 return 0;
773 }
774 /* Slab_pad_check fixes things up after itself */
775 slab_pad_check(s, page);
776 return 1;
777 }
778
779 /*
780 * Determine if a certain object on a page is on the freelist. Must hold the
781 * slab lock to guarantee that the chains are in a consistent state.
782 */
783 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
784 {
785 int nr = 0;
786 void *fp = page->freelist;
787 void *object = NULL;
788
789 while (fp != page->end && nr <= s->objects) {
790 if (fp == search)
791 return 1;
792 if (!check_valid_pointer(s, page, fp)) {
793 if (object) {
794 object_err(s, page, object,
795 "Freechain corrupt");
796 set_freepointer(s, object, page->end);
797 break;
798 } else {
799 slab_err(s, page, "Freepointer corrupt");
800 page->freelist = page->end;
801 page->inuse = s->objects;
802 slab_fix(s, "Freelist cleared");
803 return 0;
804 }
805 break;
806 }
807 object = fp;
808 fp = get_freepointer(s, object);
809 nr++;
810 }
811
812 if (page->inuse != s->objects - nr) {
813 slab_err(s, page, "Wrong object count. Counter is %d but "
814 "counted were %d", page->inuse, s->objects - nr);
815 page->inuse = s->objects - nr;
816 slab_fix(s, "Object count adjusted.");
817 }
818 return search == NULL;
819 }
820
821 static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
822 {
823 if (s->flags & SLAB_TRACE) {
824 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
825 s->name,
826 alloc ? "alloc" : "free",
827 object, page->inuse,
828 page->freelist);
829
830 if (!alloc)
831 print_section("Object", (void *)object, s->objsize);
832
833 dump_stack();
834 }
835 }
836
837 /*
838 * Tracking of fully allocated slabs for debugging purposes.
839 */
840 static void add_full(struct kmem_cache_node *n, struct page *page)
841 {
842 spin_lock(&n->list_lock);
843 list_add(&page->lru, &n->full);
844 spin_unlock(&n->list_lock);
845 }
846
847 static void remove_full(struct kmem_cache *s, struct page *page)
848 {
849 struct kmem_cache_node *n;
850
851 if (!(s->flags & SLAB_STORE_USER))
852 return;
853
854 n = get_node(s, page_to_nid(page));
855
856 spin_lock(&n->list_lock);
857 list_del(&page->lru);
858 spin_unlock(&n->list_lock);
859 }
860
861 static void setup_object_debug(struct kmem_cache *s, struct page *page,
862 void *object)
863 {
864 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
865 return;
866
867 init_object(s, object, 0);
868 init_tracking(s, object);
869 }
870
871 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
872 void *object, void *addr)
873 {
874 if (!check_slab(s, page))
875 goto bad;
876
877 if (object && !on_freelist(s, page, object)) {
878 object_err(s, page, object, "Object already allocated");
879 goto bad;
880 }
881
882 if (!check_valid_pointer(s, page, object)) {
883 object_err(s, page, object, "Freelist Pointer check fails");
884 goto bad;
885 }
886
887 if (object && !check_object(s, page, object, 0))
888 goto bad;
889
890 /* Success perform special debug activities for allocs */
891 if (s->flags & SLAB_STORE_USER)
892 set_track(s, object, TRACK_ALLOC, addr);
893 trace(s, page, object, 1);
894 init_object(s, object, 1);
895 return 1;
896
897 bad:
898 if (PageSlab(page)) {
899 /*
900 * If this is a slab page then lets do the best we can
901 * to avoid issues in the future. Marking all objects
902 * as used avoids touching the remaining objects.
903 */
904 slab_fix(s, "Marking all objects used");
905 page->inuse = s->objects;
906 page->freelist = page->end;
907 }
908 return 0;
909 }
910
911 static int free_debug_processing(struct kmem_cache *s, struct page *page,
912 void *object, void *addr)
913 {
914 if (!check_slab(s, page))
915 goto fail;
916
917 if (!check_valid_pointer(s, page, object)) {
918 slab_err(s, page, "Invalid object pointer 0x%p", object);
919 goto fail;
920 }
921
922 if (on_freelist(s, page, object)) {
923 object_err(s, page, object, "Object already free");
924 goto fail;
925 }
926
927 if (!check_object(s, page, object, 1))
928 return 0;
929
930 if (unlikely(s != page->slab)) {
931 if (!PageSlab(page))
932 slab_err(s, page, "Attempt to free object(0x%p) "
933 "outside of slab", object);
934 else
935 if (!page->slab) {
936 printk(KERN_ERR
937 "SLUB <none>: no slab for object 0x%p.\n",
938 object);
939 dump_stack();
940 } else
941 object_err(s, page, object,
942 "page slab pointer corrupt.");
943 goto fail;
944 }
945
946 /* Special debug activities for freeing objects */
947 if (!SlabFrozen(page) && page->freelist == page->end)
948 remove_full(s, page);
949 if (s->flags & SLAB_STORE_USER)
950 set_track(s, object, TRACK_FREE, addr);
951 trace(s, page, object, 0);
952 init_object(s, object, 0);
953 return 1;
954
955 fail:
956 slab_fix(s, "Object at 0x%p not freed", object);
957 return 0;
958 }
959
960 static int __init setup_slub_debug(char *str)
961 {
962 slub_debug = DEBUG_DEFAULT_FLAGS;
963 if (*str++ != '=' || !*str)
964 /*
965 * No options specified. Switch on full debugging.
966 */
967 goto out;
968
969 if (*str == ',')
970 /*
971 * No options but restriction on slabs. This means full
972 * debugging for slabs matching a pattern.
973 */
974 goto check_slabs;
975
976 slub_debug = 0;
977 if (*str == '-')
978 /*
979 * Switch off all debugging measures.
980 */
981 goto out;
982
983 /*
984 * Determine which debug features should be switched on
985 */
986 for (; *str && *str != ','; str++) {
987 switch (tolower(*str)) {
988 case 'f':
989 slub_debug |= SLAB_DEBUG_FREE;
990 break;
991 case 'z':
992 slub_debug |= SLAB_RED_ZONE;
993 break;
994 case 'p':
995 slub_debug |= SLAB_POISON;
996 break;
997 case 'u':
998 slub_debug |= SLAB_STORE_USER;
999 break;
1000 case 't':
1001 slub_debug |= SLAB_TRACE;
1002 break;
1003 default:
1004 printk(KERN_ERR "slub_debug option '%c' "
1005 "unknown. skipped\n", *str);
1006 }
1007 }
1008
1009 check_slabs:
1010 if (*str == ',')
1011 slub_debug_slabs = str + 1;
1012 out:
1013 return 1;
1014 }
1015
1016 __setup("slub_debug", setup_slub_debug);
1017
1018 static unsigned long kmem_cache_flags(unsigned long objsize,
1019 unsigned long flags, const char *name,
1020 void (*ctor)(struct kmem_cache *, void *))
1021 {
1022 /*
1023 * The page->offset field is only 16 bit wide. This is an offset
1024 * in units of words from the beginning of an object. If the slab
1025 * size is bigger then we cannot move the free pointer behind the
1026 * object anymore.
1027 *
1028 * On 32 bit platforms the limit is 256k. On 64bit platforms
1029 * the limit is 512k.
1030 *
1031 * Debugging or ctor may create a need to move the free
1032 * pointer. Fail if this happens.
1033 */
1034 if (objsize >= 65535 * sizeof(void *)) {
1035 BUG_ON(flags & (SLAB_RED_ZONE | SLAB_POISON |
1036 SLAB_STORE_USER | SLAB_DESTROY_BY_RCU));
1037 BUG_ON(ctor);
1038 } else {
1039 /*
1040 * Enable debugging if selected on the kernel commandline.
1041 */
1042 if (slub_debug && (!slub_debug_slabs ||
1043 strncmp(slub_debug_slabs, name,
1044 strlen(slub_debug_slabs)) == 0))
1045 flags |= slub_debug;
1046 }
1047
1048 return flags;
1049 }
1050 #else
1051 static inline void setup_object_debug(struct kmem_cache *s,
1052 struct page *page, void *object) {}
1053
1054 static inline int alloc_debug_processing(struct kmem_cache *s,
1055 struct page *page, void *object, void *addr) { return 0; }
1056
1057 static inline int free_debug_processing(struct kmem_cache *s,
1058 struct page *page, void *object, void *addr) { return 0; }
1059
1060 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1061 { return 1; }
1062 static inline int check_object(struct kmem_cache *s, struct page *page,
1063 void *object, int active) { return 1; }
1064 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1065 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1066 unsigned long flags, const char *name,
1067 void (*ctor)(struct kmem_cache *, void *))
1068 {
1069 return flags;
1070 }
1071 #define slub_debug 0
1072 #endif
1073 /*
1074 * Slab allocation and freeing
1075 */
1076 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1077 {
1078 struct page *page;
1079 int pages = 1 << s->order;
1080
1081 if (s->order)
1082 flags |= __GFP_COMP;
1083
1084 if (s->flags & SLAB_CACHE_DMA)
1085 flags |= SLUB_DMA;
1086
1087 if (s->flags & SLAB_RECLAIM_ACCOUNT)
1088 flags |= __GFP_RECLAIMABLE;
1089
1090 if (node == -1)
1091 page = alloc_pages(flags, s->order);
1092 else
1093 page = alloc_pages_node(node, flags, s->order);
1094
1095 if (!page)
1096 return NULL;
1097
1098 mod_zone_page_state(page_zone(page),
1099 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1100 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1101 pages);
1102
1103 return page;
1104 }
1105
1106 static void setup_object(struct kmem_cache *s, struct page *page,
1107 void *object)
1108 {
1109 setup_object_debug(s, page, object);
1110 if (unlikely(s->ctor))
1111 s->ctor(s, object);
1112 }
1113
1114 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1115 {
1116 struct page *page;
1117 struct kmem_cache_node *n;
1118 void *start;
1119 void *last;
1120 void *p;
1121
1122 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1123
1124 page = allocate_slab(s,
1125 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1126 if (!page)
1127 goto out;
1128
1129 n = get_node(s, page_to_nid(page));
1130 if (n)
1131 atomic_long_inc(&n->nr_slabs);
1132 page->slab = s;
1133 page->flags |= 1 << PG_slab;
1134 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1135 SLAB_STORE_USER | SLAB_TRACE))
1136 SetSlabDebug(page);
1137
1138 start = page_address(page);
1139 page->end = start + 1;
1140
1141 if (unlikely(s->flags & SLAB_POISON))
1142 memset(start, POISON_INUSE, PAGE_SIZE << s->order);
1143
1144 last = start;
1145 for_each_object(p, s, start) {
1146 setup_object(s, page, last);
1147 set_freepointer(s, last, p);
1148 last = p;
1149 }
1150 setup_object(s, page, last);
1151 set_freepointer(s, last, page->end);
1152
1153 page->freelist = start;
1154 page->inuse = 0;
1155 out:
1156 return page;
1157 }
1158
1159 static void __free_slab(struct kmem_cache *s, struct page *page)
1160 {
1161 int pages = 1 << s->order;
1162
1163 if (unlikely(SlabDebug(page))) {
1164 void *p;
1165
1166 slab_pad_check(s, page);
1167 for_each_object(p, s, slab_address(page))
1168 check_object(s, page, p, 0);
1169 ClearSlabDebug(page);
1170 }
1171
1172 mod_zone_page_state(page_zone(page),
1173 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1174 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1175 -pages);
1176
1177 page->mapping = NULL;
1178 __free_pages(page, s->order);
1179 }
1180
1181 static void rcu_free_slab(struct rcu_head *h)
1182 {
1183 struct page *page;
1184
1185 page = container_of((struct list_head *)h, struct page, lru);
1186 __free_slab(page->slab, page);
1187 }
1188
1189 static void free_slab(struct kmem_cache *s, struct page *page)
1190 {
1191 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1192 /*
1193 * RCU free overloads the RCU head over the LRU
1194 */
1195 struct rcu_head *head = (void *)&page->lru;
1196
1197 call_rcu(head, rcu_free_slab);
1198 } else
1199 __free_slab(s, page);
1200 }
1201
1202 static void discard_slab(struct kmem_cache *s, struct page *page)
1203 {
1204 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1205
1206 atomic_long_dec(&n->nr_slabs);
1207 reset_page_mapcount(page);
1208 __ClearPageSlab(page);
1209 free_slab(s, page);
1210 }
1211
1212 /*
1213 * Per slab locking using the pagelock
1214 */
1215 static __always_inline void slab_lock(struct page *page)
1216 {
1217 bit_spin_lock(PG_locked, &page->flags);
1218 }
1219
1220 static __always_inline void slab_unlock(struct page *page)
1221 {
1222 __bit_spin_unlock(PG_locked, &page->flags);
1223 }
1224
1225 static __always_inline int slab_trylock(struct page *page)
1226 {
1227 int rc = 1;
1228
1229 rc = bit_spin_trylock(PG_locked, &page->flags);
1230 return rc;
1231 }
1232
1233 /*
1234 * Management of partially allocated slabs
1235 */
1236 static void add_partial(struct kmem_cache_node *n,
1237 struct page *page, int tail)
1238 {
1239 spin_lock(&n->list_lock);
1240 n->nr_partial++;
1241 if (tail)
1242 list_add_tail(&page->lru, &n->partial);
1243 else
1244 list_add(&page->lru, &n->partial);
1245 spin_unlock(&n->list_lock);
1246 }
1247
1248 static void remove_partial(struct kmem_cache *s,
1249 struct page *page)
1250 {
1251 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1252
1253 spin_lock(&n->list_lock);
1254 list_del(&page->lru);
1255 n->nr_partial--;
1256 spin_unlock(&n->list_lock);
1257 }
1258
1259 /*
1260 * Lock slab and remove from the partial list.
