dma kmalloc handling fixes
[deliverable/linux.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 */
10
11 #include <linux/mm.h>
12 #include <linux/swap.h> /* struct reclaim_state */
13 #include <linux/module.h>
14 #include <linux/bit_spinlock.h>
15 #include <linux/interrupt.h>
16 #include <linux/bitops.h>
17 #include <linux/slab.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/kmemtrace.h>
21 #include <linux/kmemcheck.h>
22 #include <linux/cpu.h>
23 #include <linux/cpuset.h>
24 #include <linux/mempolicy.h>
25 #include <linux/ctype.h>
26 #include <linux/debugobjects.h>
27 #include <linux/kallsyms.h>
28 #include <linux/memory.h>
29 #include <linux/math64.h>
30 #include <linux/fault-inject.h>
31
32 /*
33 * Lock order:
34 * 1. slab_lock(page)
35 * 2. slab->list_lock
36 *
37 * The slab_lock protects operations on the object of a particular
38 * slab and its metadata in the page struct. If the slab lock
39 * has been taken then no allocations nor frees can be performed
40 * on the objects in the slab nor can the slab be added or removed
41 * from the partial or full lists since this would mean modifying
42 * the page_struct of the slab.
43 *
44 * The list_lock protects the partial and full list on each node and
45 * the partial slab counter. If taken then no new slabs may be added or
46 * removed from the lists nor make the number of partial slabs be modified.
47 * (Note that the total number of slabs is an atomic value that may be
48 * modified without taking the list lock).
49 *
50 * The list_lock is a centralized lock and thus we avoid taking it as
51 * much as possible. As long as SLUB does not have to handle partial
52 * slabs, operations can continue without any centralized lock. F.e.
53 * allocating a long series of objects that fill up slabs does not require
54 * the list lock.
55 *
56 * The lock order is sometimes inverted when we are trying to get a slab
57 * off a list. We take the list_lock and then look for a page on the list
58 * to use. While we do that objects in the slabs may be freed. We can
59 * only operate on the slab if we have also taken the slab_lock. So we use
60 * a slab_trylock() on the slab. If trylock was successful then no frees
61 * can occur anymore and we can use the slab for allocations etc. If the
62 * slab_trylock() does not succeed then frees are in progress in the slab and
63 * we must stay away from it for a while since we may cause a bouncing
64 * cacheline if we try to acquire the lock. So go onto the next slab.
65 * If all pages are busy then we may allocate a new slab instead of reusing
66 * a partial slab. A new slab has noone operating on it and thus there is
67 * no danger of cacheline contention.
68 *
69 * Interrupts are disabled during allocation and deallocation in order to
70 * make the slab allocator safe to use in the context of an irq. In addition
71 * interrupts are disabled to ensure that the processor does not change
72 * while handling per_cpu slabs, due to kernel preemption.
73 *
74 * SLUB assigns one slab for allocation to each processor.
75 * Allocations only occur from these slabs called cpu slabs.
76 *
77 * Slabs with free elements are kept on a partial list and during regular
78 * operations no list for full slabs is used. If an object in a full slab is
79 * freed then the slab will show up again on the partial lists.
80 * We track full slabs for debugging purposes though because otherwise we
81 * cannot scan all objects.
82 *
83 * Slabs are freed when they become empty. Teardown and setup is
84 * minimal so we rely on the page allocators per cpu caches for
85 * fast frees and allocs.
86 *
87 * Overloading of page flags that are otherwise used for LRU management.
88 *
89 * PageActive The slab is frozen and exempt from list processing.
90 * This means that the slab is dedicated to a purpose
91 * such as satisfying allocations for a specific
92 * processor. Objects may be freed in the slab while
93 * it is frozen but slab_free will then skip the usual
94 * list operations. It is up to the processor holding
95 * the slab to integrate the slab into the slab lists
96 * when the slab is no longer needed.
97 *
98 * One use of this flag is to mark slabs that are
99 * used for allocations. Then such a slab becomes a cpu
100 * slab. The cpu slab may be equipped with an additional
101 * freelist that allows lockless access to
102 * free objects in addition to the regular freelist
103 * that requires the slab lock.
104 *
105 * PageError Slab requires special handling due to debug
106 * options set. This moves slab handling out of
107 * the fast path and disables lockless freelists.
108 */
109
110 #ifdef CONFIG_SLUB_DEBUG
111 #define SLABDEBUG 1
112 #else
113 #define SLABDEBUG 0
114 #endif
115
116 /*
117 * Issues still to be resolved:
118 *
119 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
120 *
121 * - Variable sizing of the per node arrays
122 */
123
124 /* Enable to test recovery from slab corruption on boot */
125 #undef SLUB_RESILIENCY_TEST
126
127 /*
128 * Mininum number of partial slabs. These will be left on the partial
129 * lists even if they are empty. kmem_cache_shrink may reclaim them.
130 */
131 #define MIN_PARTIAL 5
132
133 /*
134 * Maximum number of desirable partial slabs.
135 * The existence of more partial slabs makes kmem_cache_shrink
136 * sort the partial list by the number of objects in the.
137 */
138 #define MAX_PARTIAL 10
139
140 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
141 SLAB_POISON | SLAB_STORE_USER)
142
143 /*
144 * Debugging flags that require metadata to be stored in the slab. These get
145 * disabled when slub_debug=O is used and a cache's min order increases with
146 * metadata.
147 */
148 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
149
150 /*
151 * Set of flags that will prevent slab merging
152 */
153 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
154 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE)
155
156 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
157 SLAB_CACHE_DMA | SLAB_NOTRACK)
158
159 #ifndef ARCH_KMALLOC_MINALIGN
160 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
161 #endif
162
163 #ifndef ARCH_SLAB_MINALIGN
164 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
165 #endif
166
167 #define OO_SHIFT 16
168 #define OO_MASK ((1 << OO_SHIFT) - 1)
169 #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
170
171 /* Internal SLUB flags */
172 #define __OBJECT_POISON 0x80000000 /* Poison object */
173 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
174
175 static int kmem_size = sizeof(struct kmem_cache);
176
177 #ifdef CONFIG_SMP
178 static struct notifier_block slab_notifier;
179 #endif
180
181 static enum {
182 DOWN, /* No slab functionality available */
183 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
184 UP, /* Everything works but does not show up in sysfs */
185 SYSFS /* Sysfs up */
186 } slab_state = DOWN;
187
188 /* A list of all slab caches on the system */
189 static DECLARE_RWSEM(slub_lock);
190 static LIST_HEAD(slab_caches);
191
192 /*
193 * Tracking user of a slab.
194 */
195 struct track {
196 unsigned long addr; /* Called from address */
197 int cpu; /* Was running on cpu */
198 int pid; /* Pid context */
199 unsigned long when; /* When did the operation occur */
200 };
201
202 enum track_item { TRACK_ALLOC, TRACK_FREE };
203
204 #ifdef CONFIG_SLUB_DEBUG
205 static int sysfs_slab_add(struct kmem_cache *);
206 static int sysfs_slab_alias(struct kmem_cache *, const char *);
207 static void sysfs_slab_remove(struct kmem_cache *);
208
209 #else
210 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
211 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
212 { return 0; }
213 static inline void sysfs_slab_remove(struct kmem_cache *s)
214 {
215 kfree(s);
216 }
217
218 #endif
219
220 static inline void stat(struct kmem_cache *s, enum stat_item si)
221 {
222 #ifdef CONFIG_SLUB_STATS
223 __this_cpu_inc(s->cpu_slab->stat[si]);
224 #endif
225 }
226
227 /********************************************************************
228 * Core slab cache functions
229 *******************************************************************/
230
231 int slab_is_available(void)
232 {
233 return slab_state >= UP;
234 }
235
236 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
237 {
238 #ifdef CONFIG_NUMA
239 return s->node[node];
240 #else
241 return &s->local_node;
242 #endif
243 }
244
245 /* Verify that a pointer has an address that is valid within a slab page */
246 static inline int check_valid_pointer(struct kmem_cache *s,
247 struct page *page, const void *object)
248 {
249 void *base;
250
251 if (!object)
252 return 1;
253
254 base = page_address(page);
255 if (object < base || object >= base + page->objects * s->size ||
256 (object - base) % s->size) {
257 return 0;
258 }
259
260 return 1;
261 }
262
263 static inline void *get_freepointer(struct kmem_cache *s, void *object)
264 {
265 return *(void **)(object + s->offset);
266 }
267
268 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
269 {
270 *(void **)(object + s->offset) = fp;
271 }
272
273 /* Loop over all objects in a slab */
274 #define for_each_object(__p, __s, __addr, __objects) \
275 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
276 __p += (__s)->size)
277
278 /* Scan freelist */
279 #define for_each_free_object(__p, __s, __free) \
280 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
281
282 /* Determine object index from a given position */
283 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
284 {
285 return (p - addr) / s->size;
286 }
287
288 static inline struct kmem_cache_order_objects oo_make(int order,
289 unsigned long size)
290 {
291 struct kmem_cache_order_objects x = {
292 (order << OO_SHIFT) + (PAGE_SIZE << order) / size
293 };
294
295 return x;
296 }
297
298 static inline int oo_order(struct kmem_cache_order_objects x)
299 {
300 return x.x >> OO_SHIFT;
301 }
302
303 static inline int oo_objects(struct kmem_cache_order_objects x)
304 {
305 return x.x & OO_MASK;
306 }
307
308 #ifdef CONFIG_SLUB_DEBUG
309 /*
310 * Debug settings:
311 */
312 #ifdef CONFIG_SLUB_DEBUG_ON
313 static int slub_debug = DEBUG_DEFAULT_FLAGS;
314 #else
315 static int slub_debug;
316 #endif
317
318 static char *slub_debug_slabs;
319 static int disable_higher_order_debug;
320
321 /*
322 * Object debugging
323 */
324 static void print_section(char *text, u8 *addr, unsigned int length)
325 {
326 int i, offset;
327 int newline = 1;
328 char ascii[17];
329
330 ascii[16] = 0;
331
332 for (i = 0; i < length; i++) {
333 if (newline) {
334 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
335 newline = 0;
336 }
337 printk(KERN_CONT " %02x", addr[i]);
338 offset = i % 16;
339 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
340 if (offset == 15) {
341 printk(KERN_CONT " %s\n", ascii);
342 newline = 1;
343 }
344 }
345 if (!newline) {
346 i %= 16;
347 while (i < 16) {
348 printk(KERN_CONT " ");
349 ascii[i] = ' ';
350 i++;
351 }
352 printk(KERN_CONT " %s\n", ascii);
353 }
354 }
355
356 static struct track *get_track(struct kmem_cache *s, void *object,
357 enum track_item alloc)
358 {
359 struct track *p;
360
361 if (s->offset)
362 p = object + s->offset + sizeof(void *);
363 else
364 p = object + s->inuse;
365
366 return p + alloc;
367 }
368
369 static void set_track(struct kmem_cache *s, void *object,
370 enum track_item alloc, unsigned long addr)
371 {
372 struct track *p = get_track(s, object, alloc);
373
374 if (addr) {
375 p->addr = addr;
376 p->cpu = smp_processor_id();
377 p->pid = current->pid;
378 p->when = jiffies;
379 } else
380 memset(p, 0, sizeof(struct track));
381 }
382
383 static void init_tracking(struct kmem_cache *s, void *object)
384 {
385 if (!(s->flags & SLAB_STORE_USER))
386 return;
387
388 set_track(s, object, TRACK_FREE, 0UL);
389 set_track(s, object, TRACK_ALLOC, 0UL);
390 }
391
392 static void print_track(const char *s, struct track *t)
393 {
394 if (!t->addr)
395 return;
396
397 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
398 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
399 }
400
401 static void print_tracking(struct kmem_cache *s, void *object)
402 {
403 if (!(s->flags & SLAB_STORE_USER))
404 return;
405
406 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
407 print_track("Freed", get_track(s, object, TRACK_FREE));
408 }
409
410 static void print_page_info(struct page *page)
411 {
412 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
413 page, page->objects, page->inuse, page->freelist, page->flags);
414
415 }
416
417 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
418 {
419 va_list args;
420 char buf[100];
421
422 va_start(args, fmt);
423 vsnprintf(buf, sizeof(buf), fmt, args);
424 va_end(args);
425 printk(KERN_ERR "========================================"
426 "=====================================\n");
427 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
428 printk(KERN_ERR "----------------------------------------"
429 "-------------------------------------\n\n");
430 }
431
432 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
433 {
434 va_list args;
435 char buf[100];
436
437 va_start(args, fmt);
438 vsnprintf(buf, sizeof(buf), fmt, args);
439 va_end(args);
440 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
441 }
442
443 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
444 {
445 unsigned int off; /* Offset of last byte */
446 u8 *addr = page_address(page);
447
448 print_tracking(s, p);
449
450 print_page_info(page);
451
452 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
453 p, p - addr, get_freepointer(s, p));
454
455 if (p > addr + 16)
456 print_section("Bytes b4", p - 16, 16);
457
458 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
459
460 if (s->flags & SLAB_RED_ZONE)
461 print_section("Redzone", p + s->objsize,
462 s->inuse - s->objsize);
463
464 if (s->offset)
465 off = s->offset + sizeof(void *);
466 else
467 off = s->inuse;
468
469 if (s->flags & SLAB_STORE_USER)
470 off += 2 * sizeof(struct track);
471
472 if (off != s->size)
473 /* Beginning of the filler is the free pointer */
474 print_section("Padding", p + off, s->size - off);
475
476 dump_stack();
477 }
478
479 static void object_err(struct kmem_cache *s, struct page *page,
480 u8 *object, char *reason)
481 {
482 slab_bug(s, "%s", reason);
483 print_trailer(s, page, object);
484 }
485
486 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
487 {
488 va_list args;
489 char buf[100];
490
491 va_start(args, fmt);
492 vsnprintf(buf, sizeof(buf), fmt, args);
493 va_end(args);
494 slab_bug(s, "%s", buf);
495 print_page_info(page);
496 dump_stack();
497 }
498
499 static void init_object(struct kmem_cache *s, void *object, int active)
500 {
501 u8 *p = object;
502
503 if (s->flags & __OBJECT_POISON) {
504 memset(p, POISON_FREE, s->objsize - 1);
505 p[s->objsize - 1] = POISON_END;
506 }
507
508 if (s->flags & SLAB_RED_ZONE)
509 memset(p + s->objsize,
510 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
511 s->inuse - s->objsize);
512 }
513
514 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
515 {
516 while (bytes) {
517 if (*start != (u8)value)
518 return start;
519 start++;
520 bytes--;
521 }
522 return NULL;
523 }
524
525 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
526 void *from, void *to)
527 {
528 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
529 memset(from, data, to - from);
530 }
531
532 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
533 u8 *object, char *what,
534 u8 *start, unsigned int value, unsigned int bytes)
535 {
536 u8 *fault;
537 u8 *end;
538
539 fault = check_bytes(start, value, bytes);
540 if (!fault)
541 return 1;
542
543 end = start + bytes;
544 while (end > fault && end[-1] == value)
545 end--;
546
547 slab_bug(s, "%s overwritten", what);
548 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
549 fault, end - 1, fault[0], value);
550 print_trailer(s, page, object);
551
552 restore_bytes(s, what, value, fault, end);
553 return 0;
554 }
555
556 /*
557 * Object layout:
558 *
559 * object address
560 * Bytes of the object to be managed.
561 * If the freepointer may overlay the object then the free
562 * pointer is the first word of the object.
563 *
564 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
565 * 0xa5 (POISON_END)
566 *
567 * object + s->objsize
568 * Padding to reach word boundary. This is also used for Redzoning.
569 * Padding is extended by another word if Redzoning is enabled and
570 * objsize == inuse.
571 *
572 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
573 * 0xcc (RED_ACTIVE) for objects in use.
574 *
575 * object + s->inuse
576 * Meta data starts here.
577 *
578 * A. Free pointer (if we cannot overwrite object on free)
579 * B. Tracking data for SLAB_STORE_USER
580 * C. Padding to reach required alignment boundary or at mininum
581 * one word if debugging is on to be able to detect writes
582 * before the word boundary.
583 *
584 * Padding is done using 0x5a (POISON_INUSE)
585 *
586 * object + s->size
587 * Nothing is used beyond s->size.
588 *
589 * If slabcaches are merged then the objsize and inuse boundaries are mostly
590 * ignored. And therefore no slab options that rely on these boundaries
591 * may be used with merged slabcaches.
