c937233127e2db963690a3dc0e978daa5ed38769
[deliverable/linux.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
9 */
10
11 #include <linux/mm.h>
12 #include <linux/module.h>
13 #include <linux/bit_spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/seq_file.h>
18 #include <linux/cpu.h>
19 #include <linux/cpuset.h>
20 #include <linux/mempolicy.h>
21 #include <linux/ctype.h>
22 #include <linux/kallsyms.h>
23 #include <linux/memory.h>
24
25 /*
26 * Lock order:
27 * 1. slab_lock(page)
28 * 2. slab->list_lock
29 *
30 * The slab_lock protects operations on the object of a particular
31 * slab and its metadata in the page struct. If the slab lock
32 * has been taken then no allocations nor frees can be performed
33 * on the objects in the slab nor can the slab be added or removed
34 * from the partial or full lists since this would mean modifying
35 * the page_struct of the slab.
36 *
37 * The list_lock protects the partial and full list on each node and
38 * the partial slab counter. If taken then no new slabs may be added or
39 * removed from the lists nor make the number of partial slabs be modified.
40 * (Note that the total number of slabs is an atomic value that may be
41 * modified without taking the list lock).
42 *
43 * The list_lock is a centralized lock and thus we avoid taking it as
44 * much as possible. As long as SLUB does not have to handle partial
45 * slabs, operations can continue without any centralized lock. F.e.
46 * allocating a long series of objects that fill up slabs does not require
47 * the list lock.
48 *
49 * The lock order is sometimes inverted when we are trying to get a slab
50 * off a list. We take the list_lock and then look for a page on the list
51 * to use. While we do that objects in the slabs may be freed. We can
52 * only operate on the slab if we have also taken the slab_lock. So we use
53 * a slab_trylock() on the slab. If trylock was successful then no frees
54 * can occur anymore and we can use the slab for allocations etc. If the
55 * slab_trylock() does not succeed then frees are in progress in the slab and
56 * we must stay away from it for a while since we may cause a bouncing
57 * cacheline if we try to acquire the lock. So go onto the next slab.
58 * If all pages are busy then we may allocate a new slab instead of reusing
59 * a partial slab. A new slab has noone operating on it and thus there is
60 * no danger of cacheline contention.
61 *
62 * Interrupts are disabled during allocation and deallocation in order to
63 * make the slab allocator safe to use in the context of an irq. In addition
64 * interrupts are disabled to ensure that the processor does not change
65 * while handling per_cpu slabs, due to kernel preemption.
66 *
67 * SLUB assigns one slab for allocation to each processor.
68 * Allocations only occur from these slabs called cpu slabs.
69 *
70 * Slabs with free elements are kept on a partial list and during regular
71 * operations no list for full slabs is used. If an object in a full slab is
72 * freed then the slab will show up again on the partial lists.
73 * We track full slabs for debugging purposes though because otherwise we
74 * cannot scan all objects.
75 *
76 * Slabs are freed when they become empty. Teardown and setup is
77 * minimal so we rely on the page allocators per cpu caches for
78 * fast frees and allocs.
79 *
80 * Overloading of page flags that are otherwise used for LRU management.
81 *
82 * PageActive The slab is frozen and exempt from list processing.
83 * This means that the slab is dedicated to a purpose
84 * such as satisfying allocations for a specific
85 * processor. Objects may be freed in the slab while
86 * it is frozen but slab_free will then skip the usual
87 * list operations. It is up to the processor holding
88 * the slab to integrate the slab into the slab lists
89 * when the slab is no longer needed.
90 *
91 * One use of this flag is to mark slabs that are
92 * used for allocations. Then such a slab becomes a cpu
93 * slab. The cpu slab may be equipped with an additional
94 * freelist that allows lockless access to
95 * free objects in addition to the regular freelist
96 * that requires the slab lock.
97 *
98 * PageError Slab requires special handling due to debug
99 * options set. This moves slab handling out of
100 * the fast path and disables lockless freelists.
101 */
102
103 #define FROZEN (1 << PG_active)
104
105 #ifdef CONFIG_SLUB_DEBUG
106 #define SLABDEBUG (1 << PG_error)
107 #else
108 #define SLABDEBUG 0
109 #endif
110
111 static inline int SlabFrozen(struct page *page)
112 {
113 return page->flags & FROZEN;
114 }
115
116 static inline void SetSlabFrozen(struct page *page)
117 {
118 page->flags |= FROZEN;
119 }
120
121 static inline void ClearSlabFrozen(struct page *page)
122 {
123 page->flags &= ~FROZEN;
124 }
125
126 static inline int SlabDebug(struct page *page)
127 {
128 return page->flags & SLABDEBUG;
129 }
130
131 static inline void SetSlabDebug(struct page *page)
132 {
133 page->flags |= SLABDEBUG;
134 }
135
136 static inline void ClearSlabDebug(struct page *page)
137 {
138 page->flags &= ~SLABDEBUG;
139 }
140
141 /*
142 * Issues still to be resolved:
143 *
144 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
145 *
146 * - Variable sizing of the per node arrays
147 */
148
149 /* Enable to test recovery from slab corruption on boot */
150 #undef SLUB_RESILIENCY_TEST
151
152 #if PAGE_SHIFT <= 12
153
154 /*
155 * Small page size. Make sure that we do not fragment memory
156 */
157 #define DEFAULT_MAX_ORDER 1
158 #define DEFAULT_MIN_OBJECTS 4
159
160 #else
161
162 /*
163 * Large page machines are customarily able to handle larger
164 * page orders.
165 */
166 #define DEFAULT_MAX_ORDER 2
167 #define DEFAULT_MIN_OBJECTS 8
168
169 #endif
170
171 /*
172 * Mininum number of partial slabs. These will be left on the partial
173 * lists even if they are empty. kmem_cache_shrink may reclaim them.
174 */
175 #define MIN_PARTIAL 5
176
177 /*
178 * Maximum number of desirable partial slabs.
179 * The existence of more partial slabs makes kmem_cache_shrink
180 * sort the partial list by the number of objects in the.
181 */
182 #define MAX_PARTIAL 10
183
184 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
185 SLAB_POISON | SLAB_STORE_USER)
186
187 /*
188 * Set of flags that will prevent slab merging
189 */
190 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
191 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
192
193 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
194 SLAB_CACHE_DMA)
195
196 #ifndef ARCH_KMALLOC_MINALIGN
197 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
198 #endif
199
200 #ifndef ARCH_SLAB_MINALIGN
201 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
202 #endif
203
204 /* Internal SLUB flags */
205 #define __OBJECT_POISON 0x80000000 /* Poison object */
206 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
207 #define __KMALLOC_CACHE 0x20000000 /* objects freed using kfree */
208 #define __PAGE_ALLOC_FALLBACK 0x10000000 /* Allow fallback to page alloc */
209
210 /* Not all arches define cache_line_size */
211 #ifndef cache_line_size
212 #define cache_line_size() L1_CACHE_BYTES
213 #endif
214
215 static int kmem_size = sizeof(struct kmem_cache);
216
217 #ifdef CONFIG_SMP
218 static struct notifier_block slab_notifier;
219 #endif
220
221 static enum {
222 DOWN, /* No slab functionality available */
223 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
224 UP, /* Everything works but does not show up in sysfs */
225 SYSFS /* Sysfs up */
226 } slab_state = DOWN;
227
228 /* A list of all slab caches on the system */
229 static DECLARE_RWSEM(slub_lock);
230 static LIST_HEAD(slab_caches);
231
232 /*
233 * Tracking user of a slab.
234 */
235 struct track {
236 void *addr; /* Called from address */
237 int cpu; /* Was running on cpu */
238 int pid; /* Pid context */
239 unsigned long when; /* When did the operation occur */
240 };
241
242 enum track_item { TRACK_ALLOC, TRACK_FREE };
243
244 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
245 static int sysfs_slab_add(struct kmem_cache *);
246 static int sysfs_slab_alias(struct kmem_cache *, const char *);
247 static void sysfs_slab_remove(struct kmem_cache *);
248
249 #else
250 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
251 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
252 { return 0; }
253 static inline void sysfs_slab_remove(struct kmem_cache *s)
254 {
255 kfree(s);
256 }
257
258 #endif
259
260 static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
261 {
262 #ifdef CONFIG_SLUB_STATS
263 c->stat[si]++;
264 #endif
265 }
266
267 /********************************************************************
268 * Core slab cache functions
269 *******************************************************************/
270
271 int slab_is_available(void)
272 {
273 return slab_state >= UP;
274 }
275
276 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
277 {
278 #ifdef CONFIG_NUMA
279 return s->node[node];
280 #else
281 return &s->local_node;
282 #endif
283 }
284
285 static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
286 {
287 #ifdef CONFIG_SMP
288 return s->cpu_slab[cpu];
289 #else
290 return &s->cpu_slab;
291 #endif
292 }
293
294 /* Verify that a pointer has an address that is valid within a slab page */
295 static inline int check_valid_pointer(struct kmem_cache *s,
296 struct page *page, const void *object)
297 {
298 void *base;
299
300 if (!object)
301 return 1;
302
303 base = page_address(page);
304 if (object < base || object >= base + s->objects * s->size ||
305 (object - base) % s->size) {
306 return 0;
307 }
308
309 return 1;
310 }
311
312 /*
313 * Slow version of get and set free pointer.
314 *
315 * This version requires touching the cache lines of kmem_cache which
316 * we avoid to do in the fast alloc free paths. There we obtain the offset
317 * from the page struct.
318 */
319 static inline void *get_freepointer(struct kmem_cache *s, void *object)
320 {
321 return *(void **)(object + s->offset);
322 }
323
324 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
325 {
326 *(void **)(object + s->offset) = fp;
327 }
328
329 /* Loop over all objects in a slab */
330 #define for_each_object(__p, __s, __addr) \
331 for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
332 __p += (__s)->size)
333
334 /* Scan freelist */
335 #define for_each_free_object(__p, __s, __free) \
336 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
337
338 /* Determine object index from a given position */
339 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
340 {
341 return (p - addr) / s->size;
342 }
343
344 #ifdef CONFIG_SLUB_DEBUG
345 /*
346 * Debug settings:
347 */
348 #ifdef CONFIG_SLUB_DEBUG_ON
349 static int slub_debug = DEBUG_DEFAULT_FLAGS;
350 #else
351 static int slub_debug;
352 #endif
353
354 static char *slub_debug_slabs;
355
356 /*
357 * Object debugging
358 */
359 static void print_section(char *text, u8 *addr, unsigned int length)
360 {
361 int i, offset;
362 int newline = 1;
363 char ascii[17];
364
365 ascii[16] = 0;
366
367 for (i = 0; i < length; i++) {
368 if (newline) {
369 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
370 newline = 0;
371 }
372 printk(KERN_CONT " %02x", addr[i]);
373 offset = i % 16;
374 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
375 if (offset == 15) {
376 printk(KERN_CONT " %s\n", ascii);
377 newline = 1;
378 }
379 }
380 if (!newline) {
381 i %= 16;
382 while (i < 16) {
383 printk(KERN_CONT " ");
384 ascii[i] = ' ';
385 i++;
386 }
387 printk(KERN_CONT " %s\n", ascii);
388 }
389 }
390
391 static struct track *get_track(struct kmem_cache *s, void *object,
392 enum track_item alloc)
393 {
394 struct track *p;
395
396 if (s->offset)
397 p = object + s->offset + sizeof(void *);
398 else
399 p = object + s->inuse;
400
401 return p + alloc;
402 }
403
404 static void set_track(struct kmem_cache *s, void *object,
405 enum track_item alloc, void *addr)
406 {
407 struct track *p;
408
409 if (s->offset)
410 p = object + s->offset + sizeof(void *);
411 else
412 p = object + s->inuse;
413
414 p += alloc;
415 if (addr) {
416 p->addr = addr;
417 p->cpu = smp_processor_id();
418 p->pid = current ? current->pid : -1;
419 p->when = jiffies;
420 } else
421 memset(p, 0, sizeof(struct track));
422 }
423
424 static void init_tracking(struct kmem_cache *s, void *object)
425 {
426 if (!(s->flags & SLAB_STORE_USER))
427 return;
428
429 set_track(s, object, TRACK_FREE, NULL);
430 set_track(s, object, TRACK_ALLOC, NULL);
431 }
432
433 static void print_track(const char *s, struct track *t)
434 {
435 if (!t->addr)
436 return;
437
438 printk(KERN_ERR "INFO: %s in ", s);
439 __print_symbol("%s", (unsigned long)t->addr);
440 printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
441 }
442
443 static void print_tracking(struct kmem_cache *s, void *object)
444 {
445 if (!(s->flags & SLAB_STORE_USER))
446 return;
447
448 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
449 print_track("Freed", get_track(s, object, TRACK_FREE));
450 }
451
452 static void print_page_info(struct page *page)
453 {
454 printk(KERN_ERR "INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n",
455 page, page->inuse, page->freelist, page->flags);
456
457 }
458
459 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
460 {
461 va_list args;
462 char buf[100];
463
464 va_start(args, fmt);
465 vsnprintf(buf, sizeof(buf), fmt, args);
466 va_end(args);
467 printk(KERN_ERR "========================================"
468 "=====================================\n");
469 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
470 printk(KERN_ERR "----------------------------------------"
471 "-------------------------------------\n\n");
472 }
473
474 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
475 {
476 va_list args;
477 char buf[100];
478
479 va_start(args, fmt);
480 vsnprintf(buf, sizeof(buf), fmt, args);
481 va_end(args);
482 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
483 }
484
485 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
486 {
487 unsigned int off; /* Offset of last byte */
488 u8 *addr = page_address(page);
489
490 print_tracking(s, p);
491
492 print_page_info(page);
493
494 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
495 p, p - addr, get_freepointer(s, p));
496
497 if (p > addr + 16)
498 print_section("Bytes b4", p - 16, 16);
499
500 print_section("Object", p, min(s->objsize, 128));
501
502 if (s->flags & SLAB_RED_ZONE)
503 print_section("Redzone", p + s->objsize,
504 s->inuse - s->objsize);
505
506 if (s->offset)
507 off = s->offset + sizeof(void *);
508 else
509 off = s->inuse;
510
511 if (s->flags & SLAB_STORE_USER)
512 off += 2 * sizeof(struct track);
513
514 if (off != s->size)
515 /* Beginning of the filler is the free pointer */
516 print_section("Padding", p + off, s->size - off);
517
518 dump_stack();
519 }
520
521 static void object_err(struct kmem_cache *s, struct page *page,
522 u8 *object, char *reason)
523 {
524 slab_bug(s, "%s", reason);
525 print_trailer(s, page, object);
526 }
527
528 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
529 {
530 va_list args;
531 char buf[100];
532
533 va_start(args, fmt);
534 vsnprintf(buf, sizeof(buf), fmt, args);
535 va_end(args);
536 slab_bug(s, "%s", buf);
537 print_page_info(page);
538 dump_stack();
539 }
540
541 static void init_object(struct kmem_cache *s, void *object, int active)
542 {
543 u8 *p = object;
544
545 if (s->flags & __OBJECT_POISON) {
546 memset(p, POISON_FREE, s->objsize - 1);
547 p[s->objsize - 1] = POISON_END;
548 }
549
550 if (s->flags & SLAB_RED_ZONE)
551 memset(p + s->objsize,
552 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
553 s->inuse - s->objsize);
554 }
555
556 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
557 {
558 while (bytes) {
559 if (*start != (u8)value)
560 return start;
561 start++;
562 bytes--;
563 }
564 return NULL;
565 }
566
567 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
568 void *from, void *to)
569 {
570 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
571 memset(from, data, to - from);
572 }
573
574 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
575 u8 *object, char *what,
576 u8 *start, unsigned int value, unsigned int bytes)
577 {
578 u8 *fault;
579 u8 *end;
580
581 fault = check_bytes(start, value, bytes);
582 if (!fault)
583 return 1;
584
585 end = start + bytes;
586 while (end > fault && end[-1] == value)
587 end--;
588
589 slab_bug(s, "%s overwritten", what);
590 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
591 fault, end - 1, fault[0], value);
592 print_trailer(s, page, object);
593
594 restore_bytes(s, what, value, fault, end);
595 return 0;
596 }
597
598 /*
599 * Object layout:
600 *
601 * object address
602 * Bytes of the object to be managed.