1261 *
1262 * Must hold list_lock.
1263 */
1264 static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
1265 {
1266 if (slab_trylock(page)) {
1267 list_del(&page->lru);
1268 n->nr_partial--;
1269 SetSlabFrozen(page);
1270 return 1;
1271 }
1272 return 0;
1273 }
1274
1275 /*
1276 * Try to allocate a partial slab from a specific node.
1277 */
1278 static struct page *get_partial_node(struct kmem_cache_node *n)
1279 {
1280 struct page *page;
1281
1282 /*
1283 * Racy check. If we mistakenly see no partial slabs then we
1284 * just allocate an empty slab. If we mistakenly try to get a
1285 * partial slab and there is none available then get_partials()
1286 * will return NULL.
1287 */
1288 if (!n || !n->nr_partial)
1289 return NULL;
1290
1291 spin_lock(&n->list_lock);
1292 list_for_each_entry(page, &n->partial, lru)
1293 if (lock_and_freeze_slab(n, page))
1294 goto out;
1295 page = NULL;
1296 out:
1297 spin_unlock(&n->list_lock);
1298 return page;
1299 }
1300
1301 /*
1302 * Get a page from somewhere. Search in increasing NUMA distances.
1303 */
1304 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1305 {
1306 #ifdef CONFIG_NUMA
1307 struct zonelist *zonelist;
1308 struct zone **z;
1309 struct page *page;
1310
1311 /*
1312 * The defrag ratio allows a configuration of the tradeoffs between
1313 * inter node defragmentation and node local allocations. A lower
1314 * defrag_ratio increases the tendency to do local allocations
1315 * instead of attempting to obtain partial slabs from other nodes.
1316 *
1317 * If the defrag_ratio is set to 0 then kmalloc() always
1318 * returns node local objects. If the ratio is higher then kmalloc()
1319 * may return off node objects because partial slabs are obtained
1320 * from other nodes and filled up.
1321 *
1322 * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
1323 * defrag_ratio = 1000) then every (well almost) allocation will
1324 * first attempt to defrag slab caches on other nodes. This means
1325 * scanning over all nodes to look for partial slabs which may be
1326 * expensive if we do it every time we are trying to find a slab
1327 * with available objects.
1328 */
1329 if (!s->remote_node_defrag_ratio ||
1330 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1331 return NULL;
1332
1333 zonelist = &NODE_DATA(slab_node(current->mempolicy))
1334 ->node_zonelists[gfp_zone(flags)];
1335 for (z = zonelist->zones; *z; z++) {
1336 struct kmem_cache_node *n;
1337
1338 n = get_node(s, zone_to_nid(*z));
1339
1340 if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
1341 n->nr_partial > MIN_PARTIAL) {
1342 page = get_partial_node(n);
1343 if (page)
1344 return page;
1345 }
1346 }
1347 #endif
1348 return NULL;
1349 }
1350
1351 /*
1352 * Get a partial page, lock it and return it.
1353 */
1354 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1355 {
1356 struct page *page;
1357 int searchnode = (node == -1) ? numa_node_id() : node;
1358
1359 page = get_partial_node(get_node(s, searchnode));
1360 if (page || (flags & __GFP_THISNODE))
1361 return page;
1362
1363 return get_any_partial(s, flags);
1364 }
1365
1366 /*
1367 * Move a page back to the lists.
1368 *
1369 * Must be called with the slab lock held.
1370 *
1371 * On exit the slab lock will have been dropped.
1372 */
1373 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1374 {
1375 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1376 struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
1377
1378 ClearSlabFrozen(page);
1379 if (page->inuse) {
1380
1381 if (page->freelist != page->end) {
1382 add_partial(n, page, tail);
1383 stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1384 } else {
1385 stat(c, DEACTIVATE_FULL);
1386 if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
1387 add_full(n, page);
1388 }
1389 slab_unlock(page);
1390 } else {
1391 stat(c, DEACTIVATE_EMPTY);
1392 if (n->nr_partial < MIN_PARTIAL) {
1393 /*
1394 * Adding an empty slab to the partial slabs in order
1395 * to avoid page allocator overhead. This slab needs
1396 * to come after the other slabs with objects in
1397 * order to fill them up. That way the size of the
1398 * partial list stays small. kmem_cache_shrink can
1399 * reclaim empty slabs from the partial list.
1400 */
1401 add_partial(n, page, 1);
1402 slab_unlock(page);
1403 } else {
1404 slab_unlock(page);
1405 stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
1406 discard_slab(s, page);
1407 }
1408 }
1409 }
1410
1411 /*
1412 * Remove the cpu slab
1413 */
1414 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1415 {
1416 struct page *page = c->page;
1417 int tail = 1;
1418
1419 if (c->freelist)
1420 stat(c, DEACTIVATE_REMOTE_FREES);
1421 /*
1422 * Merge cpu freelist into freelist. Typically we get here
1423 * because both freelists are empty. So this is unlikely
1424 * to occur.
1425 *
1426 * We need to use _is_end here because deactivate slab may
1427 * be called for a debug slab. Then c->freelist may contain
1428 * a dummy pointer.
1429 */
1430 while (unlikely(!is_end(c->freelist))) {
1431 void **object;
1432
1433 tail = 0; /* Hot objects. Put the slab first */
1434
1435 /* Retrieve object from cpu_freelist */
1436 object = c->freelist;
1437 c->freelist = c->freelist[c->offset];
1438
1439 /* And put onto the regular freelist */
1440 object[c->offset] = page->freelist;
1441 page->freelist = object;
1442 page->inuse--;
1443 }
1444 c->page = NULL;
1445 unfreeze_slab(s, page, tail);
1446 }
1447
1448 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1449 {
1450 stat(c, CPUSLAB_FLUSH);
1451 slab_lock(c->page);
1452 deactivate_slab(s, c);
1453 }
1454
1455 /*
1456 * Flush cpu slab.
1457 * Called from IPI handler with interrupts disabled.
1458 */
1459 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1460 {
1461 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1462
1463 if (likely(c && c->page))
1464 flush_slab(s, c);
1465 }
1466
1467 static void flush_cpu_slab(void *d)
1468 {
1469 struct kmem_cache *s = d;
1470
1471 __flush_cpu_slab(s, smp_processor_id());
1472 }
1473
1474 static void flush_all(struct kmem_cache *s)
1475 {
1476 #ifdef CONFIG_SMP
1477 on_each_cpu(flush_cpu_slab, s, 1, 1);
1478 #else
1479 unsigned long flags;
1480
1481 local_irq_save(flags);
1482 flush_cpu_slab(s);
1483 local_irq_restore(flags);
1484 #endif
1485 }
1486
1487 /*
1488 * Check if the objects in a per cpu structure fit numa
1489 * locality expectations.
1490 */
1491 static inline int node_match(struct kmem_cache_cpu *c, int node)
1492 {
1493 #ifdef CONFIG_NUMA
1494 if (node != -1 && c->node != node)
1495 return 0;
1496 #endif
1497 return 1;
1498 }
1499
1500 /*
1501 * Slow path. The lockless freelist is empty or we need to perform
1502 * debugging duties.
1503 *
1504 * Interrupts are disabled.
1505 *
1506 * Processing is still very fast if new objects have been freed to the
1507 * regular freelist. In that case we simply take over the regular freelist
1508 * as the lockless freelist and zap the regular freelist.
1509 *
1510 * If that is not working then we fall back to the partial lists. We take the
1511 * first element of the freelist as the object to allocate now and move the
1512 * rest of the freelist to the lockless freelist.
1513 *
1514 * And if we were unable to get a new slab from the partial slab lists then
1515 * we need to allocate a new slab. This is slowest path since we may sleep.
1516 */
1517 static void *__slab_alloc(struct kmem_cache *s,
1518 gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
1519 {
1520 void **object;
1521 struct page *new;
1522 #ifdef SLUB_FASTPATH
1523 unsigned long flags;
1524
1525 local_irq_save(flags);
1526 #endif
1527 if (!c->page)
1528 goto new_slab;
1529
1530 slab_lock(c->page);
1531 if (unlikely(!node_match(c, node)))
1532 goto another_slab;
1533 stat(c, ALLOC_REFILL);
1534 load_freelist:
1535 object = c->page->freelist;
1536 if (unlikely(object == c->page->end))
1537 goto another_slab;
1538 if (unlikely(SlabDebug(c->page)))
1539 goto debug;
1540
1541 object = c->page->freelist;
1542 c->freelist = object[c->offset];
1543 c->page->inuse = s->objects;
1544 c->page->freelist = c->page->end;
1545 c->node = page_to_nid(c->page);
1546 unlock_out:
1547 slab_unlock(c->page);
1548 stat(c, ALLOC_SLOWPATH);
1549 out:
1550 #ifdef SLUB_FASTPATH
1551 local_irq_restore(flags);
1552 #endif
1553 return object;
1554
1555 another_slab:
1556 deactivate_slab(s, c);
1557
1558 new_slab:
1559 new = get_partial(s, gfpflags, node);
1560 if (new) {
1561 c->page = new;
1562 stat(c, ALLOC_FROM_PARTIAL);
1563 goto load_freelist;
1564 }
1565
1566 if (gfpflags & __GFP_WAIT)
1567 local_irq_enable();
1568
1569 new = new_slab(s, gfpflags, node);
1570
1571 if (gfpflags & __GFP_WAIT)
1572 local_irq_disable();
1573
1574 if (new) {
1575 c = get_cpu_slab(s, smp_processor_id());
1576 stat(c, ALLOC_SLAB);
1577 if (c->page)
1578 flush_slab(s, c);
1579 slab_lock(new);
1580 SetSlabFrozen(new);
1581 c->page = new;
1582 goto load_freelist;
1583 }
1584 object = NULL;
1585 goto out;
1586 debug:
1587 object = c->page->freelist;
1588 if (!alloc_debug_processing(s, c->page, object, addr))
1589 goto another_slab;
1590
1591 c->page->inuse++;
1592 c->page->freelist = object[c->offset];
1593 c->node = -1;
1594 goto unlock_out;
1595 }
1596
1597 /*
1598 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1599 * have the fastpath folded into their functions. So no function call
1600 * overhead for requests that can be satisfied on the fastpath.
1601 *
1602 * The fastpath works by first checking if the lockless freelist can be used.
1603 * If not then __slab_alloc is called for slow processing.
1604 *
1605 * Otherwise we can simply pick the next object from the lockless free list.
1606 */
1607 static __always_inline void *slab_alloc(struct kmem_cache *s,
1608 gfp_t gfpflags, int node, void *addr)
1609 {
1610 void **object;
1611 struct kmem_cache_cpu *c;
1612
1613 /*
1614 * The SLUB_FASTPATH path is provisional and is currently disabled if the
1615 * kernel is compiled with preemption or if the arch does not support
1616 * fast cmpxchg operations. There are a couple of coming changes that will
1617 * simplify matters and allow preemption. Ultimately we may end up making
1618 * SLUB_FASTPATH the default.
1619 *
1620 * 1. The introduction of the per cpu allocator will avoid array lookups
1621 * through get_cpu_slab(). A special register can be used instead.
1622 *
1623 * 2. The introduction of per cpu atomic operations (cpu_ops) means that
1624 * we can realize the logic here entirely with per cpu atomics. The
1625 * per cpu atomic ops will take care of the preemption issues.
1626 */
1627
1628 #ifdef SLUB_FASTPATH
1629 c = get_cpu_slab(s, raw_smp_processor_id());
1630 do {
1631 object = c->freelist;
1632 if (unlikely(is_end(object) || !node_match(c, node))) {
1633 object = __slab_alloc(s, gfpflags, node, addr, c);
1634 break;
1635 }
1636 stat(c, ALLOC_FASTPATH);
1637 } while (cmpxchg_local(&c->freelist, object, object[c->offset])
1638 != object);
1639 #else
1640 unsigned long flags;
1641
1642 local_irq_save(flags);
1643 c = get_cpu_slab(s, smp_processor_id());
1644 if (unlikely(is_end(c->freelist) || !node_match(c, node)))
1645
1646 object = __slab_alloc(s, gfpflags, node, addr, c);
1647
1648 else {
1649 object = c->freelist;
1650 c->freelist = object[c->offset];
1651 stat(c, ALLOC_FASTPATH);
1652 }
1653 local_irq_restore(flags);
1654 #endif
1655
1656 if (unlikely((gfpflags & __GFP_ZERO) && object))
1657 memset(object, 0, c->objsize);
1658
1659 return object;
1660 }
1661
1662 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1663 {
1664 return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
1665 }
1666 EXPORT_SYMBOL(kmem_cache_alloc);
1667
1668 #ifdef CONFIG_NUMA
1669 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1670 {
1671 return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
1672 }
1673 EXPORT_SYMBOL(kmem_cache_alloc_node);
1674 #endif
1675
1676 /*
1677 * Slow patch handling. This may still be called frequently since objects
1678 * have a longer lifetime than the cpu slabs in most processing loads.
1679 *
1680 * So we still attempt to reduce cache line usage. Just take the slab
1681 * lock and free the item. If there is no additional partial page
1682 * handling required then we can return immediately.