592 */
593
594 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
595 {
596 unsigned long off = s->inuse; /* The end of info */
597
598 if (s->offset)
599 /* Freepointer is placed after the object. */
600 off += sizeof(void *);
601
602 if (s->flags & SLAB_STORE_USER)
603 /* We also have user information there */
604 off += 2 * sizeof(struct track);
605
606 if (s->size == off)
607 return 1;
608
609 return check_bytes_and_report(s, page, p, "Object padding",
610 p + off, POISON_INUSE, s->size - off);
611 }
612
613 /* Check the pad bytes at the end of a slab page */
614 static int slab_pad_check(struct kmem_cache *s, struct page *page)
615 {
616 u8 *start;
617 u8 *fault;
618 u8 *end;
619 int length;
620 int remainder;
621
622 if (!(s->flags & SLAB_POISON))
623 return 1;
624
625 start = page_address(page);
626 length = (PAGE_SIZE << compound_order(page));
627 end = start + length;
628 remainder = length % s->size;
629 if (!remainder)
630 return 1;
631
632 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
633 if (!fault)
634 return 1;
635 while (end > fault && end[-1] == POISON_INUSE)
636 end--;
637
638 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
639 print_section("Padding", end - remainder, remainder);
640
641 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
642 return 0;
643 }
644
645 static int check_object(struct kmem_cache *s, struct page *page,
646 void *object, int active)
647 {
648 u8 *p = object;
649 u8 *endobject = object + s->objsize;
650
651 if (s->flags & SLAB_RED_ZONE) {
652 unsigned int red =
653 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
654
655 if (!check_bytes_and_report(s, page, object, "Redzone",
656 endobject, red, s->inuse - s->objsize))
657 return 0;
658 } else {
659 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
660 check_bytes_and_report(s, page, p, "Alignment padding",
661 endobject, POISON_INUSE, s->inuse - s->objsize);
662 }
663 }
664
665 if (s->flags & SLAB_POISON) {
666 if (!active && (s->flags & __OBJECT_POISON) &&
667 (!check_bytes_and_report(s, page, p, "Poison", p,
668 POISON_FREE, s->objsize - 1) ||
669 !check_bytes_and_report(s, page, p, "Poison",
670 p + s->objsize - 1, POISON_END, 1)))
671 return 0;
672 /*
673 * check_pad_bytes cleans up on its own.
674 */
675 check_pad_bytes(s, page, p);
676 }
677
678 if (!s->offset && active)
679 /*
680 * Object and freepointer overlap. Cannot check
681 * freepointer while object is allocated.
682 */
683 return 1;
684
685 /* Check free pointer validity */
686 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
687 object_err(s, page, p, "Freepointer corrupt");
688 /*
689 * No choice but to zap it and thus lose the remainder
690 * of the free objects in this slab. May cause
691 * another error because the object count is now wrong.
692 */
693 set_freepointer(s, p, NULL);
694 return 0;
695 }
696 return 1;
697 }
698
699 static int check_slab(struct kmem_cache *s, struct page *page)
700 {
701 int maxobj;
702
703 VM_BUG_ON(!irqs_disabled());
704
705 if (!PageSlab(page)) {
706 slab_err(s, page, "Not a valid slab page");
707 return 0;
708 }
709
710 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
711 if (page->objects > maxobj) {
712 slab_err(s, page, "objects %u > max %u",
713 s->name, page->objects, maxobj);
714 return 0;
715 }
716 if (page->inuse > page->objects) {
717 slab_err(s, page, "inuse %u > max %u",
718 s->name, page->inuse, page->objects);
719 return 0;
720 }
721 /* Slab_pad_check fixes things up after itself */
722 slab_pad_check(s, page);
723 return 1;
724 }
725
726 /*
727 * Determine if a certain object on a page is on the freelist. Must hold the
728 * slab lock to guarantee that the chains are in a consistent state.
729 */
730 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
731 {
732 int nr = 0;
733 void *fp = page->freelist;
734 void *object = NULL;
735 unsigned long max_objects;
736
737 while (fp && nr <= page->objects) {
738 if (fp == search)
739 return 1;
740 if (!check_valid_pointer(s, page, fp)) {
741 if (object) {
742 object_err(s, page, object,
743 "Freechain corrupt");
744 set_freepointer(s, object, NULL);
745 break;
746 } else {
747 slab_err(s, page, "Freepointer corrupt");
748 page->freelist = NULL;
749 page->inuse = page->objects;
750 slab_fix(s, "Freelist cleared");
751 return 0;
752 }
753 break;
754 }
755 object = fp;
756 fp = get_freepointer(s, object);
757 nr++;
758 }
759
760 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
761 if (max_objects > MAX_OBJS_PER_PAGE)
762 max_objects = MAX_OBJS_PER_PAGE;
763
764 if (page->objects != max_objects) {
765 slab_err(s, page, "Wrong number of objects. Found %d but "
766 "should be %d", page->objects, max_objects);
767 page->objects = max_objects;
768 slab_fix(s, "Number of objects adjusted.");
769 }
770 if (page->inuse != page->objects - nr) {
771 slab_err(s, page, "Wrong object count. Counter is %d but "
772 "counted were %d", page->inuse, page->objects - nr);
773 page->inuse = page->objects - nr;
774 slab_fix(s, "Object count adjusted.");
775 }
776 return search == NULL;
777 }
778
779 static void trace(struct kmem_cache *s, struct page *page, void *object,
780 int alloc)
781 {
782 if (s->flags & SLAB_TRACE) {
783 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
784 s->name,
785 alloc ? "alloc" : "free",
786 object, page->inuse,
787 page->freelist);
788
789 if (!alloc)
790 print_section("Object", (void *)object, s->objsize);
791
792 dump_stack();
793 }
794 }
795
796 /*
797 * Tracking of fully allocated slabs for debugging purposes.
798 */
799 static void add_full(struct kmem_cache_node *n, struct page *page)
800 {
801 spin_lock(&n->list_lock);
802 list_add(&page->lru, &n->full);
803 spin_unlock(&n->list_lock);
804 }
805
806 static void remove_full(struct kmem_cache *s, struct page *page)
807 {
808 struct kmem_cache_node *n;
809
810 if (!(s->flags & SLAB_STORE_USER))
811 return;
812
813 n = get_node(s, page_to_nid(page));
814
815 spin_lock(&n->list_lock);
816 list_del(&page->lru);
817 spin_unlock(&n->list_lock);
818 }
819
820 /* Tracking of the number of slabs for debugging purposes */
821 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
822 {
823 struct kmem_cache_node *n = get_node(s, node);
824
825 return atomic_long_read(&n->nr_slabs);
826 }
827
828 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
829 {
830 return atomic_long_read(&n->nr_slabs);
831 }
832
833 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
834 {
835 struct kmem_cache_node *n = get_node(s, node);
836
837 /*
838 * May be called early in order to allocate a slab for the
839 * kmem_cache_node structure. Solve the chicken-egg
840 * dilemma by deferring the increment of the count during
841 * bootstrap (see early_kmem_cache_node_alloc).
842 */
843 if (!NUMA_BUILD || n) {
844 atomic_long_inc(&n->nr_slabs);
845 atomic_long_add(objects, &n->total_objects);
846 }
847 }
848 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
849 {
850 struct kmem_cache_node *n = get_node(s, node);
851
852 atomic_long_dec(&n->nr_slabs);
853 atomic_long_sub(objects, &n->total_objects);
854 }
855
856 /* Object debug checks for alloc/free paths */
857 static void setup_object_debug(struct kmem_cache *s, struct page *page,
858 void *object)
859 {
860 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
861 return;
862
863 init_object(s, object, 0);
864 init_tracking(s, object);
865 }
866
867 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
868 void *object, unsigned long addr)
869 {
870 if (!check_slab(s, page))
871 goto bad;
872
873 if (!on_freelist(s, page, object)) {
874 object_err(s, page, object, "Object already allocated");
875 goto bad;
876 }
877
878 if (!check_valid_pointer(s, page, object)) {
879 object_err(s, page, object, "Freelist Pointer check fails");
880 goto bad;
881 }
882
883 if (!check_object(s, page, object, 0))
884 goto bad;
885
886 /* Success perform special debug activities for allocs */
887 if (s->flags & SLAB_STORE_USER)
888 set_track(s, object, TRACK_ALLOC, addr);
889 trace(s, page, object, 1);
890 init_object(s, object, 1);
891 return 1;
892
893 bad:
894 if (PageSlab(page)) {
895 /*
896 * If this is a slab page then lets do the best we can
897 * to avoid issues in the future. Marking all objects
898 * as used avoids touching the remaining objects.
899 */
900 slab_fix(s, "Marking all objects used");
901 page->inuse = page->objects;
902 page->freelist = NULL;
903 }
904 return 0;
905 }
906
907 static int free_debug_processing(struct kmem_cache *s, struct page *page,
908 void *object, unsigned long addr)
909 {
910 if (!check_slab(s, page))
911 goto fail;
912
913 if (!check_valid_pointer(s, page, object)) {
914 slab_err(s, page, "Invalid object pointer 0x%p", object);
915 goto fail;
916 }
917
918 if (on_freelist(s, page, object)) {
919 object_err(s, page, object, "Object already free");
920 goto fail;
921 }
922
923 if (!check_object(s, page, object, 1))
924 return 0;
925
926 if (unlikely(s != page->slab)) {
927 if (!PageSlab(page)) {
928 slab_err(s, page, "Attempt to free object(0x%p) "
929 "outside of slab", object);
930 } else if (!page->slab) {
931 printk(KERN_ERR
932 "SLUB <none>: no slab for object 0x%p.\n",
933 object);
934 dump_stack();
935 } else
936 object_err(s, page, object,
937 "page slab pointer corrupt.");
938 goto fail;
939 }
940
941 /* Special debug activities for freeing objects */
942 if (!PageSlubFrozen(page) && !page->freelist)
943 remove_full(s, page);
944 if (s->flags & SLAB_STORE_USER)
945 set_track(s, object, TRACK_FREE, addr);
946 trace(s, page, object, 0);
947 init_object(s, object, 0);
948 return 1;
949
950 fail:
951 slab_fix(s, "Object at 0x%p not freed", object);
952 return 0;
953 }
954
955 static int __init setup_slub_debug(char *str)
956 {
957 slub_debug = DEBUG_DEFAULT_FLAGS;
958 if (*str++ != '=' || !*str)
959 /*
960 * No options specified. Switch on full debugging.
961 */
962 goto out;
963
964 if (*str == ',')
965 /*
966 * No options but restriction on slabs. This means full
967 * debugging for slabs matching a pattern.
968 */
969 goto check_slabs;
970
971 if (tolower(*str) == 'o') {
972 /*
973 * Avoid enabling debugging on caches if its minimum order
974 * would increase as a result.
975 */
976 disable_higher_order_debug = 1;
977 goto out;
978 }
979
980 slub_debug = 0;
981 if (*str == '-')
982 /*
983 * Switch off all debugging measures.
984 */
985 goto out;
986
987 /*
988 * Determine which debug features should be switched on
989 */
990 for (; *str && *str != ','; str++) {
991 switch (tolower(*str)) {
992 case 'f':
993 slub_debug |= SLAB_DEBUG_FREE;
994 break;
995 case 'z':
996 slub_debug |= SLAB_RED_ZONE;
997 break;
998 case 'p':
999 slub_debug |= SLAB_POISON;
1000 break;
1001 case 'u':
1002 slub_debug |= SLAB_STORE_USER;
1003 break;
1004 case 't':
1005 slub_debug |= SLAB_TRACE;
1006 break;
1007 default:
1008 printk(KERN_ERR "slub_debug option '%c' "
1009 "unknown. skipped\n", *str);
1010 }
1011 }
1012
1013 check_slabs:
1014 if (*str == ',')
1015 slub_debug_slabs = str + 1;
1016 out:
1017 return 1;
1018 }
1019
1020 __setup("slub_debug", setup_slub_debug);
1021
1022 static unsigned long kmem_cache_flags(unsigned long objsize,
1023 unsigned long flags, const char *name,
1024 void (*ctor)(void *))
1025 {
1026 /*
1027 * Enable debugging if selected on the kernel commandline.
1028 */
1029 if (slub_debug && (!slub_debug_slabs ||
1030 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1031 flags |= slub_debug;
1032
1033 return flags;
1034 }
1035 #else
1036 static inline void setup_object_debug(struct kmem_cache *s,
1037 struct page *page, void *object) {}
1038
1039 static inline int alloc_debug_processing(struct kmem_cache *s,
1040 struct page *page, void *object, unsigned long addr) { return 0; }
1041
1042 static inline int free_debug_processing(struct kmem_cache *s,
1043 struct page *page, void *object, unsigned long addr) { return 0; }
1044
1045 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1046 { return 1; }
1047 static inline int check_object(struct kmem_cache *s, struct page *page,
1048 void *object, int active) { return 1; }
1049 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1050 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1051 unsigned long flags, const char *name,
1052 void (*ctor)(void *))
1053 {
1054 return flags;
1055 }
1056 #define slub_debug 0
1057
1058 #define disable_higher_order_debug 0
1059
1060 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1061 { return 0; }
1062 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1063 { return 0; }
1064 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1065 int objects) {}
1066 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1067 int objects) {}
1068 #endif
1069
1070 /*
1071 * Slab allocation and freeing
1072 */
1073 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1074 struct kmem_cache_order_objects oo)
1075 {
1076 int order = oo_order(oo);
1077
1078 flags |= __GFP_NOTRACK;
1079
1080 if (node == -1)
1081 return alloc_pages(flags, order);
1082 else
1083 return alloc_pages_node(node, flags, order);
1084 }
1085
1086 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1087 {
1088 struct page *page;
1089 struct kmem_cache_order_objects oo = s->oo;
1090 gfp_t alloc_gfp;
1091
1092 flags |= s->allocflags;
1093
1094 /*
1095 * Let the initial higher-order allocation fail under memory pressure
1096 * so we fall-back to the minimum order allocation.
1097 */
1098 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1099
1100 page = alloc_slab_page(alloc_gfp, node, oo);
1101 if (unlikely(!page)) {
1102 oo = s->min;
1103 /*
1104 * Allocation may have failed due to fragmentation.
1105 * Try a lower order alloc if possible
1106 */
1107 page = alloc_slab_page(flags, node, oo);
1108 if (!page)
1109 return NULL;
1110
1111 stat(s, ORDER_FALLBACK);
1112 }
1113
1114 if (kmemcheck_enabled
1115 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1116 int pages = 1 << oo_order(oo);
1117
1118 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1119
1120 /*
1121 * Objects from caches that have a constructor don't get
1122 * cleared when they're allocated, so we need to do it here.
1123 */
1124 if (s->ctor)
1125 kmemcheck_mark_uninitialized_pages(page, pages);
1126 else
1127 kmemcheck_mark_unallocated_pages(page, pages);
1128 }
1129
1130 page->objects = oo_objects(oo);
1131 mod_zone_page_state(page_zone(page),
1132 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1133 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1134 1 << oo_order(oo));
1135
1136 return page;
1137 }
1138
1139 static void setup_object(struct kmem_cache *s, struct page *page,
1140 void *object)
1141 {
1142 setup_object_debug(s, page, object);
1143 if (unlikely(s->ctor))
1144 s->ctor(object);
1145 }
1146
1147 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1148 {
1149 struct page *page;
1150 void *start;
1151 void *last;
1152 void *p;
1153
1154 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1155
1156 page = allocate_slab(s,
1157 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1158 if (!page)
1159 goto out;
1160
1161 inc_slabs_node(s, page_to_nid(page), page->objects);
1162 page->slab = s;
1163 page->flags |= 1 << PG_slab;
1164 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1165 SLAB_STORE_USER | SLAB_TRACE))
1166 __SetPageSlubDebug(page);
1167
1168 start = page_address(page);
1169
1170 if (unlikely(s->flags & SLAB_POISON))
1171 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1172
1173 last = start;
1174 for_each_object(p, s, start, page->objects) {
1175 setup_object(s, page, last);
1176 set_freepointer(s, last, p);
1177 last = p;
1178 }
1179 setup_object(s, page, last);
1180 set_freepointer(s, last, NULL);
1181
1182 page->freelist = start;
1183 page->inuse = 0;
1184 out:
1185 return page;
1186 }
1187
1188 static void __free_slab(struct kmem_cache *s, struct page *page)
1189 {
1190 int order = compound_order(page);
1191 int pages = 1 << order;
1192
1193 if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
1194 void *p;
1195
1196 slab_pad_check(s, page);
1197 for_each_object(p, s, page_address(page),
1198 page->objects)
1199 check_object(s, page, p, 0);
1200 __ClearPageSlubDebug(page);
1201 }
1202
1203 kmemcheck_free_shadow(page, compound_order(page));
1204
1205 mod_zone_page_state(page_zone(page),
1206 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1207 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1208 -pages);
1209
1210 __ClearPageSlab(page);
1211 reset_page_mapcount(page);
1212 if (current->reclaim_state)
1213 current->reclaim_state->reclaimed_slab += pages;
1214 __free_pages(page, order);
1215 }
1216
1217 static void rcu_free_slab(struct rcu_head *h)
1218 {
1219 struct page *page;
1220
1221 page = container_of((struct list_head *)h, struct page, lru);
1222 __free_slab(page->slab, page);
1223 }
1224
1225 static void free_slab(struct kmem_cache *s, struct page *page)
1226 {
1227 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1228 /*
1229 * RCU free overloads the RCU head over the LRU
1230 */
1231 struct rcu_head *head = (void *)&page->lru;
1232
1233 call_rcu(head, rcu_free_slab);
1234 } else
1235 __free_slab(s, page);
1236 }
1237
1238 static void discard_slab(struct kmem_cache *s, struct page *page)
1239 {
1240 dec_slabs_node(s, page_to_nid(page), page->objects);
1241 free_slab(s, page);
1242 }
1243
1244 /*
1245 * Per slab locking using the pagelock
1246 */
1247 static __always_inline void slab_lock(struct page *page)
1248 {
1249 bit_spin_lock(PG_locked, &page->flags);
1250 }
1251
1252 static __always_inline void slab_unlock(struct page *page)
1253 {
1254 __bit_spin_unlock(PG_locked, &page->flags);
1255 }
1256
1257 static __always_inline int slab_trylock(struct page *page)
1258 {
1259 int rc = 1;
1260
1261 rc = bit_spin_trylock(PG_locked, &page->flags);
1262 return rc;
1263 }
1264
1265 /*
1266 * Management of partially allocated slabs
1267 */
1268 static void add_partial(struct kmem_cache_node *n,
1269 struct page *page, int tail)
1270 {
1271 spin_lock(&n->list_lock);
1272 n->nr_partial++;
1273 if (tail)
1274 list_add_tail(&page->lru, &n->partial);
1275 else
1276 list_add(&page->lru, &n->partial);
1277 spin_unlock(&n->list_lock);
1278 }
1279
1280 static void remove_partial(struct kmem_cache *s, struct page *page)
1281 {
1282 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1283
1284 spin_lock(&n->list_lock);
1285 list_del(&page->lru);
1286 n->nr_partial--;
1287 spin_unlock(&n->list_lock);
1288 }
1289
1290 /*
1291 * Lock slab and remove from the partial list.