603 * If the freepointer may overlay the object then the free
604 * pointer is the first word of the object.
605 *
606 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
607 * 0xa5 (POISON_END)
608 *
609 * object + s->objsize
610 * Padding to reach word boundary. This is also used for Redzoning.
611 * Padding is extended by another word if Redzoning is enabled and
612 * objsize == inuse.
613 *
614 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
615 * 0xcc (RED_ACTIVE) for objects in use.
616 *
617 * object + s->inuse
618 * Meta data starts here.
619 *
620 * A. Free pointer (if we cannot overwrite object on free)
621 * B. Tracking data for SLAB_STORE_USER
622 * C. Padding to reach required alignment boundary or at mininum
623 * one word if debugging is on to be able to detect writes
624 * before the word boundary.
625 *
626 * Padding is done using 0x5a (POISON_INUSE)
627 *
628 * object + s->size
629 * Nothing is used beyond s->size.
630 *
631 * If slabcaches are merged then the objsize and inuse boundaries are mostly
632 * ignored. And therefore no slab options that rely on these boundaries
633 * may be used with merged slabcaches.
634 */
635
636 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
637 {
638 unsigned long off = s->inuse; /* The end of info */
639
640 if (s->offset)
641 /* Freepointer is placed after the object. */
642 off += sizeof(void *);
643
644 if (s->flags & SLAB_STORE_USER)
645 /* We also have user information there */
646 off += 2 * sizeof(struct track);
647
648 if (s->size == off)
649 return 1;
650
651 return check_bytes_and_report(s, page, p, "Object padding",
652 p + off, POISON_INUSE, s->size - off);
653 }
654
655 static int slab_pad_check(struct kmem_cache *s, struct page *page)
656 {
657 u8 *start;
658 u8 *fault;
659 u8 *end;
660 int length;
661 int remainder;
662
663 if (!(s->flags & SLAB_POISON))
664 return 1;
665
666 start = page_address(page);
667 end = start + (PAGE_SIZE << s->order);
668 length = s->objects * s->size;
669 remainder = end - (start + length);
670 if (!remainder)
671 return 1;
672
673 fault = check_bytes(start + length, POISON_INUSE, remainder);
674 if (!fault)
675 return 1;
676 while (end > fault && end[-1] == POISON_INUSE)
677 end--;
678
679 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
680 print_section("Padding", start, length);
681
682 restore_bytes(s, "slab padding", POISON_INUSE, start, end);
683 return 0;
684 }
685
686 static int check_object(struct kmem_cache *s, struct page *page,
687 void *object, int active)
688 {
689 u8 *p = object;
690 u8 *endobject = object + s->objsize;
691
692 if (s->flags & SLAB_RED_ZONE) {
693 unsigned int red =
694 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
695
696 if (!check_bytes_and_report(s, page, object, "Redzone",
697 endobject, red, s->inuse - s->objsize))
698 return 0;
699 } else {
700 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
701 check_bytes_and_report(s, page, p, "Alignment padding",
702 endobject, POISON_INUSE, s->inuse - s->objsize);
703 }
704 }
705
706 if (s->flags & SLAB_POISON) {
707 if (!active && (s->flags & __OBJECT_POISON) &&
708 (!check_bytes_and_report(s, page, p, "Poison", p,
709 POISON_FREE, s->objsize - 1) ||
710 !check_bytes_and_report(s, page, p, "Poison",
711 p + s->objsize - 1, POISON_END, 1)))
712 return 0;
713 /*
714 * check_pad_bytes cleans up on its own.
715 */
716 check_pad_bytes(s, page, p);
717 }
718
719 if (!s->offset && active)
720 /*
721 * Object and freepointer overlap. Cannot check
722 * freepointer while object is allocated.
723 */
724 return 1;
725
726 /* Check free pointer validity */
727 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
728 object_err(s, page, p, "Freepointer corrupt");
729 /*
730 * No choice but to zap it and thus loose the remainder
731 * of the free objects in this slab. May cause
732 * another error because the object count is now wrong.
733 */
734 set_freepointer(s, p, NULL);
735 return 0;
736 }
737 return 1;
738 }
739
740 static int check_slab(struct kmem_cache *s, struct page *page)
741 {
742 VM_BUG_ON(!irqs_disabled());
743
744 if (!PageSlab(page)) {
745 slab_err(s, page, "Not a valid slab page");
746 return 0;
747 }
748 if (page->inuse > s->objects) {
749 slab_err(s, page, "inuse %u > max %u",
750 s->name, page->inuse, s->objects);
751 return 0;
752 }
753 /* Slab_pad_check fixes things up after itself */
754 slab_pad_check(s, page);
755 return 1;
756 }
757
758 /*
759 * Determine if a certain object on a page is on the freelist. Must hold the
760 * slab lock to guarantee that the chains are in a consistent state.
761 */
762 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
763 {
764 int nr = 0;
765 void *fp = page->freelist;
766 void *object = NULL;
767
768 while (fp && nr <= s->objects) {
769 if (fp == search)
770 return 1;
771 if (!check_valid_pointer(s, page, fp)) {
772 if (object) {
773 object_err(s, page, object,
774 "Freechain corrupt");
775 set_freepointer(s, object, NULL);
776 break;
777 } else {
778 slab_err(s, page, "Freepointer corrupt");
779 page->freelist = NULL;
780 page->inuse = s->objects;
781 slab_fix(s, "Freelist cleared");
782 return 0;
783 }
784 break;
785 }
786 object = fp;
787 fp = get_freepointer(s, object);
788 nr++;
789 }
790
791 if (page->inuse != s->objects - nr) {
792 slab_err(s, page, "Wrong object count. Counter is %d but "
793 "counted were %d", page->inuse, s->objects - nr);
794 page->inuse = s->objects - nr;
795 slab_fix(s, "Object count adjusted.");
796 }
797 return search == NULL;
798 }
799
800 static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
801 {
802 if (s->flags & SLAB_TRACE) {
803 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
804 s->name,
805 alloc ? "alloc" : "free",
806 object, page->inuse,
807 page->freelist);
808
809 if (!alloc)
810 print_section("Object", (void *)object, s->objsize);
811
812 dump_stack();
813 }
814 }
815
816 /*
817 * Tracking of fully allocated slabs for debugging purposes.
818 */
819 static void add_full(struct kmem_cache_node *n, struct page *page)
820 {
821 spin_lock(&n->list_lock);
822 list_add(&page->lru, &n->full);
823 spin_unlock(&n->list_lock);
824 }
825
826 static void remove_full(struct kmem_cache *s, struct page *page)
827 {
828 struct kmem_cache_node *n;
829
830 if (!(s->flags & SLAB_STORE_USER))
831 return;
832
833 n = get_node(s, page_to_nid(page));
834
835 spin_lock(&n->list_lock);
836 list_del(&page->lru);
837 spin_unlock(&n->list_lock);
838 }
839
840 /* Tracking of the number of slabs for debugging purposes */
841 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
842 {
843 struct kmem_cache_node *n = get_node(s, node);
844
845 return atomic_long_read(&n->nr_slabs);
846 }
847
848 static inline void inc_slabs_node(struct kmem_cache *s, int node)
849 {
850 struct kmem_cache_node *n = get_node(s, node);
851
852 /*
853 * May be called early in order to allocate a slab for the
854 * kmem_cache_node structure. Solve the chicken-egg
855 * dilemma by deferring the increment of the count during
856 * bootstrap (see early_kmem_cache_node_alloc).
857 */
858 if (!NUMA_BUILD || n)
859 atomic_long_inc(&n->nr_slabs);
860 }
861 static inline void dec_slabs_node(struct kmem_cache *s, int node)
862 {
863 struct kmem_cache_node *n = get_node(s, node);
864
865 atomic_long_dec(&n->nr_slabs);
866 }
867
868 /* Object debug checks for alloc/free paths */
869 static void setup_object_debug(struct kmem_cache *s, struct page *page,
870 void *object)
871 {
872 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
873 return;
874
875 init_object(s, object, 0);
876 init_tracking(s, object);
877 }
878
879 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
880 void *object, void *addr)
881 {
882 if (!check_slab(s, page))
883 goto bad;
884
885 if (!on_freelist(s, page, object)) {
886 object_err(s, page, object, "Object already allocated");
887 goto bad;
888 }
889
890 if (!check_valid_pointer(s, page, object)) {
891 object_err(s, page, object, "Freelist Pointer check fails");
892 goto bad;
893 }
894
895 if (!check_object(s, page, object, 0))
896 goto bad;
897
898 /* Success perform special debug activities for allocs */
899 if (s->flags & SLAB_STORE_USER)
900 set_track(s, object, TRACK_ALLOC, addr);
901 trace(s, page, object, 1);
902 init_object(s, object, 1);
903 return 1;
904
905 bad:
906 if (PageSlab(page)) {
907 /*
908 * If this is a slab page then lets do the best we can
909 * to avoid issues in the future. Marking all objects
910 * as used avoids touching the remaining objects.
911 */
912 slab_fix(s, "Marking all objects used");
913 page->inuse = s->objects;
914 page->freelist = NULL;
915 }
916 return 0;
917 }
918
919 static int free_debug_processing(struct kmem_cache *s, struct page *page,
920 void *object, void *addr)
921 {
922 if (!check_slab(s, page))
923 goto fail;
924
925 if (!check_valid_pointer(s, page, object)) {
926 slab_err(s, page, "Invalid object pointer 0x%p", object);
927 goto fail;
928 }
929
930 if (on_freelist(s, page, object)) {
931 object_err(s, page, object, "Object already free");
932 goto fail;
933 }
934
935 if (!check_object(s, page, object, 1))
936 return 0;
937
938 if (unlikely(s != page->slab)) {
939 if (!PageSlab(page)) {
940 slab_err(s, page, "Attempt to free object(0x%p) "
941 "outside of slab", object);
942 } else if (!page->slab) {
943 printk(KERN_ERR
944 "SLUB <none>: no slab for object 0x%p.\n",
945 object);
946 dump_stack();
947 } else
948 object_err(s, page, object,
949 "page slab pointer corrupt.");
950 goto fail;
951 }
952
953 /* Special debug activities for freeing objects */
954 if (!SlabFrozen(page) && !page->freelist)
955 remove_full(s, page);
956 if (s->flags & SLAB_STORE_USER)
957 set_track(s, object, TRACK_FREE, addr);
958 trace(s, page, object, 0);
959 init_object(s, object, 0);
960 return 1;
961
962 fail:
963 slab_fix(s, "Object at 0x%p not freed", object);
964 return 0;
965 }
966
967 static int __init setup_slub_debug(char *str)
968 {
969 slub_debug = DEBUG_DEFAULT_FLAGS;
970 if (*str++ != '=' || !*str)
971 /*
972 * No options specified. Switch on full debugging.
973 */
974 goto out;
975
976 if (*str == ',')
977 /*
978 * No options but restriction on slabs. This means full
979 * debugging for slabs matching a pattern.
980 */
981 goto check_slabs;
982
983 slub_debug = 0;
984 if (*str == '-')
985 /*
986 * Switch off all debugging measures.
987 */
988 goto out;
989
990 /*
991 * Determine which debug features should be switched on
992 */
993 for (; *str && *str != ','; str++) {
994 switch (tolower(*str)) {
995 case 'f':
996 slub_debug |= SLAB_DEBUG_FREE;
997 break;
998 case 'z':
999 slub_debug |= SLAB_RED_ZONE;
1000 break;
1001 case 'p':
1002 slub_debug |= SLAB_POISON;
1003 break;
1004 case 'u':
1005 slub_debug |= SLAB_STORE_USER;
1006 break;
1007 case 't':
1008 slub_debug |= SLAB_TRACE;
1009 break;
1010 default:
1011 printk(KERN_ERR "slub_debug option '%c' "
1012 "unknown. skipped\n", *str);
1013 }
1014 }
1015
1016 check_slabs:
1017 if (*str == ',')
1018 slub_debug_slabs = str + 1;
1019 out:
1020 return 1;
1021 }
1022
1023 __setup("slub_debug", setup_slub_debug);
1024
1025 static unsigned long kmem_cache_flags(unsigned long objsize,
1026 unsigned long flags, const char *name,
1027 void (*ctor)(struct kmem_cache *, void *))
1028 {
1029 /*
1030 * Enable debugging if selected on the kernel commandline.
1031 */
1032 if (slub_debug && (!slub_debug_slabs ||
1033 strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
1034 flags |= slub_debug;
1035
1036 return flags;
1037 }
1038 #else
1039 static inline void setup_object_debug(struct kmem_cache *s,
1040 struct page *page, void *object) {}
1041
1042 static inline int alloc_debug_processing(struct kmem_cache *s,
1043 struct page *page, void *object, void *addr) { return 0; }
1044
1045 static inline int free_debug_processing(struct kmem_cache *s,
1046 struct page *page, void *object, void *addr) { return 0; }
1047
1048 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1049 { return 1; }
1050 static inline int check_object(struct kmem_cache *s, struct page *page,
1051 void *object, int active) { return 1; }
1052 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1053 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1054 unsigned long flags, const char *name,
1055 void (*ctor)(struct kmem_cache *, void *))
1056 {
1057 return flags;
1058 }
1059 #define slub_debug 0
1060
1061 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1062 { return 0; }
1063 static inline void inc_slabs_node(struct kmem_cache *s, int node) {}
1064 static inline void dec_slabs_node(struct kmem_cache *s, int node) {}
1065 #endif
1066 /*
1067 * Slab allocation and freeing
1068 */
1069 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1070 {
1071 struct page *page;
1072 int pages = 1 << s->order;
1073
1074 flags |= s->allocflags;
1075
1076 if (node == -1)
1077 page = alloc_pages(flags, s->order);
1078 else
1079 page = alloc_pages_node(node, flags, s->order);
1080
1081 if (!page)
1082 return NULL;
1083
1084 mod_zone_page_state(page_zone(page),
1085 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1086 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1087 pages);
1088
1089 return page;
1090 }
1091
1092 static void setup_object(struct kmem_cache *s, struct page *page,
1093 void *object)
1094 {
1095 setup_object_debug(s, page, object);
1096 if (unlikely(s->ctor))
1097 s->ctor(s, object);
1098 }
1099
1100 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1101 {
1102 struct page *page;
1103 void *start;
1104 void *last;
1105 void *p;
1106
1107 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1108
1109 page = allocate_slab(s,
1110 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1111 if (!page)
1112 goto out;
1113
1114 inc_slabs_node(s, page_to_nid(page));
1115 page->slab = s;
1116 page->flags |= 1 << PG_slab;
1117 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1118 SLAB_STORE_USER | SLAB_TRACE))
1119 SetSlabDebug(page);
1120
1121 start = page_address(page);
1122
1123 if (unlikely(s->flags & SLAB_POISON))
1124 memset(start, POISON_INUSE, PAGE_SIZE << s->order);
1125
1126 last = start;
1127 for_each_object(p, s, start) {
1128 setup_object(s, page, last);
1129 set_freepointer(s, last, p);
1130 last = p;
1131 }
1132 setup_object(s, page, last);
1133 set_freepointer(s, last, NULL);
1134
1135 page->freelist = start;
1136 page->inuse = 0;
1137 out:
1138 return page;
1139 }
1140
1141 static void __free_slab(struct kmem_cache *s, struct page *page)
1142 {
1143 int pages = 1 << s->order;
1144
1145 if (unlikely(SlabDebug(page))) {
1146 void *p;
1147
1148 slab_pad_check(s, page);
1149 for_each_object(p, s, page_address(page))
1150 check_object(s, page, p, 0);
1151 ClearSlabDebug(page);
1152 }
1153
1154 mod_zone_page_state(page_zone(page),
1155 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1156 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1157 -pages);
1158
1159 __ClearPageSlab(page);
1160 reset_page_mapcount(page);
1161 __free_pages(page, s->order);
1162 }
1163
1164 static void rcu_free_slab(struct rcu_head *h)
1165 {
1166 struct page *page;
1167
1168 page = container_of((struct list_head *)h, struct page, lru);
1169 __free_slab(page->slab, page);
1170 }
1171
1172 static void free_slab(struct kmem_cache *s, struct page *page)
1173 {
1174 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1175 /*
1176 * RCU free overloads the RCU head over the LRU
1177 */
1178 struct rcu_head *head = (void *)&page->lru;
1179
1180 call_rcu(head, rcu_free_slab);
1181 } else
1182 __free_slab(s, page);
1183 }
1184
1185 static void discard_slab(struct kmem_cache *s, struct page *page)
1186 {
1187 dec_slabs_node(s, page_to_nid(page));
1188 free_slab(s, page);
1189 }
1190
1191 /*
1192 * Per slab locking using the pagelock
1193 */
1194 static __always_inline void slab_lock(struct page *page)
1195 {
1196 bit_spin_lock(PG_locked, &page->flags);
1197 }
1198
1199 static __always_inline void slab_unlock(struct page *page)
1200 {
1201 __bit_spin_unlock(PG_locked, &page->flags);
1202 }
1203
1204 static __always_inline int slab_trylock(struct page *page)
1205 {
1206 int rc = 1;
1207
1208 rc = bit_spin_trylock(PG_locked, &page->flags);
1209 return rc;
1210 }
1211
1212 /*
1213 * Management of partially allocated slabs
1214 */
1215 static void add_partial(struct kmem_cache_node *n,
1216 struct page *page, int tail)
1217 {
1218 spin_lock(&n->list_lock);
1219 n->nr_partial++;
1220 if (tail)
1221 list_add_tail(&page->lru, &n->partial);
1222 else
1223 list_add(&page->lru, &n->partial);
1224 spin_unlock(&n->list_lock);
1225 }
1226
1227 static void remove_partial(struct kmem_cache *s,
1228 struct page *page)
1229 {
1230 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1231
1232 spin_lock(&n->list_lock);
1233 list_del(&page->lru);
1234 n->nr_partial--;
1235 spin_unlock(&n->list_lock);
1236 }
1237
1238 /*
1239 * Lock slab and remove from the partial list.