1683 */
1684 static void __slab_free(struct kmem_cache *s, struct page *page,
1685 void *x, void *addr, unsigned int offset)
1686 {
1687 void *prior;
1688 void **object = (void *)x;
1689 struct kmem_cache_cpu *c;
1690
1691 #ifdef SLUB_FASTPATH
1692 unsigned long flags;
1693
1694 local_irq_save(flags);
1695 #endif
1696 c = get_cpu_slab(s, raw_smp_processor_id());
1697 stat(c, FREE_SLOWPATH);
1698 slab_lock(page);
1699
1700 if (unlikely(SlabDebug(page)))
1701 goto debug;
1702 checks_ok:
1703 prior = object[offset] = page->freelist;
1704 page->freelist = object;
1705 page->inuse--;
1706
1707 if (unlikely(SlabFrozen(page))) {
1708 stat(c, FREE_FROZEN);
1709 goto out_unlock;
1710 }
1711
1712 if (unlikely(!page->inuse))
1713 goto slab_empty;
1714
1715 /*
1716 * Objects left in the slab. If it
1717 * was not on the partial list before
1718 * then add it.
1719 */
1720 if (unlikely(prior == page->end)) {
1721 add_partial(get_node(s, page_to_nid(page)), page, 1);
1722 stat(c, FREE_ADD_PARTIAL);
1723 }
1724
1725 out_unlock:
1726 slab_unlock(page);
1727 #ifdef SLUB_FASTPATH
1728 local_irq_restore(flags);
1729 #endif
1730 return;
1731
1732 slab_empty:
1733 if (prior != page->end) {
1734 /*
1735 * Slab still on the partial list.
1736 */
1737 remove_partial(s, page);
1738 stat(c, FREE_REMOVE_PARTIAL);
1739 }
1740 slab_unlock(page);
1741 stat(c, FREE_SLAB);
1742 #ifdef SLUB_FASTPATH
1743 local_irq_restore(flags);
1744 #endif
1745 discard_slab(s, page);
1746 return;
1747
1748 debug:
1749 if (!free_debug_processing(s, page, x, addr))
1750 goto out_unlock;
1751 goto checks_ok;
1752 }
1753
1754 /*
1755 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1756 * can perform fastpath freeing without additional function calls.
1757 *
1758 * The fastpath is only possible if we are freeing to the current cpu slab
1759 * of this processor. This typically the case if we have just allocated
1760 * the item before.
1761 *
1762 * If fastpath is not possible then fall back to __slab_free where we deal
1763 * with all sorts of special processing.
1764 */
1765 static __always_inline void slab_free(struct kmem_cache *s,
1766 struct page *page, void *x, void *addr)
1767 {
1768 void **object = (void *)x;
1769 struct kmem_cache_cpu *c;
1770
1771 #ifdef SLUB_FASTPATH
1772 void **freelist;
1773
1774 c = get_cpu_slab(s, raw_smp_processor_id());
1775 debug_check_no_locks_freed(object, s->objsize);
1776 do {
1777 freelist = c->freelist;
1778 barrier();
1779 /*
1780 * If the compiler would reorder the retrieval of c->page to
1781 * come before c->freelist then an interrupt could
1782 * change the cpu slab before we retrieve c->freelist. We
1783 * could be matching on a page no longer active and put the
1784 * object onto the freelist of the wrong slab.
1785 *
1786 * On the other hand: If we already have the freelist pointer
1787 * then any change of cpu_slab will cause the cmpxchg to fail
1788 * since the freelist pointers are unique per slab.
1789 */
1790 if (unlikely(page != c->page || c->node < 0)) {
1791 __slab_free(s, page, x, addr, c->offset);
1792 break;
1793 }
1794 object[c->offset] = freelist;
1795 stat(c, FREE_FASTPATH);
1796 } while (cmpxchg_local(&c->freelist, freelist, object) != freelist);
1797 #else
1798 unsigned long flags;
1799
1800 local_irq_save(flags);
1801 debug_check_no_locks_freed(object, s->objsize);
1802 c = get_cpu_slab(s, smp_processor_id());
1803 if (likely(page == c->page && c->node >= 0)) {
1804 object[c->offset] = c->freelist;
1805 c->freelist = object;
1806 stat(c, FREE_FASTPATH);
1807 } else
1808 __slab_free(s, page, x, addr, c->offset);
1809
1810 local_irq_restore(flags);
1811 #endif
1812 }
1813
1814 void kmem_cache_free(struct kmem_cache *s, void *x)
1815 {
1816 struct page *page;
1817
1818 page = virt_to_head_page(x);
1819
1820 slab_free(s, page, x, __builtin_return_address(0));
1821 }
1822 EXPORT_SYMBOL(kmem_cache_free);
1823
1824 /* Figure out on which slab object the object resides */
1825 static struct page *get_object_page(const void *x)
1826 {
1827 struct page *page = virt_to_head_page(x);
1828
1829 if (!PageSlab(page))
1830 return NULL;
1831
1832 return page;
1833 }
1834
1835 /*
1836 * Object placement in a slab is made very easy because we always start at
1837 * offset 0. If we tune the size of the object to the alignment then we can
1838 * get the required alignment by putting one properly sized object after
1839 * another.
1840 *
1841 * Notice that the allocation order determines the sizes of the per cpu
1842 * caches. Each processor has always one slab available for allocations.
1843 * Increasing the allocation order reduces the number of times that slabs
1844 * must be moved on and off the partial lists and is therefore a factor in
1845 * locking overhead.
1846 */
1847
1848 /*
1849 * Mininum / Maximum order of slab pages. This influences locking overhead
1850 * and slab fragmentation. A higher order reduces the number of partial slabs
1851 * and increases the number of allocations possible without having to
1852 * take the list_lock.
1853 */
1854 static int slub_min_order;
1855 static int slub_max_order = DEFAULT_MAX_ORDER;
1856 static int slub_min_objects = DEFAULT_MIN_OBJECTS;
1857
1858 /*
1859 * Merge control. If this is set then no merging of slab caches will occur.
1860 * (Could be removed. This was introduced to pacify the merge skeptics.)
1861 */
1862 static int slub_nomerge;
1863
1864 /*
1865 * Calculate the order of allocation given an slab object size.
1866 *
1867 * The order of allocation has significant impact on performance and other
1868 * system components. Generally order 0 allocations should be preferred since
1869 * order 0 does not cause fragmentation in the page allocator. Larger objects
1870 * be problematic to put into order 0 slabs because there may be too much
1871 * unused space left. We go to a higher order if more than 1/8th of the slab
1872 * would be wasted.
1873 *
1874 * In order to reach satisfactory performance we must ensure that a minimum
1875 * number of objects is in one slab. Otherwise we may generate too much
1876 * activity on the partial lists which requires taking the list_lock. This is
1877 * less a concern for large slabs though which are rarely used.
1878 *
1879 * slub_max_order specifies the order where we begin to stop considering the
1880 * number of objects in a slab as critical. If we reach slub_max_order then
1881 * we try to keep the page order as low as possible. So we accept more waste
1882 * of space in favor of a small page order.
1883 *
1884 * Higher order allocations also allow the placement of more objects in a
1885 * slab and thereby reduce object handling overhead. If the user has
1886 * requested a higher mininum order then we start with that one instead of
1887 * the smallest order which will fit the object.
1888 */
1889 static inline int slab_order(int size, int min_objects,
1890 int max_order, int fract_leftover)
1891 {
1892 int order;
1893 int rem;
1894 int min_order = slub_min_order;
1895
1896 for (order = max(min_order,
1897 fls(min_objects * size - 1) - PAGE_SHIFT);
1898 order <= max_order; order++) {
1899
1900 unsigned long slab_size = PAGE_SIZE << order;
1901
1902 if (slab_size < min_objects * size)
1903 continue;
1904
1905 rem = slab_size % size;
1906
1907 if (rem <= slab_size / fract_leftover)
1908 break;
1909
1910 }
1911
1912 return order;
1913 }
1914
1915 static inline int calculate_order(int size)
1916 {
1917 int order;
1918 int min_objects;
1919 int fraction;
1920
1921 /*
1922 * Attempt to find best configuration for a slab. This
1923 * works by first attempting to generate a layout with
1924 * the best configuration and backing off gradually.
1925 *
1926 * First we reduce the acceptable waste in a slab. Then
1927 * we reduce the minimum objects required in a slab.
1928 */
1929 min_objects = slub_min_objects;
1930 while (min_objects > 1) {
1931 fraction = 8;
1932 while (fraction >= 4) {
1933 order = slab_order(size, min_objects,
1934 slub_max_order, fraction);
1935 if (order <= slub_max_order)
1936 return order;
1937 fraction /= 2;
1938 }
1939 min_objects /= 2;
1940 }
1941
1942 /*
1943 * We were unable to place multiple objects in a slab. Now
1944 * lets see if we can place a single object there.
1945 */
1946 order = slab_order(size, 1, slub_max_order, 1);
1947 if (order <= slub_max_order)
1948 return order;
1949
1950 /*
1951 * Doh this slab cannot be placed using slub_max_order.
1952 */
1953 order = slab_order(size, 1, MAX_ORDER, 1);
1954 if (order <= MAX_ORDER)
1955 return order;
1956 return -ENOSYS;
1957 }
1958
1959 /*
1960 * Figure out what the alignment of the objects will be.
1961 */
1962 static unsigned long calculate_alignment(unsigned long flags,
1963 unsigned long align, unsigned long size)
1964 {
1965 /*
1966 * If the user wants hardware cache aligned objects then
1967 * follow that suggestion if the object is sufficiently
1968 * large.
1969 *
1970 * The hardware cache alignment cannot override the
1971 * specified alignment though. If that is greater
1972 * then use it.
1973 */
1974 if ((flags & SLAB_HWCACHE_ALIGN) &&
1975 size > cache_line_size() / 2)
1976 return max_t(unsigned long, align, cache_line_size());
1977
1978 if (align < ARCH_SLAB_MINALIGN)
1979 return ARCH_SLAB_MINALIGN;
1980
1981 return ALIGN(align, sizeof(void *));
1982 }
1983
1984 static void init_kmem_cache_cpu(struct kmem_cache *s,
1985 struct kmem_cache_cpu *c)
1986 {
1987 c->page = NULL;
1988 c->freelist = (void *)PAGE_MAPPING_ANON;
1989 c->node = 0;
1990 c->offset = s->offset / sizeof(void *);
1991 c->objsize = s->objsize;
1992 }
1993
1994 static void init_kmem_cache_node(struct kmem_cache_node *n)
1995 {
1996 n->nr_partial = 0;
1997 atomic_long_set(&n->nr_slabs, 0);
1998 spin_lock_init(&n->list_lock);
1999 INIT_LIST_HEAD(&n->partial);
2000 #ifdef CONFIG_SLUB_DEBUG
2001 INIT_LIST_HEAD(&n->full);
2002 #endif
2003 }
2004
2005 #ifdef CONFIG_SMP
2006 /*
2007 * Per cpu array for per cpu structures.
2008 *
2009 * The per cpu array places all kmem_cache_cpu structures from one processor
2010 * close together meaning that it becomes possible that multiple per cpu
2011 * structures are contained in one cacheline. This may be particularly
2012 * beneficial for the kmalloc caches.
2013 *
2014 * A desktop system typically has around 60-80 slabs. With 100 here we are
2015 * likely able to get per cpu structures for all caches from the array defined
2016 * here. We must be able to cover all kmalloc caches during bootstrap.
2017 *
2018 * If the per cpu array is exhausted then fall back to kmalloc
2019 * of individual cachelines. No sharing is possible then.
2020 */
2021 #define NR_KMEM_CACHE_CPU 100
2022
2023 static DEFINE_PER_CPU(struct kmem_cache_cpu,
2024 kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
2025
2026 static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
2027 static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
2028
2029 static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
2030 int cpu, gfp_t flags)
2031 {
2032 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
2033
2034 if (c)
2035 per_cpu(kmem_cache_cpu_free, cpu) =
2036 (void *)c->freelist;
2037 else {
2038 /* Table overflow: So allocate ourselves */
2039 c = kmalloc_node(
2040 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
2041 flags, cpu_to_node(cpu));
2042 if (!c)
2043 return NULL;
2044 }
2045
2046 init_kmem_cache_cpu(s, c);
2047 return c;
2048 }
2049
2050 static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
2051 {
2052 if (c < per_cpu(kmem_cache_cpu, cpu) ||
2053 c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
2054 kfree(c);
2055 return;
2056 }
2057 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
2058 per_cpu(kmem_cache_cpu_free, cpu) = c;
2059 }
2060
2061 static void free_kmem_cache_cpus(struct kmem_cache *s)
2062 {
2063 int cpu;
2064
2065 for_each_online_cpu(cpu) {
2066 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2067
2068 if (c) {
2069 s->cpu_slab[cpu] = NULL;
2070 free_kmem_cache_cpu(c, cpu);
2071 }
2072 }
2073 }
2074
2075 static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2076 {
2077 int cpu;
2078
2079 for_each_online_cpu(cpu) {
2080 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2081
2082 if (c)
2083 continue;
2084
2085 c = alloc_kmem_cache_cpu(s, cpu, flags);
2086 if (!c) {
2087 free_kmem_cache_cpus(s);
2088 return 0;
2089 }
2090 s->cpu_slab[cpu] = c;
2091 }
2092 return 1;
2093 }
2094
2095 /*
2096 * Initialize the per cpu array.