1292 *
1293 * Must hold list_lock.
1294 */
1295 static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1296 struct page *page)
1297 {
1298 if (slab_trylock(page)) {
1299 list_del(&page->lru);
1300 n->nr_partial--;
1301 __SetPageSlubFrozen(page);
1302 return 1;
1303 }
1304 return 0;
1305 }
1306
1307 /*
1308 * Try to allocate a partial slab from a specific node.
1309 */
1310 static struct page *get_partial_node(struct kmem_cache_node *n)
1311 {
1312 struct page *page;
1313
1314 /*
1315 * Racy check. If we mistakenly see no partial slabs then we
1316 * just allocate an empty slab. If we mistakenly try to get a
1317 * partial slab and there is none available then get_partials()
1318 * will return NULL.
1319 */
1320 if (!n || !n->nr_partial)
1321 return NULL;
1322
1323 spin_lock(&n->list_lock);
1324 list_for_each_entry(page, &n->partial, lru)
1325 if (lock_and_freeze_slab(n, page))
1326 goto out;
1327 page = NULL;
1328 out:
1329 spin_unlock(&n->list_lock);
1330 return page;
1331 }
1332
1333 /*
1334 * Get a page from somewhere. Search in increasing NUMA distances.
1335 */
1336 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1337 {
1338 #ifdef CONFIG_NUMA
1339 struct zonelist *zonelist;
1340 struct zoneref *z;
1341 struct zone *zone;
1342 enum zone_type high_zoneidx = gfp_zone(flags);
1343 struct page *page;
1344
1345 /*
1346 * The defrag ratio allows a configuration of the tradeoffs between
1347 * inter node defragmentation and node local allocations. A lower
1348 * defrag_ratio increases the tendency to do local allocations
1349 * instead of attempting to obtain partial slabs from other nodes.
1350 *
1351 * If the defrag_ratio is set to 0 then kmalloc() always
1352 * returns node local objects. If the ratio is higher then kmalloc()
1353 * may return off node objects because partial slabs are obtained
1354 * from other nodes and filled up.
1355 *
1356 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1357 * defrag_ratio = 1000) then every (well almost) allocation will
1358 * first attempt to defrag slab caches on other nodes. This means
1359 * scanning over all nodes to look for partial slabs which may be
1360 * expensive if we do it every time we are trying to find a slab
1361 * with available objects.
1362 */
1363 if (!s->remote_node_defrag_ratio ||
1364 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1365 return NULL;
1366
1367 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1368 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1369 struct kmem_cache_node *n;
1370
1371 n = get_node(s, zone_to_nid(zone));
1372
1373 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1374 n->nr_partial > s->min_partial) {
1375 page = get_partial_node(n);
1376 if (page)
1377 return page;
1378 }
1379 }
1380 #endif
1381 return NULL;
1382 }
1383
1384 /*
1385 * Get a partial page, lock it and return it.
1386 */
1387 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1388 {
1389 struct page *page;
1390 int searchnode = (node == -1) ? numa_node_id() : node;
1391
1392 page = get_partial_node(get_node(s, searchnode));
1393 if (page || (flags & __GFP_THISNODE))
1394 return page;
1395
1396 return get_any_partial(s, flags);
1397 }
1398
1399 /*
1400 * Move a page back to the lists.
1401 *
1402 * Must be called with the slab lock held.
1403 *
1404 * On exit the slab lock will have been dropped.
1405 */
1406 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1407 {
1408 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1409
1410 __ClearPageSlubFrozen(page);
1411 if (page->inuse) {
1412
1413 if (page->freelist) {
1414 add_partial(n, page, tail);
1415 stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1416 } else {
1417 stat(s, DEACTIVATE_FULL);
1418 if (SLABDEBUG && PageSlubDebug(page) &&
1419 (s->flags & SLAB_STORE_USER))
1420 add_full(n, page);
1421 }
1422 slab_unlock(page);
1423 } else {
1424 stat(s, DEACTIVATE_EMPTY);
1425 if (n->nr_partial < s->min_partial) {
1426 /*
1427 * Adding an empty slab to the partial slabs in order
1428 * to avoid page allocator overhead. This slab needs
1429 * to come after the other slabs with objects in
1430 * so that the others get filled first. That way the
1431 * size of the partial list stays small.
1432 *
1433 * kmem_cache_shrink can reclaim any empty slabs from
1434 * the partial list.
1435 */
1436 add_partial(n, page, 1);
1437 slab_unlock(page);
1438 } else {
1439 slab_unlock(page);
1440 stat(s, FREE_SLAB);
1441 discard_slab(s, page);
1442 }
1443 }
1444 }
1445
1446 /*
1447 * Remove the cpu slab
1448 */
1449 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1450 {
1451 struct page *page = c->page;
1452 int tail = 1;
1453
1454 if (page->freelist)
1455 stat(s, DEACTIVATE_REMOTE_FREES);
1456 /*
1457 * Merge cpu freelist into slab freelist. Typically we get here
1458 * because both freelists are empty. So this is unlikely
1459 * to occur.
1460 */
1461 while (unlikely(c->freelist)) {
1462 void **object;
1463
1464 tail = 0; /* Hot objects. Put the slab first */
1465
1466 /* Retrieve object from cpu_freelist */
1467 object = c->freelist;
1468 c->freelist = get_freepointer(s, c->freelist);
1469
1470 /* And put onto the regular freelist */
1471 set_freepointer(s, object, page->freelist);
1472 page->freelist = object;
1473 page->inuse--;
1474 }
1475 c->page = NULL;
1476 unfreeze_slab(s, page, tail);
1477 }
1478
1479 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1480 {
1481 stat(s, CPUSLAB_FLUSH);
1482 slab_lock(c->page);
1483 deactivate_slab(s, c);
1484 }
1485
1486 /*
1487 * Flush cpu slab.
1488 *
1489 * Called from IPI handler with interrupts disabled.
1490 */
1491 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1492 {
1493 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
1494
1495 if (likely(c && c->page))
1496 flush_slab(s, c);
1497 }
1498
1499 static void flush_cpu_slab(void *d)
1500 {
1501 struct kmem_cache *s = d;
1502
1503 __flush_cpu_slab(s, smp_processor_id());
1504 }
1505
1506 static void flush_all(struct kmem_cache *s)
1507 {
1508 on_each_cpu(flush_cpu_slab, s, 1);
1509 }
1510
1511 /*
1512 * Check if the objects in a per cpu structure fit numa
1513 * locality expectations.
1514 */
1515 static inline int node_match(struct kmem_cache_cpu *c, int node)
1516 {
1517 #ifdef CONFIG_NUMA
1518 if (node != -1 && c->node != node)
1519 return 0;
1520 #endif
1521 return 1;
1522 }
1523
1524 static int count_free(struct page *page)
1525 {
1526 return page->objects - page->inuse;
1527 }
1528
1529 static unsigned long count_partial(struct kmem_cache_node *n,
1530 int (*get_count)(struct page *))
1531 {
1532 unsigned long flags;
1533 unsigned long x = 0;
1534 struct page *page;
1535
1536 spin_lock_irqsave(&n->list_lock, flags);
1537 list_for_each_entry(page, &n->partial, lru)
1538 x += get_count(page);
1539 spin_unlock_irqrestore(&n->list_lock, flags);
1540 return x;
1541 }
1542
1543 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1544 {
1545 #ifdef CONFIG_SLUB_DEBUG
1546 return atomic_long_read(&n->total_objects);
1547 #else
1548 return 0;
1549 #endif
1550 }
1551
1552 static noinline void
1553 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1554 {
1555 int node;
1556
1557 printk(KERN_WARNING
1558 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1559 nid, gfpflags);
1560 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
1561 "default order: %d, min order: %d\n", s->name, s->objsize,
1562 s->size, oo_order(s->oo), oo_order(s->min));
1563
1564 if (oo_order(s->min) > get_order(s->objsize))
1565 printk(KERN_WARNING " %s debugging increased min order, use "
1566 "slub_debug=O to disable.\n", s->name);
1567
1568 for_each_online_node(node) {
1569 struct kmem_cache_node *n = get_node(s, node);
1570 unsigned long nr_slabs;
1571 unsigned long nr_objs;
1572 unsigned long nr_free;
1573
1574 if (!n)
1575 continue;
1576
1577 nr_free = count_partial(n, count_free);
1578 nr_slabs = node_nr_slabs(n);
1579 nr_objs = node_nr_objs(n);
1580
1581 printk(KERN_WARNING
1582 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
1583 node, nr_slabs, nr_objs, nr_free);
1584 }
1585 }
1586
1587 /*
1588 * Slow path. The lockless freelist is empty or we need to perform
1589 * debugging duties.
1590 *
1591 * Interrupts are disabled.
1592 *
1593 * Processing is still very fast if new objects have been freed to the
1594 * regular freelist. In that case we simply take over the regular freelist
1595 * as the lockless freelist and zap the regular freelist.
1596 *
1597 * If that is not working then we fall back to the partial lists. We take the
1598 * first element of the freelist as the object to allocate now and move the
1599 * rest of the freelist to the lockless freelist.
1600 *
1601 * And if we were unable to get a new slab from the partial slab lists then
1602 * we need to allocate a new slab. This is the slowest path since it involves
1603 * a call to the page allocator and the setup of a new slab.
1604 */
1605 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1606 unsigned long addr, struct kmem_cache_cpu *c)
1607 {
1608 void **object;
1609 struct page *new;
1610
1611 /* We handle __GFP_ZERO in the caller */
1612 gfpflags &= ~__GFP_ZERO;
1613
1614 if (!c->page)
1615 goto new_slab;
1616
1617 slab_lock(c->page);
1618 if (unlikely(!node_match(c, node)))
1619 goto another_slab;
1620
1621 stat(s, ALLOC_REFILL);
1622
1623 load_freelist:
1624 object = c->page->freelist;
1625 if (unlikely(!object))
1626 goto another_slab;
1627 if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
1628 goto debug;
1629
1630 c->freelist = get_freepointer(s, object);
1631 c->page->inuse = c->page->objects;
1632 c->page->freelist = NULL;
1633 c->node = page_to_nid(c->page);
1634 unlock_out:
1635 slab_unlock(c->page);
1636 stat(s, ALLOC_SLOWPATH);
1637 return object;
1638
1639 another_slab:
1640 deactivate_slab(s, c);
1641
1642 new_slab:
1643 new = get_partial(s, gfpflags, node);
1644 if (new) {
1645 c->page = new;
1646 stat(s, ALLOC_FROM_PARTIAL);
1647 goto load_freelist;
1648 }
1649
1650 if (gfpflags & __GFP_WAIT)
1651 local_irq_enable();
1652
1653 new = new_slab(s, gfpflags, node);
1654
1655 if (gfpflags & __GFP_WAIT)
1656 local_irq_disable();
1657
1658 if (new) {
1659 c = __this_cpu_ptr(s->cpu_slab);
1660 stat(s, ALLOC_SLAB);
1661 if (c->page)
1662 flush_slab(s, c);
1663 slab_lock(new);
1664 __SetPageSlubFrozen(new);
1665 c->page = new;
1666 goto load_freelist;
1667 }
1668 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
1669 slab_out_of_memory(s, gfpflags, node);
1670 return NULL;
1671 debug:
1672 if (!alloc_debug_processing(s, c->page, object, addr))
1673 goto another_slab;
1674
1675 c->page->inuse++;
1676 c->page->freelist = get_freepointer(s, object);
1677 c->node = -1;
1678 goto unlock_out;
1679 }
1680
1681 /*
1682 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1683 * have the fastpath folded into their functions. So no function call
1684 * overhead for requests that can be satisfied on the fastpath.
1685 *
1686 * The fastpath works by first checking if the lockless freelist can be used.
1687 * If not then __slab_alloc is called for slow processing.
1688 *
1689 * Otherwise we can simply pick the next object from the lockless free list.
1690 */
1691 static __always_inline void *slab_alloc(struct kmem_cache *s,
1692 gfp_t gfpflags, int node, unsigned long addr)
1693 {
1694 void **object;
1695 struct kmem_cache_cpu *c;
1696 unsigned long flags;
1697
1698 gfpflags &= gfp_allowed_mask;
1699
1700 lockdep_trace_alloc(gfpflags);
1701 might_sleep_if(gfpflags & __GFP_WAIT);
1702
1703 if (should_failslab(s->objsize, gfpflags))
1704 return NULL;
1705
1706 local_irq_save(flags);
1707 c = __this_cpu_ptr(s->cpu_slab);
1708 object = c->freelist;
1709 if (unlikely(!object || !node_match(c, node)))
1710
1711 object = __slab_alloc(s, gfpflags, node, addr, c);
1712
1713 else {
1714 c->freelist = get_freepointer(s, object);
1715 stat(s, ALLOC_FASTPATH);
1716 }
1717 local_irq_restore(flags);
1718
1719 if (unlikely(gfpflags & __GFP_ZERO) && object)
1720 memset(object, 0, s->objsize);
1721
1722 kmemcheck_slab_alloc(s, gfpflags, object, s->objsize);
1723 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, gfpflags);
1724
1725 return object;
1726 }
1727
1728 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1729 {
1730 void *ret = slab_alloc(s, gfpflags, -1, _RET_IP_);
1731
1732 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
1733
1734 return ret;
1735 }
1736 EXPORT_SYMBOL(kmem_cache_alloc);
1737
1738 #ifdef CONFIG_TRACING
1739 void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
1740 {
1741 return slab_alloc(s, gfpflags, -1, _RET_IP_);
1742 }
1743 EXPORT_SYMBOL(kmem_cache_alloc_notrace);
1744 #endif
1745
1746 #ifdef CONFIG_NUMA
1747 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1748 {
1749 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1750
1751 trace_kmem_cache_alloc_node(_RET_IP_, ret,
1752 s->objsize, s->size, gfpflags, node);
1753
1754 return ret;
1755 }
1756 EXPORT_SYMBOL(kmem_cache_alloc_node);
1757 #endif
1758
1759 #ifdef CONFIG_TRACING
1760 void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
1761 gfp_t gfpflags,
1762 int node)
1763 {
1764 return slab_alloc(s, gfpflags, node, _RET_IP_);
1765 }
1766 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
1767 #endif
1768
1769 /*
1770 * Slow patch handling. This may still be called frequently since objects
1771 * have a longer lifetime than the cpu slabs in most processing loads.
1772 *
1773 * So we still attempt to reduce cache line usage. Just take the slab
1774 * lock and free the item. If there is no additional partial page
1775 * handling required then we can return immediately.
