SLUB: Get rid of dynamic DMA kmalloc cache allocation
[deliverable/linux.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 */
10
11 #include <linux/mm.h>
12 #include <linux/swap.h> /* struct reclaim_state */
13 #include <linux/module.h>
14 #include <linux/bit_spinlock.h>
15 #include <linux/interrupt.h>
16 #include <linux/bitops.h>
17 #include <linux/slab.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/kmemtrace.h>
21 #include <linux/kmemcheck.h>
22 #include <linux/cpu.h>
23 #include <linux/cpuset.h>
24 #include <linux/mempolicy.h>
25 #include <linux/ctype.h>
26 #include <linux/debugobjects.h>
27 #include <linux/kallsyms.h>
28 #include <linux/memory.h>
29 #include <linux/math64.h>
30 #include <linux/fault-inject.h>
31
32 /*
33 * Lock order:
34 * 1. slab_lock(page)
35 * 2. slab->list_lock
36 *
37 * The slab_lock protects operations on the object of a particular
38 * slab and its metadata in the page struct. If the slab lock
39 * has been taken then no allocations nor frees can be performed
40 * on the objects in the slab nor can the slab be added or removed
41 * from the partial or full lists since this would mean modifying
42 * the page_struct of the slab.
43 *
44 * The list_lock protects the partial and full list on each node and
45 * the partial slab counter. If taken then no new slabs may be added or
46 * removed from the lists nor make the number of partial slabs be modified.
47 * (Note that the total number of slabs is an atomic value that may be
48 * modified without taking the list lock).
49 *
50 * The list_lock is a centralized lock and thus we avoid taking it as
51 * much as possible. As long as SLUB does not have to handle partial
52 * slabs, operations can continue without any centralized lock. F.e.
53 * allocating a long series of objects that fill up slabs does not require
54 * the list lock.
55 *
56 * The lock order is sometimes inverted when we are trying to get a slab
57 * off a list. We take the list_lock and then look for a page on the list
58 * to use. While we do that objects in the slabs may be freed. We can
59 * only operate on the slab if we have also taken the slab_lock. So we use
60 * a slab_trylock() on the slab. If trylock was successful then no frees
61 * can occur anymore and we can use the slab for allocations etc. If the
62 * slab_trylock() does not succeed then frees are in progress in the slab and
63 * we must stay away from it for a while since we may cause a bouncing
64 * cacheline if we try to acquire the lock. So go onto the next slab.
65 * If all pages are busy then we may allocate a new slab instead of reusing
66 * a partial slab. A new slab has noone operating on it and thus there is
67 * no danger of cacheline contention.
68 *
69 * Interrupts are disabled during allocation and deallocation in order to
70 * make the slab allocator safe to use in the context of an irq. In addition
71 * interrupts are disabled to ensure that the processor does not change
72 * while handling per_cpu slabs, due to kernel preemption.
73 *
74 * SLUB assigns one slab for allocation to each processor.
75 * Allocations only occur from these slabs called cpu slabs.
76 *
77 * Slabs with free elements are kept on a partial list and during regular
78 * operations no list for full slabs is used. If an object in a full slab is
79 * freed then the slab will show up again on the partial lists.
80 * We track full slabs for debugging purposes though because otherwise we
81 * cannot scan all objects.
82 *
83 * Slabs are freed when they become empty. Teardown and setup is
84 * minimal so we rely on the page allocators per cpu caches for
85 * fast frees and allocs.
86 *
87 * Overloading of page flags that are otherwise used for LRU management.
88 *
89 * PageActive The slab is frozen and exempt from list processing.
90 * This means that the slab is dedicated to a purpose
91 * such as satisfying allocations for a specific
92 * processor. Objects may be freed in the slab while
93 * it is frozen but slab_free will then skip the usual
94 * list operations. It is up to the processor holding
95 * the slab to integrate the slab into the slab lists
96 * when the slab is no longer needed.
97 *
98 * One use of this flag is to mark slabs that are
99 * used for allocations. Then such a slab becomes a cpu
100 * slab. The cpu slab may be equipped with an additional
101 * freelist that allows lockless access to
102 * free objects in addition to the regular freelist
103 * that requires the slab lock.
104 *
105 * PageError Slab requires special handling due to debug
106 * options set. This moves slab handling out of
107 * the fast path and disables lockless freelists.
108 */
109
110 #ifdef CONFIG_SLUB_DEBUG
111 #define SLABDEBUG 1
112 #else
113 #define SLABDEBUG 0
114 #endif
115
116 /*
117 * Issues still to be resolved:
118 *
119 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
120 *
121 * - Variable sizing of the per node arrays
122 */
123
124 /* Enable to test recovery from slab corruption on boot */
125 #undef SLUB_RESILIENCY_TEST
126
127 /*
128 * Mininum number of partial slabs. These will be left on the partial
129 * lists even if they are empty. kmem_cache_shrink may reclaim them.
130 */
131 #define MIN_PARTIAL 5
132
133 /*
134 * Maximum number of desirable partial slabs.
135 * The existence of more partial slabs makes kmem_cache_shrink
136 * sort the partial list by the number of objects in the.
137 */
138 #define MAX_PARTIAL 10
139
140 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
141 SLAB_POISON | SLAB_STORE_USER)
142
143 /*
144 * Debugging flags that require metadata to be stored in the slab. These get
145 * disabled when slub_debug=O is used and a cache's min order increases with
146 * metadata.
147 */
148 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
149
150 /*
151 * Set of flags that will prevent slab merging
152 */
153 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
154 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE)
155
156 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
157 SLAB_CACHE_DMA | SLAB_NOTRACK)
158
159 #ifndef ARCH_KMALLOC_MINALIGN
160 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
161 #endif
162
163 #ifndef ARCH_SLAB_MINALIGN
164 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
165 #endif
166
167 #define OO_SHIFT 16
168 #define OO_MASK ((1 << OO_SHIFT) - 1)
169 #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
170
171 /* Internal SLUB flags */
172 #define __OBJECT_POISON 0x80000000 /* Poison object */
173 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
174
175 static int kmem_size = sizeof(struct kmem_cache);
176
177 #ifdef CONFIG_SMP
178 static struct notifier_block slab_notifier;
179 #endif
180
181 static enum {
182 DOWN, /* No slab functionality available */
183 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
184 UP, /* Everything works but does not show up in sysfs */
185 SYSFS /* Sysfs up */
186 } slab_state = DOWN;
187
188 /* A list of all slab caches on the system */
189 static DECLARE_RWSEM(slub_lock);
190 static LIST_HEAD(slab_caches);
191
192 /*
193 * Tracking user of a slab.
194 */
195 struct track {
196 unsigned long addr; /* Called from address */
197 int cpu; /* Was running on cpu */
198 int pid; /* Pid context */
199 unsigned long when; /* When did the operation occur */
200 };
201
202 enum track_item { TRACK_ALLOC, TRACK_FREE };
203
204 #ifdef CONFIG_SLUB_DEBUG
205 static int sysfs_slab_add(struct kmem_cache *);
206 static int sysfs_slab_alias(struct kmem_cache *, const char *);
207 static void sysfs_slab_remove(struct kmem_cache *);
208
209 #else
210 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
211 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
212 { return 0; }
213 static inline void sysfs_slab_remove(struct kmem_cache *s)
214 {
215 kfree(s);
216 }
217
218 #endif
219
220 static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
221 {
222 #ifdef CONFIG_SLUB_STATS
223 c->stat[si]++;
224 #endif
225 }
226
227 /********************************************************************
228 * Core slab cache functions
229 *******************************************************************/
230
231 int slab_is_available(void)
232 {
233 return slab_state >= UP;
234 }
235
236 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
237 {
238 #ifdef CONFIG_NUMA
239 return s->node[node];
240 #else
241 return &s->local_node;
242 #endif
243 }
244
245 /* Verify that a pointer has an address that is valid within a slab page */
246 static inline int check_valid_pointer(struct kmem_cache *s,
247 struct page *page, const void *object)
248 {
249 void *base;
250
251 if (!object)
252 return 1;
253
254 base = page_address(page);
255 if (object < base || object >= base + page->objects * s->size ||
256 (object - base) % s->size) {
257 return 0;
258 }
259
260 return 1;
261 }
262
263 /*
264 * Slow version of get and set free pointer.
265 *
266 * This version requires touching the cache lines of kmem_cache which
267 * we avoid to do in the fast alloc free paths. There we obtain the offset
268 * from the page struct.
269 */
270 static inline void *get_freepointer(struct kmem_cache *s, void *object)
271 {
272 return *(void **)(object + s->offset);
273 }
274
275 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
276 {
277 *(void **)(object + s->offset) = fp;
278 }
279
280 /* Loop over all objects in a slab */
281 #define for_each_object(__p, __s, __addr, __objects) \
282 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
283 __p += (__s)->size)
284
285 /* Scan freelist */
286 #define for_each_free_object(__p, __s, __free) \
287 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
288
289 /* Determine object index from a given position */
290 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
291 {
292 return (p - addr) / s->size;
293 }
294
295 static inline struct kmem_cache_order_objects oo_make(int order,
296 unsigned long size)
297 {
298 struct kmem_cache_order_objects x = {
299 (order << OO_SHIFT) + (PAGE_SIZE << order) / size
300 };
301
302 return x;
303 }
304
305 static inline int oo_order(struct kmem_cache_order_objects x)
306 {
307 return x.x >> OO_SHIFT;
308 }
309
310 static inline int oo_objects(struct kmem_cache_order_objects x)
311 {
312 return x.x & OO_MASK;
313 }
314
315 #ifdef CONFIG_SLUB_DEBUG
316 /*
317 * Debug settings:
318 */
319 #ifdef CONFIG_SLUB_DEBUG_ON
320 static int slub_debug = DEBUG_DEFAULT_FLAGS;
321 #else
322 static int slub_debug;
323 #endif
324
325 static char *slub_debug_slabs;
326 static int disable_higher_order_debug;
327
328 /*
329 * Object debugging
330 */
331 static void print_section(char *text, u8 *addr, unsigned int length)
332 {
333 int i, offset;
334 int newline = 1;
335 char ascii[17];
336
337 ascii[16] = 0;
338
339 for (i = 0; i < length; i++) {
340 if (newline) {
341 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
342 newline = 0;
343 }
344 printk(KERN_CONT " %02x", addr[i]);
345 offset = i % 16;
346 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
347 if (offset == 15) {
348 printk(KERN_CONT " %s\n", ascii);
349 newline = 1;
350 }
351 }
352 if (!newline) {
353 i %= 16;
354 while (i < 16) {
355 printk(KERN_CONT " ");
356 ascii[i] = ' ';
357 i++;
358 }
359 printk(KERN_CONT " %s\n", ascii);
360 }
361 }
362
363 static struct track *get_track(struct kmem_cache *s, void *object,
364 enum track_item alloc)
365 {
366 struct track *p;
367
368 if (s->offset)
369 p = object + s->offset + sizeof(void *);
370 else
371 p = object + s->inuse;
372
373 return p + alloc;
374 }
375
376 static void set_track(struct kmem_cache *s, void *object,
377 enum track_item alloc, unsigned long addr)
378 {
379 struct track *p = get_track(s, object, alloc);
380
381 if (addr) {
382 p->addr = addr;
383 p->cpu = smp_processor_id();
384 p->pid = current->pid;
385 p->when = jiffies;
386 } else
387 memset(p, 0, sizeof(struct track));
388 }
389
390 static void init_tracking(struct kmem_cache *s, void *object)
391 {
392 if (!(s->flags & SLAB_STORE_USER))
393 return;
394
395 set_track(s, object, TRACK_FREE, 0UL);
396 set_track(s, object, TRACK_ALLOC, 0UL);
397 }
398
399 static void print_track(const char *s, struct track *t)
400 {
401 if (!t->addr)
402 return;
403
404 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
405 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
406 }
407
408 static void print_tracking(struct kmem_cache *s, void *object)
409 {
410 if (!(s->flags & SLAB_STORE_USER))
411 return;
412
413 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
414 print_track("Freed", get_track(s, object, TRACK_FREE));
415 }
416
417 static void print_page_info(struct page *page)
418 {
419 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
420 page, page->objects, page->inuse, page->freelist, page->flags);
421
422 }
423
424 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
425 {
426 va_list args;
427 char buf[100];
428
429 va_start(args, fmt);
430 vsnprintf(buf, sizeof(buf), fmt, args);
431 va_end(args);
432 printk(KERN_ERR "========================================"
433 "=====================================\n");
434 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
435 printk(KERN_ERR "----------------------------------------"
436 "-------------------------------------\n\n");
437 }
438
439 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
440 {
441 va_list args;
442 char buf[100];
443
444 va_start(args, fmt);
445 vsnprintf(buf, sizeof(buf), fmt, args);
446 va_end(args);
447 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
448 }
449
450 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
451 {
452 unsigned int off; /* Offset of last byte */
453 u8 *addr = page_address(page);
454
455 print_tracking(s, p);
456
457 print_page_info(page);
458
459 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
460 p, p - addr, get_freepointer(s, p));
461
462 if (p > addr + 16)
463 print_section("Bytes b4", p - 16, 16);
464
465 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
466
467 if (s->flags & SLAB_RED_ZONE)
468 print_section("Redzone", p + s->objsize,
469 s->inuse - s->objsize);
470
471 if (s->offset)
472 off = s->offset + sizeof(void *);
473 else
474 off = s->inuse;
475
476 if (s->flags & SLAB_STORE_USER)
477 off += 2 * sizeof(struct track);
478
479 if (off != s->size)
480 /* Beginning of the filler is the free pointer */
481 print_section("Padding", p + off, s->size - off);
482
483 dump_stack();
484 }
485
486 static void object_err(struct kmem_cache *s, struct page *page,
487 u8 *object, char *reason)
488 {
489 slab_bug(s, "%s", reason);
490 print_trailer(s, page, object);
491 }
492
493 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
494 {
495 va_list args;
496 char buf[100];
497
498 va_start(args, fmt);
499 vsnprintf(buf, sizeof(buf), fmt, args);
500 va_end(args);
501 slab_bug(s, "%s", buf);
502 print_page_info(page);
503 dump_stack();
504 }
505
506 static void init_object(struct kmem_cache *s, void *object, int active)
507 {
508 u8 *p = object;
509
510 if (s->flags & __OBJECT_POISON) {
511 memset(p, POISON_FREE, s->objsize - 1);
512 p[s->objsize - 1] = POISON_END;
513 }
514
515 if (s->flags & SLAB_RED_ZONE)
516 memset(p + s->objsize,
517 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
518 s->inuse - s->objsize);
519 }
520
521 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
522 {
523 while (bytes) {
524 if (*start != (u8)value)
525 return start;
526 start++;
527 bytes--;
528 }
529 return NULL;
530 }
531
532 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
533 void *from, void *to)
534 {
535 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
536 memset(from, data, to - from);
537 }
538
539 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
540 u8 *object, char *what,
541 u8 *start, unsigned int value, unsigned int bytes)
542 {
543 u8 *fault;
544 u8 *end;
545
546 fault = check_bytes(start, value, bytes);
547 if (!fault)
548 return 1;
549
550 end = start + bytes;
551 while (end > fault && end[-1] == value)
552 end--;
553
554 slab_bug(s, "%s overwritten", what);
555 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
556 fault, end - 1, fault[0], value);
557 print_trailer(s, page, object);
558
559 restore_bytes(s, what, value, fault, end);
560 return 0;
561 }
562
563 /*
564 * Object layout:
565 *
566 * object address
567 * Bytes of the object to be managed.
568 * If the freepointer may overlay the object then the free
569 * pointer is the first word of the object.
570 *
571 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
572 * 0xa5 (POISON_END)
573 *
574 * object + s->objsize
575 * Padding to reach word boundary. This is also used for Redzoning.
576 * Padding is extended by another word if Redzoning is enabled and
577 * objsize == inuse.
578 *
579 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
580 * 0xcc (RED_ACTIVE) for objects in use.
581 *
582 * object + s->inuse
583 * Meta data starts here.
584 *
585 * A. Free pointer (if we cannot overwrite object on free)
586 * B. Tracking data for SLAB_STORE_USER
587 * C. Padding to reach required alignment boundary or at mininum
588 * one word if debugging is on to be able to detect writes
589 * before the word boundary.
590 *
591 * Padding is done using 0x5a (POISON_INUSE)
592 *
593 * object + s->size
594 * Nothing is used beyond s->size.
595 *
596 * If slabcaches are merged then the objsize and inuse boundaries are mostly
597 * ignored. And therefore no slab options that rely on these boundaries
598 * may be used with merged slabcaches.