2097 */
2098 static void init_alloc_cpu_cpu(int cpu)
2099 {
2100 int i;
2101
2102 if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
2103 return;
2104
2105 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2106 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2107
2108 cpu_set(cpu, kmem_cach_cpu_free_init_once);
2109 }
2110
2111 static void __init init_alloc_cpu(void)
2112 {
2113 int cpu;
2114
2115 for_each_online_cpu(cpu)
2116 init_alloc_cpu_cpu(cpu);
2117 }
2118
2119 #else
2120 static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2121 static inline void init_alloc_cpu(void) {}
2122
2123 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2124 {
2125 init_kmem_cache_cpu(s, &s->cpu_slab);
2126 return 1;
2127 }
2128 #endif
2129
2130 #ifdef CONFIG_NUMA
2131 /*
2132 * No kmalloc_node yet so do it by hand. We know that this is the first
2133 * slab on the node for this slabcache. There are no concurrent accesses
2134 * possible.
2135 *
2136 * Note that this function only works on the kmalloc_node_cache
2137 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2138 * memory on a fresh node that has no slab structures yet.
2139 */
2140 static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
2141 int node)
2142 {
2143 struct page *page;
2144 struct kmem_cache_node *n;
2145 unsigned long flags;
2146
2147 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2148
2149 page = new_slab(kmalloc_caches, gfpflags, node);
2150
2151 BUG_ON(!page);
2152 if (page_to_nid(page) != node) {
2153 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2154 "node %d\n", node);
2155 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2156 "in order to be able to continue\n");
2157 }
2158
2159 n = page->freelist;
2160 BUG_ON(!n);
2161 page->freelist = get_freepointer(kmalloc_caches, n);
2162 page->inuse++;
2163 kmalloc_caches->node[node] = n;
2164 #ifdef CONFIG_SLUB_DEBUG
2165 init_object(kmalloc_caches, n, 1);
2166 init_tracking(kmalloc_caches, n);
2167 #endif
2168 init_kmem_cache_node(n);
2169 atomic_long_inc(&n->nr_slabs);
2170 /*
2171 * lockdep requires consistent irq usage for each lock
2172 * so even though there cannot be a race this early in
2173 * the boot sequence, we still disable irqs.
2174 */
2175 local_irq_save(flags);
2176 add_partial(n, page, 0);
2177 local_irq_restore(flags);
2178 return n;
2179 }
2180
2181 static void free_kmem_cache_nodes(struct kmem_cache *s)
2182 {
2183 int node;
2184
2185 for_each_node_state(node, N_NORMAL_MEMORY) {
2186 struct kmem_cache_node *n = s->node[node];
2187 if (n && n != &s->local_node)
2188 kmem_cache_free(kmalloc_caches, n);
2189 s->node[node] = NULL;
2190 }
2191 }
2192
2193 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2194 {
2195 int node;
2196 int local_node;
2197
2198 if (slab_state >= UP)
2199 local_node = page_to_nid(virt_to_page(s));
2200 else
2201 local_node = 0;
2202
2203 for_each_node_state(node, N_NORMAL_MEMORY) {
2204 struct kmem_cache_node *n;
2205
2206 if (local_node == node)
2207 n = &s->local_node;
2208 else {
2209 if (slab_state == DOWN) {
2210 n = early_kmem_cache_node_alloc(gfpflags,
2211 node);
2212 continue;
2213 }
2214 n = kmem_cache_alloc_node(kmalloc_caches,
2215 gfpflags, node);
2216
2217 if (!n) {
2218 free_kmem_cache_nodes(s);
2219 return 0;
2220 }
2221
2222 }
2223 s->node[node] = n;
2224 init_kmem_cache_node(n);
2225 }
2226 return 1;
2227 }
2228 #else
2229 static void free_kmem_cache_nodes(struct kmem_cache *s)
2230 {
2231 }
2232
2233 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2234 {
2235 init_kmem_cache_node(&s->local_node);
2236 return 1;
2237 }
2238 #endif
2239
2240 /*
2241 * calculate_sizes() determines the order and the distribution of data within
2242 * a slab object.
2243 */
2244 static int calculate_sizes(struct kmem_cache *s)
2245 {
2246 unsigned long flags = s->flags;
2247 unsigned long size = s->objsize;
2248 unsigned long align = s->align;
2249
2250 /*
2251 * Determine if we can poison the object itself. If the user of
2252 * the slab may touch the object after free or before allocation
2253 * then we should never poison the object itself.
2254 */
2255 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2256 !s->ctor)
2257 s->flags |= __OBJECT_POISON;
2258 else
2259 s->flags &= ~__OBJECT_POISON;
2260
2261 /*
2262 * Round up object size to the next word boundary. We can only
2263 * place the free pointer at word boundaries and this determines
2264 * the possible location of the free pointer.
2265 */
2266 size = ALIGN(size, sizeof(void *));
2267
2268 #ifdef CONFIG_SLUB_DEBUG
2269 /*
2270 * If we are Redzoning then check if there is some space between the
2271 * end of the object and the free pointer. If not then add an
2272 * additional word to have some bytes to store Redzone information.
2273 */
2274 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2275 size += sizeof(void *);
2276 #endif
2277
2278 /*
2279 * With that we have determined the number of bytes in actual use
2280 * by the object. This is the potential offset to the free pointer.
2281 */
2282 s->inuse = size;
2283
2284 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2285 s->ctor)) {
2286 /*
2287 * Relocate free pointer after the object if it is not
2288 * permitted to overwrite the first word of the object on
2289 * kmem_cache_free.
2290 *
2291 * This is the case if we do RCU, have a constructor or
2292 * destructor or are poisoning the objects.
2293 */
2294 s->offset = size;
2295 size += sizeof(void *);
2296 }
2297
2298 #ifdef CONFIG_SLUB_DEBUG
2299 if (flags & SLAB_STORE_USER)
2300 /*
2301 * Need to store information about allocs and frees after
2302 * the object.
2303 */
2304 size += 2 * sizeof(struct track);
2305
2306 if (flags & SLAB_RED_ZONE)
2307 /*
2308 * Add some empty padding so that we can catch
2309 * overwrites from earlier objects rather than let
2310 * tracking information or the free pointer be
2311 * corrupted if an user writes before the start
2312 * of the object.
2313 */
2314 size += sizeof(void *);
2315 #endif
2316
2317 /*
2318 * Determine the alignment based on various parameters that the
2319 * user specified and the dynamic determination of cache line size
2320 * on bootup.
2321 */
2322 align = calculate_alignment(flags, align, s->objsize);
2323
2324 /*
2325 * SLUB stores one object immediately after another beginning from
2326 * offset 0. In order to align the objects we have to simply size
2327 * each object to conform to the alignment.
2328 */
2329 size = ALIGN(size, align);
2330 s->size = size;
2331
2332 s->order = calculate_order(size);
2333 if (s->order < 0)
2334 return 0;
2335
2336 /*
2337 * Determine the number of objects per slab
2338 */
2339 s->objects = (PAGE_SIZE << s->order) / size;
2340
2341 return !!s->objects;
2342
2343 }
2344
2345 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2346 const char *name, size_t size,
2347 size_t align, unsigned long flags,
2348 void (*ctor)(struct kmem_cache *, void *))
2349 {
2350 memset(s, 0, kmem_size);
2351 s->name = name;
2352 s->ctor = ctor;
2353 s->objsize = size;
2354 s->align = align;
2355 s->flags = kmem_cache_flags(size, flags, name, ctor);
2356
2357 if (!calculate_sizes(s))
2358 goto error;
2359
2360 s->refcount = 1;
2361 #ifdef CONFIG_NUMA
2362 s->remote_node_defrag_ratio = 100;
2363 #endif
2364 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2365 goto error;
2366
2367 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2368 return 1;
2369 free_kmem_cache_nodes(s);
2370 error:
2371 if (flags & SLAB_PANIC)
2372 panic("Cannot create slab %s size=%lu realsize=%u "
2373 "order=%u offset=%u flags=%lx\n",
2374 s->name, (unsigned long)size, s->size, s->order,
2375 s->offset, flags);
2376 return 0;
2377 }
2378
2379 /*
2380 * Check if a given pointer is valid
2381 */
2382 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2383 {
2384 struct page *page;
2385
2386 page = get_object_page(object);
2387
2388 if (!page || s != page->slab)
2389 /* No slab or wrong slab */
2390 return 0;
2391
2392 if (!check_valid_pointer(s, page, object))
2393 return 0;
2394
2395 /*
2396 * We could also check if the object is on the slabs freelist.
2397 * But this would be too expensive and it seems that the main
2398 * purpose of kmem_ptr_valid is to check if the object belongs
2399 * to a certain slab.
2400 */
2401 return 1;
2402 }
2403 EXPORT_SYMBOL(kmem_ptr_validate);
2404
2405 /*
2406 * Determine the size of a slab object
2407 */
2408 unsigned int kmem_cache_size(struct kmem_cache *s)
2409 {
2410 return s->objsize;
2411 }
2412 EXPORT_SYMBOL(kmem_cache_size);
2413
2414 const char *kmem_cache_name(struct kmem_cache *s)
2415 {
2416 return s->name;
2417 }
2418 EXPORT_SYMBOL(kmem_cache_name);
2419
2420 /*
2421 * Attempt to free all slabs on a node. Return the number of slabs we
2422 * were unable to free.
2423 */
2424 static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
2425 struct list_head *list)
2426 {
2427 int slabs_inuse = 0;
2428 unsigned long flags;
2429 struct page *page, *h;
2430
2431 spin_lock_irqsave(&n->list_lock, flags);
2432 list_for_each_entry_safe(page, h, list, lru)
2433 if (!page->inuse) {
2434 list_del(&page->lru);
2435 discard_slab(s, page);
2436 } else
2437 slabs_inuse++;
2438 spin_unlock_irqrestore(&n->list_lock, flags);
2439 return slabs_inuse;
2440 }
2441
2442 /*
2443 * Release all resources used by a slab cache.
2444 */
2445 static inline int kmem_cache_close(struct kmem_cache *s)
2446 {
2447 int node;
2448
2449 flush_all(s);
2450
2451 /* Attempt to free all objects */
2452 free_kmem_cache_cpus(s);
2453 for_each_node_state(node, N_NORMAL_MEMORY) {
2454 struct kmem_cache_node *n = get_node(s, node);
2455
2456 n->nr_partial -= free_list(s, n, &n->partial);
2457 if (atomic_long_read(&n->nr_slabs))
2458 return 1;
2459 }
2460 free_kmem_cache_nodes(s);
2461 return 0;
2462 }
2463
2464 /*
2465 * Close a cache and release the kmem_cache structure
2466 * (must be used for caches created using kmem_cache_create)
2467 */
2468 void kmem_cache_destroy(struct kmem_cache *s)
2469 {
2470 down_write(&slub_lock);
2471 s->refcount--;
2472 if (!s->refcount) {
2473 list_del(&s->list);
2474 up_write(&slub_lock);
2475 if (kmem_cache_close(s))
2476 WARN_ON(1);
2477 sysfs_slab_remove(s);
2478 } else
2479 up_write(&slub_lock);
2480 }
2481 EXPORT_SYMBOL(kmem_cache_destroy);
2482
2483 /********************************************************************
2484 * Kmalloc subsystem
2485 *******************************************************************/
2486
2487 struct kmem_cache kmalloc_caches[PAGE_SHIFT] __cacheline_aligned;
2488 EXPORT_SYMBOL(kmalloc_caches);
2489
2490 #ifdef CONFIG_ZONE_DMA
2491 static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT];
2492 #endif
2493
2494 static int __init setup_slub_min_order(char *str)
2495 {
2496 get_option(&str, &slub_min_order);
2497
2498 return 1;
2499 }
2500
2501 __setup("slub_min_order=", setup_slub_min_order);
2502
2503 static int __init setup_slub_max_order(char *str)
2504 {
2505 get_option(&str, &slub_max_order);
2506
2507 return 1;
2508 }
2509
2510 __setup("slub_max_order=", setup_slub_max_order);
2511
2512 static int __init setup_slub_min_objects(char *str)
2513 {
2514 get_option(&str, &slub_min_objects);
2515
2516 return 1;
2517 }
2518
2519 __setup("slub_min_objects=", setup_slub_min_objects);
2520
2521 static int __init setup_slub_nomerge(char *str)
2522 {
2523 slub_nomerge = 1;
2524 return 1;
2525 }
2526
2527 __setup("slub_nomerge", setup_slub_nomerge);
2528
2529 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2530 const char *name, int size, gfp_t gfp_flags)
2531 {
2532 unsigned int flags = 0;
2533
2534 if (gfp_flags & SLUB_DMA)
2535 flags = SLAB_CACHE_DMA;
2536
2537 down_write(&slub_lock);
2538 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2539 flags, NULL))
2540 goto panic;
2541
2542 list_add(&s->list, &slab_caches);
2543 up_write(&slub_lock);
2544 if (sysfs_slab_add(s))
2545 goto panic;
2546 return s;
2547
2548 panic:
2549 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2550 }
2551
2552 #ifdef CONFIG_ZONE_DMA
2553
2554 static void sysfs_add_func(struct work_struct *w)
2555 {
2556 struct kmem_cache *s;
2557
2558 down_write(&slub_lock);
2559 list_for_each_entry(s, &slab_caches, list) {
2560 if (s->flags & __SYSFS_ADD_DEFERRED) {
2561 s->flags &= ~__SYSFS_ADD_DEFERRED;
2562 sysfs_slab_add(s);
2563 }
2564 }
2565 up_write(&slub_lock);
2566 }
2567
2568 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2569
2570 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2571 {
2572 struct kmem_cache *s;
2573 char *text;
2574 size_t realsize;
2575
2576 s = kmalloc_caches_dma[index];
2577 if (s)
2578 return s;
2579
2580 /* Dynamically create dma cache */
2581 if (flags & __GFP_WAIT)
2582 down_write(&slub_lock);
2583 else {
2584 if (!down_write_trylock(&slub_lock))
2585 goto out;
2586 }
2587
2588 if (kmalloc_caches_dma[index])
2589 goto unlock_out;
2590
2591 realsize = kmalloc_caches[index].objsize;
2592 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d", (unsigned int)realsize),
2593 s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2594
2595 if (!s || !text || !kmem_cache_open(s, flags, text,
2596 realsize, ARCH_KMALLOC_MINALIGN,
2597 SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2598 kfree(s);
2599 kfree(text);
2600 goto unlock_out;
2601 }
2602
2603 list_add(&s->list, &slab_caches);
2604 kmalloc_caches_dma[index] = s;
2605
2606 schedule_work(&sysfs_add_work);
2607
2608 unlock_out:
2609 up_write(&slub_lock);
2610 out:
2611 return kmalloc_caches_dma[index];
2612 }
2613 #endif
2614
2615 /*
2616 * Conversion table for small slabs sizes / 8 to the index in the
2617 * kmalloc array. This is necessary for slabs < 192 since we have non power
2618 * of two cache sizes there. The size of larger slabs can be determined using
2619 * fls.