1776 */
1777 static void __slab_free(struct kmem_cache *s, struct page *page,
1778 void *x, unsigned long addr)
1779 {
1780 void *prior;
1781 void **object = (void *)x;
1782
1783 stat(s, FREE_SLOWPATH);
1784 slab_lock(page);
1785
1786 if (unlikely(SLABDEBUG && PageSlubDebug(page)))
1787 goto debug;
1788
1789 checks_ok:
1790 prior = page->freelist;
1791 set_freepointer(s, object, prior);
1792 page->freelist = object;
1793 page->inuse--;
1794
1795 if (unlikely(PageSlubFrozen(page))) {
1796 stat(s, FREE_FROZEN);
1797 goto out_unlock;
1798 }
1799
1800 if (unlikely(!page->inuse))
1801 goto slab_empty;
1802
1803 /*
1804 * Objects left in the slab. If it was not on the partial list before
1805 * then add it.
1806 */
1807 if (unlikely(!prior)) {
1808 add_partial(get_node(s, page_to_nid(page)), page, 1);
1809 stat(s, FREE_ADD_PARTIAL);
1810 }
1811
1812 out_unlock:
1813 slab_unlock(page);
1814 return;
1815
1816 slab_empty:
1817 if (prior) {
1818 /*
1819 * Slab still on the partial list.
1820 */
1821 remove_partial(s, page);
1822 stat(s, FREE_REMOVE_PARTIAL);
1823 }
1824 slab_unlock(page);
1825 stat(s, FREE_SLAB);
1826 discard_slab(s, page);
1827 return;
1828
1829 debug:
1830 if (!free_debug_processing(s, page, x, addr))
1831 goto out_unlock;
1832 goto checks_ok;
1833 }
1834
1835 /*
1836 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1837 * can perform fastpath freeing without additional function calls.
1838 *
1839 * The fastpath is only possible if we are freeing to the current cpu slab
1840 * of this processor. This typically the case if we have just allocated
1841 * the item before.
1842 *
1843 * If fastpath is not possible then fall back to __slab_free where we deal
1844 * with all sorts of special processing.
1845 */
1846 static __always_inline void slab_free(struct kmem_cache *s,
1847 struct page *page, void *x, unsigned long addr)
1848 {
1849 void **object = (void *)x;
1850 struct kmem_cache_cpu *c;
1851 unsigned long flags;
1852
1853 kmemleak_free_recursive(x, s->flags);
1854 local_irq_save(flags);
1855 c = __this_cpu_ptr(s->cpu_slab);
1856 kmemcheck_slab_free(s, object, s->objsize);
1857 debug_check_no_locks_freed(object, s->objsize);
1858 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1859 debug_check_no_obj_freed(object, s->objsize);
1860 if (likely(page == c->page && c->node >= 0)) {
1861 set_freepointer(s, object, c->freelist);
1862 c->freelist = object;
1863 stat(s, FREE_FASTPATH);
1864 } else
1865 __slab_free(s, page, x, addr);
1866
1867 local_irq_restore(flags);
1868 }
1869
1870 void kmem_cache_free(struct kmem_cache *s, void *x)
1871 {
1872 struct page *page;
1873
1874 page = virt_to_head_page(x);
1875
1876 slab_free(s, page, x, _RET_IP_);
1877
1878 trace_kmem_cache_free(_RET_IP_, x);
1879 }
1880 EXPORT_SYMBOL(kmem_cache_free);
1881
1882 /* Figure out on which slab page the object resides */
1883 static struct page *get_object_page(const void *x)
1884 {
1885 struct page *page = virt_to_head_page(x);
1886
1887 if (!PageSlab(page))
1888 return NULL;
1889
1890 return page;
1891 }
1892
1893 /*
1894 * Object placement in a slab is made very easy because we always start at
1895 * offset 0. If we tune the size of the object to the alignment then we can
1896 * get the required alignment by putting one properly sized object after
1897 * another.
1898 *
1899 * Notice that the allocation order determines the sizes of the per cpu
1900 * caches. Each processor has always one slab available for allocations.
1901 * Increasing the allocation order reduces the number of times that slabs
1902 * must be moved on and off the partial lists and is therefore a factor in
1903 * locking overhead.
1904 */
1905
1906 /*
1907 * Mininum / Maximum order of slab pages. This influences locking overhead
1908 * and slab fragmentation. A higher order reduces the number of partial slabs
1909 * and increases the number of allocations possible without having to
1910 * take the list_lock.
1911 */
1912 static int slub_min_order;
1913 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1914 static int slub_min_objects;
1915
1916 /*
1917 * Merge control. If this is set then no merging of slab caches will occur.
1918 * (Could be removed. This was introduced to pacify the merge skeptics.)
1919 */
1920 static int slub_nomerge;
1921
1922 /*
1923 * Calculate the order of allocation given an slab object size.
1924 *
1925 * The order of allocation has significant impact on performance and other
1926 * system components. Generally order 0 allocations should be preferred since
1927 * order 0 does not cause fragmentation in the page allocator. Larger objects
1928 * be problematic to put into order 0 slabs because there may be too much
1929 * unused space left. We go to a higher order if more than 1/16th of the slab
1930 * would be wasted.
1931 *
1932 * In order to reach satisfactory performance we must ensure that a minimum
1933 * number of objects is in one slab. Otherwise we may generate too much
1934 * activity on the partial lists which requires taking the list_lock. This is
1935 * less a concern for large slabs though which are rarely used.
1936 *
1937 * slub_max_order specifies the order where we begin to stop considering the
1938 * number of objects in a slab as critical. If we reach slub_max_order then
1939 * we try to keep the page order as low as possible. So we accept more waste
1940 * of space in favor of a small page order.
1941 *
1942 * Higher order allocations also allow the placement of more objects in a
1943 * slab and thereby reduce object handling overhead. If the user has
1944 * requested a higher mininum order then we start with that one instead of
1945 * the smallest order which will fit the object.
1946 */
1947 static inline int slab_order(int size, int min_objects,
1948 int max_order, int fract_leftover)
1949 {
1950 int order;
1951 int rem;
1952 int min_order = slub_min_order;
1953
1954 if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1955 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
1956
1957 for (order = max(min_order,
1958 fls(min_objects * size - 1) - PAGE_SHIFT);
1959 order <= max_order; order++) {
1960
1961 unsigned long slab_size = PAGE_SIZE << order;
1962
1963 if (slab_size < min_objects * size)
1964 continue;
1965
1966 rem = slab_size % size;
1967
1968 if (rem <= slab_size / fract_leftover)
1969 break;
1970
1971 }
1972
1973 return order;
1974 }
1975
1976 static inline int calculate_order(int size)
1977 {
1978 int order;
1979 int min_objects;
1980 int fraction;
1981 int max_objects;
1982
1983 /*
1984 * Attempt to find best configuration for a slab. This
1985 * works by first attempting to generate a layout with
1986 * the best configuration and backing off gradually.
1987 *
1988 * First we reduce the acceptable waste in a slab. Then
1989 * we reduce the minimum objects required in a slab.
1990 */
1991 min_objects = slub_min_objects;
1992 if (!min_objects)
1993 min_objects = 4 * (fls(nr_cpu_ids) + 1);
1994 max_objects = (PAGE_SIZE << slub_max_order)/size;
1995 min_objects = min(min_objects, max_objects);
1996
1997 while (min_objects > 1) {
1998 fraction = 16;
1999 while (fraction >= 4) {
2000 order = slab_order(size, min_objects,
2001 slub_max_order, fraction);
2002 if (order <= slub_max_order)
2003 return order;
2004 fraction /= 2;
2005 }
2006 min_objects--;
2007 }
2008
2009 /*
2010 * We were unable to place multiple objects in a slab. Now
2011 * lets see if we can place a single object there.
2012 */
2013 order = slab_order(size, 1, slub_max_order, 1);
2014 if (order <= slub_max_order)
2015 return order;
2016
2017 /*
2018 * Doh this slab cannot be placed using slub_max_order.
2019 */
2020 order = slab_order(size, 1, MAX_ORDER, 1);
2021 if (order < MAX_ORDER)
2022 return order;
2023 return -ENOSYS;
2024 }
2025
2026 /*
2027 * Figure out what the alignment of the objects will be.
2028 */
2029 static unsigned long calculate_alignment(unsigned long flags,
2030 unsigned long align, unsigned long size)
2031 {
2032 /*
2033 * If the user wants hardware cache aligned objects then follow that
2034 * suggestion if the object is sufficiently large.
2035 *
2036 * The hardware cache alignment cannot override the specified
2037 * alignment though. If that is greater then use it.
2038 */
2039 if (flags & SLAB_HWCACHE_ALIGN) {
2040 unsigned long ralign = cache_line_size();
2041 while (size <= ralign / 2)
2042 ralign /= 2;
2043 align = max(align, ralign);
2044 }
2045
2046 if (align < ARCH_SLAB_MINALIGN)
2047 align = ARCH_SLAB_MINALIGN;
2048
2049 return ALIGN(align, sizeof(void *));
2050 }
2051
2052 static void
2053 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
2054 {
2055 n->nr_partial = 0;
2056 spin_lock_init(&n->list_lock);
2057 INIT_LIST_HEAD(&n->partial);
2058 #ifdef CONFIG_SLUB_DEBUG
2059 atomic_long_set(&n->nr_slabs, 0);
2060 atomic_long_set(&n->total_objects, 0);
2061 INIT_LIST_HEAD(&n->full);
2062 #endif
2063 }
2064
2065 static DEFINE_PER_CPU(struct kmem_cache_cpu, kmalloc_percpu[KMALLOC_CACHES]);
2066
2067 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2068 {
2069 if (s < kmalloc_caches + KMALLOC_CACHES && s >= kmalloc_caches)
2070 /*
2071 * Boot time creation of the kmalloc array. Use static per cpu data
2072 * since the per cpu allocator is not available yet.
2073 */
2074 s->cpu_slab = per_cpu_var(kmalloc_percpu) + (s - kmalloc_caches);
2075 else
2076 s->cpu_slab = alloc_percpu(struct kmem_cache_cpu);
2077
2078 if (!s->cpu_slab)
2079 return 0;
2080
2081 return 1;
2082 }
2083
2084 #ifdef CONFIG_NUMA
2085 /*
2086 * No kmalloc_node yet so do it by hand. We know that this is the first
2087 * slab on the node for this slabcache. There are no concurrent accesses
2088 * possible.
2089 *
2090 * Note that this function only works on the kmalloc_node_cache
2091 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2092 * memory on a fresh node that has no slab structures yet.
2093 */
2094 static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node)
2095 {
2096 struct page *page;
2097 struct kmem_cache_node *n;
2098 unsigned long flags;
2099
2100 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2101
2102 page = new_slab(kmalloc_caches, gfpflags, node);
2103
2104 BUG_ON(!page);
2105 if (page_to_nid(page) != node) {
2106 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2107 "node %d\n", node);
2108 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2109 "in order to be able to continue\n");
2110 }
2111
2112 n = page->freelist;
2113 BUG_ON(!n);
2114 page->freelist = get_freepointer(kmalloc_caches, n);
2115 page->inuse++;
2116 kmalloc_caches->node[node] = n;
2117 #ifdef CONFIG_SLUB_DEBUG
2118 init_object(kmalloc_caches, n, 1);
2119 init_tracking(kmalloc_caches, n);
2120 #endif
2121 init_kmem_cache_node(n, kmalloc_caches);
2122 inc_slabs_node(kmalloc_caches, node, page->objects);
2123
2124 /*
2125 * lockdep requires consistent irq usage for each lock
2126 * so even though there cannot be a race this early in
2127 * the boot sequence, we still disable irqs.
2128 */
2129 local_irq_save(flags);
2130 add_partial(n, page, 0);
2131 local_irq_restore(flags);
2132 }
2133
2134 static void free_kmem_cache_nodes(struct kmem_cache *s)
2135 {
2136 int node;
2137
2138 for_each_node_state(node, N_NORMAL_MEMORY) {
2139 struct kmem_cache_node *n = s->node[node];
2140 if (n && n != &s->local_node)
2141 kmem_cache_free(kmalloc_caches, n);
2142 s->node[node] = NULL;
2143 }
2144 }
2145
2146 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2147 {
2148 int node;
2149 int local_node;
2150
2151 if (slab_state >= UP && (s < kmalloc_caches ||
2152 s > kmalloc_caches + KMALLOC_CACHES))
2153 local_node = page_to_nid(virt_to_page(s));
2154 else
2155 local_node = 0;
2156
2157 for_each_node_state(node, N_NORMAL_MEMORY) {
2158 struct kmem_cache_node *n;
2159
2160 if (local_node == node)
2161 n = &s->local_node;
2162 else {
2163 if (slab_state == DOWN) {
2164 early_kmem_cache_node_alloc(gfpflags, node);
2165 continue;
2166 }
2167 n = kmem_cache_alloc_node(kmalloc_caches,
2168 gfpflags, node);
2169
2170 if (!n) {
2171 free_kmem_cache_nodes(s);
2172 return 0;
2173 }
2174
2175 }
2176 s->node[node] = n;
2177 init_kmem_cache_node(n, s);
2178 }
2179 return 1;
2180 }
2181 #else
2182 static void free_kmem_cache_nodes(struct kmem_cache *s)
2183 {
2184 }
2185
2186 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2187 {
2188 init_kmem_cache_node(&s->local_node, s);
2189 return 1;
2190 }
2191 #endif
2192
2193 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2194 {
2195 if (min < MIN_PARTIAL)
2196 min = MIN_PARTIAL;
2197 else if (min > MAX_PARTIAL)
2198 min = MAX_PARTIAL;
2199 s->min_partial = min;
2200 }
2201
2202 /*
2203 * calculate_sizes() determines the order and the distribution of data within
2204 * a slab object.
2205 */
2206 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2207 {
2208 unsigned long flags = s->flags;
2209 unsigned long size = s->objsize;
2210 unsigned long align = s->align;
2211 int order;
2212
2213 /*
2214 * Round up object size to the next word boundary. We can only
2215 * place the free pointer at word boundaries and this determines
2216 * the possible location of the free pointer.
2217 */
2218 size = ALIGN(size, sizeof(void *));
2219
2220 #ifdef CONFIG_SLUB_DEBUG
2221 /*
2222 * Determine if we can poison the object itself. If the user of
2223 * the slab may touch the object after free or before allocation
2224 * then we should never poison the object itself.
2225 */
2226 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2227 !s->ctor)
2228 s->flags |= __OBJECT_POISON;
2229 else
2230 s->flags &= ~__OBJECT_POISON;
2231
2232
2233 /*
2234 * If we are Redzoning then check if there is some space between the
2235 * end of the object and the free pointer. If not then add an
2236 * additional word to have some bytes to store Redzone information.
2237 */
2238 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2239 size += sizeof(void *);
2240 #endif
2241
2242 /*
2243 * With that we have determined the number of bytes in actual use
2244 * by the object. This is the potential offset to the free pointer.
2245 */
2246 s->inuse = size;
2247
2248 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2249 s->ctor)) {
2250 /*
2251 * Relocate free pointer after the object if it is not
2252 * permitted to overwrite the first word of the object on
2253 * kmem_cache_free.
2254 *
2255 * This is the case if we do RCU, have a constructor or
2256 * destructor or are poisoning the objects.
2257 */
2258 s->offset = size;
2259 size += sizeof(void *);
2260 }
2261
2262 #ifdef CONFIG_SLUB_DEBUG
2263 if (flags & SLAB_STORE_USER)
2264 /*
2265 * Need to store information about allocs and frees after
2266 * the object.
2267 */
2268 size += 2 * sizeof(struct track);
2269
2270 if (flags & SLAB_RED_ZONE)
2271 /*
2272 * Add some empty padding so that we can catch
2273 * overwrites from earlier objects rather than let
2274 * tracking information or the free pointer be
2275 * corrupted if a user writes before the start
2276 * of the object.
2277 */
2278 size += sizeof(void *);
2279 #endif
2280
2281 /*
2282 * Determine the alignment based on various parameters that the
2283 * user specified and the dynamic determination of cache line size
2284 * on bootup.
2285 */
2286 align = calculate_alignment(flags, align, s->objsize);
2287 s->align = align;
2288
2289 /*
2290 * SLUB stores one object immediately after another beginning from
2291 * offset 0. In order to align the objects we have to simply size
2292 * each object to conform to the alignment.
2293 */
2294 size = ALIGN(size, align);
2295 s->size = size;
2296 if (forced_order >= 0)
2297 order = forced_order;
2298 else
2299 order = calculate_order(size);
2300
2301 if (order < 0)
2302 return 0;
2303
2304 s->allocflags = 0;
2305 if (order)
2306 s->allocflags |= __GFP_COMP;
2307
2308 if (s->flags & SLAB_CACHE_DMA)
2309 s->allocflags |= SLUB_DMA;
2310
2311 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2312 s->allocflags |= __GFP_RECLAIMABLE;
2313
2314 /*
2315 * Determine the number of objects per slab
2316 */
2317 s->oo = oo_make(order, size);
2318 s->min = oo_make(get_order(size), size);
2319 if (oo_objects(s->oo) > oo_objects(s->max))
2320 s->max = s->oo;
2321
2322 return !!oo_objects(s->oo);
2323
2324 }
2325
2326 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2327 const char *name, size_t size,
2328 size_t align, unsigned long flags,
2329 void (*ctor)(void *))
2330 {
2331 memset(s, 0, kmem_size);
2332 s->name = name;
2333 s->ctor = ctor;
2334 s->objsize = size;
2335 s->align = align;
2336 s->flags = kmem_cache_flags(size, flags, name, ctor);
2337
2338 if (!calculate_sizes(s, -1))
2339 goto error;
2340 if (disable_higher_order_debug) {
2341 /*
2342 * Disable debugging flags that store metadata if the min slab
2343 * order increased.