1240 *
1241 * Must hold list_lock.
1242 */
1243 static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
1244 {
1245 if (slab_trylock(page)) {
1246 list_del(&page->lru);
1247 n->nr_partial--;
1248 SetSlabFrozen(page);
1249 return 1;
1250 }
1251 return 0;
1252 }
1253
1254 /*
1255 * Try to allocate a partial slab from a specific node.
1256 */
1257 static struct page *get_partial_node(struct kmem_cache_node *n)
1258 {
1259 struct page *page;
1260
1261 /*
1262 * Racy check. If we mistakenly see no partial slabs then we
1263 * just allocate an empty slab. If we mistakenly try to get a
1264 * partial slab and there is none available then get_partials()
1265 * will return NULL.
1266 */
1267 if (!n || !n->nr_partial)
1268 return NULL;
1269
1270 spin_lock(&n->list_lock);
1271 list_for_each_entry(page, &n->partial, lru)
1272 if (lock_and_freeze_slab(n, page))
1273 goto out;
1274 page = NULL;
1275 out:
1276 spin_unlock(&n->list_lock);
1277 return page;
1278 }
1279
1280 /*
1281 * Get a page from somewhere. Search in increasing NUMA distances.
1282 */
1283 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1284 {
1285 #ifdef CONFIG_NUMA
1286 struct zonelist *zonelist;
1287 struct zone **z;
1288 struct page *page;
1289
1290 /*
1291 * The defrag ratio allows a configuration of the tradeoffs between
1292 * inter node defragmentation and node local allocations. A lower
1293 * defrag_ratio increases the tendency to do local allocations
1294 * instead of attempting to obtain partial slabs from other nodes.
1295 *
1296 * If the defrag_ratio is set to 0 then kmalloc() always
1297 * returns node local objects. If the ratio is higher then kmalloc()
1298 * may return off node objects because partial slabs are obtained
1299 * from other nodes and filled up.
1300 *
1301 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1302 * defrag_ratio = 1000) then every (well almost) allocation will
1303 * first attempt to defrag slab caches on other nodes. This means
1304 * scanning over all nodes to look for partial slabs which may be
1305 * expensive if we do it every time we are trying to find a slab
1306 * with available objects.
1307 */
1308 if (!s->remote_node_defrag_ratio ||
1309 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1310 return NULL;
1311
1312 zonelist = &NODE_DATA(
1313 slab_node(current->mempolicy))->node_zonelists[gfp_zone(flags)];
1314 for (z = zonelist->zones; *z; z++) {
1315 struct kmem_cache_node *n;
1316
1317 n = get_node(s, zone_to_nid(*z));
1318
1319 if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
1320 n->nr_partial > MIN_PARTIAL) {
1321 page = get_partial_node(n);
1322 if (page)
1323 return page;
1324 }
1325 }
1326 #endif
1327 return NULL;
1328 }
1329
1330 /*
1331 * Get a partial page, lock it and return it.
1332 */
1333 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1334 {
1335 struct page *page;
1336 int searchnode = (node == -1) ? numa_node_id() : node;
1337
1338 page = get_partial_node(get_node(s, searchnode));
1339 if (page || (flags & __GFP_THISNODE))
1340 return page;
1341
1342 return get_any_partial(s, flags);
1343 }
1344
1345 /*
1346 * Move a page back to the lists.
1347 *
1348 * Must be called with the slab lock held.
1349 *
1350 * On exit the slab lock will have been dropped.
1351 */
1352 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1353 {
1354 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1355 struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
1356
1357 ClearSlabFrozen(page);
1358 if (page->inuse) {
1359
1360 if (page->freelist) {
1361 add_partial(n, page, tail);
1362 stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1363 } else {
1364 stat(c, DEACTIVATE_FULL);
1365 if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
1366 add_full(n, page);
1367 }
1368 slab_unlock(page);
1369 } else {
1370 stat(c, DEACTIVATE_EMPTY);
1371 if (n->nr_partial < MIN_PARTIAL) {
1372 /*
1373 * Adding an empty slab to the partial slabs in order
1374 * to avoid page allocator overhead. This slab needs
1375 * to come after the other slabs with objects in
1376 * so that the others get filled first. That way the
1377 * size of the partial list stays small.
1378 *
1379 * kmem_cache_shrink can reclaim any empty slabs from the
1380 * partial list.
1381 */
1382 add_partial(n, page, 1);
1383 slab_unlock(page);
1384 } else {
1385 slab_unlock(page);
1386 stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
1387 discard_slab(s, page);
1388 }
1389 }
1390 }
1391
1392 /*
1393 * Remove the cpu slab
1394 */
1395 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1396 {
1397 struct page *page = c->page;
1398 int tail = 1;
1399
1400 if (page->freelist)
1401 stat(c, DEACTIVATE_REMOTE_FREES);
1402 /*
1403 * Merge cpu freelist into slab freelist. Typically we get here
1404 * because both freelists are empty. So this is unlikely
1405 * to occur.
1406 */
1407 while (unlikely(c->freelist)) {
1408 void **object;
1409
1410 tail = 0; /* Hot objects. Put the slab first */
1411
1412 /* Retrieve object from cpu_freelist */
1413 object = c->freelist;
1414 c->freelist = c->freelist[c->offset];
1415
1416 /* And put onto the regular freelist */
1417 object[c->offset] = page->freelist;
1418 page->freelist = object;
1419 page->inuse--;
1420 }
1421 c->page = NULL;
1422 unfreeze_slab(s, page, tail);
1423 }
1424
1425 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1426 {
1427 stat(c, CPUSLAB_FLUSH);
1428 slab_lock(c->page);
1429 deactivate_slab(s, c);
1430 }
1431
1432 /*
1433 * Flush cpu slab.
1434 *
1435 * Called from IPI handler with interrupts disabled.
1436 */
1437 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1438 {
1439 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1440
1441 if (likely(c && c->page))
1442 flush_slab(s, c);
1443 }
1444
1445 static void flush_cpu_slab(void *d)
1446 {
1447 struct kmem_cache *s = d;
1448
1449 __flush_cpu_slab(s, smp_processor_id());
1450 }
1451
1452 static void flush_all(struct kmem_cache *s)
1453 {
1454 #ifdef CONFIG_SMP
1455 on_each_cpu(flush_cpu_slab, s, 1, 1);
1456 #else
1457 unsigned long flags;
1458
1459 local_irq_save(flags);
1460 flush_cpu_slab(s);
1461 local_irq_restore(flags);
1462 #endif
1463 }
1464
1465 /*
1466 * Check if the objects in a per cpu structure fit numa
1467 * locality expectations.
1468 */
1469 static inline int node_match(struct kmem_cache_cpu *c, int node)
1470 {
1471 #ifdef CONFIG_NUMA
1472 if (node != -1 && c->node != node)
1473 return 0;
1474 #endif
1475 return 1;
1476 }
1477
1478 /*
1479 * Slow path. The lockless freelist is empty or we need to perform
1480 * debugging duties.
1481 *
1482 * Interrupts are disabled.
1483 *
1484 * Processing is still very fast if new objects have been freed to the
1485 * regular freelist. In that case we simply take over the regular freelist
1486 * as the lockless freelist and zap the regular freelist.
1487 *
1488 * If that is not working then we fall back to the partial lists. We take the
1489 * first element of the freelist as the object to allocate now and move the
1490 * rest of the freelist to the lockless freelist.
1491 *
1492 * And if we were unable to get a new slab from the partial slab lists then
1493 * we need to allocate a new slab. This is the slowest path since it involves
1494 * a call to the page allocator and the setup of a new slab.
1495 */
1496 static void *__slab_alloc(struct kmem_cache *s,
1497 gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
1498 {
1499 void **object;
1500 struct page *new;
1501
1502 /* We handle __GFP_ZERO in the caller */
1503 gfpflags &= ~__GFP_ZERO;
1504
1505 if (!c->page)
1506 goto new_slab;
1507
1508 slab_lock(c->page);
1509 if (unlikely(!node_match(c, node)))
1510 goto another_slab;
1511
1512 stat(c, ALLOC_REFILL);
1513
1514 load_freelist:
1515 object = c->page->freelist;
1516 if (unlikely(!object))
1517 goto another_slab;
1518 if (unlikely(SlabDebug(c->page)))
1519 goto debug;
1520
1521 c->freelist = object[c->offset];
1522 c->page->inuse = s->objects;
1523 c->page->freelist = NULL;
1524 c->node = page_to_nid(c->page);
1525 unlock_out:
1526 slab_unlock(c->page);
1527 stat(c, ALLOC_SLOWPATH);
1528 return object;
1529
1530 another_slab:
1531 deactivate_slab(s, c);
1532
1533 new_slab:
1534 new = get_partial(s, gfpflags, node);
1535 if (new) {
1536 c->page = new;
1537 stat(c, ALLOC_FROM_PARTIAL);
1538 goto load_freelist;
1539 }
1540
1541 if (gfpflags & __GFP_WAIT)
1542 local_irq_enable();
1543
1544 new = new_slab(s, gfpflags, node);
1545
1546 if (gfpflags & __GFP_WAIT)
1547 local_irq_disable();
1548
1549 if (new) {
1550 c = get_cpu_slab(s, smp_processor_id());
1551 stat(c, ALLOC_SLAB);
1552 if (c->page)
1553 flush_slab(s, c);
1554 slab_lock(new);
1555 SetSlabFrozen(new);
1556 c->page = new;
1557 goto load_freelist;
1558 }
1559
1560 /*
1561 * No memory available.
1562 *
1563 * If the slab uses higher order allocs but the object is
1564 * smaller than a page size then we can fallback in emergencies
1565 * to the page allocator via kmalloc_large. The page allocator may
1566 * have failed to obtain a higher order page and we can try to
1567 * allocate a single page if the object fits into a single page.
1568 * That is only possible if certain conditions are met that are being
1569 * checked when a slab is created.
1570 */
1571 if (!(gfpflags & __GFP_NORETRY) &&
1572 (s->flags & __PAGE_ALLOC_FALLBACK)) {
1573 if (gfpflags & __GFP_WAIT)
1574 local_irq_enable();
1575 object = kmalloc_large(s->objsize, gfpflags);
1576 if (gfpflags & __GFP_WAIT)
1577 local_irq_disable();
1578 return object;
1579 }
1580 return NULL;
1581 debug:
1582 if (!alloc_debug_processing(s, c->page, object, addr))
1583 goto another_slab;
1584
1585 c->page->inuse++;
1586 c->page->freelist = object[c->offset];
1587 c->node = -1;
1588 goto unlock_out;
1589 }
1590
1591 /*
1592 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1593 * have the fastpath folded into their functions. So no function call
1594 * overhead for requests that can be satisfied on the fastpath.
1595 *
1596 * The fastpath works by first checking if the lockless freelist can be used.
1597 * If not then __slab_alloc is called for slow processing.
1598 *
1599 * Otherwise we can simply pick the next object from the lockless free list.
1600 */
1601 static __always_inline void *slab_alloc(struct kmem_cache *s,
1602 gfp_t gfpflags, int node, void *addr)
1603 {
1604 void **object;
1605 struct kmem_cache_cpu *c;
1606 unsigned long flags;
1607
1608 local_irq_save(flags);
1609 c = get_cpu_slab(s, smp_processor_id());
1610 if (unlikely(!c->freelist || !node_match(c, node)))
1611
1612 object = __slab_alloc(s, gfpflags, node, addr, c);
1613
1614 else {
1615 object = c->freelist;
1616 c->freelist = object[c->offset];
1617 stat(c, ALLOC_FASTPATH);
1618 }
1619 local_irq_restore(flags);
1620
1621 if (unlikely((gfpflags & __GFP_ZERO) && object))
1622 memset(object, 0, c->objsize);
1623
1624 return object;
1625 }
1626
1627 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1628 {
1629 return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
1630 }
1631 EXPORT_SYMBOL(kmem_cache_alloc);
1632
1633 #ifdef CONFIG_NUMA
1634 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1635 {
1636 return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
1637 }
1638 EXPORT_SYMBOL(kmem_cache_alloc_node);
1639 #endif
1640
1641 /*
1642 * Slow patch handling. This may still be called frequently since objects
1643 * have a longer lifetime than the cpu slabs in most processing loads.
1644 *
1645 * So we still attempt to reduce cache line usage. Just take the slab
1646 * lock and free the item. If there is no additional partial page
1647 * handling required then we can return immediately.
1648 */
1649 static void __slab_free(struct kmem_cache *s, struct page *page,
1650 void *x, void *addr, unsigned int offset)
1651 {
1652 void *prior;
1653 void **object = (void *)x;
1654 struct kmem_cache_cpu *c;
1655
1656 c = get_cpu_slab(s, raw_smp_processor_id());
1657 stat(c, FREE_SLOWPATH);
1658 slab_lock(page);
1659
1660 if (unlikely(SlabDebug(page)))
1661 goto debug;
1662
1663 checks_ok:
1664 prior = object[offset] = page->freelist;
1665 page->freelist = object;
1666 page->inuse--;
1667
1668 if (unlikely(SlabFrozen(page))) {
1669 stat(c, FREE_FROZEN);
1670 goto out_unlock;
1671 }
1672
1673 if (unlikely(!page->inuse))
1674 goto slab_empty;
1675
1676 /*
1677 * Objects left in the slab. If it was not on the partial list before
1678 * then add it.