2620 */
2621 static s8 size_index[24] = {
2622 3, /* 8 */
2623 4, /* 16 */
2624 5, /* 24 */
2625 5, /* 32 */
2626 6, /* 40 */
2627 6, /* 48 */
2628 6, /* 56 */
2629 6, /* 64 */
2630 1, /* 72 */
2631 1, /* 80 */
2632 1, /* 88 */
2633 1, /* 96 */
2634 7, /* 104 */
2635 7, /* 112 */
2636 7, /* 120 */
2637 7, /* 128 */
2638 2, /* 136 */
2639 2, /* 144 */
2640 2, /* 152 */
2641 2, /* 160 */
2642 2, /* 168 */
2643 2, /* 176 */
2644 2, /* 184 */
2645 2 /* 192 */
2646 };
2647
2648 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2649 {
2650 int index;
2651
2652 if (size <= 192) {
2653 if (!size)
2654 return ZERO_SIZE_PTR;
2655
2656 index = size_index[(size - 1) / 8];
2657 } else
2658 index = fls(size - 1);
2659
2660 #ifdef CONFIG_ZONE_DMA
2661 if (unlikely((flags & SLUB_DMA)))
2662 return dma_kmalloc_cache(index, flags);
2663
2664 #endif
2665 return &kmalloc_caches[index];
2666 }
2667
2668 void *__kmalloc(size_t size, gfp_t flags)
2669 {
2670 struct kmem_cache *s;
2671
2672 if (unlikely(size > PAGE_SIZE / 2))
2673 return (void *)__get_free_pages(flags | __GFP_COMP,
2674 get_order(size));
2675
2676 s = get_slab(size, flags);
2677
2678 if (unlikely(ZERO_OR_NULL_PTR(s)))
2679 return s;
2680
2681 return slab_alloc(s, flags, -1, __builtin_return_address(0));
2682 }
2683 EXPORT_SYMBOL(__kmalloc);
2684
2685 #ifdef CONFIG_NUMA
2686 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2687 {
2688 struct kmem_cache *s;
2689
2690 if (unlikely(size > PAGE_SIZE / 2))
2691 return (void *)__get_free_pages(flags | __GFP_COMP,
2692 get_order(size));
2693
2694 s = get_slab(size, flags);
2695
2696 if (unlikely(ZERO_OR_NULL_PTR(s)))
2697 return s;
2698
2699 return slab_alloc(s, flags, node, __builtin_return_address(0));
2700 }
2701 EXPORT_SYMBOL(__kmalloc_node);
2702 #endif
2703
2704 size_t ksize(const void *object)
2705 {
2706 struct page *page;
2707 struct kmem_cache *s;
2708
2709 BUG_ON(!object);
2710 if (unlikely(object == ZERO_SIZE_PTR))
2711 return 0;
2712
2713 page = virt_to_head_page(object);
2714 BUG_ON(!page);
2715
2716 if (unlikely(!PageSlab(page)))
2717 return PAGE_SIZE << compound_order(page);
2718
2719 s = page->slab;
2720 BUG_ON(!s);
2721
2722 /*
2723 * Debugging requires use of the padding between object
2724 * and whatever may come after it.
2725 */
2726 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2727 return s->objsize;
2728
2729 /*
2730 * If we have the need to store the freelist pointer
2731 * back there or track user information then we can
2732 * only use the space before that information.
2733 */
2734 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2735 return s->inuse;
2736
2737 /*
2738 * Else we can use all the padding etc for the allocation
2739 */
2740 return s->size;
2741 }
2742 EXPORT_SYMBOL(ksize);
2743
2744 void kfree(const void *x)
2745 {
2746 struct page *page;
2747 void *object = (void *)x;
2748
2749 if (unlikely(ZERO_OR_NULL_PTR(x)))
2750 return;
2751
2752 page = virt_to_head_page(x);
2753 if (unlikely(!PageSlab(page))) {
2754 put_page(page);
2755 return;
2756 }
2757 slab_free(page->slab, page, object, __builtin_return_address(0));
2758 }
2759 EXPORT_SYMBOL(kfree);
2760
2761 static unsigned long count_partial(struct kmem_cache_node *n)
2762 {
2763 unsigned long flags;
2764 unsigned long x = 0;
2765 struct page *page;
2766
2767 spin_lock_irqsave(&n->list_lock, flags);
2768 list_for_each_entry(page, &n->partial, lru)
2769 x += page->inuse;
2770 spin_unlock_irqrestore(&n->list_lock, flags);
2771 return x;
2772 }
2773
2774 /*
2775 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2776 * the remaining slabs by the number of items in use. The slabs with the
2777 * most items in use come first. New allocations will then fill those up
2778 * and thus they can be removed from the partial lists.
2779 *
2780 * The slabs with the least items are placed last. This results in them
2781 * being allocated from last increasing the chance that the last objects
2782 * are freed in them.
2783 */
2784 int kmem_cache_shrink(struct kmem_cache *s)
2785 {
2786 int node;
2787 int i;
2788 struct kmem_cache_node *n;
2789 struct page *page;
2790 struct page *t;
2791 struct list_head *slabs_by_inuse =
2792 kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
2793 unsigned long flags;
2794
2795 if (!slabs_by_inuse)
2796 return -ENOMEM;
2797
2798 flush_all(s);
2799 for_each_node_state(node, N_NORMAL_MEMORY) {
2800 n = get_node(s, node);
2801
2802 if (!n->nr_partial)
2803 continue;
2804
2805 for (i = 0; i < s->objects; i++)
2806 INIT_LIST_HEAD(slabs_by_inuse + i);
2807
2808 spin_lock_irqsave(&n->list_lock, flags);
2809
2810 /*
2811 * Build lists indexed by the items in use in each slab.
2812 *
2813 * Note that concurrent frees may occur while we hold the
2814 * list_lock. page->inuse here is the upper limit.
2815 */
2816 list_for_each_entry_safe(page, t, &n->partial, lru) {
2817 if (!page->inuse && slab_trylock(page)) {
2818 /*
2819 * Must hold slab lock here because slab_free
2820 * may have freed the last object and be
2821 * waiting to release the slab.
2822 */
2823 list_del(&page->lru);
2824 n->nr_partial--;
2825 slab_unlock(page);
2826 discard_slab(s, page);
2827 } else {
2828 list_move(&page->lru,
2829 slabs_by_inuse + page->inuse);
2830 }
2831 }
2832
2833 /*
2834 * Rebuild the partial list with the slabs filled up most
2835 * first and the least used slabs at the end.
2836 */
2837 for (i = s->objects - 1; i >= 0; i--)
2838 list_splice(slabs_by_inuse + i, n->partial.prev);
2839
2840 spin_unlock_irqrestore(&n->list_lock, flags);
2841 }
2842
2843 kfree(slabs_by_inuse);
2844 return 0;
2845 }
2846 EXPORT_SYMBOL(kmem_cache_shrink);
2847
2848 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2849 static int slab_mem_going_offline_callback(void *arg)
2850 {
2851 struct kmem_cache *s;
2852
2853 down_read(&slub_lock);
2854 list_for_each_entry(s, &slab_caches, list)
2855 kmem_cache_shrink(s);
2856 up_read(&slub_lock);
2857
2858 return 0;
2859 }
2860
2861 static void slab_mem_offline_callback(void *arg)
2862 {
2863 struct kmem_cache_node *n;
2864 struct kmem_cache *s;
2865 struct memory_notify *marg = arg;
2866 int offline_node;
2867
2868 offline_node = marg->status_change_nid;
2869
2870 /*
2871 * If the node still has available memory. we need kmem_cache_node
2872 * for it yet.
2873 */
2874 if (offline_node < 0)
2875 return;
2876
2877 down_read(&slub_lock);
2878 list_for_each_entry(s, &slab_caches, list) {
2879 n = get_node(s, offline_node);
2880 if (n) {
2881 /*
2882 * if n->nr_slabs > 0, slabs still exist on the node
2883 * that is going down. We were unable to free them,
2884 * and offline_pages() function shoudn't call this
2885 * callback. So, we must fail.
2886 */
2887 BUG_ON(atomic_long_read(&n->nr_slabs));
2888
2889 s->node[offline_node] = NULL;
2890 kmem_cache_free(kmalloc_caches, n);
2891 }
2892 }
2893 up_read(&slub_lock);
2894 }
2895
2896 static int slab_mem_going_online_callback(void *arg)
2897 {
2898 struct kmem_cache_node *n;
2899 struct kmem_cache *s;
2900 struct memory_notify *marg = arg;
2901 int nid = marg->status_change_nid;
2902 int ret = 0;
2903
2904 /*
2905 * If the node's memory is already available, then kmem_cache_node is
2906 * already created. Nothing to do.
2907 */
2908 if (nid < 0)
2909 return 0;
2910
2911 /*
2912 * We are bringing a node online. No memory is availabe yet. We must
2913 * allocate a kmem_cache_node structure in order to bring the node
2914 * online.
2915 */
2916 down_read(&slub_lock);
2917 list_for_each_entry(s, &slab_caches, list) {
2918 /*
2919 * XXX: kmem_cache_alloc_node will fallback to other nodes
2920 * since memory is not yet available from the node that
2921 * is brought up.
2922 */
2923 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2924 if (!n) {
2925 ret = -ENOMEM;
2926 goto out;
2927 }
2928 init_kmem_cache_node(n);
2929 s->node[nid] = n;
2930 }
2931 out:
2932 up_read(&slub_lock);
2933 return ret;
2934 }
2935
2936 static int slab_memory_callback(struct notifier_block *self,
2937 unsigned long action, void *arg)
2938 {
2939 int ret = 0;
2940
2941 switch (action) {
2942 case MEM_GOING_ONLINE:
2943 ret = slab_mem_going_online_callback(arg);
2944 break;
2945 case MEM_GOING_OFFLINE:
2946 ret = slab_mem_going_offline_callback(arg);
2947 break;
2948 case MEM_OFFLINE:
2949 case MEM_CANCEL_ONLINE:
2950 slab_mem_offline_callback(arg);
2951 break;
2952 case MEM_ONLINE:
2953 case MEM_CANCEL_OFFLINE:
2954 break;
2955 }
2956
2957 ret = notifier_from_errno(ret);
2958 return ret;
2959 }
2960
2961 #endif /* CONFIG_MEMORY_HOTPLUG */
2962
2963 /********************************************************************
2964 * Basic setup of slabs
2965 *******************************************************************/
2966
2967 void __init kmem_cache_init(void)
2968 {
2969 int i;
2970 int caches = 0;
2971
2972 init_alloc_cpu();
2973
2974 #ifdef CONFIG_NUMA
2975 /*
2976 * Must first have the slab cache available for the allocations of the
2977 * struct kmem_cache_node's. There is special bootstrap code in
2978 * kmem_cache_open for slab_state == DOWN.
2979 */
2980 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2981 sizeof(struct kmem_cache_node), GFP_KERNEL);
2982 kmalloc_caches[0].refcount = -1;
2983 caches++;
2984
2985 hotplug_memory_notifier(slab_memory_callback, 1);
2986 #endif
2987
2988 /* Able to allocate the per node structures */
2989 slab_state = PARTIAL;
2990
2991 /* Caches that are not of the two-to-the-power-of size */
2992 if (KMALLOC_MIN_SIZE <= 64) {
2993 create_kmalloc_cache(&kmalloc_caches[1],
2994 "kmalloc-96", 96, GFP_KERNEL);
2995 caches++;
2996 }
2997 if (KMALLOC_MIN_SIZE <= 128) {
2998 create_kmalloc_cache(&kmalloc_caches[2],
2999 "kmalloc-192", 192, GFP_KERNEL);
3000 caches++;
3001 }
3002
3003 for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++) {
3004 create_kmalloc_cache(&kmalloc_caches[i],
3005 "kmalloc", 1 << i, GFP_KERNEL);
3006 caches++;
3007 }
3008
3009
3010 /*
3011 * Patch up the size_index table if we have strange large alignment
3012 * requirements for the kmalloc array. This is only the case for
3013 * mips it seems. The standard arches will not generate any code here.
3014 *
3015 * Largest permitted alignment is 256 bytes due to the way we
3016 * handle the index determination for the smaller caches.