2344 */
2345 if (get_order(s->size) > get_order(s->objsize)) {
2346 s->flags &= ~DEBUG_METADATA_FLAGS;
2347 s->offset = 0;
2348 if (!calculate_sizes(s, -1))
2349 goto error;
2350 }
2351 }
2352
2353 /*
2354 * The larger the object size is, the more pages we want on the partial
2355 * list to avoid pounding the page allocator excessively.
2356 */
2357 set_min_partial(s, ilog2(s->size));
2358 s->refcount = 1;
2359 #ifdef CONFIG_NUMA
2360 s->remote_node_defrag_ratio = 1000;
2361 #endif
2362 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2363 goto error;
2364
2365 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2366 return 1;
2367
2368 free_kmem_cache_nodes(s);
2369 error:
2370 if (flags & SLAB_PANIC)
2371 panic("Cannot create slab %s size=%lu realsize=%u "
2372 "order=%u offset=%u flags=%lx\n",
2373 s->name, (unsigned long)size, s->size, oo_order(s->oo),
2374 s->offset, flags);
2375 return 0;
2376 }
2377
2378 /*
2379 * Check if a given pointer is valid
2380 */
2381 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2382 {
2383 struct page *page;
2384
2385 page = get_object_page(object);
2386
2387 if (!page || s != page->slab)
2388 /* No slab or wrong slab */
2389 return 0;
2390
2391 if (!check_valid_pointer(s, page, object))
2392 return 0;
2393
2394 /*
2395 * We could also check if the object is on the slabs freelist.
2396 * But this would be too expensive and it seems that the main
2397 * purpose of kmem_ptr_valid() is to check if the object belongs
2398 * to a certain slab.
2399 */
2400 return 1;
2401 }
2402 EXPORT_SYMBOL(kmem_ptr_validate);
2403
2404 /*
2405 * Determine the size of a slab object
2406 */
2407 unsigned int kmem_cache_size(struct kmem_cache *s)
2408 {
2409 return s->objsize;
2410 }
2411 EXPORT_SYMBOL(kmem_cache_size);
2412
2413 const char *kmem_cache_name(struct kmem_cache *s)
2414 {
2415 return s->name;
2416 }
2417 EXPORT_SYMBOL(kmem_cache_name);
2418
2419 static void list_slab_objects(struct kmem_cache *s, struct page *page,
2420 const char *text)
2421 {
2422 #ifdef CONFIG_SLUB_DEBUG
2423 void *addr = page_address(page);
2424 void *p;
2425 DECLARE_BITMAP(map, page->objects);
2426
2427 bitmap_zero(map, page->objects);
2428 slab_err(s, page, "%s", text);
2429 slab_lock(page);
2430 for_each_free_object(p, s, page->freelist)
2431 set_bit(slab_index(p, s, addr), map);
2432
2433 for_each_object(p, s, addr, page->objects) {
2434
2435 if (!test_bit(slab_index(p, s, addr), map)) {
2436 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2437 p, p - addr);
2438 print_tracking(s, p);
2439 }
2440 }
2441 slab_unlock(page);
2442 #endif
2443 }
2444
2445 /*
2446 * Attempt to free all partial slabs on a node.
2447 */
2448 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2449 {
2450 unsigned long flags;
2451 struct page *page, *h;
2452
2453 spin_lock_irqsave(&n->list_lock, flags);
2454 list_for_each_entry_safe(page, h, &n->partial, lru) {
2455 if (!page->inuse) {
2456 list_del(&page->lru);
2457 discard_slab(s, page);
2458 n->nr_partial--;
2459 } else {
2460 list_slab_objects(s, page,
2461 "Objects remaining on kmem_cache_close()");
2462 }
2463 }
2464 spin_unlock_irqrestore(&n->list_lock, flags);
2465 }
2466
2467 /*
2468 * Release all resources used by a slab cache.
2469 */
2470 static inline int kmem_cache_close(struct kmem_cache *s)
2471 {
2472 int node;
2473
2474 flush_all(s);
2475 free_percpu(s->cpu_slab);
2476 /* Attempt to free all objects */
2477 for_each_node_state(node, N_NORMAL_MEMORY) {
2478 struct kmem_cache_node *n = get_node(s, node);
2479
2480 free_partial(s, n);
2481 if (n->nr_partial || slabs_node(s, node))
2482 return 1;
2483 }
2484 free_kmem_cache_nodes(s);
2485 return 0;
2486 }
2487
2488 /*
2489 * Close a cache and release the kmem_cache structure
2490 * (must be used for caches created using kmem_cache_create)
2491 */
2492 void kmem_cache_destroy(struct kmem_cache *s)
2493 {
2494 down_write(&slub_lock);
2495 s->refcount--;
2496 if (!s->refcount) {
2497 list_del(&s->list);
2498 up_write(&slub_lock);
2499 if (kmem_cache_close(s)) {
2500 printk(KERN_ERR "SLUB %s: %s called for cache that "
2501 "still has objects.\n", s->name, __func__);
2502 dump_stack();
2503 }
2504 if (s->flags & SLAB_DESTROY_BY_RCU)
2505 rcu_barrier();
2506 sysfs_slab_remove(s);
2507 } else
2508 up_write(&slub_lock);
2509 }
2510 EXPORT_SYMBOL(kmem_cache_destroy);
2511
2512 /********************************************************************
2513 * Kmalloc subsystem
2514 *******************************************************************/
2515
2516 struct kmem_cache kmalloc_caches[KMALLOC_CACHES] __cacheline_aligned;
2517 EXPORT_SYMBOL(kmalloc_caches);
2518
2519 static int __init setup_slub_min_order(char *str)
2520 {
2521 get_option(&str, &slub_min_order);
2522
2523 return 1;
2524 }
2525
2526 __setup("slub_min_order=", setup_slub_min_order);
2527
2528 static int __init setup_slub_max_order(char *str)
2529 {
2530 get_option(&str, &slub_max_order);
2531 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
2532
2533 return 1;
2534 }
2535
2536 __setup("slub_max_order=", setup_slub_max_order);
2537
2538 static int __init setup_slub_min_objects(char *str)
2539 {
2540 get_option(&str, &slub_min_objects);
2541
2542 return 1;
2543 }
2544
2545 __setup("slub_min_objects=", setup_slub_min_objects);
2546
2547 static int __init setup_slub_nomerge(char *str)
2548 {
2549 slub_nomerge = 1;
2550 return 1;
2551 }
2552
2553 __setup("slub_nomerge", setup_slub_nomerge);
2554
2555 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2556 const char *name, int size, gfp_t gfp_flags)
2557 {
2558 unsigned int flags = 0;
2559
2560 if (gfp_flags & SLUB_DMA)
2561 flags = SLAB_CACHE_DMA;
2562
2563 /*
2564 * This function is called with IRQs disabled during early-boot on
2565 * single CPU so there's no need to take slub_lock here.
2566 */
2567 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2568 flags, NULL))
2569 goto panic;
2570
2571 list_add(&s->list, &slab_caches);
2572
2573 if (sysfs_slab_add(s))
2574 goto panic;
2575 return s;
2576
2577 panic:
2578 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2579 }
2580
2581 #ifdef CONFIG_ZONE_DMA
2582 static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT];
2583
2584 static void sysfs_add_func(struct work_struct *w)
2585 {
2586 struct kmem_cache *s;
2587
2588 down_write(&slub_lock);
2589 list_for_each_entry(s, &slab_caches, list) {
2590 if (s->flags & __SYSFS_ADD_DEFERRED) {
2591 s->flags &= ~__SYSFS_ADD_DEFERRED;
2592 sysfs_slab_add(s);
2593 }
2594 }
2595 up_write(&slub_lock);
2596 }
2597
2598 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2599
2600 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2601 {
2602 struct kmem_cache *s;
2603 char *text;
2604 size_t realsize;
2605 unsigned long slabflags;
2606 int i;
2607
2608 s = kmalloc_caches_dma[index];
2609 if (s)
2610 return s;
2611
2612 /* Dynamically create dma cache */
2613 if (flags & __GFP_WAIT)
2614 down_write(&slub_lock);
2615 else {
2616 if (!down_write_trylock(&slub_lock))
2617 goto out;
2618 }
2619
2620 if (kmalloc_caches_dma[index])
2621 goto unlock_out;
2622
2623 realsize = kmalloc_caches[index].objsize;
2624 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2625 (unsigned int)realsize);
2626
2627 s = NULL;
2628 for (i = 0; i < KMALLOC_CACHES; i++)
2629 if (!kmalloc_caches[i].size)
2630 break;
2631
2632 BUG_ON(i >= KMALLOC_CACHES);
2633 s = kmalloc_caches + i;
2634
2635 /*
2636 * Must defer sysfs creation to a workqueue because we don't know
2637 * what context we are called from. Before sysfs comes up, we don't
2638 * need to do anything because our sysfs initcall will start by
2639 * adding all existing slabs to sysfs.
2640 */
2641 slabflags = SLAB_CACHE_DMA|SLAB_NOTRACK;
2642 if (slab_state >= SYSFS)
2643 slabflags |= __SYSFS_ADD_DEFERRED;
2644
2645 if (!text || !kmem_cache_open(s, flags, text,
2646 realsize, ARCH_KMALLOC_MINALIGN, slabflags, NULL)) {
2647 s->size = 0;
2648 kfree(text);
2649 goto unlock_out;
2650 }
2651
2652 list_add(&s->list, &slab_caches);
2653 kmalloc_caches_dma[index] = s;
2654
2655 if (slab_state >= SYSFS)
2656 schedule_work(&sysfs_add_work);
2657
2658 unlock_out:
2659 up_write(&slub_lock);
2660 out:
2661 return kmalloc_caches_dma[index];
2662 }
2663 #endif
2664
2665 /*
2666 * Conversion table for small slabs sizes / 8 to the index in the
2667 * kmalloc array. This is necessary for slabs < 192 since we have non power
2668 * of two cache sizes there. The size of larger slabs can be determined using
2669 * fls.
2670 */
2671 static s8 size_index[24] = {
2672 3, /* 8 */
2673 4, /* 16 */
2674 5, /* 24 */
2675 5, /* 32 */
2676 6, /* 40 */
2677 6, /* 48 */
2678 6, /* 56 */
2679 6, /* 64 */
2680 1, /* 72 */
2681 1, /* 80 */
2682 1, /* 88 */
2683 1, /* 96 */
2684 7, /* 104 */
2685 7, /* 112 */
2686 7, /* 120 */
2687 7, /* 128 */
2688 2, /* 136 */
2689 2, /* 144 */
2690 2, /* 152 */
2691 2, /* 160 */
2692 2, /* 168 */
2693 2, /* 176 */
2694 2, /* 184 */
2695 2 /* 192 */
2696 };
2697
2698 static inline int size_index_elem(size_t bytes)
2699 {
2700 return (bytes - 1) / 8;
2701 }
2702
2703 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2704 {
2705 int index;
2706
2707 if (size <= 192) {
2708 if (!size)
2709 return ZERO_SIZE_PTR;
2710
2711 index = size_index[size_index_elem(size)];
2712 } else
2713 index = fls(size - 1);
2714
2715 #ifdef CONFIG_ZONE_DMA
2716 if (unlikely((flags & SLUB_DMA)))
2717 return dma_kmalloc_cache(index, flags);
2718
2719 #endif
2720 return &kmalloc_caches[index];
2721 }
2722
2723 void *__kmalloc(size_t size, gfp_t flags)
2724 {
2725 struct kmem_cache *s;
2726 void *ret;
2727
2728 if (unlikely(size > SLUB_MAX_SIZE))
2729 return kmalloc_large(size, flags);
2730
2731 s = get_slab(size, flags);
2732
2733 if (unlikely(ZERO_OR_NULL_PTR(s)))
2734 return s;
2735
2736 ret = slab_alloc(s, flags, -1, _RET_IP_);
2737
2738 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
2739
2740 return ret;
2741 }
2742 EXPORT_SYMBOL(__kmalloc);
2743
2744 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2745 {
2746 struct page *page;
2747 void *ptr = NULL;
2748
2749 flags |= __GFP_COMP | __GFP_NOTRACK;
2750 page = alloc_pages_node(node, flags, get_order(size));
2751 if (page)
2752 ptr = page_address(page);
2753
2754 kmemleak_alloc(ptr, size, 1, flags);
2755 return ptr;
2756 }
2757
2758 #ifdef CONFIG_NUMA
2759 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2760 {
2761 struct kmem_cache *s;
2762 void *ret;
2763
2764 if (unlikely(size > SLUB_MAX_SIZE)) {
2765 ret = kmalloc_large_node(size, flags, node);
2766
2767 trace_kmalloc_node(_RET_IP_, ret,
2768 size, PAGE_SIZE << get_order(size),
2769 flags, node);
2770
2771 return ret;
2772 }
2773
2774 s = get_slab(size, flags);
2775
2776 if (unlikely(ZERO_OR_NULL_PTR(s)))
2777 return s;
2778
2779 ret = slab_alloc(s, flags, node, _RET_IP_);
2780
2781 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
2782
2783 return ret;
2784 }
2785 EXPORT_SYMBOL(__kmalloc_node);
2786 #endif
2787
2788 size_t ksize(const void *object)
2789 {
2790 struct page *page;
2791 struct kmem_cache *s;
2792
2793 if (unlikely(object == ZERO_SIZE_PTR))
2794 return 0;
2795
2796 page = virt_to_head_page(object);
2797
2798 if (unlikely(!PageSlab(page))) {
2799 WARN_ON(!PageCompound(page));
2800 return PAGE_SIZE << compound_order(page);
2801 }
2802 s = page->slab;
2803
2804 #ifdef CONFIG_SLUB_DEBUG
2805 /*
2806 * Debugging requires use of the padding between object
2807 * and whatever may come after it.
2808 */
2809 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2810 return s->objsize;
2811
2812 #endif
2813 /*
2814 * If we have the need to store the freelist pointer
2815 * back there or track user information then we can
2816 * only use the space before that information.
2817 */
2818 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2819 return s->inuse;
2820 /*
2821 * Else we can use all the padding etc for the allocation
2822 */
2823 return s->size;
2824 }
2825 EXPORT_SYMBOL(ksize);
2826
2827 void kfree(const void *x)
2828 {
2829 struct page *page;
2830 void *object = (void *)x;
2831
2832 trace_kfree(_RET_IP_, x);
2833
2834 if (unlikely(ZERO_OR_NULL_PTR(x)))
2835 return;
2836
2837 page = virt_to_head_page(x);
2838 if (unlikely(!PageSlab(page))) {
2839 BUG_ON(!PageCompound(page));
2840 kmemleak_free(x);
2841 put_page(page);
2842 return;
2843 }
2844 slab_free(page->slab, page, object, _RET_IP_);
2845 }
2846 EXPORT_SYMBOL(kfree);
2847
2848 /*
2849 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2850 * the remaining slabs by the number of items in use. The slabs with the
2851 * most items in use come first. New allocations will then fill those up
2852 * and thus they can be removed from the partial lists.
2853 *
2854 * The slabs with the least items are placed last. This results in them
2855 * being allocated from last increasing the chance that the last objects
2856 * are freed in them.
2857 */
2858 int kmem_cache_shrink(struct kmem_cache *s)
2859 {
2860 int node;
2861 int i;
2862 struct kmem_cache_node *n;
2863 struct page *page;
2864 struct page *t;
2865 int objects = oo_objects(s->max);
2866 struct list_head *slabs_by_inuse =
2867 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2868 unsigned long flags;
2869
2870 if (!slabs_by_inuse)
2871 return -ENOMEM;
2872
2873 flush_all(s);
2874 for_each_node_state(node, N_NORMAL_MEMORY) {
2875 n = get_node(s, node);
2876
2877 if (!n->nr_partial)
2878 continue;
2879
2880 for (i = 0; i < objects; i++)
2881 INIT_LIST_HEAD(slabs_by_inuse + i);
2882
2883 spin_lock_irqsave(&n->list_lock, flags);
2884
2885 /*
2886 * Build lists indexed by the items in use in each slab.
2887 *
2888 * Note that concurrent frees may occur while we hold the
2889 * list_lock. page->inuse here is the upper limit.
2890 */
2891 list_for_each_entry_safe(page, t, &n->partial, lru) {
2892 if (!page->inuse && slab_trylock(page)) {
2893 /*
2894 * Must hold slab lock here because slab_free
2895 * may have freed the last object and be
2896 * waiting to release the slab.