1679 */
1680 if (unlikely(!prior)) {
1681 add_partial(get_node(s, page_to_nid(page)), page, 1);
1682 stat(c, FREE_ADD_PARTIAL);
1683 }
1684
1685 out_unlock:
1686 slab_unlock(page);
1687 return;
1688
1689 slab_empty:
1690 if (prior) {
1691 /*
1692 * Slab still on the partial list.
1693 */
1694 remove_partial(s, page);
1695 stat(c, FREE_REMOVE_PARTIAL);
1696 }
1697 slab_unlock(page);
1698 stat(c, FREE_SLAB);
1699 discard_slab(s, page);
1700 return;
1701
1702 debug:
1703 if (!free_debug_processing(s, page, x, addr))
1704 goto out_unlock;
1705 goto checks_ok;
1706 }
1707
1708 /*
1709 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1710 * can perform fastpath freeing without additional function calls.
1711 *
1712 * The fastpath is only possible if we are freeing to the current cpu slab
1713 * of this processor. This typically the case if we have just allocated
1714 * the item before.
1715 *
1716 * If fastpath is not possible then fall back to __slab_free where we deal
1717 * with all sorts of special processing.
1718 */
1719 static __always_inline void slab_free(struct kmem_cache *s,
1720 struct page *page, void *x, void *addr)
1721 {
1722 void **object = (void *)x;
1723 struct kmem_cache_cpu *c;
1724 unsigned long flags;
1725
1726 local_irq_save(flags);
1727 c = get_cpu_slab(s, smp_processor_id());
1728 debug_check_no_locks_freed(object, c->objsize);
1729 if (likely(page == c->page && c->node >= 0)) {
1730 object[c->offset] = c->freelist;
1731 c->freelist = object;
1732 stat(c, FREE_FASTPATH);
1733 } else
1734 __slab_free(s, page, x, addr, c->offset);
1735
1736 local_irq_restore(flags);
1737 }
1738
1739 void kmem_cache_free(struct kmem_cache *s, void *x)
1740 {
1741 struct page *page;
1742
1743 page = virt_to_head_page(x);
1744
1745 slab_free(s, page, x, __builtin_return_address(0));
1746 }
1747 EXPORT_SYMBOL(kmem_cache_free);
1748
1749 /* Figure out on which slab object the object resides */
1750 static struct page *get_object_page(const void *x)
1751 {
1752 struct page *page = virt_to_head_page(x);
1753
1754 if (!PageSlab(page))
1755 return NULL;
1756
1757 return page;
1758 }
1759
1760 /*
1761 * Object placement in a slab is made very easy because we always start at
1762 * offset 0. If we tune the size of the object to the alignment then we can
1763 * get the required alignment by putting one properly sized object after
1764 * another.
1765 *
1766 * Notice that the allocation order determines the sizes of the per cpu
1767 * caches. Each processor has always one slab available for allocations.
1768 * Increasing the allocation order reduces the number of times that slabs
1769 * must be moved on and off the partial lists and is therefore a factor in
1770 * locking overhead.
1771 */
1772
1773 /*
1774 * Mininum / Maximum order of slab pages. This influences locking overhead
1775 * and slab fragmentation. A higher order reduces the number of partial slabs
1776 * and increases the number of allocations possible without having to
1777 * take the list_lock.
1778 */
1779 static int slub_min_order;
1780 static int slub_max_order = DEFAULT_MAX_ORDER;
1781 static int slub_min_objects = DEFAULT_MIN_OBJECTS;
1782
1783 /*
1784 * Merge control. If this is set then no merging of slab caches will occur.
1785 * (Could be removed. This was introduced to pacify the merge skeptics.)
1786 */
1787 static int slub_nomerge;
1788
1789 /*
1790 * Calculate the order of allocation given an slab object size.
1791 *
1792 * The order of allocation has significant impact on performance and other
1793 * system components. Generally order 0 allocations should be preferred since
1794 * order 0 does not cause fragmentation in the page allocator. Larger objects
1795 * be problematic to put into order 0 slabs because there may be too much
1796 * unused space left. We go to a higher order if more than 1/8th of the slab
1797 * would be wasted.
1798 *
1799 * In order to reach satisfactory performance we must ensure that a minimum
1800 * number of objects is in one slab. Otherwise we may generate too much
1801 * activity on the partial lists which requires taking the list_lock. This is
1802 * less a concern for large slabs though which are rarely used.
1803 *
1804 * slub_max_order specifies the order where we begin to stop considering the
1805 * number of objects in a slab as critical. If we reach slub_max_order then
1806 * we try to keep the page order as low as possible. So we accept more waste
1807 * of space in favor of a small page order.
1808 *
1809 * Higher order allocations also allow the placement of more objects in a
1810 * slab and thereby reduce object handling overhead. If the user has
1811 * requested a higher mininum order then we start with that one instead of
1812 * the smallest order which will fit the object.
1813 */
1814 static inline int slab_order(int size, int min_objects,
1815 int max_order, int fract_leftover)
1816 {
1817 int order;
1818 int rem;
1819 int min_order = slub_min_order;
1820
1821 for (order = max(min_order,
1822 fls(min_objects * size - 1) - PAGE_SHIFT);
1823 order <= max_order; order++) {
1824
1825 unsigned long slab_size = PAGE_SIZE << order;
1826
1827 if (slab_size < min_objects * size)
1828 continue;
1829
1830 rem = slab_size % size;
1831
1832 if (rem <= slab_size / fract_leftover)
1833 break;
1834
1835 }
1836
1837 return order;
1838 }
1839
1840 static inline int calculate_order(int size)
1841 {
1842 int order;
1843 int min_objects;
1844 int fraction;
1845
1846 /*
1847 * Attempt to find best configuration for a slab. This
1848 * works by first attempting to generate a layout with
1849 * the best configuration and backing off gradually.
1850 *
1851 * First we reduce the acceptable waste in a slab. Then
1852 * we reduce the minimum objects required in a slab.
1853 */
1854 min_objects = slub_min_objects;
1855 while (min_objects > 1) {
1856 fraction = 8;
1857 while (fraction >= 4) {
1858 order = slab_order(size, min_objects,
1859 slub_max_order, fraction);
1860 if (order <= slub_max_order)
1861 return order;
1862 fraction /= 2;
1863 }
1864 min_objects /= 2;
1865 }
1866
1867 /*
1868 * We were unable to place multiple objects in a slab. Now
1869 * lets see if we can place a single object there.
1870 */
1871 order = slab_order(size, 1, slub_max_order, 1);
1872 if (order <= slub_max_order)
1873 return order;
1874
1875 /*
1876 * Doh this slab cannot be placed using slub_max_order.
1877 */
1878 order = slab_order(size, 1, MAX_ORDER, 1);
1879 if (order <= MAX_ORDER)
1880 return order;
1881 return -ENOSYS;
1882 }
1883
1884 /*
1885 * Figure out what the alignment of the objects will be.
1886 */
1887 static unsigned long calculate_alignment(unsigned long flags,
1888 unsigned long align, unsigned long size)
1889 {
1890 /*
1891 * If the user wants hardware cache aligned objects then follow that
1892 * suggestion if the object is sufficiently large.
1893 *
1894 * The hardware cache alignment cannot override the specified
1895 * alignment though. If that is greater then use it.
1896 */
1897 if (flags & SLAB_HWCACHE_ALIGN) {
1898 unsigned long ralign = cache_line_size();
1899 while (size <= ralign / 2)
1900 ralign /= 2;
1901 align = max(align, ralign);
1902 }
1903
1904 if (align < ARCH_SLAB_MINALIGN)
1905 align = ARCH_SLAB_MINALIGN;
1906
1907 return ALIGN(align, sizeof(void *));
1908 }
1909
1910 static void init_kmem_cache_cpu(struct kmem_cache *s,
1911 struct kmem_cache_cpu *c)
1912 {
1913 c->page = NULL;
1914 c->freelist = NULL;
1915 c->node = 0;
1916 c->offset = s->offset / sizeof(void *);
1917 c->objsize = s->objsize;
1918 #ifdef CONFIG_SLUB_STATS
1919 memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
1920 #endif
1921 }
1922
1923 static void init_kmem_cache_node(struct kmem_cache_node *n)
1924 {
1925 n->nr_partial = 0;
1926 spin_lock_init(&n->list_lock);
1927 INIT_LIST_HEAD(&n->partial);
1928 #ifdef CONFIG_SLUB_DEBUG
1929 atomic_long_set(&n->nr_slabs, 0);
1930 INIT_LIST_HEAD(&n->full);
1931 #endif
1932 }
1933
1934 #ifdef CONFIG_SMP
1935 /*
1936 * Per cpu array for per cpu structures.
1937 *
1938 * The per cpu array places all kmem_cache_cpu structures from one processor
1939 * close together meaning that it becomes possible that multiple per cpu
1940 * structures are contained in one cacheline. This may be particularly
1941 * beneficial for the kmalloc caches.
1942 *
1943 * A desktop system typically has around 60-80 slabs. With 100 here we are
1944 * likely able to get per cpu structures for all caches from the array defined
1945 * here. We must be able to cover all kmalloc caches during bootstrap.
1946 *
1947 * If the per cpu array is exhausted then fall back to kmalloc
1948 * of individual cachelines. No sharing is possible then.
1949 */
1950 #define NR_KMEM_CACHE_CPU 100
1951
1952 static DEFINE_PER_CPU(struct kmem_cache_cpu,
1953 kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
1954
1955 static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
1956 static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
1957
1958 static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
1959 int cpu, gfp_t flags)
1960 {
1961 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
1962
1963 if (c)
1964 per_cpu(kmem_cache_cpu_free, cpu) =
1965 (void *)c->freelist;
1966 else {
1967 /* Table overflow: So allocate ourselves */
1968 c = kmalloc_node(
1969 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
1970 flags, cpu_to_node(cpu));
1971 if (!c)
1972 return NULL;
1973 }
1974
1975 init_kmem_cache_cpu(s, c);
1976 return c;
1977 }
1978
1979 static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
1980 {
1981 if (c < per_cpu(kmem_cache_cpu, cpu) ||
1982 c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
1983 kfree(c);
1984 return;
1985 }
1986 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
1987 per_cpu(kmem_cache_cpu_free, cpu) = c;
1988 }
1989
1990 static void free_kmem_cache_cpus(struct kmem_cache *s)
1991 {
1992 int cpu;
1993
1994 for_each_online_cpu(cpu) {
1995 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1996
1997 if (c) {
1998 s->cpu_slab[cpu] = NULL;
1999 free_kmem_cache_cpu(c, cpu);
2000 }
2001 }
2002 }
2003
2004 static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2005 {
2006 int cpu;
2007
2008 for_each_online_cpu(cpu) {
2009 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2010
2011 if (c)
2012 continue;
2013
2014 c = alloc_kmem_cache_cpu(s, cpu, flags);
2015 if (!c) {
2016 free_kmem_cache_cpus(s);
2017 return 0;
2018 }
2019 s->cpu_slab[cpu] = c;
2020 }
2021 return 1;
2022 }
2023
2024 /*
2025 * Initialize the per cpu array.
2026 */
2027 static void init_alloc_cpu_cpu(int cpu)
2028 {
2029 int i;
2030
2031 if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
2032 return;
2033
2034 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2035 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2036
2037 cpu_set(cpu, kmem_cach_cpu_free_init_once);
2038 }
2039
2040 static void __init init_alloc_cpu(void)
2041 {
2042 int cpu;
2043
2044 for_each_online_cpu(cpu)
2045 init_alloc_cpu_cpu(cpu);
2046 }
2047
2048 #else
2049 static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2050 static inline void init_alloc_cpu(void) {}
2051
2052 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2053 {
2054 init_kmem_cache_cpu(s, &s->cpu_slab);
2055 return 1;
2056 }
2057 #endif
2058
2059 #ifdef CONFIG_NUMA
2060 /*
2061 * No kmalloc_node yet so do it by hand. We know that this is the first
2062 * slab on the node for this slabcache. There are no concurrent accesses
2063 * possible.
2064 *
2065 * Note that this function only works on the kmalloc_node_cache
2066 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2067 * memory on a fresh node that has no slab structures yet.
2068 */
2069 static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
2070 int node)
2071 {
2072 struct page *page;
2073 struct kmem_cache_node *n;
2074 unsigned long flags;
2075
2076 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2077
2078 page = new_slab(kmalloc_caches, gfpflags, node);
2079
2080 BUG_ON(!page);
2081 if (page_to_nid(page) != node) {
2082 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2083 "node %d\n", node);
2084 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2085 "in order to be able to continue\n");
2086 }
2087
2088 n = page->freelist;
2089 BUG_ON(!n);
2090 page->freelist = get_freepointer(kmalloc_caches, n);
2091 page->inuse++;
2092 kmalloc_caches->node[node] = n;
2093 #ifdef CONFIG_SLUB_DEBUG
2094 init_object(kmalloc_caches, n, 1);
2095 init_tracking(kmalloc_caches, n);
2096 #endif
2097 init_kmem_cache_node(n);
2098 inc_slabs_node(kmalloc_caches, node);
2099
2100 /*
2101 * lockdep requires consistent irq usage for each lock
2102 * so even though there cannot be a race this early in
2103 * the boot sequence, we still disable irqs.
2104 */
2105 local_irq_save(flags);
2106 add_partial(n, page, 0);
2107 local_irq_restore(flags);
2108 return n;
2109 }
2110
2111 static void free_kmem_cache_nodes(struct kmem_cache *s)
2112 {
2113 int node;
2114
2115 for_each_node_state(node, N_NORMAL_MEMORY) {
2116 struct kmem_cache_node *n = s->node[node];
2117 if (n && n != &s->local_node)
2118 kmem_cache_free(kmalloc_caches, n);
2119 s->node[node] = NULL;
2120 }
2121 }
2122
2123 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2124 {
2125 int node;
2126 int local_node;
2127
2128 if (slab_state >= UP)
2129 local_node = page_to_nid(virt_to_page(s));
2130 else
2131 local_node = 0;
2132
2133 for_each_node_state(node, N_NORMAL_MEMORY) {
2134 struct kmem_cache_node *n;
2135
2136 if (local_node == node)
2137 n = &s->local_node;
2138 else {
2139 if (slab_state == DOWN) {
2140 n = early_kmem_cache_node_alloc(gfpflags,
2141 node);
2142 continue;
2143 }
2144 n = kmem_cache_alloc_node(kmalloc_caches,
2145 gfpflags, node);
2146
2147 if (!n) {
2148 free_kmem_cache_nodes(s);
2149 return 0;
2150 }
2151
2152 }
2153 s->node[node] = n;
2154 init_kmem_cache_node(n);
2155 }
2156 return 1;
2157 }
2158 #else
2159 static void free_kmem_cache_nodes(struct kmem_cache *s)
2160 {
2161 }
2162
2163 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2164 {
2165 init_kmem_cache_node(&s->local_node);
2166 return 1;
2167 }
2168 #endif
2169
2170 /*
2171 * calculate_sizes() determines the order and the distribution of data within
2172 * a slab object.
2173 */
2174 static int calculate_sizes(struct kmem_cache *s)
2175 {
2176 unsigned long flags = s->flags;
2177 unsigned long size = s->objsize;
2178 unsigned long align = s->align;
2179
2180 /*
2181 * Round up object size to the next word boundary. We can only
2182 * place the free pointer at word boundaries and this determines
2183 * the possible location of the free pointer.
2184 */
2185 size = ALIGN(size, sizeof(void *));
2186
2187 #ifdef CONFIG_SLUB_DEBUG
2188 /*
2189 * Determine if we can poison the object itself. If the user of
2190 * the slab may touch the object after free or before allocation
2191 * then we should never poison the object itself.
2192 */
2193 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2194 !s->ctor)
2195 s->flags |= __OBJECT_POISON;
2196 else
2197 s->flags &= ~__OBJECT_POISON;
2198
2199
2200 /*
2201 * If we are Redzoning then check if there is some space between the
2202 * end of the object and the free pointer. If not then add an
2203 * additional word to have some bytes to store Redzone information.