3017 *
3018 * Make sure that nothing crazy happens if someone starts tinkering
3019 * around with ARCH_KMALLOC_MINALIGN
3020 */
3021 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3022 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3023
3024 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
3025 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
3026
3027 slab_state = UP;
3028
3029 /* Provide the correct kmalloc names now that the caches are up */
3030 for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++)
3031 kmalloc_caches[i]. name =
3032 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
3033
3034 #ifdef CONFIG_SMP
3035 register_cpu_notifier(&slab_notifier);
3036 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
3037 nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
3038 #else
3039 kmem_size = sizeof(struct kmem_cache);
3040 #endif
3041
3042
3043 printk(KERN_INFO "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3044 " CPUs=%d, Nodes=%d\n",
3045 caches, cache_line_size(),
3046 slub_min_order, slub_max_order, slub_min_objects,
3047 nr_cpu_ids, nr_node_ids);
3048 }
3049
3050 /*
3051 * Find a mergeable slab cache
3052 */
3053 static int slab_unmergeable(struct kmem_cache *s)
3054 {
3055 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3056 return 1;
3057
3058 if (s->ctor)
3059 return 1;
3060
3061 /*
3062 * We may have set a slab to be unmergeable during bootstrap.
3063 */
3064 if (s->refcount < 0)
3065 return 1;
3066
3067 return 0;
3068 }
3069
3070 static struct kmem_cache *find_mergeable(size_t size,
3071 size_t align, unsigned long flags, const char *name,
3072 void (*ctor)(struct kmem_cache *, void *))
3073 {
3074 struct kmem_cache *s;
3075
3076 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3077 return NULL;
3078
3079 if (ctor)
3080 return NULL;
3081
3082 size = ALIGN(size, sizeof(void *));
3083 align = calculate_alignment(flags, align, size);
3084 size = ALIGN(size, align);
3085 flags = kmem_cache_flags(size, flags, name, NULL);
3086
3087 list_for_each_entry(s, &slab_caches, list) {
3088 if (slab_unmergeable(s))
3089 continue;
3090
3091 if (size > s->size)
3092 continue;
3093
3094 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3095 continue;
3096 /*
3097 * Check if alignment is compatible.
3098 * Courtesy of Adrian Drzewiecki
3099 */
3100 if ((s->size & ~(align - 1)) != s->size)
3101 continue;
3102
3103 if (s->size - size >= sizeof(void *))
3104 continue;
3105
3106 return s;
3107 }
3108 return NULL;
3109 }
3110
3111 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3112 size_t align, unsigned long flags,
3113 void (*ctor)(struct kmem_cache *, void *))
3114 {
3115 struct kmem_cache *s;
3116
3117 down_write(&slub_lock);
3118 s = find_mergeable(size, align, flags, name, ctor);
3119 if (s) {
3120 int cpu;
3121
3122 s->refcount++;
3123 /*
3124 * Adjust the object sizes so that we clear
3125 * the complete object on kzalloc.
3126 */
3127 s->objsize = max(s->objsize, (int)size);
3128
3129 /*
3130 * And then we need to update the object size in the
3131 * per cpu structures
3132 */
3133 for_each_online_cpu(cpu)
3134 get_cpu_slab(s, cpu)->objsize = s->objsize;
3135 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3136 up_write(&slub_lock);
3137 if (sysfs_slab_alias(s, name))
3138 goto err;
3139 return s;
3140 }
3141 s = kmalloc(kmem_size, GFP_KERNEL);
3142 if (s) {
3143 if (kmem_cache_open(s, GFP_KERNEL, name,
3144 size, align, flags, ctor)) {
3145 list_add(&s->list, &slab_caches);
3146 up_write(&slub_lock);
3147 if (sysfs_slab_add(s))
3148 goto err;
3149 return s;
3150 }
3151 kfree(s);
3152 }
3153 up_write(&slub_lock);
3154
3155 err:
3156 if (flags & SLAB_PANIC)
3157 panic("Cannot create slabcache %s\n", name);
3158 else
3159 s = NULL;
3160 return s;
3161 }
3162 EXPORT_SYMBOL(kmem_cache_create);
3163
3164 #ifdef CONFIG_SMP
3165 /*
3166 * Use the cpu notifier to insure that the cpu slabs are flushed when
3167 * necessary.
3168 */
3169 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3170 unsigned long action, void *hcpu)
3171 {
3172 long cpu = (long)hcpu;
3173 struct kmem_cache *s;
3174 unsigned long flags;
3175
3176 switch (action) {
3177 case CPU_UP_PREPARE:
3178 case CPU_UP_PREPARE_FROZEN:
3179 init_alloc_cpu_cpu(cpu);
3180 down_read(&slub_lock);
3181 list_for_each_entry(s, &slab_caches, list)
3182 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3183 GFP_KERNEL);
3184 up_read(&slub_lock);
3185 break;
3186
3187 case CPU_UP_CANCELED:
3188 case CPU_UP_CANCELED_FROZEN:
3189 case CPU_DEAD:
3190 case CPU_DEAD_FROZEN:
3191 down_read(&slub_lock);
3192 list_for_each_entry(s, &slab_caches, list) {
3193 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3194
3195 local_irq_save(flags);
3196 __flush_cpu_slab(s, cpu);
3197 local_irq_restore(flags);
3198 free_kmem_cache_cpu(c, cpu);
3199 s->cpu_slab[cpu] = NULL;
3200 }
3201 up_read(&slub_lock);
3202 break;
3203 default:
3204 break;
3205 }
3206 return NOTIFY_OK;
3207 }
3208
3209 static struct notifier_block __cpuinitdata slab_notifier = {
3210 &slab_cpuup_callback, NULL, 0
3211 };
3212
3213 #endif
3214
3215 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
3216 {
3217 struct kmem_cache *s;
3218
3219 if (unlikely(size > PAGE_SIZE / 2))
3220 return (void *)__get_free_pages(gfpflags | __GFP_COMP,
3221 get_order(size));
3222 s = get_slab(size, gfpflags);
3223
3224 if (unlikely(ZERO_OR_NULL_PTR(s)))
3225 return s;
3226
3227 return slab_alloc(s, gfpflags, -1, caller);
3228 }
3229
3230 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3231 int node, void *caller)
3232 {
3233 struct kmem_cache *s;
3234
3235 if (unlikely(size > PAGE_SIZE / 2))
3236 return (void *)__get_free_pages(gfpflags | __GFP_COMP,
3237 get_order(size));
3238 s = get_slab(size, gfpflags);
3239
3240 if (unlikely(ZERO_OR_NULL_PTR(s)))
3241 return s;
3242
3243 return slab_alloc(s, gfpflags, node, caller);
3244 }
3245
3246 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
3247 static int validate_slab(struct kmem_cache *s, struct page *page,
3248 unsigned long *map)
3249 {
3250 void *p;
3251 void *addr = slab_address(page);
3252
3253 if (!check_slab(s, page) ||
3254 !on_freelist(s, page, NULL))
3255 return 0;
3256
3257 /* Now we know that a valid freelist exists */
3258 bitmap_zero(map, s->objects);
3259
3260 for_each_free_object(p, s, page->freelist) {
3261 set_bit(slab_index(p, s, addr), map);
3262 if (!check_object(s, page, p, 0))
3263 return 0;
3264 }
3265
3266 for_each_object(p, s, addr)
3267 if (!test_bit(slab_index(p, s, addr), map))
3268 if (!check_object(s, page, p, 1))
3269 return 0;
3270 return 1;
3271 }
3272
3273 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3274 unsigned long *map)
3275 {
3276 if (slab_trylock(page)) {
3277 validate_slab(s, page, map);
3278 slab_unlock(page);
3279 } else
3280 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3281 s->name, page);
3282
3283 if (s->flags & DEBUG_DEFAULT_FLAGS) {
3284 if (!SlabDebug(page))
3285 printk(KERN_ERR "SLUB %s: SlabDebug not set "
3286 "on slab 0x%p\n", s->name, page);
3287 } else {
3288 if (SlabDebug(page))
3289 printk(KERN_ERR "SLUB %s: SlabDebug set on "
3290 "slab 0x%p\n", s->name, page);
3291 }
3292 }
3293
3294 static int validate_slab_node(struct kmem_cache *s,
3295 struct kmem_cache_node *n, unsigned long *map)
3296 {
3297 unsigned long count = 0;
3298 struct page *page;
3299 unsigned long flags;
3300
3301 spin_lock_irqsave(&n->list_lock, flags);
3302
3303 list_for_each_entry(page, &n->partial, lru) {
3304 validate_slab_slab(s, page, map);
3305 count++;
3306 }
3307 if (count != n->nr_partial)
3308 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3309 "counter=%ld\n", s->name, count, n->nr_partial);
3310
3311 if (!(s->flags & SLAB_STORE_USER))
3312 goto out;
3313
3314 list_for_each_entry(page, &n->full, lru) {
3315 validate_slab_slab(s, page, map);
3316 count++;
3317 }
3318 if (count != atomic_long_read(&n->nr_slabs))
3319 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3320 "counter=%ld\n", s->name, count,
3321 atomic_long_read(&n->nr_slabs));
3322
3323 out:
3324 spin_unlock_irqrestore(&n->list_lock, flags);
3325 return count;
3326 }
3327
3328 static long validate_slab_cache(struct kmem_cache *s)
3329 {
3330 int node;
3331 unsigned long count = 0;
3332 unsigned long *map = kmalloc(BITS_TO_LONGS(s->objects) *
3333 sizeof(unsigned long), GFP_KERNEL);
3334
3335 if (!map)
3336 return -ENOMEM;
3337
3338 flush_all(s);
3339 for_each_node_state(node, N_NORMAL_MEMORY) {
3340 struct kmem_cache_node *n = get_node(s, node);
3341
3342 count += validate_slab_node(s, n, map);
3343 }
3344 kfree(map);
3345 return count;
3346 }
3347
3348 #ifdef SLUB_RESILIENCY_TEST
3349 static void resiliency_test(void)
3350 {
3351 u8 *p;
3352
3353 printk(KERN_ERR "SLUB resiliency testing\n");
3354 printk(KERN_ERR "-----------------------\n");
3355 printk(KERN_ERR "A. Corruption after allocation\n");
3356
3357 p = kzalloc(16, GFP_KERNEL);
3358 p[16] = 0x12;
3359 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3360 " 0x12->0x%p\n\n", p + 16);
3361
3362 validate_slab_cache(kmalloc_caches + 4);
3363
3364 /* Hmmm... The next two are dangerous */
3365 p = kzalloc(32, GFP_KERNEL);
3366 p[32 + sizeof(void *)] = 0x34;
3367 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3368 " 0x34 -> -0x%p\n", p);
3369 printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
3370
3371 validate_slab_cache(kmalloc_caches + 5);
3372 p = kzalloc(64, GFP_KERNEL);
3373 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3374 *p = 0x56;
3375 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3376 p);
3377 printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
3378 validate_slab_cache(kmalloc_caches + 6);
3379
3380 printk(KERN_ERR "\nB. Corruption after free\n");
3381 p = kzalloc(128, GFP_KERNEL);
3382 kfree(p);
3383 *p = 0x78;
3384 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3385 validate_slab_cache(kmalloc_caches + 7);
3386
3387 p = kzalloc(256, GFP_KERNEL);
3388 kfree(p);
3389 p[50] = 0x9a;
3390 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
3391 validate_slab_cache(kmalloc_caches + 8);
3392
3393 p = kzalloc(512, GFP_KERNEL);
3394 kfree(p);
3395 p[512] = 0xab;
3396 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3397 validate_slab_cache(kmalloc_caches + 9);
3398 }
3399 #else
3400 static void resiliency_test(void) {};
3401 #endif
3402
3403 /*
3404 * Generate lists of code addresses where slabcache objects are allocated
3405 * and freed.
3406 */
3407
3408 struct location {
3409 unsigned long count;
3410 void *addr;
3411 long long sum_time;
3412 long min_time;
3413 long max_time;
3414 long min_pid;
3415 long max_pid;
3416 cpumask_t cpus;
3417 nodemask_t nodes;
3418 };
3419
3420 struct loc_track {
3421 unsigned long max;
3422 unsigned long count;
3423 struct location *loc;
3424 };
3425
3426 static void free_loc_track(struct loc_track *t)
3427 {
3428 if (t->max)
3429 free_pages((unsigned long)t->loc,
3430 get_order(sizeof(struct location) * t->max));
3431 }
3432
3433 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3434 {
3435 struct location *l;
3436 int order;
3437
3438 order = get_order(sizeof(struct location) * max);
3439
3440 l = (void *)__get_free_pages(flags, order);
3441 if (!l)
3442 return 0;
3443
3444 if (t->count) {
3445 memcpy(l, t->loc, sizeof(struct location) * t->count);
3446 free_loc_track(t);
3447 }
3448 t->max = max;
3449 t->loc = l;
3450 return 1;
3451 }
3452
3453 static int add_location(struct loc_track *t, struct kmem_cache *s,
3454 const struct track *track)
3455 {
3456 long start, end, pos;
3457 struct location *l;
3458 void *caddr;
3459 unsigned long age = jiffies - track->when;
3460
3461 start = -1;
3462 end = t->count;
3463
3464 for ( ; ; ) {
3465 pos = start + (end - start + 1) / 2;
3466
3467 /*
3468 * There is nothing at "end". If we end up there
3469 * we need to add something to before end.