2897 */
2898 list_del(&page->lru);
2899 n->nr_partial--;
2900 slab_unlock(page);
2901 discard_slab(s, page);
2902 } else {
2903 list_move(&page->lru,
2904 slabs_by_inuse + page->inuse);
2905 }
2906 }
2907
2908 /*
2909 * Rebuild the partial list with the slabs filled up most
2910 * first and the least used slabs at the end.
2911 */
2912 for (i = objects - 1; i >= 0; i--)
2913 list_splice(slabs_by_inuse + i, n->partial.prev);
2914
2915 spin_unlock_irqrestore(&n->list_lock, flags);
2916 }
2917
2918 kfree(slabs_by_inuse);
2919 return 0;
2920 }
2921 EXPORT_SYMBOL(kmem_cache_shrink);
2922
2923 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2924 static int slab_mem_going_offline_callback(void *arg)
2925 {
2926 struct kmem_cache *s;
2927
2928 down_read(&slub_lock);
2929 list_for_each_entry(s, &slab_caches, list)
2930 kmem_cache_shrink(s);
2931 up_read(&slub_lock);
2932
2933 return 0;
2934 }
2935
2936 static void slab_mem_offline_callback(void *arg)
2937 {
2938 struct kmem_cache_node *n;
2939 struct kmem_cache *s;
2940 struct memory_notify *marg = arg;
2941 int offline_node;
2942
2943 offline_node = marg->status_change_nid;
2944
2945 /*
2946 * If the node still has available memory. we need kmem_cache_node
2947 * for it yet.
2948 */
2949 if (offline_node < 0)
2950 return;
2951
2952 down_read(&slub_lock);
2953 list_for_each_entry(s, &slab_caches, list) {
2954 n = get_node(s, offline_node);
2955 if (n) {
2956 /*
2957 * if n->nr_slabs > 0, slabs still exist on the node
2958 * that is going down. We were unable to free them,
2959 * and offline_pages() function shoudn't call this
2960 * callback. So, we must fail.
2961 */
2962 BUG_ON(slabs_node(s, offline_node));
2963
2964 s->node[offline_node] = NULL;
2965 kmem_cache_free(kmalloc_caches, n);
2966 }
2967 }
2968 up_read(&slub_lock);
2969 }
2970
2971 static int slab_mem_going_online_callback(void *arg)
2972 {
2973 struct kmem_cache_node *n;
2974 struct kmem_cache *s;
2975 struct memory_notify *marg = arg;
2976 int nid = marg->status_change_nid;
2977 int ret = 0;
2978
2979 /*
2980 * If the node's memory is already available, then kmem_cache_node is
2981 * already created. Nothing to do.
2982 */
2983 if (nid < 0)
2984 return 0;
2985
2986 /*
2987 * We are bringing a node online. No memory is available yet. We must
2988 * allocate a kmem_cache_node structure in order to bring the node
2989 * online.
2990 */
2991 down_read(&slub_lock);
2992 list_for_each_entry(s, &slab_caches, list) {
2993 /*
2994 * XXX: kmem_cache_alloc_node will fallback to other nodes
2995 * since memory is not yet available from the node that
2996 * is brought up.
2997 */
2998 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2999 if (!n) {
3000 ret = -ENOMEM;
3001 goto out;
3002 }
3003 init_kmem_cache_node(n, s);
3004 s->node[nid] = n;
3005 }
3006 out:
3007 up_read(&slub_lock);
3008 return ret;
3009 }
3010
3011 static int slab_memory_callback(struct notifier_block *self,
3012 unsigned long action, void *arg)
3013 {
3014 int ret = 0;
3015
3016 switch (action) {
3017 case MEM_GOING_ONLINE:
3018 ret = slab_mem_going_online_callback(arg);
3019 break;
3020 case MEM_GOING_OFFLINE:
3021 ret = slab_mem_going_offline_callback(arg);
3022 break;
3023 case MEM_OFFLINE:
3024 case MEM_CANCEL_ONLINE:
3025 slab_mem_offline_callback(arg);
3026 break;
3027 case MEM_ONLINE:
3028 case MEM_CANCEL_OFFLINE:
3029 break;
3030 }
3031 if (ret)
3032 ret = notifier_from_errno(ret);
3033 else
3034 ret = NOTIFY_OK;
3035 return ret;
3036 }
3037
3038 #endif /* CONFIG_MEMORY_HOTPLUG */
3039
3040 /********************************************************************
3041 * Basic setup of slabs
3042 *******************************************************************/
3043
3044 void __init kmem_cache_init(void)
3045 {
3046 int i;
3047 int caches = 0;
3048
3049 #ifdef CONFIG_NUMA
3050 /*
3051 * Must first have the slab cache available for the allocations of the
3052 * struct kmem_cache_node's. There is special bootstrap code in
3053 * kmem_cache_open for slab_state == DOWN.
3054 */
3055 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
3056 sizeof(struct kmem_cache_node), GFP_NOWAIT);
3057 kmalloc_caches[0].refcount = -1;
3058 caches++;
3059
3060 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3061 #endif
3062
3063 /* Able to allocate the per node structures */
3064 slab_state = PARTIAL;
3065
3066 /* Caches that are not of the two-to-the-power-of size */
3067 if (KMALLOC_MIN_SIZE <= 32) {
3068 create_kmalloc_cache(&kmalloc_caches[1],
3069 "kmalloc-96", 96, GFP_NOWAIT);
3070 caches++;
3071 }
3072 if (KMALLOC_MIN_SIZE <= 64) {
3073 create_kmalloc_cache(&kmalloc_caches[2],
3074 "kmalloc-192", 192, GFP_NOWAIT);
3075 caches++;
3076 }
3077
3078 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3079 create_kmalloc_cache(&kmalloc_caches[i],
3080 "kmalloc", 1 << i, GFP_NOWAIT);
3081 caches++;
3082 }
3083
3084
3085 /*
3086 * Patch up the size_index table if we have strange large alignment
3087 * requirements for the kmalloc array. This is only the case for
3088 * MIPS it seems. The standard arches will not generate any code here.
3089 *
3090 * Largest permitted alignment is 256 bytes due to the way we
3091 * handle the index determination for the smaller caches.
3092 *
3093 * Make sure that nothing crazy happens if someone starts tinkering
3094 * around with ARCH_KMALLOC_MINALIGN
3095 */
3096 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3097 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3098
3099 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3100 int elem = size_index_elem(i);
3101 if (elem >= ARRAY_SIZE(size_index))
3102 break;
3103 size_index[elem] = KMALLOC_SHIFT_LOW;
3104 }
3105
3106 if (KMALLOC_MIN_SIZE == 64) {
3107 /*
3108 * The 96 byte size cache is not used if the alignment
3109 * is 64 byte.
3110 */
3111 for (i = 64 + 8; i <= 96; i += 8)
3112 size_index[size_index_elem(i)] = 7;
3113 } else if (KMALLOC_MIN_SIZE == 128) {
3114 /*
3115 * The 192 byte sized cache is not used if the alignment
3116 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3117 * instead.
3118 */
3119 for (i = 128 + 8; i <= 192; i += 8)
3120 size_index[size_index_elem(i)] = 8;
3121 }
3122
3123 slab_state = UP;
3124
3125 /* Provide the correct kmalloc names now that the caches are up */
3126 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++)
3127 kmalloc_caches[i]. name =
3128 kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3129
3130 #ifdef CONFIG_SMP
3131 register_cpu_notifier(&slab_notifier);
3132 #endif
3133 #ifdef CONFIG_NUMA
3134 kmem_size = offsetof(struct kmem_cache, node) +
3135 nr_node_ids * sizeof(struct kmem_cache_node *);
3136 #else
3137 kmem_size = sizeof(struct kmem_cache);
3138 #endif
3139
3140 printk(KERN_INFO
3141 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3142 " CPUs=%d, Nodes=%d\n",
3143 caches, cache_line_size(),
3144 slub_min_order, slub_max_order, slub_min_objects,
3145 nr_cpu_ids, nr_node_ids);
3146 }
3147
3148 void __init kmem_cache_init_late(void)
3149 {
3150 }
3151
3152 /*
3153 * Find a mergeable slab cache
3154 */
3155 static int slab_unmergeable(struct kmem_cache *s)
3156 {
3157 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3158 return 1;
3159
3160 if (s->ctor)
3161 return 1;
3162
3163 /*
3164 * We may have set a slab to be unmergeable during bootstrap.
3165 */
3166 if (s->refcount < 0)
3167 return 1;
3168
3169 return 0;
3170 }
3171
3172 static struct kmem_cache *find_mergeable(size_t size,
3173 size_t align, unsigned long flags, const char *name,
3174 void (*ctor)(void *))
3175 {
3176 struct kmem_cache *s;
3177
3178 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3179 return NULL;
3180
3181 if (ctor)
3182 return NULL;
3183
3184 size = ALIGN(size, sizeof(void *));
3185 align = calculate_alignment(flags, align, size);
3186 size = ALIGN(size, align);
3187 flags = kmem_cache_flags(size, flags, name, NULL);
3188
3189 list_for_each_entry(s, &slab_caches, list) {
3190 if (slab_unmergeable(s))
3191 continue;
3192
3193 if (size > s->size)
3194 continue;
3195
3196 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3197 continue;
3198 /*
3199 * Check if alignment is compatible.
3200 * Courtesy of Adrian Drzewiecki
3201 */
3202 if ((s->size & ~(align - 1)) != s->size)
3203 continue;
3204
3205 if (s->size - size >= sizeof(void *))
3206 continue;
3207
3208 return s;
3209 }
3210 return NULL;
3211 }
3212
3213 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3214 size_t align, unsigned long flags, void (*ctor)(void *))
3215 {
3216 struct kmem_cache *s;
3217
3218 if (WARN_ON(!name))
3219 return NULL;
3220
3221 down_write(&slub_lock);
3222 s = find_mergeable(size, align, flags, name, ctor);
3223 if (s) {
3224 s->refcount++;
3225 /*
3226 * Adjust the object sizes so that we clear
3227 * the complete object on kzalloc.
3228 */
3229 s->objsize = max(s->objsize, (int)size);
3230 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3231 up_write(&slub_lock);
3232
3233 if (sysfs_slab_alias(s, name)) {
3234 down_write(&slub_lock);
3235 s->refcount--;
3236 up_write(&slub_lock);
3237 goto err;
3238 }
3239 return s;
3240 }
3241
3242 s = kmalloc(kmem_size, GFP_KERNEL);
3243 if (s) {
3244 if (kmem_cache_open(s, GFP_KERNEL, name,
3245 size, align, flags, ctor)) {
3246 list_add(&s->list, &slab_caches);
3247 up_write(&slub_lock);
3248 if (sysfs_slab_add(s)) {
3249 down_write(&slub_lock);
3250 list_del(&s->list);
3251 up_write(&slub_lock);
3252 kfree(s);
3253 goto err;
3254 }
3255 return s;
3256 }
3257 kfree(s);
3258 }
3259 up_write(&slub_lock);
3260
3261 err:
3262 if (flags & SLAB_PANIC)
3263 panic("Cannot create slabcache %s\n", name);
3264 else
3265 s = NULL;
3266 return s;
3267 }
3268 EXPORT_SYMBOL(kmem_cache_create);
3269
3270 #ifdef CONFIG_SMP
3271 /*
3272 * Use the cpu notifier to insure that the cpu slabs are flushed when
3273 * necessary.
3274 */
3275 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3276 unsigned long action, void *hcpu)
3277 {
3278 long cpu = (long)hcpu;
3279 struct kmem_cache *s;
3280 unsigned long flags;
3281
3282 switch (action) {
3283 case CPU_UP_CANCELED:
3284 case CPU_UP_CANCELED_FROZEN:
3285 case CPU_DEAD:
3286 case CPU_DEAD_FROZEN:
3287 down_read(&slub_lock);
3288 list_for_each_entry(s, &slab_caches, list) {
3289 local_irq_save(flags);
3290 __flush_cpu_slab(s, cpu);
3291 local_irq_restore(flags);
3292 }
3293 up_read(&slub_lock);
3294 break;
3295 default:
3296 break;
3297 }
3298 return NOTIFY_OK;
3299 }
3300
3301 static struct notifier_block __cpuinitdata slab_notifier = {
3302 .notifier_call = slab_cpuup_callback
3303 };
3304
3305 #endif
3306
3307 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3308 {
3309 struct kmem_cache *s;
3310 void *ret;
3311
3312 if (unlikely(size > SLUB_MAX_SIZE))
3313 return kmalloc_large(size, gfpflags);
3314
3315 s = get_slab(size, gfpflags);
3316
3317 if (unlikely(ZERO_OR_NULL_PTR(s)))
3318 return s;
3319
3320 ret = slab_alloc(s, gfpflags, -1, caller);
3321
3322 /* Honor the call site pointer we recieved. */
3323 trace_kmalloc(caller, ret, size, s->size, gfpflags);
3324
3325 return ret;
3326 }
3327
3328 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3329 int node, unsigned long caller)
3330 {
3331 struct kmem_cache *s;
3332 void *ret;
3333
3334 if (unlikely(size > SLUB_MAX_SIZE))
3335 return kmalloc_large_node(size, gfpflags, node);
3336
3337 s = get_slab(size, gfpflags);
3338
3339 if (unlikely(ZERO_OR_NULL_PTR(s)))
3340 return s;
3341
3342 ret = slab_alloc(s, gfpflags, node, caller);
3343
3344 /* Honor the call site pointer we recieved. */
3345 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3346
3347 return ret;
3348 }
3349
3350 #ifdef CONFIG_SLUB_DEBUG
3351 static int count_inuse(struct page *page)
3352 {
3353 return page->inuse;
3354 }
3355
3356 static int count_total(struct page *page)
3357 {
3358 return page->objects;
3359 }
3360
3361 static int validate_slab(struct kmem_cache *s, struct page *page,
3362 unsigned long *map)
3363 {
3364 void *p;
3365 void *addr = page_address(page);
3366
3367 if (!check_slab(s, page) ||
3368 !on_freelist(s, page, NULL))
3369 return 0;
3370
3371 /* Now we know that a valid freelist exists */
3372 bitmap_zero(map, page->objects);
3373
3374 for_each_free_object(p, s, page->freelist) {
3375 set_bit(slab_index(p, s, addr), map);
3376 if (!check_object(s, page, p, 0))
3377 return 0;
3378 }
3379
3380 for_each_object(p, s, addr, page->objects)
3381 if (!test_bit(slab_index(p, s, addr), map))
3382 if (!check_object(s, page, p, 1))
3383 return 0;
3384 return 1;
3385 }
3386
3387 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3388 unsigned long *map)
3389 {
3390 if (slab_trylock(page)) {
3391 validate_slab(s, page, map);
3392 slab_unlock(page);
3393 } else
3394 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3395 s->name, page);
3396
3397 if (s->flags & DEBUG_DEFAULT_FLAGS) {
3398 if (!PageSlubDebug(page))
3399 printk(KERN_ERR "SLUB %s: SlubDebug not set "
3400 "on slab 0x%p\n", s->name, page);
3401 } else {
3402 if (PageSlubDebug(page))
3403 printk(KERN_ERR "SLUB %s: SlubDebug set on "
3404 "slab 0x%p\n", s->name, page);
3405 }
3406 }
3407
3408 static int validate_slab_node(struct kmem_cache *s,
3409 struct kmem_cache_node *n, unsigned long *map)
3410 {
3411 unsigned long count = 0;
3412 struct page *page;
3413 unsigned long flags;
3414
3415 spin_lock_irqsave(&n->list_lock, flags);
3416
3417 list_for_each_entry(page, &n->partial, lru) {
3418 validate_slab_slab(s, page, map);
3419 count++;
3420 }
3421 if (count != n->nr_partial)
3422 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3423 "counter=%ld\n", s->name, count, n->nr_partial);
3424
3425 if (!(s->flags & SLAB_STORE_USER))
3426 goto out;
3427
3428 list_for_each_entry(page, &n->full, lru) {
3429 validate_slab_slab(s, page, map);
3430 count++;
3431 }
3432 if (count != atomic_long_read(&n->nr_slabs))
3433 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3434 "counter=%ld\n", s->name, count,
3435 atomic_long_read(&n->nr_slabs));
3436
3437 out:
3438 spin_unlock_irqrestore(&n->list_lock, flags);
3439 return count;
3440 }
3441
3442 static long validate_slab_cache(struct kmem_cache *s)
3443 {
3444 int node;
3445 unsigned long count = 0;
3446 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3447 sizeof(unsigned long), GFP_KERNEL);
3448
3449 if (!map)
3450 return -ENOMEM;
3451
3452 flush_all(s);
3453 for_each_node_state(node, N_NORMAL_MEMORY) {
3454 struct kmem_cache_node *n = get_node(s, node);
3455
3456 count += validate_slab_node(s, n, map);
3457 }
3458 kfree(map);
3459 return count;
3460 }
3461
3462 #ifdef SLUB_RESILIENCY_TEST
3463 static void resiliency_test(void)
3464 {
3465 u8 *p;
3466
3467 printk(KERN_ERR "SLUB resiliency testing\n");
3468 printk(KERN_ERR "-----------------------\n");
3469 printk(KERN_ERR "A. Corruption after allocation\n");
3470
3471 p = kzalloc(16, GFP_KERNEL);
3472 p[16] = 0x12;
3473 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3474 " 0x12->0x%p\n\n", p + 16);
3475
3476 validate_slab_cache(kmalloc_caches + 4);
3477
3478 /* Hmmm... The next two are dangerous */
3479 p = kzalloc(32, GFP_KERNEL);
3480 p[32 + sizeof(void *)] = 0x34;
3481 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3482 " 0x34 -> -0x%p\n", p);
3483 printk(KERN_ERR
3484 "If allocated object is overwritten then not detectable\n\n");
3485
3486 validate_slab_cache(kmalloc_caches + 5);
3487 p = kzalloc(64, GFP_KERNEL);
3488 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3489 *p = 0x56;
3490 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3491 p);
3492 printk(KERN_ERR
3493 "If allocated object is overwritten then not detectable\n\n");
3494 validate_slab_cache(kmalloc_caches + 6);
3495
3496 printk(KERN_ERR "\nB. Corruption after free\n");
3497 p = kzalloc(128, GFP_KERNEL);
3498 kfree(p);
3499 *p = 0x78;
3500 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3501 validate_slab_cache(kmalloc_caches + 7);
3502
3503 p = kzalloc(256, GFP_KERNEL);
3504 kfree(p);
3505 p[50] = 0x9a;
3506 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3507 p);
3508 validate_slab_cache(kmalloc_caches + 8);
3509
3510 p = kzalloc(512, GFP_KERNEL);
3511 kfree(p);
3512 p[512] = 0xab;
3513 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3514 validate_slab_cache(kmalloc_caches + 9);
3515 }
3516 #else
3517 static void resiliency_test(void) {};
3518 #endif
3519
3520 /*
3521 * Generate lists of code addresses where slabcache objects are allocated
3522 * and freed.