2204 */
2205 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2206 size += sizeof(void *);
2207 #endif
2208
2209 /*
2210 * With that we have determined the number of bytes in actual use
2211 * by the object. This is the potential offset to the free pointer.
2212 */
2213 s->inuse = size;
2214
2215 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2216 s->ctor)) {
2217 /*
2218 * Relocate free pointer after the object if it is not
2219 * permitted to overwrite the first word of the object on
2220 * kmem_cache_free.
2221 *
2222 * This is the case if we do RCU, have a constructor or
2223 * destructor or are poisoning the objects.
2224 */
2225 s->offset = size;
2226 size += sizeof(void *);
2227 }
2228
2229 #ifdef CONFIG_SLUB_DEBUG
2230 if (flags & SLAB_STORE_USER)
2231 /*
2232 * Need to store information about allocs and frees after
2233 * the object.
2234 */
2235 size += 2 * sizeof(struct track);
2236
2237 if (flags & SLAB_RED_ZONE)
2238 /*
2239 * Add some empty padding so that we can catch
2240 * overwrites from earlier objects rather than let
2241 * tracking information or the free pointer be
2242 * corrupted if an user writes before the start
2243 * of the object.
2244 */
2245 size += sizeof(void *);
2246 #endif
2247
2248 /*
2249 * Determine the alignment based on various parameters that the
2250 * user specified and the dynamic determination of cache line size
2251 * on bootup.
2252 */
2253 align = calculate_alignment(flags, align, s->objsize);
2254
2255 /*
2256 * SLUB stores one object immediately after another beginning from
2257 * offset 0. In order to align the objects we have to simply size
2258 * each object to conform to the alignment.
2259 */
2260 size = ALIGN(size, align);
2261 s->size = size;
2262
2263 if ((flags & __KMALLOC_CACHE) &&
2264 PAGE_SIZE / size < slub_min_objects) {
2265 /*
2266 * Kmalloc cache that would not have enough objects in
2267 * an order 0 page. Kmalloc slabs can fallback to
2268 * page allocator order 0 allocs so take a reasonably large
2269 * order that will allows us a good number of objects.
2270 */
2271 s->order = max(slub_max_order, PAGE_ALLOC_COSTLY_ORDER);
2272 s->flags |= __PAGE_ALLOC_FALLBACK;
2273 s->allocflags |= __GFP_NOWARN;
2274 } else
2275 s->order = calculate_order(size);
2276
2277 if (s->order < 0)
2278 return 0;
2279
2280 s->allocflags = 0;
2281 if (s->order)
2282 s->allocflags |= __GFP_COMP;
2283
2284 if (s->flags & SLAB_CACHE_DMA)
2285 s->allocflags |= SLUB_DMA;
2286
2287 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2288 s->allocflags |= __GFP_RECLAIMABLE;
2289
2290 /*
2291 * Determine the number of objects per slab
2292 */
2293 s->objects = (PAGE_SIZE << s->order) / size;
2294
2295 return !!s->objects;
2296
2297 }
2298
2299 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2300 const char *name, size_t size,
2301 size_t align, unsigned long flags,
2302 void (*ctor)(struct kmem_cache *, void *))
2303 {
2304 memset(s, 0, kmem_size);
2305 s->name = name;
2306 s->ctor = ctor;
2307 s->objsize = size;
2308 s->align = align;
2309 s->flags = kmem_cache_flags(size, flags, name, ctor);
2310
2311 if (!calculate_sizes(s))
2312 goto error;
2313
2314 s->refcount = 1;
2315 #ifdef CONFIG_NUMA
2316 s->remote_node_defrag_ratio = 100;
2317 #endif
2318 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2319 goto error;
2320
2321 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2322 return 1;
2323 free_kmem_cache_nodes(s);
2324 error:
2325 if (flags & SLAB_PANIC)
2326 panic("Cannot create slab %s size=%lu realsize=%u "
2327 "order=%u offset=%u flags=%lx\n",
2328 s->name, (unsigned long)size, s->size, s->order,
2329 s->offset, flags);
2330 return 0;
2331 }
2332
2333 /*
2334 * Check if a given pointer is valid
2335 */
2336 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2337 {
2338 struct page *page;
2339
2340 page = get_object_page(object);
2341
2342 if (!page || s != page->slab)
2343 /* No slab or wrong slab */
2344 return 0;
2345
2346 if (!check_valid_pointer(s, page, object))
2347 return 0;
2348
2349 /*
2350 * We could also check if the object is on the slabs freelist.
2351 * But this would be too expensive and it seems that the main
2352 * purpose of kmem_ptr_valid() is to check if the object belongs
2353 * to a certain slab.
2354 */
2355 return 1;
2356 }
2357 EXPORT_SYMBOL(kmem_ptr_validate);
2358
2359 /*
2360 * Determine the size of a slab object
2361 */
2362 unsigned int kmem_cache_size(struct kmem_cache *s)
2363 {
2364 return s->objsize;
2365 }
2366 EXPORT_SYMBOL(kmem_cache_size);
2367
2368 const char *kmem_cache_name(struct kmem_cache *s)
2369 {
2370 return s->name;
2371 }
2372 EXPORT_SYMBOL(kmem_cache_name);
2373
2374 /*
2375 * Attempt to free all partial slabs on a node.
2376 */
2377 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2378 {
2379 unsigned long flags;
2380 struct page *page, *h;
2381
2382 spin_lock_irqsave(&n->list_lock, flags);
2383 list_for_each_entry_safe(page, h, &n->partial, lru)
2384 if (!page->inuse) {
2385 list_del(&page->lru);
2386 discard_slab(s, page);
2387 n->nr_partial--;
2388 }
2389 spin_unlock_irqrestore(&n->list_lock, flags);
2390 }
2391
2392 /*
2393 * Release all resources used by a slab cache.
2394 */
2395 static inline int kmem_cache_close(struct kmem_cache *s)
2396 {
2397 int node;
2398
2399 flush_all(s);
2400
2401 /* Attempt to free all objects */
2402 free_kmem_cache_cpus(s);
2403 for_each_node_state(node, N_NORMAL_MEMORY) {
2404 struct kmem_cache_node *n = get_node(s, node);
2405
2406 free_partial(s, n);
2407 if (n->nr_partial || slabs_node(s, node))
2408 return 1;
2409 }
2410 free_kmem_cache_nodes(s);
2411 return 0;
2412 }
2413
2414 /*
2415 * Close a cache and release the kmem_cache structure
2416 * (must be used for caches created using kmem_cache_create)
2417 */
2418 void kmem_cache_destroy(struct kmem_cache *s)
2419 {
2420 down_write(&slub_lock);
2421 s->refcount--;
2422 if (!s->refcount) {
2423 list_del(&s->list);
2424 up_write(&slub_lock);
2425 if (kmem_cache_close(s)) {
2426 printk(KERN_ERR "SLUB %s: %s called for cache that "
2427 "still has objects.\n", s->name, __func__);
2428 dump_stack();
2429 }
2430 sysfs_slab_remove(s);
2431 } else
2432 up_write(&slub_lock);
2433 }
2434 EXPORT_SYMBOL(kmem_cache_destroy);
2435
2436 /********************************************************************
2437 * Kmalloc subsystem
2438 *******************************************************************/
2439
2440 struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned;
2441 EXPORT_SYMBOL(kmalloc_caches);
2442
2443 static int __init setup_slub_min_order(char *str)
2444 {
2445 get_option(&str, &slub_min_order);
2446
2447 return 1;
2448 }
2449
2450 __setup("slub_min_order=", setup_slub_min_order);
2451
2452 static int __init setup_slub_max_order(char *str)
2453 {
2454 get_option(&str, &slub_max_order);
2455
2456 return 1;
2457 }
2458
2459 __setup("slub_max_order=", setup_slub_max_order);
2460
2461 static int __init setup_slub_min_objects(char *str)
2462 {
2463 get_option(&str, &slub_min_objects);
2464
2465 return 1;
2466 }
2467
2468 __setup("slub_min_objects=", setup_slub_min_objects);
2469
2470 static int __init setup_slub_nomerge(char *str)
2471 {
2472 slub_nomerge = 1;
2473 return 1;
2474 }
2475
2476 __setup("slub_nomerge", setup_slub_nomerge);
2477
2478 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2479 const char *name, int size, gfp_t gfp_flags)
2480 {
2481 unsigned int flags = 0;
2482
2483 if (gfp_flags & SLUB_DMA)
2484 flags = SLAB_CACHE_DMA;
2485
2486 down_write(&slub_lock);
2487 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2488 flags | __KMALLOC_CACHE, NULL))
2489 goto panic;
2490
2491 list_add(&s->list, &slab_caches);
2492 up_write(&slub_lock);
2493 if (sysfs_slab_add(s))
2494 goto panic;
2495 return s;
2496
2497 panic:
2498 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2499 }
2500
2501 #ifdef CONFIG_ZONE_DMA
2502 static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1];
2503
2504 static void sysfs_add_func(struct work_struct *w)
2505 {
2506 struct kmem_cache *s;
2507
2508 down_write(&slub_lock);
2509 list_for_each_entry(s, &slab_caches, list) {
2510 if (s->flags & __SYSFS_ADD_DEFERRED) {
2511 s->flags &= ~__SYSFS_ADD_DEFERRED;
2512 sysfs_slab_add(s);
2513 }
2514 }
2515 up_write(&slub_lock);
2516 }
2517
2518 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2519
2520 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2521 {
2522 struct kmem_cache *s;
2523 char *text;
2524 size_t realsize;
2525
2526 s = kmalloc_caches_dma[index];
2527 if (s)
2528 return s;
2529
2530 /* Dynamically create dma cache */
2531 if (flags & __GFP_WAIT)
2532 down_write(&slub_lock);
2533 else {
2534 if (!down_write_trylock(&slub_lock))
2535 goto out;
2536 }
2537
2538 if (kmalloc_caches_dma[index])
2539 goto unlock_out;
2540
2541 realsize = kmalloc_caches[index].objsize;
2542 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2543 (unsigned int)realsize);
2544 s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2545
2546 if (!s || !text || !kmem_cache_open(s, flags, text,
2547 realsize, ARCH_KMALLOC_MINALIGN,
2548 SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2549 kfree(s);
2550 kfree(text);
2551 goto unlock_out;
2552 }
2553
2554 list_add(&s->list, &slab_caches);
2555 kmalloc_caches_dma[index] = s;
2556
2557 schedule_work(&sysfs_add_work);
2558
2559 unlock_out:
2560 up_write(&slub_lock);
2561 out:
2562 return kmalloc_caches_dma[index];
2563 }
2564 #endif
2565
2566 /*
2567 * Conversion table for small slabs sizes / 8 to the index in the
2568 * kmalloc array. This is necessary for slabs < 192 since we have non power
2569 * of two cache sizes there. The size of larger slabs can be determined using
2570 * fls.
2571 */
2572 static s8 size_index[24] = {
2573 3, /* 8 */
2574 4, /* 16 */
2575 5, /* 24 */
2576 5, /* 32 */
2577 6, /* 40 */
2578 6, /* 48 */
2579 6, /* 56 */
2580 6, /* 64 */
2581 1, /* 72 */
2582 1, /* 80 */
2583 1, /* 88 */
2584 1, /* 96 */
2585 7, /* 104 */
2586 7, /* 112 */
2587 7, /* 120 */
2588 7, /* 128 */
2589 2, /* 136 */
2590 2, /* 144 */
2591 2, /* 152 */
2592 2, /* 160 */
2593 2, /* 168 */
2594 2, /* 176 */
2595 2, /* 184 */
2596 2 /* 192 */
2597 };
2598
2599 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2600 {
2601 int index;
2602
2603 if (size <= 192) {
2604 if (!size)
2605 return ZERO_SIZE_PTR;
2606
2607 index = size_index[(size - 1) / 8];
2608 } else
2609 index = fls(size - 1);
2610
2611 #ifdef CONFIG_ZONE_DMA
2612 if (unlikely((flags & SLUB_DMA)))
2613 return dma_kmalloc_cache(index, flags);
2614
2615 #endif
2616 return &kmalloc_caches[index];
2617 }
2618
2619 void *__kmalloc(size_t size, gfp_t flags)
2620 {
2621 struct kmem_cache *s;
2622
2623 if (unlikely(size > PAGE_SIZE))
2624 return kmalloc_large(size, flags);
2625
2626 s = get_slab(size, flags);
2627
2628 if (unlikely(ZERO_OR_NULL_PTR(s)))
2629 return s;
2630
2631 return slab_alloc(s, flags, -1, __builtin_return_address(0));
2632 }
2633 EXPORT_SYMBOL(__kmalloc);
2634
2635 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2636 {
2637 struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
2638 get_order(size));
2639
2640 if (page)
2641 return page_address(page);
2642 else
2643 return NULL;
2644 }
2645
2646 #ifdef CONFIG_NUMA
2647 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2648 {
2649 struct kmem_cache *s;
2650
2651 if (unlikely(size > PAGE_SIZE))
2652 return kmalloc_large_node(size, flags, node);
2653
2654 s = get_slab(size, flags);
2655
2656 if (unlikely(ZERO_OR_NULL_PTR(s)))
2657 return s;
2658
2659 return slab_alloc(s, flags, node, __builtin_return_address(0));
2660 }
2661 EXPORT_SYMBOL(__kmalloc_node);
2662 #endif
2663
2664 size_t ksize(const void *object)
2665 {
2666 struct page *page;
2667 struct kmem_cache *s;
2668
2669 if (unlikely(object == ZERO_SIZE_PTR))
2670 return 0;
2671
2672 page = virt_to_head_page(object);
2673
2674 if (unlikely(!PageSlab(page)))
2675 return PAGE_SIZE << compound_order(page);
2676
2677 s = page->slab;
2678
2679 #ifdef CONFIG_SLUB_DEBUG
2680 /*
2681 * Debugging requires use of the padding between object
2682 * and whatever may come after it.
2683 */
2684 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2685 return s->objsize;
2686
2687 #endif
2688 /*
2689 * If we have the need to store the freelist pointer
2690 * back there or track user information then we can
2691 * only use the space before that information.
2692 */
2693 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2694 return s->inuse;
2695 /*
2696 * Else we can use all the padding etc for the allocation
2697 */
2698 return s->size;
2699 }
2700 EXPORT_SYMBOL(ksize);
2701
2702 void kfree(const void *x)
2703 {
2704 struct page *page;
2705 void *object = (void *)x;
2706
2707 if (unlikely(ZERO_OR_NULL_PTR(x)))
2708 return;
2709
2710 page = virt_to_head_page(x);
2711 if (unlikely(!PageSlab(page))) {
2712 put_page(page);
2713 return;
2714 }
2715 slab_free(page->slab, page, object, __builtin_return_address(0));
2716 }
2717 EXPORT_SYMBOL(kfree);
2718
2719 /*
2720 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2721 * the remaining slabs by the number of items in use. The slabs with the
2722 * most items in use come first. New allocations will then fill those up
2723 * and thus they can be removed from the partial lists.
2724 *
2725 * The slabs with the least items are placed last. This results in them
2726 * being allocated from last increasing the chance that the last objects
2727 * are freed in them.
2728 */
2729 int kmem_cache_shrink(struct kmem_cache *s)
2730 {
2731 int node;
2732 int i;
2733 struct kmem_cache_node *n;
2734 struct page *page;
2735 struct page *t;
2736 struct list_head *slabs_by_inuse =
2737 kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
2738 unsigned long flags;
2739
2740 if (!slabs_by_inuse)
2741 return -ENOMEM;
2742
2743 flush_all(s);
2744 for_each_node_state(node, N_NORMAL_MEMORY) {
2745 n = get_node(s, node);
2746
2747 if (!n->nr_partial)
2748 continue;
2749
2750 for (i = 0; i < s->objects; i++)
2751 INIT_LIST_HEAD(slabs_by_inuse + i);
2752
2753 spin_lock_irqsave(&n->list_lock, flags);
2754
2755 /*
2756 * Build lists indexed by the items in use in each slab.