599 */
600
601 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
602 {
603 unsigned long off = s->inuse; /* The end of info */
604
605 if (s->offset)
606 /* Freepointer is placed after the object. */
607 off += sizeof(void *);
608
609 if (s->flags & SLAB_STORE_USER)
610 /* We also have user information there */
611 off += 2 * sizeof(struct track);
612
613 if (s->size == off)
614 return 1;
615
616 return check_bytes_and_report(s, page, p, "Object padding",
617 p + off, POISON_INUSE, s->size - off);
618 }
619
620 /* Check the pad bytes at the end of a slab page */
621 static int slab_pad_check(struct kmem_cache *s, struct page *page)
622 {
623 u8 *start;
624 u8 *fault;
625 u8 *end;
626 int length;
627 int remainder;
628
629 if (!(s->flags & SLAB_POISON))
630 return 1;
631
632 start = page_address(page);
633 length = (PAGE_SIZE << compound_order(page));
634 end = start + length;
635 remainder = length % s->size;
636 if (!remainder)
637 return 1;
638
639 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
640 if (!fault)
641 return 1;
642 while (end > fault && end[-1] == POISON_INUSE)
643 end--;
644
645 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
646 print_section("Padding", end - remainder, remainder);
647
648 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
649 return 0;
650 }
651
652 static int check_object(struct kmem_cache *s, struct page *page,
653 void *object, int active)
654 {
655 u8 *p = object;
656 u8 *endobject = object + s->objsize;
657
658 if (s->flags & SLAB_RED_ZONE) {
659 unsigned int red =
660 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
661
662 if (!check_bytes_and_report(s, page, object, "Redzone",
663 endobject, red, s->inuse - s->objsize))
664 return 0;
665 } else {
666 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
667 check_bytes_and_report(s, page, p, "Alignment padding",
668 endobject, POISON_INUSE, s->inuse - s->objsize);
669 }
670 }
671
672 if (s->flags & SLAB_POISON) {
673 if (!active && (s->flags & __OBJECT_POISON) &&
674 (!check_bytes_and_report(s, page, p, "Poison", p,
675 POISON_FREE, s->objsize - 1) ||
676 !check_bytes_and_report(s, page, p, "Poison",
677 p + s->objsize - 1, POISON_END, 1)))
678 return 0;
679 /*
680 * check_pad_bytes cleans up on its own.
681 */
682 check_pad_bytes(s, page, p);
683 }
684
685 if (!s->offset && active)
686 /*
687 * Object and freepointer overlap. Cannot check
688 * freepointer while object is allocated.
689 */
690 return 1;
691
692 /* Check free pointer validity */
693 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
694 object_err(s, page, p, "Freepointer corrupt");
695 /*
696 * No choice but to zap it and thus lose the remainder
697 * of the free objects in this slab. May cause
698 * another error because the object count is now wrong.
699 */
700 set_freepointer(s, p, NULL);
701 return 0;
702 }
703 return 1;
704 }
705
706 static int check_slab(struct kmem_cache *s, struct page *page)
707 {
708 int maxobj;
709
710 VM_BUG_ON(!irqs_disabled());
711
712 if (!PageSlab(page)) {
713 slab_err(s, page, "Not a valid slab page");
714 return 0;
715 }
716
717 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
718 if (page->objects > maxobj) {
719 slab_err(s, page, "objects %u > max %u",
720 s->name, page->objects, maxobj);
721 return 0;
722 }
723 if (page->inuse > page->objects) {
724 slab_err(s, page, "inuse %u > max %u",
725 s->name, page->inuse, page->objects);
726 return 0;
727 }
728 /* Slab_pad_check fixes things up after itself */
729 slab_pad_check(s, page);
730 return 1;
731 }
732
733 /*
734 * Determine if a certain object on a page is on the freelist. Must hold the
735 * slab lock to guarantee that the chains are in a consistent state.
736 */
737 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
738 {
739 int nr = 0;
740 void *fp = page->freelist;
741 void *object = NULL;
742 unsigned long max_objects;
743
744 while (fp && nr <= page->objects) {
745 if (fp == search)
746 return 1;
747 if (!check_valid_pointer(s, page, fp)) {
748 if (object) {
749 object_err(s, page, object,
750 "Freechain corrupt");
751 set_freepointer(s, object, NULL);
752 break;
753 } else {
754 slab_err(s, page, "Freepointer corrupt");
755 page->freelist = NULL;
756 page->inuse = page->objects;
757 slab_fix(s, "Freelist cleared");
758 return 0;
759 }
760 break;
761 }
762 object = fp;
763 fp = get_freepointer(s, object);
764 nr++;
765 }
766
767 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
768 if (max_objects > MAX_OBJS_PER_PAGE)
769 max_objects = MAX_OBJS_PER_PAGE;
770
771 if (page->objects != max_objects) {
772 slab_err(s, page, "Wrong number of objects. Found %d but "
773 "should be %d", page->objects, max_objects);
774 page->objects = max_objects;
775 slab_fix(s, "Number of objects adjusted.");
776 }
777 if (page->inuse != page->objects - nr) {
778 slab_err(s, page, "Wrong object count. Counter is %d but "
779 "counted were %d", page->inuse, page->objects - nr);
780 page->inuse = page->objects - nr;
781 slab_fix(s, "Object count adjusted.");
782 }
783 return search == NULL;
784 }
785
786 static void trace(struct kmem_cache *s, struct page *page, void *object,
787 int alloc)
788 {
789 if (s->flags & SLAB_TRACE) {
790 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
791 s->name,
792 alloc ? "alloc" : "free",
793 object, page->inuse,
794 page->freelist);
795
796 if (!alloc)
797 print_section("Object", (void *)object, s->objsize);
798
799 dump_stack();
800 }
801 }
802
803 /*
804 * Tracking of fully allocated slabs for debugging purposes.
805 */
806 static void add_full(struct kmem_cache_node *n, struct page *page)
807 {
808 spin_lock(&n->list_lock);
809 list_add(&page->lru, &n->full);
810 spin_unlock(&n->list_lock);
811 }
812
813 static void remove_full(struct kmem_cache *s, struct page *page)
814 {
815 struct kmem_cache_node *n;
816
817 if (!(s->flags & SLAB_STORE_USER))
818 return;
819
820 n = get_node(s, page_to_nid(page));
821
822 spin_lock(&n->list_lock);
823 list_del(&page->lru);
824 spin_unlock(&n->list_lock);
825 }
826
827 /* Tracking of the number of slabs for debugging purposes */
828 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
829 {
830 struct kmem_cache_node *n = get_node(s, node);
831
832 return atomic_long_read(&n->nr_slabs);
833 }
834
835 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
836 {
837 return atomic_long_read(&n->nr_slabs);
838 }
839
840 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
841 {
842 struct kmem_cache_node *n = get_node(s, node);
843
844 /*
845 * May be called early in order to allocate a slab for the
846 * kmem_cache_node structure. Solve the chicken-egg
847 * dilemma by deferring the increment of the count during
848 * bootstrap (see early_kmem_cache_node_alloc).
849 */
850 if (!NUMA_BUILD || n) {
851 atomic_long_inc(&n->nr_slabs);
852 atomic_long_add(objects, &n->total_objects);
853 }
854 }
855 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
856 {
857 struct kmem_cache_node *n = get_node(s, node);
858
859 atomic_long_dec(&n->nr_slabs);
860 atomic_long_sub(objects, &n->total_objects);
861 }
862
863 /* Object debug checks for alloc/free paths */
864 static void setup_object_debug(struct kmem_cache *s, struct page *page,
865 void *object)
866 {
867 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
868 return;
869
870 init_object(s, object, 0);
871 init_tracking(s, object);
872 }
873
874 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
875 void *object, unsigned long addr)
876 {
877 if (!check_slab(s, page))
878 goto bad;
879
880 if (!on_freelist(s, page, object)) {
881 object_err(s, page, object, "Object already allocated");
882 goto bad;
883 }
884
885 if (!check_valid_pointer(s, page, object)) {
886 object_err(s, page, object, "Freelist Pointer check fails");
887 goto bad;
888 }
889
890 if (!check_object(s, page, object, 0))
891 goto bad;
892
893 /* Success perform special debug activities for allocs */
894 if (s->flags & SLAB_STORE_USER)
895 set_track(s, object, TRACK_ALLOC, addr);
896 trace(s, page, object, 1);
897 init_object(s, object, 1);
898 return 1;
899
900 bad:
901 if (PageSlab(page)) {
902 /*
903 * If this is a slab page then lets do the best we can
904 * to avoid issues in the future. Marking all objects
905 * as used avoids touching the remaining objects.
906 */
907 slab_fix(s, "Marking all objects used");
908 page->inuse = page->objects;
909 page->freelist = NULL;
910 }
911 return 0;
912 }
913
914 static int free_debug_processing(struct kmem_cache *s, struct page *page,
915 void *object, unsigned long addr)
916 {
917 if (!check_slab(s, page))
918 goto fail;
919
920 if (!check_valid_pointer(s, page, object)) {
921 slab_err(s, page, "Invalid object pointer 0x%p", object);
922 goto fail;
923 }
924
925 if (on_freelist(s, page, object)) {
926 object_err(s, page, object, "Object already free");
927 goto fail;
928 }
929
930 if (!check_object(s, page, object, 1))
931 return 0;
932
933 if (unlikely(s != page->slab)) {
934 if (!PageSlab(page)) {
935 slab_err(s, page, "Attempt to free object(0x%p) "
936 "outside of slab", object);
937 } else if (!page->slab) {
938 printk(KERN_ERR
939 "SLUB <none>: no slab for object 0x%p.\n",
940 object);
941 dump_stack();
942 } else
943 object_err(s, page, object,
944 "page slab pointer corrupt.");
945 goto fail;
946 }
947
948 /* Special debug activities for freeing objects */
949 if (!PageSlubFrozen(page) && !page->freelist)
950 remove_full(s, page);
951 if (s->flags & SLAB_STORE_USER)
952 set_track(s, object, TRACK_FREE, addr);
953 trace(s, page, object, 0);
954 init_object(s, object, 0);
955 return 1;
956
957 fail:
958 slab_fix(s, "Object at 0x%p not freed", object);
959 return 0;
960 }
961
962 static int __init setup_slub_debug(char *str)
963 {
964 slub_debug = DEBUG_DEFAULT_FLAGS;
965 if (*str++ != '=' || !*str)
966 /*
967 * No options specified. Switch on full debugging.
968 */
969 goto out;
970
971 if (*str == ',')
972 /*
973 * No options but restriction on slabs. This means full
974 * debugging for slabs matching a pattern.
975 */
976 goto check_slabs;
977
978 if (tolower(*str) == 'o') {
979 /*
980 * Avoid enabling debugging on caches if its minimum order
981 * would increase as a result.
982 */
983 disable_higher_order_debug = 1;
984 goto out;
985 }
986
987 slub_debug = 0;
988 if (*str == '-')
989 /*
990 * Switch off all debugging measures.
991 */
992 goto out;
993
994 /*
995 * Determine which debug features should be switched on
996 */
997 for (; *str && *str != ','; str++) {
998 switch (tolower(*str)) {
999 case 'f':
1000 slub_debug |= SLAB_DEBUG_FREE;
1001 break;
1002 case 'z':
1003 slub_debug |= SLAB_RED_ZONE;
1004 break;
1005 case 'p':
1006 slub_debug |= SLAB_POISON;
1007 break;
1008 case 'u':
1009 slub_debug |= SLAB_STORE_USER;
1010 break;
1011 case 't':
1012 slub_debug |= SLAB_TRACE;
1013 break;
1014 default:
1015 printk(KERN_ERR "slub_debug option '%c' "
1016 "unknown. skipped\n", *str);
1017 }
1018 }
1019
1020 check_slabs:
1021 if (*str == ',')
1022 slub_debug_slabs = str + 1;
1023 out:
1024 return 1;
1025 }
1026
1027 __setup("slub_debug", setup_slub_debug);
1028
1029 static unsigned long kmem_cache_flags(unsigned long objsize,
1030 unsigned long flags, const char *name,
1031 void (*ctor)(void *))
1032 {
1033 /*
1034 * Enable debugging if selected on the kernel commandline.
1035 */
1036 if (slub_debug && (!slub_debug_slabs ||
1037 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1038 flags |= slub_debug;
1039
1040 return flags;
1041 }
1042 #else
1043 static inline void setup_object_debug(struct kmem_cache *s,
1044 struct page *page, void *object) {}
1045
1046 static inline int alloc_debug_processing(struct kmem_cache *s,
1047 struct page *page, void *object, unsigned long addr) { return 0; }
1048
1049 static inline int free_debug_processing(struct kmem_cache *s,
1050 struct page *page, void *object, unsigned long addr) { return 0; }
1051
1052 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1053 { return 1; }
1054 static inline int check_object(struct kmem_cache *s, struct page *page,
1055 void *object, int active) { return 1; }
1056 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1057 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1058 unsigned long flags, const char *name,
1059 void (*ctor)(void *))
1060 {
1061 return flags;
1062 }
1063 #define slub_debug 0
1064
1065 #define disable_higher_order_debug 0
1066
1067 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1068 { return 0; }
1069 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1070 { return 0; }
1071 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1072 int objects) {}
1073 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1074 int objects) {}
1075 #endif
1076
1077 /*
1078 * Slab allocation and freeing
1079 */
1080 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1081 struct kmem_cache_order_objects oo)
1082 {
1083 int order = oo_order(oo);
1084
1085 flags |= __GFP_NOTRACK;
1086
1087 if (node == -1)
1088 return alloc_pages(flags, order);
1089 else
1090 return alloc_pages_node(node, flags, order);
1091 }
1092
1093 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1094 {
1095 struct page *page;
1096 struct kmem_cache_order_objects oo = s->oo;
1097 gfp_t alloc_gfp;
1098
1099 flags |= s->allocflags;
1100
1101 /*
1102 * Let the initial higher-order allocation fail under memory pressure
1103 * so we fall-back to the minimum order allocation.
1104 */
1105 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1106
1107 page = alloc_slab_page(alloc_gfp, node, oo);
1108 if (unlikely(!page)) {
1109 oo = s->min;
1110 /*
1111 * Allocation may have failed due to fragmentation.
1112 * Try a lower order alloc if possible
1113 */
1114 page = alloc_slab_page(flags, node, oo);
1115 if (!page)
1116 return NULL;
1117
1118 stat(this_cpu_ptr(s->cpu_slab), ORDER_FALLBACK);
1119 }
1120
1121 if (kmemcheck_enabled
1122 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1123 int pages = 1 << oo_order(oo);
1124
1125 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1126
1127 /*
1128 * Objects from caches that have a constructor don't get
1129 * cleared when they're allocated, so we need to do it here.
1130 */
1131 if (s->ctor)
1132 kmemcheck_mark_uninitialized_pages(page, pages);
1133 else
1134 kmemcheck_mark_unallocated_pages(page, pages);
1135 }
1136
1137 page->objects = oo_objects(oo);
1138 mod_zone_page_state(page_zone(page),
1139 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1140 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1141 1 << oo_order(oo));
1142
1143 return page;
1144 }
1145
1146 static void setup_object(struct kmem_cache *s, struct page *page,
1147 void *object)
1148 {
1149 setup_object_debug(s, page, object);
1150 if (unlikely(s->ctor))
1151 s->ctor(object);
1152 }
1153
1154 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1155 {
1156 struct page *page;
1157 void *start;
1158 void *last;
1159 void *p;
1160
1161 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1162
1163 page = allocate_slab(s,
1164 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1165 if (!page)
1166 goto out;
1167
1168 inc_slabs_node(s, page_to_nid(page), page->objects);
1169 page->slab = s;
1170 page->flags |= 1 << PG_slab;
1171 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1172 SLAB_STORE_USER | SLAB_TRACE))
1173 __SetPageSlubDebug(page);
1174
1175 start = page_address(page);
1176
1177 if (unlikely(s->flags & SLAB_POISON))
1178 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1179
1180 last = start;
1181 for_each_object(p, s, start, page->objects) {
1182 setup_object(s, page, last);
1183 set_freepointer(s, last, p);
1184 last = p;
1185 }
1186 setup_object(s, page, last);
1187 set_freepointer(s, last, NULL);
1188
1189 page->freelist = start;
1190 page->inuse = 0;
1191 out:
1192 return page;
1193 }
1194
1195 static void __free_slab(struct kmem_cache *s, struct page *page)
1196 {
1197 int order = compound_order(page);
1198 int pages = 1 << order;
1199
1200 if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
1201 void *p;
1202
1203 slab_pad_check(s, page);
1204 for_each_object(p, s, page_address(page),
1205 page->objects)
1206 check_object(s, page, p, 0);
1207 __ClearPageSlubDebug(page);
1208 }
1209
1210 kmemcheck_free_shadow(page, compound_order(page));
1211
1212 mod_zone_page_state(page_zone(page),
1213 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1214 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1215 -pages);
1216
1217 __ClearPageSlab(page);
1218 reset_page_mapcount(page);
1219 if (current->reclaim_state)
1220 current->reclaim_state->reclaimed_slab += pages;
1221 __free_pages(page, order);
1222 }
1223
1224 static void rcu_free_slab(struct rcu_head *h)
1225 {
1226 struct page *page;
1227
1228 page = container_of((struct list_head *)h, struct page, lru);
1229 __free_slab(page->slab, page);
1230 }
1231
1232 static void free_slab(struct kmem_cache *s, struct page *page)
1233 {
1234 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1235 /*
1236 * RCU free overloads the RCU head over the LRU
1237 */
1238 struct rcu_head *head = (void *)&page->lru;
1239
1240 call_rcu(head, rcu_free_slab);
1241 } else
1242 __free_slab(s, page);
1243 }
1244
1245 static void discard_slab(struct kmem_cache *s, struct page *page)
1246 {
1247 dec_slabs_node(s, page_to_nid(page), page->objects);
1248 free_slab(s, page);
1249 }
1250
1251 /*
1252 * Per slab locking using the pagelock
1253 */
1254 static __always_inline void slab_lock(struct page *page)
1255 {
1256 bit_spin_lock(PG_locked, &page->flags);
1257 }
1258
1259 static __always_inline void slab_unlock(struct page *page)
1260 {
1261 __bit_spin_unlock(PG_locked, &page->flags);
1262 }
1263
1264 static __always_inline int slab_trylock(struct page *page)
1265 {
1266 int rc = 1;
1267
1268 rc = bit_spin_trylock(PG_locked, &page->flags);
1269 return rc;
1270 }
1271
1272 /*
1273 * Management of partially allocated slabs
1274 */
1275 static void add_partial(struct kmem_cache_node *n,
1276 struct page *page, int tail)
1277 {
1278 spin_lock(&n->list_lock);
1279 n->nr_partial++;
1280 if (tail)
1281 list_add_tail(&page->lru, &n->partial);
1282 else
1283 list_add(&page->lru, &n->partial);
1284 spin_unlock(&n->list_lock);
1285 }
1286
1287 static void remove_partial(struct kmem_cache *s, struct page *page)
1288 {
1289 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1290
1291 spin_lock(&n->list_lock);
1292 list_del(&page->lru);
1293 n->nr_partial--;
1294 spin_unlock(&n->list_lock);
1295 }
1296
1297 /*
1298 * Lock slab and remove from the partial list.