3523 */
3524
3525 struct location {
3526 unsigned long count;
3527 unsigned long addr;
3528 long long sum_time;
3529 long min_time;
3530 long max_time;
3531 long min_pid;
3532 long max_pid;
3533 DECLARE_BITMAP(cpus, NR_CPUS);
3534 nodemask_t nodes;
3535 };
3536
3537 struct loc_track {
3538 unsigned long max;
3539 unsigned long count;
3540 struct location *loc;
3541 };
3542
3543 static void free_loc_track(struct loc_track *t)
3544 {
3545 if (t->max)
3546 free_pages((unsigned long)t->loc,
3547 get_order(sizeof(struct location) * t->max));
3548 }
3549
3550 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3551 {
3552 struct location *l;
3553 int order;
3554
3555 order = get_order(sizeof(struct location) * max);
3556
3557 l = (void *)__get_free_pages(flags, order);
3558 if (!l)
3559 return 0;
3560
3561 if (t->count) {
3562 memcpy(l, t->loc, sizeof(struct location) * t->count);
3563 free_loc_track(t);
3564 }
3565 t->max = max;
3566 t->loc = l;
3567 return 1;
3568 }
3569
3570 static int add_location(struct loc_track *t, struct kmem_cache *s,
3571 const struct track *track)
3572 {
3573 long start, end, pos;
3574 struct location *l;
3575 unsigned long caddr;
3576 unsigned long age = jiffies - track->when;
3577
3578 start = -1;
3579 end = t->count;
3580
3581 for ( ; ; ) {
3582 pos = start + (end - start + 1) / 2;
3583
3584 /*
3585 * There is nothing at "end". If we end up there
3586 * we need to add something to before end.
3587 */
3588 if (pos == end)
3589 break;
3590
3591 caddr = t->loc[pos].addr;
3592 if (track->addr == caddr) {
3593
3594 l = &t->loc[pos];
3595 l->count++;
3596 if (track->when) {
3597 l->sum_time += age;
3598 if (age < l->min_time)
3599 l->min_time = age;
3600 if (age > l->max_time)
3601 l->max_time = age;
3602
3603 if (track->pid < l->min_pid)
3604 l->min_pid = track->pid;
3605 if (track->pid > l->max_pid)
3606 l->max_pid = track->pid;
3607
3608 cpumask_set_cpu(track->cpu,
3609 to_cpumask(l->cpus));
3610 }
3611 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3612 return 1;
3613 }
3614
3615 if (track->addr < caddr)
3616 end = pos;
3617 else
3618 start = pos;
3619 }
3620
3621 /*
3622 * Not found. Insert new tracking element.
3623 */
3624 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3625 return 0;
3626
3627 l = t->loc + pos;
3628 if (pos < t->count)
3629 memmove(l + 1, l,
3630 (t->count - pos) * sizeof(struct location));
3631 t->count++;
3632 l->count = 1;
3633 l->addr = track->addr;
3634 l->sum_time = age;
3635 l->min_time = age;
3636 l->max_time = age;
3637 l->min_pid = track->pid;
3638 l->max_pid = track->pid;
3639 cpumask_clear(to_cpumask(l->cpus));
3640 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
3641 nodes_clear(l->nodes);
3642 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3643 return 1;
3644 }
3645
3646 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3647 struct page *page, enum track_item alloc)
3648 {
3649 void *addr = page_address(page);
3650 DECLARE_BITMAP(map, page->objects);
3651 void *p;
3652
3653 bitmap_zero(map, page->objects);
3654 for_each_free_object(p, s, page->freelist)
3655 set_bit(slab_index(p, s, addr), map);
3656
3657 for_each_object(p, s, addr, page->objects)
3658 if (!test_bit(slab_index(p, s, addr), map))
3659 add_location(t, s, get_track(s, p, alloc));
3660 }
3661
3662 static int list_locations(struct kmem_cache *s, char *buf,
3663 enum track_item alloc)
3664 {
3665 int len = 0;
3666 unsigned long i;
3667 struct loc_track t = { 0, 0, NULL };
3668 int node;
3669
3670 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3671 GFP_TEMPORARY))
3672 return sprintf(buf, "Out of memory\n");
3673
3674 /* Push back cpu slabs */
3675 flush_all(s);
3676
3677 for_each_node_state(node, N_NORMAL_MEMORY) {
3678 struct kmem_cache_node *n = get_node(s, node);
3679 unsigned long flags;
3680 struct page *page;
3681
3682 if (!atomic_long_read(&n->nr_slabs))
3683 continue;
3684
3685 spin_lock_irqsave(&n->list_lock, flags);
3686 list_for_each_entry(page, &n->partial, lru)
3687 process_slab(&t, s, page, alloc);
3688 list_for_each_entry(page, &n->full, lru)
3689 process_slab(&t, s, page, alloc);
3690 spin_unlock_irqrestore(&n->list_lock, flags);
3691 }
3692
3693 for (i = 0; i < t.count; i++) {
3694 struct location *l = &t.loc[i];
3695
3696 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
3697 break;
3698 len += sprintf(buf + len, "%7ld ", l->count);
3699
3700 if (l->addr)
3701 len += sprint_symbol(buf + len, (unsigned long)l->addr);
3702 else
3703 len += sprintf(buf + len, "<not-available>");
3704
3705 if (l->sum_time != l->min_time) {
3706 len += sprintf(buf + len, " age=%ld/%ld/%ld",
3707 l->min_time,
3708 (long)div_u64(l->sum_time, l->count),
3709 l->max_time);
3710 } else
3711 len += sprintf(buf + len, " age=%ld",
3712 l->min_time);
3713
3714 if (l->min_pid != l->max_pid)
3715 len += sprintf(buf + len, " pid=%ld-%ld",
3716 l->min_pid, l->max_pid);
3717 else
3718 len += sprintf(buf + len, " pid=%ld",
3719 l->min_pid);
3720
3721 if (num_online_cpus() > 1 &&
3722 !cpumask_empty(to_cpumask(l->cpus)) &&
3723 len < PAGE_SIZE - 60) {
3724 len += sprintf(buf + len, " cpus=");
3725 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3726 to_cpumask(l->cpus));
3727 }
3728
3729 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
3730 len < PAGE_SIZE - 60) {
3731 len += sprintf(buf + len, " nodes=");
3732 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3733 l->nodes);
3734 }
3735
3736 len += sprintf(buf + len, "\n");
3737 }
3738
3739 free_loc_track(&t);
3740 if (!t.count)
3741 len += sprintf(buf, "No data\n");
3742 return len;
3743 }
3744
3745 enum slab_stat_type {
3746 SL_ALL, /* All slabs */
3747 SL_PARTIAL, /* Only partially allocated slabs */
3748 SL_CPU, /* Only slabs used for cpu caches */
3749 SL_OBJECTS, /* Determine allocated objects not slabs */
3750 SL_TOTAL /* Determine object capacity not slabs */
3751 };
3752
3753 #define SO_ALL (1 << SL_ALL)
3754 #define SO_PARTIAL (1 << SL_PARTIAL)
3755 #define SO_CPU (1 << SL_CPU)
3756 #define SO_OBJECTS (1 << SL_OBJECTS)
3757 #define SO_TOTAL (1 << SL_TOTAL)
3758
3759 static ssize_t show_slab_objects(struct kmem_cache *s,
3760 char *buf, unsigned long flags)
3761 {
3762 unsigned long total = 0;
3763 int node;
3764 int x;
3765 unsigned long *nodes;
3766 unsigned long *per_cpu;
3767
3768 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3769 if (!nodes)
3770 return -ENOMEM;
3771 per_cpu = nodes + nr_node_ids;
3772
3773 if (flags & SO_CPU) {
3774 int cpu;
3775
3776 for_each_possible_cpu(cpu) {
3777 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3778
3779 if (!c || c->node < 0)
3780 continue;
3781
3782 if (c->page) {
3783 if (flags & SO_TOTAL)
3784 x = c->page->objects;
3785 else if (flags & SO_OBJECTS)
3786 x = c->page->inuse;
3787 else
3788 x = 1;
3789
3790 total += x;
3791 nodes[c->node] += x;
3792 }
3793 per_cpu[c->node]++;
3794 }
3795 }
3796
3797 if (flags & SO_ALL) {
3798 for_each_node_state(node, N_NORMAL_MEMORY) {
3799 struct kmem_cache_node *n = get_node(s, node);
3800
3801 if (flags & SO_TOTAL)
3802 x = atomic_long_read(&n->total_objects);
3803 else if (flags & SO_OBJECTS)
3804 x = atomic_long_read(&n->total_objects) -
3805 count_partial(n, count_free);
3806
3807 else
3808 x = atomic_long_read(&n->nr_slabs);
3809 total += x;
3810 nodes[node] += x;
3811 }
3812
3813 } else if (flags & SO_PARTIAL) {
3814 for_each_node_state(node, N_NORMAL_MEMORY) {
3815 struct kmem_cache_node *n = get_node(s, node);
3816
3817 if (flags & SO_TOTAL)
3818 x = count_partial(n, count_total);
3819 else if (flags & SO_OBJECTS)
3820 x = count_partial(n, count_inuse);
3821 else
3822 x = n->nr_partial;
3823 total += x;
3824 nodes[node] += x;
3825 }
3826 }
3827 x = sprintf(buf, "%lu", total);
3828 #ifdef CONFIG_NUMA
3829 for_each_node_state(node, N_NORMAL_MEMORY)
3830 if (nodes[node])
3831 x += sprintf(buf + x, " N%d=%lu",
3832 node, nodes[node]);
3833 #endif
3834 kfree(nodes);
3835 return x + sprintf(buf + x, "\n");
3836 }
3837
3838 static int any_slab_objects(struct kmem_cache *s)
3839 {
3840 int node;
3841
3842 for_each_online_node(node) {
3843 struct kmem_cache_node *n = get_node(s, node);
3844
3845 if (!n)
3846 continue;
3847
3848 if (atomic_long_read(&n->total_objects))
3849 return 1;
3850 }
3851 return 0;
3852 }
3853
3854 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3855 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3856
3857 struct slab_attribute {
3858 struct attribute attr;
3859 ssize_t (*show)(struct kmem_cache *s, char *buf);
3860 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3861 };
3862
3863 #define SLAB_ATTR_RO(_name) \
3864 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3865
3866 #define SLAB_ATTR(_name) \
3867 static struct slab_attribute _name##_attr = \
3868 __ATTR(_name, 0644, _name##_show, _name##_store)
3869
3870 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3871 {
3872 return sprintf(buf, "%d\n", s->size);
3873 }
3874 SLAB_ATTR_RO(slab_size);
3875
3876 static ssize_t align_show(struct kmem_cache *s, char *buf)
3877 {
3878 return sprintf(buf, "%d\n", s->align);
3879 }
3880 SLAB_ATTR_RO(align);
3881
3882 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3883 {
3884 return sprintf(buf, "%d\n", s->objsize);
3885 }
3886 SLAB_ATTR_RO(object_size);
3887
3888 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3889 {
3890 return sprintf(buf, "%d\n", oo_objects(s->oo));
3891 }
3892 SLAB_ATTR_RO(objs_per_slab);
3893
3894 static ssize_t order_store(struct kmem_cache *s,
3895 const char *buf, size_t length)
3896 {
3897 unsigned long order;
3898 int err;
3899
3900 err = strict_strtoul(buf, 10, &order);
3901 if (err)
3902 return err;
3903
3904 if (order > slub_max_order || order < slub_min_order)
3905 return -EINVAL;
3906
3907 calculate_sizes(s, order);
3908 return length;
3909 }
3910
3911 static ssize_t order_show(struct kmem_cache *s, char *buf)
3912 {
3913 return sprintf(buf, "%d\n", oo_order(s->oo));
3914 }
3915 SLAB_ATTR(order);
3916
3917 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
3918 {
3919 return sprintf(buf, "%lu\n", s->min_partial);
3920 }
3921
3922 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
3923 size_t length)
3924 {
3925 unsigned long min;
3926 int err;
3927
3928 err = strict_strtoul(buf, 10, &min);
3929 if (err)
3930 return err;
3931
3932 set_min_partial(s, min);
3933 return length;
3934 }
3935 SLAB_ATTR(min_partial);
3936
3937 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3938 {
3939 if (s->ctor) {
3940 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3941
3942 return n + sprintf(buf + n, "\n");
3943 }
3944 return 0;
3945 }
3946 SLAB_ATTR_RO(ctor);
3947
3948 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3949 {
3950 return sprintf(buf, "%d\n", s->refcount - 1);
3951 }
3952 SLAB_ATTR_RO(aliases);
3953
3954 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3955 {
3956 return show_slab_objects(s, buf, SO_ALL);
3957 }
3958 SLAB_ATTR_RO(slabs);
3959
3960 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3961 {
3962 return show_slab_objects(s, buf, SO_PARTIAL);
3963 }
3964 SLAB_ATTR_RO(partial);
3965
3966 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3967 {
3968 return show_slab_objects(s, buf, SO_CPU);
3969 }
3970 SLAB_ATTR_RO(cpu_slabs);
3971
3972 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3973 {
3974 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
3975 }
3976 SLAB_ATTR_RO(objects);
3977
3978 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3979 {
3980 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3981 }
3982 SLAB_ATTR_RO(objects_partial);
3983
3984 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
3985 {
3986 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
3987 }
3988 SLAB_ATTR_RO(total_objects);
3989
3990 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3991 {
3992 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3993 }
3994
3995 static ssize_t sanity_checks_store(struct kmem_cache *s,
3996 const char *buf, size_t length)
3997 {
3998 s->flags &= ~SLAB_DEBUG_FREE;
3999 if (buf[0] == '1')
4000 s->flags |= SLAB_DEBUG_FREE;
4001 return length;
4002 }
4003 SLAB_ATTR(sanity_checks);
4004
4005 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4006 {
4007 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4008 }
4009
4010 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4011 size_t length)
4012 {
4013 s->flags &= ~SLAB_TRACE;
4014 if (buf[0] == '1')
4015 s->flags |= SLAB_TRACE;
4016 return length;
4017 }
4018 SLAB_ATTR(trace);
4019
4020 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4021 {
4022 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4023 }
4024
4025 static ssize_t reclaim_account_store(struct kmem_cache *s,
4026 const char *buf, size_t length)
4027 {
4028 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4029 if (buf[0] == '1')
4030 s->flags |= SLAB_RECLAIM_ACCOUNT;
4031 return length;
4032 }
4033 SLAB_ATTR(reclaim_account);
4034
4035 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4036 {
4037 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4038 }
4039 SLAB_ATTR_RO(hwcache_align);
4040
4041 #ifdef CONFIG_ZONE_DMA
4042 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4043 {
4044 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4045 }
4046 SLAB_ATTR_RO(cache_dma);
4047 #endif
4048
4049 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4050 {
4051 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4052 }
4053 SLAB_ATTR_RO(destroy_by_rcu);
4054
4055 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4056 {
4057 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4058 }
4059
4060 static ssize_t red_zone_store(struct kmem_cache *s,
4061 const char *buf, size_t length)
4062 {
4063 if (any_slab_objects(s))
4064 return -EBUSY;
4065
4066 s->flags &= ~SLAB_RED_ZONE;
4067 if (buf[0] == '1')
4068 s->flags |= SLAB_RED_ZONE;
4069 calculate_sizes(s, -1);
4070 return length;
4071 }
4072 SLAB_ATTR(red_zone);
4073
4074 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4075 {
4076 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4077 }
4078
4079 static ssize_t poison_store(struct kmem_cache *s,
4080 const char *buf, size_t length)
4081 {
4082 if (any_slab_objects(s))
4083 return -EBUSY;
4084
4085 s->flags &= ~SLAB_POISON;
4086 if (buf[0] == '1')
4087 s->flags |= SLAB_POISON;
4088 calculate_sizes(s, -1);
4089 return length;
4090 }