3470 */
3471 if (pos == end)
3472 break;
3473
3474 caddr = t->loc[pos].addr;
3475 if (track->addr == caddr) {
3476
3477 l = &t->loc[pos];
3478 l->count++;
3479 if (track->when) {
3480 l->sum_time += age;
3481 if (age < l->min_time)
3482 l->min_time = age;
3483 if (age > l->max_time)
3484 l->max_time = age;
3485
3486 if (track->pid < l->min_pid)
3487 l->min_pid = track->pid;
3488 if (track->pid > l->max_pid)
3489 l->max_pid = track->pid;
3490
3491 cpu_set(track->cpu, l->cpus);
3492 }
3493 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3494 return 1;
3495 }
3496
3497 if (track->addr < caddr)
3498 end = pos;
3499 else
3500 start = pos;
3501 }
3502
3503 /*
3504 * Not found. Insert new tracking element.
3505 */
3506 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3507 return 0;
3508
3509 l = t->loc + pos;
3510 if (pos < t->count)
3511 memmove(l + 1, l,
3512 (t->count - pos) * sizeof(struct location));
3513 t->count++;
3514 l->count = 1;
3515 l->addr = track->addr;
3516 l->sum_time = age;
3517 l->min_time = age;
3518 l->max_time = age;
3519 l->min_pid = track->pid;
3520 l->max_pid = track->pid;
3521 cpus_clear(l->cpus);
3522 cpu_set(track->cpu, l->cpus);
3523 nodes_clear(l->nodes);
3524 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3525 return 1;
3526 }
3527
3528 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3529 struct page *page, enum track_item alloc)
3530 {
3531 void *addr = slab_address(page);
3532 DECLARE_BITMAP(map, s->objects);
3533 void *p;
3534
3535 bitmap_zero(map, s->objects);
3536 for_each_free_object(p, s, page->freelist)
3537 set_bit(slab_index(p, s, addr), map);
3538
3539 for_each_object(p, s, addr)
3540 if (!test_bit(slab_index(p, s, addr), map))
3541 add_location(t, s, get_track(s, p, alloc));
3542 }
3543
3544 static int list_locations(struct kmem_cache *s, char *buf,
3545 enum track_item alloc)
3546 {
3547 int len = 0;
3548 unsigned long i;
3549 struct loc_track t = { 0, 0, NULL };
3550 int node;
3551
3552 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3553 GFP_TEMPORARY))
3554 return sprintf(buf, "Out of memory\n");
3555
3556 /* Push back cpu slabs */
3557 flush_all(s);
3558
3559 for_each_node_state(node, N_NORMAL_MEMORY) {
3560 struct kmem_cache_node *n = get_node(s, node);
3561 unsigned long flags;
3562 struct page *page;
3563
3564 if (!atomic_long_read(&n->nr_slabs))
3565 continue;
3566
3567 spin_lock_irqsave(&n->list_lock, flags);
3568 list_for_each_entry(page, &n->partial, lru)
3569 process_slab(&t, s, page, alloc);
3570 list_for_each_entry(page, &n->full, lru)
3571 process_slab(&t, s, page, alloc);
3572 spin_unlock_irqrestore(&n->list_lock, flags);
3573 }
3574
3575 for (i = 0; i < t.count; i++) {
3576 struct location *l = &t.loc[i];
3577
3578 if (len > PAGE_SIZE - 100)
3579 break;
3580 len += sprintf(buf + len, "%7ld ", l->count);
3581
3582 if (l->addr)
3583 len += sprint_symbol(buf + len, (unsigned long)l->addr);
3584 else
3585 len += sprintf(buf + len, "<not-available>");
3586
3587 if (l->sum_time != l->min_time) {
3588 unsigned long remainder;
3589
3590 len += sprintf(buf + len, " age=%ld/%ld/%ld",
3591 l->min_time,
3592 div_long_long_rem(l->sum_time, l->count, &remainder),
3593 l->max_time);
3594 } else
3595 len += sprintf(buf + len, " age=%ld",
3596 l->min_time);
3597
3598 if (l->min_pid != l->max_pid)
3599 len += sprintf(buf + len, " pid=%ld-%ld",
3600 l->min_pid, l->max_pid);
3601 else
3602 len += sprintf(buf + len, " pid=%ld",
3603 l->min_pid);
3604
3605 if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
3606 len < PAGE_SIZE - 60) {
3607 len += sprintf(buf + len, " cpus=");
3608 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3609 l->cpus);
3610 }
3611
3612 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3613 len < PAGE_SIZE - 60) {
3614 len += sprintf(buf + len, " nodes=");
3615 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3616 l->nodes);
3617 }
3618
3619 len += sprintf(buf + len, "\n");
3620 }
3621
3622 free_loc_track(&t);
3623 if (!t.count)
3624 len += sprintf(buf, "No data\n");
3625 return len;
3626 }
3627
3628 enum slab_stat_type {
3629 SL_FULL,
3630 SL_PARTIAL,
3631 SL_CPU,
3632 SL_OBJECTS
3633 };
3634
3635 #define SO_FULL (1 << SL_FULL)
3636 #define SO_PARTIAL (1 << SL_PARTIAL)
3637 #define SO_CPU (1 << SL_CPU)
3638 #define SO_OBJECTS (1 << SL_OBJECTS)
3639
3640 static unsigned long slab_objects(struct kmem_cache *s,
3641 char *buf, unsigned long flags)
3642 {
3643 unsigned long total = 0;
3644 int cpu;
3645 int node;
3646 int x;
3647 unsigned long *nodes;
3648 unsigned long *per_cpu;
3649
3650 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3651 per_cpu = nodes + nr_node_ids;
3652
3653 for_each_possible_cpu(cpu) {
3654 struct page *page;
3655 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3656
3657 if (!c)
3658 continue;
3659
3660 page = c->page;
3661 node = c->node;
3662 if (node < 0)
3663 continue;
3664 if (page) {
3665 if (flags & SO_CPU) {
3666 if (flags & SO_OBJECTS)
3667 x = page->inuse;
3668 else
3669 x = 1;
3670 total += x;
3671 nodes[node] += x;
3672 }
3673 per_cpu[node]++;
3674 }
3675 }
3676
3677 for_each_node_state(node, N_NORMAL_MEMORY) {
3678 struct kmem_cache_node *n = get_node(s, node);
3679
3680 if (flags & SO_PARTIAL) {
3681 if (flags & SO_OBJECTS)
3682 x = count_partial(n);
3683 else
3684 x = n->nr_partial;
3685 total += x;
3686 nodes[node] += x;
3687 }
3688
3689 if (flags & SO_FULL) {
3690 int full_slabs = atomic_long_read(&n->nr_slabs)
3691 - per_cpu[node]
3692 - n->nr_partial;
3693
3694 if (flags & SO_OBJECTS)
3695 x = full_slabs * s->objects;
3696 else
3697 x = full_slabs;
3698 total += x;
3699 nodes[node] += x;
3700 }
3701 }
3702
3703 x = sprintf(buf, "%lu", total);
3704 #ifdef CONFIG_NUMA
3705 for_each_node_state(node, N_NORMAL_MEMORY)
3706 if (nodes[node])
3707 x += sprintf(buf + x, " N%d=%lu",
3708 node, nodes[node]);
3709 #endif
3710 kfree(nodes);
3711 return x + sprintf(buf + x, "\n");
3712 }
3713
3714 static int any_slab_objects(struct kmem_cache *s)
3715 {
3716 int node;
3717 int cpu;
3718
3719 for_each_possible_cpu(cpu) {
3720 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3721
3722 if (c && c->page)
3723 return 1;
3724 }
3725
3726 for_each_online_node(node) {
3727 struct kmem_cache_node *n = get_node(s, node);
3728
3729 if (!n)
3730 continue;
3731
3732 if (n->nr_partial || atomic_long_read(&n->nr_slabs))
3733 return 1;
3734 }
3735 return 0;
3736 }
3737
3738 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3739 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3740
3741 struct slab_attribute {
3742 struct attribute attr;
3743 ssize_t (*show)(struct kmem_cache *s, char *buf);
3744 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3745 };
3746
3747 #define SLAB_ATTR_RO(_name) \
3748 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3749
3750 #define SLAB_ATTR(_name) \
3751 static struct slab_attribute _name##_attr = \
3752 __ATTR(_name, 0644, _name##_show, _name##_store)
3753
3754 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3755 {
3756 return sprintf(buf, "%d\n", s->size);
3757 }
3758 SLAB_ATTR_RO(slab_size);
3759
3760 static ssize_t align_show(struct kmem_cache *s, char *buf)
3761 {
3762 return sprintf(buf, "%d\n", s->align);
3763 }
3764 SLAB_ATTR_RO(align);
3765
3766 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3767 {
3768 return sprintf(buf, "%d\n", s->objsize);
3769 }
3770 SLAB_ATTR_RO(object_size);
3771
3772 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3773 {
3774 return sprintf(buf, "%d\n", s->objects);
3775 }
3776 SLAB_ATTR_RO(objs_per_slab);
3777
3778 static ssize_t order_show(struct kmem_cache *s, char *buf)
3779 {
3780 return sprintf(buf, "%d\n", s->order);
3781 }
3782 SLAB_ATTR_RO(order);
3783
3784 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3785 {
3786 if (s->ctor) {
3787 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3788
3789 return n + sprintf(buf + n, "\n");
3790 }
3791 return 0;
3792 }
3793 SLAB_ATTR_RO(ctor);
3794
3795 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3796 {
3797 return sprintf(buf, "%d\n", s->refcount - 1);
3798 }
3799 SLAB_ATTR_RO(aliases);
3800
3801 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3802 {
3803 return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
3804 }
3805 SLAB_ATTR_RO(slabs);
3806
3807 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3808 {
3809 return slab_objects(s, buf, SO_PARTIAL);
3810 }
3811 SLAB_ATTR_RO(partial);
3812
3813 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3814 {
3815 return slab_objects(s, buf, SO_CPU);
3816 }
3817 SLAB_ATTR_RO(cpu_slabs);
3818
3819 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3820 {
3821 return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
3822 }
3823 SLAB_ATTR_RO(objects);
3824
3825 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3826 {
3827 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3828 }
3829
3830 static ssize_t sanity_checks_store(struct kmem_cache *s,
3831 const char *buf, size_t length)
3832 {
3833 s->flags &= ~SLAB_DEBUG_FREE;
3834 if (buf[0] == '1')
3835 s->flags |= SLAB_DEBUG_FREE;
3836 return length;
3837 }
3838 SLAB_ATTR(sanity_checks);
3839
3840 static ssize_t trace_show(struct kmem_cache *s, char *buf)
3841 {
3842 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3843 }
3844
3845 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3846 size_t length)
3847 {
3848 s->flags &= ~SLAB_TRACE;
3849 if (buf[0] == '1')
3850 s->flags |= SLAB_TRACE;
3851 return length;
3852 }
3853 SLAB_ATTR(trace);
3854
3855 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3856 {
3857 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3858 }
3859
3860 static ssize_t reclaim_account_store(struct kmem_cache *s,
3861 const char *buf, size_t length)
3862 {
3863 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3864 if (buf[0] == '1')
3865 s->flags |= SLAB_RECLAIM_ACCOUNT;
3866 return length;
3867 }
3868 SLAB_ATTR(reclaim_account);
3869
3870 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3871 {
3872 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
3873 }
3874 SLAB_ATTR_RO(hwcache_align);
3875
3876 #ifdef CONFIG_ZONE_DMA
3877 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3878 {
3879 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3880 }
3881 SLAB_ATTR_RO(cache_dma);
3882 #endif
3883
3884 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3885 {
3886 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3887 }
3888 SLAB_ATTR_RO(destroy_by_rcu);
3889
3890 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3891 {
3892 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3893 }
3894
3895 static ssize_t red_zone_store(struct kmem_cache *s,
3896 const char *buf, size_t length)
3897 {
3898 if (any_slab_objects(s))
3899 return -EBUSY;
3900
3901 s->flags &= ~SLAB_RED_ZONE;
3902 if (buf[0] == '1')
3903 s->flags |= SLAB_RED_ZONE;
3904 calculate_sizes(s);
3905 return length;
3906 }
3907 SLAB_ATTR(red_zone);
3908
3909 static ssize_t poison_show(struct kmem_cache *s, char *buf)
3910 {
3911 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3912 }
3913
3914 static ssize_t poison_store(struct kmem_cache *s,
3915 const char *buf, size_t length)
3916 {
3917 if (any_slab_objects(s))
3918 return -EBUSY;
3919
3920 s->flags &= ~SLAB_POISON;
3921 if (buf[0] == '1')
3922 s->flags |= SLAB_POISON;
3923 calculate_sizes(s);
3924 return length;
3925 }
3926 SLAB_ATTR(poison);
3927
3928 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3929 {
3930 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3931 }
3932
3933 static ssize_t store_user_store(struct kmem_cache *s,
3934 const char *buf, size_t length)
3935 {
3936 if (any_slab_objects(s))
3937 return -EBUSY;
3938
3939 s->flags &= ~SLAB_STORE_USER;
3940 if (buf[0] == '1')
3941 s->flags |= SLAB_STORE_USER;
3942 calculate_sizes(s);
3943 return length;
3944 }
3945 SLAB_ATTR(store_user);
3946
3947 static ssize_t validate_show(struct kmem_cache *s, char *buf)
3948 {
3949 return 0;
3950 }
3951
3952 static ssize_t validate_store(struct kmem_cache *s,
3953 const char *buf, size_t length)
3954 {
3955 int ret = -EINVAL;
3956
3957 if (buf[0] == '1') {
3958 ret = validate_slab_cache(s);
3959 if (ret >= 0)
3960 ret = length;
3961 }
3962 return ret;
3963 }
3964 SLAB_ATTR(validate);
3965