1299 *
1300 * Must hold list_lock.
1301 */
1302 static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1303 struct page *page)
1304 {
1305 if (slab_trylock(page)) {
1306 list_del(&page->lru);
1307 n->nr_partial--;
1308 __SetPageSlubFrozen(page);
1309 return 1;
1310 }
1311 return 0;
1312 }
1313
1314 /*
1315 * Try to allocate a partial slab from a specific node.
1316 */
1317 static struct page *get_partial_node(struct kmem_cache_node *n)
1318 {
1319 struct page *page;
1320
1321 /*
1322 * Racy check. If we mistakenly see no partial slabs then we
1323 * just allocate an empty slab. If we mistakenly try to get a
1324 * partial slab and there is none available then get_partials()
1325 * will return NULL.
1326 */
1327 if (!n || !n->nr_partial)
1328 return NULL;
1329
1330 spin_lock(&n->list_lock);
1331 list_for_each_entry(page, &n->partial, lru)
1332 if (lock_and_freeze_slab(n, page))
1333 goto out;
1334 page = NULL;
1335 out:
1336 spin_unlock(&n->list_lock);
1337 return page;
1338 }
1339
1340 /*
1341 * Get a page from somewhere. Search in increasing NUMA distances.
1342 */
1343 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1344 {
1345 #ifdef CONFIG_NUMA
1346 struct zonelist *zonelist;
1347 struct zoneref *z;
1348 struct zone *zone;
1349 enum zone_type high_zoneidx = gfp_zone(flags);
1350 struct page *page;
1351
1352 /*
1353 * The defrag ratio allows a configuration of the tradeoffs between
1354 * inter node defragmentation and node local allocations. A lower
1355 * defrag_ratio increases the tendency to do local allocations
1356 * instead of attempting to obtain partial slabs from other nodes.
1357 *
1358 * If the defrag_ratio is set to 0 then kmalloc() always
1359 * returns node local objects. If the ratio is higher then kmalloc()
1360 * may return off node objects because partial slabs are obtained
1361 * from other nodes and filled up.
1362 *
1363 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1364 * defrag_ratio = 1000) then every (well almost) allocation will
1365 * first attempt to defrag slab caches on other nodes. This means
1366 * scanning over all nodes to look for partial slabs which may be
1367 * expensive if we do it every time we are trying to find a slab
1368 * with available objects.
1369 */
1370 if (!s->remote_node_defrag_ratio ||
1371 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1372 return NULL;
1373
1374 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1375 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1376 struct kmem_cache_node *n;
1377
1378 n = get_node(s, zone_to_nid(zone));
1379
1380 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1381 n->nr_partial > s->min_partial) {
1382 page = get_partial_node(n);
1383 if (page)
1384 return page;
1385 }
1386 }
1387 #endif
1388 return NULL;
1389 }
1390
1391 /*
1392 * Get a partial page, lock it and return it.
1393 */
1394 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1395 {
1396 struct page *page;
1397 int searchnode = (node == -1) ? numa_node_id() : node;
1398
1399 page = get_partial_node(get_node(s, searchnode));
1400 if (page || (flags & __GFP_THISNODE))
1401 return page;
1402
1403 return get_any_partial(s, flags);
1404 }
1405
1406 /*
1407 * Move a page back to the lists.
1408 *
1409 * Must be called with the slab lock held.
1410 *
1411 * On exit the slab lock will have been dropped.
1412 */
1413 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1414 {
1415 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1416 struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
1417
1418 __ClearPageSlubFrozen(page);
1419 if (page->inuse) {
1420
1421 if (page->freelist) {
1422 add_partial(n, page, tail);
1423 stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1424 } else {
1425 stat(c, DEACTIVATE_FULL);
1426 if (SLABDEBUG && PageSlubDebug(page) &&
1427 (s->flags & SLAB_STORE_USER))
1428 add_full(n, page);
1429 }
1430 slab_unlock(page);
1431 } else {
1432 stat(c, DEACTIVATE_EMPTY);
1433 if (n->nr_partial < s->min_partial) {
1434 /*
1435 * Adding an empty slab to the partial slabs in order
1436 * to avoid page allocator overhead. This slab needs
1437 * to come after the other slabs with objects in
1438 * so that the others get filled first. That way the
1439 * size of the partial list stays small.
1440 *
1441 * kmem_cache_shrink can reclaim any empty slabs from
1442 * the partial list.
1443 */
1444 add_partial(n, page, 1);
1445 slab_unlock(page);
1446 } else {
1447 slab_unlock(page);
1448 stat(__this_cpu_ptr(s->cpu_slab), FREE_SLAB);
1449 discard_slab(s, page);
1450 }
1451 }
1452 }
1453
1454 /*
1455 * Remove the cpu slab
1456 */
1457 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1458 {
1459 struct page *page = c->page;
1460 int tail = 1;
1461
1462 if (page->freelist)
1463 stat(c, DEACTIVATE_REMOTE_FREES);
1464 /*
1465 * Merge cpu freelist into slab freelist. Typically we get here
1466 * because both freelists are empty. So this is unlikely
1467 * to occur.
1468 */
1469 while (unlikely(c->freelist)) {
1470 void **object;
1471
1472 tail = 0; /* Hot objects. Put the slab first */
1473
1474 /* Retrieve object from cpu_freelist */
1475 object = c->freelist;
1476 c->freelist = c->freelist[c->offset];
1477
1478 /* And put onto the regular freelist */
1479 object[c->offset] = page->freelist;
1480 page->freelist = object;
1481 page->inuse--;
1482 }
1483 c->page = NULL;
1484 unfreeze_slab(s, page, tail);
1485 }
1486
1487 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1488 {
1489 stat(c, CPUSLAB_FLUSH);
1490 slab_lock(c->page);
1491 deactivate_slab(s, c);
1492 }
1493
1494 /*
1495 * Flush cpu slab.
1496 *
1497 * Called from IPI handler with interrupts disabled.
1498 */
1499 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1500 {
1501 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
1502
1503 if (likely(c && c->page))
1504 flush_slab(s, c);
1505 }
1506
1507 static void flush_cpu_slab(void *d)
1508 {
1509 struct kmem_cache *s = d;
1510
1511 __flush_cpu_slab(s, smp_processor_id());
1512 }
1513
1514 static void flush_all(struct kmem_cache *s)
1515 {
1516 on_each_cpu(flush_cpu_slab, s, 1);
1517 }
1518
1519 /*
1520 * Check if the objects in a per cpu structure fit numa
1521 * locality expectations.
1522 */
1523 static inline int node_match(struct kmem_cache_cpu *c, int node)
1524 {
1525 #ifdef CONFIG_NUMA
1526 if (node != -1 && c->node != node)
1527 return 0;
1528 #endif
1529 return 1;
1530 }
1531
1532 static int count_free(struct page *page)
1533 {
1534 return page->objects - page->inuse;
1535 }
1536
1537 static unsigned long count_partial(struct kmem_cache_node *n,
1538 int (*get_count)(struct page *))
1539 {
1540 unsigned long flags;
1541 unsigned long x = 0;
1542 struct page *page;
1543
1544 spin_lock_irqsave(&n->list_lock, flags);
1545 list_for_each_entry(page, &n->partial, lru)
1546 x += get_count(page);
1547 spin_unlock_irqrestore(&n->list_lock, flags);
1548 return x;
1549 }
1550
1551 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1552 {
1553 #ifdef CONFIG_SLUB_DEBUG
1554 return atomic_long_read(&n->total_objects);
1555 #else
1556 return 0;
1557 #endif
1558 }
1559
1560 static noinline void
1561 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1562 {
1563 int node;
1564
1565 printk(KERN_WARNING
1566 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1567 nid, gfpflags);
1568 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
1569 "default order: %d, min order: %d\n", s->name, s->objsize,
1570 s->size, oo_order(s->oo), oo_order(s->min));
1571
1572 if (oo_order(s->min) > get_order(s->objsize))
1573 printk(KERN_WARNING " %s debugging increased min order, use "
1574 "slub_debug=O to disable.\n", s->name);
1575
1576 for_each_online_node(node) {
1577 struct kmem_cache_node *n = get_node(s, node);
1578 unsigned long nr_slabs;
1579 unsigned long nr_objs;
1580 unsigned long nr_free;
1581
1582 if (!n)
1583 continue;
1584
1585 nr_free = count_partial(n, count_free);
1586 nr_slabs = node_nr_slabs(n);
1587 nr_objs = node_nr_objs(n);
1588
1589 printk(KERN_WARNING
1590 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
1591 node, nr_slabs, nr_objs, nr_free);
1592 }
1593 }
1594
1595 /*
1596 * Slow path. The lockless freelist is empty or we need to perform
1597 * debugging duties.
1598 *
1599 * Interrupts are disabled.
1600 *
1601 * Processing is still very fast if new objects have been freed to the
1602 * regular freelist. In that case we simply take over the regular freelist
1603 * as the lockless freelist and zap the regular freelist.
1604 *
1605 * If that is not working then we fall back to the partial lists. We take the
1606 * first element of the freelist as the object to allocate now and move the
1607 * rest of the freelist to the lockless freelist.
1608 *
1609 * And if we were unable to get a new slab from the partial slab lists then
1610 * we need to allocate a new slab. This is the slowest path since it involves
1611 * a call to the page allocator and the setup of a new slab.
1612 */
1613 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1614 unsigned long addr, struct kmem_cache_cpu *c)
1615 {
1616 void **object;
1617 struct page *new;
1618
1619 /* We handle __GFP_ZERO in the caller */
1620 gfpflags &= ~__GFP_ZERO;
1621
1622 if (!c->page)
1623 goto new_slab;
1624
1625 slab_lock(c->page);
1626 if (unlikely(!node_match(c, node)))
1627 goto another_slab;
1628
1629 stat(c, ALLOC_REFILL);
1630
1631 load_freelist:
1632 object = c->page->freelist;
1633 if (unlikely(!object))
1634 goto another_slab;
1635 if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
1636 goto debug;
1637
1638 c->freelist = object[c->offset];
1639 c->page->inuse = c->page->objects;
1640 c->page->freelist = NULL;
1641 c->node = page_to_nid(c->page);
1642 unlock_out:
1643 slab_unlock(c->page);
1644 stat(c, ALLOC_SLOWPATH);
1645 return object;
1646
1647 another_slab:
1648 deactivate_slab(s, c);
1649
1650 new_slab:
1651 new = get_partial(s, gfpflags, node);
1652 if (new) {
1653 c->page = new;
1654 stat(c, ALLOC_FROM_PARTIAL);
1655 goto load_freelist;
1656 }
1657
1658 if (gfpflags & __GFP_WAIT)
1659 local_irq_enable();
1660
1661 new = new_slab(s, gfpflags, node);
1662
1663 if (gfpflags & __GFP_WAIT)
1664 local_irq_disable();
1665
1666 if (new) {
1667 c = __this_cpu_ptr(s->cpu_slab);
1668 stat(c, ALLOC_SLAB);
1669 if (c->page)
1670 flush_slab(s, c);
1671 slab_lock(new);
1672 __SetPageSlubFrozen(new);
1673 c->page = new;
1674 goto load_freelist;
1675 }
1676 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
1677 slab_out_of_memory(s, gfpflags, node);
1678 return NULL;
1679 debug:
1680 if (!alloc_debug_processing(s, c->page, object, addr))
1681 goto another_slab;
1682
1683 c->page->inuse++;
1684 c->page->freelist = object[c->offset];
1685 c->node = -1;
1686 goto unlock_out;
1687 }
1688
1689 /*
1690 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1691 * have the fastpath folded into their functions. So no function call
1692 * overhead for requests that can be satisfied on the fastpath.
1693 *
1694 * The fastpath works by first checking if the lockless freelist can be used.
1695 * If not then __slab_alloc is called for slow processing.
1696 *
1697 * Otherwise we can simply pick the next object from the lockless free list.
1698 */
1699 static __always_inline void *slab_alloc(struct kmem_cache *s,
1700 gfp_t gfpflags, int node, unsigned long addr)
1701 {
1702 void **object;
1703 struct kmem_cache_cpu *c;
1704 unsigned long flags;
1705 unsigned long objsize;
1706
1707 gfpflags &= gfp_allowed_mask;
1708
1709 lockdep_trace_alloc(gfpflags);
1710 might_sleep_if(gfpflags & __GFP_WAIT);
1711
1712 if (should_failslab(s->objsize, gfpflags))
1713 return NULL;
1714
1715 local_irq_save(flags);
1716 c = __this_cpu_ptr(s->cpu_slab);
1717 object = c->freelist;
1718 objsize = c->objsize;
1719 if (unlikely(!object || !node_match(c, node)))
1720
1721 object = __slab_alloc(s, gfpflags, node, addr, c);
1722
1723 else {
1724 c->freelist = object[c->offset];
1725 stat(c, ALLOC_FASTPATH);
1726 }
1727 local_irq_restore(flags);
1728
1729 if (unlikely(gfpflags & __GFP_ZERO) && object)
1730 memset(object, 0, objsize);
1731
1732 kmemcheck_slab_alloc(s, gfpflags, object, c->objsize);
1733 kmemleak_alloc_recursive(object, objsize, 1, s->flags, gfpflags);
1734
1735 return object;
1736 }
1737
1738 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1739 {
1740 void *ret = slab_alloc(s, gfpflags, -1, _RET_IP_);
1741
1742 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
1743
1744 return ret;
1745 }
1746 EXPORT_SYMBOL(kmem_cache_alloc);
1747
1748 #ifdef CONFIG_TRACING
1749 void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
1750 {
1751 return slab_alloc(s, gfpflags, -1, _RET_IP_);
1752 }
1753 EXPORT_SYMBOL(kmem_cache_alloc_notrace);
1754 #endif
1755
1756 #ifdef CONFIG_NUMA
1757 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1758 {
1759 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1760
1761 trace_kmem_cache_alloc_node(_RET_IP_, ret,
1762 s->objsize, s->size, gfpflags, node);
1763
1764 return ret;
1765 }
1766 EXPORT_SYMBOL(kmem_cache_alloc_node);
1767 #endif
1768
1769 #ifdef CONFIG_TRACING
1770 void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
1771 gfp_t gfpflags,
1772 int node)
1773 {
1774 return slab_alloc(s, gfpflags, node, _RET_IP_);
1775 }
1776 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
1777 #endif
1778
1779 /*
1780 * Slow patch handling. This may still be called frequently since objects
1781 * have a longer lifetime than the cpu slabs in most processing loads.
1782 *
1783 * So we still attempt to reduce cache line usage. Just take the slab
1784 * lock and free the item. If there is no additional partial page
1785 * handling required then we can return immediately.
1786 */
1787 static void __slab_free(struct kmem_cache *s, struct page *page,
1788 void *x, unsigned long addr, unsigned int offset)
1789 {
1790 void *prior;
1791 void **object = (void *)x;
1792 struct kmem_cache_cpu *c;
1793
1794 c = __this_cpu_ptr(s->cpu_slab);
1795 stat(c, FREE_SLOWPATH);
1796 slab_lock(page);
1797
1798 if (unlikely(SLABDEBUG && PageSlubDebug(page)))
1799 goto debug;
1800
1801 checks_ok:
1802 prior = object[offset] = page->freelist;
1803 page->freelist = object;
1804 page->inuse--;
1805
1806 if (unlikely(PageSlubFrozen(page))) {
1807 stat(c, FREE_FROZEN);
1808 goto out_unlock;
1809 }
1810
1811 if (unlikely(!page->inuse))
1812 goto slab_empty;
1813
1814 /*
1815 * Objects left in the slab. If it was not on the partial list before
1816 * then add it.