4091 SLAB_ATTR(poison);
4092
4093 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4094 {
4095 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4096 }
4097
4098 static ssize_t store_user_store(struct kmem_cache *s,
4099 const char *buf, size_t length)
4100 {
4101 if (any_slab_objects(s))
4102 return -EBUSY;
4103
4104 s->flags &= ~SLAB_STORE_USER;
4105 if (buf[0] == '1')
4106 s->flags |= SLAB_STORE_USER;
4107 calculate_sizes(s, -1);
4108 return length;
4109 }
4110 SLAB_ATTR(store_user);
4111
4112 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4113 {
4114 return 0;
4115 }
4116
4117 static ssize_t validate_store(struct kmem_cache *s,
4118 const char *buf, size_t length)
4119 {
4120 int ret = -EINVAL;
4121
4122 if (buf[0] == '1') {
4123 ret = validate_slab_cache(s);
4124 if (ret >= 0)
4125 ret = length;
4126 }
4127 return ret;
4128 }
4129 SLAB_ATTR(validate);
4130
4131 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4132 {
4133 return 0;
4134 }
4135
4136 static ssize_t shrink_store(struct kmem_cache *s,
4137 const char *buf, size_t length)
4138 {
4139 if (buf[0] == '1') {
4140 int rc = kmem_cache_shrink(s);
4141
4142 if (rc)
4143 return rc;
4144 } else
4145 return -EINVAL;
4146 return length;
4147 }
4148 SLAB_ATTR(shrink);
4149
4150 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4151 {
4152 if (!(s->flags & SLAB_STORE_USER))
4153 return -ENOSYS;
4154 return list_locations(s, buf, TRACK_ALLOC);
4155 }
4156 SLAB_ATTR_RO(alloc_calls);
4157
4158 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4159 {
4160 if (!(s->flags & SLAB_STORE_USER))
4161 return -ENOSYS;
4162 return list_locations(s, buf, TRACK_FREE);
4163 }
4164 SLAB_ATTR_RO(free_calls);
4165
4166 #ifdef CONFIG_NUMA
4167 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4168 {
4169 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4170 }
4171
4172 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4173 const char *buf, size_t length)
4174 {
4175 unsigned long ratio;
4176 int err;
4177
4178 err = strict_strtoul(buf, 10, &ratio);
4179 if (err)
4180 return err;
4181
4182 if (ratio <= 100)
4183 s->remote_node_defrag_ratio = ratio * 10;
4184
4185 return length;
4186 }
4187 SLAB_ATTR(remote_node_defrag_ratio);
4188 #endif
4189
4190 #ifdef CONFIG_SLUB_STATS
4191 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4192 {
4193 unsigned long sum = 0;
4194 int cpu;
4195 int len;
4196 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4197
4198 if (!data)
4199 return -ENOMEM;
4200
4201 for_each_online_cpu(cpu) {
4202 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4203
4204 data[cpu] = x;
4205 sum += x;
4206 }
4207
4208 len = sprintf(buf, "%lu", sum);
4209
4210 #ifdef CONFIG_SMP
4211 for_each_online_cpu(cpu) {
4212 if (data[cpu] && len < PAGE_SIZE - 20)
4213 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4214 }
4215 #endif
4216 kfree(data);
4217 return len + sprintf(buf + len, "\n");
4218 }
4219
4220 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4221 {
4222 int cpu;
4223
4224 for_each_online_cpu(cpu)
4225 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4226 }
4227
4228 #define STAT_ATTR(si, text) \
4229 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4230 { \
4231 return show_stat(s, buf, si); \
4232 } \
4233 static ssize_t text##_store(struct kmem_cache *s, \
4234 const char *buf, size_t length) \
4235 { \
4236 if (buf[0] != '0') \
4237 return -EINVAL; \
4238 clear_stat(s, si); \
4239 return length; \
4240 } \
4241 SLAB_ATTR(text); \
4242
4243 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4244 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4245 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4246 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4247 STAT_ATTR(FREE_FROZEN, free_frozen);
4248 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4249 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4250 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4251 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4252 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4253 STAT_ATTR(FREE_SLAB, free_slab);
4254 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4255 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4256 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4257 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4258 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4259 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4260 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4261 #endif
4262
4263 static struct attribute *slab_attrs[] = {
4264 &slab_size_attr.attr,
4265 &object_size_attr.attr,
4266 &objs_per_slab_attr.attr,
4267 &order_attr.attr,
4268 &min_partial_attr.attr,
4269 &objects_attr.attr,
4270 &objects_partial_attr.attr,
4271 &total_objects_attr.attr,
4272 &slabs_attr.attr,
4273 &partial_attr.attr,
4274 &cpu_slabs_attr.attr,
4275 &ctor_attr.attr,
4276 &aliases_attr.attr,
4277 &align_attr.attr,
4278 &sanity_checks_attr.attr,
4279 &trace_attr.attr,
4280 &hwcache_align_attr.attr,
4281 &reclaim_account_attr.attr,
4282 &destroy_by_rcu_attr.attr,
4283 &red_zone_attr.attr,
4284 &poison_attr.attr,
4285 &store_user_attr.attr,
4286 &validate_attr.attr,
4287 &shrink_attr.attr,
4288 &alloc_calls_attr.attr,
4289 &free_calls_attr.attr,
4290 #ifdef CONFIG_ZONE_DMA
4291 &cache_dma_attr.attr,
4292 #endif
4293 #ifdef CONFIG_NUMA
4294 &remote_node_defrag_ratio_attr.attr,
4295 #endif
4296 #ifdef CONFIG_SLUB_STATS
4297 &alloc_fastpath_attr.attr,
4298 &alloc_slowpath_attr.attr,
4299 &free_fastpath_attr.attr,
4300 &free_slowpath_attr.attr,
4301 &free_frozen_attr.attr,
4302 &free_add_partial_attr.attr,
4303 &free_remove_partial_attr.attr,
4304 &alloc_from_partial_attr.attr,
4305 &alloc_slab_attr.attr,
4306 &alloc_refill_attr.attr,
4307 &free_slab_attr.attr,
4308 &cpuslab_flush_attr.attr,
4309 &deactivate_full_attr.attr,
4310 &deactivate_empty_attr.attr,
4311 &deactivate_to_head_attr.attr,
4312 &deactivate_to_tail_attr.attr,
4313 &deactivate_remote_frees_attr.attr,
4314 &order_fallback_attr.attr,
4315 #endif
4316 NULL
4317 };
4318
4319 static struct attribute_group slab_attr_group = {
4320 .attrs = slab_attrs,
4321 };
4322
4323 static ssize_t slab_attr_show(struct kobject *kobj,
4324 struct attribute *attr,
4325 char *buf)
4326 {
4327 struct slab_attribute *attribute;
4328 struct kmem_cache *s;
4329 int err;
4330
4331 attribute = to_slab_attr(attr);
4332 s = to_slab(kobj);
4333
4334 if (!attribute->show)
4335 return -EIO;
4336
4337 err = attribute->show(s, buf);
4338
4339 return err;
4340 }
4341
4342 static ssize_t slab_attr_store(struct kobject *kobj,
4343 struct attribute *attr,
4344 const char *buf, size_t len)
4345 {
4346 struct slab_attribute *attribute;
4347 struct kmem_cache *s;
4348 int err;
4349
4350 attribute = to_slab_attr(attr);
4351 s = to_slab(kobj);
4352
4353 if (!attribute->store)
4354 return -EIO;
4355
4356 err = attribute->store(s, buf, len);
4357
4358 return err;
4359 }
4360
4361 static void kmem_cache_release(struct kobject *kobj)
4362 {
4363 struct kmem_cache *s = to_slab(kobj);
4364
4365 kfree(s);
4366 }
4367
4368 static struct sysfs_ops slab_sysfs_ops = {
4369 .show = slab_attr_show,
4370 .store = slab_attr_store,
4371 };
4372
4373 static struct kobj_type slab_ktype = {
4374 .sysfs_ops = &slab_sysfs_ops,
4375 .release = kmem_cache_release
4376 };
4377
4378 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4379 {
4380 struct kobj_type *ktype = get_ktype(kobj);
4381
4382 if (ktype == &slab_ktype)
4383 return 1;
4384 return 0;
4385 }
4386
4387 static struct kset_uevent_ops slab_uevent_ops = {
4388 .filter = uevent_filter,
4389 };
4390
4391 static struct kset *slab_kset;
4392
4393 #define ID_STR_LENGTH 64
4394
4395 /* Create a unique string id for a slab cache:
4396 *
4397 * Format :[flags-]size
4398 */
4399 static char *create_unique_id(struct kmem_cache *s)
4400 {
4401 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4402 char *p = name;
4403
4404 BUG_ON(!name);
4405
4406 *p++ = ':';
4407 /*
4408 * First flags affecting slabcache operations. We will only
4409 * get here for aliasable slabs so we do not need to support
4410 * too many flags. The flags here must cover all flags that
4411 * are matched during merging to guarantee that the id is
4412 * unique.
4413 */
4414 if (s->flags & SLAB_CACHE_DMA)
4415 *p++ = 'd';
4416 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4417 *p++ = 'a';
4418 if (s->flags & SLAB_DEBUG_FREE)
4419 *p++ = 'F';
4420 if (!(s->flags & SLAB_NOTRACK))
4421 *p++ = 't';
4422 if (p != name + 1)
4423 *p++ = '-';
4424 p += sprintf(p, "%07d", s->size);
4425 BUG_ON(p > name + ID_STR_LENGTH - 1);
4426 return name;
4427 }
4428
4429 static int sysfs_slab_add(struct kmem_cache *s)
4430 {
4431 int err;
4432 const char *name;
4433 int unmergeable;
4434
4435 if (slab_state < SYSFS)
4436 /* Defer until later */
4437 return 0;
4438
4439 unmergeable = slab_unmergeable(s);
4440 if (unmergeable) {
4441 /*
4442 * Slabcache can never be merged so we can use the name proper.
4443 * This is typically the case for debug situations. In that
4444 * case we can catch duplicate names easily.
4445 */
4446 sysfs_remove_link(&slab_kset->kobj, s->name);
4447 name = s->name;
4448 } else {
4449 /*
4450 * Create a unique name for the slab as a target
4451 * for the symlinks.
4452 */
4453 name = create_unique_id(s);
4454 }
4455
4456 s->kobj.kset = slab_kset;
4457 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4458 if (err) {
4459 kobject_put(&s->kobj);
4460 return err;
4461 }
4462
4463 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4464 if (err) {
4465 kobject_del(&s->kobj);
4466 kobject_put(&s->kobj);
4467 return err;
4468 }
4469 kobject_uevent(&s->kobj, KOBJ_ADD);
4470 if (!unmergeable) {
4471 /* Setup first alias */
4472 sysfs_slab_alias(s, s->name);
4473 kfree(name);
4474 }
4475 return 0;
4476 }
4477
4478 static void sysfs_slab_remove(struct kmem_cache *s)
4479 {
4480 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4481 kobject_del(&s->kobj);
4482 kobject_put(&s->kobj);
4483 }
4484
4485 /*
4486 * Need to buffer aliases during bootup until sysfs becomes
4487 * available lest we lose that information.
4488 */
4489 struct saved_alias {
4490 struct kmem_cache *s;
4491 const char *name;
4492 struct saved_alias *next;
4493 };
4494
4495 static struct saved_alias *alias_list;
4496
4497 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4498 {
4499 struct saved_alias *al;
4500
4501 if (slab_state == SYSFS) {
4502 /*
4503 * If we have a leftover link then remove it.
4504 */
4505 sysfs_remove_link(&slab_kset->kobj, name);
4506 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4507 }
4508
4509 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4510 if (!al)
4511 return -ENOMEM;
4512
4513 al->s = s;
4514 al->name = name;
4515 al->next = alias_list;
4516 alias_list = al;
4517 return 0;
4518 }
4519
4520 static int __init slab_sysfs_init(void)
4521 {
4522 struct kmem_cache *s;
4523 int err;
4524
4525 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4526 if (!slab_kset) {
4527 printk(KERN_ERR "Cannot register slab subsystem.\n");
4528 return -ENOSYS;
4529 }
4530
4531 slab_state = SYSFS;
4532
4533 list_for_each_entry(s, &slab_caches, list) {
4534 err = sysfs_slab_add(s);
4535 if (err)
4536 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4537 " to sysfs\n", s->name);
4538 }
4539
4540 while (alias_list) {
4541 struct saved_alias *al = alias_list;
4542
4543 alias_list = alias_list->next;
4544 err = sysfs_slab_alias(al->s, al->name);
4545 if (err)
4546 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4547 " %s to sysfs\n", s->name);
4548 kfree(al);
4549 }
4550
4551 resiliency_test();
4552 return 0;
4553 }
4554
4555 __initcall(slab_sysfs_init);
4556 #endif
4557
4558 /*
4559 * The /proc/slabinfo ABI
4560 */
4561 #ifdef CONFIG_SLABINFO
4562 static void print_slabinfo_header(struct seq_file *m)
4563 {
4564 seq_puts(m, "slabinfo - version: 2.1\n");
4565 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4566 "<objperslab> <pagesperslab>");
4567 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4568 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4569 seq_putc(m, '\n');
4570 }
4571
4572 static void *s_start(struct seq_file *m, loff_t *pos)
4573 {
4574 loff_t n = *pos;
4575
4576 down_read(&slub_lock);
4577 if (!n)
4578 print_slabinfo_header(m);
4579
4580 return seq_list_start(&slab_caches, *pos);
4581 }
4582
4583 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4584 {
4585 return seq_list_next(p, &slab_caches, pos);
4586 }
4587
4588 static void s_stop(struct seq_file *m, void *p)
4589 {
4590 up_read(&slub_lock);
4591 }
4592
4593 static int s_show(struct seq_file *m, void *p)
4594 {
4595 unsigned long nr_partials = 0;
4596 unsigned long nr_slabs = 0;
4597 unsigned long nr_inuse = 0;
4598 unsigned long nr_objs = 0;
4599 unsigned long nr_free = 0;
4600 struct kmem_cache *s;
4601 int node;
4602
4603 s = list_entry(p, struct kmem_cache, list);
4604
4605 for_each_online_node(node) {
4606 struct kmem_cache_node *n = get_node(s, node);
4607
4608 if (!n)
4609 continue;
4610
4611 nr_partials += n->nr_partial;
4612 nr_slabs += atomic_long_read(&n->nr_slabs);
4613 nr_objs += atomic_long_read(&n->total_objects);
4614 nr_free += count_partial(n, count_free);
4615 }
4616
4617 nr_inuse = nr_objs - nr_free;
4618
4619 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4620 nr_objs, s->size, oo_objects(s->oo),
4621 (1 << oo_order(s->oo)));
4622 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4623 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4624 0UL);
4625 seq_putc(m, '\n');
4626 return 0;
4627 }
4628
4629 static const struct seq_operations slabinfo_op = {
4630 .start = s_start,
4631 .next = s_next,
4632 .stop = s_stop,
4633 .show = s_show,
4634 };
4635
4636 static int slabinfo_open(struct inode *inode, struct file *file)
4637 {
4638 return seq_open(file, &slabinfo_op);
4639 }
4640
4641 static const struct file_operations proc_slabinfo_operations = {
4642 .open = slabinfo_open,
4643 .read = seq_read,
4644 .llseek = seq_lseek,
4645 .release = seq_release,
4646 };
4647
4648 static int __init slab_proc_init(void)
4649 {
4650 proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
4651 return 0;
4652 }
4653 module_init(slab_proc_init);
4654 #endif /* CONFIG_SLABINFO */
This page took 0.125994 seconds and 5 git commands to generate.