2757 *
2758 * Note that concurrent frees may occur while we hold the
2759 * list_lock. page->inuse here is the upper limit.
2760 */
2761 list_for_each_entry_safe(page, t, &n->partial, lru) {
2762 if (!page->inuse && slab_trylock(page)) {
2763 /*
2764 * Must hold slab lock here because slab_free
2765 * may have freed the last object and be
2766 * waiting to release the slab.
2767 */
2768 list_del(&page->lru);
2769 n->nr_partial--;
2770 slab_unlock(page);
2771 discard_slab(s, page);
2772 } else {
2773 list_move(&page->lru,
2774 slabs_by_inuse + page->inuse);
2775 }
2776 }
2777
2778 /*
2779 * Rebuild the partial list with the slabs filled up most
2780 * first and the least used slabs at the end.
2781 */
2782 for (i = s->objects - 1; i >= 0; i--)
2783 list_splice(slabs_by_inuse + i, n->partial.prev);
2784
2785 spin_unlock_irqrestore(&n->list_lock, flags);
2786 }
2787
2788 kfree(slabs_by_inuse);
2789 return 0;
2790 }
2791 EXPORT_SYMBOL(kmem_cache_shrink);
2792
2793 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2794 static int slab_mem_going_offline_callback(void *arg)
2795 {
2796 struct kmem_cache *s;
2797
2798 down_read(&slub_lock);
2799 list_for_each_entry(s, &slab_caches, list)
2800 kmem_cache_shrink(s);
2801 up_read(&slub_lock);
2802
2803 return 0;
2804 }
2805
2806 static void slab_mem_offline_callback(void *arg)
2807 {
2808 struct kmem_cache_node *n;
2809 struct kmem_cache *s;
2810 struct memory_notify *marg = arg;
2811 int offline_node;
2812
2813 offline_node = marg->status_change_nid;
2814
2815 /*
2816 * If the node still has available memory. we need kmem_cache_node
2817 * for it yet.
2818 */
2819 if (offline_node < 0)
2820 return;
2821
2822 down_read(&slub_lock);
2823 list_for_each_entry(s, &slab_caches, list) {
2824 n = get_node(s, offline_node);
2825 if (n) {
2826 /*
2827 * if n->nr_slabs > 0, slabs still exist on the node
2828 * that is going down. We were unable to free them,
2829 * and offline_pages() function shoudn't call this
2830 * callback. So, we must fail.
2831 */
2832 BUG_ON(slabs_node(s, offline_node));
2833
2834 s->node[offline_node] = NULL;
2835 kmem_cache_free(kmalloc_caches, n);
2836 }
2837 }
2838 up_read(&slub_lock);
2839 }
2840
2841 static int slab_mem_going_online_callback(void *arg)
2842 {
2843 struct kmem_cache_node *n;
2844 struct kmem_cache *s;
2845 struct memory_notify *marg = arg;
2846 int nid = marg->status_change_nid;
2847 int ret = 0;
2848
2849 /*
2850 * If the node's memory is already available, then kmem_cache_node is
2851 * already created. Nothing to do.
2852 */
2853 if (nid < 0)
2854 return 0;
2855
2856 /*
2857 * We are bringing a node online. No memory is availabe yet. We must
2858 * allocate a kmem_cache_node structure in order to bring the node
2859 * online.
2860 */
2861 down_read(&slub_lock);
2862 list_for_each_entry(s, &slab_caches, list) {
2863 /*
2864 * XXX: kmem_cache_alloc_node will fallback to other nodes
2865 * since memory is not yet available from the node that
2866 * is brought up.
2867 */
2868 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2869 if (!n) {
2870 ret = -ENOMEM;
2871 goto out;
2872 }
2873 init_kmem_cache_node(n);
2874 s->node[nid] = n;
2875 }
2876 out:
2877 up_read(&slub_lock);
2878 return ret;
2879 }
2880
2881 static int slab_memory_callback(struct notifier_block *self,
2882 unsigned long action, void *arg)
2883 {
2884 int ret = 0;
2885
2886 switch (action) {
2887 case MEM_GOING_ONLINE:
2888 ret = slab_mem_going_online_callback(arg);
2889 break;
2890 case MEM_GOING_OFFLINE:
2891 ret = slab_mem_going_offline_callback(arg);
2892 break;
2893 case MEM_OFFLINE:
2894 case MEM_CANCEL_ONLINE:
2895 slab_mem_offline_callback(arg);
2896 break;
2897 case MEM_ONLINE:
2898 case MEM_CANCEL_OFFLINE:
2899 break;
2900 }
2901
2902 ret = notifier_from_errno(ret);
2903 return ret;
2904 }
2905
2906 #endif /* CONFIG_MEMORY_HOTPLUG */
2907
2908 /********************************************************************
2909 * Basic setup of slabs
2910 *******************************************************************/
2911
2912 void __init kmem_cache_init(void)
2913 {
2914 int i;
2915 int caches = 0;
2916
2917 init_alloc_cpu();
2918
2919 #ifdef CONFIG_NUMA
2920 /*
2921 * Must first have the slab cache available for the allocations of the
2922 * struct kmem_cache_node's. There is special bootstrap code in
2923 * kmem_cache_open for slab_state == DOWN.
2924 */
2925 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2926 sizeof(struct kmem_cache_node), GFP_KERNEL);
2927 kmalloc_caches[0].refcount = -1;
2928 caches++;
2929
2930 hotplug_memory_notifier(slab_memory_callback, 1);
2931 #endif
2932
2933 /* Able to allocate the per node structures */
2934 slab_state = PARTIAL;
2935
2936 /* Caches that are not of the two-to-the-power-of size */
2937 if (KMALLOC_MIN_SIZE <= 64) {
2938 create_kmalloc_cache(&kmalloc_caches[1],
2939 "kmalloc-96", 96, GFP_KERNEL);
2940 caches++;
2941 }
2942 if (KMALLOC_MIN_SIZE <= 128) {
2943 create_kmalloc_cache(&kmalloc_caches[2],
2944 "kmalloc-192", 192, GFP_KERNEL);
2945 caches++;
2946 }
2947
2948 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) {
2949 create_kmalloc_cache(&kmalloc_caches[i],
2950 "kmalloc", 1 << i, GFP_KERNEL);
2951 caches++;
2952 }
2953
2954
2955 /*
2956 * Patch up the size_index table if we have strange large alignment
2957 * requirements for the kmalloc array. This is only the case for
2958 * MIPS it seems. The standard arches will not generate any code here.
2959 *
2960 * Largest permitted alignment is 256 bytes due to the way we
2961 * handle the index determination for the smaller caches.
2962 *
2963 * Make sure that nothing crazy happens if someone starts tinkering
2964 * around with ARCH_KMALLOC_MINALIGN
2965 */
2966 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
2967 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
2968
2969 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
2970 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
2971
2972 slab_state = UP;
2973
2974 /* Provide the correct kmalloc names now that the caches are up */
2975 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++)
2976 kmalloc_caches[i]. name =
2977 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
2978
2979 #ifdef CONFIG_SMP
2980 register_cpu_notifier(&slab_notifier);
2981 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
2982 nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
2983 #else
2984 kmem_size = sizeof(struct kmem_cache);
2985 #endif
2986
2987 printk(KERN_INFO
2988 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
2989 " CPUs=%d, Nodes=%d\n",
2990 caches, cache_line_size(),
2991 slub_min_order, slub_max_order, slub_min_objects,
2992 nr_cpu_ids, nr_node_ids);
2993 }
2994
2995 /*
2996 * Find a mergeable slab cache
2997 */
2998 static int slab_unmergeable(struct kmem_cache *s)
2999 {
3000 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3001 return 1;
3002
3003 if ((s->flags & __PAGE_ALLOC_FALLBACK))
3004 return 1;
3005
3006 if (s->ctor)
3007 return 1;
3008
3009 /*
3010 * We may have set a slab to be unmergeable during bootstrap.
3011 */
3012 if (s->refcount < 0)
3013 return 1;
3014
3015 return 0;
3016 }
3017
3018 static struct kmem_cache *find_mergeable(size_t size,
3019 size_t align, unsigned long flags, const char *name,
3020 void (*ctor)(struct kmem_cache *, void *))
3021 {
3022 struct kmem_cache *s;
3023
3024 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3025 return NULL;
3026
3027 if (ctor)
3028 return NULL;
3029
3030 size = ALIGN(size, sizeof(void *));
3031 align = calculate_alignment(flags, align, size);
3032 size = ALIGN(size, align);
3033 flags = kmem_cache_flags(size, flags, name, NULL);
3034
3035 list_for_each_entry(s, &slab_caches, list) {
3036 if (slab_unmergeable(s))
3037 continue;
3038
3039 if (size > s->size)
3040 continue;
3041
3042 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3043 continue;
3044 /*
3045 * Check if alignment is compatible.
3046 * Courtesy of Adrian Drzewiecki
3047 */
3048 if ((s->size & ~(align - 1)) != s->size)
3049 continue;
3050
3051 if (s->size - size >= sizeof(void *))
3052 continue;
3053
3054 return s;
3055 }
3056 return NULL;
3057 }
3058
3059 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3060 size_t align, unsigned long flags,
3061 void (*ctor)(struct kmem_cache *, void *))
3062 {
3063 struct kmem_cache *s;
3064
3065 down_write(&slub_lock);
3066 s = find_mergeable(size, align, flags, name, ctor);
3067 if (s) {
3068 int cpu;
3069
3070 s->refcount++;
3071 /*
3072 * Adjust the object sizes so that we clear
3073 * the complete object on kzalloc.
3074 */
3075 s->objsize = max(s->objsize, (int)size);
3076
3077 /*
3078 * And then we need to update the object size in the
3079 * per cpu structures
3080 */
3081 for_each_online_cpu(cpu)
3082 get_cpu_slab(s, cpu)->objsize = s->objsize;
3083
3084 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3085 up_write(&slub_lock);
3086
3087 if (sysfs_slab_alias(s, name))
3088 goto err;
3089 return s;
3090 }
3091
3092 s = kmalloc(kmem_size, GFP_KERNEL);
3093 if (s) {
3094 if (kmem_cache_open(s, GFP_KERNEL, name,
3095 size, align, flags, ctor)) {
3096 list_add(&s->list, &slab_caches);
3097 up_write(&slub_lock);
3098 if (sysfs_slab_add(s))
3099 goto err;
3100 return s;
3101 }
3102 kfree(s);
3103 }
3104 up_write(&slub_lock);
3105
3106 err:
3107 if (flags & SLAB_PANIC)
3108 panic("Cannot create slabcache %s\n", name);
3109 else
3110 s = NULL;
3111 return s;
3112 }
3113 EXPORT_SYMBOL(kmem_cache_create);
3114
3115 #ifdef CONFIG_SMP
3116 /*
3117 * Use the cpu notifier to insure that the cpu slabs are flushed when
3118 * necessary.
3119 */
3120 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3121 unsigned long action, void *hcpu)
3122 {
3123 long cpu = (long)hcpu;
3124 struct kmem_cache *s;
3125 unsigned long flags;
3126
3127 switch (action) {
3128 case CPU_UP_PREPARE:
3129 case CPU_UP_PREPARE_FROZEN:
3130 init_alloc_cpu_cpu(cpu);
3131 down_read(&slub_lock);
3132 list_for_each_entry(s, &slab_caches, list)
3133 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3134 GFP_KERNEL);
3135 up_read(&slub_lock);
3136 break;
3137
3138 case CPU_UP_CANCELED:
3139 case CPU_UP_CANCELED_FROZEN:
3140 case CPU_DEAD:
3141 case CPU_DEAD_FROZEN:
3142 down_read(&slub_lock);
3143 list_for_each_entry(s, &slab_caches, list) {
3144 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3145
3146 local_irq_save(flags);
3147 __flush_cpu_slab(s, cpu);
3148 local_irq_restore(flags);
3149 free_kmem_cache_cpu(c, cpu);
3150 s->cpu_slab[cpu] = NULL;
3151 }
3152 up_read(&slub_lock);
3153 break;
3154 default:
3155 break;
3156 }
3157 return NOTIFY_OK;
3158 }
3159
3160 static struct notifier_block __cpuinitdata slab_notifier = {
3161 .notifier_call = slab_cpuup_callback
3162 };
3163
3164 #endif
3165
3166 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
3167 {
3168 struct kmem_cache *s;
3169
3170 if (unlikely(size > PAGE_SIZE))
3171 return kmalloc_large(size, gfpflags);
3172
3173 s = get_slab(size, gfpflags);
3174
3175 if (unlikely(ZERO_OR_NULL_PTR(s)))
3176 return s;
3177
3178 return slab_alloc(s, gfpflags, -1, caller);
3179 }
3180
3181 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3182 int node, void *caller)
3183 {
3184 struct kmem_cache *s;
3185
3186 if (unlikely(size > PAGE_SIZE))
3187 return kmalloc_large_node(size, gfpflags, node);
3188
3189 s = get_slab(size, gfpflags);
3190
3191 if (unlikely(ZERO_OR_NULL_PTR(s)))
3192 return s;
3193
3194 return slab_alloc(s, gfpflags, node, caller);
3195 }
3196
3197 #if (defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)) || defined(CONFIG_SLABINFO)
3198 static unsigned long count_partial(struct kmem_cache_node *n)
3199 {
3200 unsigned long flags;
3201 unsigned long x = 0;
3202 struct page *page;
3203
3204 spin_lock_irqsave(&n->list_lock, flags);
3205 list_for_each_entry(page, &n->partial, lru)
3206 x += page->inuse;
3207 spin_unlock_irqrestore(&n->list_lock, flags);
3208 return x;
3209 }
3210 #endif
3211
3212 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
3213 static int validate_slab(struct kmem_cache *s, struct page *page,
3214 unsigned long *map)
3215 {
3216 void *p;
3217 void *addr = page_address(page);
3218
3219 if (!check_slab(s, page) ||
3220 !on_freelist(s, page, NULL))
3221 return 0;
3222
3223 /* Now we know that a valid freelist exists */
3224 bitmap_zero(map, s->objects);
3225
3226 for_each_free_object(p, s, page->freelist) {
3227 set_bit(slab_index(p, s, addr), map);
3228 if (!check_object(s, page, p, 0))
3229 return 0;
3230 }
3231
3232 for_each_object(p, s, addr)
3233 if (!test_bit(slab_index(p, s, addr), map))
3234 if (!check_object(s, page, p, 1))
3235 return 0;
3236 return 1;
3237 }
3238
3239 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3240 unsigned long *map)
3241 {
3242 if (slab_trylock(page)) {
3243 validate_slab(s, page, map);
3244 slab_unlock(page);
3245 } else
3246 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3247 s->name, page);
3248
3249 if (s->flags & DEBUG_DEFAULT_FLAGS) {
3250 if (!SlabDebug(page))
3251 printk(KERN_ERR "SLUB %s: SlabDebug not set "
3252 "on slab 0x%p\n", s->name, page);
3253 } else {
3254 if (SlabDebug(page))
3255 printk(KERN_ERR "SLUB %s: SlabDebug set on "
3256 "slab 0x%p\n", s->name, page);
3257 }
3258 }
3259
3260 static int validate_slab_node(struct kmem_cache *s,
3261 struct kmem_cache_node *n, unsigned long *map)
3262 {
3263 unsigned long count = 0;
3264 struct page *page;
3265 unsigned long flags;
3266
3267 spin_lock_irqsave(&n->list_lock, flags);
3268
3269 list_for_each_entry(page, &n->partial, lru) {
3270 validate_slab_slab(s, page, map);
3271 count++;
3272 }
3273 if (count != n->nr_partial)
3274 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3275 "counter=%ld\n", s->name, count, n->nr_partial);
3276
3277 if (!(s->flags & SLAB_STORE_USER))
3278 goto out;
3279
3280 list_for_each_entry(page, &n->full, lru) {
3281 validate_slab_slab(s, page, map);
3282 count++;
3283 }
3284 if (count != atomic_long_read(&n->nr_slabs))
3285 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3286 "counter=%ld\n", s->name, count,
3287 atomic_long_read(&n->nr_slabs));
3288
3289 out:
3290 spin_unlock_irqrestore(&n->list_lock, flags);
3291 return count;
3292 }
3293
3294 static long validate_slab_cache(struct kmem_cache *s)
3295 {
3296 int node;
3297 unsigned long count = 0;
3298 unsigned long *map = kmalloc(BITS_TO_LONGS(s->objects) *
3299 sizeof(unsigned long), GFP_KERNEL);
3300
3301 if (!map)
3302 return -ENOMEM;
3303
3304 flush_all(s);
3305 for_each_node_state(node, N_NORMAL_MEMORY) {
3306 struct kmem_cache_node *n = get_node(s, node);
3307
3308 count += validate_slab_node(s, n, map);
3309 }
3310 kfree(map);
3311 return count;
3312 }
3313
3314 #ifdef SLUB_RESILIENCY_TEST
3315 static void resiliency_test(void)
3316 {
3317 u8 *p;
3318
3319 printk(KERN_ERR "SLUB resiliency testing\n");
3320 printk(KERN_ERR "-----------------------\n");
3321 printk(KERN_ERR "A. Corruption after allocation\n");
3322
3323 p = kzalloc(16, GFP_KERNEL);
3324 p[16] = 0x12;
3325 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3326 " 0x12->0x%p\n\n", p + 16);
3327
3328 validate_slab_cache(kmalloc_caches + 4);
3329
3330 /* Hmmm... The next two are dangerous */
3331 p = kzalloc(32, GFP_KERNEL);
3332 p[32 + sizeof(void *)] = 0x34;
3333 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3334 " 0x34 -> -0x%p\n", p);
3335 printk(KERN_ERR
3336 "If allocated object is overwritten then not detectable\n\n");
3337
3338 validate_slab_cache(kmalloc_caches + 5);
3339 p = kzalloc(64, GFP_KERNEL);
3340 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3341 *p = 0x56;
3342 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3343 p);
3344 printk(KERN_ERR
3345 "If allocated object is overwritten then not detectable\n\n");
3346 validate_slab_cache(kmalloc_caches + 6);
3347
3348 printk(KERN_ERR "\nB. Corruption after free\n");
3349 p = kzalloc(128, GFP_KERNEL);
3350 kfree(p);
3351 *p = 0x78;
3352 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3353 validate_slab_cache(kmalloc_caches + 7);
3354
3355 p = kzalloc(256, GFP_KERNEL);
3356 kfree(p);
3357 p[50] = 0x9a;
3358 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3359 p);
3360 validate_slab_cache(kmalloc_caches + 8);
3361
3362 p = kzalloc(512, GFP_KERNEL);
3363 kfree(p);
3364 p[512] = 0xab;
3365 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3366 validate_slab_cache(kmalloc_caches + 9);
3367 }
3368 #else
3369 static void resiliency_test(void) {};
3370 #endif
3371
3372 /*
3373 * Generate lists of code addresses where slabcache objects are allocated
3374 * and freed.