1817 */
1818 if (unlikely(!prior)) {
1819 add_partial(get_node(s, page_to_nid(page)), page, 1);
1820 stat(c, FREE_ADD_PARTIAL);
1821 }
1822
1823 out_unlock:
1824 slab_unlock(page);
1825 return;
1826
1827 slab_empty:
1828 if (prior) {
1829 /*
1830 * Slab still on the partial list.
1831 */
1832 remove_partial(s, page);
1833 stat(c, FREE_REMOVE_PARTIAL);
1834 }
1835 slab_unlock(page);
1836 stat(c, FREE_SLAB);
1837 discard_slab(s, page);
1838 return;
1839
1840 debug:
1841 if (!free_debug_processing(s, page, x, addr))
1842 goto out_unlock;
1843 goto checks_ok;
1844 }
1845
1846 /*
1847 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1848 * can perform fastpath freeing without additional function calls.
1849 *
1850 * The fastpath is only possible if we are freeing to the current cpu slab
1851 * of this processor. This typically the case if we have just allocated
1852 * the item before.
1853 *
1854 * If fastpath is not possible then fall back to __slab_free where we deal
1855 * with all sorts of special processing.
1856 */
1857 static __always_inline void slab_free(struct kmem_cache *s,
1858 struct page *page, void *x, unsigned long addr)
1859 {
1860 void **object = (void *)x;
1861 struct kmem_cache_cpu *c;
1862 unsigned long flags;
1863
1864 kmemleak_free_recursive(x, s->flags);
1865 local_irq_save(flags);
1866 c = __this_cpu_ptr(s->cpu_slab);
1867 kmemcheck_slab_free(s, object, c->objsize);
1868 debug_check_no_locks_freed(object, c->objsize);
1869 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1870 debug_check_no_obj_freed(object, c->objsize);
1871 if (likely(page == c->page && c->node >= 0)) {
1872 object[c->offset] = c->freelist;
1873 c->freelist = object;
1874 stat(c, FREE_FASTPATH);
1875 } else
1876 __slab_free(s, page, x, addr, c->offset);
1877
1878 local_irq_restore(flags);
1879 }
1880
1881 void kmem_cache_free(struct kmem_cache *s, void *x)
1882 {
1883 struct page *page;
1884
1885 page = virt_to_head_page(x);
1886
1887 slab_free(s, page, x, _RET_IP_);
1888
1889 trace_kmem_cache_free(_RET_IP_, x);
1890 }
1891 EXPORT_SYMBOL(kmem_cache_free);
1892
1893 /* Figure out on which slab page the object resides */
1894 static struct page *get_object_page(const void *x)
1895 {
1896 struct page *page = virt_to_head_page(x);
1897
1898 if (!PageSlab(page))
1899 return NULL;
1900
1901 return page;
1902 }
1903
1904 /*
1905 * Object placement in a slab is made very easy because we always start at
1906 * offset 0. If we tune the size of the object to the alignment then we can
1907 * get the required alignment by putting one properly sized object after
1908 * another.
1909 *
1910 * Notice that the allocation order determines the sizes of the per cpu
1911 * caches. Each processor has always one slab available for allocations.
1912 * Increasing the allocation order reduces the number of times that slabs
1913 * must be moved on and off the partial lists and is therefore a factor in
1914 * locking overhead.
1915 */
1916
1917 /*
1918 * Mininum / Maximum order of slab pages. This influences locking overhead
1919 * and slab fragmentation. A higher order reduces the number of partial slabs
1920 * and increases the number of allocations possible without having to
1921 * take the list_lock.
1922 */
1923 static int slub_min_order;
1924 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1925 static int slub_min_objects;
1926
1927 /*
1928 * Merge control. If this is set then no merging of slab caches will occur.
1929 * (Could be removed. This was introduced to pacify the merge skeptics.)
1930 */
1931 static int slub_nomerge;
1932
1933 /*
1934 * Calculate the order of allocation given an slab object size.
1935 *
1936 * The order of allocation has significant impact on performance and other
1937 * system components. Generally order 0 allocations should be preferred since
1938 * order 0 does not cause fragmentation in the page allocator. Larger objects
1939 * be problematic to put into order 0 slabs because there may be too much
1940 * unused space left. We go to a higher order if more than 1/16th of the slab
1941 * would be wasted.
1942 *
1943 * In order to reach satisfactory performance we must ensure that a minimum
1944 * number of objects is in one slab. Otherwise we may generate too much
1945 * activity on the partial lists which requires taking the list_lock. This is
1946 * less a concern for large slabs though which are rarely used.
1947 *
1948 * slub_max_order specifies the order where we begin to stop considering the
1949 * number of objects in a slab as critical. If we reach slub_max_order then
1950 * we try to keep the page order as low as possible. So we accept more waste
1951 * of space in favor of a small page order.
1952 *
1953 * Higher order allocations also allow the placement of more objects in a
1954 * slab and thereby reduce object handling overhead. If the user has
1955 * requested a higher mininum order then we start with that one instead of
1956 * the smallest order which will fit the object.
1957 */
1958 static inline int slab_order(int size, int min_objects,
1959 int max_order, int fract_leftover)
1960 {
1961 int order;
1962 int rem;
1963 int min_order = slub_min_order;
1964
1965 if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1966 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
1967
1968 for (order = max(min_order,
1969 fls(min_objects * size - 1) - PAGE_SHIFT);
1970 order <= max_order; order++) {
1971
1972 unsigned long slab_size = PAGE_SIZE << order;
1973
1974 if (slab_size < min_objects * size)
1975 continue;
1976
1977 rem = slab_size % size;
1978
1979 if (rem <= slab_size / fract_leftover)
1980 break;
1981
1982 }
1983
1984 return order;
1985 }
1986
1987 static inline int calculate_order(int size)
1988 {
1989 int order;
1990 int min_objects;
1991 int fraction;
1992 int max_objects;
1993
1994 /*
1995 * Attempt to find best configuration for a slab. This
1996 * works by first attempting to generate a layout with
1997 * the best configuration and backing off gradually.
1998 *
1999 * First we reduce the acceptable waste in a slab. Then
2000 * we reduce the minimum objects required in a slab.
2001 */
2002 min_objects = slub_min_objects;
2003 if (!min_objects)
2004 min_objects = 4 * (fls(nr_cpu_ids) + 1);
2005 max_objects = (PAGE_SIZE << slub_max_order)/size;
2006 min_objects = min(min_objects, max_objects);
2007
2008 while (min_objects > 1) {
2009 fraction = 16;
2010 while (fraction >= 4) {
2011 order = slab_order(size, min_objects,
2012 slub_max_order, fraction);
2013 if (order <= slub_max_order)
2014 return order;
2015 fraction /= 2;
2016 }
2017 min_objects--;
2018 }
2019
2020 /*
2021 * We were unable to place multiple objects in a slab. Now
2022 * lets see if we can place a single object there.
2023 */
2024 order = slab_order(size, 1, slub_max_order, 1);
2025 if (order <= slub_max_order)
2026 return order;
2027
2028 /*
2029 * Doh this slab cannot be placed using slub_max_order.
2030 */
2031 order = slab_order(size, 1, MAX_ORDER, 1);
2032 if (order < MAX_ORDER)
2033 return order;
2034 return -ENOSYS;
2035 }
2036
2037 /*
2038 * Figure out what the alignment of the objects will be.
2039 */
2040 static unsigned long calculate_alignment(unsigned long flags,
2041 unsigned long align, unsigned long size)
2042 {
2043 /*
2044 * If the user wants hardware cache aligned objects then follow that
2045 * suggestion if the object is sufficiently large.
2046 *
2047 * The hardware cache alignment cannot override the specified
2048 * alignment though. If that is greater then use it.
2049 */
2050 if (flags & SLAB_HWCACHE_ALIGN) {
2051 unsigned long ralign = cache_line_size();
2052 while (size <= ralign / 2)
2053 ralign /= 2;
2054 align = max(align, ralign);
2055 }
2056
2057 if (align < ARCH_SLAB_MINALIGN)
2058 align = ARCH_SLAB_MINALIGN;
2059
2060 return ALIGN(align, sizeof(void *));
2061 }
2062
2063 static void init_kmem_cache_cpu(struct kmem_cache *s,
2064 struct kmem_cache_cpu *c)
2065 {
2066 c->page = NULL;
2067 c->freelist = NULL;
2068 c->node = 0;
2069 c->offset = s->offset / sizeof(void *);
2070 c->objsize = s->objsize;
2071 #ifdef CONFIG_SLUB_STATS
2072 memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
2073 #endif
2074 }
2075
2076 static void
2077 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
2078 {
2079 n->nr_partial = 0;
2080 spin_lock_init(&n->list_lock);
2081 INIT_LIST_HEAD(&n->partial);
2082 #ifdef CONFIG_SLUB_DEBUG
2083 atomic_long_set(&n->nr_slabs, 0);
2084 atomic_long_set(&n->total_objects, 0);
2085 INIT_LIST_HEAD(&n->full);
2086 #endif
2087 }
2088
2089 static DEFINE_PER_CPU(struct kmem_cache_cpu, kmalloc_percpu[SLUB_PAGE_SHIFT]);
2090
2091 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2092 {
2093 int cpu;
2094
2095 if (s < kmalloc_caches + KMALLOC_CACHES && s >= kmalloc_caches)
2096 /*
2097 * Boot time creation of the kmalloc array. Use static per cpu data
2098 * since the per cpu allocator is not available yet.
2099 */
2100 s->cpu_slab = per_cpu_var(kmalloc_percpu) + (s - kmalloc_caches);
2101 else
2102 s->cpu_slab = alloc_percpu(struct kmem_cache_cpu);
2103
2104 if (!s->cpu_slab)
2105 return 0;
2106
2107 for_each_possible_cpu(cpu)
2108 init_kmem_cache_cpu(s, per_cpu_ptr(s->cpu_slab, cpu));
2109 return 1;
2110 }
2111
2112 #ifdef CONFIG_NUMA
2113 /*
2114 * No kmalloc_node yet so do it by hand. We know that this is the first
2115 * slab on the node for this slabcache. There are no concurrent accesses
2116 * possible.
2117 *
2118 * Note that this function only works on the kmalloc_node_cache
2119 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2120 * memory on a fresh node that has no slab structures yet.
2121 */
2122 static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node)
2123 {
2124 struct page *page;
2125 struct kmem_cache_node *n;
2126 unsigned long flags;
2127
2128 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2129
2130 page = new_slab(kmalloc_caches, gfpflags, node);
2131
2132 BUG_ON(!page);
2133 if (page_to_nid(page) != node) {
2134 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2135 "node %d\n", node);
2136 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2137 "in order to be able to continue\n");
2138 }
2139
2140 n = page->freelist;
2141 BUG_ON(!n);
2142 page->freelist = get_freepointer(kmalloc_caches, n);
2143 page->inuse++;
2144 kmalloc_caches->node[node] = n;
2145 #ifdef CONFIG_SLUB_DEBUG
2146 init_object(kmalloc_caches, n, 1);
2147 init_tracking(kmalloc_caches, n);
2148 #endif
2149 init_kmem_cache_node(n, kmalloc_caches);
2150 inc_slabs_node(kmalloc_caches, node, page->objects);
2151
2152 /*
2153 * lockdep requires consistent irq usage for each lock
2154 * so even though there cannot be a race this early in
2155 * the boot sequence, we still disable irqs.
2156 */
2157 local_irq_save(flags);
2158 add_partial(n, page, 0);
2159 local_irq_restore(flags);
2160 }
2161
2162 static void free_kmem_cache_nodes(struct kmem_cache *s)
2163 {
2164 int node;
2165
2166 for_each_node_state(node, N_NORMAL_MEMORY) {
2167 struct kmem_cache_node *n = s->node[node];
2168 if (n && n != &s->local_node)
2169 kmem_cache_free(kmalloc_caches, n);
2170 s->node[node] = NULL;
2171 }
2172 }
2173
2174 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2175 {
2176 int node;
2177 int local_node;
2178
2179 if (slab_state >= UP)
2180 local_node = page_to_nid(virt_to_page(s));
2181 else
2182 local_node = 0;
2183
2184 for_each_node_state(node, N_NORMAL_MEMORY) {
2185 struct kmem_cache_node *n;
2186
2187 if (local_node == node)
2188 n = &s->local_node;
2189 else {
2190 if (slab_state == DOWN) {
2191 early_kmem_cache_node_alloc(gfpflags, node);
2192 continue;
2193 }
2194 n = kmem_cache_alloc_node(kmalloc_caches,
2195 gfpflags, node);
2196
2197 if (!n) {
2198 free_kmem_cache_nodes(s);
2199 return 0;
2200 }
2201
2202 }
2203 s->node[node] = n;
2204 init_kmem_cache_node(n, s);
2205 }
2206 return 1;
2207 }
2208 #else
2209 static void free_kmem_cache_nodes(struct kmem_cache *s)
2210 {
2211 }
2212
2213 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2214 {
2215 init_kmem_cache_node(&s->local_node, s);
2216 return 1;
2217 }
2218 #endif
2219
2220 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2221 {
2222 if (min < MIN_PARTIAL)
2223 min = MIN_PARTIAL;
2224 else if (min > MAX_PARTIAL)
2225 min = MAX_PARTIAL;
2226 s->min_partial = min;
2227 }
2228
2229 /*
2230 * calculate_sizes() determines the order and the distribution of data within
2231 * a slab object.
2232 */
2233 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2234 {
2235 unsigned long flags = s->flags;
2236 unsigned long size = s->objsize;
2237 unsigned long align = s->align;
2238 int order;
2239
2240 /*
2241 * Round up object size to the next word boundary. We can only
2242 * place the free pointer at word boundaries and this determines
2243 * the possible location of the free pointer.
2244 */
2245 size = ALIGN(size, sizeof(void *));
2246
2247 #ifdef CONFIG_SLUB_DEBUG
2248 /*
2249 * Determine if we can poison the object itself. If the user of
2250 * the slab may touch the object after free or before allocation
2251 * then we should never poison the object itself.
2252 */
2253 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2254 !s->ctor)
2255 s->flags |= __OBJECT_POISON;
2256 else
2257 s->flags &= ~__OBJECT_POISON;
2258
2259
2260 /*
2261 * If we are Redzoning then check if there is some space between the
2262 * end of the object and the free pointer. If not then add an
2263 * additional word to have some bytes to store Redzone information.
2264 */
2265 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2266 size += sizeof(void *);
2267 #endif
2268
2269 /*
2270 * With that we have determined the number of bytes in actual use
2271 * by the object. This is the potential offset to the free pointer.
2272 */
2273 s->inuse = size;
2274
2275 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2276 s->ctor)) {
2277 /*
2278 * Relocate free pointer after the object if it is not
2279 * permitted to overwrite the first word of the object on
2280 * kmem_cache_free.
2281 *
2282 * This is the case if we do RCU, have a constructor or
2283 * destructor or are poisoning the objects.
2284 */
2285 s->offset = size;
2286 size += sizeof(void *);
2287 }
2288
2289 #ifdef CONFIG_SLUB_DEBUG
2290 if (flags & SLAB_STORE_USER)
2291 /*
2292 * Need to store information about allocs and frees after
2293 * the object.
2294 */
2295 size += 2 * sizeof(struct track);
2296
2297 if (flags & SLAB_RED_ZONE)
2298 /*
2299 * Add some empty padding so that we can catch
2300 * overwrites from earlier objects rather than let
2301 * tracking information or the free pointer be
2302 * corrupted if a user writes before the start
2303 * of the object.
2304 */
2305 size += sizeof(void *);
2306 #endif
2307
2308 /*
2309 * Determine the alignment based on various parameters that the
2310 * user specified and the dynamic determination of cache line size
2311 * on bootup.
2312 */
2313 align = calculate_alignment(flags, align, s->objsize);
2314 s->align = align;
2315
2316 /*
2317 * SLUB stores one object immediately after another beginning from
2318 * offset 0. In order to align the objects we have to simply size
2319 * each object to conform to the alignment.
2320 */
2321 size = ALIGN(size, align);
2322 s->size = size;
2323 if (forced_order >= 0)
2324 order = forced_order;
2325 else
2326 order = calculate_order(size);
2327
2328 if (order < 0)
2329 return 0;
2330
2331 s->allocflags = 0;
2332 if (order)
2333 s->allocflags |= __GFP_COMP;
2334
2335 if (s->flags & SLAB_CACHE_DMA)
2336 s->allocflags |= SLUB_DMA;
2337
2338 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2339 s->allocflags |= __GFP_RECLAIMABLE;
2340
2341 /*
2342 * Determine the number of objects per slab
2343 */
2344 s->oo = oo_make(order, size);
2345 s->min = oo_make(get_order(size), size);
2346 if (oo_objects(s->oo) > oo_objects(s->max))
2347 s->max = s->oo;
2348
2349 return !!oo_objects(s->oo);
2350
2351 }
2352
2353 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2354 const char *name, size_t size,
2355 size_t align, unsigned long flags,
2356 void (*ctor)(void *))
2357 {
2358 memset(s, 0, kmem_size);
2359 s->name = name;
2360 s->ctor = ctor;
2361 s->objsize = size;
2362 s->align = align;
2363 s->flags = kmem_cache_flags(size, flags, name, ctor);
2364
2365 if (!calculate_sizes(s, -1))
2366 goto error;
2367 if (disable_higher_order_debug) {
2368 /*
2369 * Disable debugging flags that store metadata if the min slab
2370 * order increased.