3966 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
3967 {
3968 return 0;
3969 }
3970
3971 static ssize_t shrink_store(struct kmem_cache *s,
3972 const char *buf, size_t length)
3973 {
3974 if (buf[0] == '1') {
3975 int rc = kmem_cache_shrink(s);
3976
3977 if (rc)
3978 return rc;
3979 } else
3980 return -EINVAL;
3981 return length;
3982 }
3983 SLAB_ATTR(shrink);
3984
3985 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
3986 {
3987 if (!(s->flags & SLAB_STORE_USER))
3988 return -ENOSYS;
3989 return list_locations(s, buf, TRACK_ALLOC);
3990 }
3991 SLAB_ATTR_RO(alloc_calls);
3992
3993 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
3994 {
3995 if (!(s->flags & SLAB_STORE_USER))
3996 return -ENOSYS;
3997 return list_locations(s, buf, TRACK_FREE);
3998 }
3999 SLAB_ATTR_RO(free_calls);
4000
4001 #ifdef CONFIG_NUMA
4002 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4003 {
4004 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4005 }
4006
4007 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4008 const char *buf, size_t length)
4009 {
4010 int n = simple_strtoul(buf, NULL, 10);
4011
4012 if (n < 100)
4013 s->remote_node_defrag_ratio = n * 10;
4014 return length;
4015 }
4016 SLAB_ATTR(remote_node_defrag_ratio);
4017 #endif
4018
4019 #ifdef CONFIG_SLUB_STATS
4020
4021 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4022 {
4023 unsigned long sum = 0;
4024 int cpu;
4025 int len;
4026 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4027
4028 if (!data)
4029 return -ENOMEM;
4030
4031 for_each_online_cpu(cpu) {
4032 unsigned x = get_cpu_slab(s, cpu)->stat[si];
4033
4034 data[cpu] = x;
4035 sum += x;
4036 }
4037
4038 len = sprintf(buf, "%lu", sum);
4039
4040 for_each_online_cpu(cpu) {
4041 if (data[cpu] && len < PAGE_SIZE - 20)
4042 len += sprintf(buf + len, " c%d=%u", cpu, data[cpu]);
4043 }
4044 kfree(data);
4045 return len + sprintf(buf + len, "\n");
4046 }
4047
4048 #define STAT_ATTR(si, text) \
4049 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4050 { \
4051 return show_stat(s, buf, si); \
4052 } \
4053 SLAB_ATTR_RO(text); \
4054
4055 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4056 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4057 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4058 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4059 STAT_ATTR(FREE_FROZEN, free_frozen);
4060 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4061 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4062 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4063 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4064 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4065 STAT_ATTR(FREE_SLAB, free_slab);
4066 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4067 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4068 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4069 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4070 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4071 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4072
4073 #endif
4074
4075 static struct attribute *slab_attrs[] = {
4076 &slab_size_attr.attr,
4077 &object_size_attr.attr,
4078 &objs_per_slab_attr.attr,
4079 &order_attr.attr,
4080 &objects_attr.attr,
4081 &slabs_attr.attr,
4082 &partial_attr.attr,
4083 &cpu_slabs_attr.attr,
4084 &ctor_attr.attr,
4085 &aliases_attr.attr,
4086 &align_attr.attr,
4087 &sanity_checks_attr.attr,
4088 &trace_attr.attr,
4089 &hwcache_align_attr.attr,
4090 &reclaim_account_attr.attr,
4091 &destroy_by_rcu_attr.attr,
4092 &red_zone_attr.attr,
4093 &poison_attr.attr,
4094 &store_user_attr.attr,
4095 &validate_attr.attr,
4096 &shrink_attr.attr,
4097 &alloc_calls_attr.attr,
4098 &free_calls_attr.attr,
4099 #ifdef CONFIG_ZONE_DMA
4100 &cache_dma_attr.attr,
4101 #endif
4102 #ifdef CONFIG_NUMA
4103 &remote_node_defrag_ratio_attr.attr,
4104 #endif
4105 #ifdef CONFIG_SLUB_STATS
4106 &alloc_fastpath_attr.attr,
4107 &alloc_slowpath_attr.attr,
4108 &free_fastpath_attr.attr,
4109 &free_slowpath_attr.attr,
4110 &free_frozen_attr.attr,
4111 &free_add_partial_attr.attr,
4112 &free_remove_partial_attr.attr,
4113 &alloc_from_partial_attr.attr,
4114 &alloc_slab_attr.attr,
4115 &alloc_refill_attr.attr,
4116 &free_slab_attr.attr,
4117 &cpuslab_flush_attr.attr,
4118 &deactivate_full_attr.attr,
4119 &deactivate_empty_attr.attr,
4120 &deactivate_to_head_attr.attr,
4121 &deactivate_to_tail_attr.attr,
4122 &deactivate_remote_frees_attr.attr,
4123 #endif
4124 NULL
4125 };
4126
4127 static struct attribute_group slab_attr_group = {
4128 .attrs = slab_attrs,
4129 };
4130
4131 static ssize_t slab_attr_show(struct kobject *kobj,
4132 struct attribute *attr,
4133 char *buf)
4134 {
4135 struct slab_attribute *attribute;
4136 struct kmem_cache *s;
4137 int err;
4138
4139 attribute = to_slab_attr(attr);
4140 s = to_slab(kobj);
4141
4142 if (!attribute->show)
4143 return -EIO;
4144
4145 err = attribute->show(s, buf);
4146
4147 return err;
4148 }
4149
4150 static ssize_t slab_attr_store(struct kobject *kobj,
4151 struct attribute *attr,
4152 const char *buf, size_t len)
4153 {
4154 struct slab_attribute *attribute;
4155 struct kmem_cache *s;
4156 int err;
4157
4158 attribute = to_slab_attr(attr);
4159 s = to_slab(kobj);
4160
4161 if (!attribute->store)
4162 return -EIO;
4163
4164 err = attribute->store(s, buf, len);
4165
4166 return err;
4167 }
4168
4169 static void kmem_cache_release(struct kobject *kobj)
4170 {
4171 struct kmem_cache *s = to_slab(kobj);
4172
4173 kfree(s);
4174 }
4175
4176 static struct sysfs_ops slab_sysfs_ops = {
4177 .show = slab_attr_show,
4178 .store = slab_attr_store,
4179 };
4180
4181 static struct kobj_type slab_ktype = {
4182 .sysfs_ops = &slab_sysfs_ops,
4183 .release = kmem_cache_release
4184 };
4185
4186 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4187 {
4188 struct kobj_type *ktype = get_ktype(kobj);
4189
4190 if (ktype == &slab_ktype)
4191 return 1;
4192 return 0;
4193 }
4194
4195 static struct kset_uevent_ops slab_uevent_ops = {
4196 .filter = uevent_filter,
4197 };
4198
4199 static struct kset *slab_kset;
4200
4201 #define ID_STR_LENGTH 64
4202
4203 /* Create a unique string id for a slab cache:
4204 * format
4205 * :[flags-]size:[memory address of kmemcache]
4206 */
4207 static char *create_unique_id(struct kmem_cache *s)
4208 {
4209 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4210 char *p = name;
4211
4212 BUG_ON(!name);
4213
4214 *p++ = ':';
4215 /*
4216 * First flags affecting slabcache operations. We will only
4217 * get here for aliasable slabs so we do not need to support
4218 * too many flags. The flags here must cover all flags that
4219 * are matched during merging to guarantee that the id is
4220 * unique.
4221 */
4222 if (s->flags & SLAB_CACHE_DMA)
4223 *p++ = 'd';
4224 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4225 *p++ = 'a';
4226 if (s->flags & SLAB_DEBUG_FREE)
4227 *p++ = 'F';
4228 if (p != name + 1)
4229 *p++ = '-';
4230 p += sprintf(p, "%07d", s->size);
4231 BUG_ON(p > name + ID_STR_LENGTH - 1);
4232 return name;
4233 }
4234
4235 static int sysfs_slab_add(struct kmem_cache *s)
4236 {
4237 int err;
4238 const char *name;
4239 int unmergeable;
4240
4241 if (slab_state < SYSFS)
4242 /* Defer until later */
4243 return 0;
4244
4245 unmergeable = slab_unmergeable(s);
4246 if (unmergeable) {
4247 /*
4248 * Slabcache can never be merged so we can use the name proper.
4249 * This is typically the case for debug situations. In that
4250 * case we can catch duplicate names easily.
4251 */
4252 sysfs_remove_link(&slab_kset->kobj, s->name);
4253 name = s->name;
4254 } else {
4255 /*
4256 * Create a unique name for the slab as a target
4257 * for the symlinks.
4258 */
4259 name = create_unique_id(s);
4260 }
4261
4262 s->kobj.kset = slab_kset;
4263 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4264 if (err) {
4265 kobject_put(&s->kobj);
4266 return err;
4267 }
4268
4269 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4270 if (err)
4271 return err;
4272 kobject_uevent(&s->kobj, KOBJ_ADD);
4273 if (!unmergeable) {
4274 /* Setup first alias */
4275 sysfs_slab_alias(s, s->name);
4276 kfree(name);
4277 }
4278 return 0;
4279 }
4280
4281 static void sysfs_slab_remove(struct kmem_cache *s)
4282 {
4283 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4284 kobject_del(&s->kobj);
4285 kobject_put(&s->kobj);
4286 }
4287
4288 /*
4289 * Need to buffer aliases during bootup until sysfs becomes
4290 * available lest we loose that information.
4291 */
4292 struct saved_alias {
4293 struct kmem_cache *s;
4294 const char *name;
4295 struct saved_alias *next;
4296 };
4297
4298 static struct saved_alias *alias_list;
4299
4300 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4301 {
4302 struct saved_alias *al;
4303
4304 if (slab_state == SYSFS) {
4305 /*
4306 * If we have a leftover link then remove it.
4307 */
4308 sysfs_remove_link(&slab_kset->kobj, name);
4309 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4310 }
4311
4312 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4313 if (!al)
4314 return -ENOMEM;
4315
4316 al->s = s;
4317 al->name = name;
4318 al->next = alias_list;
4319 alias_list = al;
4320 return 0;
4321 }
4322
4323 static int __init slab_sysfs_init(void)
4324 {
4325 struct kmem_cache *s;
4326 int err;
4327
4328 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4329 if (!slab_kset) {
4330 printk(KERN_ERR "Cannot register slab subsystem.\n");
4331 return -ENOSYS;
4332 }
4333
4334 slab_state = SYSFS;
4335
4336 list_for_each_entry(s, &slab_caches, list) {
4337 err = sysfs_slab_add(s);
4338 if (err)
4339 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4340 " to sysfs\n", s->name);
4341 }
4342
4343 while (alias_list) {
4344 struct saved_alias *al = alias_list;
4345
4346 alias_list = alias_list->next;
4347 err = sysfs_slab_alias(al->s, al->name);
4348 if (err)
4349 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4350 " %s to sysfs\n", s->name);
4351 kfree(al);
4352 }
4353
4354 resiliency_test();
4355 return 0;
4356 }
4357
4358 __initcall(slab_sysfs_init);
4359 #endif
4360
4361 /*
4362 * The /proc/slabinfo ABI
4363 */
4364 #ifdef CONFIG_SLABINFO
4365
4366 ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4367 size_t count, loff_t *ppos)
4368 {
4369 return -EINVAL;
4370 }
4371
4372
4373 static void print_slabinfo_header(struct seq_file *m)
4374 {
4375 seq_puts(m, "slabinfo - version: 2.1\n");
4376 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4377 "<objperslab> <pagesperslab>");
4378 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4379 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4380 seq_putc(m, '\n');
4381 }
4382
4383 static void *s_start(struct seq_file *m, loff_t *pos)
4384 {
4385 loff_t n = *pos;
4386
4387 down_read(&slub_lock);
4388 if (!n)
4389 print_slabinfo_header(m);
4390
4391 return seq_list_start(&slab_caches, *pos);
4392 }
4393
4394 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4395 {
4396 return seq_list_next(p, &slab_caches, pos);
4397 }
4398
4399 static void s_stop(struct seq_file *m, void *p)
4400 {
4401 up_read(&slub_lock);
4402 }
4403
4404 static int s_show(struct seq_file *m, void *p)
4405 {
4406 unsigned long nr_partials = 0;
4407 unsigned long nr_slabs = 0;
4408 unsigned long nr_inuse = 0;
4409 unsigned long nr_objs;
4410 struct kmem_cache *s;
4411 int node;
4412
4413 s = list_entry(p, struct kmem_cache, list);
4414
4415 for_each_online_node(node) {
4416 struct kmem_cache_node *n = get_node(s, node);
4417
4418 if (!n)
4419 continue;
4420
4421 nr_partials += n->nr_partial;
4422 nr_slabs += atomic_long_read(&n->nr_slabs);
4423 nr_inuse += count_partial(n);
4424 }
4425
4426 nr_objs = nr_slabs * s->objects;
4427 nr_inuse += (nr_slabs - nr_partials) * s->objects;
4428
4429 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4430 nr_objs, s->size, s->objects, (1 << s->order));
4431 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4432 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4433 0UL);
4434 seq_putc(m, '\n');
4435 return 0;
4436 }
4437
4438 const struct seq_operations slabinfo_op = {
4439 .start = s_start,
4440 .next = s_next,
4441 .stop = s_stop,
4442 .show = s_show,
4443 };
4444
4445 #endif /* CONFIG_SLABINFO */
This page took 0.124798 seconds and 5 git commands to generate.