3375 */
3376
3377 struct location {
3378 unsigned long count;
3379 void *addr;
3380 long long sum_time;
3381 long min_time;
3382 long max_time;
3383 long min_pid;
3384 long max_pid;
3385 cpumask_t cpus;
3386 nodemask_t nodes;
3387 };
3388
3389 struct loc_track {
3390 unsigned long max;
3391 unsigned long count;
3392 struct location *loc;
3393 };
3394
3395 static void free_loc_track(struct loc_track *t)
3396 {
3397 if (t->max)
3398 free_pages((unsigned long)t->loc,
3399 get_order(sizeof(struct location) * t->max));
3400 }
3401
3402 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3403 {
3404 struct location *l;
3405 int order;
3406
3407 order = get_order(sizeof(struct location) * max);
3408
3409 l = (void *)__get_free_pages(flags, order);
3410 if (!l)
3411 return 0;
3412
3413 if (t->count) {
3414 memcpy(l, t->loc, sizeof(struct location) * t->count);
3415 free_loc_track(t);
3416 }
3417 t->max = max;
3418 t->loc = l;
3419 return 1;
3420 }
3421
3422 static int add_location(struct loc_track *t, struct kmem_cache *s,
3423 const struct track *track)
3424 {
3425 long start, end, pos;
3426 struct location *l;
3427 void *caddr;
3428 unsigned long age = jiffies - track->when;
3429
3430 start = -1;
3431 end = t->count;
3432
3433 for ( ; ; ) {
3434 pos = start + (end - start + 1) / 2;
3435
3436 /*
3437 * There is nothing at "end". If we end up there
3438 * we need to add something to before end.
3439 */
3440 if (pos == end)
3441 break;
3442
3443 caddr = t->loc[pos].addr;
3444 if (track->addr == caddr) {
3445
3446 l = &t->loc[pos];
3447 l->count++;
3448 if (track->when) {
3449 l->sum_time += age;
3450 if (age < l->min_time)
3451 l->min_time = age;
3452 if (age > l->max_time)
3453 l->max_time = age;
3454
3455 if (track->pid < l->min_pid)
3456 l->min_pid = track->pid;
3457 if (track->pid > l->max_pid)
3458 l->max_pid = track->pid;
3459
3460 cpu_set(track->cpu, l->cpus);
3461 }
3462 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3463 return 1;
3464 }
3465
3466 if (track->addr < caddr)
3467 end = pos;
3468 else
3469 start = pos;
3470 }
3471
3472 /*
3473 * Not found. Insert new tracking element.
3474 */
3475 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3476 return 0;
3477
3478 l = t->loc + pos;
3479 if (pos < t->count)
3480 memmove(l + 1, l,
3481 (t->count - pos) * sizeof(struct location));
3482 t->count++;
3483 l->count = 1;
3484 l->addr = track->addr;
3485 l->sum_time = age;
3486 l->min_time = age;
3487 l->max_time = age;
3488 l->min_pid = track->pid;
3489 l->max_pid = track->pid;
3490 cpus_clear(l->cpus);
3491 cpu_set(track->cpu, l->cpus);
3492 nodes_clear(l->nodes);
3493 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3494 return 1;
3495 }
3496
3497 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3498 struct page *page, enum track_item alloc)
3499 {
3500 void *addr = page_address(page);
3501 DECLARE_BITMAP(map, s->objects);
3502 void *p;
3503
3504 bitmap_zero(map, s->objects);
3505 for_each_free_object(p, s, page->freelist)
3506 set_bit(slab_index(p, s, addr), map);
3507
3508 for_each_object(p, s, addr)
3509 if (!test_bit(slab_index(p, s, addr), map))
3510 add_location(t, s, get_track(s, p, alloc));
3511 }
3512
3513 static int list_locations(struct kmem_cache *s, char *buf,
3514 enum track_item alloc)
3515 {
3516 int len = 0;
3517 unsigned long i;
3518 struct loc_track t = { 0, 0, NULL };
3519 int node;
3520
3521 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3522 GFP_TEMPORARY))
3523 return sprintf(buf, "Out of memory\n");
3524
3525 /* Push back cpu slabs */
3526 flush_all(s);
3527
3528 for_each_node_state(node, N_NORMAL_MEMORY) {
3529 struct kmem_cache_node *n = get_node(s, node);
3530 unsigned long flags;
3531 struct page *page;
3532
3533 if (!atomic_long_read(&n->nr_slabs))
3534 continue;
3535
3536 spin_lock_irqsave(&n->list_lock, flags);
3537 list_for_each_entry(page, &n->partial, lru)
3538 process_slab(&t, s, page, alloc);
3539 list_for_each_entry(page, &n->full, lru)
3540 process_slab(&t, s, page, alloc);
3541 spin_unlock_irqrestore(&n->list_lock, flags);
3542 }
3543
3544 for (i = 0; i < t.count; i++) {
3545 struct location *l = &t.loc[i];
3546
3547 if (len > PAGE_SIZE - 100)
3548 break;
3549 len += sprintf(buf + len, "%7ld ", l->count);
3550
3551 if (l->addr)
3552 len += sprint_symbol(buf + len, (unsigned long)l->addr);
3553 else
3554 len += sprintf(buf + len, "<not-available>");
3555
3556 if (l->sum_time != l->min_time) {
3557 unsigned long remainder;
3558
3559 len += sprintf(buf + len, " age=%ld/%ld/%ld",
3560 l->min_time,
3561 div_long_long_rem(l->sum_time, l->count, &remainder),
3562 l->max_time);
3563 } else
3564 len += sprintf(buf + len, " age=%ld",
3565 l->min_time);
3566
3567 if (l->min_pid != l->max_pid)
3568 len += sprintf(buf + len, " pid=%ld-%ld",
3569 l->min_pid, l->max_pid);
3570 else
3571 len += sprintf(buf + len, " pid=%ld",
3572 l->min_pid);
3573
3574 if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
3575 len < PAGE_SIZE - 60) {
3576 len += sprintf(buf + len, " cpus=");
3577 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3578 l->cpus);
3579 }
3580
3581 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3582 len < PAGE_SIZE - 60) {
3583 len += sprintf(buf + len, " nodes=");
3584 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3585 l->nodes);
3586 }
3587
3588 len += sprintf(buf + len, "\n");
3589 }
3590
3591 free_loc_track(&t);
3592 if (!t.count)
3593 len += sprintf(buf, "No data\n");
3594 return len;
3595 }
3596
3597 enum slab_stat_type {
3598 SL_FULL,
3599 SL_PARTIAL,
3600 SL_CPU,
3601 SL_OBJECTS
3602 };
3603
3604 #define SO_FULL (1 << SL_FULL)
3605 #define SO_PARTIAL (1 << SL_PARTIAL)
3606 #define SO_CPU (1 << SL_CPU)
3607 #define SO_OBJECTS (1 << SL_OBJECTS)
3608
3609 static ssize_t show_slab_objects(struct kmem_cache *s,
3610 char *buf, unsigned long flags)
3611 {
3612 unsigned long total = 0;
3613 int cpu;
3614 int node;
3615 int x;
3616 unsigned long *nodes;
3617 unsigned long *per_cpu;
3618
3619 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3620 if (!nodes)
3621 return -ENOMEM;
3622 per_cpu = nodes + nr_node_ids;
3623
3624 for_each_possible_cpu(cpu) {
3625 struct page *page;
3626 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3627
3628 if (!c)
3629 continue;
3630
3631 page = c->page;
3632 node = c->node;
3633 if (node < 0)
3634 continue;
3635 if (page) {
3636 if (flags & SO_CPU) {
3637 if (flags & SO_OBJECTS)
3638 x = page->inuse;
3639 else
3640 x = 1;
3641 total += x;
3642 nodes[node] += x;
3643 }
3644 per_cpu[node]++;
3645 }
3646 }
3647
3648 for_each_node_state(node, N_NORMAL_MEMORY) {
3649 struct kmem_cache_node *n = get_node(s, node);
3650
3651 if (flags & SO_PARTIAL) {
3652 if (flags & SO_OBJECTS)
3653 x = count_partial(n);
3654 else
3655 x = n->nr_partial;
3656 total += x;
3657 nodes[node] += x;
3658 }
3659
3660 if (flags & SO_FULL) {
3661 int full_slabs = atomic_long_read(&n->nr_slabs)
3662 - per_cpu[node]
3663 - n->nr_partial;
3664
3665 if (flags & SO_OBJECTS)
3666 x = full_slabs * s->objects;
3667 else
3668 x = full_slabs;
3669 total += x;
3670 nodes[node] += x;
3671 }
3672 }
3673
3674 x = sprintf(buf, "%lu", total);
3675 #ifdef CONFIG_NUMA
3676 for_each_node_state(node, N_NORMAL_MEMORY)
3677 if (nodes[node])
3678 x += sprintf(buf + x, " N%d=%lu",
3679 node, nodes[node]);
3680 #endif
3681 kfree(nodes);
3682 return x + sprintf(buf + x, "\n");
3683 }
3684
3685 static int any_slab_objects(struct kmem_cache *s)
3686 {
3687 int node;
3688 int cpu;
3689
3690 for_each_possible_cpu(cpu) {
3691 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3692
3693 if (c && c->page)
3694 return 1;
3695 }
3696
3697 for_each_online_node(node) {
3698 struct kmem_cache_node *n = get_node(s, node);
3699
3700 if (!n)
3701 continue;
3702
3703 if (n->nr_partial || atomic_long_read(&n->nr_slabs))
3704 return 1;
3705 }
3706 return 0;
3707 }
3708
3709 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3710 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3711
3712 struct slab_attribute {
3713 struct attribute attr;
3714 ssize_t (*show)(struct kmem_cache *s, char *buf);
3715 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3716 };
3717
3718 #define SLAB_ATTR_RO(_name) \
3719 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3720
3721 #define SLAB_ATTR(_name) \
3722 static struct slab_attribute _name##_attr = \
3723 __ATTR(_name, 0644, _name##_show, _name##_store)
3724
3725 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3726 {
3727 return sprintf(buf, "%d\n", s->size);
3728 }
3729 SLAB_ATTR_RO(slab_size);
3730
3731 static ssize_t align_show(struct kmem_cache *s, char *buf)
3732 {
3733 return sprintf(buf, "%d\n", s->align);
3734 }
3735 SLAB_ATTR_RO(align);
3736
3737 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3738 {
3739 return sprintf(buf, "%d\n", s->objsize);
3740 }
3741 SLAB_ATTR_RO(object_size);
3742
3743 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3744 {
3745 return sprintf(buf, "%d\n", s->objects);
3746 }
3747 SLAB_ATTR_RO(objs_per_slab);
3748
3749 static ssize_t order_show(struct kmem_cache *s, char *buf)
3750 {
3751 return sprintf(buf, "%d\n", s->order);
3752 }
3753 SLAB_ATTR_RO(order);
3754
3755 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3756 {
3757 if (s->ctor) {
3758 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3759
3760 return n + sprintf(buf + n, "\n");
3761 }
3762 return 0;
3763 }
3764 SLAB_ATTR_RO(ctor);
3765
3766 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3767 {
3768 return sprintf(buf, "%d\n", s->refcount - 1);
3769 }
3770 SLAB_ATTR_RO(aliases);
3771
3772 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3773 {
3774 return show_slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
3775 }
3776 SLAB_ATTR_RO(slabs);
3777
3778 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3779 {
3780 return show_slab_objects(s, buf, SO_PARTIAL);
3781 }
3782 SLAB_ATTR_RO(partial);
3783
3784 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3785 {
3786 return show_slab_objects(s, buf, SO_CPU);
3787 }
3788 SLAB_ATTR_RO(cpu_slabs);
3789
3790 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3791 {
3792 return show_slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
3793 }
3794 SLAB_ATTR_RO(objects);
3795
3796 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3797 {
3798 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3799 }
3800
3801 static ssize_t sanity_checks_store(struct kmem_cache *s,
3802 const char *buf, size_t length)
3803 {
3804 s->flags &= ~SLAB_DEBUG_FREE;
3805 if (buf[0] == '1')
3806 s->flags |= SLAB_DEBUG_FREE;
3807 return length;
3808 }
3809 SLAB_ATTR(sanity_checks);
3810
3811 static ssize_t trace_show(struct kmem_cache *s, char *buf)
3812 {
3813 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3814 }
3815
3816 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3817 size_t length)
3818 {
3819 s->flags &= ~SLAB_TRACE;
3820 if (buf[0] == '1')
3821 s->flags |= SLAB_TRACE;
3822 return length;
3823 }
3824 SLAB_ATTR(trace);
3825
3826 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3827 {
3828 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3829 }
3830
3831 static ssize_t reclaim_account_store(struct kmem_cache *s,
3832 const char *buf, size_t length)
3833 {
3834 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3835 if (buf[0] == '1')
3836 s->flags |= SLAB_RECLAIM_ACCOUNT;
3837 return length;
3838 }
3839 SLAB_ATTR(reclaim_account);
3840
3841 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3842 {
3843 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
3844 }
3845 SLAB_ATTR_RO(hwcache_align);
3846
3847 #ifdef CONFIG_ZONE_DMA
3848 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3849 {
3850 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3851 }
3852 SLAB_ATTR_RO(cache_dma);
3853 #endif
3854
3855 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3856 {
3857 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3858 }
3859 SLAB_ATTR_RO(destroy_by_rcu);
3860
3861 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3862 {
3863 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3864 }
3865
3866 static ssize_t red_zone_store(struct kmem_cache *s,
3867 const char *buf, size_t length)
3868 {
3869 if (any_slab_objects(s))
3870 return -EBUSY;
3871
3872 s->flags &= ~SLAB_RED_ZONE;
3873 if (buf[0] == '1')
3874 s->flags |= SLAB_RED_ZONE;
3875 calculate_sizes(s);
3876 return length;
3877 }
3878 SLAB_ATTR(red_zone);
3879
3880 static ssize_t poison_show(struct kmem_cache *s, char *buf)
3881 {
3882 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3883 }
3884
3885 static ssize_t poison_store(struct kmem_cache *s,
3886 const char *buf, size_t length)
3887 {
3888 if (any_slab_objects(s))
3889 return -EBUSY;
3890
3891 s->flags &= ~SLAB_POISON;
3892 if (buf[0] == '1')
3893 s->flags |= SLAB_POISON;
3894 calculate_sizes(s);
3895 return length;
3896 }
3897 SLAB_ATTR(poison);
3898
3899 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3900 {
3901 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3902 }
3903