2371 */
2372 if (get_order(s->size) > get_order(s->objsize)) {
2373 s->flags &= ~DEBUG_METADATA_FLAGS;
2374 s->offset = 0;
2375 if (!calculate_sizes(s, -1))
2376 goto error;
2377 }
2378 }
2379
2380 /*
2381 * The larger the object size is, the more pages we want on the partial
2382 * list to avoid pounding the page allocator excessively.
2383 */
2384 set_min_partial(s, ilog2(s->size));
2385 s->refcount = 1;
2386 #ifdef CONFIG_NUMA
2387 s->remote_node_defrag_ratio = 1000;
2388 #endif
2389 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2390 goto error;
2391
2392 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2393 return 1;
2394 free_kmem_cache_nodes(s);
2395 error:
2396 if (flags & SLAB_PANIC)
2397 panic("Cannot create slab %s size=%lu realsize=%u "
2398 "order=%u offset=%u flags=%lx\n",
2399 s->name, (unsigned long)size, s->size, oo_order(s->oo),
2400 s->offset, flags);
2401 return 0;
2402 }
2403
2404 /*
2405 * Check if a given pointer is valid
2406 */
2407 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2408 {
2409 struct page *page;
2410
2411 page = get_object_page(object);
2412
2413 if (!page || s != page->slab)
2414 /* No slab or wrong slab */
2415 return 0;
2416
2417 if (!check_valid_pointer(s, page, object))
2418 return 0;
2419
2420 /*
2421 * We could also check if the object is on the slabs freelist.
2422 * But this would be too expensive and it seems that the main
2423 * purpose of kmem_ptr_valid() is to check if the object belongs
2424 * to a certain slab.
2425 */
2426 return 1;
2427 }
2428 EXPORT_SYMBOL(kmem_ptr_validate);
2429
2430 /*
2431 * Determine the size of a slab object
2432 */
2433 unsigned int kmem_cache_size(struct kmem_cache *s)
2434 {
2435 return s->objsize;
2436 }
2437 EXPORT_SYMBOL(kmem_cache_size);
2438
2439 const char *kmem_cache_name(struct kmem_cache *s)
2440 {
2441 return s->name;
2442 }
2443 EXPORT_SYMBOL(kmem_cache_name);
2444
2445 static void list_slab_objects(struct kmem_cache *s, struct page *page,
2446 const char *text)
2447 {
2448 #ifdef CONFIG_SLUB_DEBUG
2449 void *addr = page_address(page);
2450 void *p;
2451 DECLARE_BITMAP(map, page->objects);
2452
2453 bitmap_zero(map, page->objects);
2454 slab_err(s, page, "%s", text);
2455 slab_lock(page);
2456 for_each_free_object(p, s, page->freelist)
2457 set_bit(slab_index(p, s, addr), map);
2458
2459 for_each_object(p, s, addr, page->objects) {
2460
2461 if (!test_bit(slab_index(p, s, addr), map)) {
2462 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2463 p, p - addr);
2464 print_tracking(s, p);
2465 }
2466 }
2467 slab_unlock(page);
2468 #endif
2469 }
2470
2471 /*
2472 * Attempt to free all partial slabs on a node.
2473 */
2474 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2475 {
2476 unsigned long flags;
2477 struct page *page, *h;
2478
2479 spin_lock_irqsave(&n->list_lock, flags);
2480 list_for_each_entry_safe(page, h, &n->partial, lru) {
2481 if (!page->inuse) {
2482 list_del(&page->lru);
2483 discard_slab(s, page);
2484 n->nr_partial--;
2485 } else {
2486 list_slab_objects(s, page,
2487 "Objects remaining on kmem_cache_close()");
2488 }
2489 }
2490 spin_unlock_irqrestore(&n->list_lock, flags);
2491 }
2492
2493 /*
2494 * Release all resources used by a slab cache.
2495 */
2496 static inline int kmem_cache_close(struct kmem_cache *s)
2497 {
2498 int node;
2499
2500 flush_all(s);
2501 free_percpu(s->cpu_slab);
2502 /* Attempt to free all objects */
2503 for_each_node_state(node, N_NORMAL_MEMORY) {
2504 struct kmem_cache_node *n = get_node(s, node);
2505
2506 free_partial(s, n);
2507 if (n->nr_partial || slabs_node(s, node))
2508 return 1;
2509 }
2510 free_kmem_cache_nodes(s);
2511 return 0;
2512 }
2513
2514 /*
2515 * Close a cache and release the kmem_cache structure
2516 * (must be used for caches created using kmem_cache_create)
2517 */
2518 void kmem_cache_destroy(struct kmem_cache *s)
2519 {
2520 down_write(&slub_lock);
2521 s->refcount--;
2522 if (!s->refcount) {
2523 list_del(&s->list);
2524 up_write(&slub_lock);
2525 if (kmem_cache_close(s)) {
2526 printk(KERN_ERR "SLUB %s: %s called for cache that "
2527 "still has objects.\n", s->name, __func__);
2528 dump_stack();
2529 }
2530 if (s->flags & SLAB_DESTROY_BY_RCU)
2531 rcu_barrier();
2532 sysfs_slab_remove(s);
2533 } else
2534 up_write(&slub_lock);
2535 }
2536 EXPORT_SYMBOL(kmem_cache_destroy);
2537
2538 /********************************************************************
2539 * Kmalloc subsystem
2540 *******************************************************************/
2541
2542 struct kmem_cache kmalloc_caches[KMALLOC_CACHES] __cacheline_aligned;
2543 EXPORT_SYMBOL(kmalloc_caches);
2544
2545 static int __init setup_slub_min_order(char *str)
2546 {
2547 get_option(&str, &slub_min_order);
2548
2549 return 1;
2550 }
2551
2552 __setup("slub_min_order=", setup_slub_min_order);
2553
2554 static int __init setup_slub_max_order(char *str)
2555 {
2556 get_option(&str, &slub_max_order);
2557 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
2558
2559 return 1;
2560 }
2561
2562 __setup("slub_max_order=", setup_slub_max_order);
2563
2564 static int __init setup_slub_min_objects(char *str)
2565 {
2566 get_option(&str, &slub_min_objects);
2567
2568 return 1;
2569 }
2570
2571 __setup("slub_min_objects=", setup_slub_min_objects);
2572
2573 static int __init setup_slub_nomerge(char *str)
2574 {
2575 slub_nomerge = 1;
2576 return 1;
2577 }
2578
2579 __setup("slub_nomerge", setup_slub_nomerge);
2580
2581 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2582 const char *name, int size, gfp_t gfp_flags)
2583 {
2584 unsigned int flags = 0;
2585
2586 if (gfp_flags & SLUB_DMA)
2587 flags = SLAB_CACHE_DMA;
2588
2589 /*
2590 * This function is called with IRQs disabled during early-boot on
2591 * single CPU so there's no need to take slub_lock here.
2592 */
2593 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2594 flags, NULL))
2595 goto panic;
2596
2597 list_add(&s->list, &slab_caches);
2598
2599 if (sysfs_slab_add(s))
2600 goto panic;
2601 return s;
2602
2603 panic:
2604 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2605 }
2606
2607 #ifdef CONFIG_ZONE_DMA
2608 static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT];
2609
2610 static void sysfs_add_func(struct work_struct *w)
2611 {
2612 struct kmem_cache *s;
2613
2614 down_write(&slub_lock);
2615 list_for_each_entry(s, &slab_caches, list) {
2616 if (s->flags & __SYSFS_ADD_DEFERRED) {
2617 s->flags &= ~__SYSFS_ADD_DEFERRED;
2618 sysfs_slab_add(s);
2619 }
2620 }
2621 up_write(&slub_lock);
2622 }
2623
2624 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2625
2626 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2627 {
2628 struct kmem_cache *s;
2629 char *text;
2630 size_t realsize;
2631 unsigned long slabflags;
2632 int i;
2633
2634 s = kmalloc_caches_dma[index];
2635 if (s)
2636 return s;
2637
2638 /* Dynamically create dma cache */
2639 if (flags & __GFP_WAIT)
2640 down_write(&slub_lock);
2641 else {
2642 if (!down_write_trylock(&slub_lock))
2643 goto out;
2644 }
2645
2646 if (kmalloc_caches_dma[index])
2647 goto unlock_out;
2648
2649 realsize = kmalloc_caches[index].objsize;
2650 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2651 (unsigned int)realsize);
2652
2653 s = NULL;
2654 for (i = 0; i < KMALLOC_CACHES; i++)
2655 if (!kmalloc_caches[i].size)
2656 break;
2657
2658 BUG_ON(i >= KMALLOC_CACHES);
2659 s = kmalloc_caches + i;
2660
2661 /*
2662 * Must defer sysfs creation to a workqueue because we don't know
2663 * what context we are called from. Before sysfs comes up, we don't
2664 * need to do anything because our sysfs initcall will start by
2665 * adding all existing slabs to sysfs.
2666 */
2667 slabflags = SLAB_CACHE_DMA|SLAB_NOTRACK;
2668 if (slab_state >= SYSFS)
2669 slabflags |= __SYSFS_ADD_DEFERRED;
2670
2671 if (!s || !text || !kmem_cache_open(s, flags, text,
2672 realsize, ARCH_KMALLOC_MINALIGN, slabflags, NULL)) {
2673 s->size = 0;
2674 kfree(text);
2675 goto unlock_out;
2676 }
2677
2678 list_add(&s->list, &slab_caches);
2679 kmalloc_caches_dma[index] = s;
2680
2681 if (slab_state >= SYSFS)
2682 schedule_work(&sysfs_add_work);
2683
2684 unlock_out:
2685 up_write(&slub_lock);
2686 out:
2687 return kmalloc_caches_dma[index];
2688 }
2689 #endif
2690
2691 /*
2692 * Conversion table for small slabs sizes / 8 to the index in the
2693 * kmalloc array. This is necessary for slabs < 192 since we have non power
2694 * of two cache sizes there. The size of larger slabs can be determined using
2695 * fls.
2696 */
2697 static s8 size_index[24] = {
2698 3, /* 8 */
2699 4, /* 16 */
2700 5, /* 24 */
2701 5, /* 32 */
2702 6, /* 40 */
2703 6, /* 48 */
2704 6, /* 56 */
2705 6, /* 64 */
2706 1, /* 72 */
2707 1, /* 80 */
2708 1, /* 88 */
2709 1, /* 96 */
2710 7, /* 104 */
2711 7, /* 112 */
2712 7, /* 120 */
2713 7, /* 128 */
2714 2, /* 136 */
2715 2, /* 144 */
2716 2, /* 152 */
2717 2, /* 160 */
2718 2, /* 168 */
2719 2, /* 176 */
2720 2, /* 184 */
2721 2 /* 192 */
2722 };
2723
2724 static inline int size_index_elem(size_t bytes)
2725 {
2726 return (bytes - 1) / 8;
2727 }
2728
2729 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2730 {
2731 int index;
2732
2733 if (size <= 192) {
2734 if (!size)
2735 return ZERO_SIZE_PTR;
2736
2737 index = size_index[size_index_elem(size)];
2738 } else
2739 index = fls(size - 1);
2740
2741 #ifdef CONFIG_ZONE_DMA
2742 if (unlikely((flags & SLUB_DMA)))
2743 return dma_kmalloc_cache(index, flags);
2744
2745 #endif
2746 return &kmalloc_caches[index];
2747 }
2748
2749 void *__kmalloc(size_t size, gfp_t flags)
2750 {
2751 struct kmem_cache *s;
2752 void *ret;
2753
2754 if (unlikely(size > SLUB_MAX_SIZE))
2755 return kmalloc_large(size, flags);
2756
2757 s = get_slab(size, flags);
2758
2759 if (unlikely(ZERO_OR_NULL_PTR(s)))
2760 return s;
2761
2762 ret = slab_alloc(s, flags, -1, _RET_IP_);
2763
2764 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
2765
2766 return ret;
2767 }
2768 EXPORT_SYMBOL(__kmalloc);
2769
2770 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2771 {
2772 struct page *page;
2773 void *ptr = NULL;
2774
2775 flags |= __GFP_COMP | __GFP_NOTRACK;
2776 page = alloc_pages_node(node, flags, get_order(size));
2777 if (page)
2778 ptr = page_address(page);
2779
2780 kmemleak_alloc(ptr, size, 1, flags);
2781 return ptr;
2782 }
2783
2784 #ifdef CONFIG_NUMA
2785 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2786 {
2787 struct kmem_cache *s;
2788 void *ret;
2789
2790 if (unlikely(size > SLUB_MAX_SIZE)) {
2791 ret = kmalloc_large_node(size, flags, node);
2792
2793 trace_kmalloc_node(_RET_IP_, ret,
2794 size, PAGE_SIZE << get_order(size),
2795 flags, node);
2796
2797 return ret;
2798 }
2799
2800 s = get_slab(size, flags);
2801
2802 if (unlikely(ZERO_OR_NULL_PTR(s)))
2803 return s;
2804
2805 ret = slab_alloc(s, flags, node, _RET_IP_);
2806
2807 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
2808
2809 return ret;
2810 }
2811 EXPORT_SYMBOL(__kmalloc_node);
2812 #endif
2813
2814 size_t ksize(const void *object)
2815 {
2816 struct page *page;
2817 struct kmem_cache *s;
2818
2819 if (unlikely(object == ZERO_SIZE_PTR))
2820 return 0;
2821
2822 page = virt_to_head_page(object);
2823
2824 if (unlikely(!PageSlab(page))) {
2825 WARN_ON(!PageCompound(page));
2826 return PAGE_SIZE << compound_order(page);
2827 }
2828 s = page->slab;
2829
2830 #ifdef CONFIG_SLUB_DEBUG
2831 /*
2832 * Debugging requires use of the padding between object
2833 * and whatever may come after it.
2834 */
2835 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2836 return s->objsize;
2837
2838 #endif
2839 /*
2840 * If we have the need to store the freelist pointer
2841 * back there or track user information then we can
2842 * only use the space before that information.
2843 */
2844 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2845 return s->inuse;
2846 /*
2847 * Else we can use all the padding etc for the allocation
2848 */
2849 return s->size;
2850 }
2851 EXPORT_SYMBOL(ksize);
2852
2853 void kfree(const void *x)
2854 {
2855 struct page *page;
2856 void *object = (void *)x;
2857
2858 trace_kfree(_RET_IP_, x);
2859
2860 if (unlikely(ZERO_OR_NULL_PTR(x)))
2861 return;
2862
2863 page = virt_to_head_page(x);
2864 if (unlikely(!PageSlab(page))) {
2865 BUG_ON(!PageCompound(page));
2866 kmemleak_free(x);
2867 put_page(page);
2868 return;
2869 }
2870 slab_free(page->slab, page, object, _RET_IP_);
2871 }
2872 EXPORT_SYMBOL(kfree);
2873
2874 /*
2875 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2876 * the remaining slabs by the number of items in use. The slabs with the
2877 * most items in use come first. New allocations will then fill those up
2878 * and thus they can be removed from the partial lists.
2879 *
2880 * The slabs with the least items are placed last. This results in them
2881 * being allocated from last increasing the chance that the last objects
2882 * are freed in them.
2883 */
2884 int kmem_cache_shrink(struct kmem_cache *s)
2885 {
2886 int node;
2887 int i;
2888 struct kmem_cache_node *n;
2889 struct page *page;
2890 struct page *t;
2891 int objects = oo_objects(s->max);
2892 struct list_head *slabs_by_inuse =
2893 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2894 unsigned long flags;
2895
2896 if (!slabs_by_inuse)
2897 return -ENOMEM;
2898
2899 flush_all(s);
2900 for_each_node_state(node, N_NORMAL_MEMORY) {
2901 n = get_node(s, node);
2902
2903 if (!n->nr_partial)
2904 continue;
2905
2906 for (i = 0; i < objects; i++)
2907 INIT_LIST_HEAD(slabs_by_inuse + i);
2908
2909 spin_lock_irqsave(&n->list_lock, flags);
2910
2911 /*
2912 * Build lists indexed by the items in use in each slab.
2913 *
2914 * Note that concurrent frees may occur while we hold the
2915 * list_lock. page->inuse here is the upper limit.
2916 */
2917 list_for_each_entry_safe(page, t, &n->partial, lru) {
2918 if (!page->inuse && slab_trylock(page)) {
2919 /*
2920 * Must hold slab lock here because slab_free
2921 * may have freed the last object and be
2922 * waiting to release the slab.
2923 */
2924 list_del(&page->lru);
2925 n->nr_partial--;
2926 slab_unlock(page);
2927 discard_slab(s, page);
2928 } else {
2929 list_move(&page->lru,
2930 slabs_by_inuse + page->inuse);
2931 }
2932 }
2933
2934 /*
2935 * Rebuild the partial list with the slabs filled up most
2936 * first and the least used slabs at the end.
2937 */
2938 for (i = objects - 1; i >= 0; i--)
2939 list_splice(slabs_by_inuse + i, n->partial.prev);
2940
2941 spin_unlock_irqrestore(&n->list_lock, flags);
2942 }
2943
2944 kfree(slabs_by_inuse);
2945 return 0;
2946 }
2947 EXPORT_SYMBOL(kmem_cache_shrink);
2948
2949 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2950 static int slab_mem_going_offline_callback(void *arg)
2951 {
2952 struct kmem_cache *s;
2953
2954 down_read(&slub_lock);
2955 list_for_each_entry(s, &slab_caches, list)
2956 kmem_cache_shrink(s);
2957 up_read(&slub_lock);
2958
2959 return 0;
2960 }
2961
2962 static void slab_mem_offline_callback(void *arg)
2963 {
2964 struct kmem_cache_node *n;
2965 struct kmem_cache *s;
2966 struct memory_notify *marg = arg;
2967 int offline_node;
2968
2969 offline_node = marg->status_change_nid;
2970
2971 /*
2972 * If the node still has available memory. we need kmem_cache_node
2973 * for it yet.
2974 */
2975 if (offline_node < 0)
2976 return;
2977
2978 down_read(&slub_lock);
2979 list_for_each_entry(s, &slab_caches, list) {
2980 n = get_node(s, offline_node);
2981 if (n) {
2982 /*
2983 * if n->nr_slabs > 0, slabs still exist on the node
2984 * that is going down. We were unable to free them,
2985 * and offline_pages() function shoudn't call this
2986 * callback. So, we must fail.
2987 */
2988 BUG_ON(slabs_node(s, offline_node));
2989
2990 s->node[offline_node] = NULL;
2991 kmem_cache_free(kmalloc_caches, n);
2992 }
2993 }
2994 up_read(&slub_lock);
2995 }
2996
2997 static int slab_mem_going_online_callback(void *arg)
2998 {
2999 struct kmem_cache_node *n;
3000 struct kmem_cache *s;
3001 struct memory_notify *marg = arg;
3002 int nid = marg->status_change_nid;
3003 int ret = 0;
3004
3005 /*
3006 * If the node's memory is already available, then kmem_cache_node is
3007 * already created. Nothing to do.
3008 */
3009 if (nid < 0)
3010 return 0;
3011
3012 /*
3013 * We are bringing a node online. No memory is available yet. We must
3014 * allocate a kmem_cache_node structure in order to bring the node
3015 * online.
3016 */
3017 down_read(&slub_lock);
3018 list_for_each_entry(s, &slab_caches, list) {
3019 /*
3020 * XXX: kmem_cache_alloc_node will fallback to other nodes
3021 * since memory is not yet available from the node that
3022 * is brought up.
3023 */
3024 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
3025 if (!n) {
3026 ret = -ENOMEM;
3027 goto out;
3028 }
3029 init_kmem_cache_node(n, s);
3030 s->node[nid] = n;
3031 }
3032 out:
3033 up_read(&slub_lock);
3034 return ret;
3035 }
3036
3037 static int slab_memory_callback(struct notifier_block *self,
3038 unsigned long action, void *arg)
3039 {
3040 int ret = 0;
3041
3042 switch (action) {
3043 case MEM_GOING_ONLINE:
3044 ret = slab_mem_going_online_callback(arg);
3045 break;
3046 case MEM_GOING_OFFLINE:
3047 ret = slab_mem_going_offline_callback(arg);
3048 break;
3049 case MEM_OFFLINE:
3050 case MEM_CANCEL_ONLINE:
3051 slab_mem_offline_callback(arg);
3052 break;
3053 case MEM_ONLINE:
3054 case MEM_CANCEL_OFFLINE:
3055 break;
3056 }
3057 if (ret)
3058 ret = notifier_from_errno(ret);
3059 else
3060 ret = NOTIFY_OK;
3061 return ret;
3062 }
3063
3064 #endif /* CONFIG_MEMORY_HOTPLUG */
3065
3066 /********************************************************************
3067 * Basic setup of slabs
3068 *******************************************************************/
3069
3070 void __init kmem_cache_init(void)
3071 {
3072 int i;
3073 int caches = 0;
3074
3075 #ifdef CONFIG_NUMA
3076 /*
3077 * Must first have the slab cache available for the allocations of the
3078 * struct kmem_cache_node's. There is special bootstrap code in
3079 * kmem_cache_open for slab_state == DOWN.
3080 */
3081 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
3082 sizeof(struct kmem_cache_node), GFP_NOWAIT);
3083 kmalloc_caches[0].refcount = -1;
3084 caches++;
3085
3086 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3087 #endif
3088
3089 /* Able to allocate the per node structures */
3090 slab_state = PARTIAL;
3091
3092 /* Caches that are not of the two-to-the-power-of size */
3093 if (KMALLOC_MIN_SIZE <= 32) {
3094 create_kmalloc_cache(&kmalloc_caches[1],
3095 "kmalloc-96", 96, GFP_NOWAIT);
3096 caches++;
3097 }
3098 if (KMALLOC_MIN_SIZE <= 64) {
3099 create_kmalloc_cache(&kmalloc_caches[2],
3100 "kmalloc-192", 192, GFP_NOWAIT);
3101 caches++;
3102 }
3103
3104 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3105 create_kmalloc_cache(&kmalloc_caches[i],
3106 "kmalloc", 1 << i, GFP_NOWAIT);
3107 caches++;
3108 }
3109
3110
3111 /*
3112 * Patch up the size_index table if we have strange large alignment
3113 * requirements for the kmalloc array. This is only the case for
3114 * MIPS it seems. The standard arches will not generate any code here.
3115 *
3116 * Largest permitted alignment is 256 bytes due to the way we
3117 * handle the index determination for the smaller caches.
3118 *
3119 * Make sure that nothing crazy happens if someone starts tinkering
3120 * around with ARCH_KMALLOC_MINALIGN
3121 */
3122 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3123 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3124
3125 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3126 int elem = size_index_elem(i);
3127 if (elem >= ARRAY_SIZE(size_index))
3128 break;
3129 size_index[elem] = KMALLOC_SHIFT_LOW;
3130 }
3131
3132 if (KMALLOC_MIN_SIZE == 64) {
3133 /*
3134 * The 96 byte size cache is not used if the alignment
3135 * is 64 byte.
3136 */
3137 for (i = 64 + 8; i <= 96; i += 8)
3138 size_index[size_index_elem(i)] = 7;
3139 } else if (KMALLOC_MIN_SIZE == 128) {
3140 /*
3141 * The 192 byte sized cache is not used if the alignment
3142 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3143 * instead.
3144 */
3145 for (i = 128 + 8; i <= 192; i += 8)
3146 size_index[size_index_elem(i)] = 8;
3147 }
3148
3149 slab_state = UP;
3150
3151 /* Provide the correct kmalloc names now that the caches are up */
3152 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++)
3153 kmalloc_caches[i]. name =
3154 kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3155
3156 #ifdef CONFIG_SMP
3157 register_cpu_notifier(&slab_notifier);
3158 #endif
3159 #ifdef CONFIG_NUMA
3160 kmem_size = offsetof(struct kmem_cache, node) +
3161 nr_node_ids * sizeof(struct kmem_cache_node *);
3162 #else
3163 kmem_size = sizeof(struct kmem_cache);
3164 #endif
3165
3166 printk(KERN_INFO
3167 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3168 " CPUs=%d, Nodes=%d\n",
3169 caches, cache_line_size(),
3170 slub_min_order, slub_max_order, slub_min_objects,
3171 nr_cpu_ids, nr_node_ids);
3172 }
3173
3174 void __init kmem_cache_init_late(void)
3175 {
3176 }
3177
3178 /*
3179 * Find a mergeable slab cache
3180 */
3181 static int slab_unmergeable(struct kmem_cache *s)
3182 {
3183 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3184 return 1;
3185
3186 if (s->ctor)
3187 return 1;
3188
3189 /*
3190 * We may have set a slab to be unmergeable during bootstrap.
3191 */
3192 if (s->refcount < 0)
3193 return 1;
3194
3195 return 0;
3196 }
3197
3198 static struct kmem_cache *find_mergeable(size_t size,
3199 size_t align, unsigned long flags, const char *name,
3200 void (*ctor)(void *))
3201 {
3202 struct kmem_cache *s;
3203
3204 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3205 return NULL;
3206
3207 if (ctor)
3208 return NULL;
3209
3210 size = ALIGN(size, sizeof(void *));
3211 align = calculate_alignment(flags, align, size);
3212 size = ALIGN(size, align);
3213 flags = kmem_cache_flags(size, flags, name, NULL);
3214
3215 list_for_each_entry(s, &slab_caches, list) {
3216 if (slab_unmergeable(s))
3217 continue;
3218
3219 if (size > s->size)
3220 continue;
3221
3222 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3223 continue;
3224 /*
3225 * Check if alignment is compatible.
3226 * Courtesy of Adrian Drzewiecki
3227 */
3228 if ((s->size & ~(align - 1)) != s->size)
3229 continue;
3230
3231 if (s->size - size >= sizeof(void *))
3232 continue;
3233
3234 return s;
3235 }
3236 return NULL;
3237 }
3238
3239 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3240 size_t align, unsigned long flags, void (*ctor)(void *))
3241 {
3242 struct kmem_cache *s;
3243
3244 if (WARN_ON(!name))
3245 return NULL;
3246
3247 down_write(&slub_lock);
3248 s = find_mergeable(size, align, flags, name, ctor);
3249 if (s) {
3250 int cpu;
3251
3252 s->refcount++;
3253 /*
3254 * Adjust the object sizes so that we clear
3255 * the complete object on kzalloc.
3256 */
3257 s->objsize = max(s->objsize, (int)size);
3258
3259 /*
3260 * And then we need to update the object size in the
3261 * per cpu structures
3262 */
3263 for_each_online_cpu(cpu)
3264 per_cpu_ptr(s->cpu_slab, cpu)->objsize = s->objsize;
3265
3266 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3267 up_write(&slub_lock);
3268
3269 if (sysfs_slab_alias(s, name)) {
3270 down_write(&slub_lock);
3271 s->refcount--;
3272 up_write(&slub_lock);
3273 goto err;
3274 }
3275 return s;
3276 }
3277
3278 s = kmalloc(kmem_size, GFP_KERNEL);
3279 if (s) {
3280 if (kmem_cache_open(s, GFP_KERNEL, name,
3281 size, align, flags, ctor)) {
3282 list_add(&s->list, &slab_caches);
3283 up_write(&slub_lock);
3284 if (sysfs_slab_add(s)) {
3285 down_write(&slub_lock);
3286 list_del(&s->list);
3287 up_write(&slub_lock);
3288 kfree(s);
3289 goto err;
3290 }
3291 return s;
3292 }
3293 kfree(s);
3294 }
3295 up_write(&slub_lock);
3296
3297 err:
3298 if (flags & SLAB_PANIC)
3299 panic("Cannot create slabcache %s\n", name);
3300 else
3301 s = NULL;
3302 return s;
3303 }
3304 EXPORT_SYMBOL(kmem_cache_create);
3305
3306 #ifdef CONFIG_SMP
3307 /*
3308 * Use the cpu notifier to insure that the cpu slabs are flushed when
3309 * necessary.
3310 */
3311 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3312 unsigned long action, void *hcpu)
3313 {
3314 long cpu = (long)hcpu;
3315 struct kmem_cache *s;
3316 unsigned long flags;
3317
3318 switch (action) {
3319 case CPU_UP_PREPARE:
3320 case CPU_UP_PREPARE_FROZEN:
3321 down_read(&slub_lock);
3322 list_for_each_entry(s, &slab_caches, list)
3323 init_kmem_cache_cpu(s, per_cpu_ptr(s->cpu_slab, cpu));
3324 up_read(&slub_lock);
3325 break;
3326
3327 case CPU_UP_CANCELED:
3328 case CPU_UP_CANCELED_FROZEN:
3329 case CPU_DEAD:
3330 case CPU_DEAD_FROZEN:
3331 down_read(&slub_lock);
3332 list_for_each_entry(s, &slab_caches, list) {
3333 local_irq_save(flags);
3334 __flush_cpu_slab(s, cpu);
3335 local_irq_restore(flags);
3336 }
3337 up_read(&slub_lock);
3338 break;
3339 default:
3340 break;
3341 }
3342 return NOTIFY_OK;
3343 }
3344
3345 static struct notifier_block __cpuinitdata slab_notifier = {
3346 .notifier_call = slab_cpuup_callback
3347 };
3348
3349 #endif
3350
3351 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3352 {
3353 struct kmem_cache *s;
3354 void *ret;
3355
3356 if (unlikely(size > SLUB_MAX_SIZE))
3357 return kmalloc_large(size, gfpflags);
3358
3359 s = get_slab(size, gfpflags);
3360
3361 if (unlikely(ZERO_OR_NULL_PTR(s)))
3362 return s;
3363
3364 ret = slab_alloc(s, gfpflags, -1, caller);
3365
3366 /* Honor the call site pointer we recieved. */
3367 trace_kmalloc(caller, ret, size, s->size, gfpflags);
3368
3369 return ret;
3370 }
3371
3372 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3373 int node, unsigned long caller)
3374 {
3375 struct kmem_cache *s;
3376 void *ret;
3377
3378 if (unlikely(size > SLUB_MAX_SIZE))
3379 return kmalloc_large_node(size, gfpflags, node);
3380
3381 s = get_slab(size, gfpflags);
3382
3383 if (unlikely(ZERO_OR_NULL_PTR(s)))
3384 return s;
3385
3386 ret = slab_alloc(s, gfpflags, node, caller);
3387
3388 /* Honor the call site pointer we recieved. */
3389 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3390
3391 return ret;
3392 }
3393
3394 #ifdef CONFIG_SLUB_DEBUG
3395 static int count_inuse(struct page *page)
3396 {
3397 return page->inuse;
3398 }
3399
3400 static int count_total(struct page *page)
3401 {
3402 return page->objects;
3403 }
3404
3405 static int validate_slab(struct kmem_cache *s, struct page *page,
3406 unsigned long *map)
3407 {
3408 void *p;
3409 void *addr = page_address(page);
3410
3411 if (!check_slab(s, page) ||
3412 !on_freelist(s, page, NULL))
3413 return 0;
3414
3415 /* Now we know that a valid freelist exists */
3416 bitmap_zero(map, page->objects);
3417
3418 for_each_free_object(p, s, page->freelist) {
3419 set_bit(slab_index(p, s, addr), map);
3420 if (!check_object(s, page, p, 0))
3421 return 0;
3422 }
3423
3424 for_each_object(p, s, addr, page->objects)
3425 if (!test_bit(slab_index(p, s, addr), map))
3426 if (!check_object(s, page, p, 1))
3427 return 0;
3428 return 1;
3429 }
3430
3431 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3432 unsigned long *map)
3433 {
3434 if (slab_trylock(page)) {
3435 validate_slab(s, page, map);
3436 slab_unlock(page);
3437 } else
3438 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3439 s->name, page);
3440
3441 if (s->flags & DEBUG_DEFAULT_FLAGS) {
3442 if (!PageSlubDebug(page))
3443 printk(KERN_ERR "SLUB %s: SlubDebug not set "
3444 "on slab 0x%p\n", s->name, page);
3445 } else {
3446 if (PageSlubDebug(page))
3447 printk(KERN_ERR "SLUB %s: SlubDebug set on "
3448 "slab 0x%p\n", s->name, page);
3449 }
3450 }
3451
3452 static int validate_slab_node(struct kmem_cache *s,
3453 struct kmem_cache_node *n, unsigned long *map)
3454 {
3455 unsigned long count = 0;
3456 struct page *page;
3457 unsigned long flags;
3458
3459 spin_lock_irqsave(&n->list_lock, flags);
3460
3461 list_for_each_entry(page, &n->partial, lru) {
3462 validate_slab_slab(s, page, map);
3463 count++;
3464 }
3465 if (count != n->nr_partial)
3466 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3467 "counter=%ld\n", s->name, count, n->nr_partial);
3468
3469 if (!(s->flags & SLAB_STORE_USER))
3470 goto out;
3471
3472 list_for_each_entry(page, &n->full, lru) {
3473 validate_slab_slab(s, page, map);
3474 count++;
3475 }
3476 if (count != atomic_long_read(&n->nr_slabs))
3477 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3478 "counter=%ld\n", s->name, count,
3479 atomic_long_read(&n->nr_slabs));
3480
3481 out:
3482 spin_unlock_irqrestore(&n->list_lock, flags);
3483 return count;
3484 }
3485
3486 static long validate_slab_cache(struct kmem_cache *s)
3487 {
3488 int node;
3489 unsigned long count = 0;
3490 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3491 sizeof(unsigned long), GFP_KERNEL);
3492
3493 if (!map)
3494 return -ENOMEM;
3495
3496 flush_all(s);
3497 for_each_node_state(node, N_NORMAL_MEMORY) {
3498 struct kmem_cache_node *n = get_node(s, node);
3499
3500 count += validate_slab_node(s, n, map);
3501 }
3502 kfree(map);
3503 return count;
3504 }
3505
3506 #ifdef SLUB_RESILIENCY_TEST
3507 static void resiliency_test(void)
3508 {
3509 u8 *p;
3510
3511 printk(KERN_ERR "SLUB resiliency testing\n");
3512 printk(KERN_ERR "-----------------------\n");
3513 printk(KERN_ERR "A. Corruption after allocation\n");
3514
3515 p = kzalloc(16, GFP_KERNEL);
3516 p[16] = 0x12;
3517 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3518 " 0x12->0x%p\n\n", p + 16);
3519
3520 validate_slab_cache(kmalloc_caches + 4);
3521
3522 /* Hmmm... The next two are dangerous */
3523 p = kzalloc(32, GFP_KERNEL);
3524 p[32 + sizeof(void *)] = 0x34;
3525 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3526 " 0x34 -> -0x%p\n", p);
3527 printk(KERN_ERR
3528 "If allocated object is overwritten then not detectable\n\n");
3529
3530 validate_slab_cache(kmalloc_caches + 5);
3531 p = kzalloc(64, GFP_KERNEL);
3532 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3533 *p = 0x56;
3534 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3535 p);
3536 printk(KERN_ERR
3537 "If allocated object is overwritten then not detectable\n\n");
3538 validate_slab_cache(kmalloc_caches + 6);
3539
3540 printk(KERN_ERR "\nB. Corruption after free\n");
3541 p = kzalloc(128, GFP_KERNEL);
3542 kfree(p);
3543 *p = 0x78;
3544 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3545 validate_slab_cache(kmalloc_caches + 7);
3546
3547 p = kzalloc(256, GFP_KERNEL);
3548 kfree(p);
3549 p[50] = 0x9a;
3550 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3551 p);
3552 validate_slab_cache(kmalloc_caches + 8);
3553
3554 p = kzalloc(512, GFP_KERNEL);
3555 kfree(p);
3556 p[512] = 0xab;
3557 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3558 validate_slab_cache(kmalloc_caches + 9);
3559 }
3560 #else
3561 static void resiliency_test(void) {};
3562 #endif
3563
3564 /*
3565 * Generate lists of code addresses where slabcache objects are allocated
3566 * and freed.