3904 static ssize_t store_user_store(struct kmem_cache *s,
3905 const char *buf, size_t length)
3906 {
3907 if (any_slab_objects(s))
3908 return -EBUSY;
3909
3910 s->flags &= ~SLAB_STORE_USER;
3911 if (buf[0] == '1')
3912 s->flags |= SLAB_STORE_USER;
3913 calculate_sizes(s);
3914 return length;
3915 }
3916 SLAB_ATTR(store_user);
3917
3918 static ssize_t validate_show(struct kmem_cache *s, char *buf)
3919 {
3920 return 0;
3921 }
3922
3923 static ssize_t validate_store(struct kmem_cache *s,
3924 const char *buf, size_t length)
3925 {
3926 int ret = -EINVAL;
3927
3928 if (buf[0] == '1') {
3929 ret = validate_slab_cache(s);
3930 if (ret >= 0)
3931 ret = length;
3932 }
3933 return ret;
3934 }
3935 SLAB_ATTR(validate);
3936
3937 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
3938 {
3939 return 0;
3940 }
3941
3942 static ssize_t shrink_store(struct kmem_cache *s,
3943 const char *buf, size_t length)
3944 {
3945 if (buf[0] == '1') {
3946 int rc = kmem_cache_shrink(s);
3947
3948 if (rc)
3949 return rc;
3950 } else
3951 return -EINVAL;
3952 return length;
3953 }
3954 SLAB_ATTR(shrink);
3955
3956 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
3957 {
3958 if (!(s->flags & SLAB_STORE_USER))
3959 return -ENOSYS;
3960 return list_locations(s, buf, TRACK_ALLOC);
3961 }
3962 SLAB_ATTR_RO(alloc_calls);
3963
3964 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
3965 {
3966 if (!(s->flags & SLAB_STORE_USER))
3967 return -ENOSYS;
3968 return list_locations(s, buf, TRACK_FREE);
3969 }
3970 SLAB_ATTR_RO(free_calls);
3971
3972 #ifdef CONFIG_NUMA
3973 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
3974 {
3975 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
3976 }
3977
3978 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
3979 const char *buf, size_t length)
3980 {
3981 int n = simple_strtoul(buf, NULL, 10);
3982
3983 if (n < 100)
3984 s->remote_node_defrag_ratio = n * 10;
3985 return length;
3986 }
3987 SLAB_ATTR(remote_node_defrag_ratio);
3988 #endif
3989
3990 #ifdef CONFIG_SLUB_STATS
3991 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
3992 {
3993 unsigned long sum = 0;
3994 int cpu;
3995 int len;
3996 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
3997
3998 if (!data)
3999 return -ENOMEM;
4000
4001 for_each_online_cpu(cpu) {
4002 unsigned x = get_cpu_slab(s, cpu)->stat[si];
4003
4004 data[cpu] = x;
4005 sum += x;
4006 }
4007
4008 len = sprintf(buf, "%lu", sum);
4009
4010 #ifdef CONFIG_SMP
4011 for_each_online_cpu(cpu) {
4012 if (data[cpu] && len < PAGE_SIZE - 20)
4013 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4014 }
4015 #endif
4016 kfree(data);
4017 return len + sprintf(buf + len, "\n");
4018 }
4019
4020 #define STAT_ATTR(si, text) \
4021 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4022 { \
4023 return show_stat(s, buf, si); \
4024 } \
4025 SLAB_ATTR_RO(text); \
4026
4027 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4028 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4029 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4030 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4031 STAT_ATTR(FREE_FROZEN, free_frozen);
4032 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4033 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4034 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4035 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4036 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4037 STAT_ATTR(FREE_SLAB, free_slab);
4038 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4039 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4040 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4041 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4042 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4043 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4044
4045 #endif
4046
4047 static struct attribute *slab_attrs[] = {
4048 &slab_size_attr.attr,
4049 &object_size_attr.attr,
4050 &objs_per_slab_attr.attr,
4051 &order_attr.attr,
4052 &objects_attr.attr,
4053 &slabs_attr.attr,
4054 &partial_attr.attr,
4055 &cpu_slabs_attr.attr,
4056 &ctor_attr.attr,
4057 &aliases_attr.attr,
4058 &align_attr.attr,
4059 &sanity_checks_attr.attr,
4060 &trace_attr.attr,
4061 &hwcache_align_attr.attr,
4062 &reclaim_account_attr.attr,
4063 &destroy_by_rcu_attr.attr,
4064 &red_zone_attr.attr,
4065 &poison_attr.attr,
4066 &store_user_attr.attr,
4067 &validate_attr.attr,
4068 &shrink_attr.attr,
4069 &alloc_calls_attr.attr,
4070 &free_calls_attr.attr,
4071 #ifdef CONFIG_ZONE_DMA
4072 &cache_dma_attr.attr,
4073 #endif
4074 #ifdef CONFIG_NUMA
4075 &remote_node_defrag_ratio_attr.attr,
4076 #endif
4077 #ifdef CONFIG_SLUB_STATS
4078 &alloc_fastpath_attr.attr,
4079 &alloc_slowpath_attr.attr,
4080 &free_fastpath_attr.attr,
4081 &free_slowpath_attr.attr,
4082 &free_frozen_attr.attr,
4083 &free_add_partial_attr.attr,
4084 &free_remove_partial_attr.attr,
4085 &alloc_from_partial_attr.attr,
4086 &alloc_slab_attr.attr,
4087 &alloc_refill_attr.attr,
4088 &free_slab_attr.attr,
4089 &cpuslab_flush_attr.attr,
4090 &deactivate_full_attr.attr,
4091 &deactivate_empty_attr.attr,
4092 &deactivate_to_head_attr.attr,
4093 &deactivate_to_tail_attr.attr,
4094 &deactivate_remote_frees_attr.attr,
4095 #endif
4096 NULL
4097 };
4098
4099 static struct attribute_group slab_attr_group = {
4100 .attrs = slab_attrs,
4101 };
4102
4103 static ssize_t slab_attr_show(struct kobject *kobj,
4104 struct attribute *attr,
4105 char *buf)
4106 {
4107 struct slab_attribute *attribute;
4108 struct kmem_cache *s;
4109 int err;
4110
4111 attribute = to_slab_attr(attr);
4112 s = to_slab(kobj);
4113
4114 if (!attribute->show)
4115 return -EIO;
4116
4117 err = attribute->show(s, buf);
4118
4119 return err;
4120 }
4121
4122 static ssize_t slab_attr_store(struct kobject *kobj,
4123 struct attribute *attr,
4124 const char *buf, size_t len)
4125 {
4126 struct slab_attribute *attribute;
4127 struct kmem_cache *s;
4128 int err;
4129
4130 attribute = to_slab_attr(attr);
4131 s = to_slab(kobj);
4132
4133 if (!attribute->store)
4134 return -EIO;
4135
4136 err = attribute->store(s, buf, len);
4137
4138 return err;
4139 }
4140
4141 static void kmem_cache_release(struct kobject *kobj)
4142 {
4143 struct kmem_cache *s = to_slab(kobj);
4144
4145 kfree(s);
4146 }
4147
4148 static struct sysfs_ops slab_sysfs_ops = {
4149 .show = slab_attr_show,
4150 .store = slab_attr_store,
4151 };
4152
4153 static struct kobj_type slab_ktype = {
4154 .sysfs_ops = &slab_sysfs_ops,
4155 .release = kmem_cache_release
4156 };
4157
4158 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4159 {
4160 struct kobj_type *ktype = get_ktype(kobj);
4161
4162 if (ktype == &slab_ktype)
4163 return 1;
4164 return 0;
4165 }
4166
4167 static struct kset_uevent_ops slab_uevent_ops = {
4168 .filter = uevent_filter,
4169 };
4170
4171 static struct kset *slab_kset;
4172
4173 #define ID_STR_LENGTH 64
4174
4175 /* Create a unique string id for a slab cache:
4176 *
4177 * Format :[flags-]size
4178 */
4179 static char *create_unique_id(struct kmem_cache *s)
4180 {
4181 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4182 char *p = name;
4183
4184 BUG_ON(!name);
4185
4186 *p++ = ':';
4187 /*
4188 * First flags affecting slabcache operations. We will only
4189 * get here for aliasable slabs so we do not need to support
4190 * too many flags. The flags here must cover all flags that
4191 * are matched during merging to guarantee that the id is
4192 * unique.
4193 */
4194 if (s->flags & SLAB_CACHE_DMA)
4195 *p++ = 'd';
4196 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4197 *p++ = 'a';
4198 if (s->flags & SLAB_DEBUG_FREE)
4199 *p++ = 'F';
4200 if (p != name + 1)
4201 *p++ = '-';
4202 p += sprintf(p, "%07d", s->size);
4203 BUG_ON(p > name + ID_STR_LENGTH - 1);
4204 return name;
4205 }
4206
4207 static int sysfs_slab_add(struct kmem_cache *s)
4208 {
4209 int err;
4210 const char *name;
4211 int unmergeable;
4212
4213 if (slab_state < SYSFS)
4214 /* Defer until later */
4215 return 0;
4216
4217 unmergeable = slab_unmergeable(s);
4218 if (unmergeable) {
4219 /*
4220 * Slabcache can never be merged so we can use the name proper.
4221 * This is typically the case for debug situations. In that
4222 * case we can catch duplicate names easily.
4223 */
4224 sysfs_remove_link(&slab_kset->kobj, s->name);
4225 name = s->name;
4226 } else {
4227 /*
4228 * Create a unique name for the slab as a target
4229 * for the symlinks.
4230 */
4231 name = create_unique_id(s);
4232 }
4233
4234 s->kobj.kset = slab_kset;
4235 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4236 if (err) {
4237 kobject_put(&s->kobj);
4238 return err;
4239 }
4240
4241 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4242 if (err)
4243 return err;
4244 kobject_uevent(&s->kobj, KOBJ_ADD);
4245 if (!unmergeable) {
4246 /* Setup first alias */
4247 sysfs_slab_alias(s, s->name);
4248 kfree(name);
4249 }
4250 return 0;
4251 }
4252
4253 static void sysfs_slab_remove(struct kmem_cache *s)
4254 {
4255 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4256 kobject_del(&s->kobj);
4257 kobject_put(&s->kobj);
4258 }
4259
4260 /*
4261 * Need to buffer aliases during bootup until sysfs becomes
4262 * available lest we loose that information.
4263 */
4264 struct saved_alias {
4265 struct kmem_cache *s;
4266 const char *name;
4267 struct saved_alias *next;
4268 };
4269
4270 static struct saved_alias *alias_list;
4271
4272 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4273 {
4274 struct saved_alias *al;
4275
4276 if (slab_state == SYSFS) {
4277 /*
4278 * If we have a leftover link then remove it.
4279 */
4280 sysfs_remove_link(&slab_kset->kobj, name);
4281 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4282 }
4283
4284 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4285 if (!al)
4286 return -ENOMEM;
4287
4288 al->s = s;
4289 al->name = name;
4290 al->next = alias_list;
4291 alias_list = al;
4292 return 0;
4293 }
4294
4295 static int __init slab_sysfs_init(void)
4296 {
4297 struct kmem_cache *s;
4298 int err;
4299
4300 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4301 if (!slab_kset) {
4302 printk(KERN_ERR "Cannot register slab subsystem.\n");
4303 return -ENOSYS;
4304 }
4305
4306 slab_state = SYSFS;
4307
4308 list_for_each_entry(s, &slab_caches, list) {
4309 err = sysfs_slab_add(s);
4310 if (err)
4311 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4312 " to sysfs\n", s->name);
4313 }
4314
4315 while (alias_list) {
4316 struct saved_alias *al = alias_list;
4317
4318 alias_list = alias_list->next;
4319 err = sysfs_slab_alias(al->s, al->name);
4320 if (err)
4321 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4322 " %s to sysfs\n", s->name);
4323 kfree(al);
4324 }
4325
4326 resiliency_test();
4327 return 0;
4328 }
4329
4330 __initcall(slab_sysfs_init);
4331 #endif
4332
4333 /*
4334 * The /proc/slabinfo ABI
4335 */
4336 #ifdef CONFIG_SLABINFO
4337
4338 ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4339 size_t count, loff_t *ppos)
4340 {
4341 return -EINVAL;
4342 }
4343
4344
4345 static void print_slabinfo_header(struct seq_file *m)
4346 {
4347 seq_puts(m, "slabinfo - version: 2.1\n");
4348 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4349 "<objperslab> <pagesperslab>");
4350 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4351 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4352 seq_putc(m, '\n');
4353 }
4354
4355 static void *s_start(struct seq_file *m, loff_t *pos)
4356 {
4357 loff_t n = *pos;
4358
4359 down_read(&slub_lock);
4360 if (!n)
4361 print_slabinfo_header(m);
4362
4363 return seq_list_start(&slab_caches, *pos);
4364 }
4365
4366 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4367 {
4368 return seq_list_next(p, &slab_caches, pos);
4369 }
4370
4371 static void s_stop(struct seq_file *m, void *p)
4372 {
4373 up_read(&slub_lock);
4374 }
4375
4376 static int s_show(struct seq_file *m, void *p)
4377 {
4378 unsigned long nr_partials = 0;
4379 unsigned long nr_slabs = 0;
4380 unsigned long nr_inuse = 0;
4381 unsigned long nr_objs;
4382 struct kmem_cache *s;
4383 int node;
4384
4385 s = list_entry(p, struct kmem_cache, list);
4386
4387 for_each_online_node(node) {
4388 struct kmem_cache_node *n = get_node(s, node);
4389
4390 if (!n)
4391 continue;
4392
4393 nr_partials += n->nr_partial;
4394 nr_slabs += atomic_long_read(&n->nr_slabs);
4395 nr_inuse += count_partial(n);
4396 }
4397
4398 nr_objs = nr_slabs * s->objects;
4399 nr_inuse += (nr_slabs - nr_partials) * s->objects;
4400
4401 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4402 nr_objs, s->size, s->objects, (1 << s->order));
4403 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4404 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4405 0UL);
4406 seq_putc(m, '\n');
4407 return 0;
4408 }
4409
4410 const struct seq_operations slabinfo_op = {
4411 .start = s_start,
4412 .next = s_next,
4413 .stop = s_stop,
4414 .show = s_show,
4415 };
4416
4417 #endif /* CONFIG_SLABINFO */
This page took 0.114764 seconds and 4 git commands to generate.