3567 */
3568
3569 struct location {
3570 unsigned long count;
3571 unsigned long addr;
3572 long long sum_time;
3573 long min_time;
3574 long max_time;
3575 long min_pid;
3576 long max_pid;
3577 DECLARE_BITMAP(cpus, NR_CPUS);
3578 nodemask_t nodes;
3579 };
3580
3581 struct loc_track {
3582 unsigned long max;
3583 unsigned long count;
3584 struct location *loc;
3585 };
3586
3587 static void free_loc_track(struct loc_track *t)
3588 {
3589 if (t->max)
3590 free_pages((unsigned long)t->loc,
3591 get_order(sizeof(struct location) * t->max));
3592 }
3593
3594 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3595 {
3596 struct location *l;
3597 int order;
3598
3599 order = get_order(sizeof(struct location) * max);
3600
3601 l = (void *)__get_free_pages(flags, order);
3602 if (!l)
3603 return 0;
3604
3605 if (t->count) {
3606 memcpy(l, t->loc, sizeof(struct location) * t->count);
3607 free_loc_track(t);
3608 }
3609 t->max = max;
3610 t->loc = l;
3611 return 1;
3612 }
3613
3614 static int add_location(struct loc_track *t, struct kmem_cache *s,
3615 const struct track *track)
3616 {
3617 long start, end, pos;
3618 struct location *l;
3619 unsigned long caddr;
3620 unsigned long age = jiffies - track->when;
3621
3622 start = -1;
3623 end = t->count;
3624
3625 for ( ; ; ) {
3626 pos = start + (end - start + 1) / 2;
3627
3628 /*
3629 * There is nothing at "end". If we end up there
3630 * we need to add something to before end.
3631 */
3632 if (pos == end)
3633 break;
3634
3635 caddr = t->loc[pos].addr;
3636 if (track->addr == caddr) {
3637
3638 l = &t->loc[pos];
3639 l->count++;
3640 if (track->when) {
3641 l->sum_time += age;
3642 if (age < l->min_time)
3643 l->min_time = age;
3644 if (age > l->max_time)
3645 l->max_time = age;
3646
3647 if (track->pid < l->min_pid)
3648 l->min_pid = track->pid;
3649 if (track->pid > l->max_pid)
3650 l->max_pid = track->pid;
3651
3652 cpumask_set_cpu(track->cpu,
3653 to_cpumask(l->cpus));
3654 }
3655 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3656 return 1;
3657 }
3658
3659 if (track->addr < caddr)
3660 end = pos;
3661 else
3662 start = pos;
3663 }
3664
3665 /*
3666 * Not found. Insert new tracking element.
3667 */
3668 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3669 return 0;
3670
3671 l = t->loc + pos;
3672 if (pos < t->count)
3673 memmove(l + 1, l,
3674 (t->count - pos) * sizeof(struct location));
3675 t->count++;
3676 l->count = 1;
3677 l->addr = track->addr;
3678 l->sum_time = age;
3679 l->min_time = age;
3680 l->max_time = age;
3681 l->min_pid = track->pid;
3682 l->max_pid = track->pid;
3683 cpumask_clear(to_cpumask(l->cpus));
3684 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
3685 nodes_clear(l->nodes);
3686 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3687 return 1;
3688 }
3689
3690 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3691 struct page *page, enum track_item alloc)
3692 {
3693 void *addr = page_address(page);
3694 DECLARE_BITMAP(map, page->objects);
3695 void *p;
3696
3697 bitmap_zero(map, page->objects);
3698 for_each_free_object(p, s, page->freelist)
3699 set_bit(slab_index(p, s, addr), map);
3700
3701 for_each_object(p, s, addr, page->objects)
3702 if (!test_bit(slab_index(p, s, addr), map))
3703 add_location(t, s, get_track(s, p, alloc));
3704 }
3705
3706 static int list_locations(struct kmem_cache *s, char *buf,
3707 enum track_item alloc)
3708 {
3709 int len = 0;
3710 unsigned long i;
3711 struct loc_track t = { 0, 0, NULL };
3712 int node;
3713
3714 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3715 GFP_TEMPORARY))
3716 return sprintf(buf, "Out of memory\n");
3717
3718 /* Push back cpu slabs */
3719 flush_all(s);
3720
3721 for_each_node_state(node, N_NORMAL_MEMORY) {
3722 struct kmem_cache_node *n = get_node(s, node);
3723 unsigned long flags;
3724 struct page *page;
3725
3726 if (!atomic_long_read(&n->nr_slabs))
3727 continue;
3728
3729 spin_lock_irqsave(&n->list_lock, flags);
3730 list_for_each_entry(page, &n->partial, lru)
3731 process_slab(&t, s, page, alloc);
3732 list_for_each_entry(page, &n->full, lru)
3733 process_slab(&t, s, page, alloc);
3734 spin_unlock_irqrestore(&n->list_lock, flags);
3735 }
3736
3737 for (i = 0; i < t.count; i++) {
3738 struct location *l = &t.loc[i];
3739
3740 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
3741 break;
3742 len += sprintf(buf + len, "%7ld ", l->count);
3743
3744 if (l->addr)
3745 len += sprint_symbol(buf + len, (unsigned long)l->addr);
3746 else
3747 len += sprintf(buf + len, "<not-available>");
3748
3749 if (l->sum_time != l->min_time) {
3750 len += sprintf(buf + len, " age=%ld/%ld/%ld",
3751 l->min_time,
3752 (long)div_u64(l->sum_time, l->count),
3753 l->max_time);
3754 } else
3755 len += sprintf(buf + len, " age=%ld",
3756 l->min_time);
3757
3758 if (l->min_pid != l->max_pid)
3759 len += sprintf(buf + len, " pid=%ld-%ld",
3760 l->min_pid, l->max_pid);
3761 else
3762 len += sprintf(buf + len, " pid=%ld",
3763 l->min_pid);
3764
3765 if (num_online_cpus() > 1 &&
3766 !cpumask_empty(to_cpumask(l->cpus)) &&
3767 len < PAGE_SIZE - 60) {
3768 len += sprintf(buf + len, " cpus=");
3769 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3770 to_cpumask(l->cpus));
3771 }
3772
3773 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
3774 len < PAGE_SIZE - 60) {
3775 len += sprintf(buf + len, " nodes=");
3776 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3777 l->nodes);
3778 }
3779
3780 len += sprintf(buf + len, "\n");
3781 }
3782
3783 free_loc_track(&t);
3784 if (!t.count)
3785 len += sprintf(buf, "No data\n");
3786 return len;
3787 }
3788
3789 enum slab_stat_type {
3790 SL_ALL, /* All slabs */
3791 SL_PARTIAL, /* Only partially allocated slabs */
3792 SL_CPU, /* Only slabs used for cpu caches */
3793 SL_OBJECTS, /* Determine allocated objects not slabs */
3794 SL_TOTAL /* Determine object capacity not slabs */
3795 };
3796
3797 #define SO_ALL (1 << SL_ALL)
3798 #define SO_PARTIAL (1 << SL_PARTIAL)
3799 #define SO_CPU (1 << SL_CPU)
3800 #define SO_OBJECTS (1 << SL_OBJECTS)
3801 #define SO_TOTAL (1 << SL_TOTAL)
3802
3803 static ssize_t show_slab_objects(struct kmem_cache *s,
3804 char *buf, unsigned long flags)
3805 {
3806 unsigned long total = 0;
3807 int node;
3808 int x;
3809 unsigned long *nodes;
3810 unsigned long *per_cpu;
3811
3812 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3813 if (!nodes)
3814 return -ENOMEM;
3815 per_cpu = nodes + nr_node_ids;
3816
3817 if (flags & SO_CPU) {
3818 int cpu;
3819
3820 for_each_possible_cpu(cpu) {
3821 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3822
3823 if (!c || c->node < 0)
3824 continue;
3825
3826 if (c->page) {
3827 if (flags & SO_TOTAL)
3828 x = c->page->objects;
3829 else if (flags & SO_OBJECTS)
3830 x = c->page->inuse;
3831 else
3832 x = 1;
3833
3834 total += x;
3835 nodes[c->node] += x;
3836 }
3837 per_cpu[c->node]++;
3838 }
3839 }
3840
3841 if (flags & SO_ALL) {
3842 for_each_node_state(node, N_NORMAL_MEMORY) {
3843 struct kmem_cache_node *n = get_node(s, node);
3844
3845 if (flags & SO_TOTAL)
3846 x = atomic_long_read(&n->total_objects);
3847 else if (flags & SO_OBJECTS)
3848 x = atomic_long_read(&n->total_objects) -
3849 count_partial(n, count_free);
3850
3851 else
3852 x = atomic_long_read(&n->nr_slabs);
3853 total += x;
3854 nodes[node] += x;
3855 }
3856
3857 } else if (flags & SO_PARTIAL) {
3858 for_each_node_state(node, N_NORMAL_MEMORY) {
3859 struct kmem_cache_node *n = get_node(s, node);
3860
3861 if (flags & SO_TOTAL)
3862 x = count_partial(n, count_total);
3863 else if (flags & SO_OBJECTS)
3864 x = count_partial(n, count_inuse);
3865 else
3866 x = n->nr_partial;
3867 total += x;
3868 nodes[node] += x;
3869 }
3870 }
3871 x = sprintf(buf, "%lu", total);
3872 #ifdef CONFIG_NUMA
3873 for_each_node_state(node, N_NORMAL_MEMORY)
3874 if (nodes[node])
3875 x += sprintf(buf + x, " N%d=%lu",
3876 node, nodes[node]);
3877 #endif
3878 kfree(nodes);
3879 return x + sprintf(buf + x, "\n");
3880 }
3881
3882 static int any_slab_objects(struct kmem_cache *s)
3883 {
3884 int node;
3885
3886 for_each_online_node(node) {
3887 struct kmem_cache_node *n = get_node(s, node);
3888
3889 if (!n)
3890 continue;
3891
3892 if (atomic_long_read(&n->total_objects))
3893 return 1;
3894 }
3895 return 0;
3896 }
3897
3898 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3899 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3900
3901 struct slab_attribute {
3902 struct attribute attr;
3903 ssize_t (*show)(struct kmem_cache *s, char *buf);
3904 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3905 };
3906
3907 #define SLAB_ATTR_RO(_name) \
3908 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3909
3910 #define SLAB_ATTR(_name) \
3911 static struct slab_attribute _name##_attr = \
3912 __ATTR(_name, 0644, _name##_show, _name##_store)
3913
3914 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3915 {
3916 return sprintf(buf, "%d\n", s->size);
3917 }
3918 SLAB_ATTR_RO(slab_size);
3919
3920 static ssize_t align_show(struct kmem_cache *s, char *buf)
3921 {
3922 return sprintf(buf, "%d\n", s->align);
3923 }
3924 SLAB_ATTR_RO(align);
3925
3926 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3927 {
3928 return sprintf(buf, "%d\n", s->objsize);
3929 }
3930 SLAB_ATTR_RO(object_size);
3931
3932 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3933 {
3934 return sprintf(buf, "%d\n", oo_objects(s->oo));
3935 }
3936 SLAB_ATTR_RO(objs_per_slab);
3937
3938 static ssize_t order_store(struct kmem_cache *s,
3939 const char *buf, size_t length)
3940 {
3941 unsigned long order;
3942 int err;
3943
3944 err = strict_strtoul(buf, 10, &order);
3945 if (err)
3946 return err;
3947
3948 if (order > slub_max_order || order < slub_min_order)
3949 return -EINVAL;
3950
3951 calculate_sizes(s, order);
3952 return length;
3953 }
3954
3955 static ssize_t order_show(struct kmem_cache *s, char *buf)
3956 {
3957 return sprintf(buf, "%d\n", oo_order(s->oo));
3958 }
3959 SLAB_ATTR(order);
3960
3961 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
3962 {
3963 return sprintf(buf, "%lu\n", s->min_partial);
3964 }
3965
3966 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
3967 size_t length)
3968 {
3969 unsigned long min;
3970 int err;
3971
3972 err = strict_strtoul(buf, 10, &min);
3973 if (err)
3974 return err;
3975
3976 set_min_partial(s, min);
3977 return length;
3978 }
3979 SLAB_ATTR(min_partial);
3980
3981 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3982 {
3983 if (s->ctor) {
3984 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3985
3986 return n + sprintf(buf + n, "\n");
3987 }
3988 return 0;
3989 }
3990 SLAB_ATTR_RO(ctor);
3991
3992 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3993 {
3994 return sprintf(buf, "%d\n", s->refcount - 1);
3995 }
3996 SLAB_ATTR_RO(aliases);
3997
3998 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3999 {
4000 return show_slab_objects(s, buf, SO_ALL);
4001 }
4002 SLAB_ATTR_RO(slabs);
4003
4004 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4005 {
4006 return show_slab_objects(s, buf, SO_PARTIAL);
4007 }
4008 SLAB_ATTR_RO(partial);
4009
4010 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4011 {
4012 return show_slab_objects(s, buf, SO_CPU);
4013 }
4014 SLAB_ATTR_RO(cpu_slabs);
4015
4016 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4017 {
4018 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4019 }
4020 SLAB_ATTR_RO(objects);
4021
4022 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4023 {
4024 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4025 }
4026 SLAB_ATTR_RO(objects_partial);
4027
4028 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4029 {
4030 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4031 }
4032 SLAB_ATTR_RO(total_objects);
4033
4034 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4035 {
4036 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4037 }
4038
4039 static ssize_t sanity_checks_store(struct kmem_cache *s,
4040 const char *buf, size_t length)
4041 {
4042 s->flags &= ~SLAB_DEBUG_FREE;
4043 if (buf[0] == '1')
4044 s->flags |= SLAB_DEBUG_FREE;
4045 return length;
4046 }
4047 SLAB_ATTR(sanity_checks);
4048
4049 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4050 {
4051 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4052 }
4053
4054 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4055 size_t length)
4056 {
4057 s->flags &= ~SLAB_TRACE;
4058 if (buf[0] == '1')
4059 s->flags |= SLAB_TRACE;
4060 return length;
4061 }
4062 SLAB_ATTR(trace);
4063
4064 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4065 {
4066 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4067 }
4068
4069 static ssize_t reclaim_account_store(struct kmem_cache *s,
4070 const char *buf, size_t length)
4071 {
4072 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4073 if (buf[0] == '1')
4074 s->flags |= SLAB_RECLAIM_ACCOUNT;
4075 return length;
4076 }
4077 SLAB_ATTR(reclaim_account);
4078
4079 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4080 {
4081 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4082 }
4083 SLAB_ATTR_RO(hwcache_align);
4084
4085 #ifdef CONFIG_ZONE_DMA
4086 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4087 {
4088 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4089 }
4090 SLAB_ATTR_RO(cache_dma);
4091 #endif
4092
4093 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4094 {
4095 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4096 }
4097 SLAB_ATTR_RO(destroy_by_rcu);
4098
4099 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4100 {
4101 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4102 }
4103
4104 static ssize_t red_zone_store(struct kmem_cache *s,
4105 const char *buf, size_t length)
4106 {
4107 if (any_slab_objects(s))
4108 return -EBUSY;
4109
4110 s->flags &= ~SLAB_RED_ZONE;
4111 if (buf[0] == '1')
4112 s->flags |= SLAB_RED_ZONE;
4113 calculate_sizes(s, -1);
4114 return length;
4115 }
4116 SLAB_ATTR(red_zone);
4117
4118 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4119 {
4120 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4121 }
4122
4123 static ssize_t poison_store(struct kmem_cache *s,
4124 const char *buf, size_t length)
4125 {
4126 if (any_slab_objects(s))
4127 return -EBUSY;
4128
4129 s->flags &= ~SLAB_POISON;
4130 if (buf[0] == '1')
4131 s->flags |= SLAB_POISON;
4132 calculate_sizes(s, -1);
4133 return length;
4134 }
4135 SLAB_ATTR(poison);
4136
4137 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4138 {
4139 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4140 }
4141
4142 static ssize_t store_user_store(struct kmem_cache *s,
4143 const char *buf, size_t length)
4144 {
4145 if (any_slab_objects(s))
4146 return -EBUSY;
4147
4148 s->flags &= ~SLAB_STORE_USER;
4149 if (buf[0] == '1')
4150 s->flags |= SLAB_STORE_USER;
4151 calculate_sizes(s, -1);
4152 return length;
4153 }
4154 SLAB_ATTR(store_user);
4155
4156 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4157 {
4158 return 0;
4159 }
4160
4161 static ssize_t validate_store(struct kmem_cache *s,
4162 const char *buf, size_t length)
4163 {
4164 int ret = -EINVAL;
4165
4166 if (buf[0] == '1') {
4167 ret = validate_slab_cache(s);
4168 if (ret >= 0)
4169 ret = length;
4170 }
4171 return ret;
4172 }
4173 SLAB_ATTR(validate);
4174
4175 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4176 {
4177 return 0;
4178 }
4179
4180 static ssize_t shrink_store(struct kmem_cache *s,
4181 const char *buf, size_t length)
4182 {
4183 if (buf[0] == '1') {
4184 int rc = kmem_cache_shrink(s);
4185
4186 if (rc)
4187 return rc;
4188 } else
4189 return -EINVAL;
4190 return length;
4191 }
4192 SLAB_ATTR(shrink);
4193
4194 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4195 {
4196 if (!(s->flags & SLAB_STORE_USER))
4197 return -ENOSYS;
4198 return list_locations(s, buf, TRACK_ALLOC);
4199 }
4200 SLAB_ATTR_RO(alloc_calls);
4201
4202 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4203 {
4204 if (!(s->flags & SLAB_STORE_USER))
4205 return -ENOSYS;
4206 return list_locations(s, buf, TRACK_FREE);
4207 }
4208 SLAB_ATTR_RO(free_calls);
4209
4210 #ifdef CONFIG_NUMA
4211 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4212 {
4213 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4214 }
4215
4216 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4217 const char *buf, size_t length)
4218 {
4219 unsigned long ratio;
4220 int err;
4221
4222 err = strict_strtoul(buf, 10, &ratio);
4223 if (err)
4224 return err;
4225
4226 if (ratio <= 100)
4227 s->remote_node_defrag_ratio = ratio * 10;
4228
4229 return length;
4230 }
4231 SLAB_ATTR(remote_node_defrag_ratio);
4232 #endif
4233
4234 #ifdef CONFIG_SLUB_STATS
4235 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4236 {
4237 unsigned long sum = 0;
4238 int cpu;
4239 int len;
4240 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4241
4242 if (!data)
4243 return -ENOMEM;
4244
4245 for_each_online_cpu(cpu) {
4246 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4247
4248 data[cpu] = x;
4249 sum += x;
4250 }
4251
4252 len = sprintf(buf, "%lu", sum);
4253
4254 #ifdef CONFIG_SMP
4255 for_each_online_cpu(cpu) {
4256 if (data[cpu] && len < PAGE_SIZE - 20)
4257 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4258 }
4259 #endif
4260 kfree(data);
4261 return len + sprintf(buf + len, "\n");
4262 }
4263
4264 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4265 {
4266 int cpu;
4267
4268 for_each_online_cpu(cpu)
4269 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4270 }
4271
4272 #define STAT_ATTR(si, text) \
4273 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4274 { \
4275 return show_stat(s, buf, si); \
4276 } \
4277 static ssize_t text##_store(struct kmem_cache *s, \
4278 const char *buf, size_t length) \
4279 { \
4280 if (buf[0] != '0') \
4281 return -EINVAL; \
4282 clear_stat(s, si); \
4283 return length; \
4284 } \
4285 SLAB_ATTR(text); \
4286
4287 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4288 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4289 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4290 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4291 STAT_ATTR(FREE_FROZEN, free_frozen);
4292 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4293 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4294 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4295 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4296 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4297 STAT_ATTR(FREE_SLAB, free_slab);
4298 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4299 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4300 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4301 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4302 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4303 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4304 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4305 #endif
4306
4307 static struct attribute *slab_attrs[] = {
4308 &slab_size_attr.attr,
4309 &object_size_attr.attr,
4310 &objs_per_slab_attr.attr,
4311 &order_attr.attr,
4312 &min_partial_attr.attr,
4313 &objects_attr.attr,
4314 &objects_partial_attr.attr,
4315 &total_objects_attr.attr,
4316 &slabs_attr.attr,
4317 &partial_attr.attr,
4318 &cpu_slabs_attr.attr,
4319 &ctor_attr.attr,
4320 &aliases_attr.attr,
4321 &align_attr.attr,
4322 &sanity_checks_attr.attr,
4323 &trace_attr.attr,
4324 &hwcache_align_attr.attr,
4325 &reclaim_account_attr.attr,
4326 &destroy_by_rcu_attr.attr,
4327 &red_zone_attr.attr,
4328 &poison_attr.attr,
4329 &store_user_attr.attr,
4330 &validate_attr.attr,
4331 &shrink_attr.attr,
4332 &alloc_calls_attr.attr,
4333 &free_calls_attr.attr,
4334 #ifdef CONFIG_ZONE_DMA
4335 &cache_dma_attr.attr,
4336 #endif
4337 #ifdef CONFIG_NUMA
4338 &remote_node_defrag_ratio_attr.attr,
4339 #endif
4340 #ifdef CONFIG_SLUB_STATS
4341 &alloc_fastpath_attr.attr,
4342 &alloc_slowpath_attr.attr,
4343 &free_fastpath_attr.attr,
4344 &free_slowpath_attr.attr,
4345 &free_frozen_attr.attr,
4346 &free_add_partial_attr.attr,
4347 &free_remove_partial_attr.attr,
4348 &alloc_from_partial_attr.attr,
4349 &alloc_slab_attr.attr,
4350 &alloc_refill_attr.attr,
4351 &free_slab_attr.attr,
4352 &cpuslab_flush_attr.attr,
4353 &deactivate_full_attr.attr,
4354 &deactivate_empty_attr.attr,
4355 &deactivate_to_head_attr.attr,
4356 &deactivate_to_tail_attr.attr,
4357 &deactivate_remote_frees_attr.attr,
4358 &order_fallback_attr.attr,
4359 #endif
4360 NULL
4361 };
4362
4363 static struct attribute_group slab_attr_group = {
4364 .attrs = slab_attrs,
4365 };
4366
4367 static ssize_t slab_attr_show(struct kobject *kobj,
4368 struct attribute *attr,
4369 char *buf)
4370 {
4371 struct slab_attribute *attribute;
4372 struct kmem_cache *s;
4373 int err;
4374
4375 attribute = to_slab_attr(attr);
4376 s = to_slab(kobj);
4377
4378 if (!attribute->show)
4379 return -EIO;
4380
4381 err = attribute->show(s, buf);
4382
4383 return err;
4384 }
4385
4386 static ssize_t slab_attr_store(struct kobject *kobj,
4387 struct attribute *attr,
4388 const char *buf, size_t len)
4389 {
4390 struct slab_attribute *attribute;
4391 struct kmem_cache *s;
4392 int err;
4393
4394 attribute = to_slab_attr(attr);
4395 s = to_slab(kobj);
4396
4397 if (!attribute->store)
4398 return -EIO;
4399
4400 err = attribute->store(s, buf, len);
4401
4402 return err;
4403 }
4404
4405 static void kmem_cache_release(struct kobject *kobj)
4406 {
4407 struct kmem_cache *s = to_slab(kobj);
4408
4409 kfree(s);
4410 }
4411
4412 static struct sysfs_ops slab_sysfs_ops = {
4413 .show = slab_attr_show,
4414 .store = slab_attr_store,
4415 };
4416
4417 static struct kobj_type slab_ktype = {
4418 .sysfs_ops = &slab_sysfs_ops,
4419 .release = kmem_cache_release
4420 };
4421
4422 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4423 {
4424 struct kobj_type *ktype = get_ktype(kobj);
4425
4426 if (ktype == &slab_ktype)
4427 return 1;
4428 return 0;
4429 }
4430
4431 static struct kset_uevent_ops slab_uevent_ops = {
4432 .filter = uevent_filter,
4433 };
4434
4435 static struct kset *slab_kset;
4436
4437 #define ID_STR_LENGTH 64
4438
4439 /* Create a unique string id for a slab cache:
4440 *
4441 * Format :[flags-]size
4442 */
4443 static char *create_unique_id(struct kmem_cache *s)
4444 {
4445 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4446 char *p = name;
4447
4448 BUG_ON(!name);
4449
4450 *p++ = ':';
4451 /*
4452 * First flags affecting slabcache operations. We will only
4453 * get here for aliasable slabs so we do not need to support
4454 * too many flags. The flags here must cover all flags that
4455 * are matched during merging to guarantee that the id is
4456 * unique.
4457 */
4458 if (s->flags & SLAB_CACHE_DMA)
4459 *p++ = 'd';
4460 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4461 *p++ = 'a';
4462 if (s->flags & SLAB_DEBUG_FREE)
4463 *p++ = 'F';
4464 if (!(s->flags & SLAB_NOTRACK))
4465 *p++ = 't';
4466 if (p != name + 1)
4467 *p++ = '-';
4468 p += sprintf(p, "%07d", s->size);
4469 BUG_ON(p > name + ID_STR_LENGTH - 1);
4470 return name;
4471 }
4472
4473 static int sysfs_slab_add(struct kmem_cache *s)
4474 {
4475 int err;
4476 const char *name;
4477 int unmergeable;
4478
4479 if (slab_state < SYSFS)
4480 /* Defer until later */
4481 return 0;
4482
4483 unmergeable = slab_unmergeable(s);
4484 if (unmergeable) {
4485 /*
4486 * Slabcache can never be merged so we can use the name proper.
4487 * This is typically the case for debug situations. In that
4488 * case we can catch duplicate names easily.
4489 */
4490 sysfs_remove_link(&slab_kset->kobj, s->name);
4491 name = s->name;
4492 } else {
4493 /*
4494 * Create a unique name for the slab as a target
4495 * for the symlinks.
4496 */
4497 name = create_unique_id(s);
4498 }
4499
4500 s->kobj.kset = slab_kset;
4501 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4502 if (err) {
4503 kobject_put(&s->kobj);
4504 return err;
4505 }
4506
4507 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4508 if (err) {
4509 kobject_del(&s->kobj);
4510 kobject_put(&s->kobj);
4511 return err;
4512 }
4513 kobject_uevent(&s->kobj, KOBJ_ADD);
4514 if (!unmergeable) {
4515 /* Setup first alias */
4516 sysfs_slab_alias(s, s->name);
4517 kfree(name);
4518 }
4519 return 0;
4520 }
4521
4522 static void sysfs_slab_remove(struct kmem_cache *s)
4523 {
4524 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4525 kobject_del(&s->kobj);
4526 kobject_put(&s->kobj);
4527 }
4528
4529 /*
4530 * Need to buffer aliases during bootup until sysfs becomes
4531 * available lest we lose that information.
4532 */
4533 struct saved_alias {
4534 struct kmem_cache *s;
4535 const char *name;
4536 struct saved_alias *next;
4537 };
4538
4539 static struct saved_alias *alias_list;
4540
4541 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4542 {
4543 struct saved_alias *al;
4544
4545 if (slab_state == SYSFS) {
4546 /*
4547 * If we have a leftover link then remove it.
4548 */
4549 sysfs_remove_link(&slab_kset->kobj, name);
4550 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4551 }
4552
4553 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4554 if (!al)
4555 return -ENOMEM;
4556
4557 al->s = s;
4558 al->name = name;
4559 al->next = alias_list;
4560 alias_list = al;
4561 return 0;
4562 }
4563
4564 static int __init slab_sysfs_init(void)
4565 {
4566 struct kmem_cache *s;
4567 int err;
4568
4569 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4570 if (!slab_kset) {
4571 printk(KERN_ERR "Cannot register slab subsystem.\n");
4572 return -ENOSYS;
4573 }
4574
4575 slab_state = SYSFS;
4576
4577 list_for_each_entry(s, &slab_caches, list) {
4578 err = sysfs_slab_add(s);
4579 if (err)
4580 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4581 " to sysfs\n", s->name);
4582 }
4583
4584 while (alias_list) {
4585 struct saved_alias *al = alias_list;
4586
4587 alias_list = alias_list->next;
4588 err = sysfs_slab_alias(al->s, al->name);
4589 if (err)
4590 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4591 " %s to sysfs\n", s->name);
4592 kfree(al);
4593 }
4594
4595 resiliency_test();
4596 return 0;
4597 }
4598
4599 __initcall(slab_sysfs_init);
4600 #endif
4601
4602 /*
4603 * The /proc/slabinfo ABI
4604 */
4605 #ifdef CONFIG_SLABINFO
4606 static void print_slabinfo_header(struct seq_file *m)
4607 {
4608 seq_puts(m, "slabinfo - version: 2.1\n");
4609 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4610 "<objperslab> <pagesperslab>");
4611 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4612 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4613 seq_putc(m, '\n');
4614 }
4615
4616 static void *s_start(struct seq_file *m, loff_t *pos)
4617 {
4618 loff_t n = *pos;
4619
4620 down_read(&slub_lock);
4621 if (!n)
4622 print_slabinfo_header(m);
4623
4624 return seq_list_start(&slab_caches, *pos);
4625 }
4626
4627 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4628 {
4629 return seq_list_next(p, &slab_caches, pos);
4630 }
4631
4632 static void s_stop(struct seq_file *m, void *p)
4633 {
4634 up_read(&slub_lock);
4635 }
4636
4637 static int s_show(struct seq_file *m, void *p)
4638 {
4639 unsigned long nr_partials = 0;
4640 unsigned long nr_slabs = 0;
4641 unsigned long nr_inuse = 0;
4642 unsigned long nr_objs = 0;
4643 unsigned long nr_free = 0;
4644 struct kmem_cache *s;
4645 int node;
4646
4647 s = list_entry(p, struct kmem_cache, list);
4648
4649 for_each_online_node(node) {
4650 struct kmem_cache_node *n = get_node(s, node);
4651
4652 if (!n)
4653 continue;
4654
4655 nr_partials += n->nr_partial;
4656 nr_slabs += atomic_long_read(&n->nr_slabs);
4657 nr_objs += atomic_long_read(&n->total_objects);
4658 nr_free += count_partial(n, count_free);
4659 }
4660
4661 nr_inuse = nr_objs - nr_free;
4662
4663 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4664 nr_objs, s->size, oo_objects(s->oo),
4665 (1 << oo_order(s->oo)));
4666 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4667 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4668 0UL);
4669 seq_putc(m, '\n');
4670 return 0;
4671 }
4672
4673 static const struct seq_operations slabinfo_op = {
4674 .start = s_start,
4675 .next = s_next,
4676 .stop = s_stop,
4677 .show = s_show,
4678 };
4679
4680 static int slabinfo_open(struct inode *inode, struct file *file)
4681 {
4682 return seq_open(file, &slabinfo_op);
4683 }
4684
4685 static const struct file_operations proc_slabinfo_operations = {
4686 .open = slabinfo_open,
4687 .read = seq_read,
4688 .llseek = seq_lseek,
4689 .release = seq_release,
4690 };
4691
4692 static int __init slab_proc_init(void)
4693 {
4694 proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
4695 return 0;
4696 }
4697 module_init(slab_proc_init);
4698 #endif /* CONFIG_SLABINFO */
This page took 0.129439 seconds and 5 git commands to generate.